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Toward Bayesian Data Compression

Johannes Harth-Kitzerow,* Reimar H. Leike, Philipp Arras, and Torsten A. Enßlin

In order to handle large datasets omnipresent in modern science, efficient
compression algorithms are necessary. Here, a Bayesian data compression
(BDC) algorithm that adapts to the specific measurement situation is derived
in the context of signal reconstruction. BDC compresses a dataset under
conservation of its posterior structure with minimal information loss given the
prior knowledge on the signal, the quantity of interest. Its basic form is valid
for Gaussian priors and likelihoods. For constant noise standard deviation,
basic BDC becomes equivalent to a Bayesian analog of principal component
analysis. Using metric Gaussian variational inference, BDC generalizes to
non-linear settings. In its current form, BDC requires the storage of effective
instrument response functions for the compressed data and corresponding
noise encoding the posterior covariance structure. Their memory demand
counteract the compression gain. In order to improve this, sparsity of the
compressed responses can be obtained by separating the data into patches
and compressing them separately. The applicability of BDC is demonstrated
by applying it to synthetic data and radio astronomical data. Still the algorithm
needs further improvement as the computation time of the compression and
subsequent inference exceeds the time of the inference with the original data.

1. Introduction

One of the challenges in contemporary signal processing is
dealing with large datasets. Those datasets need to be stored,
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processed, and analysed. They often
reach the limit of the available com-
putational power and storage. Exam-
ples include urban technology,[1] internet
searches,[2] bio-informatics[3] and radio
astronomy.[4] In this paper we discuss,
how such huge datasets can be handled
efficiently by compression.
In general, there are two categories

of data compression methods: Loss-
less compression and lossy compression.
From lossless compressed data one can
regain the full uncompressed data. This
limits the amount of compression as
only redundant information can be taken
away by a lossless scheme. Lossy com-
pression is more effective in terms of re-
ducing the storage needed by the com-
pressed data. This is possible at the cost
of loss of information.
In this work, we focus on lossy com-

pression methods. The considered sce-
nario is: compressing data which car-
ries information about some quantity of

interest, which we call the signal. Only the relevant information
for this signal needs to be conserved. Therefore, there is no need
to regain the full original data in such applications.
Many lossy compression schemes have been developed: Rate

distortion theory (ref. [5], pp. 301–307) gives a general approach
stating the need of a loss function, which shall be minimized in
order to find the best compressed representation of some original
data d. As a consequence of the Karhunen–Loéve theorem,[6–8]

principal component analysis (PCA)[9,10] can also be used for data
compression. Its aim is to compress some data, such that the
compressed data carries the same statistic properties as the origi-
nal. It was shown that PCAminimizes an upper bound of themu-
tual information of the original and the compressed data about
some relevant signal.[11] Both methods aim to reproduce the
original data from the compressed data, but are not specifically
optimized to recover information about the actual quantity of
interest.
Before compressing data, one should be clear about the signal

on which one wants to keep as much information as possible.
In a Bayesian setting, this means that the posterior probability of
the signal conditional to the compressed data should be as close
as possible to the original posterior that was conditioned on the
original data.
The natural distance measure between the original and

compressed posterior to be used as the action principle is
the Kullback Leibler (KL) divergence.[12] From this, we derive
Bayesian data compression (BDC). Using the KL divergence as
the loss function reduces the problem of finding the compressed
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data representation to an eigenvalue problem equivalent to
the generalized eigenvalue problem found by ref. [13]. In this
work, we give a didactic derivation and show how this approach
can be extended to nonlinear and non-Gaussian measurement
situations as well as to large inference problems. This is verified
using synthetic data with linear and nonlinear signal models
and in a nonlinear astronomical measurement setup.
This publication is structured as follows: In Section 2, we as-

sume the setting of the generalized Wiener filter: a linear mea-
surement equation, for a Gaussian signal sensed under Gaussian
noise.[14] There, the optimal compression for prior mean reduces
to an eigenvalue problem. In Section 3, this is generalized to non-
linear and non-Gaussian measurements. Furthermore, we show
how a sparse structure can be utilized on the compression algo-
rithmmaking it possible to handle large datasets in a reasonable
amount of time. In Section 4, BDC is applied to synthetic data
resulting from a linear measurement in one dimension, a non-
linear measurement in two dimensions, and real data from the
Giant Metrewave Radio Telescope (GMRT).

2. Linear Compression Algorithm

We approach the problem of compression from a probabilistic
perspective. To this end, we juxtapose the posterior probability
distribution of the full inference problem with a posterior com-
ing from a virtual likelihood together with the same prior. The
goal is to derive an algorithm which takes the original likelihood
and the prior as input and returns a new, virtual likelihood that is
computationally less expensive than the original likelihood. This
shall happen such that the resulting posterior probability distri-
bution differs as little as possible from the original posterior.
The natural measure to compare the information content of

a probability distribution and an approximation to it in the ab-
sence of other clearly defined loss functions is the KL divergence,
as shown in ref. [12]. Minimizing the KL divergence completely
leads to the criteria for the most informative likelihood.

2.1. Assumptions and General Problem

The new likelihood needs to be parameterized such that the KL
divergence can be minimized. Initially, we make the following
assumptions:

1. The signal s, which is a priori Gaussian distributed with
known covariance S, has been measured with a linear re-
sponse function Ro. The resulting original data do is subject to
additive Gaussian noise with known covariance No. In sum-
mary,

do := Ros + no (1)

where we denote definitions by “:=”, with “:” stand-
ing at the side of the new defined variable, and
s ← 𝒢(s, S) and no ← 𝒢(no, No) are drawn from zero cen-
tered Gaussian distributions. The notation s ← 𝒢(s − s0, S)
indicates that s is drawn from a Gaussian distribution with
mean s0 and covariance S. For the signal prior, s0 is zero.

2. The compressed data dc, which is going to be lower dimen-
sional compared to the original data do, is related to the signal

s linearly through ameasurement process with additive Gaus-
sian noise with covariance Nc and response Rc, which need to
be determined,

dc = Rcs + nc (2)

In this setup, the likelihoods (di|s) as well as the posteri-
ors of both the original and the compressed inference problem
i(s) := (s|di) are Gaussian again[14] (once Nc and Rc are
specified):

(di|s) = 𝒢(di − Rs,Ni) (3)

i(s) = 𝒢(s −mi,Di), i ∈ {o, c} (4)

The mean mi and covariance Di are

mi := DiR
†
i N

−1
i di (5)

and

Di := (S−1 +Mi)
−1, with (6)

Mi := R†
i N

−1
i Ri (7)

We call Mi the measurement precision matrix. Our goal is to
find the compressed measurement parameters (dc, Rc, Nc) such
that the least amount of information on the signal s is lost as
compared to (do, Ro, No).
This means we want to adjust dc, Rc, and Nc, such that the dif-

ference of the two posteriors of the signal, given the compressed
data dc and given the original data do, is minimal. To this end, we
minimize the KL divergence under the constraint that the com-
pressed data vector shall not exceed a certain number of dimen-
sions kc:

KLo,c := DKL(o||c)

:= ∫ ds(s|do) ln (s|do)
(s|dc)

=:
⟨
lno

⟩
o −
⟨
lnc

⟩
o (8)

In this notation, kc is suppressed. It will become explicit in the
next section. A detailed derivation showing that the KL diver-
gence is indeed the appropriate measure to decide on the opti-
mality of the compression and a discussion about the order of its
arguments can be found in ref. [12].
For Gaussian posteriors, the KL divergence becomes

KLo,c(dc, Rc, Nc) =
1
2
tr
[
D−1
c Do − 𝟙 − ln(D−1

c Do)

+D−1
c (mc −mo)(mc −mo)

†] (9)

where the compressed posterior mean mc and covariance Dc de-
pend on the compressedmeasurement parameters dc, Rc, andNc
through (5) and (6). The superscript † denotes the adjoint, that is,
the transposed complex conjugate of a vector or linear operator.
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Thus, we have formulated the original compression problem as
a minimization problem:

dc, Rc, Nc = argmindc ,Rc ,Nc
KLo,c(dc, Rc, Nc) (10)

In order to arrive at the optimal choice of compressed mea-
surement parameters, we minimize KLo,c sequentially with re-
spect to its arguments dc, Rc, and Nc. In that procedure, we keep
not yet optimized parameters as given and express already opti-
mized parameters as functions of their given parameters during
their optimization. Minimization of (9) with respect to the com-
pressed data dc for given response Rc and compressed noise co-
variance Nc yields:

dc(Rc, Nc) = Nc

(
RcDcR

†
c

)−1
Rcmo

= (RcSR
†
c + Nc)(RcSR

†
c )

−1Rcmo (11)

using the identity

DR† = SR†(RSR† + N
)−1

N. (12)

Defining the compressed and original Wiener filter operator

Wi := SR†
i (RiSR

†
i + Ni)

−1

= DiR
†
i N

−1
i , i ∈ {o, c} (13)

we see that (11) is equivalent to RcWcdc = RcWodo or Rcmc =
Rcmo, meaning that the original and compressed posterior
means are indistinguishable for the compressed response.
Inserting Equation (11) back into (9), we can define the already

dc-minimized KLo,c, which only depends on the still to be opti-
mized parameters Rc and Nc:

KLo,c(Rc, Nc) : = KLo,c(dc(Rc, Nc), Rc, Nc)

=̂ 1
2

(
tr
[
McDo − ln(S−1 +Mc)

]
−m†

oR
†
c (RcSR

†
c )

−1Rcmo

)
(14)

where equalities up to constants that are irrelevant for the mini-
mization, since they do not change the position of the minimum
of KLo,c, are denoted by “=̂”. However, note that the specific val-
ues of KLo,c do not equal the divergence of the two posteriors any-
more.
Only the last term of this new KLo,c in Equation (14) depends

on the original data. The more the compressed response Rc pre-
serves the information of the original posterior mean mo, the
smaller this term becomes which reduces KLo,c. Thus, a response
Rc that is sensitive to mo is favored. The original posterior mean
mo will typically exhibit large absolute values in signal space
where the original response was of largest absolute values. This
gives an incentive for the compressed response toward the origi-
nal one.
In this section, we looked at the posterior distributions in

the context of Gaussian prior and Gaussian likelihood in a
linear measurement setup. By minimizing the Kullback–Leibler
divergence with respect to the compressed data, we found an

expression for the latter. Plugging in this expression, KLo,c only
depends on the compressed response and noise covariance.

