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Abstract

The development of automotive vehicles over the past decades has led to engines with ever
increasing power and faster dynamics. This development sets new opportunities for electronic
traction control systems as new control designs are required to take advantage of the full potential
of modern engines. This work proposes an approach to traction control for automotive vehicles
with rear-wheel drive, front-wheel drive or on-demand four-wheel drive based on the method
of input-output linearization. Three different control design models are analyzed, that apart
from the actuator dynamics, the wheel dynamics and the longitudinal vehicle dynamics, take
the torsional dynamics of the drivetrain into account explicitly. Global asymptotic stability of
the resulting zero dynamics is shown analytically for the control laws based on these design
models. Stability results are derived for the whole class of each design model by using parametric
Lyapunov functions. A reformulation of the zero dynamics of the rear-wheel drive design model
as a Lur’e system is proposed. It is shown how passivity based methods can be combined with the
proposed class of Lyapunov functions to strengthen the results to global exponential stability and
input-to-state stability. A heuristic method for Lyapunov function identification based on genetic
programming is proposed and its performance is evaluated on three nonlinear example systems.
The static control laws for input-output linearization are approximated by dynamic control laws
for a robust implementation on the relevant control units. An experimental evaluation with
different test vehicles is carried out and a comparison to traditional traction control systems is
given. It is shown that the proposed traction control systems achieve better tracking performance,
disturbance attenuation and damping of drivetrain oscillations.

Zusammenfassung

Die Entwicklung von Automobilen in den vergangenen Jahrzehnten hat zu Motoren mit stetig
steigender Leistung und einem dynamischeren Ansprechverhalten geführt. Dadurch ergeben sich
Chancen für die Entwicklung von elektronischen Traktionsregelsystemen, da neue regelungstech-
nische Ansätze benötigt werden, um das volle Potential von modernen Antrieben zu nutzen.
In dieser Arbeit wird ein Ansatz basierend auf Ein-Ausgangs-Linearisierung vorgestellt, der
sich auf Kraftfahrzeuge mit Heckantrieb, Frontantrieb oder bedarfsgesteuertem Allradantrieb
anwenden lässt. Dafür werden drei verschiedene regelungstechnische Entwurfsmodelle unter-
sucht, welche neben der Aktuatordynamik, der Raddynamik und der Fahrzeuglängsdynamik
auch die Torsionsdynamik des Antriebsstrangs abbilden. Es wird globale, asymptotische Sta-
bilität der resultierenden Nulldynamik für Traktionsregler basierend auf diesen Entwurfsmodellen
nachgewiesen. Der Nachweis wird jeweils für die ganze Klasse an Entwurfsmodellen mit Hilfe
von parametrischen Lyapunov-Funktionen geführt. Eine Umformulierung der Nulldynamik des
Entwurfsmodells mit Heckantrieb als Lur’e System wird vorgestellt. Damit wird gezeigt, wie Me-
thoden aus der passivitätsbasierten Regelung mit der zuvor eingeführten Klasse von Lyapunov-
Funktionen kombiniert werden können, um exponentielle Stabilität und Input-to-State Stabili-
tät nachzuweisen. Zur Identifikation von Lyapunov-Funktionen wird eine heuristische Methode
basierend auf Genetischer Programmierung vorgestellt, deren Leistungsfähigkeit an drei nicht-
linearen Beispielsystemen gezeigt wird. Die statischen Regelgesetze zur Ein-Ausgangs-Linearisie-
rung werden durch dynamische Regelgesetze approximiert um eine robuste Implementierung
auf den dafür relevanten Steuergeräten sicher zu stellen. Es werden Experimente in Form von
Fahrversuchen in verschiedenen Testfahrzeugen und ein Vergleich zu klassischen Traktionsregel-
systemen beschrieben. Dabei wird nachgewiesen, dass die vorgestellten Traktionsregelsysteme
Verbesserungen bezüglich Führungsverhalten, Störgrößenunterdrückung und bei der Dämpfung
von Antriebsstrangschwingungen erreichen.
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2WD Two-wheel Drive.
4WD Four-wheel Drive.

ABS Anti-lock Braking System.
ASC Anti-slip/skid/spin Control.
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Notation

Conventions

Scalars, Vectors, and Matrices

Scalars are written in italic letters, either in lower case or upper case. Vectors are written in bold
italic letters in lower case. Matrices are written in bold italic letters in upper case. Elements of
a vector x are denoted by xi, the elements of a matrix A with Aij for the i-th row, j-th column.

Subscripts and Superscripts

ẋ First derivative with respect to time, shorthand for dx(t)/(dt).
ẍ Second derivative with respect to time, shorthand for d2x(t)/(dt2).
ẋ Vector of element-wise first derivatives with respect to time.
ẍ Vector of element-wise second derivatives with respect to time.
xT Transpose of x.
A−1 Inverse matrix of A.
In Identity matrix of size n× n.
1n Vector of size n× 1 with all entries equal to one.
0n Vector of size n× 1 with all entries equal to zero.
0n×m Matrix of size n×m with all entries equal to zero.
λi(A) The i-th eigenvalue of the real-valued square matrix A.
λmin(P ) Minimum eigenvalue of the symmetric real-valued matrix P .
λmax(P ) Maximum eigenvalue of the symmetric real-valued matrix P .

Norms

|x| Absolute value of the scalar x.
∥x∥ Arbitrary norm of the vector x.
∥x∥2 Euclidean norm of the vector x.
∥x∥∞ Maximum norm of the vector x.
∥L∥F Frobenius norm of the matrix L.

Sets

N Natural numbers.
N0 Natural numbers including zero.
R Real numbers.
R+ Positive Real numbers.
R+
0 Positive Real numbers including zero.

C Complex numbers.
Ck Set of k-times differentiable functions.
K Set of class K functions.
K∞ Set of class K∞ functions.
KL Set of class KL functions.
D Domain of attraction of a dynamical system.
Ω Subset of the state space satisfying Lyapunov conditions.
Ωc Subset of the domain of attraction.
N Nonterminals of a context free grammar.
Σ Terminals of a context free grammar.
P Production rules of a context free grammar.
∅ Empty set.
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Notation

Symbols

Main Symbols for General Control Systems

t Time.
x State vector of dimension n× 1.
u Input vector of dimension m× 1.
y Output vector of dimension p× 1.
f Vector field of the system.
h Measurement functions of the system.

Main Symbols for Traction Control

a0 Reference model coefficient for weighting angular velocity.
a1 Reference model coefficient for weighting angular acceleration.
Ast Vehicle frontal area.
ax Longitudinal acceleration of the vehicle.
ay Lateral acceleration of the vehicle.
b0 Reference model coefficient for weighting outer controller.
Bf Pacejka stiffness factor of the front axle tires.
Br Pacejka stiffness factor of the rear axle tires.
Cf Pacejka shape factor of the front axle tires.
Cr Pacejka shape factor of the rear axle tires.
cw Aerodynamic drag coefficient.
cxf Longitudinal slip stiffness of the front axle tires.
cxf Lower bound for the longitudinal slip stiffness of the front wheels.

c̄xf Upper bound for the longitudinal slip stiffness of the front wheels.
cxr Longitudinal slip stiffness of the rear axle tires.
cxr Lower bound for the longitudinal slip stiffness of the rear wheels.
c̄xr Upper bound for the longitudinal slip stiffness of the rear wheels.
dc Aggregated drivetrain torsional damping constant (rear).
de Aggregated drivetrain torsional damping constant (front).
∆ϕc Twist angle between crankshaft and rear axle.
∆ϕe Twist angle between electronic transfer case and front axle.
e1 Control error for the first controlled system output.
e2 Control error for the second controlled system output.
ϵ Smoothing parameter for normalization speed.
Fw Aerodynamic drag force.
Fxf Friction force between front axle tires and road.
Fxf,0 Front tires friction force at zero front axle angular velocity.
Fxr Friction force between rear axle tires and road.
Fzf Normal force on the front axle.
Fzr Normal force on the rear axle.
g Gravitational acceleration.
ia Gear ratio of the automatic transmission case.
iE Total gear ratio between main engine and front axle.
if Gear ratio of the front axle differential.
iG Total gear ratio between main engine and rear axle.
ir Gear ratio of the rear axle differential.
Jc Aggregated moment of inertia of the drive side.
Je Aggregated moment of inertia of the electronic transfer case.
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Notation

Jeq Equivalent rotational inertia of the rear axle as a function of wheel slip.
Jf Front axle moment of inertia.
Jr Rear axle moment of inertia.
kc Aggregated drivetrain torsional stiffness (rear).
kd Derivative gain of proportional-integral-derivative (PID) controller.
ke Aggregated drivetrain torsional stiffness (front).
ki Integral gain of PID controller.
kp Proportional gain of PID controller.
lf Distance from the front axle to the center of gravity of the vehicle.
lr Distance from the rear axle to the center of gravity of the vehicle.
λxf Average wheel slip of the front axle wheels.
λxf,d Target wheel slip for the front axle.
λ+xf,peak Wheel slip at which the front tires attain the positive peak tire force.

λ−xf,peak Wheel slip at which the front tires attain the negative peak tire force.

λxr Average wheel slip of the rear axle wheels.
λxr,c Slip calculated with crankshaft instead rear axle angular velocity.
λxr,d Target wheel slip for the rear axle.
λ+xr,peak Wheel slip at which the rear tires attain the positive peak tire force.

λ−xr,peak Wheel slip at which the rear tires attain the negative peak tire force.

m Vehicle mass.
M5 Synthesis model of 5-th order for vehicles with two-wheel drive.
M7 Synthesis model of 7-th order for vehicles with four-wheel drive.
M9 Synthesis model of 9-th order for vehicles with four-wheel drive.
µ Coefficient of friction between tire and driving surface.
µmax Upper bound for the friction coefficient.
µmin Lower bound for the friction coefficient.
ωc Crankshaft angular velocity.
ωc,d Target angular velocity of the crankshaft, scaled to wheel level.
ωe Electronic transfer case output speed.
ωf Front axle angular velocity.
ωr Rear axle angular velocity.
ω+
r,peak Optimal rear axle speed with respect to traction.

r1 Target speed for the first system output.
r2 Target speed for the second system output.
rf Radius of the front axle wheels.
rr Radius of the rear axle wheels.
ρ Air density.
σa Boolean signal indicating controller active status.
σs Boolean signal indicating controller saturation.
Tdriver Requested drive torque by the driver.
Te Electronic transfer case torque.
Te,d Desired electronic transfer case torque.
Tf Drive torque of a single front wheel.
Tm Main engine torque.
Tm,d Desired main engine torque.
Tr Drive torque of a single rear wheel.
τd Filter time constant of PID controller.
τe Time constant of electric motor for electronic transfer case.
τm Motor time constant
τm,d Time delay of the main engine.
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Notation

τs Sample time of the traction control system.
ũ1 Arbitrated control signal between driver and traction control system.
ū1 Saturated control signal.
u1 First control input of the control design models, equal to Tm,d.
u1,d Portion of the first control input generated by the drivetrain torsion.
u2 Second control input of the traction control system, equal to Te,d.
v∗0 Minimum value of the smoothed normalization speed.
v1 Output signal of the reference model corresponding to the first output.
v2 Output signal of the reference model corresponding to the second output.
vnf Smoothed normalization speed of the front axle.
vnr Smoothed normalization speed of the rear axle.
vx Longitudinal vehicle velocity (speed when focus is on forward drive).
w1 Output signal of the PID controller for the first output.
w2 Output signal of the PID controller for the second output.
x1 Main engine torque, equal to Tm.
x2 Twist angle between crankshaft and rear axle, equal to ∆ϕc.
x3 Crankshaft angular velocity, equal to ωc.
x4 Rear axle angular velocity, equal to ωr.
x5 Longitudinal vehicle velocity, equal to vx.
x6 Electronic transfer case torque, equal to Te.
x7 Front axle angular velocity, equal to ωf .
x8 Twist angle between electronic transfer case and front axle, equal to ∆ϕe.
x9 Electronic transfer case output speed, equal to ωe.
y1 First output, equal to ωc/iG.
y2 Second output, for theM7 model y2 = ωf , for theM9 model y2 = ωe/if .

Main Symbols for Genetic Programming

C Ephemeral random constant for generation of expressions.
F Fitness value.
G Context free grammar.
knode Factor for scaling the maximum number of expression nodes.
S Start symbol of a context free grammar.
Nnode Maximum number of nodes per expression.
Ns Maximum number of stages per fitness computation.
Nx Number of state space samples per stage.
Xs Matrix of size (2NxNs)× n with state space samples.

Additional Matrix-related Symbols

det(A) Determinant of the square matrix A.
diag(a1, . . . , an) Diagonal matrix of size n× n with diagonal entries a1, . . . , an.
HV (x) Hessian matrix of V (x) evaluated at x.
Jf ,x(x

∗,u∗) Jacobian of f(x,u) with respect to x evaluated at x = x∗, u = u∗.
rank(A) Rank of the square matrix A.

Miscellaneous Symbolsc s Laplace transform.
R(s) Real part of the complex variable s.
sec[K1,K2] Stability sector.
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1 Introduction

1.1 Motivation

Traction control systems (TCSs) are an important part of electronic stability control systems of
automotive vehicles. Such control systems are very effective at reducing traffic accidents [178]
and, according to the World Health Organization, the most important regulation of the United
Nations for crash avoidance by preventing traffic accidents is the regulation on electronic stability
control [281, p. 47]. Besides improving drivability and overall driving stability, modern TCSs
also increase acceleration performance and improve driving comfort by dampening drivetrain
oscillations. TCSs achieve this by constantly monitoring and evaluating the current driving
situation and the wheel speeds. When a critical situation is detected, namely the wheels start to
spin, the requested drive torque from the driver is reduced by the TCS in order to maximize the
transmitted traction force between the tires and the driving surface.

While TCSs have existed for decades, they received increasing interest in the past years, which
can be explained by the development of electric motors and modern, highly supercharged com-
bustion engines with continuously increasing power, responsiveness and high dynamics. These
conditions offer opportunities for control design, as new approaches are required to make full use
of the powerful new generation of actuators. The present work is a contribution in this direc-
tion and studies a control architecture where the speed control loop of the TCS is partitioned
directly on the engine control unit (ECU), not on the driving dynamics control unit (DCU) as in
traditional TCSs. This can be advantageous, as it reduces time delay due to asynchronous com-
munication of different control units and thereby, increases bandwidth of the closed loop system.
One of the main challenges for the control design itself is the nonlinearity of the forces transmit-
ted by the tires. We approach this problem by an analytic control design based on the method of
input-output-linearization (IOL) for controlling the wheel slip and drivetrain dynamics. In order
to cover both vehicles with two-wheel drive (2WD) and vehicles with on-demand four-wheel drive
(4WD) torque bias systems using an electronic transfer case (ETC), the IOL based control de-
sign is carried out for three different control design models, which explicitly model the torsional
dynamics of the drivetrain.

For safety-critical systems like TCSs, a formal stability analysis followed by an experimental
evaluation which confirms the theoretical analysis is essential. We prove stability analytically for
TCSs based on the exact IOL of wheel slip and drivetrain dynamics for vehicles with 2WD and
4WD in order to show that the overall structure of the control designs is suitable for the task
from a theoretical perspective. Parts of the static control laws for IOL are approximated with
high pass filters, in order to enable a robust implementation for the available sensor setup on
a microprocessor. The 2WD control design and one of the 4WD control designs are evaluated
in test vehicles on different maneuvers to evaluate their practical performance and demonstrate
stability and robustness also for a real-world implementation experimentally.

The stability analysis of the zero dynamics resulting from the IOL of the single-input, single-
output (SISO) 2WD also raises further questions. Since the zero dynamics can be reformulated
as a third order multiple-input, multiple-output (MIMO) Lur’e system with two inputs and
two outputs, the question arises whether the Markus-Yamabe conjecture (MYC), while false
in general, might be true for this system class. Two methods are derived to analyze existing
counterexamples to the MYC, showing that this question remains open. In the following, the
research contributions are listed and the structure of this work is stated.
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1 Introduction

1.2 Contributions and Outline

The main research contributions of this work can be summarized as follows.

1. TCS designs for vehicles with 2WD and on-demand 4WD torque bias systems by IOL.
2. Proof of global, exponential stability of the resulting class of time-variant zero dynamics.
3. Proof of input-to-state stability of the resulting class of time-variant internal dynamics.
4. A passivity based analysis using a Lur’e system reformulation of the 2WD zero dynamics.
5. Analysis of this Lur’e system in the context of the Kalman conjecture and the MYC.
6. Methods for input/output dimension analysis of Lur’e systems.
7. Application of genetic programming (GP) for Lyapunov functions synthesis to TCSs.
8. Comparison in the frequency domain of the IOL based control design with PID control.
9. Experimental validation of the control designs in different test vehicles.

Items 1-3 describe results from the control design and stability analysis of the TCSs. Items
4-6 summarize findings from a Lur’e formulation of the 2WD zero dynamics. Item 7 describes
the first application of GP to Lyapunov function synthesis for the zero dynamics of a TCS with
torsional drivetrain dynamics. Items 8 and 9 provide an analysis and experimental validation of
the IOL based TCSs. The remainder of this dissertation is organized as follows.
Chapter 2 gives an introduction to traction control systems and an overview of the current

state of the art. The focus is set on the control design perspective and the most commonly used
control design methods for TCSs are reviewed. The architectures of DCU based and ECU based
traction control are discussed and the gap in the state of the art addressed in this work is derived.
Furthermore, some preliminaries on control theory and optimization with GP are presented.

Chapter 3 presents TCSs for vehicles with 2WD and on-demand 4WD torque bias systems
based on IOL of three different design models, considering the torsional dynamics of the drivetrain
explicitly. A method to parameterize the reference dynamics of the TCS based on a reduced model
is presented. We derive classes of parametric Lyapunov functions for the resulting zero dynamics
and show global asymptotic stability for all vehicle parameters and time-varying, bounded friction
coefficients. Also, details for a practical implementation of the TCSs are given.
Chapter 4 presents a reformulation of the zero dynamics of the 2WD TCS in Lur’e system

form. Passivity based methods are then combined with the class of parametric Lyapunov func-
tions from Chapter 3 to show global exponential stability of the zero dynamics and input-to-state
stability of the internal dynamics of the TCS. This analysis raises the question whether the MYC
is true for third order systems with two inputs and two outputs. We propose two methods for
testing if the input or output dimension of a Lur’e system is reducible and apply them to existing
counterexamples to the MYC, leading to a new open question.
Chapter 5 presents a novel heuristic method for Lyapunov function identification based on

the optimization method of GP. The method is applied to two benchmark systems and the zero
dynamics of the 2WD TCS. It is demonstrated that the method is able to find a valid Lyapunov
function for the two benchmark systems and that it is able to approximate a valid Lyapunov
function for the zero dynamics of the 2WD TCS.

Chapter 6 starts with an experimental validation of the 2WD design model. Following, a
benchmark PID controller is designed which is used for a comparison with the IOL based TCS,
based on a frequency domain analysis. Moreover, the TCS is analyzed with respect to tracking
performance and disturbance attenuation. Thereafter, an experimental evaluation of the 2WD
and 4WD TCSs in different test vehicles is presented. Also, a comparison of the proposed TCS
with a DCU based TCS and an ECU based benchmark TCS is included.
Chapter 7 summarizes and discusses the results of this work. Based on the discussed findings,

a conclusion is drawn and an outlook for future work is given.
In the following, an overview of the state of the art of traction control and a review of different

control design methods that have been proposed in literature for TCSs is given.

2



2 State of the Art

Summary. This chapter gives an overview of the field of traction control in terms of control
architectures and control methods. Open questions and problems of existing solutions are discussed
and the identified research gap is derived. Moreover, the required preliminaries on control theory
and genetic programming are summarized.

2.1 Traction Control Systems

2.1.1 Fundamentals of Traction Control Systems

Traction control systems have the goal of improving driving stability, performance and comfort.
The reason for the need of TCSs is, that the torque that can be transmitted to the road is limited
by the friction force between the tires and the road. The motor torque, which is requested by the
driver by actuating the throttle, however, is practically independent of road conditions. Hence, if
the driver requests significantly more drive torque than is transmittable to the road, the remaining
torque will accelerate the wheels disproportionately to the vehicle speed and so the wheels will
start to spin. This is potentially dangerous, as spinning wheels also reduce transmittable forces in
lateral direction and therefore decrease steerability of the vehicle, which can result in accidents. In
longitudinal direction, spinning wheels reduce the force transmitted to the road as well, such that
on a slippery road with low friction coefficient, the force might be even too low for driveaway, but
at least will deteriorate acceleration performance. Finally, spinning wheels will also affect driving
comfort in a negative way, while mechanical stress might damage drivetrain components in the
long term. Therefore, it is important to control the drive torque to an appropriate level, that
takes road conditions into consideration. Even experienced drivers cannot do this as efficiently
and reliable as when electronically controlled, which is the task of TCSs. To understand the
basic physical characteristics of TCSs, we first analyze the fundamental dynamics and properties
of the tire-road contact in a control oriented way.

In the state of the art, the most common synthesis model used for control design is the 2-state
model, which includes the angular velocity ωr of a single wheel (or an axle)1 and the longitudinal
speed of the vehicle, vx. Reduced to the most essential relations, the longitudinal dynamics
during acceleration in forward direction can be expressed by, cf. [142, 266],

Jrω̇r = TmiG − rrFxr(λxr, µ) (2.1a)

mv̇x = Fxr(λxr, µ)− Fw(vx) (2.1b)

λxr = (rrωr − vx)/(rrωr) , with rrωr ≥ vx > 0. (2.1c)

Here, Tm is the motor torque applied to the rear axle2 with inertia Jr and total gear ratio
iG, Fxr is the tire force transmitted to the driving surface with friction coefficient µ, while λxr
denotes the longitudinal wheel slip and Fw = (1/2)ρcwAstvx|vx| the aerodynamic drag force3.
1Some publications consider a quarter car model [112, 113], others a half-car model [302, 307]. The 2-state model
is suitable for both cases and the choice mainly depends on whether a traditional drivetrain with a driven axle
of in-wheel motors for each wheel are used.

2Here, we assume a vehicle with rear-wheel drive. The model however is analogously applicable to vehicles with
front-wheel drive.

3Some publications consider only a relatively low vehicle speed, such that Fw ≈ 0, so the aerodynamic drag force
can be neglected [71, 210]. Other publications include additional loss terms, like rolling resistance or grade
resistance [36, 93, 205]. However, the basic principles remain the same despite of these variations.

3



2 State of the Art

Moreover, m is the vehicle mass, rr the rear wheel radius, ρ the air density, cw the aerodynamic
drag coefficient and Ast the vehicle frontal area, compare [83, pp. 97–100]. An explicit formula
for Fxr will be given later, as it is not required to describe the basic dynamical behavior of TCSs.
To analyze some properties of the 2-state model and the tire-road contact, a descriptive example
maneuver, displayed in Figure 2.1, is worked through in detail in the following.
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Figure 2.1: Connection between tire force, drive torque, wheel speed, vehicle speed and wheel slip.

The main nonlinearity of the plant (2.1) is the friction force Fxr, which is transmitted to the
road by the lever arm of the contact patch that is formed by the vertical load of the vehicle on the
pneumatic rubber tires. This force depends primarily on the tire parameters, the normal force on
the tire, the road conditions and the wheel slip [128, pp. 17–20], which is the relative difference
between translatory and angular velocity of the wheel [200, pp. 19–32]. Figure 2.1a shows a
model representation of this force as a function of wheel slip, for three different types of friction
coefficients (dry asphalt, snow and ice), using the Pacejka tire model [219]. As can be seen in
Figure 2.1a, the tire force has a maximum at λ+xr,peak ≈ 0.15, so maximum longitudinal traction
is achieved if λxr = λ+xr,peak. Figure 2.1b shows an example longitudinal maneuver, starting at
vx = 10m/s on dry asphalt. The dashed blue line shows the vehicle speed vx, the solid blue
line the wheel speed ωr, converted to m/s via the rear tire radius rr. Finally, the dashed black
line denotes the optimal wheel speed ω+

r,peak in m/s, corresponding to the maximum of the tire

friction curve, calculated by solving (2.1c) for ωr and inserting λ+xr,peak for λxr.
At the beginning of the example maneuver, from t = 0 to 3 s, indicated by 1 , the wheel speed

is at its optimum value (solid blue and dashed black line coincide), so the maximum tire force
is achieved as the 1 in Figure 2.1a shows. The motor torque Tm is just right in this phase and
therefore, the achieved traction and acceleration is at maximum. At t = 3 s, the underground
changes from dry asphalt to ice (in this example, µ is rate limited to ±3 units per second), so
the previously optimal motor torque Tm is now too large, which leads to significant overshoot of
ωr, at point 2 , corresponding to a wheel slip λxr ≈ 0.4. Figure 2.1b also shows the trajectory of
the tire force on the force curves as dotted curve. By reducing the motor torque appropriately
(Tm ↓), after an undershoot at point 3 , the optimal operating point is restored approximately
at 4 . At t = 6 s, the friction coefficient increases again, as the underground changes from ice to
snow. Consequently, the motor torque Tm is now too small, leading to an undershoot at point 5 .
After increasing the motor torque again (Tm ↑), the desired operating point is restored again at
t ≈ 8 s, indicated with 6 . This is basically how TCSs operate and how the fundamental dynamics
of the tire-road contact during acceleration are connected with each other.
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2.1 Traction Control Systems

In practice, many other things have to be considered and, for example, calculating the optimal
wheel slip, or wheel speed, respectively, cannot be done just by maximizing Fxr. As an example for
the generation of the optimal setpoint, lateral acceleration due to steering, as well as uncertainties
of tire and vehicle parameters or additional environmental conditions, like road inclination or side
wind gust, have to be taken into account, among other effects. However, the term TCS here refers
to the control of wheel slip, or an equivalent angular velocity, while the target value is provided
by a higher level controller [275, 55]. Since this work focuses on the inner speed control loop, the
availability of a higher level controller is assumed to be given. There exist different brand names
in the literature for a system that implements such a controller, like vehicle dynamics control
(VDC) [275], electronic stability program (ESP) [201] or dynamic stability control (DSC) [54, 55],
while a commonly used general term is electronic stability control (ESC) [64]. The modularity of
ESC, with the TCS as an important subsystem, allows the separate design of the ESC system for
the vehicle motion and both TCSs and anti-lock braking systems (ABSs) for the wheel motion,
as will be further discussed from an architectural viewpoint in Section 2.1.2.

In the discussed longitudinal maneuver, it was not mentioned who or what modified the motor
torque Tm in order to maximize traction. This detail was left unspecified intentionally, as it is
not necessary for understanding the physical principles of traction control. In practice however,
there is an interaction with the driver, as under normal conditions the driver is the controller and
directly commands the motor torque. The TCS acts as a limiter on the requested torque by the
driver and is activated only if too large wheel slip values are detected so that the requested force
could not be transmitted to the road anyway, see [53, 287] and [302]. It can further be noted
that reducing the motor torque is not the only possibility to decelerate spinning wheels, as this
can be achieved by using wheel brakes, for example. Various TCSs use a combination of torque
reduction and brake control [8, 179], differential lock systems [254] or 4WD on-demand torque
bias systems [220]. An overview and a discussion of such systems are provided in [254]. In this
work, focus is set on engine control, as in modern vehicles with an internal combustion engine
(ICE), the required torque reduction can be performed using the fast firing path, while electric
vehicles (EVs) have even higher bandwidth. Hence, in terms of actuator dynamics, braking is not
required. For some maneuvers involving lateral dynamics or inhomogeneous friction coefficients,
combined brake or differential lock control are still necessary. Existing state of the art control
systems can be used for this purpose in combination with the TCSs of this work.

From a control perspective, an interesting state transformation of the 2-state model (2.1) is
rewriting the system dynamic in terms of the wheel slip instead of angular velocity. Since the
longitudinal wheel slip λxr is a function of these state variables, their relationship can be used to
derive a differential equation for the wheel slip, cf. [36], given by

λ̇xr = −
vxFxr
Jrω2

r

− v̇x
rrωr

+
iGvx
rrJrω2

r

Tm = f(λxr, vx, µ) + g(λxr, vx)Tm , (2.2)

where

f(λxr, vx, µ) = −
(1− λxr)

(
v̇xJr + r2rFxr(1− λxr)

)
vxJr

and g(λxr, vx) =
rriG(1− λxr)2

vxJr
. (2.3)

The equation λ̇xr = f(λxr, vx, µ) + g(λxr, vx)Tm then replaces (2.1a) in the 2-state model. The
decelerating case for ABSs can be derived analogously [136]. This formulation is a more direct
approach to traction control, as it fits best to a TCS that directly controls the wheel slip λxr.
However, as will be discussed in Section 2.1.2, an indirect approach that controls angular velocity
instead can be the preferable solution in practice.

Generally, the dynamics in a TCS can be divided into “fast” (wheel during slipping) and “slow”
(vehicle) contributions, as the inertia of the wheels are significantly smaller than the inertia of
the vehicle. In the next section, an overview of the two mainly used control architectures for
TCSs in the automotive industry is given. The summary focuses on the control aspects of these
architectures and how modern TCSs are implemented in a cascaded control architecture.
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2 State of the Art

2.1.2 Traction Control Architectures

An important aspect of a TCS is that its fundamental dynamics during control evolve at very
different time scales. This is mainly because the inertia of vehicle and wheels are at different
scales. Furthermore, the nonlinear friction force between the tire and the road accelerates the
vehicle and decelerates the wheels. If the requested driving torque significantly exceeds the
maximum transmittable force, the wheels start spinning, which decreases the transmitted force.
These properties can also be seen by looking at the 2-state model (2.1) in Section 2.1.1. On a
road with low friction coefficient, the rrFxr term in (2.1a) becomes neglectable compared to Tm,
if the requested torque is large. Moreover, v̇x is scaled by the vehicle mass m, which is several
orders of magnitude larger than the inertia Jr used for scaling ω̇r. Hence, vx generally evolves
significantly slower than ωr, which is also the main reason why vx is often used as a scheduling
parameter in gain-scheduled control designs for TCSs and ABSs [53, 136, 235].

A consequence of this is not only the suitability of TCSs for gain-scheduling approaches, but
also the cascaded control structure that is traditionally used as a basis of traction control. The
control task is separated into two cascaded loops, where the outer loop controls the vehicle driving
dynamics and the inner loop the faster wheel speeds. The general building blocks of this control
architecture, which is widely adopted in the automotive industry, are shown in Figure 2.2 and
are also described in detail by van Zanten et al. [275]. Here, it can also be seen how the cascaded
control loops are distributed over two different control units. The outer control loop, responsible
for the driving dynamics, is located on the DCU. The DCU takes into account several measured
and observed quantities relevant for the vehicle motion, like for example yaw rate or lateral
acceleration and computes a target wheel slip from these quantities, which serves as a setpoint
for the inner control loop. This setpoint is chosen such that the traction force Fxr is maximized.
In the traditional architecture for TCSs, the traction controller is located on the DCU, where it
computes a corrective torque from the deviation of the wheel slip (or speed, equivalently) from its
setpoint, which is then transmitted to the ECU, in [275] also referred to as motor management
system. The ECU then realizes the computed torque for example by controlling the ignition
angle [54], see [151, pp. 68–69] or the throttle valve [275], see also [27, pp. 172–174].

This cascaded control architecture arises naturally from the facts that the control system
depends on state variables with very different dynamics and that the traction force, which should
be maximized, directly depends on the wheel slip. However, while the cascaded structure is meant
to separate “slow” and “fast” parts of the dynamics, both the driving dynamics controller and
the traction controller are implemented on the DCU, as indicated in Figure 2.2. Since in this
setup the driving dynamics controller and the traction controller run with the same sampling
time and a communication delay between DCU and ECU due to synchronization is present, the
full advantages of a truly cascaded control structure cannot be achieved.
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Figure 2.2: Traditional traction control architecture partitioned on the DCU, adapted from [305].
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2.1 Traction Control Systems

One way to resolve this is a change in architecture and to partition the inner control loop
directly on the ECU, an approach that came up recently [130, 264, 291, 305]. Figure 2.3 shows
the components of this ECU-based, or engine-based TCS. The communication delay between ECU
and DCU is considered less critical in this architecture, because a signal with significantly lower
dynamics is transmitted. In the DCU-based architecture in Figure 2.2, the torque transmitted
to the ECU can change rapidly, for example due to a sudden change of the friction coefficient of
the road. In the ECU-based design, only the setpoint of the wheel speed is transmitted, which
has the dynamics of the vehicle speed. The ECU-based architecture has further advantages, as
on the ECU, it is natural to control angular velocity, which can be directly calculated from the
wheel slip using the vehicle speed and the tire radius. Hence, the DCU only calculates a traction
maximizing target wheel slip, which is converted to an angular velocity and then transmitted
to the ECU. In addition, on the ECU, the engine speed (scaled to wheel level) instead of the
wheel speed can be used for feedback, which is sampled at high rates. Therefore, the ECU-based
architecture achieves fast and cascaded control with a stricter modularization of reference speed
generation on the DCU and traction control on the ECU.

The cascaded structure using angular velocity as setpoint for the inner control loop is described
in [69], though without details regarding the partitioning on different control units. Hrovat et
al. use this structure to compare throttle-only with throttle and spark control, based on a PID
controller [114, pp. 87–92] and also investigate linear quadratic regulator (LQR) and model
predictive control (MPC) for TCSs [115]. However, there are no details about the control unit
architecture included as emphasis is set on the physical modeling of the plant in [114]. König et
al. propose a TCS based on a variant of feedback linearization combined with gain-scheduling and
remark in their conclusion that performance could potentially be further improved by partitioning
the traction controller on the ECU [153, 154]. Jaime et al. demonstrate the advantages of an
ECU-based TCS with proportional-derivative (PD) control in comparison to a traditional DCU-
based TCS, by evaluating both approaches in a test vehicle [130]. Syrnik also investigates an
ECU-based TCS with a PID controller in a test vehicle and analyzes stability based on a linearized
plant model [264]. Zech et al. apply a proportional controller as an active vibration control (AVC)
system for damping of drivetrain oscillations with an ECU-based TCS [291].

Only few works on ECU-based traction control use IOL and take torsional drivetrain dynamics
into account explicitly. Early works on this topic are our publications [300, 305, 304, 306] and our
joint work with Zech et al. [307], which is focused on model validation of the proposed TCS, an
approach that has also been extended by Zech et al. to plug-in hybrid electric vehicles (PHEVs),
see [290]. In the following, a literature review of the state of the art of traction control is
presented, focusing especially on the methods used for control design and whether these methods
were approved in a test vehicle or in simulation only.

Driving Dynamics
Control

Traction
Control

Torque
Control

Power
train

Vehicle Dynamics

D
ri
v
in
g
st
a
te

V
eh

ic
le

S
p
ee
d

C
o
u
p
li
n
g

Target
Torque

Target
Speed

Wheel/Engine Speed

DCU ECU

Figure 2.3: Engine-based architecture with traction control partitioned on the ECU, adapted from [305].

7



2 State of the Art

2.1.3 Traction Control Design Methods

Before discussing the different state of the art control methods used for designing TCSs, a short
overview of some early works on the subject is given. Due to the novelty of TCSs at that time,
there was greater focus on fundamental, general design decisions, rather than analytic control
design. The first industrialized automotive TCS was the Max-Trac system in the 1971 Buick
Riviera, documented in the corresponding manual [77]. On the webpage where this manual was
still available at the time of writing, it is stated that the system was dropped again in 1973, as
it was not sophisticated enough [193].

An early work describing TCSs as an extension to ABSs is by Gerstenmeier [79]. It can be
noted that in the literature TCSs are also known as anti-slip/skid/spin control (ASC) or anti-
slip/skid/spin regulation (ASR), respectively, whereas in [79] only the term ASR is used. There,
it is discussed how the ABSs of that time could be extended to the accelerating case, while
architecture, software design and diagnostics are in focus. However, no explicit controller design
is carried out and the paper can be considered as more of an outlook, since neither simulation
results nor validation in test vehicles of the discussed concepts are provided. In the same year,
Bleckmann et al. describe an extension of an ABS to traction control and show that the hill
climbing ability of a vehicle can be improved significantly by using a TCS [18]. Additionally, they
focus on a description of the mechanical components, the interaction with ABS and the failsafe
concept, rather than on analytic control design. Maisch et al. also discuss differences between
TCSs using engine control or engine and brake control, as well as differential lock control [188].
However, no details about the control design or results are included; it is only stated that the
system can improve performance and stability. Crossley evaluates a TCS on different maneuvers
in a simulation model including torsional drivetrain dynamics, but without stating the actual
control structure, only that the controller was tuned to achieve the desired response [48]. Asami
et al. proposed and evaluated a proportional-integral (PI) controller for traction control in a
test vehicle, investigating both engine only and combined engine and brake control [12]. They
show that acceleration performance and cornering stability can be improved by the TCS. An
extension of this system is proposed by Ise et al., including an extensive evaluation in a test
vehicle [120]. There, the integral of the estimated brake pressure is subtracted from the output
of the PI controller. They state that this modification prevents the interference between engine
and brake control.
The work by van Zanten et al. also describes TCSs as an important subsystem of their VDC

system [276, 275, 274]. The VDC system compares quantities like yaw rate and sideslip angle to
nominal values that are derived from the traditional linear single-track model by Rieckert and
Schunck [241]. From this system, a nominal wheel slip is communicated to the TCS as a reference
signal, which uses a PID controller to compute a nominal engine torque that is transmitted to
the ECU. In addition to the PID controller which operates on the wheel speeds, a PI controller
contributing to a torque portion which controls the speed difference between left and right driven
wheels is proposed. It is further stated that both controllers are nonlinear, as their parameters are
adjusted in real time based on the engine state and the transmission ratio in order to compensate
for a variable response time of the engine. However, other than this general statement, no further
details on this adaptation mechanism are provided. The efficiency of the system is demonstrated
both in simulation and in test vehicles.
As can be seen in these early works on TCSs, PID control and its variations were already a

popular control method at the beginning of the development of the first TCSs. In the following,
different methods that are used for traction control in the state of the art are analyzed, ranging
from PID control, model following control, maximum transmittable torque estimation, fuzzy logic
control to sliding mode control, input-output linearization and flatness-based control, among
others. Thereafter, a discussion about the state of the art control design methods for TCSs is
given and the research questions addressed in this work are stated.
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PID Control

As already mentioned in the previous summary of early works on TCSs, PID control has already
been used from the beginning in some of the first TCSs. In the following, a short overview about
additional publications dealing with TCSs and ABSs based on traditional PID control, including
some problem specific extensions, is given.

Park and Kim evaluate the performance and robustness of a TCS based on PID control during
cornering in simulation [221]. Wu et al. evaluate PID control for traction control on a test
bench [282], while Jin et al. evaluate a PID based TCS in a test vehicle with four in-wheel
motors [135]. Magallan et al. propose a sliding-mode observer for estimating the maximum
transmittable torque, based on the LuGre tire model [31], combined with a PID controller for
traction control [187]. In [186], driving force control (DFC) is proposed for traction control of
a 4WD EV with four in-wheel motors. There, a cascaded control loop is constructed, with an
integral controller in the outer loop, which controls the observed driving force such that it tracks
the target force. The target force is distributed to the four wheels using an online least squares
method. Finally, the inner loop controls individual wheel speeds using PI controllers. Amada
and Fujimoto further propose direct driving force control (DDFC), where the intermediate wheel
speed control loop is omitted and the observed force is controlled directly by a controller based
on pole placement, augmented with integral action [9]. Fujimoto et al. provide a comparison
between DFC and DDFC, drawing the conclusion that DDFC achieves higher bandwidth and,
hence, better performance [72]. Both DFC and DDFC are similar to the model-based control
designs discussed on the next page but are included here, as their main feedback component in
the inner control loop is PI and integral control.

For many industrial processes, internal model control (IMC) design results in either PI or PID
controllers–a property which has been used to derive IMC-based tuning rules for both PI and
PID controllers [244]. In [273], these tuning rules are evaluated in simulation for a TCS. Zhao et
al. combine a sliding mode observer for the tire force with a recursive least square algorithm for
estimating tire parameters, the friction coefficient and a PID controller for the motor torque [293].
Gain-scheduling of PI parameters, in combination with an iterative tuning mechanism for ABSs
is proposed in [235]. Vasiljevic et al. use linearization about operating points and PI control
in combination with a road condition estimator, which is used for a road condition dependent
feed-forward term. The TCS is evaluated in simulation and with a hardware-in-the-loop (HIL)
system [277, 278]. Zhou et al. propose a model predictive controller for motion control, where
the wheel slips are treated as virtual inputs, while a PID controller is used for traction control
and evaluated with a HIL system [294]. Alexander and Vacca combine PID control for a TCS
with an extremum seeking algorithm that aims at maximizing the traction force by adapting the
setpoint for the PID controller [8]. The PID controller is used in conjunction with an electro-
hydraulic brake actuator in order to avoid wheel spinning, while the TCS is evaluated both
in simulation and on a wheel loader as a test vehicle. One work that consider the torsional
dynamics of the drivetrain explicitly during the control design process is [181]. There, a Notch
filter is implemented in series with both a feed-forward and a feedback PI controller, in order to
attenuate the resonance frequency of the driveline.

There also exist different publications proposing PID control for 4WD on-demand torque bias
systems. Lee [166] combines a PI controller with an adaptation law of the controller gains and a
forgetting factor. Moreover, Panzani et al. [220] use proportional control for torque distribution
with a controlled ETC. An application of a PD controller to front-to-rear distribution in a vehicle
with four electric in-wheel motors using torque vectoring is presented in [131].

In summary, a variety of TCSs based on PID control exists–ranging from standard PID control,
over combinations with model based approaches like DFC and DDFC, to methods involving gain-
scheduling or extremum seeking algorithms.
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2 State of the Art

Model Following Control and Maximum Transmittable Torque Estimation

While PID control has been used for the design of TCSs, various publications also investigate the
methods of model following control and maximum transmittable torque estimation. One of the
first designs in this category is the model following control (MFC) design proposed by Hori et al.
and also evaluated in a test vehicle in [113]. MFC is closely related to the well-known internal
model control, as it uses feedback of the difference of process and model output. In contrast
to standard IMC however, the feedback channel in MFC contains an additional high-pass filter,
since, according to Hori et al., only the high frequency response is required for traction control,
while no Q-Filter is used in the forward path. The model itself is based on the idea that the
equivalent inertia of the wheel Jeq can be interpreted as a function of wheel slip by

Jeq = Jr +mr2r(1− λxr) , with λxr ∈ [0, 1] . (2.4)

The intuition behind (2.4) is, that when λxr ≈ 0, the torque applied to the wheel has to accelerate
both the wheel inertia Jr and the vehicle mass m, mapped to an aggregated inertia by the tire
radius rr so that Jeq ≈ Jr +mr2r . However, when λxr ≈ 1, the wheels spin almost freely, and
so Jeq ≈ Jr. For the internal model, the first case is used (assuming λxr ≈ 0), such that the
difference between the actual and the internal model wheel speed is close to zero in standard
driving situations (small wheel slip), but significant when the wheels start to spin. Further
experimental evaluations of MFC are presented by Sakai et al. [249]. Akiba et al. compare MFC
to wheel slip control using a MIMO transfer function, considering left and right wheels separately,
where the transfer function matrix was obtained by linearization [7]. Their conclusion is that
the slip-based controller performs better than MFC in the considered maneuvers, however, in
contrast to MFC, also requires the wheel slip and thereby the vehicle speed vx. A detailed study
on MFC and direct wheel slip control using a PI controller is also provided by Hori in [112], which
considers maneuvers with lateral dynamics, although no direct comparison of the two approaches
is given therein. Kawabe proposes an extension to MFC, by using an MPC based PID controller
in the feedback path, instead of the MFC formulation [147]. A comparison with MFC is given
in simulation, with the conclusion that the MPC based PID controller yields better acceleration
performance than MFC.
Another model-based approach is maximum transmissible torque estimation (MTTE) by Yin

et al. [287]. MTTE is based on calculating the maximum transmissible torque from the esti-
mated friction force, which is obtained by solving the differential equation of the wheel angular
acceleration for the tire force, including an additional tuning factor. In [287], a simulative and
experimental comparison with MFC is provided as well, with the conclusion that MTTE outper-
forms MFC in the considered maneuvers. Hu and Yin also give a study on MTTE in conjunction
with yaw moment control [117], where they show in simulation that yaw moment control can be
improved using MTTE. Li et al. propose a combination of MTTE for controlling the front wheels
and sliding mode control (SMC) for the rear wheels and evaluate their concept in simulation [174].
Ewin investigates the interaction of an MTTE-based TCS with its outer loop driving dynamics
control system in a test vehicle [62]. Borrelli et al. use MPC based on a 2-state model for traction
control [21]. It can be noted that this is also one of the few papers, where the engine speed is
used in the 2-state model, instead of the wheel speed. However, the drivetrain is nevertheless
modeled as stiff, so the only difference is that the engine speed is scaled by the total gear ratio, a
constant parameter. They also consider discretization and time delay in the design process and
evaluate the TCS in simulation and in a test vehicle. For the 4WD case, MFC was proposed by
Chen et al. and also evaluated in a test vehicle [40].
In summary, the discussed control designs MFC and MTTE are built upon the 2-state model

and neglect torsional dynamics of the drivetrain in the control design. Combinations with other
control methods like SMC exist, as well as predictive control designs based on MPC.
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2.1 Traction Control Systems

Sliding Mode Control

Several authors propose SMC to approach the traction control problem. Tan and Tomizuka [267]
derive SMC for TCSs and ABSs using a linearized, discretized 2-state synthesis model. The SMC
is combined with a linear feedback term, called “minor” feedback, in order to reduce chattering.
Further, they evaluate the braking case in an experimental test cell. A theoretical investigation
of the dynamics of the continuous 2-state model under SMC, where it is for example shown that
the sliding surface can be reached from any initial state, is given by Tan and Chin [266]. Fan et
al. use a similar SMC for a TCS for tracked vehicles with an additional low-pass filter for the
signum term in the control law, in order to further reduce chattering and evaluate the system
in simulation [63]. Canudas de Wit and Tsiotras evaluate the TCS based on SMC by [63] in
simulation and compare different static and dynamic tire models with each other [30]. In [141],
SMC is proposed for both wheel slip control in a TCS and for the torque production process of
the engine, while both [133] and [295] evaluate SMC for vehicles with four individual wheel drives
and [269] compares SMC to MTTE, all of them using simulation.

Colli et al. compare SMC with a fuzzy controller, which is used to control the gradient of
the normalized tire force on a test bench [47]. Their conclusion is that SMC provides better
performance than the fuzzy controller. Ferrera and Vecchio [65] propose two variants of SMC for
traction control, namely sub-optimal and super-twisting SMC, and compare both in simulation,
with the conclusion that both approaches provide comparable performance. Further simulative
evaluation of this approach, combined with a sliding mode observer to estimate the nonlinear tire
force, can be found in [11]. Super-twisting SMC is also applied to the braking case by Hamzah
et al. [101], where it is evaluated in simulation against first order SMC, with the result that
super-twisting SMC avoids chattering. De Castro et al. propose a TCS based on SMC combined
with a conditional integrator, which switches from an ideal SMC design to a PI controller when
the controlled variable is close to its setpoint [52]. Also, a simplified estimator for an upper
bound of the tire force, based on the requested torque by the driver, is proposed there. They
evaluate the TCS in simulation and on different maneuvers in a test vehicle. The combination of
SMC with a conditional integrator is also used in [261], where the tire force is estimated online
by approximating the Burckhardt tire model [27, pp. 24–35], using a linear combination of basis
functions. The TCS is evaluated in simulation.

Kuntanapreeda proposes a PI nonlinearity observer for estimating the tire friction force, in
combination with SMC [163] and super-twisting SMC [164]. Both approaches are evaluated
in simulation and on a single-wheel test rig, considering different maneuvers. Siampis et al.
combine MPC for the reference generation of the wheel slip with SMC, which is used for tracking
the reference trajectory [253]. They also implement their control scheme on hardware in order to
ensure real-time capability and evaluate the approach in simulation. Nam et al. use adaptive SMC
for a vehicle with four in-wheel motors with a driving force observer and evaluate the TCS in a test
vehicle [206, 207]. Moreover, He et al. compare different inter-axle torque distribution strategies
based on SMC in simulation [105]. Han et al. propose SMC for hybrid 4WD vehicles [102],
where instead of the sign of the wheel slip error, the sign of the estimated rate of change of
the tire force and the sign of the wheel speed is used, while the TCS is evaluated in simulation.
Also torque-bias systems have been considered for traction control using SMC. Ham and Lee for
example propose SMC for vehicles with 4WD drivetrain and torque-bias systems and compare
SMC against a controller based on lookup tables in simulation [100].

In summary, various approaches based on SMC have been proposed for traction control. Most
investigations are built upon variations of the 2-state model, while particular effort has been
made to deal with the chattering phenomenon of first order SMC. Also, since the proposed SMC
schemes generally require the nonlinear tire friction force, or at least bounds on the force and its
time-derivative, SMC has been combined with various tire force estimation algorithms.
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2 State of the Art

Fuzzy Logic Control and Rule Based Systems

Another common design method is fuzzy logic control. In fuzzy logic control, the control signals
are generated based on measured or observed system states, which are mapped to logical variables
that can take any value between 0 and 1. This mapping process is called fuzzification. The
produced fuzzy logical variables are then passed through a rule processor, where the designer has
to incorporate knowledge about the control system. After that, a defuzzifier maps the result back
to a control signal. This method has been widely applied, also in combination with PID control,
to both TCSs and ABSs.

Lee and Tomizuka compare an adaptive sliding-mode control, which requires a tire force model,
with a fuzzy logic control approach which operates without such a model [167]. The comparison
is carried out in simulation, with the result that the model-based SMC design results in better
performance, if an accurate tire model is available. Kathun et al. use a test bench for the design of
a fuzzy controller, based on the rate of change of the wheel slip and the observed load torque [150].
A fuzzy PID approach is used in [177], where the variables used for fuzzification are the wheel
slip and its rate of change. The fuzzy logic adapts the proportional gain of the PID controller,
while integral and derivative gains remain constant. They compare their fuzzy logic controller
with a PID controller in a test vehicle and show in experiments that the fuzzy logic controller
achieves better performance than a standard PID controller. Cai et al. compare a fuzzy logic
controller with a heuristic rule based control system [29]. Here, the ratio of the wheel acceleration
and the motor torque and the rate of change of this ratio are used as variables for fuzzification.
The evaluation is done in simulation, where the fuzzy logic controller shows better performance
compared to the rule based approach. Jalali et al. use the deviation of the wheel slip from its
setpoint and its rate of change as variables for the fuzzification process for both a TCS and an
ABS [132]. The performance of the fuzzy logic controller is evaluated on various maneuvers in
simulation and on a HIL test bench including an operator-in-the-loop driving simulator.

Li et al. propose a control structure, where a PID controller is used in parallel with a fuzzy
logic controller [172], using the front left and front right wheel slips for fuzzification to compute
a confidence level of the friction coefficient. This confidence level is combined with several model
based rules to produce the final base torque, which is added to the PID controller. The approach
is evaluated on a HIL test bench and in a test vehicle and compared to a standard PID controller,
with the result that the fuzzy logic improves driving performance. Additional investigations of
this approach are presented in [173]. Dahmani et al. propose a fuzzy PI control design for traction
control where the output of the PI controller is scaled by the friction coefficient, estimated using a
Takagi-Sugeno fuzzy representation of the nonlinear vehicle model [49], which is also applied to a
four-wheel active steering system [50]. In both publications, a stability analysis is performed based
on the analysis from Tseng et al., which is based on linear matrix inequalities [271]. However,
the control system is evaluated in simulation only. Liu and Jin combine sliding mode control for
the driving torque with a fuzzy controller which uses the wheel brakes for traction control [179].
They describe a two-step procedure, where first the brake pressure from the fuzzy controller is
applied and second the driving torque is adapted by the sliding mode controller. Variables used
for fuzzification are the deviation of the wheel slip from its target value and the rate of change
of this deviation. Experiments in a test vehicle and on different maneuvers are presented. Hu
et al. finally propose fuzzy logic control for traction control of vehicles with 4WD torque-bias
systems, where fuzzy logic controllers are used for the driving torque, the torque distribution and
the brake torque, respectively [116]. Further references of vehicle dynamics control, TCSs and
ABSs using fuzzy logic control can be found in the review paper [272].

In summary, fuzzy logic control for TCSs and ABSs mainly differs by the variables used for
fuzzification and whether the fuzzy algorithm is used for control directly or in conjunction with
other controllers. However, stability and drivetrain oscillation analyzes are rarely considered.
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2.1 Traction Control Systems

Input-Output Linearization and Flatness-Based Control

Following we review publications proposing feedback linearization or flatness-based control for
TCSs. The different variants of linearization by feedback, like input-output linearization or full
state feedback linearization, all aim at finding a control law that cancels out nonlinearities in
the system equations, such that the resulting system has linear behavior. The most prevalent of
these methods in the context of TCSs and ABSs is input-output linearization. The method itself
was proposed by Isidori et al. [126, 127], see also [28] and [123].

