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Abstract

This dissertation presents a systematic design procedure, from modeling, analysis, nu-
merical approximation to control design, for distributed parameter systems in one spatial
dimension using the energy-based port-Hamiltonian (PH) system representation. The
investigated control task is to realize the precise observer-based trajectory tracking of
the tip of a flexible robot arm, which was designed and built at the Chair of Automatic
Control as a practical outcome of this research.

The first design steps are structure-preserving spatial discretization of the flexible struc-
ture by means of a pseudo-spectral method and structure-preserving order reduction.
The model structure is exploited for the inversion-based feedforward control and the
observer-based control design in a two-degrees-of-freedom control scheme with model-
based disturbance attenuation. Taking into account the time delays of the used indus-
trial PLC, the presented methods are extended with the systematic consideration of
time delays in a discrete-time control design. Experimental results for the tracking and
disturbance behaviors of the flexible robot arm illustrate the quality of the design.
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Chapter 1

Introduction

1.1 Motivation and Contributions

Modern control theories are committed to providing modeling, analysis, and control
for even more complex systems. At the mention of complexity, on the one hand, the
products that are smarter, lighter, and more powerful are becoming more popular and in
demand. This evolution requires not only the development of new sensors and actuators
but also the development of lightweight materials for such products. However, most of
these components are difficult or even impossible to describe on the finite-dimensional
space. In the field of production, logistics, etc., on the other hand, more distributed
systems with decentralized degrees of freedom and more interactions between different
controlled subsystems are required. As the systems grow in network size, a traditional
central controller will no longer work. Moreover, the modeling for the connection of a
physical system with the additional components has to be completely rebuilt according
to the traditional modeling approaches, see the details in [14].

The port-Hamiltonian (PH) framework has been designed for the network modeling of
physical systems with multiple domains such as mechanical, electrical, pneumatic, and
hydraulic systems, etc., see [57]. The PH approach is able to describe not only lumped
parameter systems on finite-dimensional spaces but also distributed parameter systems
in the infinite-dimensional case. The former are mathematically described by ordinary
differential equations (ODEs), while the latter are represented by partial differential
equations (PDEs). The modeling paradigm is based on an underlying geometric struc-
ture (a Dirac structure for finite-dimensional systems) that represents the exchange of
energy between energy forms and subsystems, and with the environment or other cou-
pled systems, via pairs of power/port variables. For this reason, complex systems can be
broken down into several smaller, interconnected components. In addition, the modular-
ity of the modeling process enables the iterative execution of modeling and design tasks
[9]. Due to their inherent passivity, PH models are a natural foundation for energy-
based control schemes, e.g., Control by Interconnection (CBI) [65] or Interconnection
and Damping Assignment Passivity-based Control (IDA-PBC) [62]. An overview of the
various aspects of the PH framework can be found in the books [14], [86].

The purpose of this dissertation is to show how the PH framework can be exploited in
the various steps of motion control design for an elastic rotating beam, which serves
as a prototypical example of a flexible robot arm. The rotating beam is modeled as a
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Timoshenko beam, see [52], and spatially discretized by the geometric pseudo-spectral
approach described in [60] to preserve the structural properties in the lumped param-
eter model. In order to use the finite-dimensional model in real time for the control
design, the discretized beam model is reduced by structure-preserving order reduction,
see [30]. Based on the resulting (reduced) lumped parameter model, an inversion-based
feedforward control (ibFFC) as described in [107] is designed and complemented by the
observer-based state difference feedback.

This research was funded by Deutsche Forschungsgemeinschaft (DFG), project No.
260049780. The main novel contributions of this thesis are:

e Structure-preserving discretization and model order reduction of the Timoshenko
beam using a pseudo-spectral method and a Krylov subspace method, respectively.

e The solution of a highly dynamic motion control task in a holistic port-Hamiltonian
frame, from modeling, approximation, interconnection up to control design.

e The design and construction of a modular three-axis lightweight manipulator con-
trolled by the industrial PLC (Programmable Logic Control).

o Comparative experimental studies of the control performance with a single-link
flexible robot arm configuration, without and with the inclusion of communication
time delays.

The dissertation mainly summarizes previous results on subsystem modeling, analy-
sis, numerical approximation (spatial discretization and model order reduction for real-
time implementation) and feedforward and feedback control design in a two-degrees-of-
freedom structure with model-based disturbance attenuation [93], [97], [94], [95], [96],
and completes it by the building of the laboratory manipulator based on the student
works [105], [15], [32], [58], as well as the experimental results of different control strate-
gies illustrating the tracking and disturbance behavior in practice.

1.2 Literature Review

As far as modeling, analysis, numerical approximation, and control of distributed pa-
rameter systems, the last 15 years have produced a number of important results. In
the context of this dissertation, the following references are of particular importance in
the PH framework: A functional analysis framework for linear distributed parameter
systems in a one-dimensional (1D) spatial domain is presented in [36], where the char-
acterization of the boundary conditions [46] defining a Stokes-Dirac structure [87] leads
to a well-posed system description. Furthermore, in this section, we give an overview of
the terms and methods and summarize some relevant references.

Modeling

The PH approach provides a systematic procedure for modeling (complex) physical sys-
tems (e.g., multi-body mechanical systems) based on the power-conserving interconnec-
tion of basic components (e.g., rigid bodies, flexible links, or kinematic pairs), see [54],
[57]. The PH structure represents the power flows between subsystems and the envi-
ronment, as well as the energy storage, conversion, and dissipation, see [14]. For the
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mathematical description of the finite-dimensional systems, the so-called Dirac struc-
tures are crucial, which are described in [6], [7]. The Dirac structure is the linear
subspace of power-conjugated port variables, in which the power conservation holds. It
characterizes an underlying geometric structure of finite-dimensional PH systems. Its
constitutive equations are derived from the total energy of the system, which is consid-
ered as Hamiltonian. The examples of Dirac structures for different physical systems are
given in [14].

For the infinite-dimensional case, the systems can be described as distributed parameter
PH systems, whose structures are considered as the extension of Dirac structures on
infinite-dimensional spaces, so-called Stokes-Dirac structures, see [86]. Similar to the
finite-dimensional case, the pairs of port variables on the spatial domain and on the
boundary are associated to hold the power conservation on the Stokes-Dirac structure,
see [87]. For control purposes, the boundary port variables can be defined as power-
conjugated inputs and outputs, whose products represent the power exchange at the
ports, see [46]. Unlike the finite-dimensional case, the constitutive equations are derived
from a Hamiltonian functional, e.g., for a hyperbolic system of conservation laws.

The central task in the modeling and control of the elastic robot is the treatment of
the vibrations of the flexible structure, which are described by PDEs. [72] gives a
comprehensive overview of different PH representations for flexible mechanical systems.
Beams are the simplest examples of flexible mechanical structures, see [67], [76], and
[84] as an incomplete selection of texts on modeling, dynamical analysis and numerical
approximation. The modeling and control of the Timoshenko beam in PH form were
described in [52], exploiting the representation in energy variables and the Stokes-Dirac
structure, while [46] approaches these tasks with a different choice of state variables
and a jet bundle formulation. Taking into account the gravitational field, [78] extended
the Hamiltonian density in terms of a gravitational potential density, see also [71]. An
alternative PH beam model can be represented by a second-order differential operator
based on the Euler-Bernoulli theory, see [4]. Both beam theories mentioned are based on
the small deformation assumption. To describe the large deformation, [53], [85] described
nonlinear beam models in PH framework according to the concept of the Stokes-Dirac
structures.

Structure-Preserving Discretization

The fundamental problem of simulation and (early lumping) control of complex physical
systems, including distributed parameter systems, focuses on finite-dimensional approx-
imation. The classical discretization schemes, e.g., finite element methods, have the
disadvantage that the structure of the system cannot be preserved since they define the
basis functions before the actual spatial discretization. This can lead to undesired nu-
merical instabilities or dissipation, see [88]. Therefore, geometric or structure-preserving
discretization schemes are required to preserve certain (geometric or structural) prop-
erties in the lumped parameter model. In the context of PH systems, the basic idea of
structure-preserving discretization is to take into account the different geometric nature
of the power variables in the numerical approximation of their spatial distributions. This
means that the infinite-dimensional (Stokes-)Dirac structure can be approximated by a
finite-dimensional counterpart.
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Several discretization approaches have been proposed in recent years. An early approach
to discretize 1D distributed parameter systems while preserving their structure is pre-
sented in [28] using different finite element spaces for the dual power variables. This
approach has been applied to an ideal transmission line described by the telegrapher’s
equation, to the 2D wave equation, and to the 1D Timoshenko Beam model, see [2§],
[102]. In addition, [3] proposed the partitioned finite element method (PFEM) which was
used for the mindlin plate. Compared to this local discretization scheme, [60] presents a
pseudo-spectral method in which global higher-order polynomials, e.g., Lagrange inter-
polation polynomials, are used as basis functions to approximate the distributed power
variables at the collocation points. This approach was illustrated in the 1D resistive dif-
fusion equation [90] and the 1D beam models [4], [97]. While using this global approach
for the beams, the so-called shear locking phenomenon and spurious modes, which occur
in the finite element analysis of the thin structure problems (see e.g. [8]), are not in-
volved. This is also one of the reason why this approximation approach is chosen for our
application. [38] proposed finite volume methods for open PH systems of conservation
laws on staggered grids based on conservative generalized leapfrog schemes. It is able
to define the boundary power variables on different grids in terms of their different geo-
metric natures. A more detailed summary of the state of the art in numerical methods
for distributed parameter PH systems can be found in [39].

Spatial discretization of the distributed parameter system can result in a large-scale
lumped parameter system that is difficult to simulate or use for control design. Therefore,
a so-called structure-preserving model order reduction is required to generate a suitable
finite-dimensional model, see [27], [66], [100].

Feedforward Control

In practice, e.g. in production, elastic robots are used to track a predefined movement
or to reach the desired position. In this case, a two-degrees-of-freedom control structure
as described in [43] is considered. Control performance and accuracy can be improved
by adding a feedforward control using a high-quality model. Based on the Timoshenko
beam model, [70] used a flatness-based feedforward control approach to achieve finite
time transitions between two equilibria. The state and input trajectories can be described
by a flat output. The solution of PDEs, obtained using Mikusinski operators, provides
the open-loop control of the beam. Further applications of the flatness-based feedforward
control are presented for a heat-conducting rod on 1D space in [59], and for a fixed-bed
tubular reactor in [18].

To avoid solving PDEs and to allow a feedforward control design for multi-dimensional
systems, spatially discretized models are used, see [25]. One commonly used method
is the so-called inversion-based feedforward control (ibFFC), which exploits the inverse
plant model for control design [13]. However, for non-minimum phase systems, the
classical inversion leads to internal instability. A bounded solution of the ibFFC was
proposed in [107], [5], [106] using bounded state transition matrices. Some applications
of this approach to the flexible beams can be found in [49], [12], [74] and in the PH
framework [40] and [97].
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Feedback Control

In order to suppress the residual oscillations and to achieve the highly dynamic motion of
a flexible robot, (some) state variables must be fed back into the controller. In industry,
the motor cascade control is a common, simple algorithm for robotics [24]. This type
of controller does not depend on the plant model and can be adjusted according to
the desired behavior. However, knowledge of the motor states alone is not sufficient to
suppress the elastic robots due to their flexible structures. For this reason, in many
applications, the beam deformations are additionally recorded with strain gauges or the
beam acceleration and/or the angular velocity with internal measurement units (IMUs)
for the feedback loop. [24] combined a PD joint controller with a torque feedforward
control and a curvature feedback control for a three-axis elastic robot arm. Similar
applications can be found in [26], [37] for two-axis robot arms. In [104], the acceleration
of the beam tip was used for active vibration damping.

The PH approach is not only suitable for network modeling but also for controlling
multi-physics systems. Energy shaping is the core of passivity-based control (PBC) and
achieves (asymptotic) stabilization of the closed-loop systems by choosing the desired en-
ergy function, which may be a Lyapunov function candidate for the desired equilibrium.
Based on this concept, the commonly used Cbl and IDA-PBC were developed in [63],
[65], [64], [62]. Cbl adds a PH dynamic controller with a simple feedback interconnection
to the PH system, while IDA-PBC controls the desired closed-loop dynamics of the PH
system by solving matching constraints that restrict the interconnection and damping
matrices as well as the closed-loop Hamiltonian such that the open-loop PH system be-
comes feedback-equivalent to a passive system. [51], [77] used the Cbl technique for the
distributed PH Timoshenko beam model, and [79] proposed a flatness-based feedforward
control and an IDA-PBC for a three-axis elastic robot arm, where the acceleration and
the angular velocity were recorded by an IMU for the feedback loop.

1.3 Overview of Contents

This dissertation is structured as follows. After outlining the motivation and highlights
of this research in Chapter 1, the test bench of a flexible robot arm built in the frame
of the project is presented in Chapter 2. The components of the servo system and the
programmable logic control system (PLC) are described in detail in each section. It also
presents the software configuration that has been set up in our application. Based on the
system description and characteristics, some problems and limitations of the used real-
time control system are pointed out, as they have a direct influence on the investigation
of the chosen control algorithms and the corresponding control quality.

In Chapter 3, we first briefly present the necessary preliminaries of PH systems. We
then summarize the PH modeling of a flexible robot arm, including structure-preserving
discretization and order reduction of the beam model. The approximation quality of the
discretized beam model is analyzed in terms of the eigenfrequencies and eigenfunctions as
well as the transfer function. Moreover, different reduced PH beam models are compared
with respect to the Bode diagram of the selected input and output.

In Chapter 4, we mainly show how to exploit the structure of the (reduced) beam
model to design the model-based feedforward control. In order to generate a feasible
trajectory for the tracking task, a point-to-point motion profile with sinusoidal interpo-
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lation is introduced. Compared to the rigid model for control design, the problem of
zero dynamics arises when the structural flexibility of the beam model is considered. To
solve this problem, a stable inversion-based feedforward approach is applied to provide
a bounded solution.

To compensate for the inaccuracy of the model and the unknown disturbances, a feedback
loop is added to the control structure, resulting in the two-degrees-of-freedom control
scheme. Since friction in servo motors plays an essential role in robot dynamics, it can
be compensated on the one hand by a static friction model; on the other hand, it can
be estimated and compensated online by a disturbance observer. Chapter 5 presents a
classical PD joint controller with static friction compensation and experimental friction
identification with different models. In Chapter 6, the resulting PH model is used
for the observer-based control design with model-based disturbance attenuation. Since
some time delays exist in the chosen industrial control system that can potentially lead to
degradation (up tp instability) of the control performance, the observer-based approach
can be extended with a time-delay model that includes both the input and output time
delays to make the control effect robust, see Chapter 7.

Chapter 8 demonstrates the implementation of the various control strategies. The
experimental results illustrate the tracking and disturbance behaviors in practice.

Chapter 9 provides concluding remarks and directions for future work.



Chapter 2

Test Bench of the Flexible
Manipulator

Figure 2.1: Modular, three-axis lightweight manipulator with structural elasticity!

The aim of this research is to find a uniform design procedure of the distributed pa-
rameter systems in the PH framework and also to validate the control methods in the
experiments. For this purpose, a modular, three-axis lightweight robot with an indus-
trial PLC was constructed in this work, see Figure 2.1. This manipulator consists of
three gear motors and two flexible links. The upper arm consists of a steel square tube
(length: 0.7m, edge length: 0.025m, wall thickness: 0.003m), whereas the lower arm is
made of an aluminum square tube (length: 0.616m, edge length: 0.02m, wall thickness:
0.002m).

In the context of this dissertation, we focus on its uniaxial flexible link configuration, on
which the experimental validation is performed.

! Adopted from an internal document at the Chair of Automatic Control, TU Munich.

7
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2.1 Single-Link Flexible Robot Arm

Figure 2.2: Photo of the Laboratory manipulator in its uniaxial flexible link configuration

Figure 2.2 is a photo of a single-link flexible robot arm. The test bench mainly consists
of an industrial PLC, a servo drive, a servo motor, sensors, a steel beam as well as
some safety components. The beam is mounted horizontally on the motor hub, which
is driven by a servo motor. The mechanical part is a thin beam with the length of
1.2m, the height of 0.03m and the thickness of 0.005m. As a result, it oscillates with a
fundamental natural frequency of about 3Hz.

Figure 2.3 shows the components of the test bench. The servo motor (RoboDrive Mo-
tor Gear Unit) RD85x13-HD i=160, manufactured by TQ-Systems GmbH, serves to
drive the whole system. It contains a brushless DC electric motor (BLDC motor) and
a Harmonic Drive (HD) gear. The transmission ratio is 160. The encoder attached to
the motor communicates with the servo drive via a BiSS interface (bidirectional/seri-
al/synchronous) and generally provides the servo drive with motor position and speed.
The movement of the servo motor is controlled by an ACOPOS 8V1060.50 servo drive
from B&R Industrial Automation GmbH. The motor control concept is based on the
cascade structure integrated inside the servo drive. Various control approaches can be
programmed in MATLAB/Simulink and then translated into machine-readable code for
the PLC by automatic code generation. The data between the PLC and ACOPOS
can be cyclical transferred by the Ethernet bus system named POWERLINK with a
minimum cycle time of 400us. An IMU is attached to the beam tip to capture the tip
angular velocity and linear acceleration. The data between PLC and IMU is transmitted
cyclically via the Controller Area Network (CAN) connection.

The products of the selected components in the test bench are listed in Table G.1. In
the next sections, the basic concepts of the essential components are introduced.

2Adopted from Paul Kotyczka: internal document.
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Figure 2.3: Components of the test rig?

2.2 Servo System
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Figure 2.4: Construction of a servo system based on [98]

Figure 2.4 shows the structure of a servo system that corresponds to the one used in our
application. In general, it consists of three primary components, namely a servo motor,
a servo drive (mainly refers to a servo amplifier), and a feedback mechanism (in blue),
see [98].

In many applications, a control system calculates the desired trajectory and triggers the
servo drive with a generated command signal in relation to the desired position, speed,
or torque. The servo drive amplifies this signal into electric voltage or current for the
servo motor to achieve the required movement. At the same time, encoders detect the
actual states of th motor and send them back to the servo drive, which compensates the
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difference between the setpoint and actual states of the motor by adjusting the motor
current.

2.2.1 Servo Motor

A servo motor is a high-performance actuator used for a precise control of angular or
linear position, velocity, and acceleration. It contains a motor equipped with a resolver
or a rotary encoder for position and speed feedback, see the servo motor in Figure
2.4. In general, servo motors are characterized by a low moment of inertia and high
peak torque. The servo drive imposes the currents required for torque build-up very
dynamically. They are able to operate over a wide speed range without overheating
during acceleration and braking. The motor brakes must be also integrated into the
robot arms in order to maintain the position of the arms in the event of a power failure.

Depending on the power source, the servo motors can be either DC motors or AC motors.
A DC motor is an electric motor driven by direct current, such as batteries, DC power
supplies, or an AC/DC power converter, while AC motors are fed by an alternating
current or power converter. The motors typically used are brushed permanent magnet
DC motors, the synchronous and induction motors (also called asynchronous motors).
A DC motor with a brushed permanent magnet may change the direction of movement
by means of an H-bridge. In contrast, the last two types use variable frequency drives to
control their speed or motion. Their difference is that the synchronous motor could rotate
at a rate that is locked to the grid frequency, whereas the rotation of an asynchronous
motor depends on the current induction in the rotor winding so that it has to rotate
slightly slower than the alternating current, see details in [98]. Today, servo motors are
used very widely in robotics, in machine tools for wood- and metal-working, in printing
machines, etc.

A BLDC motor is used in our servo system to execute the movement. It is also known
as an electronically commutated motor (EC motor). Since its design corresponds to
a permanent-magnet synchronous motor, it is also called a synchronous DC motor.
Compared to a normal DC motor, the BLDC motor is commutated via an electrical
circuit so that a mechanical commutator is no longer required. The stator consists of
coils and the rotor is permanently excited. The commutation, that is, excitation and
reversal of the current direction is carried out by the servo drive. The BLDC motor is
normally coupled to a rotary encoder. There are two main types of rotary encoder: an
incremental one retains the information about the motion of a shaft such as the changing
position or speed, while an absolute one indicates the current shaft position, which is
immediately available when power is applied. In our servo motor, an absolute encoder
is fixed both on the motor side and on the load side, respectively, to determine the
elasticity of the gearbox .