2.2. Information Gain from Compressed Data

The remaining task is to minimize KLo,c(Rc, Nc) with respect to
the compressed responseRc and noiseNc. Both appear in the loss
function of our choice only combined in the measurement pre-
cision matrix Mc = R†

cN
−1
c Rc and as Rc only in the last term. Let

U be a unitary transformation that diagonalizes the compressed
noise covariance Nc. One can show that the transformation

Rc → R′
c = URc

Nc → N′
c = UNcU

†
(15)

leaves (14) invariant:

m†
oR

′†
c (R

′
cSR

′†
c )

−1R′
cmo = m†

oR
†
cU

†U(RcSR
†
c )

−1U†URcmo

= m†
oR

†
c (RcSR

†
c )

−1Rcmo (16)

and analogous for the terms containing M′
c =

R†
cU

†UN−1
c U†URc = R†

cN
−1
c Rc = Mc. We use this to find a

parametrization of the compressed measurement precision
matrixMc with a set of vectors r := (ri)

kc
i=1, such that

Mc =
kc∑
i=1

rir
†
i (17)

with kc being the number of entries of the compressed data vec-
tor dc. In its eigenbasis, the inverse compressed noise covariance
reads

N−1
c =

kc∑
i=1

𝜇2
i eie

†
i (18)

with ei the normalized eigenvectors of N−1
c and 𝜇2

i the corre-
sponding positive eigenvalues. For reasons that become clear
later on, let us choose

Rc :=
kc∑
i=1

eir̂
†
i (19)

r̂i :=
ri‖ri‖S (20)

𝜇i = ‖ri‖S (21)

where ‖ ⋅ ‖S is the norm induced by the prior covariance:‖x‖S :=√x†Sx. With these definitions we can interpret r̂i as
the (normalized) compressed measurement direction, that is,
the direction in which the signal s is measured leading to the
ith compressed data point. r̂ := (r̂i)

kc
i=1 shall then be orthonormal

with respect to the scalar product induced by S. The noise of this
measurement is given by the corresponding compressed noise
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variance 𝜇i. With these definitions (17) can be verified:

Mc = R†
cN

−1
c Rc

=
kc∑

i,j,k=1
r̂i e†i ej
⏟⏟⏟

𝛿ij

e†j ek
⏟⏟⏟

𝛿jk

r̂†k𝜇
2
j

=
kc∑
i=1

rir
†
i (22)

Thus, the relevant degrees of freedom of the compressed
response Rc and noise covariance Nc are encoded in the com-
pressed measurement directions r = (ri)

kc
i=1 and we can write

KLo,c(r) : = KLo,c(Rc(r), Nc(r))

=̂ 1
2

(
tr

[(∑
i

rir
†
i

)
Do − ln

(
S−1 +

∑
i

rir
†
i

)]
−m†

oR
†
c (RcSR

†
c )

−1Rcmo

)
(23)

We are left to evaluate the trace in (14). Themain issue is the loga-

rithmic term. By decomposing S =
√
S
√
S
†
it can be simplified:

tr ln

(
S−1 +

∑
i

rir
†
i

)
=̂tr ln

(
𝟙 +
∑
i

√
S
†
rir

†
i

√
S

)
(24)

We call
√
S prior dispersion. This nomenclature deviates from

the common convention of using the names dispersion and
covariance synonymously. An excitation 𝜉 following a standard
normal distribution (s, 𝟙) can be amplified by

√
S, that is,√

S𝜉. This amplified field follows the same statistics as s. We
thus distinguish between variables defined in signal space and

excitation space, with the dispersion
√
S (resp.

√
S
†
) and its

inverse serving as transformations between both.
The compressed measurement directions in excitation space

are then

wi :=
√
S
†
ri

ŵi :=
wi‖‖wi
‖‖ , ∀i ∈ {1,… , kc}

(25)

The orthonormal basis ŵ := (ŵi)
kc
i=1 diagonalizes both summands

of (24) simultaneously:

tr ln

(
𝟙 +
∑
i

√
S
†
rir

†
i

√
S

)
= tr ln

(
𝟙 +
∑
i

‖wi‖2ŵiŵ
†
i

)

= tr

[∑
i

ln
(
1 + ‖wi‖2)ŵiŵ

†
i

]

=
∑
i

ln
(
1 + w†

i wi

)
=
∑
i

ln
(
1 + r†i Sri

)
(26)

In addition, the last term of (23) reduces to

m†
oR

†
c (RcSR

†
c )

−1Rcmo = m†
o

∑
i

r̂ie
†
i

⎛⎜⎜⎜⎜⎝
∑
j,k

ej r†j Srk
⏟⏟⏟

𝛿jk

e†k

⎞⎟⎟⎟⎟⎠

−1∑
l

elr̂
†
l mo

= m†
o

∑
i,l

r̂i e†i el
⏟⏟⏟

𝛿il

r̂†l mo

= m†
o

∑
i

r̂i r̂
†
i mo (27)

such that we get

KLo,c(r) =̂
1
2

(
tr
[
S−1mom

†
o

]
+

kc∑
i=1

[
r†i Dori− ln(1+ r†i Sri)−m†

o r̂i r̂
†
i mo

])

=̂ −
kc∑
i=1

ΔI(ri) (28)

with information gain ΔI(ri) of a single compressed measure-
ment direction ri. Since the compressedmeasurement directions
in excitation space are orthogonal with respect to the standard
scalar product, we proceed with the calculations in excitation
space. There, the information gain becomes

ΔI(wi) :=
1
2

[
−w†

i owi + ln(1 + w†
i wi) + ŵ†

i m̃om̃
†
oŵi

]
(29)

with posterior mean and covariance in excitation space

m̃o :=
√
S
−1
mo (30)

o :=
√
S
−1
Do

√
S
−†

(31)√
S
−†

:=
√
S
†−1

We see that the relevant part of KLo,c splits up into a sum over
independent contributions −ΔI(wi) associated to the individual
compressed measurement direction wi, each of which belongs to
a specific compressed data point (dc)i. Since KLo,c expressed this
way is additive with respect to the inclusion of additional data
points, the sum in (28) can easily be extended. To minimize KLo,c
with respect to w (or r, respectively), the contributions (−ΔI(wi))
can be minimized individually with respect to their respective
compressed measurement direction wi.
The information gainΔI depends on the normalizedmeasure-

ment direction ŵn and its magnitude ‖wn‖,
ΔI
(
ŵn, ‖wn‖) := 1

2

[
−‖wn‖2ŵ†

noŵn+ ln(1 + ‖wn‖2)+ ŵ†
nm̃om̃

†
oŵn

]
(32)

We maximize this with respect to the magnitude, get

‖‖wn
‖‖2 = 1

ŵnoŵn
− 1 (33)
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and insert the result into (32). This leaves uswith our final expres-
sion of the information gain of a single compressed data point:

2ΔI(ŵn) = ŵ†
noŵn − 1 − ln(ŵnoŵn) + ŵ†

nm̃om̃
†
oŵn. (34)

Summarizing, the sets of vectors {ei} and {ri} are representations
of the compressed noise covariance and compressed response,
such that the trace in KLo,c splits up into independent summands.
Each summand is the negative information gain when consid-
ering the corresponding compressed measurement direction ŵn
and can be treated individually. As a next step, we need to maxi-
mize ΔI(ŵn).

2.3. Optimal Expected Information Gain

In order to find the compressed data point which addsmost infor-
mation to the compressed likelihood, (34) needs to bemaximized
with respect to the normalized vector ŵn. For zero posteriormean
mo = 0, this problem reduces to an eigenvalue problem as shown
in Appendix A. We proceed by treating the general case of non-
vanishing mo.
There is only one normalized vector ŵi (respectively r̂i) left to

be determined for each i ∈ {1,… , kc}. However, in the current
form, (34) cannot be maximized analytically. The main issue is
the last term that contains m̃o and which in the following we treat
stochastically using the prior signal and noise knowledge on the
signal s and the noise no only. Thereby, we can calculate the ex-
pected information gain.
Using the Gaussian priors of signal s and noise no with zero

mean, as well as the measurement (1) and the definition (5) of
mo, we get the expected posterior signal mean

⟨mo⟩(s,no) = DoR
†
oN

−1
o (Ro ⟨s⟩(s)

⏟⏟⏟
=0

+ ⟨no⟩(no)
⏟⏞⏟⏞⏟

=0

) = 0 (35)

and variance

C := ⟨mom
†
o⟩(s,no) (36)

= DoR
†
oN

−1
o (RoSR

†
o + No)N

−1
o RoDo

= (DoR
†
oN

−1
o (RoSR

†
o + No)N

−1
o Ro + 𝟙)Do − Do

(12)
= (SR†

oN
−1
o Ro + 𝟙)Do − Do

(6)
= S − Do (37)

Thus, as a sum of Gaussian distributed variables, mo again is
Gaussian distributed with

(mo) = 𝒢(mo, C) (38)