For input-output linearization techniques in TCSs, the 2-state model (2.1a)-(2.1c) is widely
used. Assuming vx > 0 and 0 ≤ λxr < 1, so that g(λxr, vx) ̸= 0, the nonlinearities in (2.2) can
be canceled out by defining the control input Tm as

Tm =
v − λxr − τf(λxr, vx, µ)

τg(λxr, vx)
(2.5a)

⇒ λ̇xr = (v − λxr)/τ , (2.5b)

so the linearized slip dynamics are given by a first order lag element with time constant τ and
new, virtual input v. This method has been used, with slight variations, in the publications
by Guo et al. [93] and Ningfeng et al. [210], where the control law was evaluated in simulation.
The ABS case can be treated analogously and has been considered in [138] with a first order
lag element for the hydraulic brake actuator model. Zhang and Ordonez evaluate an IOL based
controller for an ABS combined with an extremum seeking algorithm in simulation [292].
The main difficulty with applying these approaches in practice is that the control law (2.5a)

depends on the nonlinear and uncertain tire force, which cannot be measured directly in vehicles
that are equipped with standard sensors. A model based computation of the tire force in (2.5a)
is not only challenging due to uncertainties in tire parameters and vehicle load, but also because
of the dependency on the uncertain and time-varying friction coefficient of the road. Using the
measured longitudinal vehicle acceleration ax to compute Fxr does not scale to situations where
the distribution of the tire forces is relevant, like vehicles with 4WD. Moreover, using ax for the
v̇x term in (2.5a) is problematic, as on roads with nonzero slope, ax deviates from v̇x due to
gravity [121, pp. 156–157]. Chapuis et al. published one of the few works where a TCS based on
IOL is evaluated in a real test vehicle and additionally compared to PID control and a flatness-
based approach [36]. The IOL approach is based on the 2-state wheel slip model (2.2) and uses
an estimate of the tire force based on a linearization of the tire force around different operating
points, assuming a constant friction coefficient. The controllers are evaluated on a longitudinal
acceleration maneuver, starting from standstill on a road with asymmetric friction coefficients.
The flatness-based controller is also evaluated in simulation by Chapuis et al. [37]. For ABSs, a
design based on IOL with an additional two-position controller for compensation of the hydraulic
brake actuator hysteresis can be found in [121, pp. 146–168]. Moreover, the estimation of the
longitudinal speed of the vehicle is addressed there, compare [121, pp. 155–159], as well as the
generation of the target speed for the considered ABS, see [121, pp. 159–163]. The concept
based on an ABS variant of the 2-state model is evaluated in a test vehicle and achieves a shorter
stopping distance compare to a conventional ABS, see [121, pp. 163–167].
Mousavi et al. provide a simulation study of different control approaches for ABSs, including

feedback linearization, SMC and adaptive fuzzy SMC [202]. The controller based on feedback
linearization is derived based on a 2-state vehicle model with an additional first order actuator
model. The tire force is calculated with a fixed friction coefficient using the Burckhardt tire
model [27, pp. 24–35]. While the feedback linearization controller achieves short stopping times
on different road conditions, it shows large undershoots after sudden changes of the friction
coefficient. Also, while performance is comparable to SMC on wet asphalt and snow, the feedback
linearization controller shows more oscillations on ice compared to the other methods. Therefore,
other designs might be necessary to further increase robustness.
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2 State of the Art

Different approaches have been proposed in order to address the tire force dependency issue of
the linearizing control law. One example is the work on ABSs by Mirzaeinejad and Mirzaei [198],
where feedback linearization is combined with MPC and integral action. Also, they use slightly
different reference dynamics for λ̇xr in (2.5b), namely an integrator with first order lag, adapted
from [103]. There, the gain of the integrator is defined as the (constant) slip value which maxi-
mizes the traction force. Zhang and Ordonez solve an ABS variant of (2.1a) for Fxr, which is then
computed using the measured vehicle acceleration, neglecting aerodynamic drag [292]. Geamanu
et al. [76] propose flatness-based control for longitudinal tracking control of the vehicle speed
with a TCS and an ABS based on SMC. The tire force is estimated by solving (2.1a) for Fxr, but
no details are provided how the ω̇r term itself is obtained. Both [36, 37] and [76] use the vehicle
speed as flat system output. The main difference between [36, 37] and [76] is that the latter uses
the flatness-based controller not directly for the TCS, but for tracking the vehicle speed. The
TCS is based on SMC, combined with an estimation algorithm for the friction coefficient of the
road. Furthermore, Fuji and Fujimoto combine a slip-ratio estimator with IOL and compare it to
a PI controller in simulation and in a test vehicle [71]. They test two methods for computing ω̇r
for the tire force. The first is by approximating the derivative with a high-pass filter, the second
by estimating the derivative based on the target wheel slip and the motor torque. However, both
designs show more oscillations than a PI controller. The authors derive the need for a nonlinear
control design based on IOL by the reasoning that a PI controller can result in instability, how-
ever no formal stability analysis is carried out for the IOL based control design. A similar design
with comparable results can also be found in the work by Fujimoto et al. [73].
Stability of the zero dynamics, resulting from a control design for an ABS based on IOL for a 2-

state model is investigated in detail by Nakakuki et al. [205]. Since in case of a 2-state model, the
relative degree of the system is 1, the zero dynamics are a scalar system, which simplifies stability
analysis. The controller is combined with an adaptation law to estimate uncertain parameters
in real time. However, the adaptive controller is only evaluated in simulation and outperforms a
standard PI controller only at low speed [205]. Nyandoro et al. [212] use IOL for ABS based on
a 2-state model, which is evaluated in simulation only. They derive stability of the scalar zero
dynamics based on physical interpretation. Although no explicit Lyapunov function is given, the
result follows immediately from their analysis, as the wheel slip is defined as a system output.
Hence, for the zero dynamics, by output zeroing follows that λxr = 0 ⇒ Fxr = 0, so the scalar
zero dynamics reduce to the aerodynamic drag force, which eventually decelerates the system to
the origin. Nyandoro et al. also extended this approach to an ABS with an active suspension
system, which is modeled by a 6-state dynamical system with two inputs (brake torque and active
suspension force) and two outputs (wheel slip and suspension travel) [211]. While this is one of
the few works which considers a higher order system for ABS using IOL, the drivetrain is still
based on the 2-state model, and the control law also contains the tire force. The nonlinear portion
of the zero dynamics reduces to the zero dynamics of the 2-state case in [212].
Summarizing, the state of the art for IOL of TCSs uses almost exclusively variations of the 2-

state model for control synthesis. Extensions so far included first order actuator dynamics [138]
or active suspension systems for ABSs [211]. However, torsional dynamics of the drivetrain
have not yet been considered explicitly for control design based on IOL, except in our recent
work [300, 305, 304, 307] and extensions thereof proposed by our colleagues [57, 58, 182, 183].
There exists work using IOL for torque converters using synthesis models including torsional
dynamics [97]. However, the vehicle model there is based on a model published in [156], which
assumes that the wheel speed is directly proportional to the vehicle speed, so wheel slip dynamics
are neglected. Rebouh et al., [240] use IOL for control of a permanent magnet synchronous motor
in an EV with a detailed model of the motor. However, only the nonlinearity of the motor itself
is linearized there, while the load torque, containing the nonlinear tire force, is not considered
during control design, but treated as perturbation. Hence, it can be noted that these publications
do not address the traction control problem directly, as their focus is different.
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2.1 Traction Control Systems

Other Approaches and Active Vibration Control

Various other methods have been applied to the design of traction control systems for automotive
vehicles. Fujimoto et al. propose a control design based on a disturbance observer (DOB), where
the tire force is treated as uncertain inertia variation [74, 75]. They also analyze the effect of time
delay and evaluate the TCS in a test vehicle. Li et al. use an observer for the back electromotive
force, treating the nonlinear friction force as an inertia variation and evaluate the controller in a
test bench [176]. Backstepping is proposed by Tai and Tomizuka for both TCSs and ABSs, based
on the 2-state vehicle model with an additional first order lag as actuator model [265]. For the
control law, they assume a linear tire force model and evaluate the TCS in simulation. Adaptive
backstepping based on the 2-state model is proposed for ABSs and evaluated in simulation by
He et al. [107]. Stability is analyzed with barrier Lyapunov functions, the control laws depend on
the tire force. Adaptive control is applied by Kececi et al., using a model with the vehicle speed
and yaw rate as states, which is evaluated in simulation [148]. Kirchner and Southward evaluate
adaptive control, based on knowledge of partial derivatives of the tire forces in simulation [152].
A DOB in conjunction with a recursive least squares estimator of the vehicle mass, based on
the 2-state model, is proposed in [239] and evaluated on a test bench. Marino et al. propose
stochastic control based on an extended Kalman filter for the 2-state model, in order to maximize
the nonlinear tire force, which is evaluated in simulation [189]. A comparative simulation study
of five different methods for TCSs (MTTE, SMC, second order SMC, H∞ control and gain-
scheduled PI) is carried out in [53], with the conclusion that gain-scheduled PI and H∞ control
result in the best performance.
Active vibration control (AVC) has been used in combination with TCSs as well. For exam-

ple, the authors of [53] analyze for their simulation study the AVC from Rodriguez et al., see
[245], in order to validate their model and to damp drivetrain oscillations. The AVC is a PD
controller, which takes the difference between engine and wheel speed as input and computes a
torque for oscillation damping. The controller is designed based on an analysis of the poles of
a linear model by treating the nonlinear tire force as a perturbation, or alternatively as a linear
parameter-varying (LPV) system, cf. [285]. An AVC design based on proportional feedback of
the speed difference between engine and wheel speed is considered by Götting and De Doncker in
conjunction with a TCS, cf. [91]. Götting also proposes state feedback for AVC [90, pp. 81–122]
and analyzes several such designs in simulation and on a test bench [90, pp. 124–135]. Zech et al.
propose an AVC design with proportional feedback for a TCS using the ECU based architecture
described in Section 2.1.2, which is evaluated in a test vehicle [291]. Baumann et al. propose a
Smith-Predictor in combination with a Luenberger observer and a PD controller for controlling
the predicted speed difference [17]. They also evaluate their AVC design in a test vehicle, while
the control design is based on a root locus analysis of a linear design model. Moreover, there
exist numerous publications dealing with AVC of general drive systems that are not specific to
automotive applications, see for example [111] and [251, pp. 1188–1291].

It can further be noted that the presented state of the art on TCSs focuses on the traction
control loop, where typically wheel speed/wheel slip or engine speed is the controlled variable. A
variety of publications are dealing with the design of the driving dynamics controller, where for
example the yaw rate of the vehicle is controlled and the target slip for the inner traction control
loop is computed. Early publications dealing with this topic are [54, 55, 276, 275, 274], see for
example also [106, 218] as well as [121, pp. 169–211] and [27, pp. 167–190]. A detailed review of
TCSs and ABSs can be found in the survey paper by Ivanov et al. [129].

This concludes the review of the state of the art of the methods for design of TCSs. In the
following, some of the open questions identified during this review are discussed, which describe
a research gap in the current state of the art on TCSs that is addressed by this work. The
contributions and novel aspects of the present work, with some of its aspects and related methods
published in [300, 301, 302, 303, 304, 305, 306, 307], are detailed in the following.
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2 State of the Art

2.1.4 Identified Problems and Research Gap

Considering the review of the state of the art of TCSs from Section 2.1.2 and Section 2.1.3, it is
evident that some interesting facets have not been considered yet in the literature. The following
items characterize the current state of the art on TCS.

1. TCS design by input-output linearization is based almost exclusively on the 2-state model.
2. Torsional dynamics of the drivetrain are rarely considered in the design phase.
3. Stability of zero dynamics of TCSs is shown only for the 2WD case using the 2-state model.
4. No passivity or robustness analysis of zero dynamics with torsional dynamics is available.
5. Few experimental evaluations of TCSs that consider ECU-based architectures exist.

Items 1 and 2 also apply more generally to TCS design, as more sophisticated models for
controller design than the 2-state model are rarely used. Damping of torsional dynamics of the
drivetrain is an essential feature of TCSs, which is one reason why separated active vibration
control systems have been proposed [53, 245, 291]. However, a TCS that incorporates such a
mechanism by a control design based on IOL for both vehicles with 2WD and on-demand 4WD
drivetrains using torque bias systems has not been proposed yet, except in our recent publica-
tions [300, 304, 305, 306, 307]. In this work, the control design is further investigated and the
analysis extended in several directions. Item 3 is of interest since it is required for safety critical
systems like TCSs to ensure stability of a novel control concept. Previous work on input-output
linearization for TCSs so far considered mainly vehicles with 2WD and stability analyses of the
2-state model. Also, robustness with respect to parameter variations and external disturbances,
like a time-varying friction coefficient, is essential to guarantee the suitability of the concept.
Item 4 is of theoretical interest, as the nonlinear friction curve that models friction between tire
and road shows the characteristic shape of a sector-bounded, memoryless nonlinearity. Despite
that fact, no such analysis exists in the literature on TCSs. Finally, Item 5 is of practical interest,
as many publications present simulation results only. For example, the survey paper [129] states
that only 24% of the therein considered literature presents experimental evaluation in real test
vehicles. Taking furthermore into account the analytic control design based on IOL and a design
model with torsional drivetrain dynamics, the architectural change discussed in Section 2.1.2 and
vehicles with 4WD on-demand torque bias systems, it is found that no experimental evaluation in
the current state of the art has considered this setup previously. Such an evaluation is presented
in Chapter 6.
Additionally, it is investigated how optimization with GP can be applied for Lyapunov function

synthesis for the stability analysis of traction control zero dynamics including torsional drivetrain
dynamics. This partially addresses Item 3 as well, as the main challenge for stability analysis of
nonlinear dynamical systems is the problem of finding a suitable Lyapunov function. While GP
has been applied to Lyapunov function synthesis, see Chapter 5, we present a new heuristic for
evaluating the fitness of potential Lyapunov functions in a GP setting.
These findings constitute a research gap in the literature of TCSs for automotive vehicles which

justifies the goals set for this dissertation as listed in Chapter 1. We aim to close this gap by
addressing the previously mentioned issues explicitly. Moreover, the investigations regarding
stability and passivity of the zero dynamics of TCSs, including torsional drivetrain dynamics,
have led to some general questions regarding the applicability of the Kalman conjecture and the
Markus-Yamabe conjecture for a specific class of nonlinear systems. While these conjectures are
well researched, the zero dynamics resulting from the TCS design constitute the interesting special
case of a third order Lur’e system with two inputs and two outputs, which has previously not been
considered explicitly. In the following chapter, some preliminaries on control theory, with the
focus on Lyapunov stability, absolute stability and control design by input-output linearization
is given. Thereafter, a short introduction to optimization with GP is presented.
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2.2 Preliminaries on Control Theory

2.2 Preliminaries on Control Theory

2.2.1 Stability of Linear and Nonlinear Systems

This section gives some background information on the control theoretic concepts used in this
work, which is mainly based on our summary in [303] and the standard textbooks by Khalil [149],
Franklin et. al [70], Doyle et al. [60], Slotine and Li [256], Ackermann et al. [1] and Ogata [216].
First, consider the nonlinear system of autonomous ordinary differential equations (ODEs)

ẋ(t) = f
(
x(t)

)
, with ẋ(t) =


ẋ1(t)
ẋ2(t)
...

ẋn(t)

 ,x(t) =


x1(t)
x2(t)
...

xn(t)

 and f
(
x(t)

)
=


f1
(
x(t)

)
f2
(
x(t)

)
...

fn
(
x(t)

)
 . (2.6)

Here, x(t) ∈ Rn is a state vector, f : Rn → Rn a C1 vector field, while ẋi(t)
def
= dxi(t)/(dt)

denotes the derivative of xi(t) with respect to time t for i ∈ {1, 2, . . . , n}.

Remark 1. To shorten notation, as long as it is clear from the context, the explicit dependence
on time will be omitted for the state vector and the later defined input and output vectors.

In this work, stability properties of TCSs with isolated equilibrium are investigated, therefore
the required preliminaries on stability analysis of nonlinear dynamical systems are stated.

Definition 1. (Equilibrium) A state vector x∗ ∈ Rn is called equilibrium of (2.6) if f(x∗) = 0n.

There exist various different notions of stability in the literature, see for example Khalil [149,
pp. 111–222], Sontag [259] and Doyle et al. [60, pp. 31–40]. First, focus is set on stability in the
sense of Lyapunov and its stronger versions, asymptotic and exponential stability, respectively.

Definition 2. (Lyapunov stability, cf. [149, p. 149]) Let x∗ be an equilibrium of system (2.6).
Then x∗ is called stable in the sense of Lyapunov if for every ϵ > 0, ∃δ(ϵ, t0) : ∥x(t0)∥ < δ ⇒
∥x(t)∥ < ϵ , ∀t ≥ t0. As shorthand, x∗ is also just called (Lyapunov) stable.

Definition 3. (Asymptotic stability, cf. [149, p. 149]) An equilibrium x∗ of system (2.6) is called
asymptotically stable if it is Lyapunov stable and ∃k > 0 : limt→∞ x(t)→ x∗ ,∀∥x(t0)∥ < k.

Definition 4. (Exponential stability, cf. [149, p. 150]) An equilibrium x∗ of system (2.6) is
called exponentially stable if ∃cd, rd, xd > 0 : ∥x(t)∥ ≤ cd∥x(t0)∥ exp(−rd(t− t0)) , ∀∥x(t0)∥ < xd.

A system like (2.6) is called stable in the sense of Lyapunov [185], if its trajectories remain
bounded. However, this does not yet guarantee that they converge to an equilibrium state.
Asymptotic stability gives the additional guarantee that trajectories converge to an equilibrium
for t→∞. Exponential stability finally guarantees that this convergence is “fast”, in especially
that the norm of the state vector ∥x(t)∥, can be bounded by an exponentially decaying function.
An important concept for stability analysis of nonlinear dynamical systems is definiteness.

Definition 5. (Definiteness of real-valued functions, cf. [149, p. 117]) Let X0 ⊆ Rn be a con-
nected set with 0n ∈ X0, X = X0 \ {0n}, V : Rn → R with V (0n) = 0. Then, V is called:

� Positive definite on X0 if V (x) > 0 ,∀x ∈ X, denoted with V (x) ≻ 0.
� Positive semi-definite on X0 if V (x) ≥ 0 , ∀x ∈ X, denoted with V (x) ⪰ 0.
� Negative definite on X0 if V (x) < 0 ,∀x ∈ X, denoted with V (x) ≺ 0.
� Negative semi-definite on X0 if V (x) ≤ 0 ,∀x ∈ X, denoted with V (x) ⪯ 0.
� Indefinite otherwise.
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An important class of real-valued functions for investigating stability of dynamical systems are
so-called quadratic forms.

Definition 6. (Quadratic form, cf. [149, p. 117]) A function V : Rn → R is called a quadratic
form if it can be written as a polynomial of degree two like

V (x) =
n∑
i=1

n∑
j=1

pijxixj = x
T


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

x = xTPx (2.7)

with P = P T ∈ Rn×n, so pij = pji for all i, j ∈ {1, 2, . . . , n}.

One convenient property of quadratic forms is, that their definiteness can be evaluated by
testing the definiteness of their associated P matrix. This leads to the next definition.

Definition 7. (Definiteness of real-valued matrices, cf. [149, p. 117]) Let x ∈ Rn. A symmetric,
real-valued matrix P = P T ∈ Rn×n is called, following Definition 5:

� Positive definite if xTPx ≻ 0, denoted with P ≻ 0.
� Positive semi-definite if xTPx ⪰ 0, denoted with P ⪰ 0.
� Negative definite if xTPx ≺ 0, denoted with P ≺ 0.
� Negative semi-definite if xTPx ⪯ 0, denoted with P ⪯ 0.
� Indefinite otherwise.

One interpretation of this definition is, that definiteness is a generalization of signedness from
scalar values to symmetric, real-valued matrices. It can be evaluated for example by looking at
the eigenvalues of P or by the Sylvester criterion [149, p. 117]. Definiteness is an important
property, as it is a requirement for Lyapunov function candidates.

Definition 8. (Lyapunov function candidate) A function V : X0 → R is called a Lyapunov
function candidate if V (x) ≻ 0 ,∀x ∈ X0, following Definition 5.

Given a Lyapunov function candidate, its evolution along system trajectories can be evaluated.

Definition 9. (Derivative along solution trajectories, cf. [149, p. 114]) Let V : Rn → R and
f : Rn → Rn with xT =

[
x1 x2 . . . xn

]
and f(x)T =

[
f1(x) f2(x) . . . fn(x)

]
. Then, the

derivative of V along the trajectories of (2.6) is given by

V̇ (x)
def
=

∂V (x)

∂x
f(x) =

n∑
i=1

∂V (x)

∂xi
fi(x) . (2.8)

In the control engineering literature, common synonyms are orbital, directional or time derivative.

This leads to the established notion of Lyapunov functions.

Definition 10. (Lyapunov function, cf. [149, p. 116]) Let X0 ⊆ Rn with 0n ∈ X0 and let (2.6)
be such that f(0n) = 0n. A C1 function V : X0 → R is called a Lyapunov function for (2.6) if:

� It is a Lyapunov function candidate, so V (x) ≻ 0 in X0 following Definition 8.
� Its time derivative V̇ (x) ⪯ 0 in X0, following Definitions 5 and 9.

Additionally, if X0 = Rn, then V is sometimes called a global Lyapunov function and if X0 ̸= Rn
then V is sometimes called a local Lyapunov function of the system (2.6).

The level sets of a Lyapunov function that satisfy these conditions, form invariant sets. This
means that trajectories that start in such a set will remain there for all time. If the inequality
on the time derivative is strict such that V̇ (x) ≺ 0 for some level sets of V , then these level sets
are subsets of the so-called domain of attraction (DOA).
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Definition 11. (Domain of attraction, cf. [149, p. 122]) Let φ(t, t0,x0) denote the solution of
system (2.6) starting at t0 with initial condition x0. Let, without loss of generality, 0n be an
equilibrium. Then,

D def
= {t0 ∈ R+

0 ,x0 ∈ Rn : lim
t→∞

φ(t, t0,x0) = 0n} (2.9)

is called the DOA of 0n. Common synonyms in the literature for the DOA are basin of attraction
or region of convergence/stability.

A subset of the DOA, Ω0 ⊆ Ωc ⊆ D of (2.6) can be computed given a Lyapunov function V by

Ω0 ⊆ Ωc
def
= {x ∈ Ω : V (x) < c} , (2.10)

where Ω
def
= {x ∈ Rn : V (x) > 0, V̇ (x) ≤ 0} ∪ {0n}, Ωc is assumed to be bounded and Ω0 is the

maximal connected component of the level set Ωc with 0n ∈ Ω0. If the set {x ∈ Ωc : V̇ (x) = 0}
within Ωc contains no solutions of (2.6) except the zero solution, then 0n is asymptotically stable
and Ω0 is a subset of the DOA, cf. [256, pp. 72–73]. By the Lyapunov stability theorems, see [185]
and [149, pp. 112–126], the origin of (2.6) is stable if there exists a Lyapunov function according
to Definition 10. For global (asymptotic) stability, the conditions V (x) ≻ 0 and V̇ (x) ⪯ 0 (or
rather V̇ (x) ≺ 0) must hold for all x ∈ Rn and additionally, V must be radially unbounded.

Definition 12. (Radially unbounded function, cf. [149, p. 123]) A function V : Rn → R is called
radially unbounded if from ∥x∥ → ∞ follows that V (x)→∞.

For example, a quadratic form like (2.7) is always radially unbounded if it is positive definite.
The methods discussed so far can also be applied to the analysis of non-autonomous systems,
when f : [0,∞)× Rn → Rn is an explicit function of time with

ẋ = f(t,x) . (2.11)

If ∃V (t,x) with W1(x) ≤ V (t,x) ≤W2(x) with W1(x) ≻ 0, W2(x) ≻ 0 and time derivative

V̇ (t,x)
def
=

∂V (t,x)

∂t
+
∂V (t,x)

∂x
f(t,x) ≤ −W3(x) , (2.12)

where W3(x) ⪰ 0, each condition being true for all x ∈ X0, then (2.11) is stable, if W3(x) ≻ 0
then it is also asymptotically stable. These results hold globally if X0 = Rn and W1 is radially
unbounded [149, pp. 147–155]. Finally, exponential stability for system (2.11) can be asserted if

k1∥x∥α ≤ V (t,x) ≤ k2∥x∥α (2.13a)

V̇ (t,x) ≤ −k3∥x∥α (2.13b)

where k1, k2, k3, α > 0. The norm of the system trajectories is then guaranteed to be bounded
by the exponentially decaying function

∥x(t)∥ ≤ cd∥x(t0)∥ exp
(
−rd(t− t0)

)
, (2.14)

compare [149, p. 154]. In (2.14), the decay coefficient cd and decay rate rd are given by

cd = (k2/k1)
1/α (2.15a)

rd = k3/(k2α) . (2.15b)

If conditions (2.13a)-(2.13b) hold for all x ∈ Rn, then global exponential stability follows. A useful
extension to the Lyapunov stability theorems is LaSalle’s invariance principle [256, pp. 68–73],
which can be used to show asymptotic stability of (2.6) even if V̇ is only negative semi-definite,
as already indicated by the statements below Equation (2.10). Let

S
def
= {x ∈ Rn : V̇ (x) = 0} . (2.16)

If no trajectory other than the zero solution can stay in S, then the system is asymptotically
stable, see also [149, pp. 126–129]. A limitation of the invariance principle is, that it can only be
applied to autonomous systems like (2.6), but not to time-varying systems like (2.11).
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An important class of dynamical systems are linear time-invariant (LTI) systems, which are
ODEs of the form

ẋ = Ax (2.17)

with x ∈ Rn and A ∈ Rn×n. These systems have the advantage that there exist many theoretical
and practical results in the literature dealing with LTI systems, making analysis of such systems
often significantly easier than for general nonlinear systems like (2.6). For example, the stability
analysis can be done by solving the Lyapunov equation, which gives an explicit Lyapunov function
for the system (2.17).

Definition 13. (Lyapunov equation, cf. [149, pp. 135–137]) Let A ∈ Rn×n and Q = QT ∈ Rn×n
with Q ≻ 0. Then,

ATP + PA = −Q (2.18)

is called Lyapunov equation in the symmetric matrix variable P = P T ∈ Rn×n, with P ≻ 0.

This equation has a unique positive definite solution P for every Q ≻ 0 only if (2.17) is
asymptotically stable4. A Lyapunov function for (2.17) is then given by V (x) = xTPx with
the negative definite time derivative V̇ (x) = −xTQx. From this it can also be seen that every
asymptotically stable LTI system is globally exponentially stable, as for a positive definite P ,
it holds that λmin(P )xTx ≤ xTPx ≤ λmax(P )xTx and so also that −xTQx ≤ −λmin(Q)xTx
where λmin(·) and λmax(·) denote the minimum and maximum eigenvalue of its symmetric, matrix
valued argument [149, p. 145]. Since P and Q are symmetric, their eigenvalues are real numbers.
The Lyapunov equation is also closely related to the eigenvalues of the system matrix A of (2.17),
as it has a positive definite solution if and only if A is Hurwitz [149, pp. 133–137].

Definition 14. (Hurwitz matrix, cf. [246, 118]) A matrix A ∈ Rn×n is called Hurwitz matrix if
R
(
λi(A)

)
< 0 , ∀i ∈ {1, . . . , n}, where λi(A) denotes the i-th eigenvalue of A and R(·) the real

part of its complex argument.

An important property of an LTI system (2.17) is, that it is globally exponentially stable if
and only if A is Hurwitz. However, for control not only stability of unforced systems like (2.6)
or (2.17) is of interest, but especially the analysis of systems with inputs, like

ẋ = f(t,x,u) . (2.19)

Here, x ∈ Rn is the state, u ∈ Rm the input of the system, while f : [0,∞)× Rn × Rm → Rn is
the vector field. It is assumed that f is piecewise continuous in t, locally Lipschitz in x and u and
that f(t,0n,0m) = 0n. Given a system like (2.19), it is of interest to verify that bounded inputs
are guaranteed to result in bounded states. Generally, this property cannot be concluded by
looking at the unforced system with u = 0m only, as (2.19) can be unstable even if the unforced
system is globally exponentially stable [149, pp. 174–175]. This motivates the notion of input-
to-state stable (ISS) stability, first proposed by Sontag [258]. For this property, the definition of
comparison functions is convenient.

Definition 15. (Comparison functions, cf. [149, p. 144]) Let α : [0, a) → [0,∞) and β :
[0, a)× [0,∞]→ [0,∞) be continuous functions. Then:

� The function α belongs to class K if α(0) = 0 and it is strictly increasing.
� The function α belongs to class K∞ if it is in class K with a =∞ and limr→∞ α(r)→∞.
� The function β belongs to class KL if ∀q ∈ R+

0 , β(r, q) is in class K and ∀r ∈ [0, a), the
function is decreasing and limq→∞ β(r, q)→ 0.

4Positive definiteness of Q is not strictly required, as it is sufficient to take Q = CTC ⪰ 0 (positive semi-definite)
with (A,C) observable, in order to ensure that Equation (2.18) has a positive definite solution [149, p. 137].
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The ISS property can be defined with the help of these classes of comparison functions.

Definition 16. (Input-to-state stability, cf. [149, p. 175]) The system (2.19) is called input-
to-state stable (ISS) if there exists a class KL function β and a class K function γ such that
∀x0 ∈ Rn and piecewise continuous bounded u(t), the inequality

∥x(t)∥ ≤ β(∥x0∥, t) + γ(∥u(τ)∥∞) (2.20)

is satisfied for all t ≥ 0, where ∥u(τ)∥∞
def
= sup0≤τ≤t ∥u(t)∥.

One way to formally show this inequality holds is by the use of ISS-Lyapunov functions, which
can be similarly used for proving stability as in the unforced case.

Definition 17. (ISS-Lyapunov function, cf. [149, p. 176]) A C1 function V : [0,∞)× Rn → R
is called an ISS-Lyapunov function for (2.19) if α1(∥x∥) ≤ V (t,x) ≤ α2(∥x∥) and

V̇ (t,x,u)
def
=

∂V (t,x)

∂t
+
∂V (t,x)

∂x
f(t,x,u) ≤ −W3(x) ,∀∥x∥ ≥ ρ(∥u∥) > 0 (2.21)

where α1, α2 are in class K∞, ρ is in class K, W3 is continuous and W3(x) ≻ 0 on Rn.

If there exists an ISS-Lyapunov function for a system (2.19), then the system is ISS with
gain function γ = α−1

1 ◦ α2 ◦ ρ. When the system is autonomous, this sufficient condition for
input-to-state stability is also necessary [149, p. 176].
While the properties discussed so far deal with dynamical systems in the time domain, another

important tool for control engineering is the frequency domain. Considering an LTI system in
the time domain of the form

ẋ = Ax+Bu (2.22a)

y = Cx+Du , (2.22b)

with state x ∈ Rn, input u ∈ Rm, output y ∈ Rp, system matrix A ∈ Rn×n, input matrix
B ∈ Rn×m, output matrix C ∈ Rp×n and feedthrough matrix D ∈ Rp×m. This system can be
converted from the time domain to a rational transfer function matrix in the frequency domain
using the Laplace transformation [70, pp. 479–612].

Definition 18. (Rational transfer function matrix, cf. [70, p. 503]) Given an LTI system as
in (2.22). Its transfer function matrix is given by G(s) = C(sIn−A)−1B+D, where In denotes
the n× n-identity matrix and s = σ + jω ∈ C the complex Laplace variable.

This enables the use of various frequency domain tools for system analysis and design. It
can be noted that while (2.22) might appear to be only useful for purely linear systems, this
representation is often useful for nonlinear systems as well. Considering a nonlinear system like

ẋ = f(x,u) (2.23a)

y = h(x,u) , (2.23b)

again with state x ∈ Rn, input u ∈ Rm, output y ∈ Rp, vector field f : Rn × Rm → Rn and
measurement function h : Rn × Rm → Rp, where f ,h ∈ C1 and equilibrium at x∗,u∗ such
that f(x∗,u∗) = 0n. Then, (2.23) can be approximated locally around that equilibrium by
δẋ = Aδx +Bδu, δy = Cδx +Dδu with δx = x − x∗, δu = u − u∗ and δy = y − h(x∗,u∗).
Moreover, A = Jf ,x(x

∗,u∗), B = Jf ,u(x
∗,u∗), C = Jh,x(x

∗,u∗), D = Jh,u(x
∗,u∗) where

Jf ,x(x
∗,u∗)

def
=

[∂f(x,u)
∂x

]∣∣∣
x=x∗,u=u∗

(2.24)

denotes the Jacobian of f with respect to x, evaluated at x = x∗, u = u∗. This technique,
known as Jacobian linearization [256, p. 207], approximates the nonlinear functions in (2.23) by
neglecting higher order terms of their Taylor series, see [256, pp. 53–57] and [149, pp. 51–54].
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By the linearization method of Lyapunov, also known as indirect or first method of Lyapunov,
the nonlinear system (2.23) has a locally exponentially stable equilibrium at x = x∗, u = u∗ if
A = Jf ,x(x

∗,u∗) is Hurwitz. This provides a theoretical justification for the (local) validity of
nonlinear system approximations based on Jacobian linearization [256, pp. 53–57].

The advantage of a transfer function representation of the system is, that there exist numerous
intuitive tools for control system analysis and design. Examples include Bode diagrams, cf. [216,
pp. 403–427], Nyquist plots, cf. [216, pp. 427–443], root-locus plots, cf. [216, pp. 270–290] or
the Ziegler-Nichols tuning rules for PID controller design, cf. [216, pp. 568–577]. Also, there are
formulas available for interconnections of transfer functions, cf. [216, pp. 17–29]. It can be noted
that Definition 18 applies for general MIMO LTI systems, having an m × p transfer function
matrix G(s). For the remainder of this introduction we focus on SISO transfer functions G(s),
such that m = p = 1. Following, we consider the closed loop block diagram shown in Figure 2.4.

C(s) P (s)
e(t) u(t) ud(t)r(t) yp(t)

−
ym(t)

d1(t) d2(t)
y(t)

n(t)

Figure 2.4: Single-input, single-output closed loop control system [303].

Here, P (s) is the plant transfer function and C(s) the transfer function of the controller.
Furthermore, r is the reference input, e the control error, u the controller output, d1 the input
or load disturbance, ud the plant input, yp the plant output, d2 the output disturbance, y the
system output, n a measurement noise signal and ym the measured system output. One relevant
question, assuming first d1(t) = d2(t) = n(t) = 0, is whether the output can asymptotically track
the reference input, such that y(t) → r(t) as t → ∞. If r(t) is a polynomial of degree k, like
r(t) = tk/k!, the steady-state control error depends on the system type number.

Definition 19. (Linear system type number, cf. [216, pp. 225–226]) Let G(s) = N(s)/D(s) be
a rational SISO transfer function where N(s) and D(s) are polynomials in s. The multiplicity
of the root s = 0 of D(s) is the system type number of G(s). If s = 0 is not a root of D(s), the
system type number is zero. A system with system type number d ∈ N0 is called a type d system.

For example, the double integrator 1/s2 is a type 2 system, while a low-pass of the form 1/(s+1)
is a type 0 system. The system type number can be used to obtain the error constant and steady
state error of the closed loop system from Figure 2.4.

Definition 20. (Error constant and steady-state error, cf. [70, pp. 217–219]) Given the LTI
close loop control system from Figure 2.4. Let d1(t) = d2(t) = n(t) = 0 and r(t) = H(t)tk/k!
with k ∈ N0 and H(t) the Heaviside (unit step) function. Let further d ∈ N0 denote the system
type number of the open loop transfer function L(s) = C(s)P (s). Then, the error constant Kd

and steady-state error ess of the system are

Kd = lim
s→0

sdL(s) (2.25a)

ess = lim
t→∞

e(t) = lim
s→0

sd

sd +Kd

1

sk
. (2.25b)

In the literature, K0, K1 and K2 are also called position, velocity and acceleration error constants.

So if k = 0 then r(t) is a unit step and hence L(s) = C(s)P (s) should be a type 1 system in
order to guarantee that the asymptotic tracking error (2.25b) approaches zero, so ess = 0.
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More generally, the classification with type numbers can be considered as a special case of the
so-called internal model principle, which is the basis for IMC. It states that in order to achieve
tracking with zero asymptotic error, generally, a model that describes the reference signal is
required, cf. [70, pp. 573–585]. In this work, focus is set on tracking of ramp-like reference
trajectories, as this is the main use-case for TCSs. Table 2.1 shows the steady state errors of
some reference signals, indicating that a TCS that controls angular velocity should realize an
open loop type 2 system in order to achieve zero asymptotic tracking error with ess = 0.

Table 2.1: Steady-state errors for reference signals, adapted from Ogata [216, p. 230].

Reference Signal Step Ramp Parabola Cubic curve

Mechanical Interpretation Position Velocity Acceleration Jerk

System type d ess [m] ess [m/s] ess [m/s
2] ess [m/s

3]

Type 0 1/(1 +K0) ∞ ∞ ∞
Type 1 0 1/K1 ∞ ∞
Type 2 0 0 1/K2 ∞
Type 3 0 0 0 1/K3

However, tracking is not the only task of a control system. In general, d1(t), d2(t) and n(t) in
Figure 2.4 are nonzero, so good rejection of disturbances and measurement noise is required as
well. One approach to achieve this is with sensitivity functions, also called “gang of four” (“gang
of six” if a reference signal filter is added to the block diagram in Figure 2.4).

Definition 21. (Gang of four, cf. [262, pp. 177–214]) Let C(s) and P (s) be controller and
plant in feedback connection as shown in Figure 2.4. Denote with L(s) = C(s)P (s) the open loop
transfer function. Define:

� T (s) = L(s)/(1 + L(s)), the complementary sensitivity function.
� S(s) = 1/(1 + L(s)), the sensitivity function.
� SC(s) = C(s)/(1 + L(s)), the input/load disturbance function.
� SP (s) = P (s)/(1 + L(s)), the output disturbance sensitivity function.

Generally, a closed loop system as shown in Figure 2.4 can be stable for d1(t) = d2(t) = n(t) = 0,
but is actually unstable for nonzero disturbances or measurement noise. Systems that do not
have this problem are called internally stable. A necessary and sufficient condition for internal
stability is provided by the following definition.

Definition 22. (Internal stability, cf. [1, p. 137]) Let L(s) = C(s)P (s) be the open loop transfer
of the setup in Figure 2.4. The closed loop system is internally stable, if and only if:

� The transfer function 1 + L(s) has no zeros with R(s) ≥ 0.
� No pole-zero cancellation occurs in R(s) ≥ 0 when forming the product C(s)P (s).

This definition can be extended to internal Γ-stability, which requires the transfer function poles
si being located in a specific region Γ ⊆ {si ∈ C : R(si) < 0} for performance specifications.

Definition 23. (Internal Γ-stability, cf. [1, p. 137]) Given the same setup as in Definition 22.
The closed loop system is internally Γ-stable, if and only if:

� The transfer function 1 + L(s) has no zeros with R(s) /∈ Γ.
� No pole-zero cancellation occurs outside of Γ when forming the product C(s)P (s).
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2 State of the Art

This is relevant for shaping the response of the system. Figure 2.5a shows an example Γ-region.
The vertical line imposes a minimum response time, while the circle restricts the maximum
bandwidth. The two sloped lines constrain the damping of the system.
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Figure 2.5: Example regions for transfer function performance specifications [303].

Another common method for performance specification is to constrain the frequency response
magnitude (FRM) of a system to realize a specific behavior over a frequency range.

Definition 24. (Frequency response magnitude, cf. [1, p. 132]) The FRM of a transfer function
F (s) in a frequency interval Ωint = {ω ∈ R+

0 : 0 ≤ ω− ≤ ω ≤ ω+} is MF = supω∈Ωint
|F (jω)|.

The FRM of a transfer function can then be constrained, as an additional design goal, to be
located in some region B, which is defined in terms of its boundary function.

Definition 25. (B-region, cf. [1, pp. 139–140]) The B-region, with boundaries ∂Bi : Ωint → R+
0 ,

i ∈ {1, 2} in the (ω,M) plane, is given by B = {(ω,M) ∈ Ωint × R+
0 : ∂B1(ω) < M < ∂B2(ω)}.

The boundary function can be defined for example by piecewise horizontal line segments or in
terms of the frequency response of another transfer function [1, pp. 139–140]. This leads to the
definition of B-stability of a transfer function on a certain frequency interval.

Definition 26. (B-stability, cf. [1, p. 149]) A transfer function F (s) is called B-stable in the
frequency interval Ωint if |F (jω)| ∈ B ,∀ω ∈ Ωint.

Figure 2.5b shows an example B-region and the FRM of a sensitivity function S(s) which is
B-stable with respect to that specific region. There are different tuning rules available to achieve
good tracking, disturbance attenuation and noise rejection with limited control effort by definition
of appropriate FRMs. For example, good tracking in the frequency range 0 ≤ ω ≤ ωS as well as
output disturbance attenuation is achieved if |S(jω)| ≪ 1 , ∀ω ∈ [0, ωS ], while input disturbances
are attenuated within the same range if |SP (jω)| ≪ 1 ,∀ω ∈ [0, ωS ] and measurement noise is
rejected in the range ωT ≤ ω <∞ if |T (jω)| ≪ 1 ,∀ω ∈ [ωT ,∞), see [1, pp. 138–141]. In general,
these are competing design goals, so the control engineer has to choose a compromise between
performance and robustness [1, pp. 147–148], see also [215] and [214, pp. 27–62].
This concludes the preliminaries on stability analysis of general nonlinear systems in the time

domain and linear systems in the frequency domain. In the following, an introduction to the more
specific system class of so-called Lur’e systems and the concept of absolute stability is given. Also,
the related concepts of passivity, positive-realness and the Kalman-Yakubovich-Popov Lemma are
briefly discussed. These will be important for the stability analysis of the proposed TCSs.
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2.2.2 Absolute Stability, Lur’e Systems and Passivity

In this section, some background on absolute stability of Lur’e systems and passivity is given.
It is based on the summary of the state of the art in our publication [306], which is mainly
based on the textbook by Khalil [149]. The term “absolute stability” is strongly linked with
a specific class of nonlinear dynamical systems, the so-called Lur’e systems, first proposed by
Lur’e and Postnikow in 1944 [184]. This system class will play an important role for the stability
analysis of TCSs. Figure 2.6 shows the structure of a general Lur’e system, which consists of an
LTI system in negative feedback with a memoryless, static but possibly time-varying, nonlinear
function that is subject to a sector condition.

G(s)

ψ(y, t)

0m
y

−

u

Figure 2.6: General feedback structure of a Lur’e system [306].

This feedback connection can be expressed in the time domain, with x ∈ Rn, u ∈ Rm, y ∈ Rp,
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and ψ : Rp × R+

0 → Rm by

ẋ = Ax+Bu (2.26a)

y = Cx+Du (2.26b)

u = −ψ(y, t) , (2.26c)

where (A,B) is controllable and (A,C) observable. Moreover, the algebraic loop u = −ψ(y, t)
must have a unique solution ∀t,u and G(s) = C(sIn − A)−1B + D is square (m = p) and
proper. Finally, the nonlinearity ψ is locally Lipschitz in y, piecewise continuous in t, satisfies
ψ(0p, t) = 0m ,∀t ∈ R+

0 and, in addition, a so-called sector condition [149, p. 264]. In literature,
there are two commonly used conditions, the first one is sector boundedness.

Definition 27. (Sector boundedness, cf. [149, pp. 232–233]) Let ψ : Rp × R+
0 → Rm be a

memoryless function with ψ(0p, t) = 0m , ∀t ∈ R+
0 and K = K2 −K1 = KT ≻ 0 with K1,

K2 ∈ Rp×p and m = p. Then, ψ is said to belong to the sector:

� [0,∞], if yTψ(y, t) ≥ 0, denoted with ψ ∈ sec[0,∞].
� [K1,∞], if yT

(
ψ(y, t)−K1y

)
≥ 0, denoted with ψ ∈ sec[K1,∞].

� [0,K2], if ψ(y, t)
T
(
ψ(y, t)−K2y

)
≤ 0, denoted with ψ ∈ sec[0,K2] where K2 =K

T
2 ≻ 0.

� [K1,K2] if
(
ψ(y, t)−K1y

)T (
ψ(y, t)−K2y

)
≤ 0, denoted with ψ ∈ sec[K1,K2].

These inequalities are supposed to hold for all y ∈ Rp and t ∈ R+
0 . The dimension indices for zero

and the infinite sectors (both of dimension p× p) are omitted here for a more compact notation.

A function ψ ∈ sec[0,∞] is also called passive. Functions belonging to the other sectors men-
tioned in Definition 27 can be transformed to the sector [0,∞] by appropriate input-feedforward
and output feedback loop transformation, see [149, pp. 228–233] and [149, pp. 264–270]. There-
fore, a function ψ ∈ sec[K1,∞] is also called input feed-forward passive (IFP), while a function
ψ ∈ sec[0,K2] is also called output feedback passive (OFP).

The sector conditions are visualized for the SISO case, when p = m = 1, as follows. Figure 2.7a
displays an example nonlinearity, which is sector bounded like

(
ψ(y)−k1y

)(
ψ(y)−k2y

)
≤ 0 with
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0 < k1 < k2 < ∞, such that ψ ∈ sec[k1, k2]. In Figure 2.7a it can be seen that such a function
is restricted to the first and third quadrant and passes through the origin. As indicated in
Figure 2.1a, this applies to the nonlinear tire friction force, a fact that will be used later.
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Figure 2.7: Examples of a sector bounded and a slope restricted nonlinear static function [306].

Figure 2.7b shows an example of the second commonly used, more restrictive sector condition,
which requires that the nonlinearity is slope restricted.

Definition 28. (Slope restrictedness, cf. [109]) Let ψ : Rp → Rm with ψ(0p) = 0m, m = p and
(ψ(y) − ψ(ŷ) − s1(y − ŷ))T (ψ(y) − ψ(ŷ) − s2(y − ŷ)) ≤ 0 ,∀y, ŷ ∈ Rp with 0 ≤ s1 < s2 < ∞.
Then ψ is called slope restricted to the interval [s1, s2], denoted with ∂ψ ∈ sec[s1, s2].

In the SISO case with m = p = 1, this reduces to the more commonly used definition, given
by the inequality s1 ≤

(
ψ(y)−ψ(ŷ)

)
/(y− ŷ) ≤ s2 ,∀y, ŷ ∈ R with y ̸= ŷ, see also [3]. Figure 2.7b

shows an example of a slope restricted function ψ with ∂ψ ∈ sec[0, s2], while the two tangent lines
indicate its minimum and maximum slope, respectively. These sector conditions have motivated
the notion of absolute stability of Lur’e systems.

Definition 29. (Absolute stability, cf. [149, p. 265]) A Lur’e system (2.26a)-(2.26c) is called
absolutely stable with respect to a sector condition if it is uniformly globally asymptotically stable
for all nonlinear functions ψ : Rp × R+

0 → Rm, with p = m, that satisfy the sector condition.

Absolute stability can be considered as a strong robustness property, as it guarantees global
asymptotic stability not only for a single, but rather for a whole class of nonlinear functions that
satisfy the sector condition. The stability analysis of Lur’e systems motivated numerous subse-
quent research directions. Two famous early examples are the Aizerman conjecture [5] and the
Kalman conjecture [143], two conjectures about stability of Lur’e systems that will be discussed
in more detail in Section 4.4. One reason for the research interest in Lur’e systems is their practi-
cal relevance, as various systems can be expressed in the form (2.26a)-(2.26c). For example, LTI
systems with control signal saturation and anti-windup [155], deadzone nonlinearity [171] or me-
chanical systems with stick-slip friction [51] can be analyzed with this formulation. The absolute
stability of a Lur’e system can be analyzed for example with the circle criterion by Sandberg [250]
and Zames [288], or for SISO nonlinearities that do not depend on time explicitly, by the Popov
criterion [232]. For example, by the circle criterion, the Lur’e system (2.26) is absolutely stable
if ψ ∈ sec[K1,K2], with K = K2 −K1 = KT ≻ 0 following Definition 27 and the transfer
function

(
Ip +K2G(s)

)(
Ip +K1G(s)

)T
is strictly positive real [149, pp. 264–266].
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Before stating the definition of the positive realness, the more general concept of passivity of
dynamical systems is defined. This property is similar to the sector boundedness from Defini-
tion 27, which can be analogously applied to dynamical systems.

Definition 30. (Passivity, cf. [149, p. 236]) A nonlinear system as defined in (2.23) is called
passive if ∃V ∈ C1 with V : Rn → R and V (x) ⪰ 0 , ∀x ∈ Rn such that uTy ≥ V̇ (x,u) is satisfied
for all x ∈ Rn,u ∈ Rm. It is called strictly passive if uTy ≥ V̇ (x,u) +W (x) for some function
W with W (x) ≻ 0 on Rn. The function V is also called a storage function of (2.23).

Here, V̇ (x,u) is defined analogously to (2.21). Passivity is a useful property, because first,
it is preserved for certain interconnections of different passive systems [149, pp. 245–259] and
second, it can be used for stability analysis under certain conditions [149, pp. 241–245]. The
closely related concept of positive realness, applicable for LTI systems, is defined as follows.

Definition 31. (Positive realness, cf. [149, pp. 237–238]) Let G(s) be a square, proper, rational
transfer function matrix. Then, G(s) is positive real if

� The poles of all entries of G(s) are located in R(s) ≤ 0.
� The matrix G(jω)+GT (−jω) ⪰ 0 , ∀ω ∈ R such that jω is not a pole of any entry of G(s).
� All purely imaginary poles jω of each entry ofG(s) are simple poles and lims→jω(s−jω)G(s)

is a positive semi-definite Hermitian matrix.

Furthermore, G(s) is called strictly positive real if ∃ε > 0 such that G(s− ε) is positive real.

It can be noted that an LTI system (2.22) with (A,B) controllable and (A,C) observable is
(strictly) passive if it is (strictly) positive real. One way to evaluate positive realness of a given
LTI system is by the Kalman-Yakubovich-Popov Lemma [144, 284].

Definition 32. (Kalman-Yakubovich-Popov (KYP) Lemma, cf. [149, pp. 240–241]) Given an
LTI system as in (2.22) with p = m, such that its associated transfer function matrix G(s) is
square. Let (A,B) be controllable and (A,C) observable. Then G(s) is strictly positive real if
and only if ∃P ∈ Rn×n with P = P T ≻ 0, L ∈ Rn×m, W ∈ Rm×m and ε > 0 such that

ATP + PA = −LTL− εP (2.27a)

PB = CT −LTW (2.27b)

W TW =D +DT . (2.27c)

Remark 2. The transfer function matrix G(s) is positive real if and only if these conditions
hold for ε = 0. This result is sometimes called the Positive Real Lemma, see [149, p. 240], while
other authors use it interchangeably with the KYP Lemma [25, pp. 70–71].

The Equations (2.27) of the KYP Lemma can be efficiently evaluated numerically by reformu-
lating them into a single linear matrix inequality (LMI), see [25, p. 71, pp. 93–94] and then using
a standard LMI solver. The KYP Lemma is one out of many important results that were derived
in the context of absolute stability. To give just one more example, the S-Lemma [283] can be
mentioned as well, which considers the solvability of quadratic equations that appear during the
S-Procedure, cf. Aizerman and Gantmacher [6]. Ultimately, these research directions led to the
notion of positive real functions and passivity [280, 25], as well as methods based on dynamic
multipliers [289, 43] or an approach based on integral quadratic constraints [196]. For a historical
overview of the topic, see also [34].
This concludes the introduction to absolute stability of Lur’e systems and passivity. While the

preliminaries so far were focused on analysis of dynamical systems, the following section gives a
short introduction to the nonlinear control design method of input-output-linearization (IOL).
This is the main method that will be used for an analytic derivation of the control laws of the
proposed TCSs. The application of IOL to the design of TCSs and and the stability analysis of
these designs will be the topic of Chapter 3.
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2.2.3 Input-Output-Linearization

In this section, the nonlinear control design method of input-output-linearization (IOL) is briefly
reviewed. Although the name might suggest that IOL is similar to Jacobian linearization which
was already discussed in Section 2.2.1, these two methods differ fundamentally. The reason is
that with IOL, the system dynamic is not approximated by a linear system in a vicinity of an
operating point, but instead a feedback law is used to actively render the system linear in a region
of the state space, potentially the whole Rn. In the context of TCSs, this technique was already
mentioned as a (theoretical) option to control the 2-state model (2.1), if the tire force would be
available for feedback, compare (2.5a)-(2.5b). However, in this example the control input could
be used directly to cancel out the nonlinearity. So the question naturally arises whether this
compensation of nonlinearities by the control input is still possible if the input enters a different
ODE than the nonlinearity. For example, this would be the case if actuator dynamics are added
to (2.1). Indeed, this is still possible for a class of systems, and one systematical method to achieve
this is IOL. Similar methods based on state feedback linearization that deal with finding a control
law which linearizes the full dynamics were proposed even earlier than IOL by Brockett [24], see
also [123, pp. 528–534] and [162] for an historical overview.
The method of IOL, which instead of linearizing the full dynamics, linearizes only the input-

output relationship of a system, was first considered by Isidori and Krener [126]. Other early
publications on this topic are by Isidori and Ruberti [127] and Byrnes and Isidori [28], see also the
survey [162]. This introduction is based on the textbooks by Isidori [123, 124, 125] and partially
also on [2, 149]. For the introduction to the method of IOL we consider the following class of
input-affine nonlinear MIMO dynamical systems

ẋ = f(x) +G(x)u (2.28a)

y = h(x) (2.28b)

with state x ∈ Rn, input u ∈ Rm, output y ∈ Rp and m = p. Furthermore, f : Rn → Rn is the
part of the vector field that depends only on the system state, while G : Rn → Rn×m is a matrix
field affine in u. Finally, h : Rn → Rp is the measurement function. One concept that will be
useful for the notation of the IOL method is the Lie derivative.

Definition 33. (Lie derivative, cf. [123, p. 8]) The Lie derivative of a function h : Rn → R
along the vector field f : Rn → Rn is denoted by Lfh(x). More generally, the k-th derivative of
h along f and the derivative of h, first along f and second along g : Rn → Rn are given by

Lkfh(x) =
∂
(
Lk−1
f

)
∂x

f(x) and LgLfh(x) =
∂
(
Lfh(x)

)
∂x

g(x) (2.29)

respectively, where L1
fh(x) = Lfh(x) =

∑n
i=1 fi(x)∂h(x)/(∂xi) and L

0
fh(x) = h(x).

This provides a compact notation for derivatives of real-valued functions along vector fields.
For example, the derivative of the Lyapunov function along solution trajectories, given by (2.8) in
Definition 9, can be written as V̇ (x) = LfV (x). Informally, the IOL method can be summarized
as follows: differentiate each system output yj , ∀j ∈ {1, 2, . . . ,m} until any component of u
appears; redefine the highest occurring derivative of each yj as new, virtual input vj ; this gives a
linear system of m equations which is to be solved for uj . The control law derived by this method
linearizes the input-output relationship of the system and results in a substitute linear system
with virtual control inputs v1, v2, . . . , vm. This informal description leaves several important
questions unanswered, like where this algorithm comes from, when it is actually applicable and
whether global asymptotic stability can be guaranteed for a control law based on this method.
The goal of this review is to provide answers to these questions by a brief overview of the basics
of IOL. One concept that will be needed for this is the (vector) relative degree of a system.
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The (vector) relative degree of a general MIMO system of the form (2.28) can be defined with
the help of the Lie derivative from Definition 33 as follows.

Definition 34. (Relative degree and vector relative degree, cf. [123, pp. 219–220]) A system as
defined in (2.28) with G(x) =

[
g1(x) g2(x) . . . gm(x)

]
and gj(x) ∈ Rn ,∀j ∈ {1, 2, . . . ,m}

has vector relative degree r =
[
r1 r2 . . . rm

]
at x0 ∈ Rn if

� Lgj
Lkfhi(x) = 0 with k < ri − 1, ∀i, j ∈ {1, 2, . . . ,m} ,∀x in a neighborhood of x0.

� The decoupling matrix A(x) ∈ Rm×m is nonsingular at x0, with A(x) given by

A(x) =


Lg1

Lr1−1
f h1(x) Lg2

Lr1−1
f h1(x) . . . Lgm

Lr1−1
f h1(x)

Lg1
Lr2−1
f h2(x) Lg2

Lr2−1
f h2(x) . . . Lgm

Lr2−1
f h2(x)

...
...