According to the motor datasheet, see Table G.2 for RD85x13-HD motor, the motor
must first be configured before commissioning, see details in [15].

2.2.2 Servo Drive

The servo drive is an important component for determining the performance of a servo
system. The essential role of the servo drive is to receive low-power command signals
from a motion controller and amplify them to a specific amount of high-power voltage
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and current for a servo motor to perform the required motion. For this reason, servo
drives are sometimes called servo amplifiers.

It is noteworthy that the servo drive has a simple control logic for the motion control of
the motor. Depending on the application, the servo drive can control the position, veloc-
ity, and torque of a motor. The servo drive attempts to adjust the voltage, frequency, or
current of the motor to correct the difference between the actual and command signals.
An additional motion control from a high-level control system can be superimposed to
generate the setpoints for the motor control loop.

In our test rig, we use the ACOPOS servo drive family provided by B&R, which is
capable of working with a fairly short sampling and communication time.

2.2.3 Cascade Control Structure

The core component of the B&R servo amplifier is the cascade control, which consists of
the position, speed, and current control loop from the outside to the inside, see Figure
2.5. Table 2.1 describes the relevant parameters related to Figure 2.5. The subscript M
designates the motor variables on the load side, while m designates that on the motor
side. The blue-marked system is derived from the mechanical and electrical equations
of a BLDC motor.

____________________________ ,
03 wh i : . l7 0
M 6- m w- m i- Koa | Umo 1/Ry | tm - Tm 1T | wm!' —wMm[] M
——( )| | | P —> ».—» — — +>.—> = >
controller controller controller ' 1+ Tms ke Im | s
+

- - - Power Converter {Gearbox

Figure 2.5: Cascade control structure of a servo motor according to [19]

Parameter Description

O Load angle
ws Load angular velocity
Wi Angular velocity of the motor
Im Rotor current
U, Voltage
My, Motor torque
My, Load torque
ke Motor constant

Table 2.1: Parameters of motor cascade control

The servo control is responsible for controlling the motor speed and position based on
feedback signals. In most cases, the basic servo loop is the speed loop. To minimize the
difference between the speed setpoint w};,, and actual value w,,, the speed controller gen-
erates a corresponding torque. Since the torque generated by the motor is proportional
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to the armature current, most industrial servo controllers rely on the current loop. The
current loop takes the setpoint 7, from the speed loop and evaluates it with the current
feedback i,, in order to set the required voltage wu,, to the servo amplifier. When the
system requires more torque, the current controller increases the voltage applied to the
motor until the required current is reached. Compared to the speed loop, the current
loop operates at much higher sampling rates. To prevent damage to BLDC motors due
to unwanted and unsuitable control voltage, the current controller of the B&R servo
amplifier is not accessible and must not be adjusted by the user. The current loops for
motor control are normally tuned by the manufacturers.

For motor positioning, the motor angle® @, is considered the control target. The control
structure can be extended with the position control loop outside the speed control. Apart
from the angular velocity wy, and the armature current i,,, the motor angle 8, is required
to be fed back to the #—controller. The position loop generates a reference speed for the
speed loop. For further details, refer to [103].

Cascade control requires auxiliary control variables in order to set up the subordinate
control loops. This control strategy is generally used for motor control due to its out-
standing advantages. On the one hand, the inner control loop acts faster than the outer
one and is completely unaffected by the slow dynamics of the outer loop. On the other
hand, the slower outer loop could hardly be affected by the disturbances in the fast inner
loop.

In the B&R servo amplifier, the control loops can be activated separately using the
corresponding B&R function blocks, e.g., torque control loop. Instead of cascade control,
the model-based motion control approaches for the manipulator are implemented and
evaluated in the experiments. For this purpose, the outer control loops (speed and
position) are deactivated, while the torque control loop is activated. In the next section,
the torque control loop is briefly described.

Torque Control Loop

The tuning of the current controller gain is based on e.g. the motor stator inductance
and resistance. The torque generated by the motor is proportional to the current in the
windings and is based on the following relationship

— % i, (2.1)
where k. represents the motor constant, see Table G.2. For this reason, it is also con-
sidered a torque control loop. Since the electrical part of the BLDC motor is neglected
in our model, the motor torque is the unique control input of the whole system. Since
it is not permitted to access the torque (current) control loop, the torque trajectory
calculated by the model-based control approach is specified as the torque setpoint for
the torque control loop of the servo amplifier. Due to the maximum current, the mo-
tor torque must be limited. As already mentioned, when the torque control mode is
activated, the other outer control loops for speed and position are automatically deacti-
vated by the servo system to avoid overdetermination, see Figure 2.6. This control mode
can be easily activated with the aid of the function block MC _BR__ TorqueControl, see
details in Section 2.3.2.

Om

3In this case, the gear elasticity is ignored. Thus, 0y = m,
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Figure 2.6: Schematic of the torque control loop

2.3 Programmable Logic Control

A PLC is a digital electronic system adapted to control manufacturing processes to
ensure highly reliable control in any harsh environment. PLCs are used in a variety of
industries, including hardness testing machines, injection molding machines, and fully
automated production systems. It has a programmable memory for internal storage of
user-oriented control commands for the implementation of exceptional features, such as
logic control, sequence control, timer, counter, and arithmetic functions for controlling
various types of machines and processes using digital or analog input and output signals,
see [2].

PLCs have a robust design, are easily programmable, reliable, and have process fault
diagnostics. Figure 2.7 shows an architecture of a typical PLC that includes the basic
functional components of a central processing unit (CPU), a power supply unit, an
input/output interface section, and a programmable device. Actuators are connected to
the output interface of the PLC, while the sensors are located at the input interface.
The PLC is capable of continuously monitoring the inputs of sensors and make output
decisions to operate the actuators based on the program written by the user so that
the machine operates in an intended way. The application program developed in the
programming device is transferred to the memory unit of the PLC.

With regard to a PLC, it is implemented in different ways. This means that it can
be realized as a single device, a software emulation, a PC plug-in card, etc. There are
also modular solutions consisting of several components that are either plugged into a
common rack or into a bus with expandable I/O capabilities. Each PLC system contains
at least one CPU module, one power supply module, one or more I/O modules that are
plugged together in the same rack.

« CPU
The CPU contains a central processor and its memory. All necessary calculations
and data processing are performed by the processor, which is capable of receiv-
ing the inputs and generating the corresponding outputs. The PLC memory can
be divided into Read-Only Memory (ROM) and Random-Access Memory (RAM).
The ROM memory consists of the operating system, the driver and the applica-
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Figure 2.7: PLC architecture based on [2]

tion program, while the programs and working data written by the user are stored
in RAM. If the power supply is interrupted or fails, the PLC uses the retentive
memory to save user programs and data as well as to resume the execution of
the user program after the power is restored. The retentive memory is configured
by the user so that the values can be obtained by a power cycle or a program
to execute a transition. Long-life batteries, EEPROM (Electrically Erasable Pro-
grammable Read-Only Memory) modules, and flash memory methods are required
to implement retentive memory.

e Power supply module
These modules are responsible for providing the required power to CPU and 1/0
modules by converting AC power to DC power.

o I/O module

I/O modules of a PLC are used to connect the actuators and sensors to execute or
measure real-time variables such as position, temperature, voltage, and pressure,
etc. In general, the actuators could be electronic valves, drive control modules,
power contactors for switching electric motors, etc. Limit switches, encoders, light
barriers, and level sensors are usually selected as sensors. The I/O modules are
divided into digital and analog types. The digital ones are connected to the digital
sensors or actuators, which can be switched on or off for this purpose only, while
the analog I/O modules are used for the sensors or actuators that generate analog
electric signals such as voltage. To convert the analog signals into digital signals
that can be read by the PLC, these modules usually have an integrated A/D
converter.

Nowadays, PLC is becoming more and more popular in the industry. One of the main
advantages is that the control algorithms can be easily implemented in the development
phase. This means that PLC does not require any change in wiring compared to previous
relay logic, and only the programs need to be modified. This saves time and allows a
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late change of programs. In addition, the implementation and evaluation of a counter or
timer, as well as the analysis of various states and connections, are carried out internally
in the PLC. Furthermore, PLC requires little assembly work, materials, and wiring.
For this reason, some projects can be realized in a much shorter time frame. The
components can be also expanded later. Various programming languages are available for
programming the control logic, such as ANSI C/C++, structured text (ST), continuous
function chart (CFC), ladder diagram (LD), sequential function chart (SFC), see details
in Bolton [2].

In our application, the PLC is used to implement the model-based feedforward and
feedback control algorithms, which calculate the torque as the setpoint of the torque
loop control for executing a given movement, and to include external sensors such as the

IMU.

The following sections introduce two essential elements — ACOPOS parameter ID and
function blocks.

2.3.1 ACOPOS Parameter ID

So-called parameter IDs (ParID) are available for communication with ACOPOS, which
can be read and/or written by the user. The readable ParIDs represent different states
of ACOPOS, such as the current motor position and velocity from the encoder, as well
as the motor current, while the other ParIDs to be written are used for the adjustment
of e.g. motor parameters or keep the user-defined parameters. With the function blocks
MC _BR_ CyclicRead and MC _BR__ Cyclic Write, the parameters can be read or written
cyclically via ParIDs. The two function blocks are presented in the next section.

ParID Name Access
91 Encoderl: Actual position RD
92 CTRL Position Controller: Actual speed RD
213 Set stator current quadrature component RD
214 CTRL Current Controller: RD
Actual stator current quadrature component
277 Motor: Torque RD
423 Encoder2: Actual position RD
586 Function block: User R4 variablel RD, WR

Table 2.2: Relevant ACOPOS parameter IDs from the Automation Studio 4.2 — Help (RD: read,
WR: write, R4: data type float32)

Table 2.2 lists the main ACOPOS ParIDs used in our application. Since the rotary
encoder is connected to ACOPOS via an RS232 connection, the data can be read directly
via ParID 91, while the motor speed is accessible via ParID 92. The stator current and
motor torque can be read by ParIlD 214 and ParID 277, respectively. The angle on
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the load side can be monitored by an additional encoder that is also plugged into the
ACOPOS. Similar to the motor encoder, the measurement is read by ParID 423. All
the above-mentioned ParlDs are read-only. Some function blocks require freely available
parameters whose values can be set by the user, e.g., ParID 586 is used for the function
block MC _BR_ TorqueControl, and the reference torque is written cyclically into this
ParID.

Furthermore, there are ParIDs for motor configuration, see e.g. Table G.2. The datasheet
is provided by the motor manufacturer, and the required values can be assigned to the
corresponding ParIDs.

2.3.2 B&R Function Block

The motor control logic can be activated using available function blocks in Automation
Studio, the software interface provided by B&R for drive control. It contains not only
the PLCopen function blocks but also the self-developed function blocks for extended
functionality, which in turn are based on the PLCopen blocks. The following sections
introduce the major function blocks that are inserted into our application.

Cyclic Read Function Block

The cyclic read function block is called MC' BR_ CyclicRead, see an example in Figure
2.8. It is able to enter the selected ParID into the “Cyclic data of the drive” and copy
the read value into the user variable whose address is specified via “DataAddress”. The
data is copied cyclically as soon as “Enable” is set to 1. Otherwise, only the copy process
to a user variable is stopped when “Enable” is changed to 0. However, it is not possible
to disable the reading of ParID data from the drive. Instead of inserting the name of
a variable in “Axis”, the address of the variable must be determined here using the
function block “ADR”. The data type of the user variable is defined by “DataType”. In
addition, “Mode” is set to 1 to update the value at a constant update rate.

MC _BR_CyclicRead
gAxisO1
[ADR]— Axis Valid [—
1
Enable Busy —
91
ParID Error [—
Motor§5.
encodl_act_pos 91
[ADR] — DataAddress ErrorID —
ncPAR TYP DINT
- — DataType
1
Mode

Figure 2.8: Diagram of the function block MC _BR__CyclicRead for an example of reading the
motor position via ParID 91
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Cyclic Write Function Block

In contrast, the function block MC _BR_ CyclicWrite enters a ParID into the “Cyclic
data to drive” and cyclically transfers the data of a user variable to the drive. The
transmission process is the same as the one for MC _BR_ CyclicRead. Figure 2.9 is an
example of a setting to write the user-defined torque to ParID 586.

MC BR_CyclicWrite
gAxis01
[ADR] — Axis Valid [—
1
Enable Busy —
586
ParID Error [—
Motor85.
userSetTorque
[ADR] — DataAddress ErrorID —
ncPAR_TYP_REAL
- — DataType
1
Mode

Figure 2.9: Diagram of the function block MC BR_ Cyclic Write for an example of writing the
user-defined torque into ParID 586

Torque Control Function Block

Figure 2.10 shows an example of the function block MC _BR__ TorqueControl. This block
allows the user to specify the torque setpoint. As shown in Figure 2.6, the position
and the speed control loop are automatically deactivated in this mode. Analogous to
MC _BR_ CyclicRead, the axis is defined by “ADR”. To track the desired torque, both
the “Enable” and “StartSignal” must be 1. The input “Torque” defines a constant value,
and the torque can be ramped up to a configured setpoint with “TorqueRamp”. The
“InTorque” output indicates when the “Torque” is reached. Alternatively, the torque
setpoint can be specified cyclically via “TorqueParID”. In this case, the value of “Torque”
and “TorqueRamp” must be set to 0. For “TorqueParID”, a ParID is needed instead
of a given value. There are several free ParIDs like ParID 586, which can be used for
this purpose. The desired torque is cyclically written into the selected free ParID with
MC _BR__ Cyclic Write.

It is worth noting that the velocity and the acceleration must be limited. The velocity
limitation is carried out both in the positive and negative direction by “PosMaxVeloc-
ity” and “NegMaxVelocity”, respectively. When the maximum velocity is reached, this
function block tries to reduce the torque until the velocity is below the maximum. This
also applies to the acceleration limitation.
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MC_BR_TorqueControl
gAxisO1
[ADR] Axis InTorque[—
1
Enable Busy[—
1
InitData Active —
1
StartSignal CommandAborted[—
0
Torque Errorf—
0
TorqueRamp ErrorID—
100000
PosMax Velocity Datalnitialized —
-100000 )
NegMax Velocity WaitingForStart—
900000
Acceleration AxisLimitActive —
— Mode
— TimeLimit
— StartParID
586
TorqueParID

Figure 2.10: Diagram of the function block MC _BR__ TorqueControl for an example of executing
the user-defined torque trajectory

Figure 2.11 shows a schematic diagram for execution of a centralized control loop?, in
which the desired torque is calculated by the model-based feedforward and feedback
control algorithms in the experiment. The desired torque trajectory 73, is calculated
in the PLC, and the sampled reference values are assigned to the global user-defined
ParID 586 via MC_BR__ CyclicWrite. This ParlD is considered as “TorqueParID” for
the function block MC _BR_TorqueControl. The PLC continues to transmit the desired
torque Ty pr to the servo amplifier and sets the torque setpoint 73, 4copog for the
torque control loop. At the same time, the actual torque Tasacopos is fed back to
the torque controller in the servo amplifier. The measurement of the motor angle 6,
and angular velocity 0 can be monitored in the PLC with MC_BR_ CyclicRead. Due
to the possible time delays in the hardware system, the same variable with different
notations PLC and ACOPOS displays the motor states in different components of the
transmission process.

4The sensor signals from the IMU, which are transmitted by CAN bus system, are not covered in this
thesis, see details in [58].
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Figure 2.11: Diagram of the experimental torque control. The blue block represents the process-
ing of the control system in PLC (zZ}L: angular velocity of the beam tip, 6;,: motor angle, O
motor angular velocity, Tps: motor torque). The red block shows the signal transmission over
the real-time Ethernet.

2.3.3 Configuration

All function blocks can be assigned run-time properties that are designated by the “task”,
whether they read or write parameters or main programs, e.g., for the execution of a
control logic. A typical PLC is capable of executing several programs simultaneously
(multitasking) and deliberately prioritizing them, see [83]. The most important programs
must be run as quickly as possible and should be placed in a higher priority task.
However, it is not allowed to assign too many programs to the same task because the data
volume and the computation time can lead to an overload of the CPU. The programs
should therefore be distributed among different tasks according to their priorities.

X20CP1586 Configuration Parameter Value
Cycle time of interface in us 400
Multiply cycle time by 0.25
Timing System tick in ps 0.25
. Idle task class Cyclic 42
Idle time
Task class idle time in us 600
Number of cyclic resources 8
Cyclic §1: Duration in us 1200
Resource ]
Cyclic task classes Cyeclic §2: Duration in us 600

Table 2.3: CPU configuration

How the task class is set for each program depends mainly on the cycle time of the
POWERLINK interface and a parameter “Multiply cycle time by”, which is multiplied
by the cycle time to determine the system tick. The cycle time of the interface must be
a multiple of 400us, while the value of parameter “Multiply cycle time by” must be a
positive integer or a positive number whose reciprocal is a positive integer. Depending
on the “Number of cyclic resources”, the cyclic resources can be divided into different
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“Cyeclic task classes” whose “Duration” must be a multiple of the system tick. A smaller
number of cyclic task classes, e.g. Cyclic #1, indicates a higher priority. One of the task
classes is selected as the “Idle task class”, and the “Task class idle time” corresponds to
the duration of this cyclic task class. Table 2.3 shows the essential parameters of the
CPU configuration with a given example for the experiments.

The project source code such as function blocks, programs or libraries is managed in the
Automation Studio logical view. To establish a relationship between a logical program
and the hardware, the logical program should be assigned in the so-called software
configuration. After the CPU configuration, many different PLC cyclic task classes
are available. Depending on the cycle time requirements and the priority requirements
of programs, these are assigned to different task classes.

Object Name Object Name
@ Counter Cyclic #1 -- [1.2ms]
©@ MC_BR_CyclicRead [ Counter
© exp_obc [IMC_BR_CyclicRead
© MC_BR_TorqueControl | Software > [Jexp_obc
@ LibAsCanOpen2_ ST Configuration [IMC_BR_TorqueControl
& CAN_IMU_Speed Cyclic #2 -- [0.6ms]
© CAN_IMU_Acceleration [ICAN_IMU_Speed
[JCAN_IMU_Acceleration

logical view physical view

Figure 2.12: Software configuration: Assignment of programs and function blocks to cyclic tasks

Figure 2.12 shows how logical programs become PLC tasks. We take several source
objects in logic view as an example. MC BR_ CyclicRead, MC _BR__ TorqueControl,
and Counter are based on the function blocks, while exp_obc is the generated C-code
of a Simulink model. LibAsCanOpen2_ST is one of the available Automation Studio
libraries that is used to read data from devices with a CAN interface. Since the IMU
is connected to the PLC via the CAN interface, the measured angular velocity and
translational acceleration of the beam tip can be recorded using this library. Based
on the CPU configuration in Table 2.3, the main program exp obc runs in a cycle
time of 1.2ms, which is exactly a multiple of both cycle times of interface (400us) and
system tick (100us). Note that the sampling time of the Simulink model must match
the “Duration” of the selected cyclic task class. In Cyclic £1, the source objects are
executed from top to bottom. The counter counts up with the running time as soon as
the desired movement is activated. The required measurement is recorded every 1.2ms
by MC _BR_ CyclicRead and then returned to the model-based controller. exp obc
computes the command motor torque to achieve a specified movement and updates the
setpoint of MC _BR__TorqueControl. At the same time, the measurement of the IMU
is acquired in a cycle time of 0.6ms, since this library needs about four times 0.6ms to
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read, write, and save the data. Depending on the applications, different combinations
of the interface cycle time and the duration of cyclic task classes are possible.
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Chapter 3

Port-Hamiltonian Modeling and
Discretization

Figure 3.1: CAD sketch of the single-link flexible manipulator

Figure 3.1 shows the CAD sketch of the single-link flexible robot arm. The beam, which
is connected to the gear motor via a hub, exerts a planar motion. The core task for
modeling and control of the lightweight robot is to deal with the vibration of the flexible
structure, which is described by PDEs, while the drive system can be easily described
by ODEs. This chapter is, after a short introduction of PH systems, devoted to the
finite- and infinite-dimensional PH modeling of the single-link flexible robot arm, and
the structure-preserving spatial discretization and model order reduction to obtain a
relatively low-dimensional, high-quality control model. The contents of this chapter are
mainly excerpted from our published contributions [93], [96], [97].