Calculating the mean of the last term of (34) under this distribu-
tion then gives

ŵ†
n⟨m̃om̃

†
o⟩(mo)

ŵn = ŵ†
n

√
S
−1
C
√
S
−†
ŵn

(37)
= ŵ†

n(𝟙 −o)ŵn

(25)
= 1 − ŵ†

noŵn (39)

which cancels the first two terms. The expected information gain
then is

⟨ΔI(ŵn)⟩(mo)
= −1

2
ln(ŵ†

noŵn) (40)

This expected information gain is maximal, if and only if ŵn is
parallel to the eigenvector ofo with smallest eigenvalue 𝛿2n. This
insight reduces the problem to the eigenvalue problem

own = 𝛿2nwn. (41)

In terms of the vectors r, which build the compressed measure-
ment precision matrix Mc in (17), and after inserting (6), this
states

D−1
o Srn = (𝟙 +MoS)rn

= 𝛿−2n rn
(42)

Combining (21), (33), and (41) gives:

𝜇2
n = ‖wn‖2 = 𝛿−2n − 1 (43)

Thus (42) is equivalent to

MoS rn = 𝜇2
n rn (44)

We call MoS =: Q the fidelity matrix. For identity responses, Q
can be interpreted as signal-to-noise covariance ratio. The largest
eigenvalues of Q give rise to the most informative compressed
measurement directions according to the minimization of the
Kullback–Leibler divergence. At the same time, Q is the matrix
product of the original measurement precision matrix Mo and
the signal prior covariance S. Thus, its largest eigenvalues and
corresponding eigenvectors are those directions in signal space,
where the measurement is maximally precise while the prior is
maximally uncertain. In other words, the directions at which the
original data update the prior the most, are exactly those, which
are the most informative.
For rn = R†

ov, eigenvalue problem (44) is equivalent to the gen-
eralized eigenvalue problem of ref. [13],

RoSR
†
ov = 𝜆Nov (45)

multiplied with R†
oN

−1
o from the left.

For constant noise No = 𝜎2no
𝟙, eigenvalue problem (44) be-

comes a Bayesian analog to principal component analysis
(PCA).[9,10] PCA takes the highest eigenvalues and correspond-
ing eigenvectors of the data covariance matrix. In PCA, this data
covariance is built by the covariance of several measurements.
In a Bayesian setting, we can determine the data covariance with
prior information using Equation (1) instead:

⟨dod†o⟩(s,n) = RoSRo + No (46)
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with corresponding eigenvalue problem

(RoSR
†
o + No)v = 𝜆v (47)

Multiplying with N−1
o from the left gives;

(N−1
o RoSR

†
o + 𝟙) v = 𝜆N−1

o v (48)

We can subtract v on both sides of the equation and for constant
noise 𝜎2no identify 𝜇

2
n with 𝜆𝜎−2

no
− 1, such that

N−1
o RoSR

†
ov = (𝜆𝜎−2

no
− 1)

⏟⏞⏞⏟⏞⏞⏟
𝜇2n

v (49)

where we inserted the constant noise value only on the right hand
side of the equation to illustrate the similarity to Equation (44) on
the right hand side. Multiplying with R†

o from the left and iden-
tifying rn = R†

ov this gives Equation (44). In contrast to original
PCA, in a Bayesian setting, we can already compress a single
measurement. In contrast to this Bayesian analog to PCA, BDC
is able to handle varying noise and compresses optimally with
respect to the information about the variable of interest s as the
result of our derivation.
With Equation (44), the expected information gain for includ-

ing the compressed data point dcn in BDC then is

ΔI(𝜇n) := ⟨ΔI(r̂n)⟩(mo)

= −1
2
ln(ŵn oŵn

⏟⏟⏟
=𝛿2nŵn

)

= − ln(𝛿n)

= 1
2
ln
(
𝜇2
n + 1
)

(50)

Summarizing, we need to find the kc largest eigenvalues 𝜇2
n

and corresponding eigenvectors rn of (44). With these, the com-
pressed measurement parameters are

N−1
c =

kc∑
n=1

𝜇2
nene

†
n (51)

Rc =
kc∑
n=1

enr̂
†
n (52)

dc = (RcSR
†
c + Nc)(RcSR

†
c )

−1Rcmo (53)

with

r̂n :=
rn‖‖rn‖‖S and ‖‖rn‖‖S = 𝜇n (54)

These equations and (5) and (6) are all ingredients needed to solve
the compression problem.

2.4. Algorithm

Now, the previously derived method shall be turned into the
actual BDC. For that we need to solve eigenvalue problem (44).

For compressing the data to kc data points, one needs to deter-
mine the kc largest eigenvalues and corresponding eigenvectors
that belong to the most informative measurement directions.
First we derive an estimate for the fraction of information stored
in the compressed measurement parameters if we compute
only a limited number of eigenpairs, that is, eigenvalues and
corresponding eigenvectors. Then, we discuss some details
of how to compute the input parameters for getting the com-
pressed measurement parameters, that is, for the eigenvalue
problem (44) and how to solve it.
Due to computational limits, in general we cannot determine

all K eigenpairs of (44) carrying information. We need to set the
number kmax of most informative eigenpairs being determined
numerically. For that limited number of eigenpairs, we derive a
lower bound of the information stored in the corresponding com-
pressedmeasurement parameters in the following. If we are only
interested in a certain amount of information we can use this
bound to find and neglect eigenpairs containing too little infor-
mation, such that in the end, we have kc ≤ kmax eigenpairs con-
taining still enough information.
The eigenpairs carrying information are those with non-zero

eigenvalue 𝜇i. The number K of non-zero eigenvectors is equal
to the rank ofMoS = R†

oN
−1
o RoS. As Gaussian covariances, S and

No are positive definite and therefore have full rank, the original
response Ro has at most a rank equal to the smaller rank of both
covariances. Thus, with (7), the rank of MoS and therefore the
number of informative eigenpairs K is equal to the rank of Ro.
Altogether the compressed measurement parameters can maxi-
mally carry the total information I :=

∑K
i=1 ΔI(𝜇i). I is the differ-

ence in information stored in the posterior, when considering all
informative eigendirections kc = K compared to having no com-
pressed data, kc = 0. For no compressed data, the compressed
posterior distribution becomes the prior distribution with covari-
ance S. Thus, I is the total information about the signal s encoded
in the original data with respect to prior knowledge.
We can find an upper bound for the total information. The

eigenpairs are ordered such that the eigenvalues decrease with
growing index, and therefore the contribution to the total infor-
mation sum I. Thus, the last determined eigenvalue is the small-
est of all eigenvalues and the least informative one. Also, it is
larger than all eigenvalues that could not be computed. We can
use this to give an upper limit bound to the amount of informa-
tion lost by truncating the sum at kc, and adding the number of
eigenvalues ignored, K − kmax, times the amount of information
provided by the last eigenpair I(𝜇kmax

). Thus,

I ≤
kmax∑
i=1

ΔI(𝜇i) + (K − kmax)ΔI(𝜇kmax
) (55)

We define the fraction of information 𝛾 of total information
I stored in the compressed measurement parameters which are
determined by the eigenpairs:

𝛾 :=
∑kc

i=1 ΔI(𝜇i)

I
(56)

With Equation (55), we can find a lower bound
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𝛾
(55)≥

∑kc
i=1 ΔI(𝜇i)∑kmax

i=1 ΔI(𝜇i) + (K − kmax)ΔI(𝜇kmax
)

=: 𝛾min

(
kc, (𝜇i)

kmax

i=1 , K
)

(57)

Using I ≥ ∑kmax

i=1 ΔI(𝜇i), we analogously find an upper bound

𝛾 ≤ 𝛾max :=
∑kc

i=1 ΔI(𝜇i)∑kmax

i=1 ΔI(𝜇i)
(58)

for 𝛾 . Those bounds can be used to narrow the fraction of infor-
mation stored in the compressed measurement parameters 𝛾 by
𝛾 ∈ [𝛾min, 𝛾max].
Now we can find the minimum number of eigenpairs contain-

ing at least 𝛾minI information by finding the smallest number of
eigenpairs kc such that (57) holds and then forget all eigenpairs
with a larger index than kc.
In case kmax > K, some eigenpairs contain no additional infor-

mation to the prior knowledge and the information gain of the
last eigenpair ΔI(𝜇kmax

) is zero. Then we have stored all informa-
tion (𝛾 = 1) in the compressed data with non-zero eigenvalue and
Equation (57) is automatically fulfilled for given 𝛾min.
With the information fraction 𝛾 , we have found a quantifica-

tion of how much of the available information is stored in the
compressed measurement parameters. For limited number of
computed eigenpairs, one can still estimate 𝛾 by its upper and
lower bounds. Next, we discuss some details of the computation
of the input parameters of BDC and its final implementation.
When evaluating (5) for the original posterior mean mo we

have to avoid the inversion of the prior covariance S or the prior
dispersion

√
S as the explicit inversion of a n × n matrix is of

(n3). Such expensive operations can be partly avoided by getting
mo via

mo =
√
Sm̃o

=
√
So j̃o

=
√
S(𝟙 +

√
S
†
R†
oN

−1
o Ro

√
S)−1
√
S
†
R†
oN

−1
o do (59)

Compared to directly calculating mo with Equations (5) and (6),
this saves one inversion of the prior covariance S−1. Still the lin-

ear operator (𝟙 +
√
S
†
R†
oN

−1
o Ro

√
S) needs to be inverted. In this

case, we canmake use of the conjugate gradient algorithmwhich
computes the application of the inverse of a matrix to a vector in
(n).
The eigenvalue problem (44) can then be solved by an Arnoldi

iteration.[15]

This leaves us with basic BDC as summarized in Algorithm 1.
We first compute the original posterior mean and prior covari-
ance using the prior dispersion. Given the original data do, re-
sponse Ro and inverse noise covariance N−1

o , we can compute
the fidelity matrix to solve eigenvalue problem (44) for the kmax
largest eigenvalues. If a minimal amount of information fraction
that shall be encoded in the compressed data is specified, we can
determine the largest index kc so that Equation (57) holds and

Algorithm 1 Basic Bayesian Data Compression

1: procedure compress
√
S, Ro, N

−1
o , do, kmax, 𝛾min

2: mo =
√
S(𝟙 +

√
S
†
R†
oN

−1
o Ro
√
S)−1
√
S
†
R†
oN

−1
o do

3: S =
√
S
√
S
†

4: compute largest eigenpairs (𝜇2i , ri)
kmax
i=1 of R†

oN
−1
o RoS

5: find smallest kc, such that (57) holds.