. . .
...

Lg1
Lrm−1
f hm(x) Lg2

Lrm−1
f hm(x) . . . Lgm

Lrm−1
f hm(x)

 . (2.30)

The value r =
∑m

i=1 ri is called total relative degree of (2.28) at x0. In the SISO case, when
m = 1, r = r1 is called relative degree of (2.28) at x0.

The elements ri of the vector r can be interpreted as the number of differentiations of the i-th
output yi that is required such that the ri-th derivative of yi depends on at least one element of
the input vector u, cf. [123, p. 221]. It can be noted that the (vector) relative degree of a system
might not be well defined, namely if some entries of r do not exist. This is for example the case if
the corresponding output is independent of u, see [149, p. 511]. It can be noted that the (vector)
relative degree in general is a local concept for a neighborhood of some x0 ∈ Rn, for example an
equilibrium. However, for the TCSs considered in this work, the conditions from Definition 34 are
satisfied globally. Therefore, we assume for the remainder of this introduction that the relative
degree of the considered systems is well defined and uniform and that the decoupling matrix is
nonsingular and that both of these conditions are true for all x ∈ Rn. For more details on the
differences between local and global applicability of IOL, see for example [123, pp. 219–277, pp.
427–460]. Another important concept for IOL is that of a diffeomorphism, which is a potentially
nonlinear change of coordinates of a system, defined as follows.

Definition 35. (Diffeomorphism, cf. [123, p. 11]) A function ϕ : Rn → Rn is called a global
diffeomorphism on Rn if there exists ϕ−1 such that ϕ−1

(
ϕ(x)

)
= x , ∀x ∈ Rn and ϕ,ϕ−1 ∈ C∞.

One possibility to test whether a given function ϕ is a global diffeomorphism is by evaluating the
determinant of its Jacobian matrix: if ϕ is a smooth bijection and det

(
Jϕ,x(x)

)
̸= 0 ,∀x ∈ Rn,

then ϕ is a global diffeomorphism. It can be noted that if ϕ is linear, then it suffices to examine
the Jacobian for being nonsingular. A diffeomorphism is used for IOL in order to transform the
original system into Byrnes-Isidori normal form. This system representation basically solves the
already mentioned problem that generally not all nonlinearities that affect the system output
can be directly canceled out by an input in the original representation. For each output yj ,∀j ∈
{1, 2, . . . ,m} this is achieved by a state transformation that shifts those nonlinearities into one
differential equation that is also directly affected by the input vector u. The input can then
be used to compensate the nonlinearities and provide a new, virtual input to the differential
equations which are reduced to a chain of integrators, except for those that have no direct effect
on the output y. Alternatively, a linear reference model can be imposed on the dynamics [123,
pp. 290–291]. This procedure, which is fundamental for IOL, was inspired by the so-called
structure algorithm due to Silverman [255], see also [123, pp. 282–289, pp. 531–532] and [125,
pp. 252–263] for a detailed review. In the following, we state the generic diffeomorphism that is
generally used for IOL, where the original system states are denoted with x ∈ Rn and the states
of the transformed system states with ξ ∈ Rn such that ξ = ϕ(x) and x = ϕ−1(ξ) for all x, ξ.
Then, it is shown how the linearizing control law is derived from the transformed system.
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The state transformation from x-coordinates to ξ-coordinates can be defined as

ξ =



ξ1
ξ2
...
ξr1
ξr1+1

ξr1+2
...

ξr1+r2
...

ξr−rm
ξr−rm+1

...
ξr
ξr+1

ξr+2
...
ξn



= ϕ(x) =



ϕ1(x)
ϕ2(x)

...
ϕr1(x)
ϕr1+1(x)
ϕr1+2(x)

...
ϕr1+r2(x)

...
ϕr−rm(x)
ϕr−rm+1(x)

...
ϕr(x)
ϕr+1(x)
ϕr+2(x)

...
ϕn(x)



=



h1(x)
Lfh1(x)

...

Lr1−1
f h1(x)

h2(x)
Lfh2(x)

...

Lr2−1
f h2(x)

...
hm(x)
Lfhm(x)

...

Lrm−1
f hm(x)

ϕr+1(x)
ϕr+2(x)

...
ϕn(x)



, (2.31)

see [123, pp. 222–223] or [2, pp. 329–333]. The functions ϕi ∀i ∈ {r+1, r+2, . . . , n} can be chosen
freely, with the restriction that ϕ must be a diffeomorphism. Such functions are guaranteed to
exist at least locally in a neighborhood of x0 [123, pp. 222–223]. Evaluating ξ̇ = dϕ(x)/(dt) and
inserting x = ϕ−1(ξ) results in the Byrnes-Isidori normal form,

ξ̇ =



ξ̇1
ξ̇2
...

ξ̇r1
ξ̇r1+1

ξ̇r1+2
...

ξ̇r1+r2
...

ξ̇r−rm
ξ̇r−rm+1

...

ξ̇r
ξ̇r+1

ξ̇r+2
...

ξ̇n



=



ξ2
ξ3
...

Lr1f h1
(
ϕ−1(ξ)

)
+
∑m

j=1 Lgj
Lr1−1
f h1

(
ϕ−1(ξ)

)
uj

ξr1+2

ξr1+3
...

Lr2f h2
(
ϕ−1(ξ)

)
+
∑m

j=1 Lgj
Lr2−1
f h2

(
ϕ−1(ξ)

)
uj

...
ξr−rm+2

ξr−rm+3
...

Lrmf hm
(
ϕ−1(ξ)

)
+
∑m

j=1 Lgj
Lrm−1
f hm

(
ϕ−1(ξ)

)
uj

Lfϕr+1

(
ϕ−1(ξ)

)
+
∑m

j=1 Lgj
ϕr+1

(
ϕ−1(ξ)

)
uj

Lfϕr+2

(
ϕ−1(ξ)

)
+
∑m

j=1 Lgj
ϕr+2

(
ϕ−1(ξ)

)
uj

...
Lfϕn

(
ϕ−1(ξ)

)
+
∑m

j=1 Lgj
ϕn

(
ϕ−1(ξ)

)
uj



(2.32)

It is not always possible to choose the functions ϕi ,∀i ∈ {r + 1, r + 2, . . . , n} such that the last
n − r equations of (2.32) are independent of u. Such functions exist locally if the distribution
spanned by the gj ,∀j ∈ {1, 2, . . . ,m} is involutive near x0. However, this part is not problematic
for the TCSs considered in this work, so we refer the reader to [123, pp. 222–223] for more details.
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Considering the first r equations in (2.32), it becomes apparent that the coefficients of the
uj ,∀j ∈ {1, 2, . . . ,m} in the ri-th row are the (ri, j) entry of A(x) from (2.30), see [123, p. 224].
Now the remaining nonlinearities in the first r equations can be eliminated, which leads to a
system of linear equations v = A

(
ϕ−1(ξ)

)
u+ b

(
ϕ−1(ξ)

)
that has the solution

u = −A−1
(
ϕ−1(ξ)

)[
b
(
ϕ−1(ξ)

)
− v

]
= −A−1(x)

[
b(x)− v

]
. (2.33)

Here, vT =
[
v1 v2 . . . vm

]
are the virtual inputs to the linearized subsystem and b is a vector

that collects the remaining Lrif hi
(
ϕ−1(ξ)

)
, ∀i ∈ {1, 2, . . . ,m} from (2.32) as

b
(
ϕ−1(ξ)

)T
=

[
Lr1f h1

(
ϕ−1(ξ)

)
Lr2f h2

(
ϕ−1(ξ)

)
. . . Lrmf hm

(
ϕ−1(ξ)

)]
. (2.34)

This leads to m decoupled integrator chains where the j-th chain consists of rj integrators with
vj as new input. Since this renders the first r equations of (2.32) linear, these equations can be
globally exponentially stabilized by static state feedback of the first r states of ξ or any other
appropriate method from linear control theory.
If r = n, then the feedback law (2.33) linearizes the whole system. However, in general

r < n so the last n − r equations of (2.32) will still be nonlinear. While these equations do not
affect the output y, they are still required to be stable in order for the controller to work in
practice. For further analysis, partition the state as ζT =

[
ζ1 ζ2 . . . ζr

]
=

[
ξ1 ξ2 . . . ξr

]
and zT =

[
z1 z2 . . . zn−r

]
=

[
ξr+1 ξr+2 . . . ξn

]
for the next two definitions.

Definition 36. (External dynamics, cf. [2, p. 332]) Let ζ̇
T
=

[
ζ̇1 ζ̇2 . . . ζ̇r

]
be given by

ζ̇ =
[
ζ2 ζ3 . . . v1 ζr1+2 ζr1+3 . . . v2 . . . ζr−rm+2 ζr−rm+3 . . . vm

]T
, (2.35)

as a result of taking the first r equations of (2.32), after inserting (2.33) where (2.32) is derived
from (2.28) by the described procedure. Then, (2.35) are the external dynamics of (2.28).

The external dynamics, as already discussed, can be stabilized by the static state feedback
v = −Kζ, so by using only the states ζ of the external dynamics and an appropriate gain matrix
K ∈ Rm×r. Next, let q(ζ, z,v)T =

[
q1(ζ, z,v) q2(ζ, z,v) . . . qn−r(ζ, z,v)

]
and

qℓ(ζ, z,v) = Lfϕr+ℓ
(
ϕ−1(ξ)

)
+

m∑
j=1

Lgj
ϕr+ℓ

(
ϕ−1(ξ)

)
uj ,∀ℓ ∈ {1, 2, . . . , n− r} , (2.36)

where the uj in (2.36) are inserted according to (2.33) such that (2.36) generally depends on v.
Furthermore, note that ξT =

[
ζ z

]
, so separating the first two arguments of qℓ as done in (2.36)

is always possible. Then, the internal dynamics can be defined.

Definition 37. (Internal dynamics, cf. [2, p. 332]) Let (2.36) be given by the described procedure
applied to (2.28). Then,

ż = q(ζ, z,v) =


ż1
ż2
...

żn−r

 =


q1(ζ, z,v)
q2(ζ, z,v)

...
qn−r(ζ, z,v)

 , (2.37)

with qℓ , ∀ℓ ∈ {1, 2, . . . , n− r} given by (2.36), are called the internal dynamics of (2.28).

This definition is general in the sense that q can depend on v. As mentioned previously, this can
be avoided by choosing the functions ϕi ,∀i ∈ {r+1, r+2, . . . , n} appropriately. Then, q depends
only on ζ and z. For the TCSs considered in this work, such a choice was readily possible, so
the internal dynamics analyzed in this work in the context of traction control are independent of
the virtual input v. Since q is generally a nonlinear vector field, analyzing stability of (2.37) can
be difficult. The zero dynamics, while still nonlinear in general, describe the internal dynamics
but without inputs from the external dynamics. Therefore, stability of the zero dynamics is often
studied first, while the internal dynamics are then analyzed in a subsequent step.
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The zero dynamics of a nonlinear system of the form (2.28) can then be defined in terms of its
internal dynamics from Definition 37.

Definition 38. (Zero dynamics, cf. [123, pp. 162–164]) Given a nonlinear system of the
form (2.28) with internal dynamics (2.37). Then, its zero dynamics are given by

ż = q(0r, z,0m) , (2.38)

which are the internal dynamics evaluated at ζ = 0r and also v = 0m, if (2.37) depends on v.

The zero dynamics are the part of the system dynamic, that emerges from an input u forcing
the outputs to y = 0p, with m = p, for all time and for all initial conditions, see also [123, pp.
162–172]. For the control law (2.33) to be feasible in practice, the zero dynamics should at least
be locally stable, preferable globally asymptotically stable. This property is also called globally
minimum-phase because of its relation to the transfer function zeros in the LTI case.

Definition 39. (Globally minimum-phase systems, cf. [125, p. 178]) Given a system of the
form (2.28) with f(0n) = 0n, h(0n) = 0n and a constant (vector) relative degree of r < n for
all x ∈ Rn. Assume a global diffeomorphism (2.31) exists. Then, (2.28) is said to be globally
minimum phase if the equilibrium z = 0n−r of its zero dynamics is globally asymptotically stable.

One might think that if both the external and the zero dynamics of a system are globally
asymptotically stable, that the whole system is globally exponentially stable as well because
ζ → 0r for t → 0. While this is true locally, it is generally not the case for all initial conditions
due to the so called peaking phenomenon, see for example [263] for details. A condition that
excludes this possibility is that the system is strongly minimum-phase, meaning that its internal
dynamics are ISS.

Definition 40. (Strongly minimum-phase systems, cf. [125, p. 178]) Given a system of the
form (2.28) with the assumptions of Definition 39. Assume further that the diffeomorphism was
chosen such that the internal dynamics do not depend on v. Then, the system (2.28) is called
strongly minimum-phase if its internal dynamics are ISS, with ζ interpreted as an input vector.

From this follows that strongly minimum-phase systems can always be globally asymptotically
stabilized by the control law (2.33), see also [125, pp. 394–395]. Generally, these methods can
not only be applied for stabilization of nonlinear systems but also for reference tracking, see for
example [123, pp. 387–416] and [149, pp. 540–545], and also for disturbance decoupling [123,
pp. 184–189]. Finally, it can be noted that the method of IOL assumes that the nonlinearities
in (2.33) are known, which might pose challenges regarding robustness. Another assumption is,
that it is actually desirable to cancel out the nonlinearities. Depending on the problem, each of
these assumptions might be problematic, cf. [149, pp. 539–540] for a discussion. It is therefore
often advisable to augment the linearized substitute system with an additional outer controller in
order to increase robustness and to carefully evaluate the closed loop system in simulation, with
tools from linear control theory and specifically designed experiments in order to ensure that the
real-world system is well behaved.
This concludes the summary of the nonlinear control design method of IOL and some of

its particularities regarding stability analysis. It can be noted that in the above definitions
and remarks it is just stated that stability of the overall closed loop system can be asserted,
for example by showing that the internal dynamics are ISS. However, as already mentioned,
this might be difficult to achieve in practice, as the internal dynamics generally are nonlinear.
Finding an appropriate Lyapunov function for a given nonlinear system can be a challenging task,
depending on the concrete structure of the system. In this work, additionally to the TCSs, a novel
heuristic method based on GP which searches for Lyapunov functions is proposed. Therefore, a
brief introduction to genetic algorithms (GAs), which form the basis of GP, as well as the general
GP algorithm itself, is given in the following.
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2.3 Optimization based on Genetic Programming

2.3.1 Preliminaries on Evolutionary Algorithms

In this section, a brief overview of GAs and GP is given, which will be used later in this work for
a new heuristic method of constructing Lyapunov functions for general nonlinear systems of the
form (2.6). First, some preliminaries on optimization by GAs are given. For this introduction,
we focus on the problem of unconstrained nonlinear function minimization over the non-negative
integers, which takes the form

min
x
F (x) (2.39)

with x ∈ Nn0 and F : Nn0 → R. Without further knowledge about F , this can be a very difficult
problem and even if F is known, it might be impossible to solve (2.39) analytically. In that
case, a randomized heuristic search method like a GA might be useful to find a solution that
is “good enough”. The method of GAs was introduced by Holland [110] in 1975 and is based
on the idea of simulating the natural selection process of a population. It can be noted that
there are numerous other randomized search methods to approach the problem of global function
minimization, compare [85] and [104, pp. 187–202] for an overview. Also, GAs are not limited
to problems of the form (2.39), but can be used for constrained optimization [104, pp. 51–66],
multiple objective optimization [104, pp. 97–101] or optimization over the reals instead of the
integers [104, pp. 51–65], for example. The general optimization process of a GA is depicted in
Figure 2.8.

Init.
Fitness

Evaluation
Mutation Crossover Selection Done? Exit

No Yes

Evolutionary Adaptation

Figure 2.8: Flow-chart of a GA with the standard genetic operators [303].

The main steps of the optimization process of a genetic algorithm, adapted from [303], can be
summarized as follows, compare also [199, pp. 7–8] and [104, pp. 27–49].

1. Initialization: Candidate solutions, also called individuals, are initialized randomly. The
set of individuals is called the population of the GA.

2. Fitness evaluation: A fitness value is assigned to each individual, which represents the
value to be optimized. In a GA setting, F in (2.39) is called fitness function.

3. Selection: A portion of the population is selected randomly to enter the next generation,
while a higher fitness value leads to a higher selection probability.

4. Crossover: New individuals are formed by recombination of the selected individuals in
order to replace individuals that were previously not selected.

5. Mutation: The new individuals from the crossover step are mutated, meaning that they
are modified randomly according to some mutation rate.

These steps are repeated until a previously specified stopping criterion is met. One such iteration
is also called a generation [104, p. 38]. Standard stopping criteria are for example a maximum
number of generations or fitness function evaluations, a threshold for the fitness value or that the
average fitness does not change significantly for a number of generations. We consider a simple
example to illustrate the steps of the optimization process. Given

Fe(x) = x21 + x22 + x23 + x24 (2.40)

with xT =
[
x1 x2 x3 x4

]
and x ∈ N4

0. Solving (2.39) for this Fe is trivial, as the unique global
minimum is attained at the origin, but it is well suited to explain the main steps of a GA.
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Before starting, we fix the population size for this example to Np = 3. The first step is
initialization, so we draw three random individuals, meaning we define 3 vectors by drawing each
entry of these vectors from a the uniform integer distribution with support [0, 9]. This is an
arbitrary choice and of course other distributions or initialization techniques can be used. The
individuals and their fitness values according to (2.40) are listed in Table 2.2.

Table 2.2: Example population, fitness values and ranking at generation i = 1.

k Individual no. k Fitness Value Fe(xk,i) Ranking rank(k, i)

1 xT1,1 = [6 9 7 1] 167 2

2 xT2,1 = [9 8 7 6] 230 3 (worst fitness)

3 xT3,1 = [7 0 6 3] 94 1 (best fitness)

Here, xk,i denotes the k-th individual of the i-th generation. Assume that evaluating the
stopping criterion does not lead to termination of the process. Then, the next step is selection,
for which we define for now that in each generation two individuals are selected for crossover and
one is removed. In this example, we choose rank selection, which means that each individual
is assigned a selection probability proportional to its rank within the population. The rank is
determined by the fitness value, where the individual with best fitness value is assigned the first
rank by rank(3, 1) = 1 and the other individuals rank(1, 1) = 2 and rank(2, 1) = 3 accordingly,
as depicted in the last column of Table 2.2. The selection probability of the k-th individual xk,i
at generation i can then be computed by

P (k, i) =
2(1− sp) rank(k, i) + sp(1 +Np)− 2

Np(Np − 1)
, (2.41)

where sp ∈ [1, 2] is called the selection pressure, compare [85, pp. 122–123]. It can be noted
that the definition in [85, p. 122] assumes a rank of Np being assigned to the individual with
the best fitness while (2.41) assumes the rank of the fittest individual as 1. In the considered
example, taking sp = 3/2 gives P (1, 1) = 1/3, P (2, 1) = 1/6 and P (3, 1) = 1/2 as selection
probabilities. Since the third individual has the best fitness, it has the highest probability of
being selected, namely 50% in this example. However, this also means that sometimes individuals
with lower fitness are selected. For example, a possible result of performing a selection based
on these computed probabilities is that the second and third individual are selected, although
Fe(x1,1) < Fe(x2,1), so the first individual is removed from the population despite a better fitness
value. This mechanism allows GAs to escape from local minima while still being biased towards
exploiting the currently best found solutions. The standard selection could even remove the
fittest individual from the population. Since this can be undesired, often a certain elitism rate
is defined, which excludes the fittest individuals from the selection process and transfers them
automatically to the next generation. Numerous other methods to implement selection exist,
compare for example [85, pp. 120–123] and [199, pp. 124–128].
After removing the first individual and selecting individuals 2 and 3, the crossover operation is

used to construct new individuals. Here, typically two of the previously selected individuals are
paired, often randomly according to some distribution. Then a new individual is constructed by
using data from both of these individuals. This can be interpreted as the analogue of inheritance
from one generation to the next. The process is usually repeated until the number of individuals
in the population is Np again. Although methods exist that try to adapt the population size
during the optimization [199, pp. 131–132], in this work the population size is kept constant
during the optimization. One crossover method is cut and splice crossover, which “splits” the
two selected vectors at a randomly chosen point and creates a new individual by concatenating
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the first part of the first individual with the second part of the second individual. This process
is illustrated for the considered example by

xT2,1 =
[
9 8 | 7 6

]
(parent) (2.42a)

xT3,1 =
[
7 0 | 6 3

]
(parent) (2.42b)

=⇒ x̃T1,2 =
[
7 0 7 6

]
(offspring, before mutation). (2.42c)

Various other methods for implementing crossover exist, compare for example [199, pp. 128–
129] and [104, pp. 56–60]. The previously selected individuals are then transferred directly to the
next generation like xT2,2 = xT2,1 and xT3,2 = xT3,1. For the new individuals however, a mutation
operation is performed before they are added to the next generation, like

xT1,2 =M(x̃1,2)
T =

[
7 0 ̸ 7 1 6

]
(offspring, after mutation), (2.43)

where M : Nn0 → Nn0 denotes a mutation operator, which typically involves some randomness.
One example is single point mutation, where a random entry of the individual is replaced with a
random number drawn from some previously defined distribution. Alternatively, the value could
also be added or subtracted, as long as the result being a non-negative integer is guaranteed. The
process of mutation itself is typically invoked randomly, according to some mutation rate. In our
example, mutation happens for x̃1,2 and replaces the third entry of x̃1,2 with the number 1, as
indicated in (2.43). This completes the first generation of the example. The second generation,
its corresponding individuals and their fitness values are shown in Table 2.3. There, it can be
seen that now the first individual is the fittest individual in the population, so one iteration of
the process from Figure 2.8 led to an improvement of the solution here. This might not always
be the case; for example, the mutation could have also replaced the second entry of x̃1,2 with
number of 8 for example, such that the resulting fitness of 198 would be worse than the one of
x1,1. However, as it has a lower selection probability, it is more likely to be removed in subsequent
generations than fitter individuals, which biases the GA towards better solutions.

Table 2.3: Example population, fitness values and ranking at generation i = 2.

k Individual no. k Fitness Value Fe(xk,i) Ranking rank(k, i)

1 xT1,2 = [7 0 1 6] 86 1 (best fitness)

2 xT2,2 = [9 8 7 6] 230 3 (worst fitness)

3 xT3,2 = [7 0 6 3] 94 2

Again, numerous other methods for implementing mutation in GAs exist, see [85, pp. 126–127]
and [104, pp. 43–44]. Repeating this process will eventually further improve the fitness value here.
While there are no guarantees of convergence or error bounds for a GA minimizing an arbitrary
function, it can be used as a heuristic that sometimes finds a good enough solution or even the
global optimum. As indicated by the above example, a GA has many different parameters that
require careful and problem dependent adjustment. Also, the discussed genetic operators like
crossover and mutation only represent the most commonly used operators. More operators have
been proposed in the literature, compare [199, p. 130].

The traditional GA described above can be a useful tool for parameter tuning, not only for
integer valued functions, but of course also for functions over the reals. However, applications like
curve fitting require the designer to choose a specific structure before the actual optimization.
The GA then optimizes the parameters of this structure, but not the structure itself. In order to
overcome this limitation, different methods have been proposed already. In the following section,
a short summary of one such method, genetic programming, is given, which can be considered as
an extension of traditional GAs.
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2.3.2 Optimization with Genetic Programming

Genetic Programming is an optimization algorithm similar to the traditional GA, but with the
difference that it not only optimizes parameters of a fixed, predefined structure, but the structure
itself. Genetic programming was proposed by Koza, see for example [157, 158]. This method
usually represents individuals in the form of syntax trees instead of the common real-valued or
integer-valued vector representation of GAs [231, p. 9], although alternative representations like
linear GP have been proposed as well [231, pp. 61–68]. The genetic operators described in
Section 2.3.1 can be defined analogously for tree structures, cf. [231, pp. 9–17]. The method
has been used early for control design [159, 160]. More control applications can be found in [61],
while [231, pp. 111–130] lists different applications of GP.

In this work, we focus on a variant of GP which uses a context free grammar for representation
of individuals, see for example [195] and [231, pp. 53–57]. The grammar provides the basic
building blocks and the rules how to combine these blocks to form a syntactically valid candidate
solution, which can then be evaluated with a suitable fitness function. As such, the grammar
represents a high level description of the expected structure of a solution and hence is a degree of
freedom that the user has to choose appropriately for the corresponding optimization problem.
A formal definition of a context free grammar reads as follows.

Definition 41. (Context free grammar, cf. [209, p. 5]) A context free grammar G is the four-
tuple G = (N ,Σ,P,S), where N is the finite set of nonterminals, Σ the finite set of terminals
such that N ∩ Σ = ∅, S ∈ N is the start symbol and P is the finite set of production rules.
Elements of P are ordered pairs (A,α) with A ∈ N and α ∈ (N ∪Σ)∗ where the asterisk denotes
the Kleene closure of (N ∪ Σ) and production rules are written A 7→ α.

While this definition is very general and allows for example the definition of the grammar of a
programming language, in this work we focus on the synthesis of mathematical expressions. An
example grammar suitable for this purpose can be defined as Ge = (Ne,Σe,Pe,Se) with Se = ⟨e⟩,
Ne = {⟨e⟩, ⟨o⟩, ⟨v⟩, ⟨c⟩}, Σe = {+,−,×, x1, x2, 1, 2, 3, (, ), , }. A compact notation commonly
used to denote the production rules is the Backus-Naur Form (BNF), compare [13, 14]. The
production rules Pe used in the example here are defined in BNF as

⟨e⟩ 7→ ⟨o⟩(⟨e⟩, ⟨e⟩) | ⟨v⟩ | ⟨c⟩ (2.44a)

⟨o⟩ 7→ + | − | × (2.44b)

⟨v⟩ 7→ x1 | x2 (2.44c)

⟨c⟩ 7→ 1 | 2 | 3 , (2.44d)

where | denotes disjunction, meaning for example that in (2.44), the nonterminal ⟨v⟩ can be
mapped to either x1 or x2. The syntax tree notation for operators is +(a, b) = a+b, −(a, b) = a−b
and ×(a, b) = ab. The example grammar Ge represents the rules to form expressions of up to two
variables x1, x2 and three constants 1, 2, 3, involving (potentially nested) addition, subtraction
and multiplication. With this definition, the initialization of a population can be illustrated. As
an example, we consider the two traditional techniques of “full” and “grow” initialization [231,
pp. 11–14]. For full initialization, the user defines a desired target tree depth, for example two.
Then, random non-terminals are drawn until the tree depth of two is reached, drawing in this
example only non-terminals that allow recursive mapping, which is here only ⟨e⟩ 7→ ⟨o⟩(⟨e⟩, ⟨e⟩).
Non-terminals are replaced with random terminals, leading to an expression tree where each leaf
has a depth of 2. For example, we start with ⟨o⟩(⟨e⟩, ⟨e⟩), draw a random operator to obtain
+(⟨e⟩, ⟨e⟩), then draw a random recursive non-terminal for +(⟨o⟩(⟨e⟩, ⟨e⟩), ⟨e⟩). This process is
repeated until each branch of the tree has the desired depth, for example +(×(x1, x1),×(2, x2))
which represents the function x21 + 2x2. The grow initialization technique works similarly, with
the only difference that branches are allowed to terminate before reaching a maximum depth and
could therefore also produce +(x1,×(2, x2)), representing the function x1 + 2x2.
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In order to generate an initial population with higher diversity, the two initialization techniques
can be combined, leading to the “ramped half-and-half” initialization, where one half of the
population is initialized using full and one half using grow initialization, see [231, pp. 11–14].
Fitness evaluation is done by evaluating the generated expression within the user defined fitness
function. Selection is performed in the same way as for traditional GAs, see Section 2.3.1.
Crossover is performed by copying one individual and replacing a subtree of its expression tree
with a subtree of another individual, where both nodes are chosen at random [231, pp. 15–17].
This process is depicted in Figure 2.9, where the abstract syntax trees on the left and in the
middle represent two example individuals chosen by the selection mechanism. Two nodes are
chosen at random, according to a user defined distribution, in this example indicated by a bold
border in Figure 2.9. A new tree is formed by copying the subtree above the selected node of the
first tree and appending the subtree copied from the selected node of the second tree as shown
in Figure 2.9. The abstract syntax tree on the right represents the offspring generated by this
crossover operation. Crossover points are not constrained in this work by the grammar to have
the same underlying non-terminal, as for example suggested in [195], see also [231, pp. 53–55].

+

× ×

x1 x1 2 x2

−

x2 +

x1 1

+

× +

x1 x1 x1 1

Figure 2.9: Example of the crossover operation used in the GP algorithm, derived from [231, p. 16].

For mutation, we use the two common methods of subtree mutation and point mutation, see
also [231, pp. 15–17]. Subtree mutation denotes the operation of replacing a randomly chosen
subtree of the considered expression with a randomly generated subtree. In this work, we use the
grow initialization technique described above to generate the random subtree. Point mutation
denotes the operation of selecting some nodes at random and replacing the terminal symbol of
these nodes with a randomly drawn compatible terminal. For example, given the expression
+(x1, 1) which corresponds to x1 + 1, point mutation could randomly choose the + node and
replace it with either +, − or ×, as these are available terminals from the underlying non-
terminal ⟨o⟩, according to the production rule (2.44b). In this introduction we focus on the
mutation and crossover methods that are used in Chapter 5 of this work. Various other methods
for implementing mutation and crossover operations in GP exist, compare for example [231, pp.
42–46]. Optionally, a symbolic simplification of the generated tree can be performed before the
fitness evaluation [231, p. 46]. For this purpose, we apply a basic simplification method that only
combines constants, so for example +(x1,+(1, 1)) is simplified to +(x1, 2).

Moreover, it can be noted that constants are not a fixed set of numbers like in the example
grammar Ge from above. Instead, a terminal representing a so-called ephemeral random constant
is included in the grammar, cf. [231, p. 20]. When a production rule during creation of the
tree leads to this terminal, a random value is drawn for generating the constant. Since every
individual maintains its own pool of constants, point mutation can alter these constants without
affecting other individuals in the population.

This concludes the literature review. In the next chapter, a control design for TCSs based on
IOL is proposed, followed by a detailed stability analysis. The zero dynamics of the 2WD TCS
will be used thereafter to test a heuristic method for Lyapunov function identification by GP.
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3 Traction Control and Vibration Damping via
Input-Output-Linearization

Summary. This chapter describes the methodical approaches taken in this thesis to solve the
traction control problem for vehicles with 2WD and on-demand 4WD with torque-bias systems.
The main contributions are:

1. A TCS based on input-output linearization for vehicles with 2WD and on-demand 4WD
torque bias systems, including a model for reference dynamics generation.

2. A detailed derivation and analysis of the control laws obtained from three longitudinal models
of different complexity for traction control.

3. Proof of global, asymptotic, parameter-independent stability of the resulting zero dynamics
using a novel family of parametric, quadratic Lyapunov functions.

Moreover, a new modification of the wheel slip, applicable for local stability analysis, is proposed.
This chapter is partially based on our previous publications [305, 304, 307] and [300].

3.1 Objectives for the Traction Control System

The goal of the control design, as stated in Chapter 1, is to enable the usage of the IOL technique
for traction control without the need of estimating uncertain quantities like tire parameters or
the friction coefficient of the road in the inner control loop on the ECU. This is important in
order to ensure robustness of the control design. The main objectives regarding performance,
usability and robustness, adapted from [305], are listed in the following.

1. Tracking of the reference speeds commanded from the DCU with zero asymptotic error.
2. Damping of drivetrain vibrations and compensation of drivetrain inertia.
3. Attenuation of external disturbances like variations of the friction coefficient of the road.
4. Scalability of the TCS for vehicles with 2WD and on-demand 4WD torque bias systems.
5. Stability of the control design, by analytic proof and experimental evaluation.
6. Robustness of these five objectives with respect to parameter uncertainty, time-varying

disturbances and a wide range of operating conditions.

The remainder of this chapter shows how these objectives are achieved with the proposed
control design. In the following section, different synthesis models suitable for control design are
proposed. These form the basis of the following control design with the input-output linearization
technique. It is shown how this method can be applied for control design of TCSs for both vehicles
with 2WD and vehicles with on-demand 4WD torque bias systems. Thereafter, a detailed stability
analysis of the resulting nonlinear zero dynamics using Lyapunov techniques is presented. For
this analysis a novel family of parametric, quadratic Lyapunov functions is proposed which can
be used to show global, asymptotic stability of the resulting zero dynamics for all possible vehicle
parameters. These results are developed further in Chapter 4, while the experimental evaluation
of the proposed TCSs is provided in Chapter 6.
The 2WD synthesis model is a result of our joint work with Zech et al. [307], while we proposed

the 7-state 4WD synthesis model in [300], see also [297] for an earlier, lower-order variant of this
model. The 9-state 4WD synthesis model proposed in this work represents a natural extension
of this model. Following, the 2WD synthesis model is described.
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3 Traction Control and Vibration Damping via Input-Output-Linearization

3.2 Modeling of Longitudinal Vehicle Dynamics

3.2.1 Synthesis Model for 2WD Drivetrains

For control design, three different synthesis models which describe the relevant dynamics for
traction control are discussed in the following. Based on these models, the control laws are
derived in the subsequent section for vehicles with 2WD and on-demand 4WD with torque-bias
systems. In addition to the 2WD case, two different variants for the 4WD case are proposed,
each with different advantages, resulting in a total of three synthesis models for control design.
This section is partially based on our previously published work [300, 305, 307].

First, the synthesis model used for control design of TCSs for vehicles with 2WD is presented.
The actuator dynamics for the torque build-up of the motor are modeled by a first order lag
element with

τmṪm = Tm,d − Tm. (3.1)

Here, τm is the time constant of the actuator, Tm,d is the requested torque and Tm the actual
torque provided by the motor. For an electric motor, this is a common model for control design of
TCSs [113]. Generally, ICEs have more complicated, nonlinear dynamics if the whole operating
range is considered, see [151, pp. 75–97] or [122, pp. 31–47]. However, the controller is only
active if the requested torque by the driver exceeds the maximum achievable torque. A TCS
generally reduces the requested torque by the driver and can make use of the fast firing path
during transients. Therefore, during active control, Equation (3.1) can be used for the actuator
dynamics of combustion engines in TCSs, as well [305, 291]. The drivetrain is modeled as a single
torsion spring by

∆ϕ̇c = ωc/iG − ωr (3.2)

Jcω̇c = Tm − 2Tr/iG (3.3)

Tr = kc∆ϕc + dc(ωc/iG − ωr) . (3.4)

Here, ωc and ωr are the angular velocities of the crankshaft and the rear axle, respectively,
while ∆ϕc denotes the twist angle of the spring and Jc the aggregated inertia of the drive side.
Moreover, iG = iair is the total gear ratio from the motor to the rear axle, ia the gear ratio of
the automatic transmission case and ir the gear ratio of the differential on the rear axle. The
torque on the rear axle is 2Tr, generated through the torsion spring with aggregated torsional
stiffness kc and damping factor dc. The factor 2 in (3.3) enters, because the spring constants kc
and dc are typically identified using torque sensors on individual wheels. Next, the equations for
the rear axle are given by

Jrω̇r = 2Tr − rrFxr (3.5)

Fxr = µFzr sin
(
Cr arctan(Brλxr)

)
(3.6)

Fzr = mg lf/(lf + lr) , (3.7)

with Jr the combined inertia of the rear axle including wheels, rr the radius of the rear wheels
and Fxr the friction force between tire and road. The normal force Fzr depends on the total
vehicle mass m, the gravitational acceleration g and the lever arm between the center of gravity
(COG) of the vehicle and the rear axle. This term is given by the ratio of the distance between
COG and front axle lf and distance between front and rear axle lf + lr, where lr is the distance
between COG and rear axle, compare for example [83, pp. 11–13].

Remark 3. For the proposed equations of motion, a vehicle with rear-wheel drive (RWD) is
assumed. However, the method presented in the following sections is directly applicable for vehicles
with front-wheel drive (FWD) as well, as this case follows analogously.
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3.2 Modeling of Longitudinal Vehicle Dynamics

The nonlinear tire force (3.6) is modeled using a variant of the Pacejka tire model [219], also
known as “Magic Formula”, due to its semi-empirical character. The tire force parameters Br and
Cr are typically adjusted to fit a set of measured tire force curves. Furthermore, the coefficient
of friction between tire and road is denoted with µ and the wheel slip with λxr. In the literature,
different definitions for the wheel slip exist. Most of these restrict the considered maneuvers for
the TCS to specific cases, for example by excluding both the braking case and back ride [287] or
just back ride [63], while some authors define wheel slip in terms of a differential equation rather
than a static mapping [168]. A static formula that is applicable for accelerating and decelerating
in both forward or backward directions, see for example [243], is

λxr = (rrωr − vx)/vnorm,r (3.8)

vnorm,r = max(rr|ωr|, |vx|) . (3.9)

Remark 4. One common issue with the standard wheel slip definition as in (3.8) is, that for
ωr = vx = 0 ⇒ vnorm,r = 0, so λxr is undefined at standstill. A possible solution to this problem
is proposed in Section 3.2.2. For now we temporarily assume that vnorm,r ̸= 0.

For “small” slip values |λxr| ≪ 1, a linear approximation of the nonlinear force curve (3.6) can
be obtained by linearization,

Fxr ≈ cxrλxr (3.10a)

cxr = dFxr/(dλxr)|λxr=0 = µFzrBrCr . (3.10b)

The longitudinal slip stiffness cxr is defined as the slope of the friction curve (3.6) at the origin [46]
and is an important characterizing tire property [32]. While the tire force Fxr can also be defined
such that cxr does not depend on µ, compare for example [218, p. 20], we use a variant here
where cxr depends on µ, cf. [95, 236]. Linear tire force approximations like (3.10a) are also used
for control design and system analysis of TCSs [243] and ABSs [136]. The friction coefficient of
the road µ is often defined in the interval (0, 1], while coefficients larger than unity are possible
and considered as well [203]. The actual value of µ depends on the driving surface and while
the exact values for different road conditions vary in the literature it is common to assume for
example µ ≈ 0.3 for snow, µ ≈ 0.5 for gravel and µ > 0.8 for dry asphalt [95, 203]. Figure 3.1
shows three characteristic friction force curves (3.6) and their linearizations (3.10a) for different
friction coefficients, each representing a different driving surface, computed by (3.6).
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Figure 3.1: Tire friction force as a function of wheel slip λxr and friction coefficient µ [305].
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3 Traction Control and Vibration Damping via Input-Output-Linearization

The last quantity to complete the set of differential equations of the synthesis model for traction
control of 2WD vehicles is the longitudinal velocity of the vehicle vx, given by

v̇x = (Fxr − Fw)/m (3.11)

Fw = (1/2)ρcwAstvx|vx| . (3.12)

Here, Fw is the aerodynamic drag force, which depends on the air density ρ, the aerodynamic
drag coefficient cw and the frontal area of the vehicle, denoted with Ast, see [83, pp. 97–100].
This completes the set of differential equations for the synthesis model in the 2WD case. Clearly,
this model is built upon different simplifying assumptions of the underlying physics of the vehicle
and drivetrain dynamics, where the most important ones are listed as follows.

1. Vehicle dynamics in lateral direction, cornering and µ-split is neglected.
2. Roll and pitch dynamics are neglected such that normal forces are static.
3. No road inclination is considered, the driving surface is assumed to be planar.
4. Actuator dynamics of the ICE are assumed to be a first order LTI system.
5. Additional resistance forces like rolling resistance are neglected.
6. The spring that models the torsional drivetrain dynamics is linear.
7. The gear is piecewise constant, shifting is not modeled explicitly.
8. Only the engine is controlled, actuators like brakes are not considered.

While these assumptions might look very limiting, they are valid for control design. This can be
explained by looking at the model in a component-wise representation, as depicted in Figure 3.2,
where single line borders denote linear and double line borders denote nonlinear blocks.

Engine
(3.1)

Drivetrain
(3.2)-(3.4) Wheels

(3.5)

Vehicle Dynamics
(3.11)-(3.12)

Tire
(3.6)

Slip
(3.8)

1/iG

λxr

Tm,d
Tm Tr

µ

vx

Fxr

ωr

ωc ωc/iG

Nonlinear,
uncertain
mapping

Figure 3.2: Component-wise representation of the nonlinear 2WD synthesis model [305].

The nonlinear, uncertain mapping from ωr to Fxr depends on the tire model, the longitudinal
vehicle dynamics and the time-varying friction coefficient. This mapping can be interpreted as
a friction operator from ωr to Fxr with internal dynamics v̇x = (Fxr − Fw)/m from (3.11), to
which Fxr acts as an input. From Vv(vx) = (m/2)v2x follows V̇v(vx) = vxFxr− cav2x|vx| ≤ 0 , ∀vx ∈
R : |vx| ≥ ρv(|Fxr|) =

√
|Fxr|/(ca − caθ), with ca = (1/2)ρcwAst and θ ∈ (0, 1). Since ρv is a

class K function and Fxr from (3.6) is bounded, the internal dynamics of the friction operator
are ISS. The abstraction of a bounded (potentially dynamic) friction operator has been applied
for example to funnel control of a two mass system with unknown load, compare [119] and [252].
While we pursue a different approach, the proposed TCSs will not require a model of the friction
operator either. Considering Assumptions 1, 2 and 3, lateral dynamics due to cornering, pitch
during acceleration or road inclination, as examples, are slowly time-varying compared to the
wheel dynamics and hence are assumed as uncertainty of the tire model (3.6). In Figure 3.2, this
is indicated with a diagonal arrow through the tire block. Hence, it is sufficient for the inner
control loop on the ECU to track the target speed for different “deformed” friction curves.
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3.2 Modeling of Longitudinal Vehicle Dynamics

As already discussed at the beginning of this section, Assumption 4 is valid during phases of ac-
tive control, while additional resistance forces mentioned in Assumption 5, like rolling resistance,
are typically small and can be considered as disturbance. Assumption 6 is valid, as it can be
shown by measurements using torque sensors, that a linear spring models the torsional drivetrain
dynamics with high accuracy [291, 307]. Assumption 7 is made as gear switching is not considered
explicitly in this work. Assumption 8 is made as actuators like brakes are taken care of by other
control systems not investigated in this work. Apart from these model-based assumptions, there
are additional technical assumptions on the parameters and the friction coefficient of the road.

1a. All vehicle parameters are strictly positive, constant and finite.
2a. For the friction coefficient: µ ∈ (0, µmax) with µmax strictly positive and finite.
3a. For the Pacejka tire force shaping factor: Cr ∈ (1, 2).
4a. For the Pacejka tire force stiffness factor: Br > tan

(
π/(2Cr)

)
.

The first two of these assumptions are required for different theoretical analyses later and can
safely be considered true in practice.

Remark 5. Vehicle parameters, from a strict viewpoint, are not constant. For example, the total
vehicle mass decreases during driving due to fuel consumption, tire parameters are subject to
mechanical wear and aerodynamic drag parameters, like density of air, depend on environmental
conditions. However, such variations are usually orders of magnitude slower than the wheel
dynamics relevant for TCSs and can therefore be neglected for control design.

The third assumption is often assumed in literature, as together with Assumptions 1a. and
2a., it guarantees that λxr and Fxr always have the same sign, compare for example [219, p. 67].
Hence, a positive wheel slip has to generate an accelerating force and a negative wheel slip has
to generate a decelerating force. This makes sense from a physical viewpoint and can readily be
shown from the equation of the tire force (3.6) as follows.

Lemma 1. Assume 1a.-3a. hold. Then, λxrFxr > 0 ,∀λxr ̸= 0.

Proof. For Cr ∈ (1, 2) the Cr arctan(Brλxr) term in (3.6) is bounded to (−π, π) and is zero if and
only if λxr = 0 as by 1a. Br > 0. Further, since the arc-tangent is monotone, it has the same sign
as λxr. The sine function has a unique root in (−π, π) at the origin and so λxrFxr > 0 , ∀λxr ̸= 0
if Cr ∈ (1, 2), cf. [305].

The fourth assumption ensures that the peaks of the force curve are attainable. It is not
required for the main stability theorems of this work, but for some additional results. As in
practice the tire force peaks are always attainable for some λxr ∈ (−1, 1), it follows that Br
cannot be arbitrarily small as the wheel slip itself is bounded. While this is obvious from (3.8),
it can be noted that in contrast to the commonly used one-directional slip definitions, a bi-
directional definition (valid for forward and backward direction), ranges not only from [−1, 1] but
from [−2, 2].

Lemma 2. Assume 1a. holds and that either ωr ̸= 0 or vx ̸= 0. Then, the wheel slip from
Definition (3.8) is bounded to [−2, 2].

Proof. Assume without loss of generality that |ωrrr| ≥ |vx|. Clearly, if either ωr = 0 or vx = 0
then |λxr| = 1, so exclude those cases. Then, (3.8) reduces to

(ωrrr − vx)/|ωrrr| = sign(ωrrr)− vx/|ωrrr| . (3.13)

Since |ωrrr| ≥ |vx| by assumption, vx/|ωrrr| ∈ [−1, 1], where the interval ends are attained for
vx = ±|ωrrr|. Therefore, λxr attains its maximum value of 2 for ωrrr > 0 and vx = −ωrrr and
its minimum value of −2 for vx > 0 and ωrrr = −vx.
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3 Traction Control and Vibration Damping via Input-Output-Linearization

This also shows that ωr and vx must have different signs to result in wheel slip values larger
than 1 or smaller than −1. Generally, however, the Br parameter is chosen such, that the peak
of the force curve is attained for |λxr| < 1.

Lemma 3. Assume 1a.-4a. hold. Then, the extrema of (3.6) are attainable for wheel slip values
λxr ∈ (−1, 1).
Proof. Since the sine function is bounded to [−1, 1], the extrema of (3.6) are ±µFz. By 1a.-3a.
and the proof of Lemma 1, the argument of the sine function is bounded to (−π, π). Within this
interval, the sine function evaluates to ±1 if and only if its argument is ±π/2, so the extrema are
unique and attained at

λ+xr,peak = tan
(
π/(2Cr)

)
/Br (3.14a)

λ−xr,peak = −λ+xr,peak . (3.14b)

The tan
(
π/(2Cr)

)
term grows unbounded for Cr → 1+, but λxr is limited to [−2, 2] by Defini-

tion (3.8), cf. Lemma 2. Therefore, if Br > tan
(
π/(2Cr)

)
, if follows that λ+xr,peak ∈ (0, 1) and

λ−xr,peak ∈ (−1, 0).

Remark 6. The wheel slip from Definition 3.8 can take values from [−2, 2], so mathematically
Br ≥ tan

(
π/(2Cr)

)
/2 would be sufficient to guarantee that the extrema of (3.6) are attainable.

However, this is undesired since, in practice, the tire force peak is attained at wheel slip values
well below unity, so peak values at |λxr| ≥ 1 are not realistic.

Remark 7. Wheel slip values λxr ∈ [−2,−1) correspond to maneuvers where the vehicle drives
in forward direction, but the wheels turn backwards. Similarly, λxr ∈ (1, 2] corresponds to the
vehicle driving backwards, but the wheels turning in forward direction. While this can happen in
practice (starting off uphill on an icy road, for example), it is intuitively clear that in such a case,
the transmitted force would not be larger than for maneuvers where vx and ωr have the same sign.
Hence, Assumption 4a. is plausible.

An important property of the tire model is, that it is sector-bounded in the sector spanned by
the linearized model resulting from a linearization at λxr = 0 as defined in (3.10a).

Lemma 4. If 1a.-3a. hold then cxr|λxr| > |Fxr| , ∀λxr ̸= 0 and Fxr = cxrλxr ⇐⇒ λxr = 0.

Proof. A proof is given in the Appendix A.3.

This property will be important for the stability analysis of the zero dynamics of the proposed
TCSs carried out in this chapter and also the passivity analysis presented in Chapter 4. Regarding
the assumptions on the longitudinal vehicle model used for control design discussed above, it can
also be noted that the available state of the art on TCSs and ABSs uses synthesis models that
have more simplifying assumptions, by considering only a 2-state model with stiff drivetrain, see
for example [36, 72, 113, 136] and the survey [129]. Various publications that consider torsional
drivetrain dynamics for general analysis and control design exist, compare [251, pp. 1188–1291]
and references therein. There also exist publications considering torsional drivetrain dynamics
for TCS design and methods for AVC of drivetrain oscillations [10, 53, 91, 90, 181], see also
Section 2.1.3. However, no work exists that uses such a model for an IOL based control design of
2WD and 4WD TCSs for the ECU based architecture discussed in Section 2.1.2, and that also
includes a nonlinear stability analysis, except our recent work [300, 304, 305].
Following, we propose a new modified definition of the wheel slip, which avoids the singularity

in the traditional wheel slip definition, see (3.8). Then the 2WD longitudinal model is extended to
vehicles with on-demand 4WD torque bias systems and a control design based on the method of
IOL is derived for these models. Thereafter, a stability analysis using a novel family of parametric,
quadratic Lyapunov functions is presented and global, asymptotic stability of the zero dynamics
resulting from the IOL control design is shown for all possible vehicle parameters.
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3.2 Modeling of Longitudinal Vehicle Dynamics

3.2.2 Smooth Wheel Slip Approximation

As already mentioned in Remark 4, the standard wheel slip definitions like (3.8) have a singularity
at ωr = vx = 0. In the literature, there exist different approaches to deal with this issue. One
possibility is to define the wheel slip in terms of a differential equation, rather than a static
mapping [168]. The disadvantage of this method is that it increases the order of the system
by adding another state. Furthermore, if arbitrary initial conditions must be assumed for a
global stability analysis, implausible state combinations cannot be readily excluded. For example,
considering an initial condition with vx,0 = 10m/s, ωr,0 = (10/9)vx,0/rr rad/s which, according
to (3.8), corresponds to a wheel slip of 1/10 = 10%. In simulation, this can be taken into account
by setting the wheel slip initial condition λxr,0 = 1/10 accordingly. However, for global stability
analysis, it is often necessary to consider the whole state space. So for example, λxr,0 = −1/10 had
to be considered here as well, or even |λxr,0| > 2, if one wants to avoid adding algebraic constraints
to the dynamics, see also Remarks 6 and 7. This can complicate analysis significantly, while such
state combinations cannot occur in practice.
Due to the aforementioned problems, a different direction is pursued in this work to deal with

the singularity in (3.8). Another common approach in literature is to modify the denominator in
the wheel slip definition, see [242, pp. 50–79] or [243], like

vnorm,r ≈ v′norm,r = max(rr|ωr|, |vx|) + v0 , (3.15)

with v0 > 0. Since limv0→0 v
′
norm,r = vnorm,r, choosing the value v0 “small enough” approximates

the normalization speed to an arbitrary accuracy. Furthermore, using (3.15) for the wheel slip
calculation, if ωr = vx = 0 ⇒ λxr = 0 ⇒ Fxr = 0, so no force is applied at standstill, which
is plausible and gives the desired behavior. However, Equation (3.15) has the problem of not
being differentiable everywhere. Therefore, a different approximation, as we previously published
in [305], is derived here, using the identity

max(a, b) = (a+ b+ |a− b|)/2 . (3.16)

A well known smooth approximation of the absolute value is

|a| ≈ |a|ϵ =
√
a2 + ϵ , (3.17)

with ϵ > 0, so combining (3.16) and (3.17) results in the smoothed maximum function,

max(a, b) ≈ maxϵ(a, b) = (a+ b+ |a− b|ϵ)/2 . (3.18)

This function is a variant of a specific instance from the Chen-Mangasarian family of smoothing
functions [39], namely a variant of the Chen-Harker-Kanzow-Smale smoothing function [38, 145,
257]. These functions have been used, among others, for solving linear complementarity problems
or constrained optimization problems [41]. In the context of vehicle dynamics, this technique has
been used to smoothen constraints containing the max function in optimal control formulations
for laptime minimization of race-cars [224].

Remark 8. Definition (3.18) is called a “variant”, as the Chen-Harker-Kanzow-Smale function
usually defines a smoothed min function, cf. [41]. However, since min(a, b) = (a+ b− |a− b|)/2
and min(a, b) = a−max(0, a− b), see [41], this can be readily adapted to the max function.

While the Chen-Harker-Kanzow-Smale function has been already applied for different opti-
mization tasks, its application to traction control by smoothly approximating the normalization
speed (3.9) is new [305]. The modified normalization speed can then be defined as

vnorm,r ≈ vnr = maxϵ(|rrωr|ϵ, |vx|ϵ) , (3.19)

which, like for Equation (3.15), gives limϵ→0 vnr = vnorm,r and hence approximates the standard
normalization speed with an arbitrary accuracy as the smoothing parameter ϵ > 0 approaches
zero, with the additional advantage over (3.15) of being a smooth function.
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3 Traction Control and Vibration Damping via Input-Output-Linearization

A useful property of this definition is that vnr > 0 for any ϵ > 0, so no additional additive v0
term is required to avoid the singularity in (3.8).

Lemma 5. The smoothed normalization speed (3.19) has a unique, global minimum of v∗0 =
3
√
ϵ/2 > 0 for ϵ > 0, which is attained at ωr = vx = 0.

Proof. Define the intermediate function vϵ(ωr, vx) =
(
(|rrωr|ϵ − |vx|ϵ)2 + ϵ

)1/2
in order to write

the components of the gradient of (3.19) as

∂vnr/(∂ωr) = −r2rωr
(
vϵ(ωr, vx)− (|rrωr|ϵ − |vx|ϵ)

)
/
(
2 vϵ(ωr, vx)|rrωr|ϵ

)
(3.20a)

∂vnr/(∂vx) = vx
(
vϵ(ωr, vx)− (|rrωr|ϵ − |vx|ϵ)

)
/
(
2 vϵ(ωr, vx)|vx|ϵ

)
. (3.20b)

Since ϵ > 0 and so vϵ(ωr, vx) > |rrωr|ϵ− |vx|ϵ ≥ 0, the partial derivatives are well defined for any
(ωr, vx) ∈ R2 and equal to zero if and only if ωr = vx = 0. The Hessian of vnr at (0, 0) is positive
definite as its eigenvalues are 1/(2

√
ϵ) > 0 and r2r/(2

√
ϵ) > 0, so the unique, global minimum of

vnr is attained at the origin and evaluates to 3
√
ϵ/2 > 0, cf. [305].

Remark 9. Comparing (3.19) with (3.9) or also (3.15) shows, that in the smoothed version,
the tire radius rr has been moved into the (smoothed) absolute value function. In the traditional
definitions like (3.9) and (3.15), this makes no difference since rr > 0 and so rr|ωr| = |rrωr| , ∀ωr.
For the smooth version, this is in general not the case, as for example if ωr = 0, this gives
rr|0|ϵ = rr

√
ϵ ̸= |rr 0|ϵ =

√
ϵ. While for smoothing both variants would work, it is generally more

plausible that λxr is independent of the tire radius rr if ωr = 0, as it is the case for the traditional
definitions as well. Hence, rr is moved into the smoothed absolute value in (3.19).