3.1 Port-Hamiltonian Systems

PH systems, and their underlying geometric structures — Dirac or Stokes-Dirac structure
— admit several kinds of formulations, see [14], [87]. In this section, we recall two of them.
The explicit state representations!
state space will be used throughout the dissertation. We particularly stress the differ-

on a finite-dimensional and an infinite-dimensional

We skip the time dependence of the variables in this chapter.

23
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ential energy balance, which is to be preserved by appropriate numerical methods for
discretization and model order reduction.

3.1.1 Dirac Structure

Dirac structures, originally introduced in [7], are characterized as the geometric struc-
tures formalizing general power-conserving interconnections, which permit the intercon-
nected and constrained physical systems being represented in the Hamiltonian formula-
tion, see [87].

Definition 3.1 (Dirac structure). Given a linear space of flows f € F and its dual space
& := F* defined for efforts e € £, equipped with the duality pairing (:|-) : F x & = R.
Define a symmetric bilinear form ((-|-)) on F x & as

(((f1,e1), (f2, €2))) == (e1|f2) + (e2|f1), (fi,e)) e Fx&, i=1,2. (3.1)

A Dirac structure is a linear subspace D C F x € with the property that D = D, where
D+ denotes the orthogonal complement with respect to the bilinear form ((-|-)).

According to the property D = D+ of the Dirac structure, the bilinear form holds for
every (f,e) € D that

0=(((f,e),(f e)) =2elf). (3.2)

Related to a pair of power variables (f, e), this condition corresponds to power conser-
vation and implies that the total power exchange of a Dirac structure is zero.

Dirac structures admit different representations for finite-dimensional systems, see [9].
For the space of conjugated power variables F x £ = R” x R™, three matrix representa-
tions will be presented here.

Proposition 3.1 (Kernel and image representation). A Dirac structure D C F x € =
R™ x R™ can be rewritten as

1) the kernel representation
D={(f,e)e FxE|Ff+ Ee=0}, (3.3)

2) the image representation
D={(fe)e Fx&|f=E"X e=F'A\AcR"}, (3.4)
if and only if there exist two matrices F, E € R™*™ satisfying the following conditions:

(i) skew-symmetry: EFT + FET = 0,

(ii) rank [F : E] = n.
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Proposition 3.2 (Input-output representation). A Dirac structure D C Fx& = R"xR"
admits the input-output representation

p=lfeyerxe | =gl (3.5)

e fo

if there exists a decomposition of the space of flows (fi, fo) = f € F = F1 x Fa and
space of efforts (e1,e3) = e € £ = & x & as well as a skew-symmetric matrix J € R™*".

3.1.2 Finite-Dimensional PH Systems

Energy-storing Resistive
elements elements

Environment

Figure 3.2: Port-Hamiltonian system [14]

The geometric definition of a PH system consists of three main ingredients as depicted
in Figure 3.2. First, there are the energy-storing elements (fs,eg) corresponding to
the space of flows and efforts Fg x £g. Secondly, it contains the resistive elements
(fr,er) € Fr x Er, Thirdly, there is a Dirac structure D, which connects all the power
variables with respect to the energy storage and dissipation as well as the external ports
(fp,ep) defined on the space Fp x Ep in a power-preserving manner, that is, the total
power associated with the port variables imposed by the Dirac structure is zero. Thus,
on D the structural power balance

elfs+ehfrt+ebfr=0 (3.6)

holds, where fg, es € R"™, fr, egr € R4, fp, ep € R™.

Energy storage. The internal storage ports (fs, eg) are interconnected to the energy
storage of the system represented by a finite-dimensional state space for the energy
variables x € R™, together with an energy or Hamiltonian function H(x). The vectors
fs and eg are called flows and efforts of the PH system, respectively. The energy storage
can be represented as follows:

T = —fg Dynamics

es = VH(x)  Constitutive equation
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With the defined flows and efforts, the power balance equation can be written as

I = (VH(x)|#) = —e} fs. (3.8)

Resistive elements. The resistive elements correspond to the internal energy dissipa-
tion, e.g. caused by the friction, resistance, etc., and are described by the port variables
(fr,er). The input-output mapping of the resistive relation can be represented by

fr = —Fg(er), (3.9)
with the resistive characteristic Fg : RY — RY satisfying®

ek Fr(er) >0, (3.10)
for all (fr,er). In many cases, it restricts the linear resistive relations

fr=—-Rer, R=R'>0. (3.11)

Regarding the external port variables (fp,ep) as the inputs and the outputs u,y €
R™, fp = u, ep = y, the input-state-output representation of the Dirac structure D is
written as

—fs=(J —R)es + Gu

3.12
y=G'eg + Du, ( )

where the internal interconnection structure is given by the skew-symmetric matrix
J = —J7, the resistive structure®> R = RT > 0, and the feedthrough matrix D = —D7.
According to (3.6), the structural power balance can be represented as

elfs+erfrt+uly=0. (3.13)

With the dynamics and constitutive equation (3.7), the PH system (3.12) can be rewrit-
ten in the state space representation.

Definition 3.2 (Finite-Dimensional port-Hamiltonian system). A dynamical system

(J(x) — R(z))VH(z) + G(z)u

G"(x)VH(z) + Du, (3.14)

T
Yy
where H(x) : R" — R is an energy (Hamiltonian) function, which is bounded from below,

with interconnection matrix J(x) = —J7 (), dissipation matrix R(x) = RT (x) > 0 and
feedthrough matrix D = — D), is called a finite-dimensional PH system (with dissipation).

2Here, el f; describes respectively the power taken from the element (the energy storage, the resistive
element, and the environment) — “generator sign convention”.

3Notice that the flows and efforts of the resistive elements do not occur explicitly in the equations
anymore. From a resistive port perspective, it can be specified by R = G};RRG r relating the linear
resistive relation (3.11), where Gr corresponds to the input matrix of the resistive port, see details in
[14, p. 70]
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The structure of the PH state representation allows, by the skew-symmetry of J(x) and
D(x) as well as the definition of the output (which is collocated and power-conjugated)
to directly express the energy balance equation
H(z)=y'u— (VH(z))TR(z)VH(z) < y'u, (3.15)
>0

which shows passivity of (3.14) and Lyapunov stability for u = 0.

3.1.3 Stokes-Dirac Structure

The distributed parameter systems can be formulated in terms of boundary PH systems
based on the infinite-dimensional Dirac structure, that is, the so-called Stokes-Dirac
structure. In this section, the generalized definition of Stokes-Dirac structures is recalled
for systems of two conservation laws, with non-zero energy flow through the boundary.
Instead of the vector calculus formulation, the differential forms on the spatial domain
of the system and its boundary, permit giving a dimension-independent definition of
Stokes-Dirac structures and boundary PH systems, see [14], [87].

Define n-dimensional smooth manifold Z with smooth (n — 1)-dimensional boundary
0Z to represent the space of spatial variables. The space of differential k-forms [17] on
Z is indicated by Q¥(Z), k = 0,1,...,n, whereas Q¥(02), k = 0,1,...,n — 1 for the
space of k-forms on 0Z. Thus, the natural duality pairing between two differential forms
a € QF(Z) and B € Q" *(Z) is given by

(Bla) == /5/\0[ (3.16)

where A denotes the wedge product of differential forms to yield the n-form 8 A «. This
pairing is non-degenerate if (5|a) = 0 for a # 0 (for 5 # 0) only if 8 =0 (o = 0).

Similarly, the pairing relates differential forms on the boundary a € QF(0Z2), 8 €
Q=1=k(92) as follows:

(Blay) == /5/\(1 (3.17)

Consider now the linear space of distributed flows and efforts:

Fi=QP(2) x Q1(Z) x Q" P(Z)

3.18
E=Q"P(Z)xQ"IUZ)x Q" 1(0Z2) ( )
for any pair p, ¢ satisfying
p+qg=n+1 (3.19)
The pairings (3.16) and (3.17) yield the bilinear form on F x £
<<(f1 flafl 76176%761) (f27f27f2 ,62,63,63)» = (3 20)
(€13 z +(eflf3)z + <61|f2 Yoz +(e5| 1)z + (e3] fi)z + <€g‘f16>827
where for ¢ = 1,2
P e QP(2), 1¢cQiZ), 9 c O P(9Z),
fewE),  flem(@,  fewroz) o

e r(2), eleqiz), € ecQ92).
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It is worth noticing that the spaces of differential forms QP(Z) and Q9(Z) denote the
energy variables of two interacting physical energy domains, whereas Q?(92) and Q4(0Z2)
represent the boundary variables, whose product indicates the boundary energy flow, see
[87].

Definition 3.3 (Stokes-Dirac structure). Consider the linear space F and £ defined in
(3.18) respectively for flows and efforts with p and ¢ satisfying Equation (3.19) and the
duality pairing (3.20). The relation® of flows and efforts is given by

Lo (—1)%1 [ep] (5.220)
d

I ][epm], (3.22b)

e’ 0 (=1)7] |eYoz

where = pg+ 1 and |9z denotes the restriction of the differential form to the boundary.
Then, the linear subspace D of F x £

D ={(f7, f1f°, ¢, ¢%,”) € F x €] (3.22) holds } (3.23)
is a Dirac structure, where D = D+ holds.

By using the generalized Stokes’ theorem, the properties, D C D+ and D+ C D can be
proved [87]. Then, the corresponding power continuity relation is expressed by

(€1f7) 2z + (!l f9) z + (| f2)oz = . (3.24)

3.1.4 Infinite-Dimensional PH Systems

For the purpose of beam modeling, we consider an infinite-dimensional extension of
(3.14) on the space of smooth vector-valued functions over 1D domain Z = [0, L].
Define the vector of state functions x(z) € C*°(Z;R"), which appears in the energy
or Hamiltonian functional H(x(z)) = [z H(x(z)) dz without spatial derivatives (energy
variables), and the boundary in- and outputs u,y € R™.

Definition 3.4 (Boundary-controlled PH systems). The states of a boundary-controlled
PH system (with dissipation) on a 1D domain Z € [0, L] obey the abstract differential
equation

(2) = (J = R)(5aH (2(2)))" (3.25)

“Compared to the definition in [87], —(—1)""7 in [87] is replaced with (—1)? in Equation (3.22b)
according to Equation (3.19), see [39].
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with a formally® skew-adjoint matrix differential operator 7 and a self-adjoint, positive
semi-definite dissipation operator R. With the choice of boundary port variables®, i.e.,
variational derivatives’ of H restricted to the boundary of Z,

u=Wjg (6$H)T’az

- (3.26)
y=Wo (0:H)| _.
where W, W € R™*?" are appropriate matrices, the energy balance reads
H(z(2) =yTu— / DxH(x(2))R(OH (x(2))T dz. (3.27)
Z

>0

Note that by the choice of energy variables, the row vector of variational derivatives
coincides with the (transposed) gradient of the Hamiltonian density, 0, H = 0, H.

Defining the efforts and flows for distributed energy storage as f(z) = —@(z) and e(z) =
(0:H(xz(2)))T, together with appropriate distributed dissipation port variables er(z),
fr(2), these can be related, as in the finite-dimensional case, via

/ e (2)f(2) dz + / el (2)fr(z)dz +uTy = 0, (3.28)
zZ zZ

The underlying linear infinite-dimensional space, which implies the structural balance
equation (3.28), is a Stokes-Dirac structure [87], as defined above.

3.2 Drive System

Figure 3.3: Schematic diagram of parameters and variables in the gear motor according to [24]

®Le., under boundary conditions which make the boundary terms vanish after integration by parts.
SFor a general discussion on this issue, see [46)].
"Defined by 60H = fz 0z H - dx dz, where dx contains variations of the state functions.
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The drive system of the manipulator consists of a BLDC electric motor with a Harmonic
Drive gear, the elasticity of which is approximated by a linear torsion spring with stiffness
s (see e.g. [24]). Figure 3.3 shows the angles at the motor and hub side 657, 65, the
motor torque 7y, as well as the radius of the rigid hub r,, to which the flexible beam is
attached. @ and M} denote the reaction force and torque exerted to the hub (by the
interconnected beam).

Equations of motion. According to Newton’s second law, the equations of motion
can be described by two degrees of freedom at the driven side®:

Inibar = T — cs(0ar — )

! (3.29)
In0pn, = cs(Op — 0n) — My, — rpQn

with
Om
o

IM = nzlm, TM = NTm, QM = (3.30)

In; denotes the motor moment of inertia”, while Ij, describes the hub moment of inertia,
which shouldn’t be neglected in the modeling. In our case, the gear motor has a gear
ratio n > 1.

Port-Hamiltonian representation. We define the state vector'’ x, € R* as

O

0
zo=| " (3.31)

by

DPh

with the angular momenta py; = In0y and pp, = I,0),. The Hamiltonian of the drive
system is composed of the kinetic and elastic potential energy

_1.p% | pi 2
Ho = (75 + 5+ cs(0y — 0)7). (3.32)
2 Iy Iy
The gradient of the quadratic Hamiltonian is defined as the co-energy vector e, € R*
e, = VHy(x,) = Quxy (3.33)
with
cs —cs 0 0
—c c 0 0
Q=] ~ (3.34)
0 0 - 0
M
1
0 0 0 4

8The indices m and M refer to quantities on the driving and driven side, respectively.

91,n consists of the moment of inertia of the rotor and the fast-rotating gear part. If we consider the
motor motion at the driven side, its angular velocity is reduced by the gearbox. Correspondingly, its
moment of inertia I, increases to Inr, so that the power is preserved (assumption without dissipation).

10T he index “a” refers to the first subsystem.
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Its components represent the transmitted torques, the motor and the hub angular ve-
locity, respectively. The equations of motion (3.29) can be rewritten in linear PH form
as

m.a = JaQama + Baua

3.35
Yo = B(?Qama ( )

with the interconnection and input matrix

- ™
Ugy | |77 .7 °
Ua = = _Qh
_ua2 M
—4Vih
. (3.36)
_ "
Ya, T
ya = = Uh s
_yll2 9h

where v, = 7,0, denotes the translational hub velocity.

3.3 Timoshenko Beam

To describe the flexible beam, we use the Timoshenko beam model'!, which leads to a PH
state representation with a first-order differential operator. Different PH formulations
are possible for the Timoshenko beam. Instead of the differential forms as presented in
[52], we choose a formulation as in [46] with the system variables elements of appropriate
Hilbert spaces'?. Both representations rely on an underlying geometric structure of the
PDEs that relates the power-conjugated variables.
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Figure 3.4: Timoshenko beam with coordinate systems and configuration variables based on [22]
(XoYp: inertial reference frame, X gYp: floating frame of reference)

3.3.1 Distributed Parameter Model

Figure 3.4 shows the coordinate systems and the configuration variables for a rotating
Timoshenko beam. 6}, is the rigid body rotation angle, we(z) the flexible displacement
from the undeformed configuration, and .(z) the rotation of the beam’s cross section
due to bending. Here, z denotes the spatial coordinate!® along the undeformed beam
to describe the 1D deformation. In many applications, as in our case, only small defor-
mations occur compared to a reference configuration. Under the assumption of small
deformation, the linearized model can be used, see details on the model derivation in
Appendix A. In addition, we omit here the motion equation of the hub (A.27¢), which
is considered in Appendix A, and concentrate on the two linear second-order PDEs on
R* x [0, L]

pOiw — Ky (0?w—0,4) = 0

(3.37)
Iﬂatzw_Kbagl/}"‘KS(w_azw) =0

in terms of the global configuration variables described in the inertial reference frame

w(z) = we(z) + 20, (3.38)
w(z) = 1/}6(2) + Hh.

In the small deformation case, w(z) describes physically the arc length, which contains

the dynamics of a rigid body rotation of the undeformed beam with a superposed flexible

motion. Here, 0;(-) and 0,(-) denote the time and spatial derivatives, respectively.

The shear angle v(2) = 0,we(z) —1e(z) is non-zero according to the Timoshenko theory.
Additionally, it is assumed that the beam length doesn’t change during the movement.

HEor this work, we decided to stick to the Timoshenko beam model due to the straightforward
adaptation of the pseudo-spectral method in [60] to the Timoshenko beam. While it is accepted that the
Timoshenko theory is superior to the Euler-Bernoulli theory for “thick” beams, the Timoshenko model
still does the job, just as the simpler Euler-Bernoulli model, for “slender” beams [1] as considered in this
work.

12WWe assume C°, i.e., smooth functions in the spatial variable.

3Note that in Appendix A we use “z” as the spatial coordinate, with reference to the chosen coordinate
systems.
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The physical parameters p, I,, K,, and K} are respectively the line density, the mass
moment of inertia of the cross section, the shear and flexural stiffness. In most references,
the latter are defined by K; = kGA and K, = FI, where the shear correction factor k
depends on the shape of the cross section, A is the cross-sectional area, GG is the shear
modulus, F is Young’s modulus, and [ is the area moment of inertia.

Without a tip mass, the boundary conditions are
=0

)
; z gh (3.39)
)

For 0, = 0, Equation (3.37) describe the quasistatic Timoshenko beam model, see [47].

3.3.2 Port-Hamiltonian Formulation

According to [46], the undamped Timoshenko beam model can be described as a system
of first-order PDEs

Dt 0 0 9, 0] |pe/p
) o 0 1 9 1
Pri_ 2| P/ . (3.40)
€t J. -1 0 0 Kget
ér 8Z 0 0 KbsT
Define the (distributed) state vector x(z) € R* as
Pt pOrw
1,0
X = br _ p tw (341)
&t o, w —
Er 0.

with the translational and angular momentum densities p;(z) and p,(z) and the shear
and rotational strains e;(z) and ,(z). In these variables, the total Hamiltonian is Hy =
fOL Hpdz with Hamiltonian density

1 1 1 1
Hy, = 2—pp% + 2—Ipp,% + iKSE% + iKbE%. (3.42)

Due to the horizontal configuration of the manipulator, H; only contains a kinetic and
an elastic potential energy part. No gravitational energy term occurs.
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The vector of the distributed effort variables n(z) € R* can be expressed as

npt 6pt Hy, 8}% Hp pt/p
pr op, H, Op, H I
n = 77 = pr b = Pr b — p""/ P 3 (343)
77& 5é‘t Hb 86757-[17 KSEt
ner be, Hp Oe, Hp Kyer
where d, H}, denotes the (row) vector of variational derivatives of the energy functional.

Physically, the effort variables represent the translational and angular velocities as well
as the shear force and the bending moment.

Then, Equation (3.40) can be written as a PH system
x = Jo(0x Hp) T, (3.44)

where J, is a formally skew-adjoint differential operator, see [46]

0O 0 9, 0
0O O 1 0,
Ty =
0, -1 0 0
0 9, 0 0

Pt —Dt
T —p
=" 1= (3.45)
e —&¢
QOET —E&r

the time derivative of the Hamiltonian can be written as
) L L
Hy = / O Hyx dz = —/ n? pdz. (3.46)
0 0

Replacing the right-hand side of Equation (3.40) for ¢(z) = —x(z) in (3.46), and ap-
plying integration by parts, the energy balance reads

Hy = ("0 + 0Pl - (3.47)

Defining the boundary flow and effort variables as

¥} nPt|oz

r pr ~1 0

eo| _ | Mz (3.48)
n} ¢ntloz 0 1

5 ¢nrloz
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where 1|sz = [17(0), n*(L)]*, v € {ps,prsc1,€r} denotes the restriction of the effort
variables to the boundary of Z = [0, L], yields the power continuity equation'* for the
undamped case

" e ds+ (niyeh+ mih),, = 0 (3.49)

The validity of (3.49) is only due to the linear relation —¢p = Jpm, the application of
integration by parts (or Stokes’ theorem, in general), and the definition of boundary
port variables (3.48). The corresponding subset D of the bond space (i.e., the space of
conjugated power variables), where the power continuity equation (3.49) holds, defines
a so-called (Stokes-)Dirac structure (for details see [52], [87]):

D ={(¢,0h ehmmbmp) € FxE| —p=Jm and (3.48) holds}. (3.50)

The spaces of distributed and boundary flows and efforts are

F=L*Z,RY xR,  &=H (2R xR.L (3.51)

L?(Z,R%) refers to the distributed flow vector with four (Lebesgue) square-integrable
functions on Z. The distributed efforts make up a four-element vector of square-
integrable and (weakly) differentiable functions on Z: H'(Z,R*). R* refers to the
finite-dimensional spaces of boundary flows and efforts, respectively.