6: for every i > kc do

7: forget (𝜇2i , ri)

8: for every i ≤ kc do

9: ri ←
ri√
r†
i
Sri

10: Rc =
∑kc

i=1 eir
†
i , with unit vectors {ei}

kc
i=1

11: N−1
c = diag((𝜇2i )

kc
i=1)

12: dc = (RcSR
†
c +Nc)(RcSR

†
c )

−1Rcmo

13: returndc, Rc, N
−1
c

only save those kc eigenpairs that carry that much information.
Then we normalize the eigenvectors with respect to the norm in-
duced by the prior covariance ‖ ⋅ ‖S to finally determine the com-
pressed measurement parameters (dc, Rc, Nc) according to Equa-
tions (51)–(53).
In the linear scenario the full Wiener filter needs to be solved.

Thus, the computational resources required to compute and store
the compressed measurement parameters exceed the resources
saved by the compression. It would be of benefit in a real world
application if the eigenfunctions could be re-used in repetitions
of the samemeasurement and do not need to be computed again.
BDC’s main benefit lies in the nonlinear scenario with a nonlin-
ear response inside the measurement equation. There, the in-
ference appears to be more complicated, but BDC enables us to
exploit information stored in the data further while calling the
original data and response less often.

3. Generalizations

3.1. Generalization to Nonlinear Case

The derivation of BDC so far is based on a linear measurement
equation. In real world problems, however, often nonlinear mea-
surement equations

d = R(s) + n (60)

describe the relation of signal and data. There, the response
transforms the signal nonlinearly. In addition, the signal
parameters can be very non-Gaussian and inter-dependent
through a deep hierarchical model. In those cases, we need to
adjust basic BDC. Unlike basic BDC in the linear case, the ad-
justed BDC in nonlinear scenarios can save computation time as
the original data and response do not need to be called as often
as in the full reconstruction.
Let us assume that such complications are expressed via a deep

hierarchical model. Following ref. [16], deep hierarchical mod-
els can be transformed into independent standard normal dis-
tributed parameters by encoding prior knowledge into the likeli-
hood. In this fashion, the complexity of a deep hierarchical model
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is stored in a nonlinear function f . This function relates the pa-
rameters s of the hierarchical model—the actual signal—to the
parameters 𝜉 of a transformed, flattened, non-hierarchical model
via

s = f (𝜉) (61)

The transformation f has to be chosen such that the prior of 𝜉
becomes a standard normal distribution:

(d|s)(s)ds = (d|f (𝜉))𝒢(𝜉, 𝟙)d𝜉 (62)

Thus, we call 𝜉 excitation field as defined in Section 2.2.
For flattened models we can now deal with nonlinear mea-

surement setups using metric Gaussian variational inference
(MGVI).[17] There, the posterior is approximated by a Gaussian
𝒢(𝜉 − 𝜉,Ξ) with inverse Fisher informationmetric as uncertainty
covariance Ξ centered on some mean value 𝜉. The Fisher infor-
mation metric is

Md|s =
⟨
𝜕(d|s)
𝜕s†

𝜕(d|s)
𝜕s

⟩
P(d|s). (63)

Here

(d|s) := − ln(d|s) (64)

is the information Hamiltonian of the likelihood. In order to dis-
tinguish the approximate uncertainty Ξ from the true posterior
uncertainty covariance, we call it variational uncertainty. With a
standard Gaussian prior, the posterior covariance then states

Ξ−1 = J†
𝜉
Md|sJ𝜉 + 𝟙 (65)

with Jacobian

J𝜉 :=
𝜕f (𝜉)
𝜕𝜉

(66)

For many measurement situations, the response splits into a
linear part Rlin and a nonlinear part Rnl

do = RlinRnl(s) + no. (67)

The linear part might describe a linear telescope response, or just
be an identity operator. Then, we redefine our signal s′ := Rnl(s).
Before, s were the parameters of the hierarchical model with a
function f transforming the standard Gaussian distributed exci-
tation 𝜉 into s. Now s′ are our parameters being related to 𝜉 via
Rnl◦f . Thus, the Jacobian states

J′
𝜉
=

𝜕Rnl(f (𝜉))
𝜕𝜉

(68)

and we define√
S′ :=

𝜕Rnl(f (𝜉))
𝜕𝜉

||||𝜉=𝜉 (69)

This is a linearization of the nonlinear part evaluated at 𝜉, a refer-
ence value of 𝜉, for example, the current mean location provided

by the MGVI algorithm, such that

J′
𝜉

†Md|𝜉J′𝜉 =
√
S′

†
Md|𝜉√S′ (70)

The compression is then applied to the linear measurement
equation

do = Rlins
′ + no (71)

with given noise covariance No. This way, we have all the ingre-
dients for BDC to work in the nonlinear case as well.
During the inference process, the approximated mean 𝜉, at

which the linearization is evaluated, changes. With updated
knowledge also the compression input will change. This suggests
the following strategy:

1. Compress the original measurement parameters with prior
knowledge and original measurement parameters as input.

2. Infer the posterior mean given the compressed measurement
parameters. This will only be an approximate solution.

3. Approximate the original posterior around the inferred mean
and use it as the new prior to start again with the first step.

We will call the number of compressions, that is, the number of
total repetitions of those three steps, ncomp, the number of MGVI
minimization steps to infer the mean with compressed data in
between nrep. In total the original data and response only have to
be used as often as in ncomp minimization steps, while in total we
reach ncomp × nrep minimization steps exploiting the information
in the data. A crucial step will be to find the optimal exploration
(ncomp) versus exploitation (nrep) ratio as in ref. [18].

3.2. Utilization of Sparsity

High-dimensional data are difficult to handle simultaneously. For
the eigenvalue problem of BDC, it is more efficient to solve a
larger number of lower dimensional problems. For the signal in-
ference, it is beneficial to ensure that the response Rc and noise
Nc of the compressed system are sparse operators. This can be
achieved by dividing the data into patches to be compressed sep-
arately. For that, we use the fact that not every data point car-
ries information about all degrees of freedom of the signal at
once. Data points that inform about the same degrees of free-
dom of the signal can then be compressed together exploiting
sparsity of the compressed measurement directions. This also
has the advantage of lower dimensional eigenvalue problems to
be solved, saving computation time. The separately compressed
data of the patches as well as corresponding responses and noise
covariances are finally concatenated.
An example would be data and signal that are connected via a

linear mask hiding parts of the signal from the data as discussed
in Section 4.2. If then the signal is correlated in space, we can
divide the data into patches which carry information about the
same patch in signal space.
Alternatively, this method can be used to compress data on-

line, that is, while data is measured one can collect and process
it blockwise as suggested by ref. [19] such that the full data never
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has to be stored completely. After each compression, the recon-
struction of the signal takes the concatenated measurement pa-
rameters, where the compressed response is now sparse, and
solves the inference problem altogether.
Mathematically speaking, we divide the original data do into

separated sets of data doi with responses Roi and noise covari-
ance Noi for every patch i. The responses Roi are already sparse
not covering the whole signal space as such. Then we compress
those datasets separately leading to dci, Rci, and Nci. Concatenat-
ing them back again leads to the final measurement equation

⎛⎜⎜⎝
dc1
⋮
dcn

⎞⎟⎟⎠
⏟⏟⏟

dc

=
⎛⎜⎜⎝
Rc1
⋮
Rcn

⎞⎟⎟⎠
⏟⏟⏟

Rc

s +
⎛⎜⎜⎝
nc1
⋮
ncn

⎞⎟⎟⎠
⏟⏟⏟

nc

(72)

with noise covariance

Nc =
⎛⎜⎜⎝
Nc1

⋱
Ncn

⎞⎟⎟⎠ (73)

We call this process patchwise compression. If the compression
of all original data is done at once, we call it joint compression.
With patchwise compression, signal correlations between data
points of different patches cannot be exploited for the compres-
sion. One should aim to assign strongly correlated data to the
same patches such that their correlation is considered in BDC.
For data correlated in space, correlations are strongest between
data for neighboring signal locations. It makes sense to choose
the patches by vicinity. The computational benefit due to sparsity
of the response contrasts the information loss due to patching.
One can increase the dimension of the compressed data to com-
pensate that loss and still requires less storage capacity.
The signal is not affected by the patching. Signal correlations

are still represented via the signal prior covariance S, and there-
fore also present in the compressed signal posterior. Since the
reconstruction is running over the full problem, its result is not
biased due to patchwise compression. In principle, any kind of
compression could be specified via introduction of arbitrary Rc
and Nc into Equation (11). The resulting reconstruction would
all be unbiased, but of course, less accurate.
To summarize, we separate the data into patches. The data

of every patch is compressed separately leading to compressed
measurement parameters for every patch. Prerequisite for
treating the patches separately is that the noise of the individual
patches is uncorrelated between the patches. By concatenating
the compressed measurement parameters of all patches, we get
all operators needed for the compressed signal posterior. This
removes the need to store the compressed responses over the
entire signal domains. Only their patch values have to be stored,
saving memory and computation time.