For the remainder of this work, if not stated otherwise explicitly, the smoothed version for the
normalization speed vnr from (3.19) is used to calculate the wheel slip by

λxr = (rrωr − vx)/vnr . (3.21)

For small ϵ > 0, which are required for a good approximation of (3.8), it can be noted that close
to the standstill (3.21) becomes challenging for numerical ODE solvers, despite the proposed
smoothing technique. The term standstill here refers to the case when both vx = 0 and ωr = 0
such that vnr = v∗0 by Lemma 5. An analysis of this issue for the non-smooth approximation (3.15)
was presented by Rill [243], with the advice stated in the conclusion to use an implicit solver for
numerical simulation close to the standstill. In this work, no simulation close to the standstill
is applied, so no further measures are taken in this direction. However, the smooth wheel slip
approximation is also used in the stability analysis of the zero dynamics resulting from an IOL
control design for the considered synthesis models. Regarding stability, global asymptotic stability
of the zero dynamics will be shown for arbitrary small ϵ > 0 later in this chapter, so from a
theoretical viewpoint the smoothing parameter can be made as small as desired, without affecting
the stability of the system. This is true for the both the 2WD TCS and the two control designs
for the 4WD TCSs, as well as the passivity based stability results derived in Chapter 4.

Remark 10. As discussed in Remark 9, the proposed definition guarantees that vnr is independent
of rr if ωr = 0 and so also its global minimum v∗0, as derived in Lemma 5, does not depend on
rr. However, it is important to mention that the stability results derived later do not depend on
this choice; in especially the arguments remain valid and follow analogously in case that rr is not
included in the smoothed absolute value function.

We now continue by extending the proposed model for 2WD TCSs to vehicles with on-demand
4WD torque bias systems in the following section. Two different synthesis models suitable for
traction control of vehicles with on-demand 4WD torque bias systems are presented, each with
different advantages and disadvantages. Moreover, the state-space representations of the three
synthesis models are stated there as well, which will thereafter be used for an analytic control
design based on the method of IOL.
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3.2 Modeling of Longitudinal Vehicle Dynamics

3.2.3 State Space Form and Extensions for Vehicles with 4WD

For control design of a TCS, it is desirable to express the dynamics of the longitudinal synthesis
model (3.1)-(3.12) in a compact state space form. By defining the input u1 = Tm,d, the output
y1 = ωc/iG, and the state vector xT =

[
x1 x2 x3 x4 x5

]
=

[
Tm ∆ϕc ωc ωr vx

]
, the

dynamics of the 2WD longitudinalM5 model are given by

M5 :

{
ẋ = f(x) + gu1 (3.22a)

y1 = h(x) (3.22b)

with

f(x) =


−x1/τm
x3/iG − x4

(x1 − 2Tr/iG)/Jc
(2Tr − rrFxr)/Jr
(Fxr − Fw)/m

 , g =


1/τm
0
0
0
0

 , h(x) = x3/iG . (3.23)

The notation M5 denotes the synthesis model with 5 states and is used to distinguish between
this model and two other models for TCS design proposed in the following. While theM5 model
is suitable for 2WD vehicles, two possible extensions for vehicles with on-demand 4WD torque
bias systems are given. The modeling of such devices is discussed for example in [227, 229, 228].
An early work that analyzes the advantages of 4WD torque bias systems for maximizing traction
and cornering performance is due to Torii et al. [270]. Figure 3.3 shows the schematic structure
of the 2WD and the two 4WD models. While Figure 3.3a shows the already discussed 2WD
configuration, Figure 3.3b extends this structure with a 4WD torque bias system, realized with
an ETC, that can gradually couple the front axle with the rear axle by using a clutch which can be
controlled with an electric motor. This model has 7 states and is namedM7 model accordingly.
Figure 3.3c shows a model with 9 states due to an additional torsion spring, referred to as M9

model. All springs in Figure 3.3 are virtual springs that represent the effective torsional dynamics
and not the torsion at the specific component where they are indicated.
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(a) 2WD model M5 with 5 states.
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(b) 4WD model M7 with 7 states.
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(c) 4WD model M9 with 9 states.

Figure 3.3: Structure of the longitudinal models for 2WD and 4WD TCS design, adapted from [300].
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3 Traction Control and Vibration Damping via Input-Output-Linearization

The actuator dynamics of the electric motor controlling the clutch can be described by a first
order lag element with time constant τe, desired torque Te,d and actual torque Te as

Ṫe = (Te,d − Te)/τe . (3.24)

Remark 11. Here, Te denotes the torque of the electric motor applied to the clutch. The torque
shifted to the front axle is ifTe, but only as long as the clutch is not locked and 0 ≤ Te/ia ≤ Tm.
These conditions are assumed for control design here. If these conditions are not satisfied, for
example during drag torque control, then the actual drive torque on the front axle will deviate
from Te/ia. While not considered in this work, the 4WD models and control laws can be extended
to account for the sign of Tm as well. A model that takes the hybrid dynamics of the clutch into
account for a numerical simulation study is presented in [297].

As indicated in Figure 3.3b, the gear ratio of the automatic transmission is denoted with ia, the
gear ratios of the front and rear differential gears if and ir, respectively. Furthermore, iG = iair
and iE = iaif are used for the total gear ratio from the main engine to the rear axle or rather
the front axle. The equations for the front axle angular velocity ωf can be described similarly to
the rear axle (3.5)-(3.7), with

Jf ω̇f = Teif − rfFxf (3.25)

Fxf = µFzf sin
(
Cf arctan(Bfλxf )

)
(3.26)

Fzf = mg lr/(lf + lr) . (3.27)

Here, Jf is the moment of inertia of the front axle, rf the wheel radius of the front wheels,
Fxf the friction force generated by the front tires and Fzf the normal force, acting on the front
axle. Moreover, Cf and Bf are Pacejka tire parameters, analogously to the rear axle, compare
Section 3.2.1. The wheel slip on the front axle λxf and its normalization speed vnf are

λxf = (rfωf − vx)/vnf (3.28a)

vnf = maxϵ(|rfωf |ϵ, |vx|ϵ) , (3.28b)

like for the rear axle, cf. Section 3.2.2. Finally, the longitudinal acceleration of the vehicle (3.11)
has to be adjusted in the 4WD case, to include the tire force on the front axle as well, by

v̇x = (Fxr + Fxf − Fw)/m . (3.29)

Now, the 7-state 4WD synthesis modelM7 from Figure 3.3b can be put in state space form by

M7 :

{
ẋ = f(x) +Gu (3.30a)

y = h(x) (3.30b)

with the input uT =
[
u1 u2

]
=

[
Tm,d Te,d

]
, output yT =

[
y1 y2

]
=

[
ωc/iG ωf

]
and state

xT =
[
x1 x2 x3 x4 x5 x6 x7

]
=

[
Tm ∆ϕc ωc ωr vx Te ωf

]
, while

f(x) =



−x1/τm
x3/iG − x4

(x1 − x6/ia − 2Tr/iG)/Jc
(2Tr − rrFxr)/Jr

(Fxr + Fxf − Fw)/m
−x6/τe

(x6if − rfFxf )/Jf


, G =



1/τm 0
0 0
0 0
0 0
0 0
0 1/τe
0 0


, h(x) =

[
x3/iG
x7

]
. (3.31)

Remark 12. For a compact notation, symbols like x, u, y, f and h are used for all three models.
Since therefore their definition depends on the context, it is stated explicitly when required.

As can be noted from Figure 3.3b, theM7 model assumes a stiff connection of the ETC to the
front axle. A direct extension is therefore to include a substitute model of the drivetrain elasticity
in form of a torsion spring for this axle as well, similar to the rear axle, cf. Section 3.2.1. This
extended 4WD model is described next.
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3.2 Modeling of Longitudinal Vehicle Dynamics

The ETC output speed ωe and the twist angle between ETC and front axle ∆ϕe satisfy

∆ϕ̇e = ωe/if − ωf (3.32)

Jeω̇e = Te − 2Tf/if (3.33)

Tf = ke∆ϕe + de(ωe/if − ωf ) , (3.34)

where Je is the substitute moment of inertia for the ETC, 2Tf is the torque applied to the front
axle and ke, de are stiffness and damping factor of the torsion spring. Then, only the equation
for the front axle speed has to be adjusted (the remaining equations stay the same), by

Jf ω̇f = 2Tf − rfFxf . (3.35)

Following, theM9 model can be put in state space form by

M9 :

{
ẋ = f(x) +Gu (3.36a)

y = h(x) (3.36b)

with input uT =
[
u1 u2

]
=

[
Tm,d Te,d

]
, output yT =

[
y1 y2

]
=

[
ωc/iG ωe/if

]
, state xT =[

x1 x2 x3 x4 x5 x6 x7 x8 x9
]
=

[
Tm ∆ϕc ωc ωr vx Te ωf ∆ϕe ωe

]
and

f(x) =



−x1/τm
x3/iG − x4

(x1 − x6/ia − 2Tr/iG)/Jc
(2Tr − rrFxr)/Jr

(Fxr + Fxf − Fw)/m
−x6/τe

(2Tf − rfFxf )/Jf
x9/if − x7

(x6 − 2Tf/if )/Je


, G =



1/τm 0
0 0
0 0
0 0
0 0
0 1/τe
0 0
0 0
0 0


, h(x) =

[
x3/iG
x9/if

]
. (3.37)

Table 3.1 lists the states, inputs and outputs and the models for which they are relevant. In the
next section, the models are used for a control design based on IOL for TCSs. Also, the output
definitions are discussed, for example why y2 is different for theM7 model and theM9 model.

Table 3.1: Variable definitions of the three different synthesis models.

Variable Symbol Model Description Unit

u1 Tm,d M5,M7,M9 Desired motor torque Nm
u2 Te,d M7,M9 Desired ETC torque Nm

y1 ωc/iG M5,M7,M9 Crankshaft angular velocity (wheel level) rad/s
y2 ωf M7 Front axle angular velocity rad/s
y2 ωe/if M9 ETC output angular velocity (wheel level) rad/s

x1 Tm M5,M7,M9 Motor torque Nm
x2 ∆ϕc M5,M7,M9 Twist angle of rear torsion spring rad
x3 ωc M5,M7,M9 Crankshaft angular velocity rad/s
x4 ωr M5,M7,M9 Rear axle angular velocity rad/s
x5 vx M5,M7,M9 Longitudinal vehicle velocity m/s
x6 Te M7,M9 ETC torque Nm
x7 ωf M7,M9 Front axle angular velocity rad/s
x8 ∆ϕe M9 Twist angle of front torsion spring rad
x9 ωe M9 ETC output angular velocity rad/s
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3 Traction Control and Vibration Damping via Input-Output-Linearization

3.3 Nonlinear Control Design

3.3.1 Derivation of the Control Laws and Zero Dynamics

Consider the three different cases for the control design based on the three longitudinal models
from Section 3.2.3. The linearizing control laws, including the resulting zero dynamics in each
case, are derived based on our previous work [300, 305]. Stability is then investigated in the
subsequent sections.

3.3.1.1 The 5-State 2WD Case

The system output is given by the angular velocity of the crankshaft, scaled to wheel level by
the total gear ratio from the engine to the rear axle,

y1 = x3/iG . (3.38)

The first derivative with respect to time of the output is given by

ẏ1 = ẋ3/iG = (x1 − 2Tr/iG)/(iGJc) (3.39)

where Tr = kcx2 + dc(x3/iG − x4), compare (3.4). The second derivative with respect to time is
given by

ÿ1 =
1

iGJc

[ 1

τm
(u1 − x1)−

2

iG

(
kc

(
x3/iG − x4

)
− dc

(
ẋ3/iG − ẋ4

))]
. (3.40)

Solving for the system input and defining v1
def
= ÿ1 as the new input gives the linearizing control

law in the 2WD case as

u1 = x1 + τm

[
v1JciG +

2

iG

(
kc

(x3
iG
− x4

)
+ dc

( ẋ3
iG
− ẋ4

))]
. (3.41)

Remark 13. The derivatives ẋ3 and ẋ4 are left in (3.41) for now and are not replaced by their
differential equations. For the theoretical analysis, this keeps the notation compact, while practical
advantages of this formulation are discussed in Section 3.4.

To give a physical interpretation of (3.41), the control law can be separated into three basic
terms, where each implicitly serves a different goal of the control objectives.

1. The x1 term represents the resulting torque produced by the engine and accounts for the
actuator dynamics of the engine. A useful side effect of this term is that it can be interpreted
as a form of integral action as will be shown in Chapter 6. This term provides the first of
two open loop integrators required for zero asymptotic tracking of a ramp-shaped reference
trajectory during acceleration, see also Section 3.4.

2. The v1 term, scaled with the gain τmiGJc for inertia compensation, represents the virtual
control input to the linearized system and has the physical meaning of the rate of change
of angular acceleration, or angular jerk.

3. The x3/iG − x4 term denotes the speed difference between crankshaft angular velocity
(scaled to wheel level) and rear axle angular velocity, which is passed to a PD controller
with proportional gain 2τmkc/iG and derivative gain 2τmdc/iG. Feedback of such a speed
difference has been used for active damping as a separate part of the control design for
TCSs before, see for example [17, 91, 291], as well as [90, pp. 85–99] and Section 2.1 for
a literature overview. The proposed solution using input-output linearization provides a
more uniform approach to traction control in combination with active vibration control
for vehicles with 2WD, based on the nonlinear design model (3.22), as the damping terms
naturally enter the control law (3.41).
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3.3 Nonlinear Control Design

Since the control law is obtained with the second derivative of the output, the relative degree
ofM5 is δ = 2, resulting in an internal dynamic of order n− δ = 3. In order to ensure stability
of the overall control system using (3.41), it is necessary to show that the internal dynamics of
the system are ISS. Using the following state transformation results in the Byrnes-Isidori normal
form of the internal dynamics

ξ =


ξ1
ξ2
ξ3
ξ4
ξ5

 = ϕ(x) =


ϕ1(x)
ϕ2(x)
ϕ3(x)
ϕ4(x)
ϕ5(x)

 =


x3/iG

(iGx1 − 2Tr)/(Jci
2
G)

x2
x4
x5

 . (3.42)

Note that Tr in ξ-coordinates is Tr = kcξ3 + dc(ξ1 − ξ4), so the inverse transformation from ξ to
x is given by

x =


x1
x2
x3
x4
x5

 = ϕ−1(ξ) =


ϕ−1
1 (ξ)

ϕ−1
2 (ξ)

ϕ−1
3 (ξ)

ϕ−1
4 (ξ)

ϕ−1
5 (ξ)

 =


iGJcξ2 + 2Tr/iG

ξ3
iGξ1
ξ4
ξ5

 . (3.43)

Lemma 6. The state transformation ϕ : R5 → R5 is a global diffeomorphism and decouples the
internal dynamics from u1.

Proof. The Jacobian of ϕ with respect to the state vector x is given by

Jϕ,x(x) =
∂ϕ(x)

∂x
=


0 0 1/iG 0 0

1/(iGJc) −2kc/(i2GJc) −2dc/(i3GJc) 2dc/(i
2
GJc) 0

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 . (3.44)

The determinant of (3.44) is det
(
Jϕ,x(x)

)
= 1/(i2GJc) ̸= 0 ,∀x ∈ R5. Since ϕ is also linear, it is

a bijection and thus a global diffeomorphism. As the last n−δ = 3 rows of Jϕ,x(x)g are zero, the
state transformation ϕ decouples the internal dynamics from the control input u1, cf. [305].

Then, the system in Byrnes-Isidori normal form is given in ξ-coordinates by

ξ̇ =


ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5

 =


ξ2

L2
fh

(
ϕ−1(ξ)

)
+ LgLfh

(
ϕ−1(ξ)

)
u1

ξ1 − ξ4(
2dc(ξ1 − ξ4) + 2kcξ3 − rrFxr

)
/Jr

(Fxr − Fw)/m

 (3.45)

with the Lie-derivatives

LgLfh
(
ϕ−1(ξ)

)
= 1/(iGτmJc) (3.46)

L2
fh

(
ϕ−1(ξ)

)
=
q1ξ1 + q2ξ2 + q3ξ3 + q4ξ4 − 2 τmdcrrFxr

i2GJcτmJr
. (3.47)

The parameters q1, q2, q3 and q4 in (3.47) are given by

q1 = (4d2c − 2Jrkc)τm − 2Jrdc (3.48a)

q2 = −2Jrτmdc − i2GJcJr (3.48b)

q3 = 4τmdckc − 2Jrkc (3.48c)

q4 = (2Jrkc − 4d2c)τm + 2Jrdc . (3.48d)

51



3 Traction Control and Vibration Damping via Input-Output-Linearization

A necessary condition for stability of the internal dynamics is that its zero dynamics are asymp-
totically stable. The zero dynamics describe the internal dynamics with linearizing control law
applied such that the output of the system is identically zero. From (3.45), the zero dynamics
can be derived by inserting the control law (3.41) for u1 and setting ξ1 = ξ2 = v1 = 0 as

ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5

 =


0
0
−ξ4(

2(kcξ3 − dcξ4)− rrFxr
)
/Jr

(Fxr − Fw)/m

 . (3.49)

Now, we can define zT =
[
z1 z2 z3

]
=

[
ξ3 ξ4 ξ5

]
and write the zero dynamics of theM5

synthesis model for vehicles with 2WD as

ż =

ż1ż2
ż3

 =

 −z2(
2(kcz1 − dcz2)− rrFxr

)
/Jr

(Fxr − Fw)/m

 . (3.50)

For the linearizing control law (3.41) to be applicable in practice, it is necessary that the zero
dynamics (3.50) are asymptotically stable. For now, the equilibria of (3.50) are determined, while
stability is analyzed in detail in Section 3.3.2.

Lemma 7. The zero dynamics (3.50) have a unique equilibrium zTeq =
[
0 0 0

]
.

Proof. At equilibrium it is clear from (3.50) that z2 = 0 holds. In this case, Fxr is a function of
z3 only, so the signs of Fxr and Fw can be readily inspected. Since z2 = 0, if z3 > 0⇒ λx < 0⇒
Fxr < 0. However, at the same time if z3 > 0 ⇒ Fw > 0 so ż3 = (Fxr − Fw)/m < 0. The case
z3 < 0 follows analogously and results in ż3 = (Fxr−Fw)/m > 0. Therefore, ż3 = 0 ⇐⇒ z3 = 0,
so at equilibrium Fxr = Fw = 0. From this conclusion and the equation for ż2 it follows that also
z1 = 0 must hold, so the origin is the only equilibrium of (3.50), cf. [305].

This equilibrium corresponds to the standstill with vx = z3 = 0, ωr = z2 = 0 and the twist
angle of the torsion spring that models the drivetrain torsional dynamics returned to zero twist
with ∆ϕc = z1 = 0 such that also the rear axle torque is zero.

Remark 14. While the derivation of the control law and the zero dynamics was done assuming
a vehicle with rear wheel drive, the derived equations can readily be used for vehicles with front
wheel drive as well. This only requires to replace the corresponding drivetrain parameters of the
rear wheel drive by parameters for front wheel drive. Also, the lever arm term in (3.7) has to
be adjusted by exchanging lf and lr in the Fzr term. Therefore, both front wheel drive and rear
wheel drive vehicles can be treated equally with the proposed approach.

This concludes the first step of the control law derivation for the 2WD case. Further implemen-
tation details and how the control law is extended for tracking control in a TCS will be discussed
in Section 3.4 and also later in Chapter 6. Before that, the control laws for theM7 and theM9

model are derived as well and stability is investigated.
In the following, the control law is extended to the MIMO system (3.30a) with 7 states,

representing a vehicle with 4WD torque bias system and a stiff shaft connecting the ETC and
the front axle. The internal dynamics and the zero dynamics of the 4WD control design are
derived as well, analogously to the 2WD case. Also, the differences between the derivations of
the 2WD case based on theM5 model and the 4WD case based on theM7 model are discussed. It
is shown that the main difference, apart from the MIMO setting, results from the stiff connection
of the ETC with the front axle in theM7 model. This leads to a nonlinear state transformation
for theM7 model, in contrast to the linear transformation (3.42) for theM5 model.
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3.3 Nonlinear Control Design

3.3.1.2 The 7-State 4WD Case

Next, the linearizing control law is derived for the previously described 4WD model with 7 states.
In this case, the first output of the system is again given by the angular velocity of the crankshaft
scaled to the wheel by the total gear ratio, y1 = ωr/iG = x3/iG. The second output is the angular
velocity of the front axle, given by y2 = ωf = x7. The first and the second derivative with respect
to time of y2 is

ẏ2 = (ifx6 − rfFxf )/Jf (3.51)

ÿ2 =
(
if (u2 − x6)/τe − rf Ḟxf

)
/Jf . (3.52)

Solving (3.52) for the second input u2 and setting v2
def
= ÿ2 gives

u2 = x6 + τe(Jfv2 + rf Ḟxf )/if . (3.53)

For y1, the first and second derivative with respect to time is given by

ẏ1 = ẋ3/iG =
(
(x1 − x6/ia)− 2Tr/iG

)
/(iGJc) (3.54)

ÿ1 =
1

iGJc

( 1

τm
(u1 − x1)−

1

τeia
(u2 − x6)−

2

iG
Ṫr

)
. (3.55)

Next, solve (3.55) for the first input u1, set v1
def
= ÿ1 and insert (3.53) for u2 to get

u1 = x1 + τm

[
v1JciG +

Jfv2 + rf Ḟxf
if ia

+
2

iG

(
kc

(x3
iG
− x4

)
+ dc

( ẋ3
iG
− ẋ4

))]
. (3.56)

This control law for the rear axle is the same as in the 2WD case (3.41) with an additional
τm(Jfv2 + rf Ḟxf )/(if ia) term. This term is induced by the coupling between the rear axle and
the front axle by the torque bias system, which shifts the portion generated by u2 from the rear
to the front axle. Therefore, the control laws u1 and u2 decouple the outputs y1 and y2 from each
other by explicitly taking into account this effect.

Remark 15. A potential difficulty for a real-world implementation of the control laws (3.53)
and (3.56) is the Ḟxf term, since its computation would require tire parameters and the friction
coefficient of the road. Online estimates of these quantities might not be available at the bandwidth
of the controller on the ECU or on the ETC control unit. This issue will be further discussed
later.

Remark 16. In contrast to the 2WD case, where no tire force term enters into the control law,
the Ḟxf term appears here because the connection from the ETC to the front axle is modeled as
stiff in the 7-state 4WD model (3.30). By modeling this connection as a torsion spring as well,
the Ḟxf term can be avoided, as will be shown with the 9-state 4WD model later. The 7-state
4WD model can be useful in practice nevertheless and even preferable compared to the 9-state
4WD model, depending on the underlying conditions for the control design. Particularly, the
above control law does not require a measurement of the ETC output speed, which might not be
available. Following, the control laws and stability properties of both the 7-state and the 9-state
4WD model are derived.

Here, the control law is obtained after differentiating both outputs y1, y2 twice. This results
for theM7 model in a vector relative degree of

[
δ1 δ2

]
=

[
2 2

]
, hence a total relative degree of

δ = δ1 + δ2 = 4 and an internal dynamic of order n− δ = 3. Therefore, although the considered
7-state 4WD model has 2 more states than the 2WD model, the input-output linearization results
in both cases in third order internal dynamics.
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3 Traction Control and Vibration Damping via Input-Output-Linearization

In order to analyze stability of the internal dynamics, we propose the following state transfor-
mation to Byrnes-Isidori normal form

ξ =



ξ1
ξ2
ξ3
ξ4
ξ5
ξ6
ξ7


= ϕ(x) =



ϕ1(x)
ϕ2(x)
ϕ3(x)
ϕ4(x)
ϕ5(x)
ϕ6(x)
ϕ7(x)


=



x3/iG(
(iGx1 − 2Tr)ia − iGx6

)
/(Jciai

2
G)

x2
x4
x5

(ifx6 − rfFxf )/Jf
x7


. (3.57)

The inverse transformation, from ξ to x, can then be defined, with ϕ−1
1 (ξ) = iGJcξ2 + 2Tr/iG +

(Jfξ6 + rfFxf )/(iaif ), as

x =



x1
x2
x3
x4
x5
x6
x7


= ϕ−1(ξ) =



ϕ−1
1 (ξ)

ϕ−1
2 (ξ)

ϕ−1
3 (ξ)

ϕ−1
4 (ξ)

ϕ−1
5 (ξ)

ϕ−1
6 (ξ)

ϕ−1
7 (ξ)


=



ϕ−1
1 (ξ)
ξ3
iGξ1
ξ4
ξ5

(Jfξ6 + rfFxf )/if
ξ7


. (3.58)

Lemma 8. The state transformation ϕ : R7 → R7 is a global diffeomorphism for constant µ and
decouples the internal dynamics from uT =

[
u1 u2

]
.

Proof. The Jacobian of (3.57), with respect to the system states x is Jϕ,x(x) = ∂ϕ(x)/(∂x),
with J65(x) = −∂(rfFxf/Jf )/(∂x5), J67(x) = −∂(rfFxf/Jf )/(∂x7) and

Jϕ,x(x) =


0 0 1/iG 0 0 0 0

1/(JciG) −2kc/(Jci2G) −2dc/(Jci3G) 2dc/(Jci2G) 0 −1/(JciGia) 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 J65(x) if/Jf J67(x)
0 0 0 0 0 0 1

 . (3.59)

The determinant of (3.59) is det
(
Jϕ,x(x)

)
= if/(i

2
GJcJf ) ̸= 0 ,∀x ∈ R7. Moreover, ϕ is proper

since lim∥x∥→∞ ∥ϕ(x)∥ = ∞. This can be seen as the nonlinearity Fxf is bounded and we can

write ϕ(x) = ϕlin(x) + ϕnlin(x) with ϕnlin(x)
T =

[
0 0 0 0 0 −(rf/if )Fxf 0

]
and ϕlin(x)

given by (3.57) with Fxf set to zero. Since the determinant of the Jacobian of ϕlin(x) is the same
as the determinant of the Jacobian of ϕ(x), by linearity of ϕlin and boundedness of ϕnlin it follows
that ϕ is proper. Since ϕ is also C2, it follows by Hadamard’s global inverse function theorem,
see [161, pp. 121–125] and [88], that ϕ is a global bijection. Finally, the rows δ1 + 1, . . . , n− δ2
(rows 3, 4 and 5) of Jϕ,x(x)G are zero, so the state transformation ϕ also decouples the internal
dynamics from the control input u.

Remark 17. The state transformation (3.59) is non-standard, as y2 and ẏ2 are inserted in the
last two rows instead directly after y1 and ẏ1 which are inserted in first two rows. The advantage
of this formulation is that the first five state variables in (3.59), which also appear in the 2WD
case, represent the same physical quantities in both cases.

Showing that the state transformation (3.57) is a global diffeomorphism requires more steps
compared to the 2WD case because (3.57) is nonlinear due to the Fxf term. Also, as stated in
Lemma 8, for the derivation here we assume that µ is constant. Nevertheless, the 4WD TCS
works for time-varying µ as well, compare for example the simulation study in [297].
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The next steps follow analogously to the 2WD case. First, apply the state transformation (3.59)
to derive the system in Byrnes-Isidori normal form,

ξ̇ =



ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5
ξ̇6
ξ̇7


=



ξ2
L2
fh1

(
ϕ−1(ξ)

)
+ Lg1

Lfh1
(
ϕ−1(ξ)

)
u1 + Lg2

Lfh1
(
ϕ−1(ξ)

)
u2

ξ1 − ξ4(
2dc(ξ1 − ξ4) + 2kcξ3 − rrFxr

)
/Jr

(Fxr + Fxf,0 − Fw)/m
(ifu2 − Jfξ6 − rfFxf − τerf Ḟxf )/(τeJf )

ξ6


. (3.60)

with G in the 7-state 4WD model equations (3.30a) partitioned as G =
[
g1 g2

]
, Lie-derivatives

Lg1
Lfh1

(
ϕ−1(ξ)

)
= 1/(τmiGJc), Lg2

Lfh1
(
ϕ−1(ξ)

)
= −1/(τeiaiGJc) and

L2
fh1

(
ϕ−1(ξ)

)
=
q1ξ1 + q2ξ2 + q3ξ3 + q4ξ4 + q6ξ6 + qfFxf + qrFxr

τmτei2GiEJcJr
. (3.61)

The coefficients q1, q2, q3, q4, q6, qf and qr in (3.61) are given by

q1 = 4τeτmd
2
cif ia − 2Jrτeτmif iakc − 2JrτedciE (3.62a)

q2 = −JrJcτeiEi2G − 2τeτmJrdciE (3.62b)

q3 = 4τeτmdciEkc − 2τeiEkcJr (3.62c)

q4 = 2τeτmJriEkc − 4τeτmd
2
ciE + 2τeJrdciE (3.62d)

q6 = τmJfJriG − τeJfJriG (3.62e)

qf = τmJriGrf − τeJriGrf (3.62f)

qr = −2τeτmdciErr . (3.62g)

Next, insert the control laws (3.56) and (3.53) for u1 and u2, set ξ1 = ξ2 = ξ6 = ξ7 = v1 = v2 = 0
and zT =

[
z1 z2 z3

]
=

[
ξ3 ξ4 ξ5

]
to derive the zero dynamics as

ż =

ż1ż2
ż3

 =

 −z2(
2(kcz1 − dcz2)− rrFxr

)
/Jr

(Fxr + Fxf,0 − Fw)/m

 . (3.63)

It can be noted that the 4WD zero dynamics (3.63) are the same as in the 2WD case (3.50) with
an additional Fxf,0 term in the equation for ż3. This term denotes the tire force generated at the
front axle with ωf = x7 = ξ7 = 0 due to output zeroing:

Fxf,0 = Fxf |x7=0 (3.64)

For Fxf,0 = 0, the zero dynamics reduce to the 2WD case. However, since in the 4WD case
Fxf,0 ̸= 0 in general, it is necessary to investigate stability for this case separately. Here, the
equilibria of (3.63) are determined and stability is analyzed in detail in the next section.

Lemma 9. The zero dynamics (3.63) have a unique equilibrium zTeq =
[
0 0 0

]
.

Proof. At equilibrium z2 = 0, so Fxr, the tire force generated at the rear axle, then depends
like Fxf,0 only on z3. For z3 > 0 ⇒ Fxr < 0, Fxf,0 < 0 and Fw > 0, so ż3 < 0. Similarly,
z3 < 0 ⇒ ż3 > 0, so ż3 = 0 ⇐⇒ z3 = 0. Inserting z2 = z3 = 0 into (3.63) shows that z1 = 0
must hold, so the origin is a unique equilibrium, cf. [300].

This concludes the derivation of the internal dynamics and the zero dynamics of theM7 model.
While the derivation is similar to the 2WD case, some differences occurred as well. In particular,
a nonlinear state transformation (3.57) is required for the 7-state 4WD model. This originates
from the stiff connection between ETC and front axle of theM7 synthesis model. Following, it
is shown that theM9 model avoids this by the inclusion of an additional torsion spring.
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3 Traction Control and Vibration Damping via Input-Output-Linearization

3.3.1.3 The 9-State 4WD Case

To complete the control design by input-output linearization for the three synthesis models, the
9-state 4WD case is considered. The first system output in this case is again y1 = ωr/iG = x3/iG.
The second output is now defined as angular velocity of the shaft connecting the ETC with the
front axle, scaled to wheel level, so y2 = ωe/if = x9/if . As in the 7-state 4WD case, the second
output y2 is differentiated twice with respect to time as

ẏ2 = (x6 − 2Tf/if )/(ifJe) (3.65)

ÿ2 =
(
(u2 − x6)/τe − 2 Ṫf/if

)
/(ifJe) , (3.66)

with Ṫf = ke(x9/if − x7) + de(ẋ9/if − ẋ7). Define v2 = ÿ2 and solve for u2 to obtain

u2 = x6 + τe(ifJev2 + 2 Ṫf/if ) . (3.67)

The first input y1 follows analogously and results in

ẏ1 =
(
(x1 − x6/ia)− 2Tr/iG

)
/(iGJc) (3.68)

ÿ1 =
1

iGJc

( 1

τm
(u1 − x1)−

1

τeia
(u2 − x6)−

2

iG
Ṫr

)
, (3.69)

with Ṫr = kc(x3/iG−x4)+ dc(ẋ3/iG− ẋ4), which is identical to the 7-state 4WD case, cf. (3.54)-
(3.55). However, since the equation for u2 (3.67) changed in comparison to the 7-state 4WD
case (3.53) and u2 also enters the equation for ÿ1 here, the resulting control law u1 will also be
different. Define v1 = ÿ1, solve for u1 and insert (3.67) for u2, to obtain the control law for the
9-state 4WD case,

u1 = x1 + τm

(
v1JciG +

if
ia
Jev2 +

2

iG
Ṫr +

2

iE
Ṫf

)
. (3.70)

In comparison to the 7-state 4WD case, no derivative of the tire force appears in this control law.
Instead, like for the rear axle, an additional damping term Ṫf is derived which can be interpreted
as another PD controller (in addition to the Ṫr term, as described in the 2WD case) with the
differential speed x9/if − x7 as input.

Remark 18. The main advantage of the 9-state 4WD control laws (3.67) and (3.70) over the
7-state 4WD control laws (3.53) and (3.56) is, that the derivative of the front axle tire force dis-
appears in the 9-state case. While the forces still enter into the Ṫr, Ṫf terms through ẋ4 and ẋ7,
these terms can be approximated efficiently in a real-world implementation using a filter to nu-
merically calculate the derivative of the measured quantities x4 and x7. This basically implements
the derivative parts of the PD controllers induced by Ṫr and Ṫf .

Again, the linearizing control laws are derived by differentiating y1 and y2 two times, so theM9

model has a vector relative degree of
[
δ1 δ2

]
=

[
2 2

]
and therefore, the total relative degree is

δ = δ1 + δ2 = 4 as in the 7-state 4WD case. However, the internal dynamics are now of order
n − δ = 5. Similarly to the 2WD and the 7-state 4WD case, the system is first transformed to
Byrnes-Isidori normal form. We propose the following state transformation

ξ =



ξ1
ξ2
ξ3
ξ4
ξ5
ξ6
ξ7
ξ8
ξ9


= ϕ(x) =



ϕ1(x)
ϕ2(x)
ϕ3(x)
ϕ4(x)
ϕ5(x)
ϕ6(x)
ϕ7(x)
ϕ8(x)
ϕ9(x)


=



x3/iG(
(iGx1 − 2Tr)ia − iGx6

)
/(Jciai

2
G)

x2
x4
x5
x8
x7

x9/if
(ifx6 − 2Tf )/(i

2
fJe)


. (3.71)
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3.3 Nonlinear Control Design

The inverse transformation, with Tr and Tf in ξ-coordinates being defined as Tr = kcξ3+dc(ξ1−ξ4)
and Tf = keξ6 + de(ξ8 − ξ7), is derived as

x =



x1
x2
x3
x4
x5
x6
x7
x8
x9


= ϕ−1(ξ) =



ϕ−1
1 (ξ)

ϕ−1
2 (ξ)

ϕ−1
3 (ξ)

ϕ−1
4 (ξ)

ϕ−1
5 (ξ)

ϕ−1
6 (ξ)

ϕ−1
7 (ξ)

ϕ−1
8 (ξ)

ϕ−1
9 (ξ)


=



ϕ−1
1 (ξ)
ξ3
iGξ1
ξ4
ξ5

(i2fJeξ9 + 2Tf )/if
ξ7
ξ6
ifξ8


, (3.72)

with ϕ−1
1 (ξ) = (iaiEiGJcξ2 + if iEJeξ9 + 2 iGTf + 2 iGTr)/(iEiG). First, it is ensured that (3.71)

is globally invertible.

Lemma 10. The state transformation ϕ : R9 → R9 is a global diffeomorphism and decouples the
internal dynamics from uT =

[
u1 u2

]
.

Proof. The Jacobian of (3.71), with J ′
c = 1/(JciG) and J

′
e = 1/(Jeif ), is derived as

Jϕ,x(x) =


0 0 1/iG 0 0 0 0 0 0

J ′
c −2kcJ ′

c/iG −2dcJ ′
c/i

2
G 2dcJ ′

c/iG 0 −J ′
c/ia 0 0 0

0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1/if
0 0 0 0 0 J ′

e 2deJ ′
e/if −2keJ ′

e/if −2deJ ′
e/i

2
f

 . (3.73)

The determinant of (3.73) is det
(
Jϕ,x(x)

)
= 1/(JcJei

2
f i

2
G) ̸= 0 ,∀x ∈ R9 and ϕ is linear, thus a

bijection and a global diffeomorphism. The rows δ1+1, . . . , n− δ2 (rows 3 to 7) of Jϕ,x(x)G are
zero, so the state transformation ϕ decouples the internal dynamics from u.

Following, the full system equations in Byrnes-Isidori normal form are stated as well. It can be
noted that here, like in the control law, the force derivative disappears, compared to the 7-state
4WD case, where the torsional dynamics of the connection between ETC and front axle are not
modeled. The transformed system equations are

ξ̇ =



ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5
ξ̇6
ξ̇7
ξ̇8
ξ̇9


=



ξ2
L2
fh1

(
ϕ−1(ξ)

)
+ Lg1

Lfh1
(
ϕ−1(ξ)

)
u1 + Lg2

Lfh1
(
ϕ−1(ξ)

)
u2

ξ1 − ξ4(
2dc(ξ1 − ξ4) + 2kcξ3 − rrFxr

)
/Jr

(Fxr + Fxf − Fw)/m
ξ8 − ξ7(

2de(ξ8 − ξ7) + 2keξ6 − rfFxf
)
/Jf

ξ9
L2
fh2

(
ϕ−1(ξ)

)
+ Lg2

Lfh2
(
ϕ−1(ξ)

)
u2


, (3.74)

withG from (3.36a) partitioned asG =
[
g1 g2

]
like in the 7-state 4WD case and Lie-Derivatives

Lg1
Lfh1

(
ϕ−1(ξ)

)
= 1/(τmiGJc), Lg2

Lfh1
(
ϕ−1(ξ)

)
= −1/(τeiaiGJc) for the first output and

Lg2
Lfh2

(
ϕ−1(ξ)

)
= 1/(τeifJe) for the second output, with

L2
fh1

(
ϕ−1(ξ)

)
=
q1ξ1 + q2ξ2 + q3ξ3 + q4ξ4 + q6ξ6 + q7ξ7 + q8ξ8 + q9ξ9 + qrFxr

τeτmiaif i
2
GJcJr

(3.75)

L2
fh2

(
ϕ−1(ξ)

)
=
p6ξ6 + p7ξ7 + p8ξ8 + p9ξ9 + pfFxf

τei2fJeJf
. (3.76)
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The vehicle parameter dependent coefficients in (3.75) are given by

q1 = −2iEτe((τmkc + dc)Jr − 2d2cτm) (3.77a)

q2 = −iEJrτe(i2GJc + 2τmdc) (3.77b)

q3 = −2τeiEkc(Jr − 2τmdc) (3.77c)

q4 = 2iEτe((τmkc + dc)Jr − 2d2cτm) (3.77d)

q6 = −2iGJrke(τe − τm) (3.77e)

q7 = 2iGJrde(τe − τm) (3.77f)

q8 = −2iGJrde(τe − τm) (3.77g)

q9 = −iGi2fJeJr(τe − τm) (3.77h)

qr = −2iEτeτmdcrr , (3.77i)

while the coefficients from (3.76) are

p6 = −2ke(Jf − 2τede) (3.78a)

p7 = 2(τeke + de)Jf − 4d2eτe (3.78b)

p8 = −2(τeke + de)Jf + 4d2eτe (3.78c)

p9 = −i2fJeJf − 2Jfτede (3.78d)

pf = −2derfτe . (3.78e)

Following, insert (3.70) for u1 and (3.67) for u2, while setting ξ1 = ξ2 = ξ8 = ξ9 = v1 = v2 = 0.
This enforces ξ̇1 = ξ̇2 = ξ̇8 = ξ̇9 = 0, so define zT =

[
z1 z2 z3 z4 z5

]
=

[
ξ3 ξ4 ξ5 ξ6 ξ7

]
to derive the zero dynamics in the 9-state 4WD case as

ż =


ż1
ż2
ż3
ż4
ż5

 =


−z2(

2(krz1 − drz2
)
− rrFxr)/Jr

(Fxf + Fxr − Fw)/m
−z5(

2(kfz4 − dfz5
)
− rfFxf )/Jf

 . (3.79)

Again, the equilibria of the zero dynamics of the 4WD synthesis model are investigated.

Lemma 11. The zero dynamics (3.79) have a unique equilibrium zTeq =
[
0 0 0 0 0

]
.

Proof. Since at equilibrium z2 = z5 = 0, both tire forces Fxf and Fxr depend on z3 only and so
z3(Fxf + Fxr) < 0 for z3 ̸= 0, so the same argument from the proof of Lemma 9 applies.

Table 3.2 summarizes the findings of this section. These include the order of the nonlinear
internal dynamics and their dependency on the external dynamics through the system outputs
and the friction coefficient as external system input. Information on the state transformations is
included and through which variables the tire force enters the corresponding control laws.

Table 3.2: Comparison of the IOL based control designs for the three synthesis models for TCSs.

Control Law Internal Dynamics

Model TCS Type Tire Force Order External Dependency ϕ(x)

M5 2WD, SISO ẋ4 3 y1 = x3/iG and µ Linear

M7 4WD, MIMO ẋ4 and Ḟxf 3 y1 = x3/iG, y2 = x7 and µ Nonlinear

M9 4WD, MIMO ẋ4 and ẋ7 5 y1 = x3/iG, y2 = x9/if and µ Linear

This concludes the derivation of the linearizing control laws and zero dynamics for the 5-state
2WD, the 7-state 4WD and the 9-state 4WD models for traction control. In the following section,
stability of the nonlinear zero dynamics will be analyzed in detail for each of the three proposed
traction control designs using a family of parametric, quadratic Lyapunov functions.
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3.3.2 Stability Analysis using Parametric Lyapunov Functions

3.3.2.1 Stability Analysis of the 2WD Case

In this section, stability of the nonlinear zero dynamics is investigated. This is a necessary step
in order to give a theoretical justification of the proposed control design. Since the parameters
of the longitudinal model for traction control can vary in a wide range and might not be known
exactly, the goal is to derive parameter independent stability statements. Stability is investigated
for the 2WD model, first with the assumption of a constant friction coefficient. Thereafter, the
results are extended to time-varying friction coefficients and to the 4WD case by considering
vehicles with on-demand torque bias systems as well.

Beginning with the case of a 2WD vehicle, it is first demonstrated that the previously developed
smooth approximation of the wheel slip quantity can be used to analyze and classify local stability
properties of the zero dynamics. The Jacobian linearization of the zero dynamics at the origin,
using v∗0 = 3

√
ϵ/2 from Lemma 5, is given by

ż ≈ Azdz =

 0 −1 0
2kc/Jr −(cxrr2r/v∗0 + 2dc) cxrrr/(v

∗
0Jr)

0 cxrrr/(v
∗
0m) −cxr/(v∗0m)

 z . (3.80)

Remark 19. Since λxr is a smooth function, computing the partial derivatives of the friction
force Fxr at the origin is possible. Notice that the aerodynamic drag force (3.12) still contains
the absolute value function, which is non-differentiable at the origin. This term could be re-
placed with the smooth approximation in (3.17) as well. However, here the fact is used that
limz3→0 ∂Fw/(∂z3) = 0, so z3 = 0 is a removable singularity and thus the Fw term can be treated
as zero for linearization about the origin.

With (3.80) given, local stability can be analyzed using the Routh-Hurwitz criterion.

Lemma 12. The zero dynamics (3.50) are locally asymptotically stable for all possible vehicle
parameter combinations.

Proof. The characteristic polynomial of Azd is given by

pc(s) = det(sI3 −Azd) = s3 + a2s
2 + a1s+ a0, (3.81)

so a necessary condition is that a2, a1, a0 > 0. Furthermore, its Hurwitz matrix is

H =

a2 a0 0
1 a1 0
0 a2 a0

 , (3.82)

from which the remaining conditions for necessity and sufficiency of local stability of the zero
dynamics can be derived by computation of the three principal minors of H. These are ∆1 = a2,
∆2 = a1a2− a0 and ∆3 = −a20 + a1a2a0. The coefficients a0, a1, a2 and the principal minors ∆1,
∆2, ∆3 can be found in Appendix A.1. Since all parameters in (A.1a)-(A.1c) and (A.2a)-(A.2c)
are strictly positive, the zero dynamics (3.50) are locally asymptotically stable for all parameter
combinations.

In the following, the local stability result from Lemma 12, which also assumes a constant
friction coefficient of the road µ, is shown to actually hold globally and for time-varying µ as
well. A generalized version of the parametric Lyapunov function from our previously published
work [305] is given by

V (z) = zTPz = zT

 p11 −1/2 0
−1/2 p22 0
0 0 p33

 z = p11z
2
1 + p22z

2
2 + p33z

2
3 − z1z2 . (3.83)
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The coefficients of (3.83), with c̄xr = µmaxFzrBrCr are defined as

p11 =
γ12Jrkc

√
ϵ+ c̄xrdcr

2
r + 6Jrkc

√
ϵ+ 12d2c

√
ϵ

12Jrdc
√
ϵ

(3.84a)

p22 =
γ12Jrkc

√
ϵ+ c̄xrdcr

2
r + 6Jrkc

√
ϵ

24kcdc
√
ϵ

(3.84b)

p33 =
m

Jr
p22 , (3.84c)

where γ > 0 parametrizes a family of parametric Lyapunov functions for the zero dynamics of
the TCS. First, it is shown that (3.83) qualifies as a Lyapunov function candidate.

Theorem 1. Take γ > 0. Then, the function V (z) is a Lyapunov function candidate for all
possible vehicle parameters.

Proof. From (3.83) it follows that V (z) is a quadratic form. A necessary and sufficient condition
for a real symmetric matrix P = P T to be positive definite is that all its leading principal minors
are positive. These are given by ∆1 = p11, ∆2 = p11p22−1/4 and ∆3 = p11p22p33−p33/4 = p33∆2.
Since the diagonal elements of P are strictly positive, it is sufficient to show that ∆2 > 0.
Rearranging the resulting equation gives

∆2 =
γ

2
+ γ2

kcJr
2d2c

+ γ
(Jrkc
2d2c

+
c̄xrr

2
r

12dc
√
ϵ

)
+

c̄xrdcr
2
r

24Jrkc
√
ϵ
+
Jrkc
8d2c

+
c̄xrr

2
r

24dc
√
ϵ
+

c̄2xrr
4
r

288Jrkcϵ
. (3.85)

Then ∆2 > γ/2 > 0, so P ≻ 0 for all vehicle parameters.

Remark 20. The Lyapunov function we proposed in [305] is given by taking γ = 7/2 and can
therefore be considered as a special case of the more general form (3.83).

Remark 21. Choosing γ < 0 would not necessarily make ∆2 in (3.85) negative. However, its
sign would then depend on the vehicle parameters and could be made negative by some parameter
combinations. In order to prove parameter independent stability of the zero dynamics, we select
γ > 0 without loss of generality. The case γ = 0 is excluded for the case of a time-varying friction
coefficient, as will be discussed later.

Remark 22. Note that (3.83) was not obtained by solving the Lyapunov equation of the linearized
zero dynamics. In particularly, such an approach would require the choice of an appropriate Q
matrix, which has to be chosen such that the result is a global Lyapunov function for the nonlinear
system, which is a non-trivial task. The standard choice Q = I3 does not work here, because the
resulting time derivative of this specific Lyapunov function candidate will not be globally negative
definite for all vehicle parameters. Therefore, the Lyapunov function was constructed manually
such that all the required inequalities are satisfied.

Since (3.83) is a valid candidate Lyapunov function, we now show that V̇ (z) ≺ 0 holds for
all vehicle parameters and that the zero dynamics are therefore globally asymptotically stable,
which is one of the main stability results regarding TCSs.

Theorem 2. The nonlinear zero dynamics of the TCS are globally asymptotically stable in the
sense of Lyapunov for all vehicle parameter combinations.

Proof. The time derivative of (3.83) can be partitioned by factoring out the tire force

V̇ (z) = V̇1(z) + V̇2(z) (3.86)
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with the vehicle parameter dependent substitutions

V̇1(z) = −
2kc
Jr
z21 −

(
2γ +

dcc̄xrr
2
r

6Jrkc
√
ϵ

)
z22 −Astρcw

( γ

2dc
+

1

4dc
+

c̄xrr
2
r

24Jrkc
√
ϵ

)
|z3|z23 (3.87)

V̇2(z) = Fxr

(γz3
dc
− γrrz2

dc
− rrz2

2dc
+

z3
2dc

+
rrz1
Jr
− c̄xrr

3
rz2

12Jrkc
√
ϵ
+

c̄xrr
2
rz3

12Jrkc
√
ϵ

)
. (3.88)

Since the vehicle parameters are strictly positive and the mixed term z1z2 is canceled out, V1(z) ≺
0. It remains to show that V2(z) can not make (3.86) positive or zero for some z, except at the
origin. The idea is to rearrange the definition of the wheel slip as rrz2 − z3 = λxrvnr. Then,
V̇2(z) can be written as

V̇2(z) = −
γvnr
dc

λxrFxr −
vnr
2dc

λxrFxr −
c̄xrvnrr

2
r

12Jrkc
√
ϵ
λxrFxr +

rr
Jr
z1Fxr . (3.89)

Both Fxr and λxr have the same sign by Lemma 1 and vnr is strictly positive by Lemma 5, so the
first three terms in (3.89) are never positive. It remains to show that the last term, rrJ

−1
r z1Fxr,

cannot dominate the other terms. In the following, we assume without loss of generality, that
λxr ̸= 0. This is valid, because if λxr = 0⇒ V̇2(z) = 0 and so (3.86) will be negative definite since
then V̇ (z) = V̇1(z). Moreover we can assume that z1 ̸= 0, because if z1 = 0, then V̇2(z) ≤ 0 since
the remaining terms are non-positive. After these considerations, we can move the quadratic z1
term from V̇1 to V̇2 to form

V̇3(z) = V̇2(z)−
2kc
Jr
z21 . (3.90)

Since λxr ̸= 0, z2 or z3 will be non-zero and so the remaining terms in V̇1 will be non-positive.
Therefore, if additionally V̇3(z) ≺ 0, then also V̇ (z) ≺ 0. Note that (3.90) is a quadratic equation
in z1, which is negative for z1 = 0, λxr ̸= 0. So if V̇3(z) could be made positive, the quadratic
equation V̇3(z) = 0 would have real solutions. The discriminant of this equation, with respect to
z1, is given by

discz1(V̇3) = −
8vnrkcγ

Jrdc
λxrFxr −

4kcvnr
Jrdc

λxrFxr −
2c̄xrr

2
rvnr

3J2
r

√
ϵ
λxrFxr +

r2r
J2
r

F 2
xr . (3.91)

By Lemma 4, it holds that |c̄xrλxr| ≥ |Fxr| so we can bound (3.91) like

discz1(V̇3) ≤ −
8vnrkcγ

Jrdc
λxrFxr −

4kcvnr
Jrdc

λxrFxr −
2c̄xrr

2
rvnr

3J2
r

√
ϵ
λxrFxr +

r2r
J2
r

Fxr c̄xrλxr . (3.92)

So if the right-hand side of (3.92) is always negative, then also discz1(V̇3) < 0. Since by assumption
λxr ̸= 0 and so Fxr ̸= 0, the λxrFxr term is strictly positive and can be canceled out. Therefore,
it remains to show that

− 8vnrkcγ

Jrdc
− 4kcvnr

Jrdc
− 2c̄xrr

2
rvnr

3J2
r

√
ϵ

+
r2r
J2
r

c̄xr < 0 . (3.93)

The vnr term is strictly positive and a function of the state variables z2 and z3. However,
it appears only in the negative terms in (3.93). So if vnr attains its minimum value and the
r2rJ

−2
r c̄xr term is still dominated, then (3.93) holds for all z. By Lemma 5, the global minimum

of vnr is given by 3
√
ϵ/2, so

discz1(V̇3) ≤ −
(2γ + 1)6kc

√
ϵ

Jrdc
. (3.94)

From this follows, that if γ > −1/2 then discz1(V̇3) < 0. As discussed in the proof of Theorem 1
and Remark 21, the value of γ is restricted to γ > 0. Therefore, the discriminant (3.91) is strictly
negative and so V̇3(z) = 0 has no real solutions. Therefore, V̇ (z) ≺ 0 and the origin is globally
asymptotically stable in the sense of Lyapunov for all vehicle parameters.
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The result above can be readily extended to the case that the friction coefficient of the road is
time-varying, generalizing our result from [304] to the case γ > 0.

Corollary 1. The zero dynamics (3.50) are globally asymptotically stable for all vehicle param-
eters and bounded positive time-varying friction coefficients µ : R+

0 → (0, µmax].

Proof. The function V (z) is bounded from below and above by V (z)/η1 ≤ V (z) ≤ η1V (z) with
η1 ≥ 1 as V (z) does not depend on time explicitly. The time derivative of V is given, analogously
to (3.86) by V̇ (z, t) = V̇1(z) + V̇2(z, t), since Fxr(t) now is time-varying. At each time instant
t we have |Fxr(t)| ≤ cxr(t)|λxr| ≤ c̄xr|λxr| with cxr(t) = µ(t)CrBrFzr, so the argument used for
Equation (3.92) still applies. Again we assume λxr ̸= 0 because otherwise V̇ (z, t) ≤ V̇1(z), so
in this case V̇ (z, t) is trivially bounded by a negative definite function from above. If λxr ̸= 0,
an upper bound for V̇ (z, t) is V̇1(z) + 2kcJ

−1
r z21 , which is only negative semi-definite. However,

note that in (3.90), we can as well move only a portion of the quadratic z1 term from V̇1(z) to
construct the resulting quadratic equation

V̇
′
3 (z, t) = V̇2(z, t)− η2

2kc
Jr
z21 , with η2 =

c̄xrdcr
2
r

c̄xrdcr2r + 6Jrkc
√
ϵ
. (3.95)

Since η2 ∈ (0, 1), the portion −(1− η2)2kcJ−1
r z21 will remain in V̇1(z). Repeating the procedure

from Theorem 2 with the modified quadratic equation V̇
′
3 (z, t) = 0 results in a new parametric

bound for the discriminant, given by

discz1(V̇
′
3 ) ≤ −η2

12γkc
√
ϵ

Jrdc
. (3.96)

Selecting γ > 0 guarantees that V̇
′
3 (z, t) ≺ 0 and V̇ (z, t) ≤ V̇1(z) + η22kcJ

−1
r z21 ≺ 0. Therefore,

the zero dynamics remain globally asymptotically stable for time-varying µ : R+
0 → (0, µmax].