3.3.3 PH Formulation with Dissipation

Dissipation in the beam can be modeled e.g. by constant viscous damping coefficients
(per length) r¢(z), r(2) > 0, which generate damping forces and momenta proportional
to the translational and rotational velocities. These are considered distributed dissipa-
tion flows

pqg = —r”

t
d
r (3.52)
d

Pd = _Trin'

The damping forces/momenta ¢ /¢h, together with the velocities form a distributed dis-
sipative port, which can be used to define a PH model with dissipation of the Timoshenko
beam, see [52]. The beam equation (3.44) can be extended in the form

X = (Tp — Rp) (6, H)T. (3.53)

The formally skew-adjoint interconnection operator 7 is augmented by a positive semi-
definite part Ry, which is simply a diagonal matrix R,

Ty — Ry = P10, + Py — Ry, (3.54)

with

0z = MoLPoL + oL PoL + Nbo¥oo + Mho¥ao
n** (L)e" (L) + 0 (L)e" (L) — 0=t (0)¢"* (0) — n°" (0)¢""(0).

1 (Mheh + mhes)
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0 010 0 0 00 = 0 0 0

0 0 0 1 0 0 1 0 0 7 0 0
P1: ) PO_ ) RO:

1 0 00 0 -1 0 0 0 0 00

01 00 0 0 00 0 0 00

P, € R**4 represents the exchange of the kinetic and elastic energy between the trans-
lational and rotational state variables, respectively. Py € R*** describes the coupling
of the translational and rotational energy, and Ry € R*** models dissipation. The dis-
tributed part of the structure equations (linear relations between flows and efforts) hence
can be rewritten as

—p=POo.n+(Ph— Ro)n., m=mn, (3.55)

where we use two notations 1 and n, for the identical effort vector, depending on whether
it is differentiated or not. Taking into account their different geometric nature, they can
be approximated in the finite-dimensional space with different polynomial approximation
bases by the so-called structure-preserving spatial discretization, which is introduced in
the next section.

3.4 Structure-Preserving Spatial Discretization

A key step in structure-preserving discretization (and model order reduction) of PH
systems is to map a Stokes-Dirac structure to an approximate Dirac structure. In a
further step, the distributed constitutive equation e = (§,H)” must be consistently
approximated by a finite-dimensional correspondence e; = VH (x4).

The geometric discretization to approximate the beam model by a finite-dimensional
PH system, see [97], is based on the pseudo-spectral (PS) method for canonical systems
of two conservation laws presented in [60]. Taking into account the different geometric
nature of flow and effort variables, different polynomial approximation bases are used. A
suitable choice for the beam model is the Lagrange interpolation polynomials as approxi-
mation bases, which match the distributed variables at the collocation points. Particular
attention is paid to the constitutive relations and the representation of the discretized
efforts. Moreover, the boundary port variables are retained and appear as inputs and
outputs in the resulting lumped parameter PH model, which, therefore, is a physically
consistent approximation. This method is outstanding because fewer grid points are
needed compared to local methods to achieve the same accuracy. It has been proven to
provide a good approximation of system properties such as the spectrum of differential
operators (for details see [60], [89]). Furthermore, in several space dimensions, the rela-
tive coarse grids that are sufficient for the most accurate requirements allow very time
and memory-efficient computing, see [20)].

In this chapter, we summarize the contents of [96] and [97], which presented the dis-
cretization procedure for the PH Timoshenko beam model and discussed the choice of
collocation points and the numerical accuracy of the modal approximations.
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3.4.1 Pseudo-Spectral Discretization of the PH Beam Model

Approximation bases. The idea, see [60], is to define different approximation bases
for the flows ¢” and the efforts n”, v € {pi, pr,et,6}. The same holds for n” and 7Y,
depending on whether the effort is differentiated or not!®:

N—-1

()~ Y frwl(z)
k=0
N—-1

V() Y el wl(2) (3.56)

k=0
N

1 (2) =Y elwi(z)
1=0

The time-dependent coefficients are collected in the vectors f”,e” € RV and e’ €
RN+L wf(z), k=0,...,N—1,and w§(z), i =0,..., N, are the basis functions for flows
and efforts that satisfy the exact differentiation or compatibility condition, see e.g. [89],

& = span{w§,...,w§}
F = Span{wg,...,wf;fl} . (3.57)
0.(6) = F

In our problem, the Lagrange interpolating polynomials of degree N and N — 1 are a
suitable choice:

N
e _ Z_§J
wie)= 11 =%
e & =&

J=0,j7#i (3.58)
; N-1 22
wy,(2) = H J——
=057k kT 7

& €[0,L],i=0,...,N and 2z, € [0, L], k=0,...,N — 1, are the collocation points for
w{ and w,{, respectively, and

wg (&) = dij
(3.59)
wi (25) = Oy

hold with 4;; the Kronecker delta. The choice of collocation points is discussed in Section
3.4.2.

Approximation of the Stokes-Dirac structure. We first consider the undamped
PH beam model (3.44) and approximate it in the finite-dimensional space.

Instead of two different effort approximation spaces, one could also redefine the flows as in [75].



38 Chapter 3. Port-Hamiltonian Modeling and Discretization

Proposition 3.3. Denote w® = [wf, ... ,w}BV]T the vector of effort basis functions and
we(0)”

P = ©0) (3.60)
,we(L)T

Let fé/r = cpta/r = [(pg/r, LptL/T]T and eg/T = ng/r = [né/r, nz/r]T be the vectors of boundary
flows and efforts corresponding to translational /rotational motion, see Equation (3.48).
Inserting (3.56) into (3.55) and (3.48), one obtains the linear system of equations

Dt

_fpz_

0 0 D 0] [er 0 0 0 0] ][e
—fPr 0 0 0 D |ePr N 0 I 0f |efr
—f| |D o o oflet| |o —-I 0 of e
—f| |0 D o 0] |e 0 0 0 0] |er
il [®@ o o o] [er
r 0 ® 0 0] |er
1| _ (3.61)
el 0 0 ¢ O et
e} | 0 0 0 (P e

The elements of the derivative matrix D € RVX(V+1) are given by the spatial derivative
of the effort basis functions at the flow collocation points:

[D]k+1,i41 = 005 (21), (3.62)

where ¢ =0,...,N, k=0,...,N — 1.

In accordance with the distributed parameter model, the elements of the matrix Py
map to the coupling terms with identity matrices I € RV*¥ in the second term on the
right-hand side of Equation (3.61).

Proposition 3.4. If the effort interpolation polynomials w(z) are chosen with collo-
cation points &, and D is determined according to Equation (3.62) for a given set of
collocation points zj, then the vectors of interpolation polynomials w,{ (z) are related via

w! (z) = (DY) To,w® (3.63)

with pseudo inverse D = DT(DD™)~!.

Proof. Inserting (3.56) in (3.57), it becomes

N—-1 N
> wl)fi =Y [0 (2)] e, (3.64)
k=0 i=0

or

[wf(z)}T f=[0.w2)]" e (3.65)
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with
i wy (2) ]
wl(z)=|
whe_i(2)]
[ 0w (2)
dowt(z) = |
0wy (2)]

Since the derivation relation!® between flows and efforts is f = De (see also [60]),
Equation (3.65) can be rewritten as

{wf(z)}T De = [0.w(2)]" e, (3.66)
where
DTw/(2) = 0,w®(2). (3.67)

Then, the basis functions of the flows can be directly determined by

w!(z) = [DT(DDT) YT o,w®(2). (3.68)
(DH)T
Dt = DT(DD™)~! denotes the pseudo inverse of D. [

According to Equation (3.20), we evaluate the bilinear product using the polynomial
approximation bases of flows and efforts (3.56). This leads to a symmetric bilinear
form on the finite-dimensional bond space of discrete flows and efforts F,. x &, with
(fpta fpr’ fSt’ .fara fév .fg) € fT‘ = R4N+4 and (eptv epr7 eata e€r’ eg’ eg) € 57‘ - R4N+8:

_efft_T_ o 0 0 0 00M O O 0 OO] _egt_
el 0 0 0O 0 00 O M O 0 O0O]|]|er
e’ 0 0 O 0O 00 0O O M 0 O O] |e
ey 0 0 0O 0 00 0O O O MO O] |e
el 0 0 O 0 00 0O O O 0 I 0]]/|€ey
el 0 0 O 0 00 0O O O 0 0 I||ey . (369)
e MT 0 0 0O 00 O O O O OO .
i o M o 0O 00 O O O O O0OF]|f
ot 0 o M o o0 0 O O O OO ot
e 0 0 o M" o0 0o 0o 0 0 00O o
Fls 0 0 0O 0 I 0O 0 O 0 0 0 O0]|f
fia] O 0 0 0 0TI 0 0 0 0 00]|f

16Note that the approximation bases for 7. are the same as ones for flows .
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The elements of the non-square matrix M € RVTD*N gpe
r f
(Mliien = [ wipuf(e) dz, (3.70)

Then, the energy balance (3.46) can be approximated by this bilinear form between the
vectors of discrete flows and efforts as follows

oo ()M (3.71)

ve{pt,pr ct,er}

H,

Q

As a consequence, the power continuity equation (3.49) is approximated by

Yoo ()M Y (eh)fh =0 (3.72)

vE{pe,pr.et,er} weft,r}

Because of the dimension of the discrete flows and efforts, the kernel of matrix M is
non-empty. Therefore, the symmetric pairing (3.69) is degenerated and is not suitable
to define a Dirac structure on the discrete spaces F, x &,.

Dirac structure. To obtain a non-degenerate power pairing, vectors of reduced dis-
crete effort variables é” € RV are defined as
= MTe". (3.73)

These shall be — we discretize the constitutive equation n = (6, Hp)? — derived from
a discrete energy. Note that x = —¢ holds, i.e., states and ﬂows are discretized with
respect to the same basis. We substitute x”(z) = S0 a?%wk(z) in the Hamiltonian
functional with x” the components of x according to Equation (3.41). We obtain the
energy approximation

1
beZc T SEY, e {-

775K55Kb 3 3.74
KK} (3.74)

where the matrix S = ST € RV*N consists of the elements

Slist 1 = /0 " ! (2w (2)dz. (3.75)

On the one hand, we can derive the discretized constitutive equations

-~ \T
& = <a{1b> =’ Si. (3.76)

oxY

On the other hand, the discretized effort vectors e¥ are defined with respect to the same
basis as the states according to Equation (3.43), so that the following relationship holds
immediately:

el =c's" =81 =8 'MTe". (3.77)
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Proposition 3.5. Define the flow variables f1 := (fPe, fPr, fo, o, fh, f5) and the
effort variables €7 := (&Pt, éPr, &%, &%, e, e}) in the bond space F x £ = RN T4 RIN+4,
With the definition (3.73), the discretized relation (3.61) can be written in terms of the
image representation of a Dirac structure

] o 0 _D 0
Fer 0 0 —-S~'MT -D]| |e
f| _|-D s'Mm” 0 0 | |err
| o -D 0 0| |e
fi o 0 0 0 | |e
f5] | O o 0 0
o BT (3.78)
ért MT o0 0 0
éerr o MT o ert
el | o 0 MT 0| |er
el o o o MT||et]|’
el 0 0 (¢® 0| |e
e5| | O 0 0 (P
T
where the vector subspace of F x € is defined as
D={feF ecé|f=E"X &=F'x xcr"NH}. (3.79)

Finally the following approximate power continuity equation holds:

o@D ()T =0. (3.80)

vE{pt,pr i} pef{t,r}

Proof. According to Proposition 3.1, two conditions on the structure matrices shall be
checked.

o Skew-symmetry: EFT + FET =0

After the calculation, it results

EFT L FET = o v (3.81)
v o0
with
-D"MT +®T¢® - MD 0
V= | ArgTMT - MS—'MT —DTMT + T¢® — MD (3.82)

=0due to S=S87T
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According to Condition (B.6), see the derivation in Appendix B, it can be verified
that ¥ = 0 and therefore

EFT + FET = 0. (3.83)
o Rank condition: [E : F|] is full rank 4N + 4

The structure matrices F', E € RAN+TYXAN+4) 510

M 0 0 0 O 0
o 0 M 0 0 O 0
0 0 M o0 ®7¢ o
0 0 0 M 0 @7¢
[0 0 DT o &T o
oo 0 0 MS—T —-DT o &7
-DT —MST 0 0 0 o0
|0 -D7* 0 0 0 o©

To verify this condition, we shall only show the matrix E has rank 4N + 4. Thus,
according to the structure of the matrix F, it is sufficient to show that

(DT, DI ... D%, w®0), w*(L)} (3.84)

is an independent set. D,{ = 0, w(zi) are the N column vectors of the transpose
derivative matrix D defined in Equation (3.62), where zx, k = 0,..., N —1 are the
N collocation points for the interpolation polynomial w,f: (2).

According to [60], we assume that the mentioned set is dependent. In this case
w®(0) (the same for w®(L)) is a linear combination of d,w®(z;). J,w(z) are
polynomials of order N — 1 and uniquely determined by the values 0,w®(z) at the
collocation points zg, k = 0,1,..., N — 1. Thus, these N interpolating conditions
would be sufficient to characterize uniquely the N-th order polynomials

w’(z) = w(0) + /OZ O,w(a)dav. (3.85)

According to the uniqueness of interpolating polynomials (see e.g. [55]), we need at
least N +1 collocation points for a polynomial of degree at most IV or else Equation
(3.85) cannot be fully solved for. However, the above assumption contradicts this
requirement. Hence, the set (3.84) is independent, and [E : F] is full rank 4N 4 4.

Approximation of the energy dissipation. Similar to the lossless coupling terms,
elements of the matrix Ry map to the dissipation terms with identity matrices I € RV*N
in the second term on the right-hand side of Equation (3.61):
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[P 0 0 D 0] |er - 0 0 0f |el
fPr |0 0 0 Dj|er N 0 —r.d I 0] |elr
fer D 0 0 O0f|et 0 -I 0 0|]|e
fer 0 D 0 0] |eTr 0 0 0 0| |ef

Based on the relation (3.77), the image representation (3.78) can be extended by the
dissipation terms, and the discrete structure equations become as

ol s mMT o D 0

frr 0 r.STIMT —ST'MT —D| |e"
el -D S—tMT 0 0 | |err
fer| 0 D 0 0 | |e=
fi ® 0 0 0 | e
VS 0 o 0 0

- - - - (3.86)
ért MT o0 0 0

érr 0o M" o 0 et

el | o 0 M"T o0 | |er

el o 0o 0 MT||e

el 0 0 ¢®& 0 | |er

es| |0 0 0 (2

Input-/output representation. The I/O representation, which relates the approxi-
mate port variables with boundary port variables!”, is derived from elementary matrix
operations.

"Notation: fh = [fh, fh. 1", €5 = lehy, eb )T, we {t,r}.
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Proposition 3.6. We collect the boundary port variables which play the role of inputs
on the right hand side to obtain the I/O representation of the Dirac structure D defined
in the Proposition 3.5 as follows

[ fpt 1 [ ept i
€50 fho
fpr eprr
e} R, J N
/= | { %0 (3.87)
fe Jy 0 et
for ehr,
fs'r é’&r
i far | L \¢h1/ |
with!®
- -1
0
—wj ) \ wg
Jy = 1 1
S MT\ (M7 D\ (MT
i 0 w —w§ we
- —1 —1
we w§ 0 w§
Jo = 21
-D MT
0
i w, wg
and
—1
reSTTMT (M7 o
0 w§
R, = —1
o rSTIMT\ (M7
0 w§
In fact, J; = —JJ, ie., the conservative part of the Timoshenko beam model with

boundary energy flow is correctly represented in the relations between the port variables
(3.87).

8Short notation: w§ = (w®(0))7, wi = (w*(L))T
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Proof. We compute the anti-diagonal elements’ sum as follows

L) ()
+
—wg )\ wi wy, w; (3.88)
(o)) () )
Jr
0 w§ 0 w |

where the element * is the same as the first diagonal element. In order to show Jy+JJ =
0, both of the following two elements should equal zero:

) (20

Jy+JF

o

*

_SflMT MT -1 SflMT MT -7
+
0 wy 0 wg

_ (—SlMT) (MT)I S0 wp?) (s o)

€
0 we

(o) () 1)

-1
= (M (wS)T>_1 (MSTMT - MS~ MT) (MT) .
wr

=0 due to §=8T
(3.90)

According to Condition (B.6), @ = 0. Thus, it is verified that J; = —J7 .
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PH state space model. We denote uy, ¥, € R? the vectors of boundary inputs,
and collocated, power-conjugated outputs, which are composed of the elements of the
boundary flow and effort vectors f}, f}, €, €h, see [46]. In terms of the physical
boundary variables, we have

C fh nP*(0) w(0)
uy, o1 n°t (L) Qs(L)
Lebr | L ne(L) My (L)
by | [ —n7(0) ~Q,(0)
v [yE] _ ,?%9, _ oo ,f]_‘,fb,(o,), 7 (3.92)
Yy for nP(L) w(L)
| for 1 L (D) (L)

where w and v denote the translational and angular velocities, and Qs and M} are the
shear force and the bending moment, respectively.

Substitution of —f¥ = &¥, as well as é” = ¢*S&" in Equation (3.87), rearrangement
of rows and columns, and the concatenation of the states in the overall state vector
Z, € R gives a linear PH state space model of the beam in the form!

xy = (Jy — By)Qu&y + Byuy, (3.93a)
y» = B} Qu&, + Dyw (3.93Db)

with Q& = Vﬁb(a?:b) the linear gradient of the quadratic approximate Hamiltonian
H, = %(ﬁ:b)TQbib, where Q;, = blockdiag BS, iS, K8, KSS’} € RNX4AN - The
input and feedthrough matrices can be split into the corresponding parts for the bound-
ary at z =0 and z = L, respectively:

3 [ 0 I]
D, = . (3.95)
-1 0

The occurrence of the feedthrough matrix stems from the applied discretization scheme,
which allows an interpretation in terms of the rigid body motion of the beam.

3.4.2 Approximation Quality Analysis of the Discretized Beam Model

In this section, we are discussing some issues about the application of the proposed
pseudo-spectral method as well as the approximation quality of the beam model. In
order to evaluate the approximation quality of the finite-dimensional model based on
the geometric discretization, we consider the system (3.93a), (3.93b) without dissipation

9The tilde will be removed in the reduced model, see Section 3.5.
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(R, = 0). Since we are handling the boundary control problem, two situations are
considered: homogeneous and time-varying boundary conditions. In the first case, the
numerical approximations of the spectrum and the eigenfunctions of the differential
operator are analyzed. The approximation of a transfer function is considered in the
second case.

Choice of collocation points. A core ingredient of the geometric PS method is the
choice of the approximation space. The choice of approximation bases depends on the
problem, see e.g. [89], where the (Bessel) eigenfunctions of the differential operator
are a more appropriate choice. As mentioned in Section 3.4, Lagrange interpolating
polynomials (3.58), which satisfy the compatibility condition (3.57), are chosen as basis
functions in our case. The collocation points, where the approximate solution should
match the exact one, can be typically either uniformly distributed or chosen as the zeros
of Legendre or Chebyshev polynomials. Since the boundary flows and efforts depend
on the boundary conditions, the two endpoints of the interval [0, L] are also taken into
account, see [23], [47].