4. Application

Now, the performance of BDC is discussed for applications
of increasing complexity, first for a linear synthetic measure-
ment setting and then for a nonlinear one. For the latter, we

demonstrate the advantage of dividing the data into patches and
compressing them separately. Finally, the compression of radio
interferometric data from the GMRT is discussed.

4.1. Synthetic Data: Linear Case

First, the BDC is applied to synthetic data in the Wiener filter
context. This means all probability distributions such as prior,
likelihood, and posterior are Gaussian and the data are connected
to the signal via a linear measurement equation d = Rs + n. In
this setup, we can test basic BDC in its actual, not approximated
form, for changing noise and masked areas. Also, we compare it
with the Bayesian analog of PCA (BaPCA), reducing the expected
data covariance to its principal components.
The signal domain is a 1D regular grid with 256 pixels. The

synthetic signal and corresponding synthetic data are drawn from
a zero centered Gaussian prior. The data is masked, such that
only pixels 35–45 and 60–90 are measured linearly, according to
d = Rs + n. Additionally, white Gaussian noise is added with zero
mean and standard deviation of 𝜎n = 2 × 10−3 for measurements
up to pixel 79, and 4 × 10−3 for pixels 80–90. Those noisy data
are then compressed to four data points, from which the signal
is inferred in a last step.
The signal covariance is assumed to be diagonal in Fourier

space, with the power spectrum

Ps(k) :=
2 ⋅ 104

1 +
(

k
20

)4 (74)

The signal itself can be computed from the power spectrum via

s = 𝔽
√
Ps(k)𝜉k (75)

with a Fourier orHartley transformation 𝔽 and the Fouriermodes
𝜉k being drawn independently from a standard Gaussian𝒢(𝜉, 𝟙).
The response is set to be a mask measuring pixels 35–45 and
60–90 directly, with a local and thereby unity response. The mea-
surement setup with signal mean, synthetic signal, and data are
shown in Figure 1.
We apply basic BDC as described inAlgorithm1. For the eigen-

value problem,we use the implementation of theArnoldimethod
in scipy (scipy.sparse.linalg.eigs[20]).
After having compressed the data, we evaluate the reconstruc-

tion performance using the compressed data. With Equation (4)
the posterior can be calculated directly from the compressedmea-
surement parameters, and signal covariance. The posteriormean
and uncertainty for the original and the compressed data are
compared to the ground truth in Figure 2. The original data has
been compressed from 40 to 4 data points with a fraction 𝛾 of
83.7% of the total information encoded in the compressed data.
Especially at the measured areas, both the original and the com-
pressed reconstruction are close to the ground truth, while the
reconstructed means deviate from the ground truth at masked
areas far away from measured areas. However, this deviation is
still captured in the uncertainties.
Figures 2 and 3 show that the compressed posterior has

a higher variance than the original posterior. Figure 3 shows
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Figure 1. 1D synthetic data setup to test BDC. The synthetic signal is
marked in green and the measured data in gray. Error bars at the data
points mark the Gaussian noise standard deviation of 2 × 10−3 for pix-
els before 79 and 4 × 10−3 for pixels 80–90. Those noisy data shall by
compressed by BDC and used for reconstructing the synthetic signal back
again.

the relative uncertainty difference of the compressed and origi-
nal posterior, that is, the compressed posterior uncertainty sub-
tracted from the original posterior uncertainty divided by their
mean at each pixel. It is strictly positive in the measured areas
as well as in the unmeasured areas. In the measured area com-
pared to the unmeasured area, the relative uncertainty excess of
the compressed posterior is higher, since there the absolute un-
certainty is low. Slight absolute increase of uncertainty there leads
to a higher relative variation. This proves the increase of uncer-
tainty due to the compression.
The eigenvectors are plotted in Figure 3. At the masked pixels,

the eigenvectors stay zero. The changing noise covariance visi-
bly impacts the shape of the eigenvectors. Between pixels 79 and
80, where the noise increases, is a clear break in all the eigenvec-
tors. A higher noise standard deviation leads to abrupt drops in
the eigenvectors. A more detailed discussion of the eigenvectors
can be found in Appendix B. There we compare the shape of the
eigenvectors in a simpler setup of a continuous mask and con-
stant noise to those of Chebyshev polynomials of the first kind.
An analytical derivation of their form in this simple setting is
given in Appendix C.
For comparison, we compressed the data of this setup with

BaPCA defined by eigenvalue problem (47) and performed
a linear Wiener filter. Note that in the original PCA, there is
no noise defined. We determined the largest four eigenvalues
from Equation (47) and corresponding eigenvectors v. Those
eigenvectors were used as the row vectors of a transformation V
which compresses the original data. The measurement equation
for those compressed data then becomes

dpca = Vdo

= VRos + Vno (76)

Identifying Rpca := VRo as the response of this compressed sys-
tem and npca := Vno as its noise, one can apply a linear Wiener
filter as in Equations (5)–(7).

We have plotted the corresponding reconstructions in Figure 2
with corresponding uncertainty as cyan dotted line with horizon-
tally hatched shades. BaPCA reconstructs themean and standard
deviation similar to BDC. For comparison, we have also plotted
the relative uncertainty in Figure 3 as we did for BDC as well
as the eigenvectors building the compressing transformation V .
The relative uncertainty from BaPCA clearly exceeds the one of
BDC in areas of low noise. In the area of higher noise, the rela-
tive uncertainty excess from BaPCA is lower than the one from
BDC compared to the original posterior uncertainty. The reason
for this can be seen by comparing the eigenvectors of BaPCA and
BDC: BaPCA ismore sensitive in high noise areas, therefore hav-
ing a lower posterior uncertainty there, but also letting thereby
more noise enter the compressed data. Compared to BaPCA,
BDC encodes more information in regions of lower noise, where
the data is more informative, and it keeps less information from
regions of higher noise.
This can be seen when looking at the eigenvectors of both

methods. The amplitude of eigenvectors from BDC drop where
the noise standard deviation becomes higher. For BaPCA, only
the fourth eigenvector changes its amplitude in the region of
higher noise standard deviation. The first three eigenvectors,
however, do not vary their amplitude with noise change. This
coincides with the observation that BaPCA and BDC become
equivalent for constant noise standard deviation as discussed in
Section 2.3.
We found that the compression method reduces the dimen-

sion of the data with minimal loss of information in the sim-
ple case of a linear 1D Wiener filter inference. Storing only four
compressed data points still reconstructs the signal well, com-
pared to the reconstruction with original data. Every compressed
data point determines the amplitude of an eigenvector such that
the signal is approximated appropriately. The lossy compression
leads to a slightly higher uncertainty, as information is lost. In
this application, BDC and BaPCA give similar results in terms
of reconstruction. Compared to a BaPCA, BDC focusses more
on regions of lower noise standard deviation, where the data are
more informative.

4.2. Synthetic Data: Nonlinear Case

Testing BDC on data from a nonlinear generated signal in two
dimensions allows us to verify the derivation of the nonlinear ap-
proximation in Section 3.1 and also test patchwise compression
discussed in Section 3.2. Some nonlinear synthetic signal is gen-
erated and then inferred with the original data, with compressed
data, and with data, which has been first divided into patches
and then compressed. The results are discussed with respect to
the quality of the inferred mean for the different methods, their
standard deviation, their power spectrum, as well as the compu-
tation time.
The synthetic signal has been generated with a power spec-

trum created by a nonlinear amplitude model as described in
ref. [21] deformed by a sigmoid function to create a nonlinear
relation between signal and data. The code of the implementa-
tion can be found here: https://gitlab.mpcdf.mpg.de/jharthki/
bdc. The resulting ground truth lies on an 128 × 128 regular grid
and is shown on the top left most panel of Figure 4. To test
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Figure 2. Inference of synthetic signal (green) in a linear Wiener filter setup. The posterior mean given the original data shown in Figure 1 is plotted as
dashed purple line with vertically hatched shades marking its standard deviation. The same for the posterior mean given four compressed data points
from BDC as dash-dotted red lines with diagonally hatched shades and for the posterior mean given four compressed data points from BaPCA as dotted
cyan lines with horizontally hatched shades. The left graph shows the full domain, the right one a zoom in themeasured area. The left and right subfigures
show the full domain and the region constrained by data, respectively. For all methods, the ground truth is consistent with the 1𝜎 uncertainty.

Figure 3. Left: Relative uncertainty excess of the compressed reconstruction with respect to the one based on the original data in red. The same for the
reconstruction from BaPCA compressed data with a dotted cyan line. Due to information loss the uncertainty of the BDC reconstruction is higher than
the original one leading to positive values only. In the measured area, the relative uncertainty excess rises. The BaPCA reconstructed uncertainty has
a similar slope with a higher uncertainty excess in regions with smaller noise standard deviation and smaller uncertainty excess in regions with higher
noise standard deviation. Right: Relevant part of the eigenvectors of the eigenvalue problem (44) (BDC, solid lines) and of eigenvalue problem (47)
(BaPCA, dashed lines) for the synthetic data setup in Figure 1 over the signal domain. The eigenvectors are colored in red, orange, green, and blue in
descending order of their eigenvalues. The gray dotted line marks the noise level change. All eigenvectors are zero in the unmeasured area. In addition
the ones from BDC decline in the area of higher noise while only the fourth eigenvector of BaPCA slightly changes its slope depending on the noise. A
detailed discussion of the shape of BDC eigenvectors can be found in Appendix B.