Remark 23. By Theorem 2 and Corollary 1, it is shown that global stability holds for all possible
parameter combinations and variations of the friction coefficient of the road. Furthermore, it
also shows that stability holds for other tire friction models than (3.6), in especially for more
complicated static tire models. As long as λxrFxr > 0 for λxr ̸= 0, Fxr = 0 for λxr = 0 and
c̄xr|λxr| ≥ |Fxr|, the friction curve can have an arbitrary, even time-varying, characteristic. This
includes tire models which have a longitudinal slip stiffness that is not a function of µ and provides
a strong robustness result on the global stability of the nonlinear zero dynamics.

Remark 24. The limitation that µ > 0 is required in Corollary 1 can be relaxed since for µ = 0,
the time derivative (3.86) of the Lyapunov function (3.83) reduces to (3.87), which is a negative
definite function that does not depend on time explicitly. In practice, the case of zero tire friction
can realistically only occur if the rear axle lifts off (as then the normal force also becomes zero),
a scenario that is not further pursued here. Nevertheless, asymptotic stability is preserved even
for time-varying friction coefficients of the form µ : R+

0 → [0, µmax], so particularly including the
case that µ = 0 , ∀t ∈ R+

0 . However, a strictly positive lower bound for the friction coefficient is
required for showing exponential stability, as will be discussed in Section 4.3.1.

Remark 25. In addition, since ϵ is a model parameter as well, it follows that stability also holds
for arbitrary ϵ > 0. Therefore, the normalization speed (3.9) can be approximated to an arbitrary
accuracy, using the proposed smooth version (3.19).

The classical approach proposed by Aizerman and Gantmacher is based on an application of
the S-procedure [6]. In Theorem 2, symbolic discriminant analysis is used instead, which can be
used in this case to prove stability independently of the vehicle parameters. This concludes the
stability analysis of the zero dynamics of theM5 synthesis model for a 2WD TCS design based
on the method of IOL. In the following, these results are extended to both theM7 and theM9

synthesis model, in order to prove global asymptotic stability for all vehicle parameters for the
4WD control designs based on IOL as well.
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3.3.2.2 Generalization of Stability Results to the 4WD Cases

Following, the 4WD case is investigated, starting with the M7 model with the assumption of
a stiff connection between the ETC and the front axle as described in Section 3.2.3. The zero
dynamics in this case are identical to the 2WD case, with the exception of the last equation, where
the additional Fxf,0 term enters (3.63). As demonstrated in our previously published work [300],
the system remains globally asymptotically stable for all parameters. This can be shown by using
the same Lyapunov function as for the 2WD case (3.83).

Theorem 3. The nonlinear zero dynamics of the 4WD TCS with stiff connection between the
ETC and the front axle are globally asymptotically stable in the sense of Lyapunov for all vehicle
parameter combinations and time-varying friction coefficients µ : R+

0 → (0, µmax].

Proof. Consider the Lyapunov function from (3.83). By Theorem 1, it is known that V (z) ≻ 0.
The time derivative in the case of the 4WD drivetrain with stiff connection between the ETC
and the front axle can be expressed in terms of the time derivative from the 2WD case and a
separate term by

V̇M7(z) = V̇ (z) +
( γ
dc

+
1

2dc
+

c̄xrr
2
r

12Jrkc
√
ϵ

)
z3Fxf,0 , (3.97)

where V̇ (z) ≺ 0 is the time derivative of the 2WD case from Theorem 2. Since γ > 0, the factor
in front of the z3Fxf,0 term is strictly positive. Therefore, if z3Fxf,0 ≤ 0, then automatically
V̇M7(z) ≺ 0. Because ωf = y2 = 0 by output zeroing and Fxf,0 is symmetric about the origin, it
suffices to consider three cases for z3 as shown in [300]:
(i) z3 > 0 and y2 = 0⇒ λxf < 0⇒ Fxf,0 < 0⇒ z3Fxf,0 < 0.
(ii) z3 < 0 and y2 = 0⇒ λxf > 0⇒ Fxf,0 > 0⇒ z3Fxf,0 < 0.
(iii) z3 = 0 and y2 = 0⇒ λxf = 0⇒ Fxf,0 = 0⇒ z3Fxf,0 = 0.
This shows that z3Fxf,0 ≤ 0, so V̇M7(z) ≺ 0 and by Corollary 1 it also follows immediately that
V̇M7(z) ≤ V̇1(z) + η22kcJ

−1
r z21 . Hence, the origin is globally asymptotically stable for all vehicle

parameters and bounded positive time-varying µ(t).

Remark 26. Theorem 3 shows that the same Lyapunov function that could be used to prove
stability of the zero dynamics in the 2WD case, can also be used in the 4WD case for the M7

model with a stiff connection between ETC and front axle. This is despite the fact that in this case
the system model has 7 states instead of 5, because due to the MIMO control law, a vector relative
degree of

[
2 2

]
results, instead of a scalar relative degree of 2 in the 2WD case. Therefore, the

resulting zero dynamics have a dimension of 3 in both cases, which enables the use of the same
Lyapunov function as in the 2WD case.

In the following, the case of a vehicle with on-demand 4WD torque bias system and torsional
dynamics between the ETC and the front axle, namely the M9 model, will be considered as
well. In this case, as shown in Section 3.3.1.3, the resulting zero dynamics increase in dimension,
leading to an overall dimension of 5. This means that the Lyapunov function from the 2WD
case and the 7-state 4WD case is not directly applicable anymore. Nevertheless, in the following
a method is proposed that shows how the Lyapunov function from these cases can be slightly
modified in order to be applicable to the 5-dimensional zero dynamics of theM9 model as well.
Recalling the 5-dimensional zero dynamics in the 4WD case from (3.79) gives

ż1 = −z2 (3.98a)

ż2 =
(
2(kcz1 − dcz2

)
− rrFxr)/Jr (3.98b)

ż3 = (Fxf + Fxr − Fw)/m (3.98c)

ż4 = −z5 (3.98d)

ż5 =
(
2(kez4 − dez5

)
− rfFxf )/Jf . (3.98e)
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Looking at (3.98), if Fxf = 0 would hold then (3.98a)-(3.98c) would be independent of z4, z5 and
describe exactly the 2WD case with rear drive, which was proven to be globally asymptotically
stable by Theorem 2. On the other hand, if Fxr = 0 would hold, equations (3.98c)-(3.98e) would
be independent of z1, z2 and describe the 2WD case with front drive, which is also covered by
Theorem 2, as only the parameters change in this case and Theorem 2 guarantees parameter
independent stability. So the two subsystems of (3.98) which are derived by setting the coupling
term in (3.98c) to zero, are globally asymptotically stable by Theorem 2. The question now is
whether the resulting coupled system is also stable and therefore, if a conclusion about stability
of the overall system can be drawn from analyzing the uncoupled subsystems. Indeed this idea
can be generalized to the case of n such subsystems as follows.
Given n globally asymptotically stable dynamical systems Σ1,Σ2, . . . ,Σn, each with unique

equilibrium at the origin and radially unbounded Lyapunov functions V1, V2, . . . , Vn as

Σ1 :

{
ẋ1 = f1(x1, z1)

ż1 = g1(x1, z1)
, with V1(x1, z1) =W1(x1) + U(z1) , (3.99a)

Σ2 :

{
ẋ2 = f2(x2, z2)

ż2 = g2(x2, z2)
, with V2(x2, z2) =W2(x2) + U(z2) , (3.99b)

...

Σn :

{
ẋn = fn(xn, zn)

żn = gn(xn, zn)
, with Vn(xn, zn) =Wn(xn) + U(zn) , (3.99c)

with xi ∈ Rni and zi ∈ Rnz ,∀i ∈ {1, 2, . . . , n}. Define the composite dynamical system Σc of
dimension nc = nz +

∑n
i=1 ni, coupled by the state vector z ∈ Rnz , as

Σc :



ẋ1 = f1(x1, z)

ẋ2 = f2(x2, z)
...

ẋn = fn(xn, z)

ż = αc
(
g1(x1, z) + g2(x2, z) + · · ·+ gn(xn, z) + d(z)

)
,

(3.100)

with αc > 0. Then, the next fact is derived by combining the individual Lyapunov functions.

Lemma 13. The system (3.100) is globally asymptotically stable if its subsystems are globally
asymptotically and of the form (3.99) and

∑n
i=1 V̇i(xi, zi)+d(z)∂U(z)/(∂z) < 0 , ∀z ̸= 0nz . The

last condition is trivially satisfied for d(z) = 0nz . A Lyapunov function is given by

Vc(x1,x2, . . . ,xn, z)
def
= (1/αc)U(z) +

n∑
i=1

Wi(xi) . (3.101)

Proof. Since U , scaled by 1/αc > 0, is positive definite in z and Wi positive definite in xi, the
sum (3.101) is positive definite in ξT=

[
x1 x2 . . . xn z

]
, so Vc is positive definite. Moreover,

V̇c(ξ) = (1/αc)
∂U(z)

∂z

(
αcd(z) +

n∑
i=1

αcgi(xi, z)
)
+

n∑
i=1

∂Wi(xi)

∂xi
f(xi, z) (3.102)

=
∂U(z)

∂z
d(z) +

n∑
i=1

V̇i(xi, z) . (3.103)

The second term in (3.103) is the sum of individual derivatives and each is negative definite in
(xi, z) since each subsystem Σi is asymptotically stable, the sum is negative definite in ξ. Since∑n

i=1 V̇i(xi, zi) + d(z)∂U(z)/(∂z) < 0 , ∀z ̸= 0nz , Σc is globally asymptotically stable.
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Theorem 4. The zero dynamics (3.79) of the M9 model are globally asymptotically stable for
all vehicle parameter combinations.

Proof. Construct the two auxiliary dynamical systems Σ1 and Σ2 by

Σ1 :

 q̇1 = f1(q1, p1) =

[
−z2(

2(kcz1 − dcz2
)
− rrFxr)/Jr

]
ṗ1 = g1(q1, p1) = (Fxr − Fwr)/m

(3.104a)

Σ2 :

 q̇2 = f2(q2, p2) =

[
−z5(

2(kez4 − dez5
)
− rfFxf )/Jf

]
ṗ2 = g2(q2, p2) = (Fxf − Fwf )/m

(3.104b)

where qT1 =
[
z1 z2

]
and qT2 =

[
z4 z5

]
. Here, Fwr = Fw with Fw given by (3.12), where vx is

replaced by p1. Analogously, Fwf = Fw with Fw again given by (3.12), but vx replaced with p2.
Furthermore, Fxr is given by (3.6) and (3.21) where ωr is replaced by z2 and vx by p1. Finally,
Fxf is given by (3.26) and (3.28) where ωf is replaced by z5 and vx by p2.
The first system Σ1 is identical to the zero dynamics of the 2WD case with RWD, see (3.50).

The system Σ2 represents the zero dynamics of the 2WD case with FWD. Global asymptotic
stability of Σ1 and Σ2 follows from Theorem 2, as stability was shown there for all possible
vehicle parameters. The corresponding Lyapunov functions for Σ1 and Σ2 are obtained as

V1(q1, p1) =W1(q1) + U(p1) = q
T
1 P 1q1 + p21 (3.105a)

V2(q2, p2) =W2(q2) + U(p2) = q
T
2 P 2q2 + p22 (3.105b)

where P 1 and P 2 are defined in the Appendix A.2. The composite system (3.100) is constructed
with αc = 1 and f1, f2, g1, g2, q1, q2 from (3.104), d(p) = (1/2)ρcwAstp|p|/m, p = z3 and

Σc :


q̇1 = f1(q1, p)

q̇2 = f2(q2, p)

ṗ = g1(q1, p) + g2(q2, p) + d(p) ,

(3.106)

which is identical to the zero dynamics (3.98) of theM9 synthesis model. By (3.101), a Lyapunov
function suitable for (3.106) can be constructed by VM9(q1, q2, p) = qT1 P 1q1 + qT2 P 2q2 + p2.
Since d(p) ̸= 0, this term must be examined as well. Since the derivative can be brought into the
form V̇M9(q1, q2, p) = ν̇M9(q1, q2, p) + 2p d(p) where ν̇M9 is negative definite in (q1, q2, p) and
compensates the p d(p) term, it follows that V̇M9(q1, q2, p) ≺ 0. This can be seen as V̇M9 can
be expressed in terms of the derivatives of the 2WD Lyapunov functions for RWD and FWD as
shown in Appendix A.2, so global asymptotic stability of (3.98) follows by Lemma 13.

It can be noted that the zero dynamics of theM9 model (3.79) also arise for an IOL TCS design
of an electric vehicle with four in-wheel motors, when considering only the longitudinal motion. A
proof of global asymptotic stability for this case, assuming constant friction coefficients, is given by
our colleague Lupberger et al. [183], using a variant of the parametric Lyapunov function (3.83),
where the required inequalities are derived analogously to the proof of Theorem 2 and our original
proof from [305] for the 2WD case. Lemma 13 and Theorem 4 generalize the approach from [183]
to all composite nonlinear systems of the form (3.99)-(3.100). Time-varying friction coefficients
in (3.79) are considered in Section 4.3.1.

This concludes the stability analysis of the zero dynamics resulting from an IOL based control
design for the three synthesis models considered in this work. In the following section, some
practical considerations for an implementation of the derived control laws are given. This includes
the choice of the reference dynamics for the linearized substitute model resulting from the IOL
design and considerations for tracking of ramp-shaped reference trajectories.
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3.4 Reference Dynamics and Practical Considerations

After the stability analysis in the previous section, the design of reference dynamics and some
practical considerations of the proposed TCS are given. First, we focus on the reference dynamics
of theM5 2WD synthesis model from (3.22). The control law (3.41) globally linearizes the input-
output relation of the M5 model and since the relative degree is two, the resulting substitute
model has the dynamics of a double integrator ÿ1 = v1. However, it is possible to impose different
linear dynamics on the system as well [256, pp. 116–118], by setting

v1
def
= ÿ1

!
= −a1ẏ1 − a0y + b0w1 (3.107a)

y1(t) c sY1(s) = R1(s)W1(s) (3.107b)

R1(s) = b0/(s
2 + a1s+ a0) . (3.107c)

Here, a0, a1 and b0 are design parameters of the reference model R1(s) in (3.107c). Taking for
example b0 = 1 and a0 = a1 = 0 results in the standard double integrator. We propose the
following method for designing R1(s): ideally, the behavior from u1 to y1 would be a first order
lag element in series with an integrator. This accounts for first order actuator dynamics and the
transfer from motor torque to the angular velocity of the crankshaft. This is the case for a rigid
drivetrain, so that ∆ϕc = ∆ϕ̇c = 0 and under the assumption of linear, stationary tire forces
such that Fxr ≈ cxrλxr ≈ constant. Clearly, then also ωc/iG = ωr and so Tr = iGTm/2. Note
that while (3.4) would suggest Tr = 0 under these assumptions, this equation cannot be used for
a rigid drivetrain as kc →∞. TheM5 model then simplifies to

ẋ1 = (u1 − x1)/τm (3.108a)

ẋ3/iG = ẋ4 =
(
iGx1 − d̂(λxr)

)
/Jr . (3.108b)

Here, d̂(λxr) = rrcxrλxr ≈ constant is an uncertain disturbance that encapsulates a range of wheel
slip conditions at different longitudinal speeds. Following, (3.108a)-(3.108b) can be interpreted as
a first order lag element in series with an integrator and an uncertain ramp-disturbance d(λxr, t) =
d̂(λxr)t/Jr. Hence, a natural choice for the parameters of R1(s), compare [305], is

a0 = 0 (3.109a)

a1 = 1/τm (3.109b)

b0 = iG/(τmJr) . (3.109c)

Remark 27. These assumptions are only valid for linear, stationary driving conditions. While
these conditions are not the use case of a TCS, the proposed reference model implements the
desired behavior as it “corrects” only the nonlinearities, but does not modify the linear dynamics.

Remark 28. In the control laws (3.41), (3.56) and (3.70), the quantity iG = iair is used, where
ia is piecewise constant as it depends on the selected gear. In order to ensure a smooth transition
during gear switching, ia is lowpass filtered. For (3.109c) we use a constant iG, corresponding to
the second gear, in order keep the reference dynamics time-invariant.

Hence, the linearized system behaves from w1 to y1 like the transfer function iG/
(
Jrs(τms+1)

)
.

Since this is a type 1 system and one task of the TCS is to track ramp-like reference trajectories
during acceleration, an additional integrator is required in the forward path of the loop in order
to achieve zero asymptotic tracking error, compare Table 2.1. This can be realized by a PID
controller that is designed for the reference system R1(s) and is given by

W1(s) = CPID(s)E1(s) (3.110a)

CPID(s) = kp +
ki
s
+

kds

τds+ 1
. (3.110b)
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Here, W1(s) s cw1(t) and E1(s) s c e1(t) def
= r1(t) − y1(t) where e1(t) is the error signal

for the PID controller CPID(s), r1(t) is the reference trajectory, y1(t) the system output and
w1(t) the input for the reference model (3.107a). Moreover, kp, ki and kd are proportional,
integral and derivative gain, τd is the derivative filter time constant. It can be noted that zero
asymptotic tracking error would also be achieved by the original double integrator, since this
is a type 2 system. However, the above formulation has the advantage that a standard PID
controller can be used in combination with the IOL design, which is desirable from a parameter
tuning perspective. Moreover, in order to take actuator limits into account, the integrator of the
PID controller is implemented with the standard anti-windup method which depends on both
control signal saturation and the sign of the error signal [66], using the following state-space
representation for the PID controller with anti-windup,

ẋi = e1(1− σs) (3.111a)

ẋd = (−1/τd)xd + e1 (3.111b)

w1 = kixi − (kd/τ
2
d )xd + (kp + kd/τd)e1 . (3.111c)

Here, xi is the integrator state and xd the state of the derivative filter. The integrator depends
on the boolean switching signal σs ∈ {0, 1}, indicating a control signal saturation by

σs =

{
1 , (u1 < u1,min ∨ u1 > u1,max) ∧ (e1u1 ≥ 0) (3.112a)

0 , otherwise. (3.112b)

Doing so ensures that the integrator can still “integrate away” from the control limits u1,min and
u1,max and is only put on hold if it would try to go beyond these bounds. This is preferable over
the common method of just stopping the integration if the control signal is saturated, see [247]
for a detailed investigation. The control signal itself is subject to the saturation by

ū1 = sat(u1, u1,min, u1,max)
def
=


u1,max , u1 > u1,max

u1 , u1,min ≤ u1 ≤ u1,max

u1,min , u1 < u1,min .

(3.113)

An important aspect for practical implementation is that the control law (3.41) still contains
the ẋ3 and ẋ4 terms. It is not desirable to insert the actual ODEs for these terms, as they contain
quantities like tire parameters, the friction coefficient of the road and other uncertain variables.
A more useful approach in practice is therefore to estimate these terms numerically with filters
like ẏ1(t) c s sY1(s) ≈ Fy1(s)Y1(s), ẋ4(t)

c s sX4(s) ≈ Fx4(s)X4(s), where Y1(s) s c y1(t),
X4(s) s cx4(t) and

Fy1(s) = Fx4(s) = s/(τds+ 1) . (3.114)

This has the advantage that the control law does not depend directly on the nonlinear, uncertain,
time-varying tire force, as it is implicitly included in the numerically calculated ẋ4 term. Choosing
a different mapping for the tire force in the design model would not change the control law itself.
Similarly, it avoids the occurrence of the twist angle in the control law, which eliminates the need
of an observer for this quantity. The actuator torque x1 is not measured but calculated by (3.1).

Remark 29. The stability analysis in Chapter 3 and Chapter 4 is based on an exact IOL, showing
that such a design is feasible in theory. In practice, the IOL is achieved only approximately, due to
parameter uncertainties, time delays, unmodeled dynamics, discretization, actuator limitations,
measurement noise and the numerical approximation of x1, ẋ3 and ẋ4. An experimental validation
of the assumption that the errors introduced by these limitations are neglectable in practice is
presented in Chapter 6, which shows the real world suitability of the proposed TCSs.

Another aspect of the overall TCS is the reference generator which computes a target trajectory
r1 for the speed controller based on the driving situation. It is located on the DCU and transmits
the reference trajectory r1 for the system output y1 = x3/iG to the ECU, cf. Figure 2.3.
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Generally, as the task is to maximize traction, the reference generator aims to generate a target
speed that corresponds to a traction maximizing wheel slip. In the simplest case, this slip value
can be obtained from Equation (3.14a), such that λxr,d = λ+xr,peak = tan

(
π/(2Cr)

)
/Br where

λxr,d is the desired target wheel slip. This slip can then be converted to an angular velocity,
assuming positive acceleration rrx4 > x5 > 0, by solving (2.1c) for ωr, by

r1 = x5/
(
rr(1− λxr,d)

)
. (3.115)

In practice, the target wheel slip cannot be calculated a priori exactly, as its optimal value depends
on various other variables like the friction coefficient of the road, tire wear, road slope or lateral
acceleration during cornering, for example. Methods like online estimation of the tire force [129]
or the friction coefficient [236, 286], as well as extremum seeking algorithms [8, 292] can be used
to adapt the target slip value appropriately, see also [121, pp. 137–168]. In this work, we focus
on achieving robust performance of the inner control loop for potentially non-optimal reference
generation due to the mentioned uncertainties. The controller activation is implemented via

σa(k) =


1 e1(k) < 0 (3.116a)

0 e1(k) ≥ 0 ∧ Tdriver(k) < ū1(k) (3.116b)

σa(k − 1) otherwise (3.116c)

and σa(0) = 0. Here, σa ∈ {0, 1} is the boolean controller activation signal. As long as σa = 0, the
driver is the controller and the requested torque Tdriver is realized. If the scaled engine speed y1
exceeds the desired value r1, the TCS takes over and ensures that excessive wheel slip is avoided.
Optionally, the PID controller can be reset upon activation, while (3.116) can be debounced by
the condition that once active, σa(k) = 1 must be maintained for a certain time in order to avoid
repeated switching. The TCS is deactivated only if y1 ≤ r1 and the requested torque of the driver
is smaller than that of the controller. The final torque ũ1 is

ũ1(k) = min
(
Tdriver(k), ū1(k) + Û1

(
1− σa(k)

))
(3.117)

where Û1 is chosen large enough that ū1 + Û1 > Tdriver for all ū1 and Tdriver, which implements
a switch. As indicated by Equation (3.117), the controller is discretized for the digital micro-
controller of the ECU, here by using the Tustin transformation. Figure 3.4 shows the proposed
closed loop 2WD TCS based on IOL and the interconnection of the described components.
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Figure 3.4: Closed loop control system for traction control using ECU-based IOL [305].

68



3.4 Reference Dynamics and Practical Considerations

In the 4WD case, the implementation depends on the choice of the design model. For theM9

model, the control law (3.70) for the ETC has a structure similar to the 2WD case. Instead
of one damping term, which takes into account the difference between scaled engine speed and
rear axle speed, it has another damping term for the difference of the scaled ETC output speed
and the front axle speed. This also shows the advantage of the proposed method to use torsion
springs in the design model, as this leads to control laws that can readily be implemented by
using filters to estimate the required angular accelerations. However, one disadvantage is that
for each degree of freedom, two angular velocities are required: one “close” to the actuator and
one at the location of the load torque, respectively the tire/axle.

However, not every 4WD vehicle configuration necessarily has a sensor for the ETC output
speed. One possibility to overcome this issue is to design an observer for this quantity. In this
work, a simplification is used instead resulting in a more compact control design, by using the
control laws (3.53) and (3.56) based on the M7 model instead. Here, the connection between
the ETC and the front axle is modeled as stiff, which leads to an Ḟxf term in both control laws
and also a different second output y2. Since during control, drivetrain oscillations on the rear axle
are more dominant, this term is neglected by setting Ḟxf = 0. This can be justified as it leads
to an equivalent control law as for theM9 model, based on y2 = ωf instead of y2 = ωe/if , while
assuming the damping term from the IOL-induced PD controller for the front axle is neglected.
The experimental evaluation in Section 6.3.3 demonstrates that despite this simplification, the
proposed 4WD TCS achieves the desired performance and robustness.

Figure 3.5 shows the structure of the proposed 4WD TCS together with the three relevant
control units. The DCU provides reference trajectories for the control law (3.56) on the ECU
and for the control law (3.53) on the ETC. The omission of the Ḟxf term in the control laws
is indicated by the dashed arrows for the y2 signal in Figure 3.5. A remarkable aspect is the
coupling of the MIMO control law by the v2 term, which transmits information from the ETC to
the ECU. This coupling term was implemented by an prototypical software bypass between both
control units. The reference model on the ETC is v2 = b0,ew2−a1,eẏ2−a0,ey2 with a0,e = 0 while
the b0,e and a1,e terms started with a value of b0,e = if/(τeJf ), a1,e = 1/τe and were fine tuned
experimentally. The implementation of the remaining components, like activation, anti-windup
or filtering, was done analogously to the previously described 2WD case on the ECU. In the
following section, the proposed TCSs are analyzed from a passivity viewpoint to gain further
theoretical insights before the experimental evaluation.

ECU

ETC

PID
(rear)

PID
(front)

Ref.
(rear)

Ref.
(front)

IOL
(rear)

IOL
(front)

4WD
Vehicle

DCU

u1

y2

u2

w1

w2

v1

v2

e1

e2

y1−

y2−

Driving State

r1

r2

x1, x4

x6

Figure 3.5: Proposed MIMO control structure for 4WD TCSs based on IOL, adapted from [300].

69





4 Passivity and Absolute Stability Analysis of
the Zero Dynamics

Summary. In this chapter, the zero dynamics resulting from the application of the input-output
linearization technique to TCSs are analyzed from the viewpoint of passivity and absolute stability.
The main contributions are:

1. A detailed analysis of two different formulations of the zero dynamics as a Lur’e system in
the framework of absolute stability.

2. Proof of global, exponential, parameter-independent stability of the zero dynamics and input-
to-state stability of the internal dynamics of the proposed TCSs.

3. Proposal and conjecture of a special case of the Markus-Yamabe conjecture, located on the
frontier to the Kalman conjecture, resulting from the zero dynamics of the TCS.

This chapter is partially based on our publications [304] and [306].

4.1 Sector-boundedness of the Tire Force

An interesting property of the zero dynamics (3.50) is that they depend on two memoryless
nonlinearities, which are, when considered individually, sector bounded and passive, as defined in
Section 2.2.2. These functions are the aerodynamic drag force Fw, which lies in the sector [0,∞]
and the tire force Fxr, which lies in the sector [cxr, c̄xr]. Here, c̄xr = µmaxFzrBrCr > 0 is the
maximum longitudinal slip stiffness, which is positive and finite so Fxr is IFP. Furthermore,

cxr = (1/2)µminFzr sin
(
Cr arctan(2Br)

)
(4.1)

can be derived as lower sector bound, taking into account that λxr is bounded by Lemma 2.
Assuming now that the friction coefficient of the road is bounded from below by a positive
number, such that 0 < µmin ≤ µ(t) ≤ µmax <∞, then also 0 < cxr and Fxr is bounded like

(Fxr − cxrλxr)(Fxr − c̄xrλxr) ≤ 0 , (4.2)

with equality in (4.2) if and only if λxr = Fxr = 0. Hence, under the mentioned assumptions, Fxr
is also OFP. Figure 4.1 shows both nonlinear functions embedded into their corresponding sectors
(grey background color) and excess of passivity (blue background color). Figure 4.1a shows the
tire force curves with µ = µmin and µ = µmax and the excess of passivity. It can be noted that
the bound (4.1) holds mathematically, not only practically, due to the limited range of the wheel
slip. It is therefore different to the common approach of limiting the input to the nonlinearity
to a range of practical values, see for example [2, pp. 72–75], where this approach is applied
to a saturation nonlinearity. Figure 4.1b shows the aerodynamic drag force Fw as a function
of the longitudinal vehicle velocity vx. Since limvx→0 dFw/(dvx) = 0, (removable singularity at
vx = 0), Fw is not OFP, as its lower sector bound is the vx–axis. It could be made IFP by
assuming an upper bound on vx, however, as we already showed global asymptotic stability of
the zero dynamics in Theorem 2, this would add an artificial restriction, which is not necessary,
as will be shown in the following. Also, since the goal is to strengthen the stability guarantees
to exponential stability, the guaranteed decay rates would then also depend on such a bound.
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This is undesirable, as the guaranteed decay rates of a globally exponentially stable system
hold for the whole state space and so conclusions for all kind of vehicles with different maximum
speeds can be drawn. However, without an upper bound, any line will be eventually intersected
by Fw, which is effectively quadratic1 in vx, so the upper sector bound is the vertical axis at
vx = 0. Hence, Fw does not exhibit any excess of passivity, as indicated in Figure 4.1b.
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Figure 4.1: Visualization of passivity properties of Fxr and Fw assuming a lower bound on µ.

Due to these passivity properties of both nonlinearities, a promising way to further investigate
stability of the zero dynamics is the application of criteria for absolute stability or passivity based
methods [233], as discussed in Section 2.2.2. The zero dynamics constitute a very general form
of a Lur’e system [184] with multiple inputs, multiple outputs and multiple coupled, nonlinear,
time-varying functions. However, several difficulties arise when trying to apply these approaches
here. First, the discussed properties (with even an excess of passivity) of Fxr, were only shown
for Fxr as a function of λxr so far. However, the wheel slip λxr itself is a nonlinear function of
the state variables ωr and vx. This is the so-called unstructured case of a coupled, time-varying
MIMO nonlinearity, which is a rather special case, considered only rarely in the literature [108,
248]. Traditional tools like the extended Popov criterion are not applicable to the unstructured
case [222]. Safonov and Kulkarni showed that in the MIMO case, another standard tool like
Zames-Falb multipliers requires that the nonlinearity is the gradient of a potential function to
be applicable [248]. In addition, the nonlinearity is assumed to be incrementally positive, a
MIMO generalization of monotonicity [248], which does not hold for the nonlinearities analyzed
in Section 4.2, so this method is not applicable here. Considering Figure 4.1a this is no surprise,
as Fxr is non-monotone even in the SISO case as a function of λxr.
Methods for the unstructured case have been proposed already [108], however, with the draw-

back, that they mainly rely on numerical LMI solvers, which only prove stability numerically and
for a fixed set of parameters. This is typically also the case for analyses based on integral-quadratic
constraints [140, 238]. The well-known circle criterion by Sandberg [250] and Zames [288] is suit-
able for the unstructured case, but requires a strictly positive real linear part [149, pp. 264–265]
and like most methods, depends crucially on the system formulation. In the following, we provide
two different formulations of the zero dynamics of the TCS and show, that for TCSs, this has a
direct impact on the applicability of passivity based methods, even though both versions describe
the same dynamics. Following, we start with a direct formulation of the problem.

1The term “effectively” quadratic is used here to denote a piecewise quadratic function with switching point at 0.
Generally, we say that f : R → R with f(x) = cxn−1|x| is effectively of order n, where c ∈ R \ {0} and n ∈ N.
For example, Fw = (1/2)ρcwAstvx|vx|, as defined in (3.12), is effectively quadratic in vx.
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4.2 Passivity and Absolute Stability Analysis

4.2.1 Direct Lur’e Formulation

In order to analyze a system with the methods of absolute stability, it has to be put in Lur’e form,
if possible. Since in general such a formulation is not unique, a successful analysis can crucially
depend on the right formulation. This is also true for TCSs as will be shown in the following.
We start with a direct formulation of the TCS zero dynamics (3.50) in Lur’e form, cf. [304].
It is called direct Lur’e formulation here, because of the two states entering the nonlinearity
corresponding directly to the outputs by y1 = z2 and y2 = z3. The direct Lur’e form of the zero
dynamics is then given by an LTI system, in feedback with a nonlinear, sector bounded function
with zT =

[
z1 z2 z3

]
, uT =

[
u1 u2

]
, yT =

[
y1 y2

]
and

ż = Az +Bu =

 0 −1 0
2kc/Jr −2dc/Jr 0

0 0 −bc

 z +

 0 0
rr/Jr 0
−1/m 1/m

u (4.3a)

y = Cz =

[
0 rr 0
0 0 1

]
z (4.3b)

u = −ψ(y) = −
[
ψ1(y1, y2, t)
ψ2(y2)

]
= −

[
Fxr

Fw −mbcz3

]
. (4.3c)

Since the wheel slip is by definition a nonlinear function of the angular velocity of the wheel
and the vehicle velocity, it cannot be used directly as an output of the linear part of the Lur’e
system. To keep linearity in the forward channel, a MIMO formulation is necessary. The artificial
parameter bc ≥ 0 was introduced in order to be able to make A Hurwitz and is canceled out
by the mbcz3 term in the input u, so (4.3) represents the zero dynamics (3.50). For bc ̸= 0,
this corresponds to a loop transformation, compare for example [149, pp. 227–259]. Before we
continue, some preliminary results are derived for the Lur’e system (4.3a)-(4.3c).

Lemma 14. The system matrix A in (4.3a) is Hurwitz if and only if bc > 0.

Proof. The eigenvalues of the system matrix A, as functions of the vehicle parameters, are given
by λ1 = −bc and λ2,3 = −(dc±

√
d2c − 2Jrkc)/Jr. Since all vehicle parameters are assumed to be

strictly positive, dc > ℜ(
√
d2c − 2Jrkc) will always hold and so all eigenvalues are guaranteed to

have strictly negative real part.

This is expected, since for bc = 0 both the last row and column of the A matrix in (4.3a) are
zero, so feedback of z3 via the loop transformation is required in order to stabilize the linear part.
However, the LTI system is not passive even if bc > 0 such that A is Hurwitz.

Lemma 15. The linear part (4.3a)-(4.3b) of the zero dynamics is not passive.

Proof. By the Kalman-Yakubovich-Popov Lemma, compare (2.27) and Definition 32, a stable
LTI system as in (4.3a)-(4.3b) is positive real if and only if there exists P = P T ⪰ 0 such that

ATP + PA ⪯ 0 (4.4a)

PB = CT . (4.4b)

Assuming an arbitrary symmetric P , from (4.4b) it is immediate that P13 = P31 = P23 = P32 = 0
must hold. Fixing these values in P gives the equations P33/m = 1 and P33/m = 0, which have
no common solution. Therefore, the linear part of the zero dynamics is not positive real and thus
not passive, independently of bc.

It can be further noted that the loop transformation by output feedback of y2 = z3 relies on an
excess of passivity in the second channel of the nonlinearity ψ. However, as discussed previously
and indicated in Figure 4.1b, the aerodynamic drag Fw has no such excess of passivity.
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4 Passivity and Absolute Stability Analysis of the Zero Dynamics

Therefore it is expected that the nonlinearity will also fail to be passive for bc ̸= 0, which would
already prevent us from making A Hurwitz. However, a less expectable result is that even for
bc = 0, meaning that no loop transformation is applied, the nonlinearity is not passive.

Lemma 16. The nonlinearity (4.3c) of the zero dynamics is not passive for bc ≥ 0.

Proof. First, consider the case that bc > 0. For passivity, yTψ(y) ≥ 0 must hold. Define
k2 = (1/2)ρcwAst and k3 = mbc, then y

Tψ(y) = rrFxrz2 + k2|z3|z23 − k3z23 . Assume that z2 = 0
and that z3 ̸= 0. Then, the equation

k2|z3|z23 − k3z23 = 0 (4.5)

has the solutions z3 = ±k3/k2. Therefore, z2 = 0 and |z3| < k3/k2 will result in yTψ(y) < 0, no
matter how small bc > 0 is made.

Now consider the case that bc = 0 with k1, k2 defined as before and assume that z3 > rrz2 > 0
such that λxr < 0. Then, since for negative λxr by (4.2) we have cxrλxr ≥ Fxr, cf. also Figure 4.1a,
it follows that

rrcxrλxrz2 + k2|z3|z23 ≥ rrFxrz2 + k2|z3|z23 = yTψ(y) ≥ 0 (4.6)

must hold. Take z3 = 2rrz2 > rrz2 > 0 and λxr = (rrz2 − z3)/vnr with vnr > 0 by Lemma 5,
which results in the necessary equivalent conditions

rrcxrλxrz2 + k2|z3|z23 ≥ 0 (4.7a)

rrcxr(rrz2 − z3)z2 + k2vnr|z3|z23 ≥ 0 (4.7b)

−r2rcxrz22 + 8r3rk2ṽnr|z2|z22 ≥ 0 (4.7c)

where ṽnr = maxϵ(|rrz2|ϵ, |2rrz2|ϵ) > 0. Assume now that 0 < z2 < 1/(2rr), then ṽnr can be
bounded by a constant like 0 < ṽnr ≤ vc = maxϵ(|1|ϵ, |1|ϵ). So, after dividing both sides of (4.7c)
by z22 > 0, this means that

− r2rcxr + 8r3rk2vc|z2| ≥ 0 (4.8)

must hold. However, for 0 < z2 < min{1/(2rr), cxr/(8rrk2vc)}, this is impossible. Therefore, the
nonlinearity (4.3c) is not passive for bc ≥ 0.

This is interesting, because by looking at Figure 4.1, one would expect passivity of ψ. In this
specific formulation however, both subsystems are not passive. Since neither the linear part, nor
the nonlinear function of the Lur’e system is passive, no conclusion of stability can be drawn from
the absolute stability and passivity based methods here. Also a standard loop transformation
could not resolve this issue.
It is also worth noting that the Kalman conjecture does not apply here. It is well known that

the conjecture holds for systems of order n ≤ 3, see [16], and is false in the general case n > 3,
due to a counterexample by Fitts [68]. Here, the zero dynamics are of order n = 3, however,
the Kalman conjecture is not applicable for three reasons. First, the conjecture, as stated by
Kalman and investigated in the literature, does only cover SISO LTI systems in feedback with a
scalar, memoryless nonlinearity. Here, the linear part is a MIMO LTI system, in feedback with
a vector-valued nonlinearity. Second, it is only applicable to autonomous systems, while Fxr is
generally time-varying. Third, a necessary assumption imposed by the Kalman conjecture is that
the derivative of the nonlinearity with respect to its input is restricted to give a linear gain for
which the linear system is stable at every operating point. This makes the Kalman conjecture
a special case of the Markus-Yamabe conjecture (MYC), see [190]. It is known, by explicit
counterexamples [44], that this conjecture is wrong for systems of order n > 2 and true only for
n ≤ 2, see [67, 86, 96]. Moreover, it generally considers autonomous systems only. Therefore, it
is also not applicable to the zero dynamics (3.50). In addition, we show next that the necessary
condition of the systems linearization being locally stable at every operating point does not hold,
and so neither the Kalman conjecture nor the MYC is applicable here anyway.
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4.2 Passivity and Absolute Stability Analysis

Theorem 5. For any set of vehicle parameters, there exist operating points such that the Jacobian
linearization of the zero dynamics (3.50) at these points is locally unstable.

Proof. Let f(z) = Az −Bψ(Cz) with A, B, C and ψ from (4.3a). Its Jacobian is

Jf ,z(z) =

 0 −1 0
2kc/Jr −(1/Jr)

(
2dc + rr∂Fxr/(∂z2)

)
−(rr/Jr)∂Fxr/(∂z3)

0 (1/m)∂Fxr/(∂z2) (1/m)∂(Fxr − Fw)/(∂z3)

 , (4.9)

with characteristic polynomial pc(s) = det(sI3−Jf ,z(z)) = s3+ p2s
2+ p1s+ p0 and coefficients

p2 = 2dc/Jr −F(z)/m+ (rr/Jr)∂Fxr/(∂z2) (4.10a)

p1 = 2kc/Jr −
(
2dcF(z) + rr(∂Fxr/(∂z2))(∂Fw/(∂z3))

)
/(mJr) (4.10b)

p0 = −2kcF(z)/(mJr) , (4.10c)

where F(z) = ∂(Fxr − Fw)/(∂z3). If (4.9) is globally Hurwitz, then F(z) < 0 ,∀z ∈ R3 so that
the coefficients of pc(s) all have the same sign. As mentioned in Remark 19, z3 = 0 is a removable
singularity of ∂Fw/(∂z3) since limz3→0 ∂Fw/(∂z3) = 0, so for linearization at z3 = 0 this term
can be replaced with zero. Hence, (4.10c) requires that F0(z2) = ∂Fxr/(∂z3)|z3=0 < 0, with

F0(z2) =
−µFzrCrBr cos(Cr arctan(−Brλxr,0))

vnr,0(1 +B2
rλ

2
xr,0)

. (4.11)

Here, λxr,0 and vnr,0 denote (3.21) and (3.19) respectively, with z3 = vx = 0. Now assume z2 ̸= 0
since (4.9) is Hurwitz at the origin by Lemma 12. As Cr ∈ (1, 2), Br > tan

(
π/(2Cr)

)
, µFzr > 0,

see Section 3.2.1, and vnr,0 > 0 , ∀z2 ∈ R, F0(z2) < 0 requires cos(Cr arctan(Brλxr,0)) > 0. Take
z2 such that λxr,0 = λ∗xr = (λ+xr,peak + 1)/2 with λ+xr,peak from (3.14a). This is always possible
because 0 < λ∗xr < 1 by Lemma 3. As λxr,0 = 0 if z2 = 0 and limz2→∞ λxr,0 = 1, it follows by
continuity of λxr,0 that ∃z∗2 ∈ R : λxr,0 = λ∗xr. At z2 = z∗2 , z3 = 0, z1 ∈ R, p0 < 0 and so for any
vehicle parameters there exist operating points where (4.9) is locally unstable.

Remark 30. We proved Theorem 5 in [306] based on formulation (4.12) from Section 4.2.2.
Here, we use (4.3) instead. The result is the same as the Jacobian does not change.

Remark 31. Theorem 5 holds for all ϵ > 0. This condition can be relaxed to the case ϵ = 0,
which corresponds to using the traditional wheel slip (3.8) instead of the smoothed version (3.21).
For z2 > 0, z3 = 0⇒ λ∗xr = 1 for ϵ = 0 so cos(Cr arctan(Brλxr,0)) > 0 cannot be satisfied.

A physical interpretation of Theorem 5 is that (4.9) becomes unstable for operating points
located to the right of the positive peak or to the left of the negative peak of the tire force
curve. This is known for the 2-state model for TCSs [243] and ABSs [136], but not for the
zero dynamics of the M5 model. Theorem 5 shows that this property also holds for the zero
dynamics (3.50), despite the additional dissipative torsion spring, compared to the 2-state model.
Moreover, operating points can exist such that (4.9) is unstable even if Fxr is assumed to be
strictly monotone like Fxr = cxrλxr with cxr > 0 by (3.10b) and µ = 1. For example, using the
vehicle parameters from Table 6.1, ϵ = 10−6 and z2 = −z3 = 1 with (3.10a) for Fxr we still get
p0 < 0. This even is the case for the traditional 2-state model (2.1), which admits an unstable
Jacobian for the vehicle parameters from Table 6.1, ϵ = 10−6 and z2 = 5, z1 = −1 with µ = 1
and the monotone (3.10a) for Fxr. In both cases, this remains true even if ϵ = 0, which is only
seemingly in contradiction to [243], because there it is assumed that z2 and z3 have the same sign
when selecting an operating point for linearization (and a different definition for vnr is used).
However, this assumption is not valid for the question whether the Jacobian is globally Hurwitz,
which by Theorem 5 has a negative answer.

In the following, we propose a different Lur’e formulation for the zero dynamics, which in
contrast to the direct formulation (4.3) allows a passivity based analysis (3.50). Thereafter, this
formulation is used in Section 4.3.1 to extend the stability results from Theorem 2.
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4 Passivity and Absolute Stability Analysis of the Zero Dynamics

4.2.2 Sign-Preserving Lur’e Formulation

The direct formulation failed to separate the linear and nonlinear part of the zero dynamics such
that passivity based methods could readily be applied. However, it is possible to use a different
formulation [304], with ż = Az +Bu, y = Cz, u = −ψ(y), where

A =

 0 −1 0
2kc/Jr −2dc/Jr 0

0 0 0

 ,B =

 0 0
rr/Jr 0
−1/m 1/m

 ,C =

[
0 rr −1
0 0 1

]
and (4.12a)

ψ(y, t) =

[
ψ1(y1, y2, t)
ψ2(y2)

]
=

[
Fxr
Fw

]
. (4.12b)

Here, the relevant difference to the direct formulation is the C matrix, which has now C13 = −1
instead of zero. With this new formulation, it is not possible anymore to directly replace z2, z3
with y1, y2 in the nonlinear functions Fxr, Fw. However, they can be rewritten as

Fxr = µFzr sin(Cr arctan(Brλxr)) (4.13a)

λxr = y1/vnr (4.13b)

vnr = maxϵ(|y1 + y2|ϵ, |y2|ϵ) (4.13c)

Fw = (1/2)ρcwAsty2|y2| . (4.13d)

This slightly different formulation results in a passive nonlinearity.

Lemma 17. The nonlinearity (4.12b) with formulation (4.12a) and (4.13a)-(4.13d) is passive.

Proof. Again, for passivity, yTψ(y) ≥ 0 must hold, so vnrλxrFxr + y2Fw ≥ 0. By Lemma 5,
vnr > 0 and by Lemma 1 λxrFxr ≥ 0. Finally, y2Fw = (1/2)ρcwAsty

2
2|y2| ≥ 0, so the inequality

follows. Also, yTψ(y) = 0 ⇐⇒ y1 = y2 = 0, so yTψ(y) is positive definite in y.

Here, the main idea is that vnr can be reconstructed by the fact that rrz2 = y1+y2 as in (4.13c).
So, y1 has always the same sign as Fxr. Hence, we call this a sign preserving formulation. Another
advantage of this formulation is it resulting in a positive real/passive linear part [304].

Lemma 18. The linear system ż = Az +Bu, y = Cz with A,B,C from (4.12a) is passive.

Proof. Using again the Kalman-Yakubovich-Popov Lemma it is immediate that (4.4a)-(4.4b),
using A,B,C from (4.12a), admit the unique solution P = diag(2kc, Jr,m) ≻ 0.

This can be used to directly show some stability properties of the zero dynamics.

Lemma 19. The zero dynamics are Lyapunov stable and for constant µ, asymptotically stable.

Proof. Let Vs(z) = (1/2)zTPz ≻ 0 with P = diag(2kc, Jr,m). The time derivative is V̇s(z) =
−2dcz22 − z3Fw− (rrz2− z3)Fxr = −2dcz22 − z3Fw− vnrλxrFxr ⪯ 0, so Lyapunov stability follows.
For a constant friction coefficient µ, asymptotic stability follows by LaSalle’s invariance principle
because V̇s(z) = 0 ⇐⇒ z2 = z3 = 0 and ż2 = (2kc/Jr)z1 ̸= 0 if z1 ̸= 0. Therefore, only the zero
solution can remain in the set {z ∈ R3 : V̇s(z) = 0} and asymptotic stability follows.

The finding is not particularly new, as Theorem 2 and Corollary 1 already showed that the zero
dynamics are globally asymptotically stable, even for time-varying µ. This conclusion cannot be
reached by Lemma 19, as LaSalle’s invariance principle is limited to autonomous systems and
Barbalat’s Lemma would require additional assumptions like uniform continuity of the time-
varying function µ. Nevertheless, this result is interesting for three reasons. First, the proof itself
is significantly shorter and the derived Lyapunov function is less complicated than the one used
in Theorem 2. Second, it shows that the zero dynamics admit a formulation suitable for passivity
analysis. Third, this formulation can be combined with Theorem 2 to derive the even stronger
guarantee of global exponential stability, which is shown in the following.
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4.3 Extended Stability Results

4.3 Extended Stability Results

4.3.1 Exponential Stability of the Zero Dynamics

In this section, focus is set on investigating exponential stability of the zero dynamics (3.50). For
this purpose, it is shown how the results from Section 3.3.2 can be combined with the passivity
analysis from Section 4.2 in order to show exponential stability and, at the same time, keeping
the relevant coefficients simple. This section generalizes the results from our publication [304]
from the specific Lyapunov function with γ = 7/2 to the class of Lyapunov functions presented
in Section 3.3.2. First, we rewrite the time derivative of the Lyapunov function from Corollary 1
as follows

V̇ (z, t) = V̇a(z) + V̇b(z, t) (4.14a)

V̇a(z) = −q1(1− η2)z21 − q2z22 − q3z23 |z3| (4.14b)

V̇b(z, t) = −q4vnrλxrFxr + q5z1Fxr − q1η2z21 , (4.14c)

where V̇ depends on time because µ and hence Fxr is assumed to depend on time. Furthermore,
η2 ∈ (0, 1) is defined in (3.95) and q1, q2, q3, q4, q5 > 0 are given by

q1 = 2kc/Jr (4.15a)

q2 = 2γ + (c̄xrdcr
2
r)/(6kcJr

√
ϵ) (4.15b)

q3 = ρcwAst
(
γ/(2dc) + 1/(4dc) + c̄xrr

2
r/(24kcJr

√
ϵ)
)

(4.15c)

q4 = γ/dc + 1/(2dc) + c̄xrr
2
r/(12kcJr

√
ϵ) (4.15d)

q5 = rr/Jr . (4.15e)

The main difficulty for showing exponential stability of the zero dynamics is that (4.14a)
is effectively cubic in z3 due to the q3z

2
3 |z3| term, while the Lyapunov function (3.83) itself is

quadratic in z3. As indicated in (2.13), this prevents the direct conclusion that the zero dynamics
are exponentially stable. Instead, we first combine the Lyapunov function obtained with passivity
based methods Vs(z) = (1/2)(2kcz

2
1+Jrz

2
2+mz

2
3) from the proof of Lemma 19 with the Lyapunov

function V from (3.83) like
V(z) = V (z) + Vs(z) . (4.16)

This function is positive definite because both V and Vs are positive definite, so it qualifies as
a Lyapunov function candidate. After some rearrangements, its time derivative along solutions
of (3.50) can be written as

V̇(z, t) = V̇1(z, t) + V̇2(z, t) (4.17a)

V̇1(z, t) = −q̃1z21 − q̃2z22 − q̃3z23 |z3| − vnrλxrFxr (4.17b)

V̇2(z, t) = −q2z22 − q3z23 |z3|+ V̇b(z, t) , (4.17c)

where q̃1 = q1(1 − η2), q̃2 = 2dc, q̃3 = (1/2)ρcwAst. By Theorem 2 and Corollary 1, V̇b(z, t) ≤ 0
and hence V̇2(z, t) ≤ 0. Therefore, in order to show exponential stability it is sufficient to show
V̇1(z, t) ≤ −W (z) ≺ 0 for some W (z) = α1z

2
1 +α2z

2
2 +α3z

2
3 with α1, α2, α3 > 0. It can be noted

that aW of this form cannot exist for all z ∈ Rn if the last term in (4.17b) is omitted. This is due
to the q̃3z

2
3 |z3| term being (effectively) cubic in z3 and therefore it vanishes faster for z3 → 0 than

any quadratic term. However, in the following it is shown how the vnrλxrFxr term in (4.17a) and
therefore also V1 can be used to construct an appropriate upper boundW (z). It is already hinted
by (4.17) that the separation into (4.17b) and (4.17c) is advantageous for the analysis of V1, as
it avoids the more complicated coefficients q2, q3, q4 in V1. The next result shows the existence
of an appropriate upper bound W (z) and thereby global exponential stability, also generalizing
our results from [304] to the case γ > 0. After that, W (z) is constructed explicitly as well.
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Theorem 6. The zero dynamics (3.50) of the 2WDM5 model (3.22) are globally exponentially
stable for all vehicle parameters and bounded positive time-varying friction coefficients µ(t).

Proof. From (4.17) it follows that V1 is unchanged compared to the case γ = 7/2, so the case
γ > 0 follows from (4.17) in combination with our proof from [304], which is restated here. Since
the tire force is bounded like cx|λx| ≤ |Fx| by (4.2), it follows that V̇1(z, t) ≤ −U̇1(z) with

U̇1(z) = q̃1z
2
1 + q̃2z

2
2 + q̃3z

2
3 |z3|+ cx(rrz2 − z3)2/vnr . (4.18)

As cx as given in (4.1) is constant, the function U̇1(z) does not depend on time explicitly and it
suffices to show that

U̇1(z) ≥W (z) = α1z
2
1 + α2z

2
2 + α3z

2
3 , (4.19)

so α1 ≤ q̃1 and α2 ≤ q̃2 is a necessary condition. First, consider z1 ∈ R and (z2, z3) ∈ R2\(−1, 1)2.
However, if |z3| ≥ 1 then q̃3z

2
3 |z3| ≥ α3z

2
3 with α3 ≤ q̃3. If |z3| < 1, |z2| ≥ 1, it is required that

q̃2z
2
2 + q̃3z

2
3 |z3| ≥ α2z

2
2 + α3z

2
3 , hence it is necessary that (4.20a)

q̃2z
2
2 ≥ α2z

2
2 + α3z

2
3 , as q̃3z

2
3 |z3| < α3z

2
3 for z3 → 0. So, (4.20b)

(q̃2 − α2)z
2
2 ≥ α3z

2
3 , by rearranging and (4.20c)

(q̃2 − α2) ≥ α3 , to cover the “worst case”, |z2| = |z3| = 1. (4.20d)

The step from (4.20a) to (4.20b) is required because the quadratic term cannot be compensated
by the (effectively) cubic term for small z3, so we ensure the inequality holds even without the
q̃3z

2
3 |z3| term. Inequality (4.20d) follows by minimizing over |z2| ≥ 1 and maximizing over |z3| ≤ 1.