O effort :
¥ flow I
4) o} o} o} o} (iD
| |
| |
* * * * *
| |
| |
i . . . . . |
0 0.2 0.4 0.6 0.8 1 1.2

zInm

(a) Equidistant collocation points

O effort :

¥ flow |
4) O @] O O (Ji)
i i
i i
* ¥ * * ¥
i i
i i
| I I I I I |
0 0.2 0.4 0.6 0.8 1 1.2

zin m

(b) Gauss-Legendre collocation points

Figure 3.5: Collocation points for efforts and flows with N =5
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We take different distributions of collocation points as an example: uniformly distributed
and in the zeros of Gauss-Legendre polynomials plus the two endpoints. Figure 3.5
depicts the distribution of the collocation points for efforts and flows with N = 5.

Approximation of the eigenfrequencies and eigenfunctions. We compare the
eigenfrequencies and eigenfunctions of the discretization with the numerical solutions of
the exact eigenvalue problem for the Timoshenko beam as described in [56]. The solution
of PDEs (3.37) is parametrized using separation of variables, which yields a fourth-order
differential equation in the displacement with frequency-dependent coefficients. Under
given boundary conditions, the eigenfrequencies are determined as nontrivial solutions
of the characteristic equation. The derivation of the numerical solution is detailed in
Appendix C.2.

Let us consider the clamped-free boundary conditions (6}, = 0, free tip) in terms of the
boundary port variables:

Clamped at z = 0: w(0) =0
$(0) =0 (3.96)

Free at z = L: Qs(L) =0

My(L) = 0

The numerical solutions of the eigenvalue problem for the uniform Timoshenko beam are
computed using computer algebra software like Maple. Table 3.1 compares the natural
frequencies of the discretized beam model, which is based on the material parameters in
Table 8.3, for different collocation points with the exact values. The method is conser-
vative, i.e., no numerical dissipation occurs in the approximate models. It is remarkable
that the approximate eigenfrequencies do not depend on the choice of collocation points,
as proven in [60]. Note that the first five eigenfrequencies — which are dominant for
control design — are very well approximated even with a relatively small number of
collocation points.

Equidistant Points Gauss-Legendre Points
N=5 N=9 N=12 N=5 N=9 N=12
2.9343 2.9343 2.9343 2.9343 2.9343 2.9343 2.9343
18.3873 | 18.3992  18.3873  18.3873 | 18.3992  18.3873  18.3873
51.4781 | 53.5262  51.4782  51.4781 | 53.5262  51.4782  51.4781
100.8570 | 148.5115 100.8914 100.8570 | 148.5115 100.8914 100.8570
166.6820 | 858.2190 168.2584 166.6859 | 858.2190 168.2584 166.6859

Exact frequency

Table 3.1: First five natural frequencies of the discretized model for the uniform beam in Hz

Contrary to the eigenfrequencies, the distribution of collocation points has a strong
impact on the approximation of eigenfunctions. In order to avoid the occurrence of
numerical oscillations at the boundaries of the interval [0, L] with increasing number N
of collocation points (Runge’s phenomenon, see the examples in Appendix D), we choose
the interior Gauss-Legendre collocation points together with the two endpoints in this
work.
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Now, we compare the eigenfunctions based on the single fourth-order displacement dif-
ferential equation as derived in Appendix C.2 with the numerical approximations by the
geometric PS method. Under homogeneous boundary conditions, it is easy to obtain
the exact eigenfunctions (or eigenmodes) for the corresponding eigenfrequencies. The
approximate eigenfunctions can be represented as the weighted sum of corresponding
flow/state basis functions

N-1

Xi(2) = Y Xi(z)wl(2) (3.97)
k=0

with X;(z) the exact values of the i-th eigenfunction in the collocation points zj (see
also [89]). Figure 3.6 represents the approximations of the first (a) and fifth (b) eigen-
functions, compared to the exact eigenfunctions. The first eigenfunction is perfectly
approximated with N = 5, while for the fifth one, N = 12 is large enough to achieve
“perfect” matching.

2t exact .
————— approx. N =5
1.5L | —— —approx. N =12 J
%  collocation points

Normalized displacement

0 0.2 0.4 0.6 0.8 1 1.2
zinm

(a) First eigenfunction

Normalized displacement

0 0.2 0.4 0.6 0.8 1 1.2
zinm

(b) Fifth eigenfunction

Figure 3.6: Exact and approximate eigenfunctions for the first and fifth mode
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Approximation of the transfer function. Neglecting the drive system, we consider
the forced rotation of the beam around the joint at z = 0, which means that one of
the boundary conditions (3.96) becomes time-varying: w(O) = 0),. The exact transfer
function between 1)(0) and /(L) is evaluated numerically, see Appendix C.3. In Figure
3.7, the exact amplitude-frequency response (black solid line) is compared with the
transfer functions of the discretized models with N = 5 (blue dash-dotted line) and
N = 12 (red dashed line). The latter approximation perfectly fits the exact frequency
response in the considered range.

10* ————— ——————rry ————r

exact
————— approximate N =5

— — — approximate N = 12

Amplitude
—_
<

10°

10° 10!
Frequency in Hz

Figure 3.7: Exact and approximate amplitude-frequency response from 1/)(0) to 1/)(L)

To sum up this section, the geometric discretization approach using Lagrange interpo-
lating polynomials gives an accurate approximation of eigenfrequencies, eigenfunctions,
and the transfer behavior, even for small V.

3.5 Structure-Preserving Model Order Reduction

In order to obtain an accurate finite-dimensional model, spatial discretization can lead to
large-scale systems with a high number of differential equations. Since the performance
and the CPU memory of a real-time control system are limited to a certain extent, in
reality, it can be difficult to use the resulting large-scale system for control design and
implementation. For this reason, the spatially discretized PH model must be reduced in
such a way that the reduced model not only has a low order and displays the dominant
dynamics but also maintains the PH structure and related system properties, such as
passivity and energy conservation in the lossless case. In this sense, a so-called structure-
preserving model order reduction can be used.

In recent years, several well-established algorithms for the linear PH model order reduc-
tion have been proposed, see e.g. [27], [30], [66], [L00]. We first give a brief review of the
basic concept and present the reduced model structure in this section. In the end, we
compare the reduced beam models based on the Krylov subspace method and the modal
truncation (see e.g. [19]) in the frequency domain.
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3.5.1 Krylov Subspace Methods

Considering the conservation of the inherent PH structure, a structure-preserving model
reduction using Krylov subspace method is used to reduce the spatially discretized beam
model derived in Section 3.4, see [100]. This approach is usually utilized for large and
very large-scale linear PH systems. The corresponding transfer function of a linear
system is well approximated with moment matching.

According to [30], we perform model reduction for the linear PH beam model (3.93a),
(3.93b) using the projection matrix V. € R"™ " n = 4N. The columns of V span
the subspace, in which the state vector &; € R" is approximated by reduced state
vector xp € R", &, = Vxp, and are constructed around a set of appropriately chosen
shift points. Taking into account different bases of the state and co-state variables,
we multiply Equations (3.93a), (3.93b) with the transpose of a matrix W € R"*"
W = Q,V. It becomes

VIQuwWiy, = VIQu(Jy, — Ry)QpVxy + VI QyByu,,

o 5 3.98
y, = B Q,Vx, + Dyuy. (3.98)

By definition of @, = V' Q,V and pre-multiplication with (VT Q,V)~!, the reduced
PH beam model can be formulated as follows:

Xy = (J;— R,)Qvxy + Bruy (3.99)
Yp = Bb QbiBb + Dbub7

with the reduced system matrices Jy, Ry, Qp € R™", and B € R™*™
Iy = (VIQ,V) 'V QuJ,QyV(VIQ,V) ™
R,= (VIQyW) 'VIQ,R,Q\V(VIQ,V)™

Q,=V'QVv
B, = (VTQ,w)'vlQ,B,
D, = D,.

3.5.2 Approximation Quality Analysis of the Reduced Beam Model

In this section, we discuss the approximation quality of reduced beam models. As an
original model to be reduced, we choose a spatially discretized PH beam model based
on the PS method with N = 9 collocation points, which leads to the system order of
4N = 36. Based on the Krylov subspace method and modal truncation, we generate
two reduced beam models with system orders of » = 8 and r = 12, respectively, see the
corresponding parameters in Table 8.4. These two models are directly generated using
the MATLAB Toolbox sssMOR?°, which was developed by the Chair of Automatic
Control at TU Munich. The transfer function between the angular velocities of the hub
(as input) and the beam tip (as output) is taken into account.

20See details under
https://www.epc.ed.tum.de/rt/forschung/modellordnungsreduktion/software/sssmor/.
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Figure 3.8 shows the frequency responses of reduced models with the two methods. It is
obvious to recognize that the Krylov-based model reduction provides a better approxi-
mation than the modal truncation. Comparing the blue dash-dotted line for the system
order of r = 8 and the red dashed line for » = 12 in Figure 3.8(a), the approximation
is getting more accurate in higher frequencies if the number of chosen shift points in-
creases. Moreover, the shift points can be chosen around the first eigenfrequencies so
that the approximate frequency response matches the original one much better. On the
contrary, the frequency response of the reduced model based on modal truncation differs
from the original one even in the lower frequencies, although this approach provides ex-
act eigenfrequencies. In order to approximate the frequency response and the transient
behavior of the beam model as accurately as possible, the Krylov-based reduced model
with r = 12 is a suitable choice for our case.

PS model I

0F | —m Krylov r =8 l 7
g — — — Krylov r =12 l“
o .
< 0 <&
E \
2 |
o |
= -50 | | i

!
107! 100 10t 102
Frequency in (Hz)
(a)
PS model

0F | — e modal r = 8 7
@ — — —modal r =12
ol A N
3 v \ [ \/; \
E [TTTm s S s ooy
- y 0o

: |
= -0} | ) ! I
|
107t 100 10! 102

Frequency in (Hz)
(b)

Figure 3.8: Bode diagram of the reduced model based on (a) the Krylov subspace method and
(b) the modal truncation with different system dimensions

Figure 3.9 compares a Krylov-based reduced model (red dashed line) with a PS dis-
cretized model (blue dash-dotted line), both of which have a system order of 12. The
reference model (black solid line) is a PS model with N = 9 collocation points. The
reduced model is based on this reference model, while a small PS discretized model is
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generated by choosing N = 3 collocation points. Note that (not only in our case) the
approximation quality of higher modes in a numerical model can be improved if fine
discretization is followed by appropriate model reduction compared to a direct coarser
discretization that leads to the same system order, see e.g., [101].

PS 4N =36
PRIV s [ PS 4N = 12 .
% — — — Krylov r =12
k=
o O
e
=
=t
=
& 50
< 50 _

107! 10° 10 107
Frequency in (Hz)

Figure 3.9: Comparison of the PS beam model with 4N = 12 and the reduced Krylov-based
beam model with r = 12

3.6 Coupling of the Subsystems

i

|

| Qn'= —Qs(0)

| _ \

[ Gear Hub Mp = =M, (0) Beam
™™ | 7 Ce 7 !

— - - ==--

Opr ! O Tv_.vm On E Uh:: w(0) ZO—\ZL
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: On = 1(0)

|

Figure 3.10: Symbolic representation of the interconnected system: The half arrows indicate the
direction of the power flow.

The flexible beam is attached to the rigid hub. The point z = 0 along the beam
corresponds to the radius of the hub r,. The (reaction) shear force and the bending
torque are localized here. The power-preserving interconnection conditions, which are
visualized in Figure 3.10, are

o] o]
Ua2 - - - yb
I (3.100)
o @] o
ub = . - . = ya2'
|%(0) On
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Inserting the corresponding parts of (3.35) and (3.99) into (3.100), we obtain

Uq, = — (Bg;VHb + ubL)

(3.101)
uy = BIVH,.

Consequently, the dynamics?! of the drive system (3.35) and the beam model (3.99)
become

z,=J,VH, — BULQBg;VHa + Balual - Ba2u£ (3 102)
Ty = BboBngHa +Jy)VH, + BbLulj;J' |

Defining the global state vector € = [zl a:bT]T € R"™** and the global energy H(x) =

a’

%maTQama + %mngwb, results in the PH representation of the overall system??

[ T
p—| o . ~Ba By, VH(xz) + Bay —Be,
By,B,, Jy— R, 0 By,
- (3.103)
Bl 0
y=1| . | VH(@)
__Ba2 BbL
with the global inputs and their collocated, power-conjugated outputs
- - TM
Ug, | |"————-
u = ; =] Qs(L)
Uy,
- My(L)
. (3.104)
- O
Yor | |- --
y=||=]wL)
Yp .
o W(L)

It is noticed that the entire system (3.103) is again a PH system. Without a tip mass,
ul = [Qs(L), My(L)]" = 0, and the interconnected model of the flexible setup is driven
only by the motor torque. In what follows, we understand u(t) = uq, (t) = 7as(t) € R
as the scalar input and y(t) € R? as the vector of output Vari.ables%. The configura-

tion variable ¢ (¢, L), or its time derivative y.(t) = yp2(t) = (¢, L) is considered the
controlled variable, whose smooth and calm transitions is to be realized by control.

21Compared to the linearized hub and beam model (A.27) derived in Appendix A, the drive system
takes also into account the motor dynamics in addition to the hub. Moreover, the shear force between
the hub and the beam is considered in the interconnection conditions, see Equation (3.100), and appears
as the external force in the hub dynamics (A.27c).

22The same can be done with the unreduced beam model in “tilde” coordinates.

%31n the following chapters, y(t) denotes the measured output vector, which includes the motor angle
and angular velocity as well as the angular velocity of the beam tip.



Chapter 4

Model-Based Feedforward
Control

Robots are generally used in order to do some of the human work that could be dangerous
and difficult for human beings to do. Their applications are e.g. in space, underwater,
in production, and in cooperation with humans. The advantages of robots lie in the
saving of money and time. Most robot tasks involve positioning or tracking predefined
movement.

Lightweight robots are becoming increasingly popular due to their large payload/mass
ratio. In addition, these robot types can be used to realize highly dynamic movements.
However, their structural flexibility leads to undesired elastic deformations during move-
ment. In order to achieve precise motion and improve the control quality, the control
strategy always takes into account the so-called model-based feedforward control. Here,
it refers to the pre-calculated motor torque, which is based on the plant model to relieve
the feedback control. The feedback controller is used to compensate for the model error,
changing parameters, and unknown disturbances. Depending on the accuracy of the
model used, the tracking error can be reduced to a certain degree. In particular, the
oscillation of the flexible arm during a fast movement can be suppressed if the structural
elasticity is taken into account during feedforward control.

In this chapter, we apply an inversion-based feedforward control to compute the desired
input and state trajectories for the desired output trajectory, in particular for the flexible
beam. To generate a suitable and feasible trajectory, a sinusoidal interpolation is first
introduced. For comparison, we also consider a feedforward control based on the rigid
body model, which neglects structural elasticity.

4.1 Trajectory Planning

The goal of trajectory planning is to prescribe a predefined movement to the manipulator,
which is then executed by the industrial control system, see [73]. The desired movement,
which describes the sequential configuration of robots between a start position and an
end position of the joint or end effector, is called trajectory, see e.g. [99]. It is usually
defined by the user with a set of parameters. The transition should be characterized by
some performance criteria, constraints, and boundary conditions for the actuators, e.g.

95



56 Chapter 4. Model-Based Feedforward Control

to keep the saturation limits or to avoid excitation of the unmodeled resonant modes of
the structure.

PTP and CP movement. Trajectory planning can be carried out either in joint
space or operational (Cartesian) space, which can be defined as a point-to-point (PTP)
movement and the continuous path (CP), respectively. In the PTP motion, the robot
moves from an initial to a final joint coordinate in a given time. The robot leaves a curved
trajectory in the Cartesian coordinate system and ends at the predefined position. Tak-
ing into account the speed and acceleration limitations, it could reach the end position
by the fastest route. Since the steering action takes place directly in the joint space,
the inverse kinematics is not necessary for this trajectory planning. For this reason, the
movement of the end effector with respect to the nonlinear direct kinematics could not
be easily predicted, see [73]. In contrast, CP planning generates a chronological sequence
of variables to describe the position and the orientation of the point in the operational
space, taking into account the constraints imposed. To obtain the corresponding joint
coordinates for the robot control, the CP must be transformed into the joint space using
inverse kinematics, see [24]. The unsuitable specification of the velocity in the Cartesian
coordinate system could lead to singularity during the transformation. In addition, the
limitation of angular velocity and acceleration can be exceeded. Therefore, the original
trajectory should be iteratively adjusted until it meets the requirements in the joint
space, see [99].

Since we consider only a single-link robot arm, PTP trajectory planning is suitable for
our application. Furthermore, inverse kinematics can be also avoided. This movement
is normally divided into three phases, i.e., acceleration, uniform movement and braking.
First of all, the time profile of the acceleration for each axis should be determined, taking
into account the maximum angular velocity and acceleration. The velocity profile is
designed in such a way that the speed is initially zero, then increases to a maximum
value and maintains this value for a time, and finally drops back to zero. Furthermore,
the joint can be gently accelerated and braked by limiting the jerk. In this way, it
reduces the stress on mechanics and machine wear.

Parameter Description

Se Length of the total distance

Gm Maximum velocity

Gm Maximum acceleration

ta Time at the end of the acceleration
te Time required for the total distance
ty Time at the beginning of braking

Table 4.1: Definition of the trajectory parameters for the sinusoidal profile

Interpolation with a sinusoidal profile. In order to obtain a smooth trajectory, a
PTP motion profile with sinusoidal interpolation is constructed, which forces a sinusoidal
acceleration profile in the starting and braking phase, according to [73]. The movement
begins at the starting point ¢ = ¢ at t = t5 (ts = 0) and ends at the endpoint ¢ = g,
at t = te. Se = |ge — qs| indicates the total distance. To determine the trajectory, two
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intermediate points between the starting point and the endpoint are added, namely lift-
off at t = t, and set-down at ¢ = t;, where t;, = t. — t,. Table 4.1 lists the relevant
trajectory parameters. ¢, and ¢, indicate the maximum velocity and acceleration,
respectively.

Figure 4.1 shows the PTP trajectory interpolated by a sinusoidal profile in terms of
position, velocity, and acceleration. Due to the equal duration of acceleration and deac-
celeration, the symmetrical property for the velocity profile in relation to the time results
in ¢ = t./2. Then, the average point satisfies § = (¢s + qc)/2, see [73]. The initial and fi-
nal velocities are zero. Note that at the end of the acceleration phase t = t,, the velocity
must reach its maximum value ¢,, and remain constant for a time ¢ = t;, —t,. According
to [21], the acceleration time ¢, can be determined by the permissible maximum velocity
(m and acceleration ¢,

ty =2, (4.1)
dm
which satisfy the following relationship
A
qm = §tha' (4.2)

The minimum time ¢, for the total distance s, can be calculated by

gmin — e 44 (4.3)

m

If the specified total time ¢, is greater than its minimum value 7" we maintain the
maximum acceleration ¢, and reduce only the maximum velocity ¢, as

Logmte  [G3t2 .
= —(—— — /5 — 2{mSe)- 4.4
275 g Yamse) (4.4)
As a result, the acceleration time t, is reduced due to the new ¢, and must be recalcu-
lated according to Equation (4.1). The following equations generate the trajectories with
the sinusoidal profile in terms of position, velocity, and acceleration, which are shown in
Figure 4.1.

4m

o Acceleration: 0 <t < t,:
G(t) = Gim sin® (Wt>
ta
) . 1 ta . (2w
q(t) = Gm <2t ~ i sin <tat>> (4.5)

.. 1 2 t% 27
= G | 287+ 2 i) -1
q(t) = dm <4t + 82 (COS (ta t> ))

e Uniform movement: t, <t < t;:
G(t) =0
q(t) = dm (4.6)

. 1
Q(t) = Qm(t - ita)
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e Braking: ¢, <t < t.:
() = — G sin® <t;tbt>
016) = i — o (5t — 1) = {2 sin (1) ) (4.7
q(t) = %qm (te(t +tq) — %(t2 + 12 4+ 2t2) + 5‘2 (1 — cos (%(t — m)))

q(t) 4

»

e

v

~+

/e N

Gm |- -

v

_gm —

Figure 4.1: Position, velocity and acceleration profile of a PTP motion with the sinusoidal
interpolation [73]
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4.2 Rigid-Body-Based Feedforward Control

When controlling industrial robots, feedforward control based on a rigid body model
is often used to calculate the reference motor torque for the desired movement. For
comparison, we assume that the robot arm is rigid and only the gear elasticity is present
in the drive system.