BDC on masked areas in a nonlinear setup as well, this signal is
covered by a 4×4 checkerboard mask with equally sized 32 × 32
squares, as displayed in the second top panel of Figure 4. Addi-
tionally uncorrelated noise with zero mean and 0.02 standard de-
viation has been added. From this incomplete and noisy data, the
non-Gaussian signal as well as the power spectrum of the under-
lying Gaussian process need to be inferred simultaneously. The
results of the original inference are plotted in the third top panel
of Figure 4.
After setting up the input parameters for BDC, the data was

compressed from 8 192 to kmax = 80 data points altogether with-
out sorting out less informative data points. NextmetricGaussian

variational inference[17] performed nrep = 2 inference steps based
on the compressed data, each timefinding a better approximation
for the posterior mean and approximating the posterior distribu-
tion again. Then the original data was compressed another time
using the current posterior mean as the reference point 𝜉. This
was done ncomp = 3 times in total. To determine the amount of
information contained in the resulting compressed data another
run has been started where 4096 eigenpairs have been computed.
This way the estimation of 𝛾 is more exact using Equation (57) for
a lower bound 𝛾min and (58) for an upper bound 𝛾max.With this we
estimate that the compressed data of size 80 contains 31.4–32.2%
of the information. The same way, one gets that 672 compressed
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Figure 4. Top row: From left to right: First, the generated ground truth and second, the synthetic data for a synthetic signal created by the amplitude
model and processed by a sigmoid function. A unity response connects the data and the signal with a four times four checkerboard mask hiding parts
of the signal from the data. Third, using MGVI, the posterior mean of the signal and fourth, its uncertainty as inferred with the original data. This setup
is used to test BDC. The reconstruction from original data serves as a reference for the reconstruction from compressed data. Middle row: Results
for jointly compressed data. Three compression and MGVI steps were performed. First, the posterior mean. Second, its difference to the mean of the
inference without compression, that is, the compressed posterior mean subtracted from the original posterior mean. Third, the posterior variance of the
inference with compressed data. And fourth, the same, subtracted from the variance of the posterior with the original data. The reconstructions from
original and jointly compressed data deviate mainly at the edges of larger structures, at most at the order of 10−1. The compressed posterior uncertainty
is higher than the one of the original posterior at most locations. Bottom row: As in the middle, just with patchwise compressed data. As in the case of
reconstruction from jointly compressed data, the posterior mean mainly deviates at the edges of large structures of the signal from the original posterior
mean. Again, the standard deviation is mainly higher for the compressed posterior compared to the original one.

data points contain 80% of the information. It turns out that al-
ready 80 compressed data points contain enough information to
reconstruct the essential structures of the signal as one can see
from reconstruction and difference maps shown in Figure 4.
The corresponding posterior mean is plotted in the center left

of Figure 4 together with the difference to the originally inferred
mean. Overall the compression yields similar results. Deviations

appear at the edges of homogeneous structures, while deviations
inside homogeneous structures are neglectable. The variance is
plotted in the center right of Figure 4. Again it differs mainly at
the edges. Since during the compression process information
is lost, the results should have higher uncertainty in general.
This is almost everywhere the case, however, there are some
parts, which report a better significance than the reconstruction
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Figure 5. From left to right: Mean computed from the compressed measurement parameters directly from Equation (5) without another minimization
usingMGVI. Second, its difference to themean computed from the compressed data byMGVI as in Figure 4. Third and forth, the same for the uncertainty
computed from Equation (6). The structures are maintained well. Deviations are at the order of 10−2. This is one magnitude lower than the standard
deviation.

without compression. This either implies an inaccurateness
of BDC or that BDC can partly compensate the approximation
MGVI brings into the inference by providing it with measure-
ment parameters that are better formatted for its operation.
Let us discuss in more detail how such a high loss in informa-

tion still reproduces reasonable results. The information loss is
equivalent to a widening of the posterior distribution. Its quan-
titative value in terms of (1 − 𝛾) does not take into account on
which scales the information ismainly lost. As can be observed, a
substantial fraction of the measurement information constrains
small scales. Losing this part does not make such a large differ-
ence to the human eye, in particular as the small scale structures
are of smaller amplitude, but the information loss is measured
on relative changes. Thus a loss of 70% of mainly small scale
information is possible without increasing the error budget sig-
nificantly.
Now we investigate patchwise compression in the same setup.

The data in each of the eight measured squares were compressed
to kmax = 10 data points separately. In total there are as many
compressed data points for the patchwise compression as for the
joint one. We can use that the response only masks the signal but
does not transform it. Thus, we can compress the data with prior
information of the corresponding patch only. This way we reduce
the dimension of the eigenvalue problem (44) to the size of the
patch. Before the reconstruction, the resulting compressed re-
sponses are expanded to the full signal space in a sparse form and
concatenated as described in Section 3.2. For the reconstruction,
the whole signal is inferred altogether. The resulting mean and
variance of the inference for this method and their difference to
the original ones are shown in the lower part of Figure 4. Both dif-
fer mainly at the edges of homogeneous structures from the orig-
inal posterior mean and variance. Also for the case of patchwise
compressed data, the variance at some points becomes smaller
than for the original inference. Since patchwise BDC does not
use knowledge about correlations between the patches for the
compression, it compresses less optimal than joint BDC, and
thusmostly has a higher deviation of themean and higher uncer-
tainty in the reconstruction. Like in the case of compressed data,
we improve the estimation of 𝛾 by computing 4096 eigenpairs,
that is, 512 eigenpairs per patch. It turns out that for every patch

on average 34.8–35.4% of information is kept about the signal
inside this patch when using the 10 most informative eigenpairs
for the compressed data points, where all patches but two contain
15–25%. Counting from left to right and top to bottom, the data
compressed from the second and fifth patch with very homoge-
neous signal contain more than 75% of the information. When
comparing the 𝛾 values of each patch, one needs to consider
that the patches are compressed individually. Therefore the
information of one and another patch might be partly redundant
and their individual 𝛾s can not just be added or averaged in order
to get the joint information content.
After having computed the compressed measurement param-

eters, we can also directly get the compressed posteriormean and
covariance from Equations (5) and (6). The inference from the
compressed data then reduces to a linear Wiener filter problem.
The resulting mean and variance are plotted in Figure 5 together
with their difference to the mean and variance using one more
MGVI inference. Both deviate at the order of 10−2 which is one
magnitude lower than the uncertainty. This illustrates that the
compression helped to linearize the inference problem around
the posterior mean.
Finally the results of the methods can be compared by looking

at the inferred power spectra of the underlying Gaussian process
inFigure 6. All of the reconstructions recover the power spectrum
well for high harmonic modes up to the order of 101. For higher
modes, the samples of the originally inferred power spectrum
tend to lie below the ground truth. In contrast, the reconstruc-
tions of the two compression methods overestimate the power
spectrum for higher modes. It is not completely clear why this
is the case. For higher modes, the signal to noise ratio is low. In
those regimes it ismore difficult to reconstruct the power spectra.
This could be a reason for the deviation on high harmonic scales.
In addition variational inference methods tend to underestimate
uncertainties.[22] Since we use MGVI for the reconstruction for
all methods, this could cause the inferred power spectra not to
coinside within their uncertainties.
It is interesting to have a closer look on the back projection

of the compressed data, that is, R†
cdc as well as on the projection

of the eigenvectors building the compressed responses onto the
space. The back projection of the jointly compressed data before
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Figure 6. The power spectrum of the underlying Gaussian process:
ground truth (solid, green) and inferred from original (purple), jointly
compressed (red) and patchwise compressed (blue) data. Qualitatively
all power spectra reconstruct the ground truth well for small harmonic
modes while they deviate at higher modes. There, the power spectrum
reconstructed from original data tends to underestimate the amplitude
of the original power spectrum while the power spectra reconstructed
from jointly compressed data overestimate it. Compared to the joint com-
pressed power spectrum, the patchwise compressed power spectrum de-
viates even more for higher harmonic modes. This inaccuracy contrasts
the computational benefit of patchwise compression due to utilizing spar-
sity.

Figure 7. The back projected jointly compressed data before (left) and
after (right) the inference. Before, the structure is rather uniformly dis-
tributed while the back projection of the compressed data clearly focuses
on the edges of the signal structures after the inference.

the first inference, that is, having looked at the original data only
once, is shown in Figure 7 on the left. In contrast to the back pro-
jection after the minimization process in the right plot, the data
look quite uninformative, covering more or less uniformly the
whole probed signal domain. After the inference, when the refer-
ence point around which the linearization is made has changed,
the jointly compressed data addresses mainly regions of rapid
changes in the signal. Especially the contours at the edges are
saved in the jointly compressed data. This is even clearer visible
in the projection of the eigenvectors ri building the compressed
response according to (19) in Figure 8. The first two eigenvectors
capture the frame of the large structure. The third one mainly
looks at the upper left corner, where also some structure occurs,
though it is less distinct than the large one. None of the eigenvec-

tors covers any structure in the second and fifth patches, which
was also the patches with largest 𝛾 , that is, least information loss
due to the compression. Since the structure of the ground truth
there is rather uniform, it does not contain much information
but the amplitude of the field, which can easily be compressed to
few data points.
Figure 9 shows the back projection of the patchwise com-

pressed data before and after the inference. Here, the change of
the basis functions becomes apparent as well.
Table 1 shows the computation time of the different com-

pression methods and reconstructions. As described above,
it has been measured for (nrep, ncomp) = (2, 3), as well as
(nrep, ncomp) = (3, 2). In case of the original inference, in total
nrep × ncomp inference steps were performed such that in there
is an identical number of inference steps for every method. The
time has been measured for the inference only and for the total
run of separation of the data into patches, ncomp compressions
with nrep inferences after each compression. The average of all
nrep × ncomp inferences is given in the first line of Table 1. The
time for the total runs is given in the second line. It has beenmea-
sured on a single node of the FREYA computation facility of the
Max Planck Computing & Data Facility restricted to 42 GB RAM.
In all categories, the inference with patchwise compressed data is
the fastest. In contrast, joint compression takes the longest time.
There, one can clearly see the advantage of patching as discussed
in Section 3.2. This leads to sparse responses which are more
affordable in terms of computation time and storage. This is in
agreement with the synthetic example discussed in this section.
It shows that such sparse representations are highly beneficial.
The response is called, that is, applied, several times during the

minimization. In the application here, calling the response is in-
expensive. However, there are applications in which the response
is expensive. Then one aims tominimize the number of response
calls, as this determines the computation time. The number of
response calls were counted for (nrep, ncomp) = (2, 3). In the in-
ference with the original data, Ro was called 686 187 times. In
the process of compressing jointly it was called 4 369 times. Dur-
ing the patchwise compression, the patchwise original response
has been called 10 776 times. In the case of patchwise compres-
sion, the response only maps between the single patches, that is,
it is a factor 16 smaller than the full response. Thus, effectively
the full original response has been called only about 674 times in
the case of patchwise compression leading to a speed up factor
of up to 1018 in case the response calculation is the dominant
term. In this application, patchwise compression lead to compu-
tation times consistent with the computation time of inferring
with original data. Future steps to make BDC more rewarding
could be to find representations for the compressed response that
are even more feasible.