This shows that (4.19) is true for z1 ∈ R and (z2, z3) ∈ R2 \ [−1, 1]2 if α1 ≤ q̃1, α2 + α3 ≤ q̃2 and
α3 ≤ q̃3. Now, the portion of the state space where z1 ∈ R and (z2, z3) ∈ [−1, 1]2 is considered.
With z2, z3 constrained to this domain, vnr ≤ ṽnr = constant. This step is similar to the proof
of Lemma 16, just that here the constant upper bound is given by

ṽnr = maxϵ(|rr|ϵ, |1|ϵ) . (4.21)

Define q̃4 = cx/ṽn > 0, then for (z2, z3) ∈ [−1, 1]2 clearly U̇1(z) ≥ U̇2(z) with

U̇2(z) = q̃1z
2
1 + q̃2z

2
2 + q̃3z

2
3 |z3|+ q̃4(rrz2 − z3)2 . (4.22)

Hence, (4.19) holds if U̇2(z) ≥W (z) holds. It remains to show that δU̇2(z) = U̇2(z)−W (z) ⪰ 0.
Rewrite δU̇2(z) as

δU̇2(z) = (q̃1 − α1)z
2
1 +

[
z2 z3

]
Q

[
z2
z3

]
+ q̃3z

2
3 |z3| , (4.23a)

Q =

[
q̃4r

2
r + (q̃2 − α2) −q̃4rr
−q̃4rr (q̃4 − α3)

]
. (4.23b)

First, this requires α1 ≤ q̃1 which was derived earlier already. The requirement δU̇2(z) ⪰ 0 can
be ensured by choosing α2, α3 > 0 such that Q is positive definite. This is guaranteed if the
leading principle minors of Q are positive, specifically

∆1 = q̃4r
2
r + q̃2 − α2 > 0 (4.24a)

∆2 = q̃2q̃4 + α2α3 − q̃4α2 − q̃2α3 − q̃4r2rα3 > 0 . (4.24b)

Since the condition α2 ≤ q̃2 is already required by (4.20d) since α3 > 0, it is clear this also makes
inequality (4.24a) true as well because q̃4r

2
r > 0. The second condition (4.24b) can be made

true by taking α2, α3 > 0 small enough, because this makes ∆2 ≈ q̃2q̃4 > 0 up to an arbitrary
accuracy. This shows that there must always exist α1, α2, α3 > 0 such that Q ≻ 0 and at the
same time α1 ≤ q̃1, α2 + α3 ≤ q̃2 and α3 ≤ q̃3, which is true for all γ > 0. Therefore, the origin
of zero dynamics is globally exponentially stable for all possible vehicle parameters and bounded
positive time-varying friction coefficients of the road.
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4.3 Extended Stability Results

While Theorem 6 guarantees existence of an appropriate quadratic function W (z) such that
V̇(z, t) ≤ −W (z) ,∀z ∈ R3 and with that proves global exponential stability of (3.50), it is also
possible to construct an explicit W (z) based on the derived conditions.

Corollary 2. Let η2 ∈ (0, 1) be given by (3.95), ṽnr > 0 by (4.21) and c ∈ (0, 1). Let α1, α2, α3 >
0 be given by

α1 = 2(1− η2)kc/Jr (4.25a)

α2 = dc (4.25b)

α3 = min{dc, (1/2)ρcwAst, c dc/(dcṽnr + r2r)} . (4.25c)

Then, W (z) = α1z
2
1 +α2z

2
2 +α3z

2
3 satisfies U̇2(z) ≥W (z) with U̇2 from (4.22) and therefore also

V̇(z, t) ≤ −W (z) ,∀z ∈ R3.

Proof. Since by assumption all vehicle parameters are strictly positive, 0 < η2 < 1 and ṽnr > 0,
the condition that α1, α2, α3 > 0 is satisfied. From Theorem 6, there are four more conditions
that need to be satisfied. First, α1 ≤ q̃1 which is trivially true because by (4.25a) we have
α1 = q̃1. Second, α2 ≤ q̃2 is true because α2 = dc by (4.25b) and q̃2 = 2dc. It can be noted that
this condition is redundant as it is contained in the next condition. Third, α2 +α3 ≤ q̃2 which is
true since by (4.25b) α2 = dc and by (4.25c) α3 ≤ dc so α2+α3 ≤ 2dc = q̃2. Fourth, the condition
q̃2q̃4 + α2α3 − q̃4α2 − q̃2α3 − q̃4r2rα3 > 0 is required. After inserting α2 = dc from (4.25b) and
solving for α3, this gives

α3 <
dc

dcṽnr + r2r
. (4.26)

Since this inequality is satisfied for any c ∈ (0, 1) by (4.25c) it follows that W (z) is a valid upper
bound for (4.17a) for all possible vehicle parameters and the assertion is proven.

These results can readily be generalized to both 4WD cases considered previously.

Corollary 3. The zero dynamics (3.63) of the 4WDM7 model (3.30) are globally exponentially
stable for all vehicle parameters and bounded positive time-varying µ(t).

Proof. Use again (4.16) as Lyapunov function and observe that its time derivative along solutions
of the zero dynamics (3.63) can be written as V̇M7(z, t) = V̇(z, t) + V̇M7(z, t)− V̇ (z, t) + z3Fxf,0
with V̇M7 given by (3.97), Fxf,0 by (3.64), V̇ by (4.14a) and V̇ by (4.17). By the proof of Theorem 3
z3Fxf,0 ≤ 0 and V̇M7(z, t) ≤ V̇ (z, t) so V̇M7(z, t) ≤ V̇(z, t) ≤ −W (z) by Theorem 6.

Corollary 4. The zero dynamics (3.79) of the 4WDM9 model (3.36) are globally exponentially
stable for all vehicle parameters and bounded positive time-varying µ(t).

Proof. This follows from Lemma 13 and Theorem 6. A proof is given in the Appendix A.3.

This shows that the zero dynamics of theM5 2WD model and of both theM7 andM9 4WD
models are globally exponentially stable. It can be noted that the expression for α3 in (4.25c)
is very general in order to construct a function W that is valid for any combination of vehicle
parameters. For practical parameters, commonly (1/2)ρcwAst < 1 < dc and rr < 1 such that
ṽnr ≈ 1 and r2r ≈ 0. Since c ∈ (0, 1) can be chosen arbitrarily close to 1 in order to get a guaranteed
bound, it follows under the mentioned assumptions that the third argument in (4.25c) is close
to 1 and for practical vehicle parameters we have α3 = (1/2)ρcwAst. However, Equation (4.25c)
also covers cases where these assumptions do not apply and hence provides a general formula
which is valid for arbitrary positive vehicle parameters.
This concludes the investigation of exponential stability of the zero dynamics of the TCSs

considered in this work. However, as mentioned in Section 2.2.3, this still allows no conclusion
of the global stability of the overall closed loop system. A sufficient condition for showing this
(with the limitations mentioned in Remark 29) is, that the internal dynamics of the system are
input-to-state stable. This condition is analyzed in the next section.
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4 Passivity and Absolute Stability Analysis of the Zero Dynamics

4.3.2 Input-to-State Stability of the Internal Dynamics

In this subsection, focus is set on analyzing the internal dynamics of the proposed TCSs. While
the zero dynamics assume that the states of the external dynamics entering the internal dynamics
are identically zero, this is not the case anymore in the upcoming analysis. Here, the system
outputs are treated as inputs to the internal dynamics, so ISS is required, cf. Section 2.2.3
and Appendix A.4. These inputs are bounded by the stability of the external dynamics—which
are stabilized by the reference model and the PID controller—and because the target speeds are
saturated by the DCU when close to the maximum speed. The internal dynamics of the 2WDM5

model (3.22) can be derived from (3.45) by defining zT =
[
z1 z2 z3

]
=

[
ξ3 ξ4 ξ5

]
, ζ1 = ξ1

and

ż =

ż1ż2
ż3

 =

 −z2(
2(kcz1 − dcz2)− rrFxr

)
/Jr

(Fxr − Fw)/m

+

 1
2dc/Jr

0

 ζ1 . (4.27)

For ζ1 = 0, Equation (4.27) reduces to the zero dynamics (3.50) as expected. For ζ1 ̸= 0, stability
can still be guaranteed for any piecewise continuous bounded ζ1 by the following result.

Theorem 7. The internal dynamics (4.27) of the 2WDM5 model (3.22) are input-to-state stable
for all vehicle parameters and bounded positive time-varying friction coefficients µ(t).

Proof. The time derivative of (4.16) along solutions of (4.27) can be written as

V̇(z, t, ζ1) = V̇(z, t) + zT ℓζ1 (4.28)

with ℓT =
[
ℓ1 ℓ2 0

]
, ℓ1 = 2(kc + p11 − dc/Jr), ℓ2 = 2dc(1 + 2p22) − 1, where p11 and p22 are

given by (3.84a) and (3.84b), respectively. By Theorem 6 we know that

V̇(z, t) ≤ −W (z) ≤ −α∥z∥22 , (4.29)

where α = min{α1, α2, α3} > 0 is the smallest of the coefficients (4.25a)-(4.25c) and the second
inequality in (4.29) follows from basic properties of quadratic forms, see also Section 2.2.1. The
mixed term in (4.28) can be bounded like

zT ℓξ1 ≤ |zT ℓζ1| (4.30a)

≤ ∥z∥2 ∥ℓζ1∥2 (by the Cauchy-Schwarz inequality) (4.30b)

= ∥z∥2 ∥ℓ∥2 | ζ1| . (by homogeneity of the 2-norm) (4.30c)

Let −α∥z∥22 = −θα∥z∥22 − (1− θ)α∥z∥22, with θ ∈ (0, 1). Then,

V̇(z, t, ζ1) ≤ −θα∥z∥22 , ∀z ∈ R3 : ∥z∥2 ≥ ρM5(|ζ1|) =
∥ℓ∥2

α(1− θ)
|ζ1| , (4.31)

where ρM5 is a class K function, so input-to-state stability of (4.27) follows.

Remark 32. Due to the bound V̇(z, t, ζ1) ≤ −α∥z∥22+zT ℓζ1 that is obtained by combining (4.28)
and (4.29) from Theorem 6, another way to show ISS of (4.27) is by considering the LTI system
ż = −z+bζ1 with bT =

[
b1 b2 0

]
, b1 = 2(kc/α−dc/(Jrα)+1) and b2 = (4/Jr+2/α)dc−1/α.

Take P = (α/2)I3 to construct the Lyapunov function zTPz. Since A = −I3 is Hurwitz,
the Lyapunov equation (2.18) has a unique solution for Q = −αI3, which results in the time
derivative −α∥z∥22+zT ℓζ1. Observe that this is exactly the bound previously derived for V̇(z, t, ζ1).
Since LTI systems with Hurwitz A matrix are always ISS, compare [125, pp. 43–46, p. 391], it
follows that the bound V̇(z, t, ζ1) ≤ −α∥z∥22 + zT ℓζ1 must also satisfy the ISS conditions.

It can be stressed that both methods from Theorem 7 and Remark 32 are based on the bound on
V̇(z, t) derived by Theorem 6. Both approaches are basically equivalent, since after constructing
the bound (4.29), bounding the mixed term is analogous to the LTI case. The corresponding LTI
system is explicitly constructed in Remark 32, while Theorem 7 focuses on a direct derivation of
the desired inequality. As a result, it follows that the internal dynamics (4.27) are ISS.
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4.3 Extended Stability Results

Again, these results can readily be extended to the 4WD case. First, consider the Byrnes-
Isidori normal form (3.60) of the M7 model (3.30). Let zT =

[
z1 z2 z3

]
=

[
ξ3 ξ4 ξ5

]
and

ζT =
[
ζ1 ζ2

]
=

[
ξ1 ξ7

]
, then the internal dynamics are given by

ż =

ż1ż2
ż3

 =

 −z2(
2(kcz1 − dcz2)− rrFxr

)
/Jr

(Fxr − Fw)/m

+

 1
2dc/Jr

0

 ζ1 +
 0

0
1/m

Fxf , (4.32)

where Fxf is a function of ζ2 and z3 since by (3.26), (3.28) and the change of coordinates (3.57), it
depends on λxf = (rfζ2−z3)/vnf with vnf = maxϵ(|rfζ2|ϵ, |z3|ϵ). Since for ζ2 = 0, Fxf = Fxf,0 as
defined in (3.64), it follows that (4.32) reduces to the zero dynamics (3.63) of theM7 model (3.30)
for ζ = 02, as expected. Now, we are ready to state the next result.

Corollary 5. The internal dynamics (4.32) of the 4WDM7 model (3.30) are ISS for all vehicle
parameters and bounded positive time-varying friction coefficients µ(t).

Proof. Use again the Lyapunov function (4.16). Its derivative along solutions of (4.32) satisfies

V̇M7(z, ζ, t) = V̇(z, t) + V̇M7(z, t)− V̇ (z, t) + z3Fxf,0 + z
T ℓζ1 + p̃z3(Fxf − Fxf,0) (4.33a)

≤ −α∥z∥22 + zT ℓζ1 + z3Fxf,0 + p̃z3(Fxf − Fxf,0) , by Theorem 7, (4.33b)

≤ −α∥z∥22 + zTLua since z3Fxf,0 ≤ 0, compare Theorem 3. (4.33c)

Here, V̇ is given by by (4.17), V̇M7 by (3.97), V̇ by (4.14a), Fxf,0 by (3.64), p̃ = 2p33/m+ 1 > 0
with p33 from (3.84c), α as defined in the proof of Theorem 7. Moreover, ℓT =

[
ℓ1 ℓ2 0

]
with

ℓ1 = 2(kc + p11 − dc/Jr) and ℓ2 = 2dc(1 + 2p22/Jr) − 1. Note that the ℓ1 is the same as in the
proof of Theorem 7, but ℓ2 is different due to the extra division by Jr. Finally, define ua,1 = ζ1
and ua,2 = Fxf − Fxf,0 as auxiliary inputs with uTa =

[
ua,1 ua,2

]
and

L =

L11 0
L21 0
0 L32

 =

ℓ1 0
ℓ2 0
0 p̃

 =

 2(kc + p11 − dc/Jr) 0
2dc(1 + 2p22/Jr)− 1 0

0 2p33/m+ 1

 , (4.34)

so (4.33c) follows. The first input ua,1 = ζ1 is bounded as it is generated by the stable external
dynamics. The second, auxiliary input ua,2 = Fxf −Fxf,0 is bounded as the tire force is bounded
by definition, so |ua,2| ≤ 2µmaxFzf . Since z

TLua ≤ ∥z∥2 ∥L∥F ∥ua∥2, with θ ∈ (0, 1), we get

V̇M7(z, ζ, t) ≤ −θα∥z∥22 , ∀z ∈ R3 : ∥z∥2 ≥ ρM7(∥ua∥2) =
∥L∥F
α(1− θ)

∥ua∥2 (4.35)

where ρM7 is a class K function, so input-to-state stability of (4.32) follows.

Finally, input-to-state stability can also be shown for the third synthesis model of this work.

Corollary 6. The internal dynamics of the 4WDM9 model (3.36) are ISS.

Proof. The proof is analogous to the proof of Theorem 7 and is included in the Appendix A.3.

A proof for a similar system to the one considered in Corollary 6 has been proposed recently by
our colleague Degel et al. [58]. In their work on a scalable TCS for an electric vehicle with four
in-wheel motors, similar internal dynamics arise although the control laws are different compared
to the control laws (3.67) and (3.70) of the 4WD torque bias systems from this work. The analysis
in [58] is not based on the exponential stability of the zero dynamics, which was, for the zero
dynamics of theM9 model, first shown in this work. Instead, they derive the required inequalities
directly using a variant of the parametric Lyapunov function (3.83) from [305], however with an
additional linear friction term in the synthesis model.

This concludes the stability analysis of the three synthesis models considered in this work.
Following, it is shown how the stability analysis of the zero dynamics of the 2WD TCS leads to
an interesting special case of the Markus-Yamabe conjecture and a new open problem.
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4 Passivity and Absolute Stability Analysis of the Zero Dynamics

4.4 A Special Case of the Markus-Yamabe Conjecture

4.4.1 Stability Conjectures by Aizerman, Kalman and Markus-Yamabe

In this section, which is mainly based on our work in [306], it is investigated how the zero dynamics
of the proposed 2WD traction control system relate to some of the well known stability conjectures
in the field: the Aizerman conjecture, the Kalman conjecture and the Markus-Yamabe conjecture.
First, some historical background is given in this subsection. Thereafter, the relation to traction
control is derived and how a given system can be analyzed efficiently with the framework of ridge
functions and principal Hessian directions. The result of this analysis leads to a new stability
conjecture, that is located on the frontier “between” the Kalman conjecture and the Markus-
Yamabe conjecture.

Recalling the sector bounded nonlinearity from Figure 2.7a, it is visible that such a nonlinear
function is bounded from above and below by linear functions. It is therefore natural to ask
whether a Lur’e system with a sector bounded nonlinearity is always globally asymptotically
stable if the system is stable for every linear gain in the sector. This would significantly simplify
the analysis of such systems, as it would render the nonlinear stability problem into a family of
linear stability problems that could then be approached with the Routh-Hurwitz criterion [246,
118] or the Nyquist criterion [213] for example. This question was first asked by Aizerman, who
formulated the following conjecture. The notation used here is defined in Section 2.2.2.

Aizerman Conjecture [5]. Given a Lur’e system (2.26) with p = m = 1 and D = 0, such that
the linear system obtained by taking ψ(y) = ky is stable for all k ∈ [k, k̄]. Then, the system is
globally asymptotically stable for all time-invariant ψ : R→ R with ψ ∈ sec[k, k̄].

Initially, the conjecture was formulated for open intervals. Krasovskiy disproved this initial
version of the conjecture with a planar (n = 2) counterexample, so the condition was strengthened
to closed intervals. Early works considering the planar case are due to Krasovskiy, Yerugin and
Malkin, compare [230, pp. 3–6] and [169, pp. 271–277], who showed that the conjecture with
closed intervals is true for systems of order n ≤ 2, see also [22, 33]. The conjecture was disproven
for n > 2 by Pliss who also constructed an explicit third order counterexample [230], see also
the remarks in [59]. It can be noted that the Aizerman conjecture is true if complex dynamics
instead of dynamics of real-valued maps are considered [134]. However, in this work focus is set
on dynamics of real-valued maps only.
Another well known stability conjecture is the Kalman conjecture. It is more restrictive than

the Aizerman conjecture, as it requires the nonlinearity not only to be sector bounded, but also
to be slope restricted, see also Definition 28. When looking at Figure 2.7a again, one can see
that even if the nonlinearity is bounded between two linear gain functions, it might locally have
a gain that is not contained in the sector. So locally the linearization might be unstable under
the conditions of the Aizerman conjecture. The Kalman conjecture excludes this possibility.

Kalman Conjecture [143]. Given a Lur’e system (2.26) with p = m = 1 and D = 0, such that
the linear system obtained by taking ψ(y) = ky is stable for all k ∈ [0, k̄]. Then, the system is
globally asymptotically stable for all time-invariant ψ : R→ R with ∂ψ ∈ sec[0, k̄].

Barabanov showed that this conjecture is true for systems up to an order of n = 3, see [16].
However, it was disproven for n ≥ 4 by Fitts, who constructed an explicit fourth order coun-
terexample [68]. The idea to impose requirements on the local stability of a nonlinear system is
not limited to Lur’e systems, but can be applied to general nonlinear systems with differentiable
vector field. Therefore, the Kalman conjecture can be considered as a special case of the more
general MYC. Although the original paper gave credit to Aizerman [5] for this question, it was
first formulated explicitly by Markus and Yamabe in 1960, see also [197] for a historical overview
and several example systems in the context of the conjecture.
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4.4 A Special Case of the Markus-Yamabe Conjecture

The Markus-Yamabe conjecture on global asymptotic stability can be restated as follows.

Markus-Yamabe Conjecture [190]. Given a C1 vector field f : Rn → Rn with f(0n) = 0n.
Assume that its Jacobian at point x∗, given by Jf ,x(x

∗), cf. (2.24), is Hurwitz for all x∗ ∈ Rn.
Then, the origin is a globally asymptotically stable equilibrium of the system ẋ = f(x). A system
that satisfies these conditions is also called a Markus-Yamabe system.

The Markus-Yamabe conjecture is true for n = 1 as can be readily shown with the Lyapunov
function V (x) = (1/2)x2 as follows: a scalar system ẋ = f(x) with f : R → R, f(0) = 0 and
f ∈ C1 that satisfies these conditions must have a Jacobian Jf,x(x) = df(x)/(dx) < 0 , ∀x ∈ R.
Since Jf,x(x) in the scalar case is just the derivative of f(x), it follows that f must be strictly
decreasing to satisfy the conditions of the Markus-Yamabe conjecture. Because f(0) = 0, it is
clear that f cannot enter the first and third quadrant. Therefore, xf(x) < 0 for x ̸= 0 and
so V̇ (x) = xf(x) ≺ 0. The proof for n = 2 is significantly more difficult. Nevertheless, the
Markus-Yamabe conjecture was proven for n = 2 independently by Fessler [67], Gutiérrez [96]
and Glutsuk [86]. For n ≥ 3, the conjecture is false as Cima et al. [44] constructed a polynomial
counterexample, which for n = 3 is given by

ẋ1 = −x1 + x3(x1 + x2x3)
2 (4.36a)

ẋ2 = −x2 − (x1 + x2x3)
2 (4.36b)

ẋ3 = −x3 . (4.36c)

The Jacobian of (4.36) has all its three eigenvalues located at −1, for all operating points x∗ ∈ R3

and therefore satisfies the conditions of the Markus-Yamabe conjecture. However, it admits the
exponentially diverging solution x1(t) = 18 exp(t), x2(t) = −12 exp(2t), x3(t) = exp(−t), see [44].
For n > 3, it is sufficient to add as many equations of the form ẋi = −xi, i ≥ 4 as desired [44].
The system (4.36) is a special case of the more general family of polynomial counterexamples
proposed by Cima et al. in [45]. More polynomial counterexamples were found subsequently by
Castañeda and Guíñez [35, 92], as well as non-polynomial ones [87].

While the mentioned counterexamples demonstrate that neither of the three stability conjec-
tures is true in the general case, they can still be used for systems up to the order of validity of
each conjecture. An interesting aspect is that the Kalman conjecture, which can be considered
as a special case of the Markus-Yamabe conjecture, is valid for n ≤ 3, while the Markus-Yamabe
conjecture itself is only valid for n ≤ 2. This is not surprising, since the Kalman conjecture is
more restrictive than the Markus-Yamabe conjecture, as the former requires the rather special
Lur’e system structure (2.26) while the latter makes no such restriction. With respect to the
system order, there is a clear boundary between applicability of each conjecture. However, if we
restrict the considered system class to MIMO Lur’e systems, it is not so clear anymore which
system classes of order n = 3 can still be covered by these conjectures. The Kalman conjecture
covers the SISO case for n = 3 as shown in [16], but the proof methods based on multipliers
can not be readily extended to a general MIMO setting as they require additional assumptions,
cf. [248]. The counterexample (4.36) disproves the MIMO case with n = 3 and p = m = 3. For
n > 3, the situation is clear because even the SISO case is known to be false in general, see for
example [197]. For n < 3, the MIMO case is covered by the already mentioned proofs of the
Markus-Yamabe conjecture for planar vector fields. For the case n = 3 and p = m = 2 however,
it is not clear whether it is disproven by one of the existing counterexamples. This case is of
particular interest since the zero dynamics of the proposed TCS can be described by a Lur’e
system with n = 3 and p = m = 2, see (4.12).
It is not immediately obvious whether the counterexample (4.36) or other counterexamples can

be reused to disprove this case as well and not only the case n = p = m = 3. In the following we
show that the established theory of ridge functions and principal Hessian directions can be used
to answer such questions conveniently.
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4 Passivity and Absolute Stability Analysis of the Zero Dynamics

4.4.2 Ridge Functions and Principal Hessian Directions

The term ridge function was first introduced by Logan and Shepp in their work on computed
tomography [180]. Another earlier name for ridge functions is “plane waves”, compare [225].
Ridge functions and their generalizations are defined as follows.

Definition 42. (Generalized ridge function) [226, p. 1] Given a function r : Rn → R and assume
there exists C ∈ Rm×n with 1 ≤ m < n and a function q : Rm → R such that

r(x) = q(Cx) ,∀x ∈ Rn . (4.37)

If m = 1 then r is called ridge function. If m > 1, then r is called a generalized ridge function.

In this work, we use the term ridge functions for m ≥ 1. Ridge functions are commonly used
for function approximation, which can be achieved by linear combinations like

r̂(x) ≈ r(x) =
N∑
i=1

qi(Cix) (4.38)

where r̂ is the function to be approximated. For m = 1, this is also known as projection pursuit
regression, which can reduce the dimension of the input space significantly. Other applications
of ridge functions include artificial neural networks, hyperbolic partial differential equations with
constant coefficients or multivariate Fourier series, see [225] and [226, pp. 1–5].
As can be seen from the Definition (4.37), ridge functions essentially have the same form as a

time-invariant nonlinearity of a Lur’e system (2.26), assuming the feed-through matrix is zero.
For the analysis here, it is of interest whether the counterexample (4.36) can be reformulated in a
MIMO Lur’e form to disprove the case n = 3, p = m = 2. For n = p = 3, m = 2, this is trivially
possible by C = I3, ψ(y)

T =
[
ψ1(y) ψ2(y)

]
with ψ1(y) = −y3(y1+y2y3)2, ψ2(y) = (y1+y2y3)

2

and

A =

−1 0 0
0 −1 0
0 0 −1

 ,B =

1 0
0 1
0 0

 . (4.39)

This is not a standard Lur’e system since p ̸= m, so the transfer function of the linear part is
non-square. However, it could be made square by partitioning a fraction of the third equation
into the nonlinearity and modifying A and B accordingly. Hence, (4.36) disproves the Markus-
Yamabe conjecture for MIMO Lur’e systems with n ≥ 3, n ≥ p ≥ 3 and m ≥ 2. However, it
is not directly clear if it also covers the case n = 3, p = m = 2. If this would be the case,
there would exist C ′ ∈ R2×3 and φ : R2 → R2 such that ψ(x) = φ(C ′x) ,∀x ∈ R3. Note that
here y = Cx = x. The problem of proving existence of such a φ and C ′ is known as the ridge
recovery problem, which has been addressed for m = 1 by Buhmann and Pinkus [26] and for
m ≥ 1 by Pinkus, who also proposed two methods for the analysis [226, pp. 34–35]. We focus on
the second method, which is based on the analysis of the Hessian of a function, an approach very
similar to the so-called principal Hessian directions for dimension reduction by Li [175]. Given
r : Rn → R with r ∈ C2 and Hessian Hr evaluated at x ∈ Rn by

Hr(x)
def
=


∂2r(x)/(∂x1∂x1) ∂2r(x)/(∂x1∂x2) . . . ∂2r(x)/(∂x1∂xn)
∂2r(x)/(∂x2∂x1) ∂2r(x)/(∂x2∂x2) . . . ∂2r(x)/(∂x2∂xn)

...
...

. . .
...

∂2r(x)/(∂xn∂x1) ∂2r(x)/(∂xn∂x2) . . . ∂2r(x)/(∂xn∂xn)

 . (4.40)

If ∃x ∈ Rn such that det
(
Hr(x)

)
̸= 0 then there cannot exist C ∈ Rm×n with m < n and

q : Rm → R such that r(x) = q(Cx) ,∀x ∈ Rn. Pinkus also proposed a method for functions
that are only C1 [226, pp. 34–35], but as the functions analyzed in the following are C2, we focus
on the Hessian based method, which we use in the following to further analyze (4.36).
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4.4 A Special Case of the Markus-Yamabe Conjecture

4.4.3 Results and a New Open Problem

The zero dynamics of the proposed TCS can be expressed as the Lur’e system (4.12), which has
an order of n = 3 and two inputs and outputs, so p = m = 2. Although Theorem 5 showed that
the zero dynamics generally do not satisfy the conditions of the Markus-Yamabe conjecture, it
is still interesting if the existing counterexamples also cover the special case of a Lur’e system
with n = 3 and p = m = 2. This is not obvious at first glance, since a reformulation of (4.36)
into an appropriate Lur’e form might exist. However, using the framework of ridge functions, it
can readily be shown that this is not possible and so the counterexample cannot be reused to
disprove the Markus-Yamabe conjecture for Lur’e systems with n = 3 and p = m = 2. First, we
show how the Hessian method can be used to derive a lower bound for the output dimension of
a given Lur’e system. The following results are from our publication [306].

Theorem 8. Let ẋ = f(x) with f : Rn → Rn, f(0n) = 0n, x ∈ Rn and fi ∈ C2 ,∀i = 1, . . . , n.
Then, rewriting this system in Lur’e form requires at least p outputs where

p ≥ max rank
(
Hfi(xo)

)
(4.41a)

over xo ∈ Rn and i ∈ {1, . . . , n} (4.41b)

and Hfi(xo) denotes the Hessian matrix of fi at xo as defined in (4.40).

Proof. Since f must be of Lur’e form, f(x) = Ax−Bψ(Cx) must be satisfied with A ∈ Rn×n,
Bn×m and C ∈ Rp×n. Without loss of generality, assume ψ : Rp → Rm contains no linear terms
as these can be partitioned into the Ax term. Following, define r(x) = Bψ(Cx) where Bij = 1
if fi(x) is nonlinear with nonlinear part −ψj(Cx), Bij = 0 otherwise and m ≤ n the number
of nonlinear fi(x). By the Hessian method, see [226, pp. 32–33] and [26, 175], it follows that
∃xo ∈ Rn : rank

(
Hri(xo)

)
= pj if ri is of the form (4.37). Adding linear terms to rj does not

change the Hessian [175], therefore rank
(
Hfi(xo)

)
= rank

(
Hri(xo)

)
. Testing each fi(x) like this

gives (4.41) as lower bound [306].

Remark 33. In general, the lower bound (4.41) from Theorem 8 can be very conservative. For
example, consider f : Rn → Rn with f(x)T =

[
f1(x) f2(x) . . . fn(x)

]
=

[
x21 x22 . . . x2n

]
.

For x1, x2, . . . , xn ̸= 0 we have rank
(
Hf1(x)

)
= rank

(
Hf2(x)

)
= · · · = rank

(
Hfn(x)

)
= 1.

Following, rank
(
Hfi(x)

)
= 0 ⇐⇒ xi = 0, so the maximum achievable rank over all x ∈ Rn

and over all i ∈ {1, . . . , n} is 1. Hence, by Theorem 8, a lower bound for the required number
of outputs is p ≥ 1. However, in this particular case the number of actually required outputs is
of course p = n because all xi are required individually to construct the functions fi. Generally,
computing instead rank

(
Hg(x)

)
with g(x) =

∑n
i=1 fi(x) does not circumvent this limitation, as

different terms could be canceled out when forming the sum of arbitrary fi(x).

Although the difference between the lower bound (4.41) and the actual number of outputs can
be maximal, namely up to n − 1 as mentioned in Remark 33, this limitation is not problematic
here. This is because we are only interested in the question whether the number of outputs can
be reduced from n = 3 to n− 1 = 2. For example, considering the family of counterexamples to
the MYC by Cima et al. [45], given by

ż1 = −cz1 − bzm3 (az1z
ℓ
3 + bz2z

m
3 )k (4.42a)

ż2 = −cz2 + azℓ3(az1z
ℓ
3 + bz2z

m
3 )k (4.42b)

ż3 = −cz3 . (4.42c)

Here, c ∈ R+, a, b ∈ R \ {0}, k is even and ℓ, k, ℓ − m ∈ N unequal to zero, see also [92]. For
a = b = c = ℓ = 1, k = 2 and m = 0, the system (4.42) reduces to (4.36) after an application of
the linear state transformation z1 = x2, z2 = x1, z3 = x3. Using Theorem 8, we can test whether
the system (4.42) can be expressed in Lur’e form with p = 2 outputs.
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4 Passivity and Absolute Stability Analysis of the Zero Dynamics

Corollary 7. The family of counterexamples (4.42) by Cima et al. [45] to the MYC cannot be
rewritten as a Lur’e system with p < 3.

Proof. If (4.42) could be written as a Lur’e system (2.26) with p = 2 then there exists φ1 : R2 → R
and C ′ ∈ R2×3 such that ψ1(z) = −bzm3 (az1z

ℓ
3 + bz2z

m
3 )k = φ1(C

′z) , ∀z ∈ R3. At the operating
point zTo =

[
1 0 1

]
however we have

det
(
Hψ1(zo)

)
= a3k−2b5k3(ℓ−m)2(k − 1) . (4.43)

Since ab ̸= 0, k ≥ 2 and ℓ −m > 0 by assumption, the determinant is different from zero at zo
and so the result follows for all instances of (4.42) by Theorem 8, cf. [306].

As can be seen from the proof of Corollary 7, the analysis based on ridge functions can answer
questions regarding the required output dimension of a given Lur’e system. Given an arbitrary
Lur’e system, it might be challenging to analyze the rank of the Hessian matrix as finding a
suitable operating point might be difficult. In such cases, a numerical search by drawing random
operating points and numerically evaluating the resulting Hessian matrix might be useful. For the
system (4.42) this was not required. While Theorem 8 provides a tool for analyzing the output
dimension of a given Lur’e system, we also propose a method for analyzing the input dimension
with the following result.

Theorem 9. Given a Lur’e system (2.26) with m inputs, reducible at most to m′ < m ≤ n.
Then, Bψ(y) = B′φ(y) can be tested by solving a system of N = (n−m′)m′ linear equations.

Proof. If m′ < m is possible there exist functions φi : Rm
′ → R, i ∈ {1, . . . ,m′} and B′ ∈ Rn×m′

such that
B′φ(y) = r(y) ,∀y ∈ Rp with r(y) = Bψ(y) . (4.44)

Construct B′
1 ∈ Rm′×m′

from linear independent rows and B′
2 ∈ Rn−m′×m′

from the remaining
rows of B′ (so B′ has full column rank, otherwise m′ can be reduced further). Let r1 : Rp → Rm′

and r2 : Rp → Rn−m′
be the associated functions from r. Let B′

1 = Im′ so φ(y) = r1(y) as r2
are linear combinations of r1. From this construct N = (n−m′)m′ equations with Ψ1Beq = Ψ2,
ΨT

1 = [r1(y1) . . . r1(ym′)] and ΨT
2 = [r2(y1) . . . r2(ym′)], where yj ∈ Rp with j ∈ {1, . . . ,m′} are

m′ points chosen such that Ψ−1
1 exists. Then B̄

T
=

[
Im′ Beq

]
, Beq = Ψ−1

1 Ψ2 and B′ = P pB̄,
where P p is an n×n permutation matrix such that P p

[
r1(y)

T r2(y)
T
]
T = r(y), cf. [306].

The approach is best illustrated with an example which also demonstrates its limitations.
Consider B = I4 such that Bψ(y) = r(y) with r : R4 → R4 and

r(y)T =
[
y21 + y32/2 −3y21y22 − 6y2 (y21 + y2)(y

2
2 + 2) sin(y3 + y4)

]
. (4.45)

Since B has 4 columns, a Lur’e system with such a nonlinearity r(y) would have 4 inputs. The
question is whether the number of inputs can be reduced to 3. Hence we have n = m = 4 and
m′ = 3, so N = 3. By the proof of Theorem 9, we construct the system of linear equations
Ψ1Beq = Ψ2 to find BT

eq =
[
Beq,1 Beq,2 Beq,3

]
and partition r(y) as

r1(y) =

 y21 + y32/2
−3y21y22 − 6y2
sin(y3 + y4)

 and r2(y) = (y21 + y2)(y
2
2 + 2) . (4.46)

Let yT1 =
[
1 1 1 1

]
, yT2 =

[
2 2 2 2

]
and yT3 =

[
3 3 3 3

]
. Then, from (4.46) results 3/2 −9 sin(2)

8 −60 sin(4)
45/2 −261 sin(6)

Beq,1

Beq,2

Beq,3

 =

 6
36
132

 =⇒ Beq =

Beq,1

Beq,2

Beq,3

 =

 2
−1/3
0

 . (4.47)

Now let B′
1 = I3, which is possible if the functions in r1 are linearly independent of each other

and the functions in r2 are linear combinations of the functions in r1, so φ(y) = r1(y).
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4.4 A Special Case of the Markus-Yamabe Conjecture

Following, define B̄
T

=
[
B′

1 B′
2

]
=

[
I3 Beq

]
. The matrix B̄ represents the new input

matrix B′ up to a change of rows, depending on the partitioning of r into r1 and r2. Here,

P p =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 since then P p

[
r1(y)
r2(y)

]
= r(y), so B′ = P pB̄ =


1 0 0
0 1 0
2 −1/3 0
0 0 1

 . (4.48)

The first two rows of r are the first two rows of r̄(y)T =
[
r1(y)

T r2(y)
T
]
, so the first two rows

of B̄ remain unchanged. However, the third element of r is the fourth element of r̄, so the third
and the fourth row of B̄ have to be swapped such that

r(y) = B′φ(y) , which is


y21 + y32/2
−3y21y22 − 6y2

(y21 + y2)(y
2
2 + 2)

sin(y3 + y4)

 =


1 0 0
0 1 0
2 −1/3 0
0 0 1


 y21 + y32/2
−3y21y22 − 6y2
sin(y3 + y4)

 . (4.49)

From this, it can be seen that a Lur’e system with n = 4 and the example nonlinearity (4.45) in
the feedback path does not necessarily require 4 inputs but can be rewritten with 3 inputs, using
the new input matrix B′ calculated in (4.48).

Two steps in this approach require a further explanation. The first step is the partitioning
of r into r1 and r2, which implicitly already requires the knowledge which functions of r are
linear combinations of the remaining functions of r. In the above example, a valid combination is
assumed to be known. Indeed, the combination r1 works because there exist y1, y2, y3 such that
Ψ−1

1 exists. If we choose for example r1(y)
T =

[
y21 + y32/2 −3y21y22 − 6y2 (y22 + 2)(y21 + y2)

]
then det(Ψ1) = 0 for any y1, y2, y3 ∈ R3. Here this is obvious, because a finite linear combination
of polynomials cannot be identical to a trigonometric function like sin(y3 + y4). However, in
more complicated cases it might not be obvious which combination is the correct one, assuming
one exists. In such a case, one option is to enumerate all possible combinations and test each
combination individually. Since the order of functions within r1(y) does not matter, the total
number of such combinations is given by the binomial coefficient

Nc =

(
n

m′

)
=

n!

m′!(n−m′)!
(4.50)

where n! denotes the factorial of n. Each combination can be tested by solving a system of
N = (n−m′)m′ linear equations, assuming the m′ test points are given. From the four possible
combinations to form r1(y), given by y21 + y32/2

−3y21y22 − 6y2
(y22 + 2)(y21 + y2)

 ,

 y21 + y32/2
−3y21y22 − 6y2
sin(y3 + y4)

 ,

 y21 + y32/2
(y22 + 2)(y21 + y2)

sin(y3 + y4)

 ,

 −3y21y22 − 6y2
(y22 + 2)(y21 + y2)

sin(y3 + y4)

 , (4.51)

only the first does not work because det(Ψ1) = 0 for any y1,y2,y3 ∈ R3. The remaining three
combinations admit nonzero determinants, for example the matrix from (4.47) has det(Ψ1) =
189 sin(4)−738 sin(2)−18 sin(6) ̸= 0 at the above defined y1,y2,y3. This leads to the potentially
challenging second step from the approach, namely the choice of the test points yj ∈ Rp with
j ∈ {1, . . . ,m′}. While the problem of constructing r1 can in principle be solved by trying
all possible combinations, for the test points this is not possible as they can be chosen from a
continuum. Therefore, this step might be challenging when analyzing an arbitrary Lur’e system.
A numerical search by drawing random test points might be useful in such cases. In the above
example, this was not required as it is assumed that suitable test points can readily be chosen by
inspection of the nonlinearity r(y) = Bψ(y). Finally, it can be noted that even if test points are
available such that Ψ−1

1 exists, the equation r(y) = B′φ(y) has to be tested after constructing
B′ and φ(y), as done in (4.49), as equality at the test points is only necessary, not sufficient.
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4 Passivity and Absolute Stability Analysis of the Zero Dynamics

A family of counterexamples to the MYC by Castañeda and Guíñez [35] provides an application
for Theorem 9. The system in Lur’e form is ẋ = Ax−Bψ(y), y = Cx, with

A =

−a− c 1 0
−a2 a− c 1
0 0 −c

 ,C =

[
1 0 0
0 1 0

]
(4.52)

and B = I3, ψ(y)
T =

[
ψ1(y) ψ2(y) ψ3(y)

]
, where

ψ1(y) = by21 (4.53a)

ψ2(y) = by1(2by
2
1 + 3ay1 − 2y2) (4.53b)

ψ3(y) = b(by21 + ay1 − y2)2 (4.53c)

with c ∈ R+ and b ̸= 0. Here, p = 2 is possible as ψ depends only on y1 = x1 and y2 = x2. The
question is if the m = 3 inputs can be reduced to m′ = 2, which has a negative answer.

Corollary 8. The family of counterexamples (4.52) from [35] to the Markus-Yamabe conjecture
cannot be expressed in Lur’e form with m < 3.

Proof. The result can be shown by using Theorem 9. Here, N = 2 and Nc = 3. The three
possible combinations to construct r1(y) and r2(y) from r(y) = Bψ(y) with B = I3 and ψ(y)
from (4.53), denoted by r1,k and r2,k with k ∈ {1, . . . , Nc} = {1, 2, 3}, are given by

r1,1(y)
T =

[
by21 by1(2by

2
1 + 3ay1 − 2y2)

]
, r2,1(y) = b(by21 + ay1 − y2)2 (4.54a)

r1,2(y)
T =

[
by21 b(by21 + ay1 − y2)2

]
, r2,2(y) = by1(2by

2
1 + 3ay1 − 2y2) (4.54b)

r1,3(y)
T =

[
by1(2by

2
1 + 3ay1 − 2y2) b(by21 + ay1 − y2)2

]
, r2,3(y) = by21 . (4.54c)

Let yT1 =
[
1 1

]
and yT2 =

[
2 2

]
be the test points. Then, the Ψ1,k corresponding to (4.54) are

Ψ1,1 =

[
b b(3a+ 2b− 2)
4b 2b(6a+ 8b− 4)

]
=⇒ det(Ψ1,1) = 8b3 (4.55a)

Ψ1,2 =

[
b b(a+ b− 1)2

4b b(2a+ 4b− 2)2

]
=⇒ det(Ψ1,2) = 4b3(2a+ 3b− 2) (4.55b)

Ψ1,3 =

[
b(3a+ 2b− 2) b(a+ b− 1)2

2b(6a+ 8b− 4) b(2a+ 4b− 2)2

]
=⇒ det(Ψ1,3) = 4b3d(a, b) , (4.55c)

with d(a, b) = 4a2 + 9ab − 6a + 4b2 − 6b + 2. Moreover, ΨT
2,1 =

[
b(3a+ 2b− 2) b(a+ b− 1)2

]
,

ΨT
2,2 =

[
b b(a+ b− 1)2

]
and ΨT

2,3 =
[
b b(3a+ 2b− 2)

]
. Following, Beq,k = Ψ−1

1,kΨ2,k results

in the necessary condition that Beq,kr1,k(y) = r2,k(y) , ∀y ∈ R2 for at least one k ∈ {1, 2, 3}.
Evaluating these equations at yT3 =

[
0 1

]
gives after some rearrangements

b = 0 for k = 1 , (4.56a)

2b/(2a+ 3b− 2) = 0 for k = 2 , (4.56b)

2b/d(a, b) = 0 for k = 3 . (4.56c)

These equations require b = 0, which contradicts the initial assumption that b ̸= 0. Repeating
the procedure with m′ = 1 and the same test points leads to conditions which require b = 0 as
well, leading to a contradiction. Therefore, m = 3 is the smallest possible number of inputs.

Remark 34. Testing only m′ = 2 in Corollary 8 would not be sufficient to rule out the possibility
that the number of inputs can be reduced to 2. Indeed, if m′ = 1 would be possible then also m′ = 2
inputs could be realized, but the test with m′ = 2 would always fail because Ψ−1

1 could never exist.
This is why Theorem 9 assumes that m can be at most reduced to m′. For algorithmic tests, this
can be solved by testing all smaller input dimensions as well, as done in Corollary 8.
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4.4 A Special Case of the Markus-Yamabe Conjecture

While this procedure can be readily automated, the same conclusion can be reached here by
keeping the input matrix in symbolic form and comparing coefficients in the resulting equations.
The following alternative proof of Corollary 8 from our previous work [306] illustrates this ap-
proach. The method based on Theorem 9 outlined above can be seen as a systematic extension of
this method, which in contrast to the following method avoids the symbolic matrix inversion but
instead requires a suitable choice of test points. It can further be noted that both methods are
limited in practice for higher order systems, as the number of combinations (4.50) can become
impractically large or, due to the symbolic matrix inversion. For the analysis here this is not
relevant, as the special case of the MYC considered in this work requires n = 3. The following
alternative method to test whether the input dimension of a Lur’e system can be reduced confirms
the findings from Corollary 8.

Alternative proof of Corollary 8. If m = 2 would be possible, then the solutions of the first and
the third equation of (4.44) would be

φ1(y) =
(
B′

32ψ1(y)−B′
12ψ3(y)

)
/∆ (4.57a)

φ2(y) =
(
B′

11ψ3(y)−B′
31ψ1(y)

)
/∆ , (4.57b)

where ∆ = B′
11B

′
32 − B′

12B
′
31. For the denominator, ∆ ̸= 0 because otherwise there would exist

k ̸= 0 such that ψ1(y) = kψ3(y) , ∀y ∈ R2, which cannot be the case since for b ̸= 0, ψ3 depends
only on y2 while ψ1 depends on both y1 and y2. Following, insert (4.57a)-(4.57b) into the second
equation of (4.44) and compare the coefficients of the result with the coefficients of (4.53b). This
results in

2ab2(B′
11B

′
22 −B′

12B
′
21)/∆ = 2b2 for the y31 term, (4.58a)

−2b2(B′
11B

′
22 −B′

12B
′
21)/∆ = 0 for the y21y2 term, (4.58b)

which is a contradiction since b ̸= 0 is required by assumption as for b = 0, the system (4.52)
reduces to an LTI system. Therefore, the system of equations (4.44) has no solution and it is not
possible to rewrite (4.52) as a Lur’e system with less than 3 inputs [306].

The question remains if either p or m must be at least 3 to construct a valid counterexample
to the Markus-Yamabe conjecture, if the system type is constrained to be a Lur’e system. We
leave this question as an open problem, see also [306].

Problem. Does there exist a counterexample to the Markus-Yamabe conjecture that can be ex-
pressed in Lur’e form (2.26) with n = 3 and p = m = 2?

This question can also be interpreted as asking to which extent the Kalman conjecture can be
generalized to a MIMO Lur’e setting. Clearly, it can be generalized for n = p = m = 2, due to
the proofs of the more general Markus-Yamabe conjecture by Fessler, Gutiérrez and Glutsuk for
n = 2. However, it cannot be applied for n ≥ 3 if either m ≥ 2, p ≥ 3 or m ≥ 3, p ≥ 2, due
to the above counterexamples which we reformulated as Lur’e systems with non-square transfer
function matrix. This leaves a gap for the “next simplest” case n = 3, p = m = 2, which we
propose as an open problem for the control community.
The previous two chapters were mainly focused on the control design based on IOL and a

detailed stability and passivity analysis of the zero dynamics of the proposed TCSs. Before we
proceed to a theoretical analysis in the frequency domain and an experimental evaluation of
these control systems in different test vehicles, a heuristic optimization method for Lyapunov
function identification based on genetic programming is presented in the following chapter. A
novel heuristic for the evaluation of the conditions imposed on a Lyapunov function in the form of
a fitness function suitable for GP is proposed. The method is tested on two benchmark systems
from the literature, where the first requires a non-polynomial Lyapunov function and the second a
fourth order polynomial Lyapunov function for showing global asymptotic stability. Additionally,
the method is applied to the nonlinear zero dynamics of the proposed 2WD TCS.
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5 Lyapunov Function Identification using
Genetic Programming

Summary. This chapter describes a new approach for Lyapunov function identification for non-
linear systems based on the heuristic optimization method of GP. The main contributions are:

1. A new fitness function formulation and a corresponding algorithm suitable for Lyapunov
function identification by GP.

2. A validation of the algorithm on two nonlinear benchmark systems from the literature,
including a discussion of the limitations of the approach.

3. An application of the algorithm to the stability analysis of the zero dynamics of the 2WD
TCS from Chapter 3.

This chapter builds upon and extends some ideas of our work in [301, 302] and [303].

5.1 Preliminary Remarks on Lyapunov Function Synthesis

A major obstacle for stability proofs based on the second method of Lyapunov, from a practical
viewpoint, is that the method is not constructive. While for LTI systems, a Lyapunov function can
be computed by solving the associated Lyapunov equation (2.18), the situation is more difficult
for nonlinear systems [99, pp. 104–105] and in the general case still an open problem. Methods for
Lyapunov function construction exist for specific classes of nonlinear systems like Lur’e systems,
as discussed in Chapter 4. Other traditional methods for finding Lyapunov functions can be found
in the survey [94]. More recent approaches include sum-of-squares programming [234], which can
be applied to systems with polynomial vector fields, methods based on linear programming [23]
or LMIs [137]. More details on state of the art computational methods for Lyapunov function
identification can be found in the survey paper [81].

In this work we focus on Lyapunov function synthesis by the means of GP. The heuristic GP
algorithm has been applied to the problem of finding Lyapunov functions before [15, 89, 194, 260].
Here we propose a novel fitness function and demonstrate that the method can be applied to the
zero dynamics of the 2WD TCS. The fitness function is based on sampling of the state space and
uses several heuristic measures to identify promising candidate functions. An important part of
the fitness function is the estimation of a subset of the DOA obtained via the level curves of
the candidate functions. Various methods already exist to obtain an estimate of the DOA, or a
subset of it. An analytic method to compute the DOA is available by the solution of the Zubov
equation [296], see also [99, pp. 161–165]. However, since this is a nonlinear partial differential
equation, it is often practically impossible to derive an analytic solution. Also, it requires the
choice of a suitable positive definite auxiliary function. Because of these difficulties, a range of
different approaches for estimating the DOA of a nonlinear system exist. An early review paper
on this topic is given by Genesio et al. [78]. Recent approaches include LMIs [42, 170, 191, 268],
sum-of-squares programming [84, 139] and methods based on interval arithmetic [192, 279], linear
programming [98], mesh-free collocation [80], linear programming combined with satisfiability
modulo theories solvers [146] and sampling methods [19, 204].

In the following, a fitness function suitable for Lyapunov function synthesis by a GP algorithm
is presented. One part of this fitness function is the estimation of a subset of the DOA by
sampling, with the goal of identifying functions that maximize the volume of this set.
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5 Lyapunov Function Identification using Genetic Programming

5.2 A Sampling Algorithm for Rating Lyapunov Functions

The herein proposed sampling algorithm has the goal to quantify how close a given real valued
function is to being a Lyapunov function for a given continuous, autonomous, nonlinear dynamical
system ẋ = f(x) with f(0n) = 0n. This algorithm is used by a GP algorithm to search for
Lyapunov functions by maximizing the estimated DOA. This can be formulated as a bi-level
optimization problem over a function space:

supremum Λ(Ω0) (5.1a)

over V ∈ FG(Rn,R) (5.1b)

subject to Ω = {x ∈ Rn : V (x) > 0, V̇ (x) ≤ 0} ∪ {0n} (5.1c)

Ω0 ⊆ Ωc = {x ∈ Ω : V (x) < c∗} (5.1d)

c∗ = infimum V (x)

over x ∈ Ω \ {0n}
subject to V̇ (x) = 0

(5.1e)

V (0n) = 0 and lim∥x∥→∞ V (x) =∞ when c∗ =∞ . (5.1f)

Here, Λ(Ω0) denotes the Lebesgue measure (hypervolume) of Ω0, which is the maximal con-
nected component of Ωc that contains the origin, while Ωc is required to be either bounded or
the whole Rn, see also (2.10). Moreover, FG(Rn,R) is the space of C1 functions V : Rn → R that
can be generated by a GP algorithm using the BNF grammar G, cf. Section 2.3.2. Following,
Ω is the set of points satisfying the Lyapunov conditions and Ωc is the subset of Ω bounded by
the level set V (x) = c∗. The inner optimization problem is used in the literature for estimating
a subset of the DOA of a given positive definite Lyapunov function by finding the smallest level
set V (x) = c∗ such that V̇ (x) = 0 when x ̸= 0n, see for example [42]. If Ω = Rn but no c∗ with
V (x) = c∗ exists such that V̇ (x) = 0, then c∗ =∞. The last constraint of (5.1) requires that V
is radially unbounded when c∗ =∞ and that it vanishes at the origin.
Even the inner optimization problem alone, which deals with finding c∗ given a positive definite

function V is a challenging problem, depending on the dynamical system under consideration.
Therefore, we approach (5.1) with the heuristic GP optimization algorithm. As mentioned in
Section 5.1, there exist different methods for estimating a subset of the DOA. We successfully
used a modified version of the sampling based algorithm by [204] in our previous work [302, 303]
for controller synthesis. The sampling algorithm is depicted in Table 5.1. However, it cannot be
applied directly to (5.1) as will be discussed in the following.

Table 5.1: Heuristic state of the art DOA size estimation for positive definite functions.

Algorithm 1 Domain of attraction estimation, used in [302, 303], based on [204].

1: function DOASize(V )
2: Initialization: c∗ ←∞, kmc ← 0,vmc ← 0Nx ▷ Initialize local variables.
3: for k ← 1 to Nx do ▷ Monte Carlo search with Nx samples.
4: Pick random state xk ▷ Draw from a uniform distribution.
5: vmc,k ← V (xk) ▷ Store V (xk) in k-th row of the vector vmc.
6: if V (xk) < c∗ and V̇ (xk) ≥ 0 then c∗ ← V (xk) ▷ Update the level curve.

7: for k ← 1 to Nx do ▷ Estimate the size of the DOA.
8: if vmc,k < c∗ then kmc ← kmc + 1 ▷ Count the samples inside the level curve.

9: return kmc/Nx ▷ Return the normalized size of the DOA estimate.
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5.2 A Sampling Algorithm for Rating Lyapunov Functions

The sampling algorithm from Table 5.1 assumes that V is a positive definite function. However,
a function generated by GP might be only locally positive definite, negative definite or indefinite,
but should still be assigned a suitable fitness value. We propose a solution on how to update the
level curve when there exist x such that V (x) is negative, illustrated in Figure 5.1.
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(a) Level curve adaptation at negative values.
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Figure 5.1: Illustration of specific cases of the proposed heuristic fitness evaluation method.

Figure 5.1a shows the example function V1(x1) = x31/20 + x21/2 and Nx = 6 different sampling
points. Assume we want to evaluate this function with the globally exponentially stable system
ẋ1 = −x1. Using Algorithm 1, assuming the sample points from Figure 5.1a, that would result
in c∗ ≈ −6.5 because V̇ (x1) = −3x31/20 − x21 is positive at the leftmost sample point. This is
invalid however, because c∗ must be non-negative. Setting c∗ to zero in such a case would be too
restrictive, because in a neighborhood of the origin, V1 has the shape of a Lyapunov function.
Updating c∗ only at samples where V1 is positive would ignore the information provided by
the remaining samples. A possible solution is to define a lower bound for the function under
consideration by defining

Vε(x) = εxTx . (5.2)

Here, ε > 0 is a design parameter that has to be chosen before the analysis. Figure 5.1a also shows
Vε computed with ε = 0.03. This value was selected for better illustration, typically ε is chosen
smaller. This lower bound can now be used to handle negative samples: whenever V (x) ≤ 0 for
x ̸= 0n then c∗ is updated to Vε(x) as shown in Figure 5.1a, leading in this example to c∗ ≈ 3.67.
Counting then only the points with 0 < V (x) < c∗ and V̇ (x) ≤ 0 results in kmc = 2, such that
kmc/Nx = 1/3 of the samples (the two samples closest to the origin) would be the estimated,
normalized size of the DOA.