The total energy is composed of the kinematic energies of the gear motor and the rigid
link! as well as the potential energy of the spring

Hy= (p%f) + p?;l” + ea(Bar(t) — 6, <t>>> 7 (4.8)

where 0;(t) is the angle of the rigid link.

We define a state vector x,(t) € R*

O (t)

wrb(t) = ’ (t) ) (49)
pm(t)

pi(t)
which contains the motor angle, the link angle, and their corresponding angular momen-

tum, respectively. Then, the co-energy vector e,;(t) € R* are defined by the gradient of
the Hamiltonian

enp(t) = VHpp(xp(t) = Qroxrp(1) (4.10)
with
cs —¢cs 0 0
Qu=| " © ? ! (4.11)
0 m 0
0 0 0 ¢

They represent the spring (reaction) forces and the rotational speeds of the motor and
the link. With the above definitions, we obtain the state space representation in the
standard PH form

djrb(t) = erQ'r’bxrb(t) =+ Brbu(t)
y(t) = BlQumm(t),

with the skew-symmetric interconnection matrix J,; and the input vector B,

(4.12)

er =

022 I B
; rb =
—I>, O2y2

S = O O

The hub and beam are combined to one component with the substituted moment of inertia for the
link I; = I, + 1.
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The control input is again the motor torque w(t) = 7as(t), while the motor angular
velocity is its collocated, power-conjugated output y(t) = O (¢).

q " O " O
q oA O - 0%,
q > 91* (9}/[ > (9}/[ Thr *| Manipulator
(3) N (3) . Y
q o7 O O
(4) | @
q oF
Desired trajetcory Desired trajetcory Desired motor torque

link motor

Figure 4.2: Sketch of the feedforward control based on the rigid body model

Figure 4.2 shows the design sketch of the feedforward control based on the rigid robot
model. The desired trajectory for the link is generated by a sinusoidal profile, which is
shown in Figure 4.1 with

. ] .. B (3) (3) 4) (4)
O (t) =q(t), 07(t)=q@), 6;()=4dq@), 0/(t)=q(t), 0/(t)=q(t). (413)

According to Equation (4.12), we obtain the desired motor angle ¢},(¢) in relation to
the desired link angle 6;(t) and angular acceleration 6;(t)

0 (1) = Clllél* () + 07 (). (4.14)

To achieve the desired trajectory, the reference motor torque 73,(t) is calculated by the
motor dynamics?

() = I3y () + es(03,(t) — 07 (1)) (4.15)
with the time derivatives of the desired motor angle
. 1 (42 .

S

Note that the time derivatives are required up to the fourth order of the link angle. It
follows that the predefined trajectory must be differentiable at least up to the fourth
order. Therefore, we choose the sinusoidal profile presented in Section 4.1 to implement
the trajectory.

2Here, we use undamped motor dynamics for the design of feedforward control. The damping or
friction term is explicitly described with a friction model which is used for friction compensation in the
control law, see Section 5.3.
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4.3 Inversion-Based Feedforward Control

To calculate the required control input to achieve exact output tracking, an inversion-
based feedforward control (ibFFC) can be investigated, see e.g. [11]. The required input
of the forward model is calculated by solving the system inverse for a predefined output
trajectory. It is distinguished whether the considered system is a minimum-phase or
non-minimum-phase system (for details, see Section 4.3.1), since the internal dynamics
is numerically integrated to determine the required input trajectory, see [29]. If the
internal dynamics is unstable, i.e., the system is non-minimum-phase, so its solution
is not bounded. From a control-theoretic point of view, the stable inversion-based ap-
proaches are required to compute the bounded state and input trajectories for these
non-minimum-phase systems for a given desired output trajectory.

In the following sections, we give a short overview of the problem of zero dynamics,
see [80]. According to [5], a stable inversion-based feedforward control approach for the
finite-dimensional beam model is presented.

4.3.1 Zero Dynamics

The zero dynamics describes a system internal dynamics for the case that the output
y(t) for a certain input u(t) is zero, and initial conditions @ (0) for all times t > ¢y (see
the definition in [80]):

(t) =0, (4.18)
where n is the system order.
Now, we consider a linear, time-invariant SISO system in state space representation
z(t) = Az(t) + bu(t) (4.19a)
y(t) = clx(t). (4.19b)
The output (4.19b) is derived in terms of time
y(t) = ' (t)

4.20
=clAx(t) + cTbu(t). (4.20)
If ¢”b = 0, the second derivative of the output results from Equation (4.20)
j(t) = T Ad(t
i) = <" Aa(t) o

=cT A%z (t) + " Abu(t).

If ¢ Ab = 0, the output should be further derived until the input u(t) comes out in the
derivation of the output, where ¢/ A’b # 0. The lowest order of its derivation is called
relative degree 6.

In summary, the derivatives of the output can be formulated as follows:

D) =T Am(t) for i=1,...5—1 (4.22a)

y (t) = T Ax(t) + T A% bu(t). (4.22b)
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According to Equations (4.22b) and (4.18), we obtain the input, which makes the output
Zero

CT §
u(t) = —W?_lbzc(t). (4.23)

In the linear SISO case, the zero dynamics also characterizes the zeros (roots of the
uncancelled numerator polynomials Z(s)) of the corresponding transfer function G(s) of
the system (4.19a), (4.19b)

G(s) =cT(sI — A)~'b
_ cladj(sI — A)b

det(sI — A)
_ Z(s)
- N(s)
_ Kﬁo +615 R +Bm715m_1 4 sm (4.24)
ag+ais+ -+ ap_1s"Th 4+ s
I (s = Ni)
_ Kzil 7
I1 (s — 7))
7=1

where adj(X) and det(X) are the adjugate and determinant of matrix X, respectively.
The numerator Z(s) has the degree m, while the denominator degree is N(s) is n, where
m < n. The difference in degree between denominator and numerator corresponds to
the relative degree 6 = n — m.

As mentioned in [80], the zeros have a decisive influence both on the behavior of open-
loop systems and on the achievable control performance of closed-loop systems in the
linear case, see [16]. Depending on the location of the zeros of G(s), the system is
minimum-phase or non-minimum-phase. If at least one of the zeros lies on the right side
of the imaginary axis, the system is called non-minimum-phase with unstable inverse
dynamics. In contrast, the system is minimum-phase when the zero dynamics is asymp-
totically stable, see [35]. It corresponds to the case that all zeros of G(s) are on the left
side.

Example 4.1: To better understand the behavior of non-minimum-phase systems, we
take the transfer function G(s) and Ga(s) as an example

s+2
(s+1)(s+3)

—s5+2
 (s+1)(s+3)’

(4.25)

(4.26)

which have two equal stable poles s = —1, s = —3. The difference is that G1(s) has a
stable zero s = —2, which is on the left side of the imaginary axis, while that of Ga(s) is
on the right side with s = 2. Thus, the system G1(s) is minimum-phase and the system
G2(s) is non-minimum-phase.
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Figure 4.3 shows the step responses of both systems. It is obvious to see that the non-

minimum-phase system Gs(s) has more delay than G1(s). Initially, G2(s) moves in the

opposite direction and then tends to the same final value as G1(s). The transfer function

G2(s) can be divided into a minimum-phase part G1(s) and the correction part Gs(s)
—s42 s+2 2s

@) = I D6T8)  Gr D618 rhers s FG) (427

G3(s) also has a strongly decreasing stage at the beginning of the response and slower
convergence to the final value 0.

1 T T T T

Step response

tin s

Figure 4.3: Step responses of systems G1(s) and Ga(s) as well as G3(s)

4.3.2 Bounded Solution of the Inverse Beam Dynamics

We consider a fast PTP movement of the beam tip. For this purpose, the required
control input u*(t) = 73,(t) is computed from a desired trajectory y*(t) = ¢/*(t, L) using
the inversion of the system dynamics. However, the inverse dynamics of the elastic
robot arm, which is a non-minimum-phase system?, is unstable and non-causal. In order
to find a bounded input trajectory despite the instability, we apply a stable inversion
approach according to [5], [107] as shown in [97]. In what follows, we sketch the inversion
of the beam model. The resulting interconnection port variables at the motor hub can
then be used to determine the necessary motor torque by inversion of the drive model
(3.35), see Section 4.3.3.

Inverse beam model. According to the definition of beam inputs and outputs (3.91),
we specify a desired trajectory for the total angle ¢* (t, L) from which the desired angular
velocity ¢*(t, L) = y;,(t) follows. The corresponding control input for executing the

motion task is the hub angular velocity ¢*(t,0) = up o(t), see Figure 4.4.
To solve this control problem, an inverse model needs to be set up. It is obtained

from the forward model by solving the output equation (3.93b) for the control input
and replacing the result in the state differential equation (3.93a). The full rank of the

3The instability of the internal or zero dynamics is frequently referred to as non-minimum phase
property, see Section 4.3.1.
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Figure 4.4: Inputs and output in the forward and the inverse beam model

feedthrough matrix Dy, which stems from the rigid body motion, allows this partial
model inversion.

The inverse beam model reads

iy, = FyQyxy, + Byt (4.28a)
H_/—/
Ap
U = B} Qym, + Dy (4.28b)
~——
Cy
with
| [ w(0)
_ Yb,4 (L)
'U'b fry g
Up,3 QS(L)
(upa] [ M(L)
- (4.29)
Yv,1 _Qs (0)
_ Yb,2 —M,(0)
Yb,3 w(L)
up2| | ¥(0)

The properties of the matrices F}, and accordingly A, were analyzed numerically. The
results are comparable to the inverse models of hyperbolic systems of two conservation
laws discretized with the FE method according to [28] as reported in [40]: In the un-
damped case, the eigenvalues of Ay lie on the imaginary axis. For ry,r, > 0, the inverse
(or internal) dynamics is hyperbolic with half of the eigenvalues in the left and the right
open half plane.

Bounded solution of the inverse model. In our application, the inverse model is
supplied with a single non-zero input

w(t) =0 ¢*(t,L) 0 O]T, (4.30)

and the output that determines the hub angular velocity is

Ypa(t) = Cg:493b(t) + Dy a2t 2(t) (4.31)
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with ég: 4 and Eb’42 the corresponding row of C, and element of D,

If we could solve the ODE (4.28a) for xy(t), the solution y 4(t) can be derived directly
from the trajectory wuy(t) described above. Now, the following questions must be ex-
plained:

e Does the solution of Equation (4.28a) at the end of the time correspond to the
state on the desired trajectory?

e Can the ideal tracking behavior be guaranteed by the serially connecting of the
feedforward part, which is based on an inverse model, to the plant model?

o Will it also prove itself by multiplying the transfer function?

To answer these questions, we take a SISO system as an example (see the mathematical
derivation in Appendix E). The system is considered in the Laplace domain, and its
inverse model can be easily derived. It is noticeable that the state variables of the
inverse model (E.10) have the same physical meaning as those of the forward model
(E.1). To achieve the desired output of the forward model, the required control input
is derived, which is the output of the inverse model. The ideal tracking behavior can
actually be realized by feedforward control based on the inverse model.

However, the inverse model — as in most cases, the internal dynamics for flexible beams
when a TCP trajectory is imposed — is unstable. In order to obtain a bounded input
trajectory for the desired output, a stable approach of the ibFFC is applied, see [107] for
linear systems. This approach is based on determining the relative degree and decou-
pling the stable and unstable internal dynamics. The bounded solution of the internal
dynamics is calculated using bounded state transition matrices.

For the considered case with viscous damping r¢, r; > 0 and therefore hyperbolic inverse
dynamics, the bounded solution results as follows. The inverse model (4.28) can be
transformed into the Jordan normal form

6(t) = Ao (t) + Bouy(t), A =diag {)\1,..., A}, (4.32)

with B, = V;)_le, Vi, € R™" the matrix of right eigenvectors of Ay and o = V;)_lzcb
the vector of modal coordinates. Now, the dynamical system can be split into a stable
and an unstable part

o5(t) = Asos(t) + By sup(t) (4.33a)
d'u(t) = Aua'u<t> + Ba,uab(t)v (4'33b>

with A € R"s*"s and A,, € R"—7)X("=7s) the Jordan matrices of the stable and unstable
eigenvalues, respectively. The bounded solution of (4.32) for the given input is obtained
by

t
ou(t) = / ADB ay(r) dr (4.34a)

oo
oult) = — /t e MCOB (1) dr. (4.34b)

The stable subsystem (4.34a) is integrated in forward time, whereas the unstable sub-
system (4.34b) is integrated in reverse time. The bounded solution, which connects two
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stationary points on the time interval [tsiart, tend], is achieved by integrating both subsys-
tems on a sufficiently large time interval I D [tstart, tend], Which allows phases of pre- and
post-actuation, see e.g. Figure 8.6. The bounded solution of the unstable part (4.34Db) is
derived extensively in Appendix F. The corresponding simulation/experimental results
are presented in Section 8.4.

4.3.3 Calculation of the Bounded Motor Control Torque

() - 05
¥ " O
q w5 1 b 0
al o
. H 0 h
q K3 (4) | @ O O
(% o,
q My, M, 0%, 0%, ™ Manipulator
M - M
® o T
*
My, My O
@ %0 " @k
q ) .
*
) : :O Qh
Desired trajetcory . e Desired motor torque
beam tip s0 Qh

Desired trajetcory  Desired trajetcory
hub motor

Figure 4.5: Sketch of the feedforward control based on the flexible body in relation to Figure 3.10
(Notation: Rotation of the beam’s cross section ¢y = ¥(¢,0), ¥y = ¥(t, L), bending moment
Mo = My(t,0), and shear force Q50 = Qs(t,0))

In the section above, the design of the feedforward control is based only on the (reduced)
beam model. To calculate the required motor torque, the motor dynamics, and the
boundary conditions between the hub and the beam are used. Figure 4.5 shows the
corresponding design sketch.

The desired angular velocity of the beam tip is generated by a sinusoidal profile (see
Figure 4.1)

V(L) = 4(t). (4.35)

The desired trajectories of the hub are determined by the following boundary conditions
(and their derivatives)

t,0)
t,0) (4.36)
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where 1*(t,0), M (t,0) and Q%(t,0) are computed by the ibFFC. Based on Equation
(3.35), we obtain the desired motor angle 6%,(t) as follows

03s(1) = (0 G5(0) + ME(E) + 70 Q5 (1)) + G5.(0). (437

S

The reference motor torque 75,(t) is calculated by the motor dynamics

Fir(8) = Tng B3 (8) + a3, (1) — O5(1)) (4.38)
with

) (3) . . )

0, (t) = (I 01() + V() + i QR(0) + 05 (1) (4.39)

. (4) . . .

Gial6) = - (1 03.(0) + JE(0) + 70 Gi(0) + 85 0). (4.40)

It is recognized that the hub angular velocity, as well as its derivatives up to fourth
order, are needed for the motor dynamics. That is also the reason why the given output
trajectory should be smooth enough (differentiable at least up to the fourth order).
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Chapter 5

PD Feedback Control with Static
Friction Compensation

5.1 Two-Degrees-of-Freedom Regulation

The model-based feedforward control requires a high accuracy of the model. In reality,
there are not only model errors but also some disturbances like friction, which cannot be
modeled or identified exactly. Feedback control is therefore necessary to compensate for
these errors. Together with the feedforward control, a two-degrees-of-freedom control
structure is established. It does not matter what type of feedforward or feedback control
is used, this control structure remains essentially the same.

Disturbance -
Compensation
lz
Y" | Feedforward ut X u Yy
Control 'T > Plant -
Feedback
Control
ey i
=u<

Figure 5.1: Two-degrees-of-freedom control structure, consisting of feedforward control, output
feedback, and disturbance compensation

Figure 5.1 shows a two-degrees-of-freedom control structure including the feedforward
control, the output feedback, and the disturbance compensation. It is characterized by
the fact that it determines the reference input response independently of the disturbance
response. In this way, the design of both the feedforward and feedback control can be
implemented systematically, taking into account the disturbances. For this reason, this
control structure corresponds to our control purpose.

69
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To set the reference input response, the system is initially assumed to be without initial
value and external disturbances. The feedforward control is responsible for generating
the nominal control input u*(¢) according to the desired trajectory y*(¢). For a known
y*(t), u*(t) relies only on the system description. Since there are ideally no disturbances,
the reference input response (assuming the plant is stable) can only be achieved under the
feedforward control. In this case, the control input u*(¢) causes the controlled variable
y(t) to follow exactly the desired trajectory y*(t) .

The trajectory y*(t) must be specified so that the plant is able to follow it as closely
as possible while maintaining actuator saturation. Only in this way, the tracking error
ey(t) # 0 can be avoided. The control input u(t) for achieving a tracking behavior can
be calculated offline using an inverse plant model for a given desired trajectory y*(t).
Certainly, the stability of this inverse plant model plays an essential role in the numerical
solution of the corresponding differential equations, see the previous chapter. The desired
trajectory y*(¢) and the control input u*(t) are stored in advance and interpolated in
real-time by the industrial PLC.

Due to different initial values between the plant and its model, not-measurable distur-
bances, as well as the model uncertainty, a tracking error e, (t) # 0 occurs. To compen-
sate for this, an output feedback is taken into account. This controller only operates if
there is a disturbance response. Due to some unknown disturbances, it is not possible
to avoid exceeding the saturation of the control input, which can lead to instability of
the closed-loop system. If we are able to describe the disturbance, the control scheme
can be completed by the disturbance compensation to improve the control effect. In
our case, there is unknown friction in the servo motor. On the one hand, it can be de-
scribed with a static or a dynamic friction model, the parameters of which are identified
experimentally, see e.g. [42], [31]. On the other hand, it can be estimated online with a
disturbance observer, see e.g. [69].

In this chapter, we focus on the PD feedback with disturbance compensation based on
the static friction models .

5.2 PD Feedback Control

The control target of the flexible robot arm is not only to follow a given trajectory but also
to suppress the residual oscillation. Ultimately, it is based mainly on the motor motion
control. The simplest way is PD (Proportional-Derivative) feedback control, where
only the motor position and speed are used. The biggest advantage of this feedback
control is that it is not dependent on the system model. It merely attempts to adjust
the control input so that the difference between desired and actual motor position or
speed is minimized. This approach is generally applied to industrial robots. Therefore,
we first consider PD feedback control and later want to make a comparison with other
developed control algorithms.

Figure 5.2 extends the two-degrees-freedom control structure by PD feedback control
and friction compensation. The motor torque 7); consists of the nominal value 7y,, the
PD feedback part, and the compensated friction torque 7 as follows

v =Ti+ Kp - (03 — Ou) + Kp - (03 — Ou1) + 7. (5.1)
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Figure 5.2: Two-degrees-of-freedom regulation structure, consisting of PD feedback control and
friction compensation

A trajectory generator produces the desired position 1 and speed 1/)2 of the beam tip to
fulfill a given movement of the manipulator, see Section 4.1. Based on the desired values,
the desired trajectory of motor position 63, and speed 9}‘\/[, as well as the nominal motor
torque 7y, can be determined by a feedforward control approach, see e.g. Sections 4.2
and 4.3. A PD controller is used to calculate the motor torque required to compensate
for the existing tracking error. For this purpose, the actual motor position 63, and speed
0y must be fed back to the controller. In general, the proportional gain Kp and the
derivative gain Kp are adjusted according to the Ziegler—Nichols method.

During the commissioning of the motor, it is found that friction has a significant in-
fluence on the robot dynamics. To compensate for the lack of motor torque, a friction
compensation 7y based on a static friction model is added to the control input. As a
result, the tracking error is smaller than without friction compensation, and the corre-
sponding control energy is also reduced. This prevents an abrupt change of the motor
torque and the voltage at the beginning of a movement.

5.3 Friction Modeling and Identification

Friction occurs when the bodies in contact move and counteracts their acceleration. In
mechatronics, friction is one of the main causes for a deterioration in the achievable
control quality of the closed-loop system. It can lead to limit cycle, permanent control
error, and stick-slip effect, see [31]. In the light of robotics, the friction in the servo
motor attacks the high-precision positioning in case of a near standstill.