4.3. Real Data: Radio Interferometry

Finally, we apply BDC to radio astronomical data from the super-
nova remnant Cassiopeia A observed by the GMRT.[23,24] 200 000
data points from the measurement were selected randomly and
noise corrected according to [25]. Using those data, two images
were constructed by the RESOLVE algorithm[25,26] that relies on
MGVI, where we make one image with compression and one
without compression for comparison.
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Figure 8. The eigenvectors, that is, the row vectors of the jointly compressed response after the inference corresponding to the highest eigenvalues in
descending order from left to right. They clearly capture the shape of the signal with higher amplitude at the edges of larger structures.

Figure 9. Back projection of the patchwise compressed data before (left)
and after (right) the inference. As in the case of joint compression, struc-
tures in the signal can be recognized in the back projection of the com-
pressed data after the inference. In addition the back projection is high in
rather uniform areas of the signal.

Table 1. Computation times for the inference with original, compressed,
and patchwise compressed data in the nonlinear synthetic application.

(nrep, ncomp) = (3, 2) Original Comp Patchcomp

Inference time [s] 317 984 289

Total run time [s] 633 1972 586

No response calls 686187 2913 6062

(nrep, ncomp) = (2, 3)

Inference time [s] 205 637 200

Total run time [s] 615 1917 613

No response calls 686187 4369 10776

Also the number of original response calls is stated. The original data has been in-
ferred nrep × ncomp times.

The model used by RESOLVE as described in ref. [26] is
adopted for the inference. To this end, the variables from the
amplitude model in ref. [26] are denoted as 𝜉 and transformed
to the sky s—the actual signal—by s = f (𝜉) as described in
ref. [16]. The data are connected to the sky s via a nonlinear
measurement equation of the form (67). The nonlinear part
of the response Rnl contains a pointwise exponentiation and a
Fourier transformation onto a grid, which leads to the variable

of interest for the compression method s′. The linear part of the
response Rlin degrids the resulting points and transforms them
to the data do, that is, it projects the points lying on a grid to
continuous space. The total response R = Rlin◦Rnl directly maps
from the sky s to the data do, such that we have the measurement
equations

do = R(s) + n

= Rlin(Rnl(s)) + n

=: Rlin(s
′) + n (77)

Rlin is computationally expensive and the data do are large. The
aim is to compress the original data with the signal s′ as the
variable of interest. It turns out that the joint compression of all
data is infeasible due to its large computational costs. So, only
the patchwise compression is tested. Similar to the previous ex-
ample, a non-Gaussian signal and the power spectrum of the un-
derlying Gaussian process need to be estimated simultaneously
fromnoisy and very incomplete data, only here the nonlinearity is
an exponential function and the sparse data live in Fourier space.
We divide the Fourier plane into 64 × 64 squared patches, as

shown in Figure 10. The location of the measurements in the
Fourier plane aremarked aswell. It is apparent thatmany patches
are free of data, some contain some data, and the highest density
of data points occurs around the origin of the Fourier plane.
Figure 11 shows the image obtained from the original dataset

and from the patchwise compressed dataset. The mean is ob-
tained after three MGVI iteration steps from the original data.
Using BDC, the data in each patch was compressed ideally un-
der prior information.
The resulting data, noise covariance, and responses were con-

catenated and used for inference in MGVI with three inference
steps. The received posterior distribution was used to compress
the separated original data once more with updated knowledge,
inferred with three minimization steps. Doing this one more
time resulted in the reconstruction shown here. The bottom right
plot in Figure 11 shows that the uncertainty of the reconstruc-
tion from patchwise compressed data is mostly higher than the
uncertainty from the original reconstruction. This is expected
due to the information loss of the compression. The data points
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Figure 10. The position of all data points in Fourier space. The overlaid grid marks the data patches according to a Cartesian grid. Those patches are
used for the patchwise compression.

in every patch have been compressed tomaximally kmax = 64 data
points per patch. The minimal fraction of information stored in
the compressed measurement parameters 𝛾min has been set to
0.99. In total, this leads to 73 239 compressed data points, which
is a reduction of the data size by a factor 2.73. Due to the large
computation time, it is infeasible to determine more eigenpairs.
Thus, estimates of the amount of information 𝛾 contained in
the compressed data points are very vast. On average, with
Equations (57) and (58), the estimated range of 𝛾 is 0.35–94.8%
for every patch with a standard deviation of 0.39% and 17.3%,
respectively. The dispersion of those values for different patches
is high, caused by the varying distribution of data points
per patch.
The corresponding power spectra of the underlying Gaus-

sian processes are shown in Figure 12. Their slopes qualitatively
agree, but partly deviate outside their uncertainties. As discussed
for the synthetic application in Section 4.2, one needs to take into
account that MGVI tends to underestimate the uncertainties. In
general, the power spectrum inferred from the original data is
more distinct in its slope than the one from compressed data in
terms of deviations from a straightly falling power spectrum. The
compressed spectrum is flatter especially in the higher harmonic
regime. This could be caused by a lower signal to noise ratio in
this regime. However, it is not completely clear, why BDC shows
this behavior.
In addition to Euclidean gridded patches, we separated the data

into equiradial and equiangular patches. This leads to a more
even distribution of data points inside the patches, since this way
patches become larger further outside, where there are less data
points. However, for this patch pattern small structures in the

reconstruction get lost. The reason for this is that data points
in the Fourier plane far away from the origin store information
about the small scale image structures. Compressing them to-
gether therefore can be expected to lead to a loss of information
on small scale structures. Thus, two criteria need to be consid-
ered for the choice of the patch geometry: from a computational
perspective, patches with few data points are favored. From infor-
mation theoretical perspective, data points carrying similar infor-
mation shall be compressed together.
This application shows that BDC is able to operate on real

world datasets in the framework of radioastronomical image re-
construction. The run time still can be improved, though. Since
the compression for different patches works independently, this
can perfectly be parallelized. Another potential area for improve-
ment would be the choice of the separation of the patches. One
needs to aim for a patch geometry, where the original data points
are evenly distributed among the patches, while also highly cor-
related data points are assigned to the same patch.

5. Conclusion

A generic Bayesian data compression algorithm has been de-
rived, which compresses data in an optimal way in the sense that
as much information as possible about a signal for which the cor-
relation structure is assumed to be known a-priori.
Our derivation is based on the Kullback–Leiber divergence. It

reproduces the results of ref. [13] that optimizing the information
loss function leads to a generalized eigenvalue problem. We gen-
eralized the method to the nonlinear case with the help of metric
Gaussian variational inference.[17] Also, we divided the dataset
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Figure 11. The reconstruction of supernova remnant Cassiopeia A from
GMRT measurements. The colorbars have units Jy arcmin−2.Top row: To
the left the resulting posterior mean, to the right its posterior uncertainty
using original data. Middle row: To the left reconstructed mean using
patchwise compressed data. To the right its difference to the reconstructed
mean fromoriginal data. The differencemap shows thatmainly small scale
structures are lost due to the compression. Bottom row: The same for the
posterior uncertainty. Since information is lost due to the compression,
the uncertainty is mainly higher than the one of the original posterior.

into patches to limit the computational resources needed for the
compression. This leads to sparseness of the response, allowing
to apply the method in high-dimensional settings as well.
The method has been successfully applied to synthetic and

real data problems. In an illustrative 1D synthetic linear scenario,
40 data points could be compressed to four data points with
less than 20% loss of information. In a more complex, 2D and
nonlinear synthetic measurement scenario, 8192 measurements
could be reduced to 80 data points with 70% loss of information

Figure 12. Similar to Figure 6. The power spectra of the underlying Gaus-
sian process inferred from original and patchwise compressed data are
depicted in purple (dashed) and blue (dotted), respectively. They roughly
agree in their slope.

that still capture the essential structures of the signal. Dividing
the data into patches resulted in a huge reduction of the required
computation time for the compression itself, confirming the
expected advantage.
Finally, the method has been applied to real astrophysical data.