This is not an exact but a heuristic approach, as the third sample at x1 ≈ −3.79 in Figure 5.1a
is excluded although V̇1(x1) = 0 for x1 = −20/3 ≈ −6.67. So the exact bound in this example
is c∗ = V1(−20/3) = 200/27 ≈ 7.41 > 3.67. However, this method can be automatized efficiently
and also handles cases like V3(x1) = x31 appropriately, which satisfies V̇3(x1) = 0 only at the
origin. Ignoring samples where V3(x1) < 0 would here result in c∗ = ∞, which is wrong since
V3 becomes negative arbitrarily close to the origin. The method from Figure 5.1a will correctly
shrink the level set of V3 as the number of samples increases. Also, it biases the GP algorithm
towards preferring functions that are positive definite on all sample points over locally positive
definite functions. This property is not required for every system, for example when the DOA is
only a subset of Rn that is fully contained in the sampling region. However, it is considered useful
here as we are interested in global stability and although positive definiteness within the bounded
sampling region is not sufficient, it is a necessary property of a global Lyapunov function.
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The discussed measures are not yet enough to bias the GP algorithm towards generating valid
Lyapunov function candidates. For example, consider the globally exponentially stable system
ẋ1 = −x1, ẋ2 = −x2 with an example function V4(x) = (1/2)x21. Then V̇4(x) = −x21, which is
negative semi-definite. With uniform random sampling, it is very unlikely to hit a sample exactly
at x1 = 0 and x2 ̸= 0, so for the sampling algorithm, V4 will appear positive definite although
it is only positive semi-definite. Explicit sampling on the axis xi = 0, i ∈ {1, . . . , n} does not
fully avoid this problem, because the algorithm might for example still generate functions like
V5(x) = (c1x1 − c2x2)2 with c1, c2 > 0. Therefore, two different heuristic measures to counter
this issue are used, first using a lower bound and second using the Hessian of V .

The first method is illustrated in Figure 5.1b and is a modified version of the approach used
frequently in sum-of-squares programming, compare [234], which requires that V (x) ≥ Vε(x) with
Vε from (5.2). However, this approach has the disadvantage that it does not admit functions like
for example V6(x) =

∑n
i=1 x

4
i , as close to the origin such a function vanishes faster than any

quadratic function. Also, (5.2) does not account for the shape of the level set in a vicinity about
the origin. To address the latter, when the Jacobian linearization of the system at the origin is
exponentially stable we use

Vε(x) = εxTPx (5.3)

instead of (5.2), where P is the solution to the Lyapunov equation (2.18) with A = Jf ,x(0n) and
Q = In, see also (2.24). Only for systems like ẋ1 = −x31, which do not admit an exponentially
stable linearization, (5.2) is used. Moreover, the sampling space is divided into an inner and an
outer region, as shown in Figure 5.1b. In the inner region, V (x) > 0 is required, while in the
outer region V (x) > Vε(x) is required. In both regions, the level curve is updated to Vε(x) in
case the corresponding condition fails. Figure 5.1b shows the example function V2(x1) = x41/1000
and the same Vε as in Figure 5.1a. The second sample at x1 ≈ −3.8 is below Vε but is valid, as
it is in the inner region. In the outer region, Vε can be used as lower bound to ensure a certain
amount of growth of V2. Table 5.2 shows the algorithm used to initialize the state space samples,
stored in the (2NxNs) × n matrix Xs. Here, Ns is the number of stages. Each stage has Nx

samples for the inner and Nx samples for the outer region and n is the system order.

Table 5.2: Initialization of inner and outer state space samples with rejection sampling.

Algorithm 2 State space sample initialization, called once before the actual optimization.

1: function InitializeSamples(xint, aint)
2: Initialization: Xs ← 0(2NxNs)×n, xs ← 0n ▷ Initialize sample matrix and vector.
3: for i← 1 to Ns do ▷ Iteration for stages.
4: for k ← 1 to Nx do ▷ Iteration for inner samples.
5: for j ← 1 to n do ▷ Iteration for state vector.
6: xs,j ∼ U(−aint,jxint,j , aint,jxint,j) ▷ Draw random inner sample.
7: if i < n then xs,i ← 0 ▷ Ensure first n samples have one zero component.

8: ℓ← 2Nx(i− 1) + k and Xs,ℓj ← xs,j , ∀j ∈ {1, . . . , n} ▷ Fill next row of Xs.

9: for k ← Nx + 1 to 2Nx do ▷ Iteration for outer samples.
10: for j ← 1 to n do ▷ Iteration for state vector.
11: while true do ▷ Loop for rejection sampling.
12: xs,j ∼ U(−xint,j , xint,j) ▷ Draw random sample.
13: if |xs,j | > aint,jxint,j then break ▷ If outer sample, leave while loop.

14: ℓ← 2Nx(i− 1) + k and Xs,ℓj ← xs,j , ∀j ∈ {1, . . . , n} ▷ Fill next row of Xs.

15: return Xs ▷ Return the matrix of random state space samples.
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Algorithm 2 uses the intervals xTint =
[
xint,1 xint,2 . . . xint,n

]
which specify the whole samp-

ling region in the state space by −xint,i ≤ xs,i ≤ xint,i ,∀i ∈ {1, . . . , n}. The user also has to define
the vector aT =

[
a1 a2 . . . an

]
with 0 < ai < 1 which is used to draw samples in the inner

region from a uniform continuous distribution with support xs,i ∈ [−aixint,i, aixint,i]. The outer
region is initialized with rejection sampling such that xs,i ∈ [−xint,i, xint,i] \ [−aixint,i, aixint,i].
Before the concept of stages is detailed, the fitness function used in conjunction with the GP
algorithm is listed in Table 5.3, which is a wrapper for the stage-wise fitness computation.

Table 5.3: Fitness function wrapper with preliminary steps for the fitness computation.

Algorithm 3 Fitness Function Wrapper, called by the GP optimization algorithm.

1: function FitnessWrapper(VGP)
2: if nodes(VGP) > Nnode then VGP ← Vq ▷ Limit complexity of VGP, see also (5.5).

3: if VGP(0n) ̸= 0 then V0(x)← VGP(x)− VGP(0n) ▷ Shift to the origin if required.
4: else V0(x)← VGP(x) ▷ No shifting required, avoid unnecessary nodes.

5: if |Vq(εnorm1n)/V0(εnorm1n)| > hnorm then return 1 ▷ Check normalization factor.

6: V (x)← V0(x)Vq(εnorm1n)/V0(εnorm1n) ▷ Normalize V0 to obtain V .
7: return ComputeFitnessStages(V ) ▷ Compute fitness using Algorithm 4.

The first step of Algorithm 3 is to limit the complexity of the function VGP, generated by the
GP algorithm in order to avoid the so-called expression bloat, which describes the generation of
overly complicated expressions without significant fitness improvement [231, pp. 101–108]. Here,
nodes(VGP) denotes the number of nodes of VGP for a user-defined grammar. Whenever this
number exceeds Nnode, we replace VGP with Vq, which is defined similarly to Vε by

Vq(x) =

{
xTPx Jf ,x(0n) is Hurwitz

xTx otherwise.
(5.4)

where P is again the solution of the Lyapunov equation using Q = In, so also Vε(x) = εVq(x).
This mechanism limits the maximum number of expression nodes by replacing expressions with
too many nodes with a quadratic form, which in case that Jf ,x(0n) is Hurwitz is at least locally
a valid Lyapunov function for the original system. This approach raises the question how Nnode

should be chosen. We propose the following formula for the maximum number of nodes

Nnode = knode
(
3n(n+ 1)− 1

)
, (5.5)

where knode ≥ 2 is an integer and n is the order of the considered system. The rational be-
hind (5.5) is to construct a reasonable estimate of the smallest possible solution which is then
scaled up by knode. The general idea of this approach is taken from [231, pp. 104–105], while the
formula itself is based on the thought that the GP algorithm should at least be able to construct
solutions of the size required to construct a quadratic form, as this already covers stable linear
systems. The assumption made here is that the grammar provided by the user admits addition
and multiplication as binary non-terminals and constants and state variables as terminals. Then,
each summand of a general quadratic form can be expressed by two multiplication nodes, two
variable nodes and 1 constant node. This gives 5 nodes per n(n + 1)/2 individual summands,
plus n(n+1)/2− 1 nodes for the summation itself, resulting in 3n(n+1)− 1 nodes in total. The
next step of Algorithm 3 is to shift the function to the origin if required, as proposed by [15], and
then to normalize by multiplying V0 with Vq(εnorm1n)/V0(εnorm1n), where 1n is an n-dimensional
vector of ones and εnorm a small constant. This last step is a heuristic to scale V0 such that its
range is similar to the range of Vq near the origin. After these preparatory steps, the algorithm
returns the result of the stage-wise fitness computation of the shifted and normalized function.
The stage-wise fitness computation performed by Algorithm 4 is listed in Table 5.4.
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Table 5.4: Successive fitness refinement by a stage-wise fitness computation.

Algorithm 4 Fitness Computation by Stages, called by Algorithm 3. Proposed by [15].

1: function ComputeFitnessStages(V )
2: Initialization: Fℓ ← 0, Fu ← 1, Fm ← 1/2 ▷ Initialize fitness intervals.
3: F ← ComputeFitness(V, 1) ▷ Compute fitness at Stage 1 using Algorithm 5.
4: for nstage ← 2 to Ns do ▷ Loop over all stages for the fitness evaluation.
5: if F ≤ Fm then break ▷ Leave the loop if fitness value not small enough.

6: Fc ← ComputeFitness(V, nstage) ▷ Compute fitness using Algorithm 5.
7: F ← min{F, Fc} ▷ Update fitness value taking into account the previous stage.
8: Fℓ ← Fm, Fm ← (Fℓ + Fu)/2 ▷ Update fitness intervals.

9: return 1− F ▷ Return the final fitness value corresponding to the function V .

Algorithm 4 implements the stage-wise fitness computation proposed by Banks [15]. The idea is
to evaluate individuals on a relatively small number of samples in the first stage. Only individuals
with good enough fitness are passed to the next stage for a more detailed evaluation, otherwise
the current fitness is returned. This is repeated for Ns stages, where Ns is a parameter provided
by the user. This is a heuristic based on interval nesting which avoids wasting evaluations, as
only promising individuals are evaluated on the full set of samples.

Remark 35. All algorithms discussed in this section except Algorithm 2 require some additional
sanity checks to work in practice. For example, it must be ensured that all function evaluations
like V (xs) are finite and exist and do not evaluate to not-a-number or infinity when using floating
point arithmetic. In such cases, the evaluation of the individual is stopped and the worst possible
fitness value is returned. These checks are not explicitly displayed here for the sake of clarity.

The core of the fitness evaluation is Algorithm 5, displayed in Table 5.5, which is called during
the stage-wise fitness computation by Algorithm 4. First, it is ensured that V satisfies the neces-
sary condition for a local minimum at the origin, that its gradient vanishes at 0n. All derivatives
are computed symbolically using the automatic differentiation technique, see for example [237].
Moreover, V is limited to not exceed a threshold VL at hL1n, which is outside of the sample
region of Algorithm 2, so hL > maxi xint,i. This is a heuristic to reduce the occurrence of terms
that only become significant outside of the sample region. The actual fitness value is comprised
of five different quantities. The algorithm loops first over the inner, then over the outer sample
region and counts the points where V is positive enough and where V̇ is negative or zero in the
variables cV and cV̇ . These quantities are commonly used for Lyapunov function identification
using GP, cf. [15, 89]. We additionally use the cumulative ratios rV and rV̇ , compare Line 6–7
and Line 16–17 of Algorithm 5, in order to add some continuity to the fitness value.
Moreover, we use the aforementioned Hessian of V , denoted by HV (x), to incorporate some

information about the curvature of V into the fitness value. In contrast to for example [20], we do
not requireHV (0n) to be positive definite, as this would exclude functions like V6(x) =

∑n
i=1 x

4
i ,

similarly to the lower bound, see also the discussion above Equation (5.3). Instead, we only
require a certain portion kH ∈ (0, 1) of samples in the inner sampling region to admit a positive
definite HV (x). The heuristic here is that at least at some points in the inner region, V should
curve upwards. By excluding the outer region from this, it is at least in principle possible to
also allow functions like V7(x1) = log(x21 + 1), which has positive curvature only for |x1| < 1 and
negative curvature for |x1| > 1, despite being positive definite on the whole R. However, this is
also dependent on the sampling region and its segmentation into inner and outer region, so it
is only an additional heuristic measure. For an inner region sample point to satisfy the Hessian
condition, we require that at this point, all eigenvalues of HV are larger than some εH > 0. The
value hmax > 0 in Line 10 is used to limit the absolute magnitude of the eigenvalues of HV .
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5.2 A Sampling Algorithm for Rating Lyapunov Functions

The Hessian evaluation solves the issue with functions of the form V5(x) = (c1x1 − c2x2)
2

discussed before, as its Hessian has a zero eigenvalue and hence the check in Line 9 will fail at
every sample point, leading to cH = 0. Since the symbolic computation ofHV is computationally
expensive, it is not evaluated at the first stage, but only for nstage > 1.

The overall fitness value is computed by Algorithm 5 from F1, F2, F3, F4 and F5. Here, F1 is
the normalized number of samples that satisfy the condition that V is positive and V̇ is negative
or zero, while F2 denotes the normalized number of samples contained in the estimated subset of
the DOA and F3 quantifies the Hessian condition, compare Line 26. Moreover, F4 and F5 denote
one minus the normalized, accumulated ratios computed in Line 6–7 and Line 16–17. Hence,
Fi ∈ [0, 1] , ∀i ∈ {1, . . . , 5} where Fi = 1 is the best possible and Fi = 0 the worst possible value
of Fi in terms of fitness. The overall fitness is the weighted sum of these values, cf. Line 28. This
weighting is chosen such that the number of points within the DOA and the Hessian condition
are the dominant terms of the overall fitness F ∈ [0, 1] at a given stage. Finally, Algorithm 4
returns 1− F instead of F as the GP algorithm was implemented to perform minimization.

Table 5.5: Fitness computation based on Monte-Carlo sampling and Hessian evaluation.

Algorithm 5 Fitness Computation, called by Algorithm 4.

1: function ComputeFitness(V , nstage)
2: Initialize: rV ← 0, rV̇ ← 0, cV ← 0, cV̇ ← 0, kmc ← 0, c∗ ←∞ ▷ Local variables.
3: Let xTk denote the

(
2Nx(nstage − 1) + k

)
-th row of Xs ▷ Notation, see also Algorithm 2.

4: if grad(V )|x=0n ̸= 0Tn or V (hL1n) /∈ (0, VL] then return 0 ▷ Check gradient and range.

5: for k ← 1 to Nx do ▷ Loop for inner region.
6: rV ← rV +max{0,−V (xk)}/(max{0,−V (xk)}+ 1) ▷ Update rV based on V (xk).
7: rV̇ ← rV̇ +max{0, V̇ (xk)}/(max{0, V̇ (xk)}+ 1) ▷ Update rV̇ based on V̇ (xk).
8: if nstage > 1 then ▷ Do not evaluate Hessian in first stage.
9: if mini∈{1,...,n} λi

(
HV (xk)

)
> εH then cH ← cH + 1 ▷ Evaluate Hessian.

10: if ∃i ∈ {1, . . . , n} : |λi
(
HV (xk)

)
| > hmax then return 0 ▷ Limit curvature.

11: if V (xk) > 0 then cV ← cV + 1 ▷ Count points where V is positive.

12: if V̇ (xk) ≤ 0 then cV̇ ← cV̇ + 1 ▷ Count points where V̇ negative or zero.

13: if 0 < V (xk) < c∗ and V̇ (xk) ≥ 0 then c∗ ← V (xk) ▷ Update level curve.

14: if V (xk) ≤ 0 then c∗ ← Vε(xk) ▷ Ensure c∗ > 0. See also (5.3).

15: for k ← Nx + 1 to 2Nx do ▷ Loop for outer region.
16: rV ← rV +max{0,−V (xk)}/(max{0,−V (xk)}+ 1) ▷ Update rV based on V (xk).
17: rV̇ ← rV̇ +max{0, V̇ (xk)}/(max{0, V̇ (xk)}+ 1) ▷ Update rV̇ based on V̇ (xk).
18: if V (xk) > Vε(xk) then cV ← cV + 1 ▷ Count points where V is positive enough.

19: if V̇ (xk) ≤ 0 then cV̇ ← cV̇ + 1 ▷ Count points where V̇ is negative or zero.

20: if Vε(xk) < V (xk) < c∗ and V̇ (xk) ≥ 0 then c∗ ← V (xk) ▷ Update level curve.

21: if V (xk) ≤ Vε(xk) then c∗ ← Vε(xk) ▷ Ensure c∗ is large enough.

22: for k ← 1 to 2Nx do ▷ Loop for inner and outer region.
23: if k ≤ Nx then cℓ ← 0 else cℓ ← Vε(xk) ▷ Assign lower bound for V .

24: if cℓ < V (xk) < c∗ and V̇ (xk) ≤ 0 then kmc ← kmc + 1 ▷ Estimate DOA size.

25: if nstage = 1 or cH/Nx ≥ kH then cH ← Nx ▷ Adjust Hessian evaluation.

26: F1 ← (cV + cV̇ )/(4Nx), F2 ← kmc/(2Nx), F3 ← cH/Nx ▷ Discontinuous fitness portion.
27: F4 ← 1− rV /(2Nx), F5 ← 1− rV̇ /(2Nx) ▷ Continuous fitness portion.
28: return (F1 +NxF2 +NxF3 + F4 + F5)/(2Nx + 3) ▷ Return overall fitness F .
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The general optimization options for the GP algorithm are displayed in Table 5.6. These are
applied to all considered GP based optimization problems in this work.

Table 5.6: General optimization parameters used for the GP algorithm.

Parameter Value Parameter Value

Population size 100 Selection Rank selection

Number of generations 10000 Recombination Subtree crossover

Selection pressure 1.5 Initialization Ramped half-and-half

Point mutation rate 0.05 Subtree mutation rate 0.02

Node mutation rate 0.3 Crossover rate 0.5

Elitism rate 0.03 Random rate 0.05

Maximum tree depth (grow) 10 Maximum tree depth (full) 5

For selection, the standard rank selection mechanism with selection pressure is used, compare
Section 2.3.1. Recombination is performed by subtree crossover, where the crossover points for
the selected individuals are drawn from a discrete uniform distribution. The crossover rate of
0.5 means that 50% of non-elite, non-random individuals are replaced with offspring at each
generation. The elitism rate of 0.03 means the 3 fittest of the 100 individuals are copied into the
next generation, while the random rate of 0.05 means that 5 random individuals are inserted into
the population at each generation.

Initialization is done using the ramped half-and-half initialization technique, see Section 2.3.2,
so 50 individuals are initialized using the “grow” technique with a maximum tree depth of 10
and 50 individuals using the “full” initialization technique with a maximum (fixed) tree depth
of 5. Also, the 5 random individuals are created at each generation using this techniques, 3 with
the grow and 2 with the full initialization technique.

Mutation is performed with a certain probability for every new individual, except for the 5 ran-
domly generated individuals, such that only individuals formed by recombination are mutated.
First, point mutation is performed, where the probability for point mutation is set to 5%. There-
after, subtree mutation is performed in 2% of the cases, where a random node (drawn from a
discrete uniform distribution) is replaced by a randomly generated subtree. The random subtree
is generated using the grow technique with a maximum tree depth of 10. When point mutation
happens, each expression node of the individual is point-mutated with a certain probability, in
this work with a chance of 30%, denoted by node mutation rate. Point mutation of non-terminals
and variables is performed by drawing the new non-terminal/variable from a discrete uniform
distribution. Constants are point-mutated by adding a random value which is either zero or
uniformly drawn from one of the intervals [−0.1, 0.1], [−1, 1] or [−10, 10]. Which of these four
cases is applied is randomly determined using a discrete uniform distribution. Additionally, when
mutation happens at a specific variable or constant node, there is a 50% chance that a constant
node is changed to a variable node, where the variable is chosen from a discrete uniform distri-
bution. Similarly, a variable node has a 50% chance to be mutated to a constant node, where
the value is uniformly drawn from the interval [−5, 5].
Constants for creation of random individuals (both for initialization and for insertion during

the optimization) are drawn uniformly from the interval [−1, 1]. Moreover, we use Nx = 100
samples for Algorithm 2 and Ns = 10 stages for Algorithm 4 while Nnode is computed by (5.5)
with knode = 2. Furthermore, kH = 0.3, ε = 10−6, εH = 10−5, εnorm = 10−6, hnorm = 106,
hL = 1000, VL = 3 × 1015 and hmax = 1015 is used. Equality for a zero gradient in Line 4 of
Algorithm 5 is determined using a tolerance of 10−12.

Following, the proposed GP based algorithm for Lyapunov function identification is evaluated
on two benchmark systems and on the zero dynamics of the 2WD TCS from Chapter 3.
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5.3 Evaluation and Results

5.3.1 Nonlinear System with Non-Polynomial Lyapunov Function

The first considered benchmark system is a nonlinear planar system with polynomial vector field
proposed by Ahmadi et al. [4] which is given by

ẋ1 = −x1 + x1x2 , ẋ2 = −x2 . (5.6)

This system is used by Ahmadi et al. [4] as an example of a system with polynomial vector
field that is globally asymptotically stable but does not admit a polynomial Lyapunov function
which proves this. Instead, global asymptotic stability is demonstrated in [4] using the Lyapunov
function

V (x) = log(x21 + 1) + x22 , (5.7)

which is positive definite on the whole R2, radially unbounded and its time derivative satisfies
V̇ (x) = −

(
x21 + 2x22 + x21x

2
2 + (x1 − x1x2)2

)
/(1 + x21) ≺ 0, compare [4]. Here, log denotes the

natural logarithm. Following, we apply the GP based Lyapunov identification method proposed
in Section 5.2 to find a Lyapunov function for the system (5.6), which here serves as a benchmark
test. For the general GP settings, the parameters from Table 5.6 are used, see also the end of
Section 5.2. Moreover, we use xTint =

[
xint,1 xint,2

]
=

[
50 50

]
and aT =

[
a1 a2

]
=

[
0.01 0.01

]
for the generation of state space samples by Algorithm 2. The context free grammar used for
representation of solutions is defined in BNF as G = (N ,Σ,P,S) withN = {⟨e⟩, ⟨o⟩, ⟨u⟩, ⟨v⟩, ⟨c⟩},
Σ = {+,−,×, square, log, id, x1, x2, C, (, ), , } and S = ⟨e⟩, where square(x1) = x21, log is the
natural logarithm and id(x1) = x1 the identity function. The identity function is included so
that nesting of unary functions can be reduced by point mutation. The production rules P are
given by ⟨e⟩ 7→ ⟨o⟩(⟨e⟩, ⟨e⟩) | ⟨u⟩(⟨e⟩) | ⟨v⟩ | ⟨c⟩, ⟨o⟩ 7→ + | − | ×, ⟨u⟩ 7→ square | log | id,
⟨v⟩ 7→ x1 | x2 and ⟨c⟩ 7→ C where C is the ephemeral constant, cf. Section 2.3.2.
The GP algorithm is executed 100 times, resulting in different results due to the randomness

of the method. In all 100 runs, the GP algorithm finds a solution with the best possible fitness
F = 1. An example solution identified by the GP algorithm is given by

V (x) = 0.39998 log(1.5x21 + 1) + 0.39998x22 = k1
(
log(k2x

2
1 + 1) + x22

)
, (5.8)

with k1 = 0.39998, k2 = 1.5. Moreover, it follows that V (x) ≻ 0 for all k1 > 0, k2 > 0 and

V̇ (x) = − k1
k2x21 + 1

m(x)TQm(x) with m(x) =

 x1
x2
x1x2

 and Q =

2k2 0 −k2
0 2 0
−k2 0 2k2

 . (5.9)

The leading principal minors of Q are ∆1 = 2k2, ∆2 = 4k2 and ∆3 = 6k22, so if k2 > 0 then
Q ≻ 0 and for k1 > 0 it follows that V̇ (x) ≺ 0. This demonstrates that the proposed GP
algorithm is able to identify a valid Lyapunov function for (5.6), despite the limited sampling
region and amount of samples.
It can be noted that although the GP algorithm found a solution with highest possible fitness

in all 100 runs, not all of these are suitable for showing global asymptotic stability. In total,
11 out of 100 cases resulted in solutions involving the natural logarithm, while 89 cases were
polynomial solutions. The latter cannot be used to show global asymptotic stability, as showed
by Ahmadi et al. [4], but the GP algorithm could not identify this issue in these cases due to
the limited sampling region and number of samples. Another identified function is for example
V (x) = 7.2× 10−6x21 log(3.7x

2
1 +0.24x22 +6.96)2 + x22, which despite the logarithm has a positive

time derivative at x1 = 100, x2 = 2. Finally, choosing a suitable grammar and region in the state
space for sampling can be challenging. Here, we included the logarithm in the grammar, but
whether this is required is generally not known beforehand. Nevertheless, the results demonstrate
that with a suitable grammar, the proposed method is able to find a Lyapunov function for (5.6).
Following, we apply the method to another benchmark system for further evaluation.
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5.3.2 Nonlinear System with Polynomial Lyapunov Function of Fourth Degree

The second considered benchmark system is a nonlinear planar system with polynomial vector
field taken from Parrilo and Lall [223] which is given by

ẋ1 = −x1 + (1 + x1)x2 , ẋ2 = −(1 + x1)x1 . (5.10)

They show that this system is globally asymptotically stable as it admits the Lyapunov function

V (x) = 6x21 − 2x1x2 + 8x22 − 2x32 + 3x41 + 6x21x
2
2 + 3x42 , (5.11)

which can be written as a sum of squares with V (x) = 3x41 + 6x21x
2
2 + (p1x1 + p2x2 + p3x

2
2)

2 +
(p2x1 + p4x2 + p5x

2
2)

2 + (p3x1 + p5x2 + p6x
2
2)

2 where p1 ≈ −2.442, p2 ≈ 0.19071, p3 ≈ 0.010137,
p4 ≈ −2.8133, p5 ≈ 0.22112, p6 ≈ −1.7178 and V (x) ≻ 0. They also show that −V̇ (x) can be
written as a (positive definite) sum of squares, compare [223]. Since (5.11) is radially unbounded,
global asymptotic stability follows.
Next, we apply GP to search for a Lyapunov function for system (5.10). The general GP

settings used here are listed in Table 5.6 and at the end of Section 5.2. As previously, we use
xTint =

[
xint,1 xint,2

]
=

[
50 50

]
and aT =

[
a1 a2

]
=

[
0.01 0.01

]
for Algorithm 2. The

context free grammar in BNF is defined as G = (N ,Σ,P,S) with N = {⟨e⟩, ⟨o⟩, ⟨u⟩, ⟨v⟩, ⟨c⟩},
Σ = {+,−,×, square, id, x1, x2, C, (, ), , }, S = ⟨e⟩ and production rules P, given by ⟨e⟩ 7→
⟨o⟩(⟨e⟩, ⟨e⟩) | ⟨u⟩(⟨e⟩) | ⟨v⟩ | ⟨c⟩, ⟨o⟩ 7→ + | − | ×, ⟨u⟩ 7→ square | id, ⟨v⟩ 7→ x1 | x2 and
⟨c⟩ 7→ C where C is the ephemeral random constant, see also Section 5.3.1. The GP algorithm
is again executed 100 times. In all 100 independent runs, the GP algorithm identified a solution
with the best possible fitness of F = 1. An example solution found by GP (after scaling) is

V (x) = 6x21 − 3x1x2 + 3x22 + 3x41 + 6x21x
2
2 + 3x42 . (5.12)

Using the SOSTOOLS toolbox [234], we can show that (5.12) and its time derivative admit sum
of square decompositions, rounded to three decimal places as

V (x) =m1(x)
TPm1(x) =


x1
x2
x21
x1x2
x22


T 

6 −1.5 0 0 0
−1.5 3 0 0 0
0 0 3 0 0
0 0 0 6 0
0 0 0 0 3



x1
x2
x21
x1x2
x22

 (5.13a)

−V̇ (x) =m2(x)
TQm2(x) =


x1
x2
x21
x1x2


T 

9 −4.5 −1.5 −3.156
−4.5 3 0.156 1.5
−1.5 0.156 12 0
−3.156 1.5 0 12



x1
x2
x21
x1x2

 . (5.13b)

Since P ≻ 0 and Q ≻ 0 in (5.13), it follows that the GP algorithm identified with (5.12) a valid
Lyapunov function for showing global asymptotic stability of (5.10). Another solution found by
the GP algorithm is for example V (x) = 6x21 − 0.0018132477x1x2 + 6x22, which is locally a valid
Lyapunov function for (5.10). However, its time derivative becomes positive for x1 large enough,
so with this Lyapunov function only local stability can be concluded. This limitation is due to
the fact that the sampling algorithm can only cover a bounded region of the state space using a
limited amount of function evaluations of both V and its time derivative. Nevertheless, the GP
algorithm succeeded in finding a valid Lyapunov function for showing global asymptotic stability
for both benchmark systems considered in this analysis. Therefore, it can be a useful heuristic if
standard methods fail, at least for systems of relatively low order.
Following, the method is applied to the third order zero dynamics of the 2WD TCS derived in

Chapter 3. While global asymptotic stability of this system is already proven by Theorem 2, it
provides an interesting problem of a real-world system for the proposed method.
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5.3.3 Application to Traction Control

The third considered system is given by the zero dynamics of the 2WD TCS of theM5 synthesis
model, derived in Section 3.3.1.1. The ODEs are restated here as

ż =

ż1ż2
ż3

 =

 −z2(
2(kcz1 − dcz2)− rrFxr

)
/Jr

(Fxr − Fw)/m

 . (5.14)

The parameters used are listed in Table 6.1 with ϵ = 10−6 for the computation of (3.19), while
zTint =

[
zint,1 zint,2 zint,3

]
=

[
50 50 50

]
and aT =

[
a1 a2 a3

]
=

[
0.01 0.01 0.01

]
is

used for Algorithm 2. The context free grammar in BNF is G = (N ,Σ,P,S) with N =
{⟨e⟩, ⟨o⟩, ⟨u⟩, ⟨v⟩, ⟨c⟩}, Σ = {+,−,×, square, id, z1, z2, z3, C, (, ), , }, S = ⟨e⟩ and production
rules P, which are given by ⟨e⟩ 7→ ⟨o⟩(⟨e⟩, ⟨e⟩) | ⟨u⟩(⟨e⟩) | ⟨v⟩ | ⟨c⟩, ⟨o⟩ 7→ + | − | ×,
⟨u⟩ 7→ square | id, ⟨v⟩ 7→ z1 | z2 | z3 and ⟨c⟩ 7→ C where C is the ephemeral random constant.
The GP algorithm is again executed 100 times. For this system, the success rate of the algorithm
drops significantly, compared to the two previously considered benchmark examples. While for
the benchmark examples from Section 5.3.1 and Section 5.3.2, in each run the GP algorithm
identified a solution with the best possible fitness, it achieves this for the zero dynamics of the
2WD TCS only in 9 out of 100 runs. One example solution identified by the GP algorithm (after
scaling, coefficients rounded to four decimal places) is given by

V (z) = 5300z21 + 1.5021z22 + 975.1z23 . (5.15)

The Lyapunov function obtained by an application of the Kalman-Yakubovich-Popov Lemma to
the sign-preserving Lur’e formulation of the zero dynamics of the 2WD TCS from Section 4.2.2
is, for the vehicle parameters from Table 6.1, given by

V (z) = 5300z21 + 1.5z22 + 975z23 . (5.16)

So in this optimization run, the GP algorithm approximated the analytic solution obtained by
the passivity analysis in Section 4.2.2. It can be noted that despite the similarity, (5.15) is not
suitable as an actual Lyapunov function as its derivative along solutions of (5.14) is positive at
z1 = 0.79, z2 = 0.3651, z3 = 0.1204, for example. The GP algorithm did not identify this due to
the limited number of sample points, so increasing the number of state space samples might lead
to a better approximation of the actual solution. Another solution with the maximum fitness
value identified by the GP algorithm (after scaling, coefficients rounded to two decimal places) is

V (z) = 517975.41z21 + 145.18z22 + 92614.15z23 − 2.47z1z2 . (5.17)

The Lyapunov function from (3.83), used in the proof of Theorem 2 to show global asymptotic
stability of the zero dynamics (5.14), assuming here ϵ = 10−6, γ = 7/2 and the vehicle parameters
from Table 6.1, with coefficients rounded to two decimal places, is given by

V (z) = 517975.41z21 + 146.60z22 + 95287.01z23 − z1z2 . (5.18)

In this optimization run, the GP algorithm evidently approximated a numerical instance of the
class of parametric Lyapunov functions used for the stability analysis in Section 3.3.2. It can be
noted that (5.17) is not suitable as an actual Lyapunov function for showing global asymptotic
stability, as its time derivative is positive for example at z1 = −0.064, z2 = 0.199, z3 = 0.066, in
contrast to (5.18), which is (except for the rounded coefficients) a Lyapunov function for (5.14) by
Theorem 1 and Theorem 2. Like for the previous example solution (5.15), this can be explained
by the limited number of sample points available for computing the fitness value. While the GP
algorithm with the proposed fitness function was able to identify exact solutions for the first two
considered benchmark problems, the algorithm identified some approximate solutions for the zero
dynamics of the TCS. In the following, a review of the proposed heuristic method for Lyapunov
function identification is given and some possible extensions of the method are discussed.
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5.4 Discussion and Potential Extensions

In summary, the GP algorithm succeeds in finding a valid Lyapunov function for the first two
systems and delivers an approximation of a valid solution for the zero dynamics of the 2WD TCS.
The latter example highlights the limitations of the method: besides the lower success rate of
identifying a solution with the best possible fitness, also the runtime of the algorithm increases
for the third example. The system from Section 5.3.1 required 7.1 minutes, while the system
from Section 5.3.2 required 31.3 minutes for 100 optimization runs. The zero dynamics of the
2WD TCS required 23.93 hours for 100 optimization runs. All GP experiments are conducted
on a computer with Intel® Core i7 processor with 2.6 Gigahertz and 32 Gigabyte random access
memory, using Microsoft® Windows 10 Enterprise as operating system. The GP algorithm
is implemented in C++ and compiled as a 64 bit application using Microsoft® Visual Studio
Professional 2015. The fitness evaluation of the individuals at each generation is parallelized
using the Microsoft® Parallel Patterns Library.

Considering the results for the zero dynamics of the 2WD TCS, the GP algorithm approxi-
mated in some runs the Lyapunov function obtained from the sign-preserving Lur’e formulation
from Section 4.2.2, compare (5.15). This is interesting, because by Lemma 19, the time deriva-
tive of this Lyapunov function is only negative semi-definite. Therefore, the inner optimization
problem (5.1e) for finding the level curve in the original problem (5.1) results for such a function
always in c∗ = 0 because V̇ (z) = 0 arbitrarily close to the origin and hence Ω0 = ∅. The reason
why the GP algorithm nevertheless identified this function here with the best possible fitness is
due to the sampling of the state space, since V̇ (z) in this case is only zero for z2 = z3 = 0, which
is unlikely to occur using random samples from a uniform continuous distribution. Although
the algorithm for generating the state space samples demands for the first n samples one zero
component, compare Line 7 in Algorithm 2, this does not exclude a negative semi-definite V̇ here
because the remaining components of the samples are still drawn randomly.
In general, the method used for estimating a subset of the DOA in the proposed fitness func-

tion is only a heuristic as indicated in Figure 5.1 and discussed in Section 5.2. For example,
Algorithm 5 does not ensure that the computed subset is connected or that the level curve
V (z) = c∗ does not intersect the boundary of the user-defined sampling region that is spanned
by [−xint,1, xint,1] × [−xint,2, xint,2] × · · · × [−xint,n, xint,n]. Therefore, the computed subset will
generally deviate from Ω0 as defined in (5.1). One possible extension of the proposed fitness
function is therefore to use a different method for the DOA estimation. For example, Giesl et
al. [82] propose a method to compute connected sublevel sets by triangulation of the considered
subset of the state space, which would provide a solution for the above mentioned limitations
of the fitness function. A combination of the GP algorithm with this approach would therefore
be interesting and warrants further research. However, it can also be noted that despite the
mentioned limitations, the proposed heuristic method succeeded in identifying a valid Lyapunov
function for the first two considered benchmark examples and generated different approximate
solutions for the zero dynamics of the 2WD TCS. Therefore, it can be a useful heuristic when
searching for Lyapunov functions for nonlinear dynamical systems.
As already mentioned in Section 2.3.2, symbolic optimization can be applied to various other

control related problems as well. Apart from the GP based Lyapunov function identification
approach proposed here, we also considered synthesis of feedback controllers, see [301, 302, 303]
and supervised a work on the synthesis of feedforward controllers [298] and on a method for
rating dynamic drifting maneuvers in real-time [299]. These methods were based on grammatical
evolution [217], an optimization method similar to GP.
This concludes the analysis of the proposed method for Lyapunov function identification by

GP. In the following, a theoretical analysis of the 2WD TCS and an experimental evaluation of
the 2WD and the 4WD TCSs is presented with different test vehicles.
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Summary. In this chapter, a detailed analysis of the proposed TCSs, for both vehicles with 2WD
and on-demand 4WD torque bias systems is carried out. The main contributions are:

1. Validation of the longitudinal model by comparing the simulation results with measurements
from experiments with a test vehicle.

2. LTI reformulation of the proposed control design, comparison with PID control and analysis
in the frequency domain.

3. Experimental evaluation of the TCSs on different challenging maneuvers, comparison with
DCU based traction control and other control methods.

This chapter is partially based on our publications [302], [307] [300] and [304].

6.1 Validation of the Longitudinal Model

Before the proposed TCSs are evaluated in detail in a test vehicle, a validation of the longitudinal
model is presented. For this purpose, the control structure shown in Figure 3.4 is implemented in
MATLAB® Simulink®, where theM5 model (3.22) with an additional actuator delay of 10ms
is used to model the vehicle. Numerical simulation is performed for the continuous dynamics of
the M5 model with a Runge-Kutta-4 solver using a simulation step time of 1ms. The TCS is
executed with a fixed, discrete sample time of 10ms, where all dynamic parts of the controller
where discretized using the Tustin transformation and zero order hold elements are used for the
interface of the discrete controller with the continuousM5 model.

The TCS in the test vehicle is implemented on a dSPACE® MicroAutoBox II embedded real-
time system for rapid control prototyping (RCP), where the signals transmitted to the ECU are
bypassed and modified during runtime in order to realize the controller. The test vehicle used
for the model validation is equipped with a twin-turbocharged spark ignition engine with direct
injection and six in-line cylinders.

The maneuver for the validation of the model is a longitudinal acceleration with a sudden
change of the friction coefficient. At the start of the maneuver, the vehicle is accelerating on dry
asphalt with µ ≈ 1, then the friction coefficient drops down to µ ≈ 0.1, which is comparable to
polished ice. In the experiment, this is realized with wet glass tiles, which have a comparable
friction coefficient to ice. In this situation, the controller has to reduce the requested torque
quickly in order to stabilize the wheel dynamics. Figure 6.1 shows the trajectories of x4 = ωr,
y1 = x3/iG = ωc/iG and the setpoint r1 = ωc,d, which is generated according to (3.115). The
target slip λxr,d is generated on the DCU and determined experimentally such that it is located
close to the optimal, traction maximizing value. Figure 6.1a shows the results of the simulation,
while Figure 6.1b shows the experimental results for the described maneuver. As mentioned in
Section 3.2.1, the first order lag element (3.1) does not model the whole operating range of an ICE,
as it does not include the dynamics of the turbocharger, for example. Hence, the actuator model
from [290] is used here to reach the initial wheel speed of ωr ≈ 40 rad/s. During torque reduction,
this model reduces to (3.1), with the above mentioned actuator delay of 10ms. TheM5 model
is able to reproduce the experimental results with sufficient accuracy as both the amplitude and
the frequency of the drivetrain oscillation of the simulation match the experimental results well.
Also, it can be seen that the controller successfully stabilizes the nonlinear wheel dynamics and
is able to track the setpoint while damping drivetrain oscillations.
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(a) Controlled rear axle and crankshaft speed (simulation).
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(b) Controlled rear axle and crankshaft speed (measurement).

Figure 6.1: Comparison between simulation and experiment.

The vehicle parameters used for the simulation are given in Table 6.1, with ϵ = 10−6 in (3.19).
Further validation of the longitudinal model used in this work can be found in [307]. The
parameters of the M7 model can be found in the Appendix A.5, see Table A.1 and Table A.2.
For details on the tire parameter identification see also [297]. We proceed with a theoretical
analysis of the proposed 2WD TCS. For this purpose, a standard PID controller is designed as a
benchmark, which is then compared to the proposed controller based on IOL.

Table 6.1: Parameters of theM5 model [305].

Name Description Value Unit

τm Motor time constant 0.02 s

Jc Aggregated inertia of the drive side 0.23 kgm2

Jr Rear axle inertia 3 kgm2

rr Radius of the rear wheels 0.33 m

m Vehicle mass 1950 kg

kc Aggregated drivetrain torsional stiffness 5300 Nm/rad

dc Aggregated drivetrain damping constant 15 Nms/rad

ρ Air density 1.1 kg/m3

Ast Vehicle frontal area 2.37 m2

cw Aerodynamic drag coefficient 0.3 −
g Gravitational acceleration 9.81 m/s2

iG Total gear ratio (2. gear) 8.98 −
lf Distance front axle to COG 1.3 m

lr Distance rear axle to COG 1.4 m

Br Pacejka stiffness factor of the rear tires 10.3 −
Cr Pacejka shape factor of the rear tires 1.8 −
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6.2 Theoretical Evaluation

6.2.1 Linear Control Law Representation

For a frequency domain analysis of both the proposed TCS and the PID-only control approach,
the plant dynamics are linearized using Jacobian linearization. For that purpose, the common
assumption is used that the longitudinal vehicle speed changes significantly slower than the other
state variables of theM5 model from (3.22). Then, ẋ5 ≈ 0 and so x5 = x5,0 can be assumed to
be constant over the considered time interval. This reduces the dynamics to four state equations,
given by ẋ = F (x, u1, µ) = f(x, µ) + bu1, y = h(x) with

f(x, µ) =


−x1/τm
x3/iG − x4

(x1 − 2Tr/iG)/Jc
(2Tr − rrFxr)/Jr

 , b =

1/τm
0
0
0

 , h(x) = [
x3/iG
x4

]
(6.1)

and xT =
[
x1 x2 x3 x4

]
=

[
Tm ∆ϕc ωc ωr

]
, u1 = Tm,d, y

T =
[
y1 y2

]
=

[
ωc/iG ωr

]
where Tr, Fxr are given by (3.22), but with x5 = x5,0 = vx,0 constant, see also (3.6) and (3.4). In
contrast to theM5 model (3.22), the friction coefficient µ and the state x4 are defined explicitly
as (disturbance) input and output, respectively. This will be advantageous for the analysis. The
system (6.1) has an equilibrium at xT0 =

[
x1,0 x2,0 x3,0 x4,0

]
, u1,0, µ0, where

x1,0 = 2kcx2,0/iG (6.2a)

x2,0 = rrFxr,0/(2kc) (6.2b)

x3,0 = iGx4,0 (6.2c)

x4,0 = vx,0/
(
rr(1− λxr,0)

)
(6.2d)

and u1,0 = x1,0. Following, Fxr,0 denotes Fxr evaluated at λxr = λxr,0 = (rrx4,0 − vx,0)/(rrx4,0)
and µ = µ0, see (3.6). Note that (6.2) assumes acceleration in forward direction with vx,0 > 0 and
λxr,0 ≥ 0, such that no numerical regularization of λxr,0 is required. The equilibrium (x0, u1,0, µ0)
is parameterized by the free variables λxr,0, vx,0, µ0 and (6.2). Then, after defining δx = x−x0,
δy = y − h(x0), δu1 = u1 − u1,0 and δµ = µ− µ0, the linearized dynamics of (6.1) are given by

δẋ = Aδx+ bδu1 + bdδµ (6.3a)

δy = Cδx (6.3b)

with system matrix A = JF ,x(x0, u1,0, µ0), input vector b = JF ,u1(x0, u1,0, µ0), disturbance
input vector bd = JF ,µ(x0, u1,0, µ0) and measurement matrix C = Jh,x(x0, u1,0, µ0). Here, for
example, JF ,x(x0, u1,0, µ0) denotes the Jacobian of F with respect to x, evaluated at x = x0,
u1 = u1,0 and µ = µ0, analogously to (2.24). More explicitly, this procedure gives b as in (6.1),
bTd =

[
0 0 0 −(rr/Jr)∂Fxr/(∂µ)|x4=x4,0,µ=µ0

]
and

A =


−1/τm 0 0 0

0 0 1/iG −1
1/Jc −2kc/(iGJc) −2dc/(i2GJc) 2dc/(iGJc)
0 2kc/Jr 2dc/(iGJr) −

(
2dc + rr∂Fxr/(∂x4)|x4=x4,0,µ=µ0

)
/Jr

 (6.4a)

C =

[
0 0 1/iG 0
0 0 0 1

]
(6.4b)

with

∂Fxr/(∂x4)|x4=x4,0,µ=µ0 =
µ0 Fzr Cr Br vx,0 cos

(
Cr arctan(Brλxr,0)

)
rrx24,0(B

2
rλ

2
xr,0 + 1)

(6.5a)

∂Fxr/(∂µ)|x4=x4,0,µ=µ0 = Fzr sin
(
Cr arctan(Brλxr,0)

)
. (6.5b)
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From this linear state space representation, the transfer function matrix of the linearized plant
can be derived by

P (s) =

[
P11(s) P12(s)
P21(s) P22(s)

]
= C(sI4 −A)−1B (6.6)

with B =
[
b bd

]
. If derivatives in the control law (3.41) and the reference dynamics (3.107) are

approximated by linear filters as discussed in Section 3.4, then the controller can be represented
in an LTI structure as shown in Figure 6.2.

CPID b0 k1 P d

Ga

Fx4

a0

k3

k2

a1

k3Fy1

e1 w1 v1

− −
y1r1

−

u1,d

u1

x4

−

µ

Figure 6.2: LTI representation of the proposed TCS based on IOL with linearized plant.

Here, a0 = 0, a1 = 1/τs,e and b0 = iG,e/(τm,eJr,e) as in (3.109). The dashed line indicates
that a0 = 0 as in (3.109a) and hence that connection is only included for illustration. Moreover,
k1 = τm,eJc,eiG,e, k2 = 2τm,ekc,e/iG,e, k3 = 2τm,edc,e/iG,e where τm,e, τs,e, kc,e, dc,e, Jc,e, Jr,e, iG,e
are controller parameters and estimates of the actual plant parameters τm, kc, dc, Jc, Jr, iG. In
the continuous, delay-free case, τs,e = τm,e can be chosen to approximate τm. The distinction
is made to account for the effect of the delay and discretization by taking τs,e > τm,e ≈ τm as
additional tuning parameter. The CPID(s) controller is defined in (3.110b), the filters Fy1(s) and
Fx4(s) in (3.114) and the actuator model by Ga(s) = 1/(τs,es+ 1). Finally, a time delay τm,d is
included in the first input channel of the plant model (6.6) such that

P d(s) =

[
Pd,11(s) Pd,12(s)
Pd,21(s) Pd,22(s)

]
=

[
P11(s) exp(−τm,ds) P12(s)
P21(s) exp(−τm,ds) P22(s)

]
. (6.7)

Following, the discretized version P d(z) is obtained by zero order hold discretization using a
sample time of τs = 0.01 s. Then, the time delay can be absorbed into the plant transfer function
such that P d(z) is a rational function in the discrete z-domain. The dynamic parts of the
proposed controller are discretized using the Tustin transformation with the same sample time
to obtain CPID(z), Fy1(z), Fx4(z) and Ga(z). Then, from Figure 6.2 we get

U1(z) = Cr1(z)R1(z) + Cy1(z)Y1(z) + Cµ(z)M(z) (6.8a)

Cr1(z) =
b0k1CPID(z)

1 + k2Pd,21(z) + Fx4(z)Pd,21(z)−Ga(z)
(6.8b)

Cy1(z) =
k2 + k3Fy1(z)− k1(a0 + b0CPID(z) + a1Fy1(z))

1 + k2Pd,21(z) + Fx4(z)Pd,21(z)−Ga(z)
(6.8c)

Cµ(z) = −
k2Pd,22(z) + k3Fx4(z)Pd,22(z)

1 + k2Pd,21(z) + Fx4(z)Pd,21(z)−Ga(z)
. (6.8d)
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Here, R1(z), U1(z), Y1(z) and M(z) represent the z-domain versions of their corresponding
time-domain functions r1(t), u1(t), y1(t) and µ(t), respectively. From (6.8), the transfer function
from reference input r1(t) to the system output y1(t) can be derived as

T (z) =
Y1(z)

R1(z)
=

Pd,11(z)Cr1(z)

1− Pd,11(z)Cy1(z)
. (6.9)

Similarly, the transfer function function from µ(t) to the system output y1(t) is given by

Sµ(z) =
Y1(z)

M(z)
=
Pd,12(z) + Pd,11(z)Cy1(z)

1− Pd,11(z)Cy1(z)
, (6.10)

while the sensitivity function is S(z) = 1− T (z). For analysis of tracking a ramp reference input
r1(t), an integrator can be used as pre-filter Fr(z) from the auxiliary reference input r1,a(t) to
r1(t), in the z-domain given by

Fr(z) =
R1(z)

R1,a(z)
=

τs
z − 1

. (6.11)

The transfer function from r1,a(t) to e1(t) is then given by Sr(z) = Fr(z)S(z). For example,
using the nominal vehicle parameters from Table 6.1, the controller parameters kp = 5, ki = 40,
kd = 0.2, τd = 0.02 s, τm,e = τm, τs,e = 5τm,e, kc,e = kc, dc,e = dc, Jc,e = Jc, Jr,e = Jr and
iG,e = iG, a sample time of τs = 0.01 s, a time delay of τm,d = τs and the operating point
vx,0 = 50 km/h = (50/3.6)m/s, µ0 = 1, λxr,0 = λ+xr,peak/2, with λ

+
xr,peak from (3.14a), results in

the following transfer functions in minimal realization,

T (z)≈ 0.087483(z+0.8424)(z−0.7935)(z−0.9048)(z−0.217)(z2−1.812z+0.8242)
(z−0.2219)(z+0.1001)(z2−1.934z+0.9367)(z2−1.618z+0.6781)(z2−1.477z+0.6654)

(6.12a)

S(z)≈ (z−1)2(z−0.232)(z−0.001109)(z2−1.124z+0.3294)(z2−1.794z+0.8313)
(z−0.2219)(z+0.1001)(z2−1.934z+0.9367)(z2−1.618z+0.6781)(z2−1.477z+0.6654)

(6.12b)

Sµ(z)≈ −0.091854(z+1.731)(z+0.6433)(z−0.6385)(z−1)2(z2−1.598z+0.7813)
(z−0.2219)(z+0.1001)(z2−1.934z+0.9367)(z2−1.618z+0.6781)(z2−1.477z+0.6654)

(6.12c)

Sr(z)≈ 0.01(z−1)(z−0.232)(z−0.001109)(z2−1.124z+0.3294)(z2−1.794z+0.8313)
(z−0.2219)(z+0.1001)(z2−1.934z+0.9367)(z2−1.618z+0.6781)(z2−1.477z+0.6654)

. (6.12d)

It can be noted that the computation of the transfer function using the equations (6.8), (6.9)
and (6.10) is numerically very sensitive. Therefore it is recommended to use the state space
representation of the involved transfer functions in order to compute T (z), S(z), Sµ(z), and
Sr(z). The state space representation is included in Appendix A.6. Also, the coefficients of the
transfer functions in (6.12) are rounded and only included for an approximate reference. The
following analysis in the frequency domain is performed using the numerically more accurate
state space representations only.

The above IOL design is compared to a PID-only control design, for which the four considered
sensitivity functions are given by S̃(z) = 1− T̃ (z), S̃r(z) = Fr(z)S̃(z) and

T̃ (z) =
Pd,11(z)C̃PID(z)

1 + Pd,11(z)C̃PID(z)
, S̃µ(z) =

Pd,12(z)

1 + Pd,11(z)C̃PID(z)
. (6.13)

The tilde is used here to distinguish the transfer functions of the PID-only control design from
the transfer functions of the IOL based control design. The PID controller C̃PID(z) is obtained
by a Tustin transformation with τs = 0.01 s of

C̃PID(s) = k̃p +
k̃i
s
+

k̃ds

τ̃ds+ 1
, (6.14)

analogously to the IOL based control design. Here, k̃p, k̃i, k̃d and τ̃d are the PID parameters of
the PID-only control design. In the following, both control designs are compared with each other
in the frequency domain. Focus is set on analyzing how the additional components of the IOL
based control design, like the actuator model and the usage of the x4 measurement influence the
closed loop dynamics, compared to the traditional PID-only control structure.
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6.2.2 Evaluation and Comparison with PID Control in the Frequency Domain

The first considered structural difference between the IOL based TCS and the PID-only design is
the actuator modelGa(z), depicted in Figure 6.2. In order to compare the tracking performance of
both controllers for ramp inputs, the Bode magnitude plots of Sr(z) and S̃r(z) for three operating
points are shown in Figure 6.3. The dash-dotted line at 50Hz marks the Nyquist frequency.
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Figure 6.3: Bode plots of the IOL based TCS (left) and PID-only TCS (right) at three operating points.