In servo motors, friction depends on environmental conditions such as temperature, types
of lubrication, and operating conditions, e.g. speed and direction of motion. It can be
modeled with the help of a friction characteristic, which describes a discontinuous map-
ping of the motor speed to the friction torque. Especially from standstill to movement,
the friction jumps abruptly due to the stiction effect. In order to reduce the influence
of friction on the system dynamics, the control loop system can be supplemented by a
model-based static friction compensation.

In this section, some static friction models and the results of friction identification based
on the experimental data are presented.
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5.3.1 Static Friction Models

Fy FrA FrA
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Figure 5.3: Static characteristic of (a) Coulomb friction, (b) viscous friction, and (¢) Coulomb
friction with stiction based on [44]

Depending on the phenomena that occur, there are various friction models to describe
their behavior, which are determined experimentally. Generally, they are a function
of speed, external force, or temperature. The classical friction components are divided
into Coulomb friction, viscous friction, and stiction friction. Figure 5.3 shows their
corresponding properties in terms of speed (for details, see [42], [44]). In most cases, the
friction can be described by the combined classical friction models.
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Figure 5.4: Friction torque 7y as a function of motor speed fpr. The friction torque decreases
with increasing temperature.

Figure 5.4 shows the measured friction characteristic of the RD85x13 servo motor for
five experimental sets. At the beginning of a movement, it is obvious to recognize the
Coulomb friction with the stiction effect. Furthermore, the friction torque! 7 has a
component proportional to velocity in the case of 8y # 0. During acceleration and
deceleration, the hysteresis effect occurs due to the structural damping of the flexspline
in the Harmonic Drive gearbox. In other words, the friction torque can have more than

L7t denotes the measured friction torque, whereas 7 describes the modeled one.
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one value at the same motor speed, depending on the change in direction of the speed. In
practice, the hysteresis effect is quite difficult to model and is often neglected in control
design.

As researched in [6Y], the time-varying operating condition, especially the operating tem-
perature, causes additional uncertainty for the modeling of the friction. For example,
the viscosity of the lubricating oil decreases almost exponentially with increasing tem-
perature. Although explicit modeling of the friction effect as a function of the operating
temperature appears to be extremely advantageous, this strategy is not pursued in the
compensation-oriented approaches. On the one hand, the complex thermodynamic laws
speak against the easily parameterizable and practical representation of friction. On
the other hand, the determination of the operating temperature directly at the contact
surfaces of the friction bodies is either associated with a metrological effort, in the case
of a state estimation, or with the excessive model uncertainties.

This means that classic friction components can be combined with each other in different
ways:

¢ Linear Model

The most basic friction models consist of Coulomb and viscous friction. The sim-
plest formulation is a linear combination of both friction models, in which the
friction torque 7y is linearly dependent on the motor speed 6y, according to [48]:

7r = by - O + Y - sgn(fa). (5.2)
b} is the increase in viscous friction, while blo represents the Coulomb friction term.

e Asymmetric Model

Taking into account different friction characteristics in the positive and negative
direction, the linear friction model can be extended to an asymmetric model, see
e.g. [81]. As a result, the friction torque is described by the Coulomb and viscous
friction, with velocity-direction dependent coefficient as follows

#p =07 - min(sgn(—6ar) + 1,1) - Opr + b5 - min(sgn(dpr) +1,1) - Opy
+ b2 - min(sgn(—6ar) + 1,1) - sgn(fpy) (5.3)
+ b - min(sgn(fpr) 4+ 1,1) - sgn(far).
The difference between linear and asymmetric friction models is shown in Figure
5.5(a).
o Stribeck Model

For most situations, it is observed that friction continuously decreases with in-
creasing speed in a low-speed range. This effect is the so-called Stribeck friction.
The common mathematical form for the Stribeck effect related to the viscous term
is described by

5
)) - sgn(far) + b5 - Oar, (5.4)

S

A S S S 9M
Tr = (b7 + (b3 — b7) - exp(— ’0-
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whereby the static characteristic is limited by the stiction friction upwards and
by the constant Coulomb friction downwards. The parameter 0, corresponds to
the Stribeck velocity, which determines how fast the Stribeck curve converges to
Coulomb friction, while the Stribeck form factor ¢ specifies the speed range in which
the transition between the stiction and sliding friction is made. This form factor
0 determines an exponential transition and can be either a positive or negative
amount for different surfaces, for details see [69]. According to [42], Stribeck
parameters are usually selected as follows: 6 = 0.001rad /s and § =1 or 2. With
increasing speed, viscous friction dominates. Figure 5.5(b) shows an example of a
Stribeck curve with § = 1.

From the linear combination of the Coulomb and viscous friction to an asymmetric
model, whose friction behavior is different in positive and negative directions, and the
Stribeck model, which includes stiction effect in addition to the Coulomb and viscous
friction, the main difficulty of their simulation is the discontinuity at 63, = 0. For this
reason, the sgn(éM) function can practically be approximated by a tanh(ké ) function,
in which a high slope factor k forces the function to behave like the sgn function. In our
case, k = 60.

Tr A
» /
> >
0 : 0 )
0 M 0M
I
L2 m— linear
-~ - - - asymmetric
(a) Linear and asymmetric curves (b) Stribeck curve with § =1

Figure 5.5: Friction models for identification

5.3.2 Experimental Parameter Identification

As mentioned above, we use a static friction model to compensate for the lack of control
torque. Based on a large amount of experimental data, the parameters of the friction
models used must first be identified. The aim of this section is to choose a simple and
precise friction model for control purposes rather than to present different identifica-
tion methods. Thus, the design procedure and the experimental results of parameter
identification from our previous work described in [58] is summarized in the following
paragraphs.
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Design procedure. In order to record the friction information accurately, a suitable
motor torque must meet the following requirements:

1) First, make sure that the measured torque includes the pure friction torque.

2) Second, the test signal is designed to cover the speed and torque range as widely
as possible.

To the first point, we measure the actual motor torque to indirectly calculate the friction,
since there is no sensor to measure it directly. Now, we concentrate on the motor
dynamics on the driven side

IMéM:TM_Tf_\T/L/a (5.5)
=0

where 0y represents the motor angular acceleration, and the motor torque 7y is trans-
formed by 7,,, on the motor side according to Equation (3.30). The motor characteristics
should only be indicated by the motor speed and torque. So, in the experiments, the
motor is driven without any load 77, = 0. In this case, we also neglect the gear elasticity,
as there is only a small difference between the speed on the motor and the driven side.
Furthermore, the term 8, will disappear when the motor speed 67 = const. Therefore,
the friction torque 7y at a given speed 0 can be derived from the actual motor torque
with the following relationship:

Tf = TM = NTm, 0 = const. (5.6)

The second point is to consider the motor movement in both positive and negative
directions. Furthermore, the specified maximum torque must be limited under the rated
motor torque T:natEd. Based on the simplified motor dynamics, the maximum acceleration
ém‘w on the motor side is roughly determined by

rated
Tm

I,
0.598Nm

= 539 10 Tkgn? ~ 2611.4rad/s?,

where the relevant motor parameters are listed in Appendix G.2.

émam

(5.7)

In the Automation Studio application project, the motor states such as position, speed,
and acceleration must be converted into the so-called (internal) “Units”, where 1000
Units represent 1 degree on the driven side. This allows the maximum speed and accel-
eration of the motor RD85x13 to be:

d 1
PosMazxVelocity = 61%® rz 180 -1000 -
T

180 "
= 284.84- — - 1000~ 7 (5.8)

60
— 1.02. 107 Umits

S
d 180 1
Acceleration = Gmax i - 1000 -
s2 T

n
180 1
_ 5.9
= 26114+ — 1000 - 3 - (5.9)

it
— 14962 . 106 UM
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In summary, the speed and acceleration limits of the function block MC _BR__ TorqueControl,
as shown in Figure 2.10, are set according to the following table:

Units
s

Motor PosMaxVelocity in Acceleration in

RD85x13 100000 -100000 900000

Units
S

NegMaxVelocity in

Units
52

Table 5.1: Torque configuration of the RD85x13 motor for friction identification

In order to obtain the friction information for different motor speeds, the given motor
torque should be designed so that the speed remains constant for some time after the
speed increases. For this purpose, a triangular signal is selected as the motor drive torque
Tz, which contains several piecewise constant torques for a certain period of time, see
Figure 5.6. The motor drive torque is limited to 0.1Nm and increases by 0.004Nm with
each step. Each commanded torque value remains constant for 4s.

0‘1 T T T
0.05
£
Z
g5 0
E
-0.05
-0.1 . . !
0 100 200 300 400
tins

Figure 5.6: Motor drive torque for friction identification based on [58]

Experimental results of friction identification. Figure 5.4 shows the different fric-
tion behavior at high and low temperatures. If we compare the motor behavior before
and after warming up, the friction is obviously reduced with the increasing operating
temperature at the same speed. Since the static friction model is used for the compensa-
tion, whose parameters are constant and identified offline, we perform the same friction
identification five times after warming up. Based on Equation (5.6), only the measured
data for the constant speed will be considered. How to truncate the data is explained
in [58].

Using the MATLAB Curve Fitting Toolbox, the parameters of the three friction models
presented in Section 5.3.1 can be easily identified based on the same measurement data.
Figure 5.7 shows the corresponding simulated results. The blue cross represents the
measurement data of five experiments. It is observed that three models provide the
same behavior when the speed is small, i.e., between —0.5rad/s and 0.5rad/s. The linear
model agrees with the Stribeck model, while the asymmetric model differs slightly from
the other two. The identified parameters are summarized in Table 5.2. In addition, the
fitting quality of the different models can be directly evaluated by some quality indices
in the Curve Fitting Toolbox. According to [58], R-square is chosen as the evaluating
indicator, which describes the ratio between the sum of the squares of the regression
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and the total sum of the squares. It allows a value between 0 and 1. Closer to 1 means
a larger proportion of the variance due to the model. For the RD85x13 motor, the
R-square values of the three models are all around 89% due to the obvious hysteresis
phenomenon.
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Figure 5.7: Parameter identification of the different motor friction models based on the measure-
ment data shown in Figure 5.4

Model Parameters RD85x13 R-Square evaluation

. b 7.684

Linear 0.8905
bl1 3.040
by 7.607
bP 7.684

Asymmetric 0 0.8911
by 2.835
b 3.341
b3 7.684

Stribeck b 10.66 0.8907
b3 3.041

Table 5.2: Parameter identification results of the different friction models from [58]

In summary, a simple linear friction model (5.2) can be used for friction compensation,
see e.g. [48]. On the one hand, it delivers a feasible result. On the other hand, it is
easily implemented and calculated in real time.
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Chapter 6

Observer-Based Trajectory
Control

Until now we used structure-preserving methods to obtain physically consistent control
methods, and we exploited them for motion planning. For closing the control loop by
observer-based feedback, in order to achieve smooth transitions and good disturbance
behavior, also in the presence of modeling inaccuracy, we use standard approaches from
linear state space control. In our case, the LQG regulator, involving both the Kalman
filter and the Riccati controller, is applied to the state difference vector e, (t) = x*(t) —
x(t). This control strategy requires only supplying the desired output trajectories y*(t)
to the feedback controller, instead of the full state reference x*(¢), which saves storage
and execution time on the PLC system. Furthermore, the observer is extended with a
disturbance model to estimate and compensate the unknown friction.

First of all, we recall the design of the optimal control and the state observer according
to [19], [60]. We then introduce the LQG regulator based on the difference model to
achieve a PTP movement of the beam tip and to suppress the occurring oscillations.

6.1 Controllability and Observability

The terms controllability and observability were first time introduced by R. Kalman in
1960. These two terms play an essential role in most applications, as they represent the
necessary (and sufficient) prerequisites for the feasibility of various control algorithms.

We consider a linear, time-invariant (LTT) system
x(t) = Ax(t) + Bu(t) (6.1a)
y(t) = Cx(2), (6.1D)

where the system matrices A, B and C' are constant. Disturbances are not taken into
account. The output y(t) is normally measured by sensors and can be either a set of
state variables or linear combinations thereof. The initial state x(tp) = @¢ is generally
unknown.

The goal of a feedforward and feedback control is that the control input w(t) ensures
the movement of state variables x(t) from the initial state x( to the desired final state
in a finite time. According to [19], the system (6.1) is controllable, if (¢) can be moved

79



80 Chapter 6. Observer-Based Trajectory Control

from x( to O in a finite time by suitable selection of w(¢). This situation is sometimes
referred to as completely controllable.

Depending on the measurement of the output y(t), the initial state &y can be determined
from its course over a finite time period. Therefore, a system is observable if oy can
be determined from y(t) over a finite time period with a known control signal (), no
matter where it is located, see the definition in [19]. It follows from this definition that
the initial state g is based on the future measurement data for ¢ > tg.

Criterion Controllability Observability System class
SISO
Iéﬁltrélr?gns rank(Q.) = n rank(Q,) = n for overall system

simple/multiple eigenvalues

M — A SISO/MIMO

giﬁﬁl r_ank( [/\iI ~A BJ) rank( C ) for single eigenvalue
- =n simple/multiple eigenvalues
SISO/MIMO
Gilbert’s B=Vv-B C=CcVv for single eigenvalue
criterion B i #0 Ci#0 simple eigenvalues

(in Jordan normal form)

Table 6.1: Criteria for the controllability and observability

For linear systems, controllability and observability are investigated first. Depending
on the system class, there are different criteria for assessing them, see Table 6.1. The
Kalman’s criterion is suitable for the overall system, while the other criteria can be
applied to assign controllability or observability to single eigenvalues. Compared to the
Hautus’ criterion, the Gilbert’s criterion requires the Jordan normal form of a system
and checks whether rows or columns of the input and output matrix are non-zero, see
details in [19]. The controllability matrix Q. and the observability matrix Q, are defined
as follows

Q.=[B AB ... A"'B
; c )
CA

Qo:
CAn—l

6.2 Optimal Control

6.2.1 Basic Idea

The core task of a state feedback control is to design the dynamic properties of a closed-
loop system. On the one hand, it is intended to stabilize an unstable system. On
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the other hand, it can assign eigenvalues of a controllable system to arbitrary values.
Moreover, the state feedback controller works with a proportional type so that the im-
plementation of the control law only requires simple multiplications and additions. Now,
we assume that all state variables of the LTI system (6.1) are known or measured and
define the control law for the state feedback as follows

u(t) = —Kax(t). (6.2)

The controller gain K € R™*™ must make the closed-loop system asymptotically stable.
This means that each state variable tends asymptotically to a constant for t — oo against
the external disturbance z(t) or the initial disturbance xy. Figure 6.1 shows the block
diagram for the state feedback control.

0 z
vy
u = Ax + Bx Y
O——» >
_ y=Cx
T
K |«

Figure 6.1: State feedback control according to [19]

In the simplest case, the desired closed-loop system can be realized by pole placement,
see e.g. [19], [50]. If the system requirements can be formulated as the minimization
of a cost functional related to the behaviors of system states and inputs, the controller
is considered as the solution of the optimization issue, see [50]. Compared to pole
placement, optimal control is suitable for systems with many state variables since it
focuses on minimizing the cost functional and not on the placement of all eigenvalues,
whose locations must be chosen sensibly. That is also the reason why we chose this
controller for our application.

The controller gain K is determined to meet the following two requirements, see [19]:

o The transition from the initial state & to the final state 0 should not be too slow
and should not oscillate too much;

e The control energy required for the transition should be as low as possible.
Consequently, the cost functional can be described in a quadratic form
1 o0
Jzi/[ﬂﬁmdﬂ+MﬂWMMﬁ, (6.3)
0

where Q € R™"™ and S € R™*™ are the weighting matrices of the state and input
vector, respectively. The matrix @ is symmetric and positive semidefinite, while S is a
positive definite symmetric matrix.
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6.2.2 Riccati Controller

We insert the control law (6.2) into the plant model (6.1) to obtain the closed-loop
System

x(t) = Agx(t) (6.4)
with the system matrix

Ax =A—-BK.

The cost functional (6.3) is then changed to

1 o
J= 5/ 27 (1) Qe x(t)dt (6.5)
0
with a symmetric and positive definite matrix Qx € R™*"

Qx=Q +K'SK.

With the help of the solution of closed-loop system (6.4)

x(t) = eAxle, xo = x(0), (6.6)
the cost functional becomes

J = %mngodt (6.7)
with a symmetric and positive definite matrix P € R™"*"

ATy Axt
P:/O e k' Qe K dt. (6.8)

K should be parameterized so that the system matrix Ag is stable, whose eigenvalues
lie on the left side of the imaginary axis. When using integration by parts for (6.8), it
becomes

t=o00

P:[eA%tQKA;geAKt} - / AL ARt Qi A At (6.9)
0

t=0

As Ag is stable, the e-function tends toward zero for ¢t — 4o00. Therefore, the above
equation is simplified as follows

P=-QgAg — A% /0 ARIQpeArtdt - ARl (6.10)

By right multiplication with Ag, we obtain the Lyapunov equation
ALP+ PAx = —Qg, (6.11)

which plays an important role in the stability analysis of the closed-loop system. The
Lyapunov equation (6.11) has exactly one symmetric, positive definite solution P for
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any arbitrary given symmetric, positive definite matrix Qx if the system matrix Ay
is asymptotically stable, see e.g. Proposition 7.1 in [50]. Since the cost functional
is associated with the controller gain K, its minimum (6.7) can be expressed by the
derivative of the cost functional through all elements of K. To solve this optimization
problem?, [50] derived the necessary condition for the control law (6.44) as follows

K=S"'BTP, (6.12)
where S~ exists and the matrix P = P > 0 is calculated from the Riccati equation
ATP+PA-PBS 'BTP+Q=0. (6.13)

This type of controller is also called the Riccati controller.

In general, we choose the weighting matrices @ and S in diagonal form

Q = dlag |:q17 ) qn]
S = diag [81, e 5m:|'
gi,© = 1,...,n is the associated weighting factor of x;, while s;, j = 1,...,m is the

weighting factor of corresponding control input u;. There is a MATLAB function lgr(-)
to determine the Riccati controller, which directly calculates K, P, as well as the eigen-
values E, of the closed-loop system:

K7 Pa EC ] = qu‘( A7 B7 Qa S ) (614)

6.3 State Observer

To realize the control law (6.2), it was assumed that all state variables x(¢) are known
or measured. However, this prerequisite is not met in practice. On the one hand, it is
expensive and inconvenient to measure all state variables accurately. On the other hand,
it is difficult to capture some particular state variables in reality. For these reasons, an
observer is used to reconstruct the unknown state variables. Consequently, the control
law (6.2) is adapted with the estimated state vector &(t) as follows

u(t) = —K#(t), (6.15)

where &(t) is determined by the plant model with consideration of both inputs and
outputs?. [50] states that the behavior of the closed-loop system with the estimated
state feedback is possibly the same as the one based on the real state variables. In
addition, the closed-loop system must function against the disturbance.

At first, we recall the structure and the principle of a state observer, in particular the
Kalman filter. Then, we give an overview of the LQG regulator, which is based on the
principle of separation of estimation and control. Finally, the state observer is extended
with a disturbance model to further estimate unknown disturbances.

n [19], the solution of this optimization problem is derived using a symmetric matrix W, which
depends on the initial condition. Although the derivation is slightly different from [50], the results are
the same.

2Here, the mentioned outputs correspond to the measured output variables.
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6.3.1 Observer Structure

An observer is actually a parallel model of the system (6.1). If there is no difference
between the system and the observer dynamics, &(t) coincides with x(¢). However, the
system dynamics also depends on the initial condition @y, which is practically difficult
to recognize, so it makes &(t) different from a(¢). For this reason, the observation error
is adjusted by the correction term 7(t), see Figure 6.2.

Zo

8-
Il
>
8
+
o
g
Q

8>
Q|ﬁ>

Figure 6.2: Structure of the state observer according to [19]

Based on the above structure, the observer dynamics is described as follows

3(t) = Ad(t) + Bu(t) + Ly(t) — 9(1)),  #(0) = &

§(t) = Ca(t) (619

with the correction term r(t) = L(y(t) — y(t)). It is noteworthy that the observer
requires information on both the control input w(¢) and the measured output y(t).