The radio image of a supernova remnant has been reconstructed
qualitatively with a data reduction by a factor of almost 3.
For such scientific applications of BDC, one needs to choose

the variable of interest, the signal s, such that s represents the
scientific interest best. Then BDC can optimally adjust which in-
formation need to be stored in the compressed data optimally. In
the chosen example, all degrees of freedom of the field had to be
stored. In principle, only certain (Fourier) scales or certain areas
of a field could be defined to be the quantity of interest. This al-
lows BDC to remove information on the other, irrelevant scales
or areas.
BDC compresses optimally with respect to the knowledge

about this quantity. It is a lossy compression method, that is,
the compressed data contain less information about the quantity
of interest—information that is relevant to answer the scientific
question—than the original data. This information loss consis-
tently leads to higher uncertainty in the linear case where the
solution is exactly known and mostly higher uncertainty in the
nonlinear applications where only approximate solutions can be
found. To quantify the loss of informationwe have introduced the
fraction 𝛾 of information about the quantity of interest s stored
in the compressed data compared to the information in the full
data. This fraction can be used to reduce the dimension of the
compressed data such that they still contain the relevant amount
of information. In case the compression is too lossy, one needs
to adjust the number kmax of computationally determined eigen-
pairs that build the compressed measurement parameters or in-
crease the limit 𝛾min of information that should be contained in
the compressed data.
Still, the current BDC algorithm requires too much resources

in terms of storage needed for the responses and computation
time. In order to improve this even further, the choice of the
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data patches can still be investigated and optimized such that
data points storing similar information are assigned to the same
patch. Up to now, data have been patched which are neighboring
in real or Fourier space. However also data points could be infor-
mationally connected non-locally. One would need to look at the
Kullback–Leibler divergence again to find those connections and
group the data accordingly.
Another problem is the computational cost of the response. In

the course of our derivation, we represented it in a vector decom-
position. One could demand further restrictions to those vectors
such as a certain parametrization or find other representations to
find a computationally ideal basis for the responses. This could
lead to a higher reduction factor in applications such as the as-
trophysical application in Section 4.3.
As a final step BDC needs to prove its advantage in real appli-

cations. A promising application could be online compression
such as ref. [19] suggest. In a scenario, where data come in block-
wise, those blocks can be treated as the patches and compressed
separately. This is for example applicable in any experiment
running over time. There, time periods imply the measurement
blocks. This way the original data never needs to be stored at all,
but compressed immediately and optimally under the current
knowledge.

Appendix A: Optimality of BDC for Zero Posterior
Mean

In this section of the appendix, we prove that for zero original
posterior mean mo = 0 the compression is optimal, if ŵi is the
eigenvector to the smallest eigenvalue ofo. Optimal means that
the information gain 2ΔI(ŵi) in (34) ismaximal with respect to ŵi.

Proof. For the proof, the ŵi dependence in (34) needs to be
shown explicitly:

2ΔI(ŵi) := ŵ†
i oŵi − 1 − ln(ŵioŵi) (A1)

Let {(vi, 𝛿i)} be the eigenpairs ofo. The eigenvectors {vi}i form
a complete orthonormal basis. Then ŵi can be written as ŵi =∑

j 𝜔ijvj with
∑

j 𝜔
2
ij = 1, such that ŵi is normalized, and

2ΔI(ŵi) = 2ΔI(
∑
j

𝜔ijvj)

=
∑
j

𝜔2
ij𝛿j − 1 − ln(

∑
j

𝜔2
ij𝛿j) (A2)

We will use that f (x) = x − 1 − ln x is a convex function. This
can be easily verified by calculating the first derivative

𝜕xf (x) = 1 − 1
x

(A3)

and the second one

𝜕2xf (x) =
1
x2

> 0 (A4)

We observe that 2ΔI(ŵi) = f (
∑

j 𝜔
2
ij𝛿j). By Jensen’s inequality, we

get

2f (
∑
j

𝜔ij𝛿j) ≤
∑
j

𝜔2
ij2f (𝛿j)

≤∑
j

𝜔2
ij2f (min

k
(𝛿k))

= 2f (min
k
(𝛿k))
∑
j

𝜔2
ij

⏟⏟⏟
=1

(A5)

Note, we used here that f (x) has its minimum at x = 1 and that
the eigenvalues of o are between 0 and 1, that is, the smaller
eigenvalues maximize f (𝛿i). This way we got an upper bound
reached for 𝜔i = 𝛿0i, where v0 is the eigenvector corresponding
to the smallest eigenvalue 𝛿0 := mink(𝛿k).□ □

Doing data compression by just considering the smallest
eigenvalues of Do will be found to be the right choice when con-
sidering ⟨ΔKLo,c(r̂i)⟩P(mo)

as a loss function in the section A. This
gives the expected loss for the expected mean of mo = 0 under
(mo) = (mo|S, Ro, No).

Appendix B: 1D Wiener Filter Data Compression

In Section 4.1, we applied our data compression method to syn-
thetic data in the context of the generalized Wiener filter with a
linear measurement equation. In this section, we are going to in-
vestigate the shape of the eigenfunctions corresponding to the
eigenproblem of Equation (44) in this setting.
Therefore consider an easy set up without varying noise nor

a complex mask. To ensure a certain definition, we choose the
signal space to be a 1D regular grid with 2048 lattice points in
one dimension. The synthetic signal and corresponding synthetic
data are drawn from the prior specified in Section 4.1. The data
is masked, such that only the central 256 pixels are measured.
Those data are then compressed to four data points, from which
the signal is inferred in a last step.
The synthetic signal and data are computed as before. How-

ever, the noise standard deviation now is constantly 0.2 × 10−2

and the response is set to be a mask measuring pixels 896–1152
leading to a transparent window of 256 pixels in the center of the
grid. The measurement setup with signal mean, synthetic signal
and data can be seen in Figure B1.
The consequential mean and uncertainty for the inference

with the original data and the ones with the compressed data are
plotted together with the ground truth in Figure B2. The original
data has been compressed from 256 to 4 data points.
Now let us have a closer look at the eigenvectors plotted in

Figure B3, which correspond to a back projection with Rc of the
corresponding single data point being one and all the others
being zero. These functions remind of Chebyshev polynomials
of the first kind. The Chebyshev polynomials were fitted to the
eigenvectors minimizing the mean squared error and are plotted
in the same figure as the eigenvectors. One can clearly see their
similarity. The lower order polynomials fit the best, while higher
order polynomials deviate especially at the edges. This hints
at BDC transferring the compression problem to a polynomial
fit. Then the compressed data points are the amplitudes of
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Figure B1. 1D synthetic data setup to investigate BDC. The synthetic signal is marked in green and the measured data in gray.

Figure B2. The same as Figure 2, but for the setup shown in Figure B1. In this simple set up original and compressed reconstruction almost perfectly
coincide.

the polynomials while the compressed response stores their
individual shapes.
An analytical analysis is done in the next section.

Appendix C: Analytical Solution of the 1D Wiener
Filter Data Compression

In this section, we will derive the eigenfunctions of (44) analyti-
cally for some signal on a 1D line covered by a mask of length L
starting at x = 0. The response of the linear measurement equa-

tion is

Roxx′ = 𝛿(x − x′)𝜒[0,L](x
′),

with 𝜒[0,L](x) :=

{
1 for x ∈ [0, L]
0 else

(C1)

The Gaussian noise no in the measured area has the covariance

Noxx′ = nconst𝛿(x − x′) (C2)
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Figure B3. The first four eigenvectors (solid lines) as in Figure 3, but for the setup shown in Figure B1 together with the first four Chebyshev polynomials
(dashed lines). Their coincidence reveals the operating mode of BDC using polynomials fits to compress the information about the signal. Then the
compressed data represent the amplitude of those polynomials and the compressed response stores their shape.

Having a look on the eigenvalue problem (44)

MoSri = 𝜇2
i ri (C3)

with

Mo = R†
oNoRo (C4)

we see, that ri(x) = 0 for x ∉ [0, L] and 𝜇i ≠ 0. For x ∈ [0, L]

Sri =
𝜇2
i

nconst
ri

=: 𝜆iri (C5)

We specified S by a falling power spectrum following a power law
with spectral index of −2𝛼 in Hartley space.

S = ℍP(|k|)ℍ†

=
(
ℍ 1
k𝛼

)1+†
=
(
Δ− 𝛼

2

)†
Δ− 𝛼

2 (C6)

with Hartley transform

ℍxk =
1√
2𝜋 ∫ dk

[
cos(kx) + sin(kx)

]
(C7)

and Laplace operator

Δ := ∇2 =
∑
i

𝜕2xi
(C8)

Then

𝜆iri = Sri

= Δ−𝛼ri

= 𝜆Δ
−𝛼
i ri (C9)

with eigenfunction ri and eigenvalue 𝜆Δi of the Laplace opera-
tor. This is equivalent to the Helmholtz equation with opposite
sign. Its eigenfunctions in 2D are the Bessel functions. In one
dimension with 𝛼 = 2 as in Section 4.1, the covariance operator
becomes S = 𝜕−4x , thus

𝜕−4x ri = 𝜆−2Δ iri (C10)

The square of the eigenvalue ensures the eigenvalues of the
prior covariance to be positive. Since 𝜆i = 𝜆Δ

−𝛼
i , 𝜆i does not be-

come zero.
The solution to this problem are super positions of exponential

functions of the same eigenvalue

ri(x) = ae+
√
𝜆ix + be−

√
𝜆ix (C11)
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such as cosh(
√
𝜆ix) and sinh(

√
𝜆ix) for positive 𝜆i, as well as

cos(
√
−𝜆ix) and sin(

√
−𝜆ix) for negative 𝜆i. For eigenvalue 𝜆Δi =

0, also polynomials up to third order are eigenfunctions to the
Laplace operator. Those belong to the largest eigenvalues of S,
which are also the most informative ones according to Equa-
tion (40). This explains the proximity of the eigenvectors to
Chebyshev polynomials as observed in Figure B3 for a signal
power spectrum that asymptotically follows k−4.
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