The plot is created with vx,0 = (50/3.6)m/s, µ0 = 1, the vehicle parameters from Table 6.1,
actuator delay, discretization and IOL controller parameters as described below Equation (6.11).
The PID-only parameters are k̃p = 27.2, k̃i = 328, k̃d = 0.527, τ̃d = 0.02 s, which were identified
in our previous work as a reasonable compromise between performance and robustness [305].
The feedback of the first order actuator model acts as an additional integrator in the forward
channel, resulting together with the PID controller of the IOL control design in a type 2 open loop
control system. This is required for tracking ramp signals with zero asymptotic error. Figure 6.3a
confirms that the IOL design achieves this, independently of the operating point on the tire force
curve. Figure 6.3b shows that the PID-only design requires λxr,0 = λ+xr,peak, because there the
constant term of the denominator polynomial of P11(s) vanishes and hence the plant provides the
required integrating behavior. This also provides a theoretical argument that PID-only control
can achieve reasonable asymptotic tracking errors, as the goal of a TCS is usually to operate
at λxr,0 ≈ λ+xr,peak, such that the velocity error constant becomes small. The IOL based control
design does not have this limitation, as the feedback of the actuator model in conjunction with
the PID controller ensures double integrating behavior.
The second considered structural difference between the IOL based TCS and the PID-only

design is the implicit PD action on the speed difference between the scaled crankshaft angular
velocity y1 and the rear axle angular velocity x4, which can be extracted from Figure 6.2 as
U1,d(z) = k2(Y1(z)−X4(z))+k3

[
Fy1(z)Y1(z)−Fx4(z)X4(z)

]
, where U1,d(z), Y1(z) and X4(z) are

the z-domain versions of their corresponding time-domain functions u1,d(t), y1(t) and x4(t), while
Fy1(z) and Fx4(z) are filters to approximate the time derivatives of y1(t) and x4(t). If Fy1 = Fx4
like in this analysis, then u1,d(t) is generated by a standard PD controller. In order to analyze
the effect of the u1,d(t) term on the closed loop system, we use the FRM, given by

MF
def
= sup

ω

∣∣F ( exp(jωτs))∣∣ (6.15)

for a discrete transfer function F (z), where τs is the sample time and j the imaginary unit. In the
following, the FRM is approximated numerically by evaluating (6.15) at 1000 values for ω = 2πf
where f is spaced logarithmically (to base 10) between 10−5 Hz and 50 Hz. The maximum of
these values is then used as FRM. Using vx,0 = (50/3.6)m/s, λxr,0 = λ+xr,peak and µ0 = 1 as
an example operating point with the plant and controller parameters from above, we obtain for
example MSµ = 8.78 (the IOL based design) and M

S̃µ
= 20.60 (the PID-only design).
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Let furthermore Sµ,0 denote (6.10) computed with the same parameters and operating point,
but with kc,e = dc,e = 0 such that k2 = k3 = 0 and hence (6.15) is inactive as then u1,d = 0.
The FRM in this case evaluates to MSµ,0 = 18.27. So using the extra information from the rear
axle speed measurement explicitly in the control law leads in this case to a significantly smaller
FRM. This shows that the u1,d term can reduce sensitivity of the closed loop system compared
to a PID-only design if parameterized correctly.
Since the PID-only control design was not explicitly tuned for a small FRM of S̃µ, a more

detailed analysis to confirm these findings is presented in the following. First, let

MF1,F2,F3

def
=

1

3

(
MF1 +MF2 +MF3

)
(6.16)

be a shorthand for the average FRM of three different discrete transfer functions. Since a TCS
has to cover a wide range of operating points, we consider different operating points collected in
the three vectors µop ∈ Rnµ , λop ∈ Rnλ , vop ∈ Rnv with nµ = 2, nλ = nv = 3 and

µTop =
[
µop,1 µop,2

]
=

[
0.1 1

]
(6.17a)

λTop =
[
λop,1 λop,2 λop,3

]
= λ+xr,peak

[
0.1 0.5 1

]
≈

[
0.01 0.06 0.12

]
(6.17b)

vTop =
[
vop,1 vop,2 vop,3

]
= (1/3.6)

[
10 50 70

]
m/s ≈

[
2.8 13.9 19.4

]
m/s , (6.17c)

which result in a total of 2 × 3 × 3 = 18 different operating points. With (6.16) and (6.17), we
can define a cost value for the IOL based design and the PID-only design, given by

JIOL
def
=

1

nµnλnv

nµ∑
i=1

nλ∑
j=1

nv∑
k=1

MT,S,Sµ , with µ0 = µop,i, λxr,0 = λop,j , vx,0 = vop,k , (6.18a)

JPID
def
=

1

nµnλnv

nµ∑
i=1

nλ∑
j=1

nv∑
k=1

M
T̃ ,S̃,S̃µ

, with µ0 = µop,i, λxr,0 = λop,j , vx,0 = vop,k . (6.18b)

The value JIOL describes the average FRM of the three sensitivity functions T (z), S(z), Sµ(z)

(JPID for T̃ (z), S̃(z), S̃µ(z), respectively), averaged over the operating points from (6.17) as
each sensitivity function depends on the operating points. This dependency is not written out
explicitly here in favor of a more compact notation. The functions Sr(z) and S̃r(z) are not used
here, since the PID-only design cannot remove the steady-state error for operating points with
λxr,0 ̸= λ+xr,peak when tracking ramp inputs as discussed before. The cost value (6.18b) can then
be used in an optimization problem to identify the PID parameters of the PID-only control design
which minimize (6.18b). The optimization problem is formulated as

J∗
PID = min JPID (6.19a)

over (k̃p, k̃i, k̃d) ∈ R3 (6.19b)

subject to T̃ (z) , S̃(z) , S̃µ(z) stable, (6.19c)

|1− T̃ (1)| ≤M0 , |S̃(1)| ≤M0 , |S̃µ(1)| ≤M0 . (6.19d)

The constraint (6.19c) requires stability of the sensitivity functions, while (6.19d) constrains their
steady state values to deviate from the desired values by at mostM0. Here, we chooseM0 = 0.01
and require that T̃ (1) ≈ 1, S̃(1) ≈ 0 and S̃µ(1) ≈ 0. Since an exact solution to (6.19) is out of the
scope of this analysis, we limit the search space in the first step to a finite, equidistant grid with
k̃p ∈ [0, 100], k̃i ∈ [0, 1000], k̃d ∈ [0, 2] and 100 values for each decision variable, resulting in a total
of 100×100×100 = 106 evaluated parameter combinations. The parameter combination with the
best cost value is then, in a second step, used as start point for an optimization with the Nelder-
Mead simplex method [208], using the MATLAB® fminsearch function, whose implementation
is based on the publication by Lagarias et al. [165]. For the stopping criteria, the termination
tolerance for both the function value TolFun and the current point TolX is set to 10−12.
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The results of the analysis are listed in Table 6.2. Also, the FRMs for each operating point and
the considered sensitivity functions are listed there individually. The first six columns contain
information regarding each operating point. The columns seven to nine contain the FRMs of the
PID-only control design with parameters k̃p = 27.2, k̃i = 328 and k̃p = 0.527. Columns ten to
twelve contain the FRMs of the optimized PID-only control design according to (6.19) with the
identified parameters k̃∗p = 29.1, k̃∗i = 2.13 and k̃∗d = 0.25. The asterisk is used to distinguish the
sensitivity optimized PID-only design from the PID-only design proposed in [305]. Finally, the
last three columns contain the FRMs of the IOL based control design. The last row contains the
cost values of the three control designs.
Looking at the cost values, we obtain JPID = 4.24 for the PID-only design from [305], J∗

PID =
3.07 for the PID-only design optimized according to (6.19) and JIOL = 2.53 for the IOL based
control design. This demonstrates that the IOL based design can achieve a significantly smaller
overall sensitivity compared to the PID-only control design, even when the latter is explicitly
optimized for this specification. Especially for λxr,0 = λ+xr,peak, the sensitivity to variations of the
friction coefficient of the IOL based TCS is significantly lower compared to both PID-only control
designs. This is also the case if only a single vx,0 is used from (6.17c) and the optimization is
performed individually for each vop,k with k ∈ {1, 2, 3}. Therefore, even a gain-scheduled PID-
only control design which uses the vehicle speed as scheduling variable cannot achieve the same
performance according to (6.18) as the IOL based TCS. Using µ0 or λxr,0 as scheduling variables
poses challenges as these are highly dynamic and in the case of µ0 require additional estimation
mechanisms. The IOL based TCS achieves relatively low sensitivity compared to the PID only
control design without these limitations. In the following, a prototypical implementation of the
proposed TCS based on IOL is evaluated in different test vehicles.

Table 6.2: Comparison of frequency response magnitudes of PID-only and IOL based TCSs.

Operating Point PID-only TCS IOL based TCS

i j k µ0 λxr,0 vx,0 M
T̃

M
S̃

M
S̃µ

M
T̃ ∗ M

S̃∗ M
S̃∗
µ

MT MS MSµ

1 1 1 0.1 0.01 2.8 1.00 1.50 0.95 1.00 1.42 0.87 1.19 1.81 0.61

1 1 2 0.1 0.01 13.9 1.16 1.32 2.29 1.00 1.27 1.66 1.22 1.72 1.36

1 1 3 0.1 0.01 19.4 1.31 1.29 2.65 1.00 1.24 1.84 1.28 1.70 1.47

1 2 1 0.1 0.06 2.8 1.00 1.39 6.12 1.00 1.33 4.91 1.16 1.76 4.11

1 2 2 0.1 0.06 13.9 1.55 1.41 12.51 1.00 1.25 8.06 1.37 1.68 6.32

1 2 3 0.1 0.06 19.4 1.66 1.50 13.52 1.00 1.26 8.44 1.41 1.69 6.56

1 3 1 0.1 0.12 2.8 2.05 1.81 20.60 1.01 1.30 14.39 1.53 1.73 8.78

1 3 2 0.1 0.12 13.9 2.05 1.81 20.60 1.01 1.30 14.39 1.53 1.73 8.78

1 3 3 0.1 0.12 19.4 2.05 1.81 20.60 1.01 1.30 14.39 1.53 1.73 8.78

2 1 1 1.0 0.01 2.8 1.35 1.72 0.18 1.15 1.58 0.16 1.25 1.85 0.09

2 1 2 1.0 0.01 13.9 1.01 1.59 0.64 1.00 1.49 0.59 1.23 1.83 0.36

2 1 3 1.0 0.01 19.4 1.00 1.55 0.79 1.00 1.46 0.72 1.21 1.82 0.47

2 2 1 1.0 0.06 2.8 1.19 1.66 1.54 1.02 1.54 1.40 1.26 1.84 0.80

2 2 2 1.0 0.06 13.9 1.00 1.47 4.16 1.00 1.40 3.78 1.17 1.80 2.80

2 2 3 1.0 0.06 19.4 1.00 1.43 4.92 1.00 1.36 4.32 1.16 1.78 3.43

2 3 1 1.0 0.12 2.8 2.05 1.81 20.60 1.01 1.30 14.39 1.53 1.73 8.78

2 3 2 1.0 0.12 13.9 2.05 1.81 20.60 1.01 1.30 14.39 1.53 1.73 8.78

2 3 3 1.0 0.12 19.4 2.05 1.81 20.60 1.01 1.30 14.39 1.53 1.73 8.78

Cost Value JPID = 4.24 J∗
PID = 3.07 JIOL = 2.53
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6.3 Experimental Evaluation with Test Vehicles

6.3.1 Comparison of ECU based and DCU based Traction Control

In this section, an experimental evaluation of the proposed ECU based TCS and a comparison to
a traditional DCU based TCS, as well as a comparison with a different ECU based control design
is presented. Plots that contain data which has been published in our previous work [300, 304] are
indicated with a corresponding label in their caption. The setup of the used test vehicles in this
work is described in Section 6.1. The maneuver considered here is a longitudinal acceleration,
starting on dry asphalt with µ ≈ 1, which changes abruptly to µ ≈ 0.1 on a watered metal
plate and finally changes back to dry asphalt again. These changes of the friction coefficient are
depicted in the following figures by vertical dashed lines. Figure 6.4 shows the results of the
proposed IOL controller, parameterized experimentally using the Ziegler-Nichols tuning rules for
this maneuver, cf. [216, pp. 568–577]. Figure 6.4a shows that the system output y1 successfully
tracks the reference trajectory r1, after an overshoot of 5.97 rad/s at t ≈ 2.66 s. Figure 6.4b shows
how the controller reduces the requested torque from the driver in order to prevent the wheels
from spinning. Figure 6.4c shows the target wheel slip λxr,d and the actual wheel slip λxr of the
rear axle. The slip calculated from the crankshaft speed (scaled to wheel level) instead of the
wheel speed by

λxr,c = (rry1 − vx)/max(|rry1|,|vx|) (6.20)

with y1 = ωc/iG is included for reference. At t ≈ 11 s, the offset between r1 and y1 is due to rate
limitations of the actuator. Hence, the TCS increases the drive torque as fast as possible as the
friction coefficient increases abruptly. During the maneuver, drivetrain oscillations are damped
such that driving comfort is not negatively affected by the intervention of the TCS.
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(a) Target and actual speed of the crankshaft and longitudinal vehicle speed [304].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

200

400

600

T
or
q
u
e
[N

m
]

Tdriver
Tm

(b) Requested torque by the driver and actual drive torque of the engine.
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(c) Target slip, average slip of the rear wheels and the slip based on the crankshaft speed.

Figure 6.4: Experimental evaluation of the proposed ECU based TCS using IOL.
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Next, the performance of a benchmark ECU based TCS is evaluated on the same maneuver.
This analysis is carried out to demonstrate the advantages of the control design based on IOL in
comparison to traditional control design techniques which are more commonly used in the indus-
try. The benchmark implementation uses a PI controller in combination with a DOB. Figure 6.5
shows the results of the benchmark TCS on the previously described maneuver. Figure 6.5a
depicts the reference trajectory and the system output, as well as the longitudinal speed of the
vehicle. The overshoot is 7.6 rad/s and hence larger compared to the control design based on IOL.
While the benchmark TCS also achieves asymptotic tracking of the reference speed, a significant
undershoot can be observed between t ≈ 2.8 s and t ≈ 3.8 s. This is not ideal from a performance
perspective as the wheel slip, and with that the transmitted tire force, is below potential. The
undershoot can also be seen in Figure 6.5c, where the wheel slip decreases to approximately 1.5%
during this time interval.
Another issue of the benchmark TCS can be seen at t ≈ 10 s, as the friction coefficient changes

from µ ≈ 0.1 to µ ≈ 1. There, the drivetrain starts to oscillate severely such that the maneuver
even has to be interrupted at t ≈ 11.5 s, due to a lack of robustness of this control design with
respect to time-varying friction coefficients. In comparison, the IOL based control design does
not display such problems and accelerates smoothly after the abrupt increase of the friction
coefficient. Figure 6.5b shows the requested torque of the driver and the engine torque. It can be
noted that the torque produced by the benchmark controller is smoother than the torque of the
IOL control design. This is also due to the benchmark controller computing the torque based on
the system output y1 = ωc/iG only, while the IOL based control design also takes into account the
measurement of the wheel speeds, resulting in an active damping mechanism. This experiment
also shows the difficulties of finding a robust parameterization for the benchmark controller, while
the IOL based control design combines performance, robustness and easy parameterization.
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(a) Target and actual speed of the crankshaft and longitudinal vehicle speed [304].
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(b) Requested torque by the driver and actual drive torque of the engine.
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(c) Target slip, average slip of the rear wheels and the slip based on the crankshaft speed.

Figure 6.5: Experimental evaluation of the benchmark ECU based TCS.
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Finally, the performance of the traditional DCU based TCS is evaluated on the same maneuver.
This analysis is carried out to demonstrate the advantages of the ECU based control architecture
over the DCU based control architecture. Figure 6.6 shows the results of the DCU based TCS
on the previously described maneuver. Figure 6.6a depicts the estimated reference trajectory
(see also the footnote below) and the system output, as well as the longitudinal speed of the
vehicle. The overshoot to the estimated reference trajectory is 21.6 rad/s and hence significantly
larger than for the two ECU based TCSs analyzed before. Also, it can be seen that the DCU
based TCS does not achieve asymptotic tracking but exhibits low frequency oscillations which
negatively affect driving comfort. Figure 6.6b depicts the requested torque of the driver and the
engine torque. Figure 6.6c shows the estimated target wheel slip, as well as the actual wheel slip
and the slip calculated from the scaled crankshaft angular velocity. There it can be seen that the
DCU based TCS reaches the optimal target slip only during relatively short time intervals but is
not able to maintain this operating point.

The experiments demonstrate the advantages of the ECU based control architecture compared
to the traditional DCU based control architecture. The higher bandwidth of the inner control loop
of the former achieves a significant overshoot reduction on a longitudinal acceleration maneuver
with abruptly varying friction coefficient. However, with traditional control designs it can be
challenging to achieve robustness of the closed loop control system, as indicated by the analysis
of the benchmark ECU based TCS. The control design based on the method of IOL results in an
ECU based TCS that achieves performance and robustness while damping drivetrain oscillations.
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(a) Target1 and actual speed of the crankshaft and longitudinal vehicle speed [304].
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(b) Requested torque by the driver and actual drive torque of the engine.
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(c) Target slip1, average slip of the rear wheels and the slip based on the crankshaft speed.

Figure 6.6: Experimental evaluation of the traditional DCU based TCS.

1The target values r1 and λxr,d in Figure 6.6 are estimated by λxr,d = 6%, indicated by a dashed-dotted line, as
the DCU based TCS is available as a blackbox only. This is assumed to give a slightly more accurate estimation
of the real target values than in [304], where the estimated target speed was drawn only manually for reference.
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6.3.2 Evaluation on Driving Maneuvers with Lateral Acceleration

Following, we evaluate the TCS on a drifting maneuver on snow with varying longitudinal and
lateral acceleration. The friction coefficient is µ ≈ 0.3 throughout the maneuver, where the
driver ensures by steering that the vehicle motion follows the desired path. The results for
this maneuver are depicted in Figure 6.7. Here, the phases of active control are indicated with
blue background color. The target and actual angular velocity of the crankshaft, scaled to
wheel level and the longitudinal vehicle speed (divided by the rear wheel radius) are shown in
Figure 6.7a. The TCS successfully prevents excessive wheel slip while the system output tracks
the target speed without visible drivetrain oscillations. The longitudinal and lateral acceleration
during the maneuver are shown in Figure 6.7b. Despite the changing acceleration throughout
the drifting maneuver, tracking performance of the TCS is not negatively affected. This can also
be observed in Figure 6.7c, where the target and actual wheel slip signals are depicted. During
the three displayed phases of active control, the mean wheel slip deviation from the target value
is approximately 0.0041, the standard deviation 0.0213. Finally, the driving torque requested by
the driver and the observed engine torque are depicted in Figure 6.7d. There it can be seen how
the TCS reduces the requested driving torque in order to track the target speed and by that
assists the driver in stabilizing the vehicle. In order to further evaluate the performance of the
2WD TCS, a track with a higher friction coefficient is chosen for the next experiment.
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(a) Target and actual speed of the crankshaft and longitudinal vehicle speed.
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(d) Requested torque by the driver and actual drive torque of the engine.

Figure 6.7: Controlled drifting maneuver on snow with µ ≈ 0.3.
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6.3 Experimental Evaluation with Test Vehicles

The next considered maneuver is driving on wet asphalt through a section of a handling course
with a friction coefficient of µ ≈ 0.7. During the maneuver, the driver ensures by steering that
the vehicle stays on the track. The results for this maneuver are depicted in Figure 6.8. The
phases of active control of the TCS are indicated with blue background color. The target and
actual angular velocity of the crankshaft, scaled to wheel level and the longitudinal vehicle speed,
divided by the rear wheel radius, are shown in Figure 6.8a. Similarly to the drifting maneuver
on snow from Figure 6.7, the TCS prevents excessive wheel slip on wet asphalt as well, while the
system output tracks the target speed without significant drivetrain oscillations. The longitudinal
and lateral acceleration of this maneuver are shown in Figure 6.8b, while the target and actual
wheel slip are depicted in Figure 6.8c. During the two displayed phases of active control, the
mean wheel slip deviation from the target value is approximately 0.0050, with standard deviation
0.0209, while the average lateral acceleration is approximately 5.05m/s2 with standard deviation
1.45m/s2. Finally, the driving torque requested by the driver and the observed engine torque are
depicted in Figure 6.8d. There it can be seen how the TCS reduces the requested torque in order
to limit the wheel slip and thereby assists the driver in stabilizing the vehicle motion. This also
demonstrates that the proposed TCS is suitable for limiting the wheel slip during maneuvers with
lateral acceleration and concludes the experimental evaluation of the proposed 2WD TCS based
on IOL. In the following, the proposed 4WD TCS based on IOL is evaluated in a test vehicle as
well and a comparison to a PID controller is presented.
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(c) Target and average slip of the rear wheels during the drifting maneuver.
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Figure 6.8: Controlled drifting maneuver on wet asphalt with µ ≈ 0.7.
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6 Experiments

6.3.3 Evaluation of the 4WD Traction Control System

After evaluating the 2WD TCS, the scalable MIMO 4WD TCS is evaluated, first considering the
maneuver of drifting a circle on wet asphalt with µ ≈ 0.7. The lateral acceleration between t = 1 s
to t = 3.5 s is almost constant and on average 2.63m/s2. It increases to 5.43m/s2 at t = 5 s,
then decreases to 2.89m/s2 at t = 6 s and increases to 5.47m/s2 at t = 7.5m/s2. Figure 6.9
depicts the results obtained from this experiment. Figure 6.9a shows the two system outputs
y1 = ωc/iG and y2 = ωf and their target speeds r1 and r2, acting as speed limiters in upper and
lower direction. The scalability of the TCS can be observed in the figure. At t = 3.67 s, the ECU
based controller reduces the requested torque of the driver in order to let y1 track r1, indicated
with blue background color. At t = 4.01 s, the controller for the ETC is activated as well, in
order to let y2 track r2, indicated with green background color. At t ≈ 5.9 s, the driver requests
few enough drive torque so the controller for y1 is deactivated, while the controller for y2 remains
active until t = 7.5 s, indicated with red background color. The requested torque of the driver
and the torques of the main engine and the ETC are shown in Figure 6.9b. The term Te/ia is
an estimate of the front axle torque, scaled to engine level, with the limitations mentioned in
Remark 11. Figure 6.9c shows the target and actual rear wheel slip.
The results demonstrate the scalability of the 4WD TCS, as the control system transitions

smoothly and on demand between the three different control modes. Also, the system outputs
y1 and y2 are successfully forced by the coupled MIMO control law to remain within the range
spanned by r1 and r2. Throughout the maneuver, no visible drivetrain oscillations occur, while
the wheel slip is stabilized and tracks the target value. Following, the proposed TCS is compared
against a benchmark PID controller on the control mode of controlling the front axle only.
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(a) Simultaneous control of front axle speed and the crankshaft speed by the TCS [300].
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Figure 6.9: Drift maneuver on wet asphalt of the proposed 4WD TCS with coupled MIMO control law.

116



6.3 Experimental Evaluation with Test Vehicles

The previous experiments demonstrated that the proposed TCS works well when controlling
the crankshaft speed in the 2WD case and also when dynamically switching as required between
different modes of operations in the 4WD case. In the following, the case that only the front axle
is controlled by the TCS is considered as well. This allows in principle arbitrary wheel slip on
the rear axle, which is controlled by the driver only, but forces the front axle to follow the rear
axle angular velocity with a certain configurable speed offset. The proposed TCS is compared on
a drifting maneuver on snow to a benchmark implementation of a TCS which uses a traditional
PID controller on the ETC control unit for this task. Here, the TCSs operate in conjunction
with a standard feed-forward controller located on the DCU.

Figure 6.10 shows the results of the proposed 4WD TCS on this maneuver, using only the
ETC for controlling the front axle speed, where phases of active control are indicated by red
background color. Figure 6.10a depicts the second system output y2 = ωf , the rear axle speed
x4 = ωr and the target speed r2 for the front axle. The output y1 and the target speed r1 are not
displayed since the u1 control law is deactivated here, such that the driver alone is responsible for
controlling y1. The proposed TCS successfully tracks the target speed and ensures that y2 does
not fall below r2. The maneuver is started in the third gear, at t ≈ 5 s the automatic transmission
switches to second gear and at t ≈ 7.4 s back to the third gear. Throughout the phases of active
control, the average lateral acceleration is approximately 1.7m/s2 with a standard deviation of
approximately 0.49m/s2. Figure 6.10b depicts the requested torque of the driver, the main engine
torque and the ETC torque scaled to engine level, see also Remark 11. Figure 6.10c shows the
control error signal e2 = r2 − y2 and its constant target value e2,d = 0. The mean absolute value
of the control error e2 of the proposed TCS during the maneuver is approximately 0.46 rad/s.
This value is computed by taking into account only segments where the u2 control law is active.
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(a) Front axle speed, rear axle speed and target speed for the front axle [300].
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(c) Target and actual control error for the front axle angular velocity.

Figure 6.10: Drift maneuver on snow of the proposed 4WD TCS using the ETC for control only.
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6 Experiments

Following, a benchmark PID controller is used for a drift maneuver on the same track for
comparison. The results of this experiment are depicted in Figure 6.11, where again the phases
of active control are indicated by red background color. At t ≈ 0.8 s the automatic transmission
switches from third to second gear and at t ≈ 4.8 s back to third gear. During the phases of active
control, the average lateral acceleration is approximately 1.58m/s2 with a standard deviation of
approximately 0.51m/s2. Figure 6.11a shows the angular velocity of the front axle y2 = ωf ,
the target speed for the front axle r2 and the angular velocity of the rear axle x4 = ωr. The
PID controller is also capable of stabilizing the wheel slip of the front wheels and tracking the
reference speed. Figure 6.11b depicts the corresponding requested torque of the driver, the main
engine torque and the ETC torque scaled to engine level. Figure 6.11c shows the target and
actual control error, where the mean absolute value of e2 is approximately 0.70 rad/s, which is
significantly higher compared to the IOL based controller. This value is again computed by only
considering the segments where the TCS is operating and the PID controller is active. Apart from
the better tracking performance, the actuator signal of the ETC shows less oscillations for the
IOL design in Figure 6.10b, compared to the PID controller in Figure 6.11b. This is advantageous
in terms of reducing control effort and increasing tracking performance while improving driving
comfort at the same time.
The results demonstrate that the proposed TCS is also capable of outperforming a fine tuned

benchmark implementation of a traditional PID controller on a drift maneuver on snow. This
analysis completes the experimental evaluations of this work. In the following, a summary of
the findings of this dissertation is given and complemented by a discussion. Also, an outlook for
future research is given and possible extensions of this work are proposed.
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(a) Front axle speed, rear axle speed and target speed for the front axle [300].
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Figure 6.11: Drift maneuver on snow of a PID based 4WD TCS using the ETC for control only.
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7 Conclusion and Outlook

7.1 Summary and Discussion

Traction control systems contribute to driving stability, performance and comfort. In this work,
three different traction control designs based on IOL are proposed. The first is based on a design
model for 2WD vehicles, the second and third are proposed for vehicles with on-demand 4WD
torque bias systems. All three design models include the relevant torsional dynamics of the
drivetrain, leading to explicit terms for active damping of drivetrain oscillations in the derived
control laws. A stability analysis is presented for the three designs, based on novel classes of
parametric Lyapunov functions. The results in this work and our corresponding publications
show for the first time absolute stability and global exponential stability, for all possible vehicle
parameters and time-varying friction coefficients, of the zero dynamics of TCSs with torsional
drivetrain dynamics, assuming an exact IOL. Moreover, input-to-state stability of the internal
dynamics is shown. A reformulation of the zero dynamics of the 2WD TCS as Lur’e system is
proposed and used for a passivity based analysis. In addition, a method for the parameterization
of the reference dynamics of the TCSs is proposed.

While the IOL of a nonlinear system typically results in a nonlinear control law, the numerical
approximation of the wheel and crankshaft angular accelerations admits an LTI controller formu-
lation, as derived in Chapter 6. This is advantageous in practice, as in this form only drivetrain
parameters are required for an implementation of the 2WD TCS, which can be identified with
sufficient accuracy, in contrast to tire parameters, for example. This advantage depends on the
modeling of the torsional dynamics of the drivetrain. In the 4WD case, this can be seen by
looking at the two different design models proposed in Chapter 3. The reduced model (with 7
states) assumes a stiff connection between the ETC and the front axle, which leads to a term that
includes the time derivative of the tire force in the control law. The second proposed 4WD design
model (with 9 states) does not have this issue, as it models both the connections to the rear and
the front axle as torsion springs. However, it also requires more information, namely the ETC
output speed which might not be directly available as a measurement signal in the target vehicle.
The main difference between the simplified control law of the 7-state model—omitting the time
derivative of the tire force as discussed in Chapter 3—and the control law of the 9-state model
is an extra damping term for the front axle. In practice, this term can be omitted as shown in
Chapter 6, as the oscillations on the front axle are not as pronounced as on the rear axle in the
considered test vehicle.

Moreover, a novel heuristic method for Lyapunov function identification based on GP is pro-
posed and applied to two nonlinear benchmark systems and the zero dynamics of the 2WD TCS.
It is shown that the method is able to identify valid Lyapunov functions for the two benchmark
systems and that it can approximate a numerical instance of the parametric Lyapunov function
resulting from a Lur’e formulation of the 2WD TCS in Chapter 4. Due to the heuristic nature
of GP, the method is not guaranteed to always find a valid Lyapunov function for an arbitrary
nonlinear dynamical system. Also, as the identified Lyapunov function only is an approximate in-
stance for a specific set of vehicle parameters, it cannot be used to derive the more general results
obtained by the handcrafted parametric Lyapunov function presented in Chapter 3. Nevertheless,
the results of Chapter 5 demonstrate that GP can indeed be useful for Lyapunov function approx-
imation not only for abstract benchmark systems, but also for systems arising from real-world
applications like the considered 2WD TCS.

119



7 Conclusion and Outlook

The passivity analysis in Chapter 4 leads to a third order Lur’e system formulation of the zero
dynamics of the 2WD TCS with two inputs and two outputs. This system class is analyzed in the
context of the Kalman conjecture and the MYC. Two methods are presented for testing whether
the input dimension, respectively output dimension, of a Lur’e system can be reduced. Applied
to existing counterexamples of the MYC, this analysis leads to the open question whether the
MYC is true for third order Lur’e systems with two inputs and two outputs, or to which extent
the Kalman conjecture can be generalized to a MIMO Lur’e setting.
Finally, an experimental evaluation of the IOL based TCSs for both vehicles with 2WD and

4WD is presented in Chapter 6, after a validation of the design model and an analysis of the 2WD
TCS using frequency domain methods. A comparison of a traditional DCU based with an ECU
based TCS architecture demonstrates the advantages of the latter while the benefits of the IOL
based design are shown by a comparison with a benchmark implementation. The performance
of the 2WD TCS is also evaluated on two driving maneuvers with lateral acceleration and with
different friction coefficients. Following, the performance of the MIMO 4WD TCS is tested
during a drift maneuver, and a comparison with a PID controller is carried out. The results
of this experimental study demonstrate that an ECU based TCS, designed with the method
of IOL, is not only feasible in practice but can achieve a significant improvement compared to
traditional designs in terms of tracking performance, robustness with respect to disturbances like
time-varying friction coefficients and damping of drivetrain oscillations.

7.2 Directions for Future Work

The findings of this work can be extended in several directions. For example, the control design
model could be extended to include dynamic wheel loads. This would not change the derived
control law, as the numerical approximation of the angular accelerations takes such variations
into account. However, the order of the zero dynamics then increases by one per driven axle,
assuming first order tire dynamics. Hence the question arises, whether the class of parametric
Lyapunov functions from Chapter 3 can be extended to this case as well. Corollary 1 cannot be
used directly in this case, although variations of the normal force can be subsumed by a time-
varying friction coefficient. However, the condition used in Theorem 2, that tire force and wheel
slip have the same sign, is then not applicable for some initial conditions. An explicit parametric
Lyapunov function for this case would be interesting.
The control design derived for the 9-state 4WD design model could be evaluated experimentally,

either using an additional sensor or an observer for the required output speed of the ETC. A
direct comparison to the control design based on the 7-state 4WD model, which is evaluated in a
test vehicle in this work, would be interesting. Another direction for future work is the reference
speed computation. This is especially interesting in the 4WD case, as vehicle speed estimation
can be challenging when all four wheels operate with significant wheel slip. Also, variations of
tire parameters and the friction coefficient, among other, have an impact on the optimal reference
speed. For this purpose, adaptive control approaches like extremum seeking control and online
estimation of tire forces might be an option.
The question whether the Markus-Yamabe conjecture is true for third order Lur’e systems

with two inputs and two outputs, motivated by the passivity analysis of the zero dynamics of the
2WD TCS, remains open as well. Using ridge regression to approximate existing counterexamples
might lead to counterexamples with two inputs and two outputs.
Recent works have extended some of the methods of this dissertation and applied them to

traction control with electronic limited slip differentials [57], electric vehicles with four in-wheel
motors [58], regenerative and hybrid anti-lock braking [183] and control allocation [182], leading
to new challenges. With the development of modern engines and control architectures, traction
control still offers various directions for future research.
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A Appendix

A.1 Coefficients and Principle Minors for Local Stability

The parameters of the characteristic polynomial in Lemma 12 are

a0 = (2cxrkc)/(Jrmv
∗
0) (A.1a)

a1 = (2cxrdc + 2kcmv
∗
0)/(Jrmv

∗
0) (A.1b)

a2 = (cxrmr
2
r + Jrcxr + 2dcmv

∗
0)/(Jrmv

∗
0) . (A.1c)

The three leading principal minors of H in (3.82), as a function of the vehicle parameters, are
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Since the vehicle parameters are strictly positive and (A.1a)-(A.1c) as well as (A.2a)-(A.2c) consist
only of addition, multiplication and division operations, it is clear that a0, a1, a2,∆1,∆2,∆3 > 0.

A.2 Supplementary Analysis of the 9-State 4WD Case

The matrices P 1 and P 2 used in the proof of Theorem 4 are given by

P 1 =
1

sr −m/2

[
P1,11 −1/2
−1/2 P1,22

]
and P 2 =

1

sf −m/2

[
P2,11 −1/2
−1/2 P2,22

]
(A.3)

with sr, sf taken from (A.11), P1,11 = p11 from (3.84a), P1,22 = p22 from (3.84b) and

P2,11 =
(
γ12Jfke

√
ϵ+ c̄xfder
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/(24kede

√
ϵ) . (A.4b)

From (A.11) it can be seen that sr > m/2 and sf > m/2, so P 1 is the upper left 2 × 2 sub-
matrix of P from (3.83), scaled by a positive constant, so P 1 ≻ 0 by Theorem 1. Moreover,
also P 2 ≻ 0 analogously, as it is like P 1 only with FWD instead of RWD parameters. The time
derivative of the Lyapunov function constructed in Theorem 4 along solutions of (3.79) is given
by V̇M9(q1, q2, p) = ν̇M9(q1, q2, p) + p d(p) with d(p) = (1/2)ρcwAstp|p|/m and

ν̇M9(q1, q2, p) = ν̇r(q1, p) + ν̇f (q2, p) (A.5)

where ν̇r(q1, p) = V̇ (zr)/(sr − m/2) using zr
T =

[
qT1 p

]
=

[
z1 z2 z3

]
and V̇ from (3.86).

Following, ν̇f (q2, p) = V̇ |FWD(zf )/(sf − m/2) using zf
T =

[
qT2 p

]
=

[
z4 z5 z3

]
. Here,

V̇ |FWD denotes V̇ from (3.86) but with FWD instead of RWD parameters, hence replacing rr,
Jr, kc, dc, c̄xr with rf , Jf , ke, de, c̄xf where c̄xf = µmaxFzfBfCf . Now observe that both ν̇r(q1, p)
and ν̇f (q2, p) contain the term −p d(p), so they compensate the p d(p) term in V̇M9 . From the
proof of Theorem 2 it follows that ν̇r(q1, p) + p d(p)/2 and ν̇f (q2, p) + p d(p)/2 remain negative
definite, hence compensating the p d(p) term in V̇M9(q1, q2, p) such that V̇M9(q1, q2, p) ≺ 0.
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A Appendix

A.3 Additional Proofs

Proof of Lemma 4. Without loss of generality, assume λxr ≥ 0 by symmetry of (3.6) and (3.10a).
Clearly, cxr|λxr| > |Fxr| for λxr → ∞ as the sine function is bounded. While λxr, by Defini-
tion (3.8) can only take values from [−2, 2] (cf. also Remark 7), this means that if |Fxr| could be
larger than cxr|λxr| for some λxr, that the equation

F∆ = cxrλxr − µFzr sin
(
Cr arctan(Brλxr)

)
= 0 (A.6)

would be solved by some λxr > 0. The first derivative of F∆ in (A.6) with respect to λxr is used
to find the minimum of this difference (for λxr ≥ 0), by setting

d

dλxr
F∆ = cxr

(
1−

cos
(
Cr arctan(Brλxr)

)
(Brλxr)2 + 1

)
= 0 , (A.7)

which can hold if and only if

cos
(
Cr arctan(Brλxr)

)
= (Brλxr)

2 + 1 . (A.8)

The cosine function has range [−1, 1] and the right-hand side of (A.8) is strictly larger than 1 for
λxr > 0. The case λxr ≤ 0 follows analogously. Hence, cxr|λxr| ≥ |Fxr| with equality if and only
if λxr = 0, where the linear tire model is equal to the nonlinear tire model [305].

Proof of Corollary 4. The proof mainly resembles the proofs of Theorem 6 and Corollary 2 and is
included here for the sake of completeness. Define the Lyapunov function for the zero dynamics
of theM9 model (3.36) as

VM9(z) =
1
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z2
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)
+ z23 ,

where pr,11 = p11 taken from (3.84a) and pr,22 = p22 taken from (3.84b). The quantities for the
front axle are defined analogously by
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Moreover, the values used for scaling in (A.9) are given by
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with sr > 0 and sf > 0 due to γ > 0 and the positivity of the vehicle parameters. The Lyapunov
function is positive definite, as the matrices in (A.9) are positive definite. This can be seen from
the proof of Theorem 1, as its argument applies here analogously: the leading principal minors
of the first matrix are

∆r,1 = (12d2c
√
ϵ+ 6kcJr

√
ϵ+ c̄xrdcr

2
r + 12γkcJr

√
ϵ)/(12dcJr

√
ϵ) (A.12a)

∆r,2 = (36J2
r ϵk

2
c + c̄2xrd

2
cr

4
r + 12c̄xrd

3
c

√
ϵr2r + 144γJ2

r ϵk
2
c + 144γ2J2

r ϵk
2
c + . . . (A.12b)

. . . 144γJrd
2
cϵkc + 12Jr c̄xrdc

√
ϵkcr

2
r + 24γJr c̄xrdc

√
ϵkcr

2
r)/(288Jrd

2
cϵkc) ,

122



A.3 Additional Proofs

while the leading principal minors of the second matrix in (A.9) are
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f ϵk

2
e + c̄2xrd

2
er

4
f + 12c̄xfd

3
e

√
ϵr2f + 144γJ2

f ϵk
2
e + 144γ2J2

f ϵk
2
e + . . . (A.13b)

. . . 144γJfd
2
eϵke + 12Jf c̄xfde

√
ϵker

2
f + 24γJf c̄xfde

√
ϵker

2
f )/(288Jfd

2
eϵke) .

Since (A.12) and (A.13) consist only of addition, multiplication and division operations of strictly
positive quantities, it follows that ∆r,1,∆r,2,∆f,1,∆f,2 > 0 and hence VM9(z) ≻ 0. The time
derivative of (A.9) along solutions of (3.79) can after some rearrangements be written as

V̇M9(z, t) = (1/sr)V̇r(z, t) + (1/sf )V̇f (z, t) (A.14a)

V̇r(z, t) = −qr,1z21 − qr,2z22 − qr,3z23 |z3| − vnrλxrFxr − qr,4z22 − qr,5z23 |z3|+ V̇r,b(z, t) (A.14b)

V̇f (z, t) = −qf,1z24 − qf,2z25 − qf,3z23 |z3| − vnfλxfFxf − qf,4z25 − qf,5z23 |z3|+ V̇f,b(z, t) . (A.14c)

The coefficients are qr,1 = 2kc(1−ηr)/Jr, qr,2 = 2dc, qr,3 = Astcwρ/4, qr,4 = 2γ+c̄xrdcr
2
r/(6Jrkc

√
ϵ),

qr,5 = (Astcwρ(6Jr
√
ϵkc + c̄xrdcr

2
r + 12γkcJr

√
ϵ))/(48kcdcJr

√
ϵ) and qf,1 = 2ke(1− ηf )/Jf , qf,2 =

2de, qf,3 = Astcwρ/4, qf,4 = 2γ + c̄xfder
2
f/(6Jfke

√
ϵ), qf,5 = (Astcwρ(6Jf

√
ϵke + c̄xfder

2
f +

12γkeJf
√
ϵ))/(48kedeJf

√
ϵ), which are all strictly positive as γ > 0 and ηr = c̄xrdcr

2
r/(c̄xrdcr

2
r +

6Jrkc
√
ϵ) ∈ (0, 1) and ηf = c̄xfder

2
f/(c̄xfder

2
f + 6Jfke

√
ϵ) ∈ (0, 1) by definition, compare also the

proof of Corollary 1. Moreover, the remaining functions in (A.14b) and (A.14c) are given by

V̇r,b(z, t) = −q̃r,1z21 + q̃r,2z1Fxr − q̃r,3vnrλxrFxr (A.15a)

V̇f,b(z, t) = −q̃f,1z24 + q̃f,2z4Fxf − q̃f,3vnfλxfFxf (A.15b)

with vnr > 0, vnf > 0 and q̃r,1 = 2ηrkc/Jr, q̃r,2 = rr/Jr, q̃r,3 = γ/dc+1/(2dc)+ c̄xrr
2
r/(12kcJr

√
ϵ),

q̃f,1 = 2ηfke/Jf , q̃f,2 = rf/Jf and q̃f,3 = γ/de+1/(2de)+(c̄xfr
2
f )/(12keJf

√
ϵ). Then, V̇r,b(z, t) = 0

and V̇f,b(z, t) = 0 are quadratic equations in z1, respectively z4 with discriminants

discz1(V̇r,b) = −4q̃r,1q̃r,3vnrλxrFxr + q̃r,2F
2
xr ≤ −4q̃r,1q̃r,3vnrλxrFxr + q̃r,2Fxr c̄xrλxr (A.16a)

discz4(V̇f,b) = −4q̃f,1q̃f,3vnfλxfFxf + q̃f,2F
2
xf ≤ −4q̃f,1q̃f,3vnfλxfFxf + q̃f,2Fxf c̄xfλxf (A.16b)

as Fxr ≤ c̄xr|λxr| and Fxf ≤ c̄xf |λxf |, compare Lemma 4. Since vnr ≥ 3
√
ϵ/2 and vnf ≥

3
√
ϵ/2 by Lemma 5, it follows that discz1(V̇r,b) ≤ −12γc̄xrkcr2r

√
ϵ/(6kcJ

2
r

√
ϵ+dcr

2
rJr c̄xr) < 0 and

discz4(V̇f,b) ≤ −12γc̄xfker2f
√
ϵ/(6keJ

2
f

√
ϵ+der

2
fJf c̄xf ) < 0, analogously to the proof of Theorem 2.

Hence, V̇r,b(z, t) ≤ 0 and V̇f,b(z, t) ≤ 0. The implicit assumption λxrFxr ̸= 0 is without loss of
generality since for λxrFxr = 0 still V̇r,b(z, t) ≤ 0 (the same holds for V̇f,b). Thus,

V̇r(z, t) ≤ −qr,1z21 − qr,2z22 − qr,3z23 |z3| − vnrλxrFxr
def
= U̇r(z, t) (A.17a)

V̇f (z, t) ≤ −qf,1z24 − qf,2z25 − qf,3z23 |z3| − vnfλxfFxf
def
= U̇f (z, t) . (A.17b)

This confirms the results from Theorem 4, as it shows that the zero dynamics (3.79) are globally
asymptotically stable for time-varying friction coefficients, since V̇M9(z, t) is bounded from above
by a negative definite function that does not depend on time explicitly because for the time-
varying terms we have −vnrλxrFxr ≤ 0 and −vnfλxfFxf ≤ 0. Scaling (A.14a) with 2/m > 0 we
get (2/m)V̇M9(z, t) ≤ V̇r(z, t) + V̇f (z, t) since 2/(srm) > 1 and 2/(sfm) > 1. Finally, observe
that U̇r(z, t) + U̇f (z, t) = V̇1(z, t)− qf,1z24 − qf,2z25 − vnfλxfFxf ≤ V̇1(z, t)− qf,1z24 − qf,2z25 where
V̇1(z, t) from (4.17a) is negative definite in (z1, z2, z3) by Theorem 6 and Corollary 2, so for
µ(t) ∈ [µmin, µmax], we have V̇M9(z, t) ≤ −α∥z∥22 with

α = (m/2)min{α1, α2, α3, α4, α5} (A.18)

and α1 = 2(1 − ηr)kc/Jr > 0, α2 = dc > 0, α3 = min{dc, (1/2)ρcwAst, cdc/(dcṽnr + r2r)} > 0,
α4 = 2(1 − ηf )ke/Jf > 0, α5 = de > 0, c ∈ (0, 1) and ṽnr > 0 from (4.21). Hence, α > 0 and so
the zero dynamics (3.79) are globally exponentially stable for all vehicle parameters.
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Proof of Corollary 6. The internal dynamics of theM9 model (3.36), resulting from the control
laws (3.67) and (3.70), are given by ż = f(z) +Lζ with

ż =


ż1
ż2
ż3
ż4
ż5

 =


−z2(

2(krz1 − drz2
)
− rrFxr)/Jr

(Fxf + Fxr − Fw)/m
−z5(

2(kfz4 − dfz5
)
− rfFxf )/Jf

+


1 0

2dc/Jr 0
0 0
0 1
0 2de/Jf

 ζ (A.19)

where ζT =
[
ζ1 ζ2

]
=

[
y1 y2

]
=

[
ωc/iG ωe/if

]
is the bounded input resulting from the

external dynamics. Furthermore, zT =
[
z1 z2 z3 z4 z5

]
=

[
∆ϕc ωr vx ∆ϕe ωf

]
, while

Fxr, Fxf and Fw are given by (3.6), (3.26) and (3.29), respectively. By Corollary 4

V̇M9(z, ζ, t) = V̇M9(z, t) + z
TLζ ≤ −α∥z∥22 + zTLζ , (A.20)

where V̇M9(z, t) is given by (A.14a) and α by (A.18). As zTLζ ≤ ∥z∥2 ∥L∥F ∥ζ∥2, with θ ∈ (0, 1),
we have

V̇M9(z, ζ, t) ≤ −θα∥z∥22 ,∀z ∈ R5 : ∥z∥2 ≥ ρM9(∥ζ∥2) =
∥L∥F
α(1− θ)

∥ζ∥2 (A.21)

where ρM9 is a class K function, so input-to-state stability of (A.19) follows.

A.4 Example of Globally but not Strongly Minimum Phase System

It is well known that global exponential stability of the zero dynamics is not sufficient for global
stability of the overall closed loop system, see for example [149, pp. 532–533]. A very descriptive
example of such a system can be obtained by slight modification of the system proposed by Cima
et al. [45]. Adding an input and an auxiliary function yields

ẋ1 = f(x1) + u1 (A.22a)

ẋ2 = −x2 + x21(x3x
2
1 + x2x1)

2 (A.22b)

ẋ3 = −x3 − x1(x3x21 + x2x1)
2 , (A.22c)

with output y1 = x1 and f : R → R an arbitrary C1 function. The system is already in normal
form with a relative degree of δ1 = 1 since ẏ1 = f(x1) + u1 depends on the input u1 directly,
resulting in second order internal dynamics. The control law u1 = −f(x1)−x1 linearizes the first
equation of the system and produces the closed loop dynamics

ẋ1 = −x1 (A.23a)

ẋ2 = −x2 + x21(x3x
2
1 + x2x1)

2 (A.23b)

ẋ3 = −x3 − x1(x3x21 + x2x1)
2 , (A.23c)

where the external dynamics (A.23a) are globally exponentially stable. The zero dynamics of the
system are obtained from (A.23b)-(A.23c) by setting y1 = x1 = 0, resulting in the subsystem
ẋ2 = −x2, ẋ3 = −x3 which is also globally exponentially stable. Hence, the system (A.22) with
the control law u1 = −f(x1)−x1 is globally minimum phase with both its external dynamics and
its zero dynamics being globally exponentially stable. However, (A.23) is identical to an instance
of the family of counterexamples to the Markus-Yamabe conjecture proposed by Cima et al. [45].
The system (A.23) is obtained from this system, recited in (4.42), by using a = b = m = 1,
ℓ = k = 2, c = 1 and the state transformation x1 = z3, x2 = z2, x3 = z1. Cima et al. also provide
a formula for the explicit solution of (4.42), see [45], from which it follows that (A.23) admits the
explicit solution x1(t) = exp(−t), x2(t) = 180 exp(4t), x3(t) = −150 exp(5t). Hence, both x2 and
x3 diverge exponentially, despite the exponentially decaying x1 state which acts as the input to
the internal dynamics (A.23b)-(A.23c), so (A.22) is globally, but not strongly minimum phase.
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A.5 Parameters of the 4WD Model for Control Design

The parameters of theM7 model used for the 4WD TCS design are depicted in Table A.1.

Table A.1: Parameters of theM7 model.

Name Description Value Unit

τm Motor time constant 0.02 s

τe Motor time constant of the ETC 0.02 s

Jc Aggregated inertia of the drive side 0.23 kgm2

Jr, Jf Rear and front axle moment of inertia 2.1 kgm2

rr, rf Radius of the rear and front wheels 0.33 m

m Vehicle mass 2200 kg

kc Aggregated drivetrain torsional stiffness 5300 Nm/rad

dc Aggregated drivetrain damping constant 15 Nms/rad

ρ Air density 1.1 kg/m3

Ast Vehicle frontal area 2.37 m2

cw Aerodynamic drag coefficient 0.3 −
g Gravitational acceleration 9.81 m/s2

ia Automatic transmission gear ratio (2. gear) 3.2 −
ir, if Rear and front differential gear ratio 3.15 −
lf Distance front axle to COG 1.45 m

lr Distance rear axle to COG 1.55 m

Br, Bf Pacejka stiffness factor of the rear and front tires 10.5 −
Cr, Cf Pacejka shape factor of the rear and front tires 1.6 −

From these parameters, the total gear ratio between main engine and rear axle is given by
iG = iair = 10.08 for the second gear. An example set consisting of the main controller parameters
for the 4WD TCS is listed in Table A.2. Here, the index e denotes the parameters of the ETC,
for example b0 is the gain of the reference model of the controller on the ECU, responsible for
the rear axle, while b0,e is the reference model gain of the ETC controller for the front axle. The
sample times are τs = 0.01 s and τs,e = 0.005 s, while the filter time constants used for computing
the required derivatives are τd = 0.045 s and τd,e = 0.01 s while a0 = a0,e = 0.

Table A.2: Example controller parameters of the 4WD traction control system.

Name Description Value

kp Main engine proportional gain 12

ki Main engine integral gain 20

kd Main engine derivative gain 0.7

b0 Main engine reference model gain 267.3

a1 Main engine reference model inverse time constant 50

kp,e ETC proportional gain 3

ki,e ETC integral gain 1

kd,e ETC derivative gain 0.1

b0,e ETC reference model gain 280

a1,e ETC reference model inverse time constant 5
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A.6 State Space Representation of the Linearized TCS

The overall linearized and discretized closed loop LTI system of the 2WD TCS is given by

xcl(k + 1) = Aclxcl(k) +Bclucl(k) (A.24a)

ycl(k) = Cclxcl(k) (A.24b)

with uTcl =
[
r1 µ

]
, ycl = y1, x

T
cl =

[
δx1 δx2 δx3 δx4 xa,d xi xd xF1 xF2 xa

]
. The

first four states are plant states, xa,d is the state from the actuator time delay, xi and xd are the
states of the PID controller, while xF1 and xF2 are the states of the Fy1 and the Fx4 filter and xa
is the actuator model state after resolving the feedback loop (see below for details). Moreover,

Acl =


A11 b0k1dabp,1cc da(k3 − a1k1)bp,1c1 −dak3bp,1c2 bp,1ca
−bccp,1 Ac 0nc×n1 0nc×n2 0nc×na

b1cp,1 0n1×nc A1 0n1×n2 0n1×na

b2cp,2 0n2×nc 0n2×n1 A2 0n2×na

A41 b0k1bacc (k3 − a1k1)bac1 −k3bac2 Aa

 (A.25a)

Bcl =


b0k1dadcbp,1 bp,2

bc 0nc×1

0n1×1 0n1×1

0n2×1 0n2×1

b0k1dcba 0na×1

 ,Ccl =
[
cp,1 01×nc 01×n1 01×n2 01×na

]
(A.25b)

A11 = Ap − bp,1da
(
k1cp,1(a0 + d1a1 + dcb0)− k2(cp,1 − cp,2) + k3(cp,2d2 − cp,1d1)

)
(A.25c)

A41 = −ba
(
k1cp,1(a0 + d2a1 + dcb0)− k2(cp,1 − cp,2) + k3(cp,2d2 − cp,1d1)

)
. (A.25d)

Here, Ap, Bp =
[
bp,1 bp,2

]
, CT

p =
[
cTp,1 cTp,2

]
are given by the zero order hold discretization of

A, B =
[
b bd

]
, C from (6.6) using the sample time τs = 0.01 s after adding an input delay of

τm,d = 0.01 s to the first input channel. The matrices A′
p, B

′
p and C ′

p (without delay state) are[
A′
p B′

p

0m×n Im

]
= exp

([
A B

0m×n 0m×m

]
τs

)
= exp(M) (A.26)

and C ′
p = C, where exp(M) =

∑∞
i=0M

i/(i!) is the matrix exponential of the (n+m)× (n+m)

matrix M , with the definition that M0 = In+m, see [56, pp. 215–216]. By absorbing the input
delay of the first input channel into the system dynamic, the discretized plant matrices including
this delay are

Ap =

[
A′
p b′p,1

01×n 0

]
,Bp =

[
0n×1 b′p,2
1 0

]
,Cp =

[
C ′
p 0pp×1

]
. (A.27)

where
[
b′p,1 b′p,2

]
= B′

p. Therefore, Ap ∈ Rnp×np , Bp =
[
bp,1 bp,2

]
∈ Rnp×m and Cp ∈ Rpp×np

where m = 2, pp = 2, np = n + 1 and n = 4. The controller dynamics are discretized by
applying the Tustin transformation the the corresponding continuous transfer functions of the
PID controller (3.110b) and derivative filters (3.114) by substituting s by

s 7→ 2(z − 1)

τs(z + 1)
, (A.28)

where s is the Laplace variable and z−1 represents a unit delay. Converting the discretized transfer
functions back to state space form then gives Ac ∈ Rnc×nc , bc ∈ Rnc×1, cc ∈ R1×nc with nc = 2
for the PID controller, A1 ∈ Rn1×n1 , b1 ∈ Rn1×1, c1 ∈ R1×n1 with n1 = 1 for the Fy1 filter and
A2 ∈ Rn2×n2 , b2 ∈ Rn2×1, c2 ∈ R1×n2 with n2 = 1 for the Fx4 filter. The actuator model is also
discretized using the Tustin transformation (A.28) but in (A.25), the actuator model feedback
loop is already resolved. This means that Aa ∈ Rna×na , ba ∈ Rna×1, ca ∈ R1×na with na = 1
in (A.25) represent the state space matrices of 1/(1−Ga(z)) where Ga(z) is the discrete version
obtained by applying (A.28) to Ga(s) = 1/(τs,es+ 1), see also Section 6.2.1 and Figure 6.2.
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