The correction matrix L is determined in such a way that the observation error
e(t) =x(t) — 2(t) (6.17)

tends toward zero for ¢ — oo with arbitrary initial conditions g and ®y. Using the
model (6.1) and (6.16), we obtain the error dynamics

é(t)=(A—LC)e(t), e(0) = xy — Zo. (6.18)

The core ingredient of the observer design is how to determine the correction matrix L.
One possibility is to set the eigenvalues of (A — LC) in the open left complex half-plane,
thus ensuring the asymptotic stability of the equilibrium e*(¢) = 0 of the error dynamics
(6.18). This means that the observed state variables approach the real ones. Design of
the correction matrix L can be formulated as the control design problem for a dual
system:

:i:d(t) = ATCL‘d(t) + CTud(t)

ud(t) = —LTiltd(t>. (6.19)

Table 6.2 shows the correspondence between the matrices for the observer and the control
design problem, see [19].



6.3. State Observer 85

Observer Controller
AT & A
cTt & B
LT < R

Table 6.2: Correspondence between the observer and the control design matrices

6.3.2 Kalman Filter

Depending on the methods of determining the matrix L, there is the Luenberger observer
and the Kalman filter. Unlike the pole placement by the Luenberger observer, the
Kalman filter is based on the optimization of a quadratic cost functional. Both types
of observers have the same structure as shown in Figure 6.2 but they are used for
different situations. The Luenberger observer focuses on reconstructing state variables
only with the initial disturbance g, while the Kalman filter works well for systems with
stochastic disturbances, which falsify the measured outputs during observation. For the
latter systems, the observation error can not disappear asymptotically if the Luenberger
observer is applied.

For this purpose, an LTT system (6.1) is extended with the process noise n,(t) and the
measured noise 1 (t):
z(t) = Az(t) + Bu(t) + n,(t)

y(t) = Cx(t) + ny(t). (6.20)

n.(t) and ny(t) must be white Gaussian noise processes. The white noise process with
zero-mean can be described as

o{ns(t), na (1)} = E{ne(t)ne(1)"

}
6.21
o{ny(t),ny ()} = B{ny(t)ny(1)"} (020

where the constant and symmetric matrices @ and S are the covariance matrices of
n,(t) and n,(t), respectively.

The estimation error dynamics (6.16) is then adapted for the stochastically disturbed
system (6.20) as follows (see details in(6.18))

é(t) = (A — LO)e(t) + no(t) — Lny(t),  e(0) = xo — . (6.22)

Now, we choose a cost functional related to the expected value of the quadratic estimation
error

J= ZE{eQ} Z 1i OO2T/ (6.23)

Matrix L should be determined to match the smallest possible cost functional J. Based
on the duality of the observer and controller matrices shown in Table 6.2, the observation
gain L can be determined by the optimal control approach presented in Section 6.2.2.
Therefore, the optimal solution for the Kalman filter is

L=pPC?'s™! (6.24)
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with the positive definite matrix P calculated by the Riccati equation

AP+ PAT —pcTs 'cpP+Q=o. (6.25)

The solution (6.24) is the same as the one solved directly by (6.23). MATLAB function
lgr(-) can be used to solve this optimal observation problem of the dual system that fits
well with our application

| L', P, E,|=la( A7, CT, Q. S). (6.26)

It is remarkable that the dual approach allows direct weighting of the state variables or
the outputs concerned.

6.3.3 LQG Controller

Since an optimal controller, which is combined with a Kalman filter, is applied for the
linear system in consideration of the white Gaussian noise, it belongs to the linear-
quadratic-Gaussian (LQG) control problem. So far, the design of the controller and the
observer are carried out separately. The controller is built on the basis of all known state
variables. Actually, the estimated state vector & is used for state feedback, see Equation

(6.15).

When inserting both the control law (6.15) and the observer dynamics (6.16) into the
system (6.1), it becomes

T A —-BR x
) . (6.27)
& LC A-LC-BR| |2

Instead of the observer dynamics, the error dynamics (6.18) is considered in the entire
state space representation

T
é
The set of all eigenvalues of (6.28) can be determined by the following characteristic
equation

A—-BR BR
0 A—-LC

xr

(6.28)

e

det (sI,, — (A — BR)) - det (sI, — (A — LC)) = 0. (6.29)

This equation reveals that the eigenvalues of a closed-loop system without a state ob-
server are not modified by an additive observer. Based on the separation principle,
see [50], it is worth mentioning that the controller and the observer can be designed
separately for linear systems.
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6.3.4 Disturbance Observer

As already mentioned, the disturbances can be described with some suitable models,
and the model parameters are identified offline in the experiments, see Section 5.3. In
most cases, they are unknown or difficult to identify accurately. For this reason, we
are trying to reconstruct them online using the information from the inputs and the
measured outputs as well as a disturbance model.

The plant model (6.1) is now extended with an external disturbance input z € R?

&= Az + Bu+ Ez, x(0) = x (6.30)
y=Cz. '

To approximate the actual disturbances, a disturbance model will be applied. Although
there are different types of disturbance models, they all can be represented by homoge-

neous differential equations and transformed into a state space representation, see e.g.
19],

&5 = Aszs,  x5(0) = g, (6.31)
z = Cswsa |

where x; € R? is the disturbance state vector, and z is considered as the output. This
output does not match the actual disturbances, and this model is only used to capture
the behavior of the disturbances.

By inserting (6.31) into (6.30), the plant model is expanded as follows

-

y=|[c o

A EC;

0 A
T
xs

T
with new state vector ., = {;pT, wﬂ e R,

B
0

xTr

+ u

Ls

(6.32)

As for the classical observer, the control input w and the measured output y are provided
to the disturbance observer. The observer dynamics can be described for state and

T
disturbance estimation &, = {ﬁzT, :i:ﬂ :

T
+
Zs

A-L,C EC,
-L, C A,

(6.33)

T
where L, = { LT ng € R(+s)Xm ig the correction matrix. L, must be determined

in such a way that the estimation error

e(t) = ze(t) — @e(t)
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T
tends to zero for ¢ — oo with arbitrary initial conditions x.(0) = [mg, :cg)] .

The LQG regulator (6.15) is now extended with the feedback of the estimated distur-
bance state &s:

u=-Ki— K,&,. (6.34)

6.4 Observer-Based State Difference Feedback

The desired trajectories for both the control input and the state variables, as well as
for the outputs, can be generated offline by the feedforward control. In practice, these
trajectories are stored in the lookup table and interpolated at each sampling time so that
the CPU can be heavily loaded. Therefore, the control structure is applied for the state
difference e, = x* — x, which requires only supplying the desired output trajectories
y* to the feedback controller, instead of the full state reference x*, which saves storage
and execution time on the PLC system, see Figure 6.3. Furthermore, the observer is
extended with a disturbance model to estimate and compensate the unknown friction.

Yy
3

Y

Feedforward u” e
UR
>

U
Control i
A

€u

€z K

e
T Y

Observer for
State Difference
and Friction

" e
Y yi— Y

> <
> )<

Figure 6.3: Control scheme with feedforward control and state feedback based on the estimated
state difference and disturbance. > denotes the plant model (6.30).

Difference model. We consider a nominal model for the feedforward control

¥ =Ax" + Bu" + E*

6.35
y* = Cx", (6.35)
on the basis of which the desired reference trajectories are calculated.
An LTI state space model
é, = Ae, + Be, + Ee

e, = Ce,
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is described for the differences of states, input, disturbance, and measured outputs from
their reference values

e, =x" —x, ey = u* —u, e, =2"—z=—2z, ey, =Y —v,

whereby we assume zero disturbance z* = 0 in the nominal case, for details , see [19].
A disturbance observer can be used for the difference system (6.36) to estimate the
difference variables é, and é,. In our case, e, is equal to the negative friction torque.

The control input u is composed of the feedforward part u* and the feedback part ug:
u=u"+ug, (6.37)
see Figure 6.3, such that the control input of the difference model (6.36) becomes
ey =u" —u=—ug. (6.38)
Extended difference model with a disturbance model. In most cases, the friction
torque can be modeled as a piecewise constant function, i.e., as the integrator model

€s = Qg€
T (6.39)

€z = Cs€s,

with as = 0 and ¢; = 1. By inserting (6.39) into the difference model (6.36), we obtain

T
an extended difference model with the state vector e, = {657 65]

é. = Ace. + Bee,

6.40
ey == Ceee. ( )
The extended system matrices are

A E
A, =

0" 0

B 6.41
b (6.41)

K
Ce = _C 0} .

Observer dynamics. According to [19], the observer dynamics for the estimated state

vector é, = {é? és] is described as

ée = Ac.é. + Bee, + Le(ey - éy) (642)

with the correction term L.(e, — é,). The observer needs the information of both the
control input difference e, and the measured output difference e,.
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Similar to the classical case, the dynamics
Aé. = (A. — L.C,)Ae, (6.43)

for the observation error Ae.(t) = e.(t) — é.(t) depends on the observer gain L., which
should be determined so that Ae.(t) tends toward zero for ¢ — oo under arbitrary
initial conditions e.(0) and é.(0). In our case, L. is determined by the Kalman filter,
see Section 6.3.2.

Control law. The observer-based state feedback
en=-—up=-Ké, +¢é,, (6.44)

which is extended by the disturbance compensation based on the estimation Z = —é, of
the unknown friction torque, is designed for the difference model (6.36). According to
the control input (6.37), the control law, as shown in Figure 6.3, becomes

u=u"+Ké, — é,. (6.45)

Note that the controller gain K is determined on the basis of the difference model (6.36)
for the undisturbed case.

Figure 6.4 shows the implementation procedure of the LQG regulator in MATLAB. The
dynamics of the entire system is mathematically described by a continuous-time model.
Since the model-based control design runs in a real-time system, it must be transferred
to a discrete-time domain. To design the state observer, the extended difference model
(6.40) is first discretized in time with the MATLAB function ¢2d(T"), which discretizes
the continuous-time dynamical system model using zero-order hold (ZOH) on the inputs
at a sampling time of T'. Based on this discrete-time model, a discrete-time observer can
be determined using the MATLAB function digr(e) with the corresponding weighting
matrices. In contrast, the discrete LQG regulator is designed for the continuous-time
undisturbed plant model (6.36) using the MATLAB function lgrd(T'), which discretizes
the plant with ¢2d(7T) and calculates the gain matrix from the discretized data with

dlgr(e).

difference model

(6.36)

continuous
Y

extended
difference model

(6.40)
c2d(T)

lqrd(T)

Y

discrete model

dlgr(e)

observer design LQG controller design

(6.42) X i (6.44)

Y

Figure 6.4: Design procedure of the LQG regulator



Chapter 7

Observer-Based Trajectory
Control for Time-Delay Systems

7.1 Problem Formulation

Time delays occur in most technical processes and are typically caused by e.g. mass
and energy transport, signal and information transmission, cyclic operation, and time
load required for calculation or decision-making, see [68]. Time delays, in particular,
are neglected in the modeling and control design process, as they may be unknown,
unpredictable, stochastic, or difficult to identify. This can lead to a deterioration of the
control quality or even to the instability of the controlled system. It is advantageous
if we can at least identify the extent of the time delays and take them into account in
the modeling process. On the basis of the model extended by time delays, the proposed
observer-based control strategy can be applied.

at) ) |a(t) = Az(t) + Bu@t) | y() T 90

Figure 7.1: Time-delay system

Figure 7.1 shows the sketch of a system with time delays in our application®. There is
not only the input delay 7}, which is caused by the communication process from the PLC
to ACOPOS but also the output delay T, which occurs when the data is transferred
from sensors to the PLC. Now, the system description is extended by the time delays in
the continuous-time domain

z(t) = Az(t) + Bu(t — T;), x(0) = x (7.1a)
y(t+1T,) = Cx(t), (7.1b)
where u(t) = @(t — T;) € R and y(t — T,) = y(t) € R3. It is assumed that the two time
delays in our case are multiples of the sampling time 7', i.e.,
T, =d;T

7.2
Ty =d,T. (7.2)

'In our case, there is only one single input u(t) € R, namely the motor torque. Nevertheless, B € R™**
here denotes the input column vector, while C € R3**"™ is the output matrix.

91
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In the following sections, we introduce some time-delay models that are frequently used.
In general, the continuous-time system (6.1) can be discretized in time and then trans-
formed into a discrete standard form without explicit time delay by augmenting the
number of states. The mentioned state (disturbance) observer is designed for these
systems with multiple time delays.

7.2 Discrete-Time State Space Model

Up to now, the system (6.1) is considered in continuous time, and the solution is derived
with the state transition matrices

t
z(t) = ettay —|—/ eA0=7) Bu(r)dr. (7.3)
0

In reality, the controller operates on the digital control system, the structure of which is
shown in Figure 7.2. The measured output y(¢) is sampled with an A/D converter and
fed back to the controller at each sampling step, while the control input wu[k] is held at
the same time using the ZOH component. According to [50], we first introduce how to
obtain the discrete-time state space model from the continuous-time representation.

;T = ~ Controller ulk > D/A u(t>'P1ant y) A/D v

+ ZOH

Figure 7.2: Digital control structure

Due to the ZOH component, the control input is constant within the sampling time

u(t) = u(kT) = const., ET <t<(k+1)T. (7.4)

The output equation at the sampling time t = kKT can be derived by inserting t = kT in
(6.1b)

y(kT) = Cx(kT)

with the same output matrix C' of the continuous-time system. Similarly, the Solution
(7.3) is calculated separately for ¢t = (k + 1)T
(k+1)T
x((k+1)7T) = eATa(kT) + eAFVT=) By (7)dr
" (7.5)
= ATz (kT) + /0 A=) Bdr'u(kT)

with the substitution 7/ = 7 — kT. The result is a discrete-time state space system
represented in a short form

x[k + 1] = A'z[k] + B'ulk], z[0] = xo (7.6a)
ylk] = C'z[k] (7.6Db)
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with the following definition of new matrices

A/ — €AT

T !
B — /0 AT By (7.7)
c=cC

Note that the system order of a continuous-time system without time delays is not
changed by time discretization. This description is derived exactly from the continuous-
time form (6.1) at t = kT'. Since the state variables are the same for both cases, the
output equation remains unchanged. In addition, the discrete matrices depend on the
sampling time 7', which is explicitly defined in Equation (7.7).

7.3 Discrete Time-Delay System

As mentioned above, the real-time control system must be able to cope with input and
output delays. The input delays mainly occur during the signal transmission in the
Ethernet between the PLC and the servo amplifier. This delay process is caused by
writing input signals to the PLC, storing data from the PLC in a cache, and transferring
the data from the cache to the servo amplifier. At least, we can experimentally determine
an average delay of the signal output in the PLC, see e.g. Figure 2.11.

The output delays occur mainly during the digital transmission of measurements. In
our case, the encoder is directly connected to a plug-in card in the servo amplifier, see
Figure 2.3. Its delay is much smaller than the one of the IMU, whose data is transmitted
through the CAN bus. For this reason, we consider only the delayed signals from the
IMU as output delay.

The time-delay model can be transformed into a discrete-time state space representation,
see e.g. [50], [61]. If the time delay T} is a multiple of the sampling time 7', the discrete-
time model (7.6) is simply extended by % additional state variables with respect to
time delays, as in our case (7.2). In the following sections, we introduce two time-delay

models, i.e., the input and output delay model.

7.3.1 Input Delay Model

Equation (7.1a) shows that the calculated input u(t) is delayed by the time 7; = d;T and
acts on the continuous-time system. In order to convert the control design into standard
form without explicit time delay, we concentrate on the discrete-time domain

alk — d;] = ulk]. (7.8)
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For this purpose, we define a set of discrete-time state variables &, ¢ = 1,...,d; according
to [50]
ulk] = & [k]
ulk + 1] = &o[k]
(7.9a)

ulk + (di — 1)] = &q,[K]
u[k + dz‘] = &g, [/C + 1] = ﬁ[k] (7.9b)
Furthermore, the external disturbance z[k]| is also considered in the discrete-time model.
Since the estimated disturbance is later added to the control input u[k], which is delayed,

we now replace the undelayed disturbance z[k] by a fictitious disturbance z(t), which can
be inserted directly into u[k]. Therefore, the control input (7.9b) is modified as follows

ulk + dj] = €q,[k + 1] = alk] — z[k]. (7.10)

Then, Equations (7.9a) and (7.10) are rewritten in a state space representation

_51_ _O 1 0 --- 0_-§1_ _0_ _O_
= + || alk] + Z[k]
§di—1 00 0 1 |€a;—1 0 0
| S ]y (0000 O [ & ], [ -1 (7.11)
~~ ~——
Ae Be E¢
velk] = ulk] = [1 o]¢
——
Ce

By inserting the input delay model (7.11) into the discrete-time plant model (7.6), the
state space model is now extended with the input delay

k (7.12)

7.3.2 Output Delay Model

As mentioned above, a large time delay exists in the transmission of data from the IMU
to the PLC via CAN bus compared with the measurement from the encoder. Therefore,
only an output delay model for the angular velocity of the beam tip is considered. Since
the IMU is read with its own predefined cycle time, and its data is only returned to the
digital controller at each sampling time 7T, this corresponds to a multiple of the sampling
time.
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Based on Equation (7.2), the output delay (7.1b) is converted in discrete-time form

yslk] = ys[k — do]. (7.13)

Then, a new set of discrete-time state variables §8;, j = 1,...,d, is used to model the
output delays

ys[k] = B1[K]
yalk + 1] = B2[k]
(7.14a)
yslk + (do — 1)] = Ba,[K]
Yslk + do] = ys[k] = Ba, [k + 1], (7.14b)
or
-51_ _010--'0__[31_ _0_
= + | | wslkl
Bd;—1 00 0 - 1| (Ba—1 0
_Bdi_kJrl 00 0 - 0| Ba |, |1 (7.15)
-~
Ap Bg
gslk] = [1 o] BK]
——
Cp
ys[k] can be represented by the state vector x[k] as follows
ys[k] = C3z[k] (7.16)

with C% = [0 0 1} C’, see Equation (7.6b). Finally, the discrete-time model with the
output delay can be described in state space form

T A 0 x B\ E'| _

Al B e [P
/6 k41 L B/BCB j Aﬂ B k 0 0

_ (7.17)

u C{Q 0 xr
y2 = |(-—-— -4 - = - - = -
c o 0 ! Cﬂ B
Y3 i ‘ g

with Cly = [I, 0| C".
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7.3.3 Input and Output Delay System

Taking into account the two delay models (7.12) and (7.17) in the system description,
we obtain the state space representation of the input- and the output-delay system as

follows

x A" B 0! 0 x 0 0
13 = 0 A €| + | Be |uk]+ | E: | Z[K]
S . S e s
B, LBy o Az][B], 0 0
- \w—/ \‘,—/
A B E (7.18)
x
o cl, 010
| =] SEEAN:
- 0 ‘Cﬁ 2
Ys |, y B,

r Y1
T = € ) g: Y2
B U3

7.4 Observer-Based State Difference Feedback for Time-
Delay Systems

_ % _ 1 _
Feedforward u” [k] afk] ! d. ulk] y[k] 4 1 Y[k]
——O— > > %o >
Control R Z z :
'ELR[k] L e e e e e e e e e e e e e e = 1
R Time-Delay Plant
- eyulk
e:lkl| | K +
2 A
e [K] \

Observer for
State Difference
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g & g

> <
()¢

Figure 7.3: Control scheme with feedforward control and state feedback based on the estimated
state difference and disturbance for a time-delay system. Y denotes the plant model (7.6).

Figure 7.3 shows the control scheme for a time-delay system, which includes both the
input and output delay model, with the feedforward control and the observer-based
state feedback. For the same reason mentioned in Section 6.4, the observer is designed
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to estimate the state difference e,[k] = &*[k] — x[k] so that only the output trajectory
y*[k] is needed. Thus, we consider a difference model for the time-delay system (7.18)
as follows

é;c[k_—l- 1] = f_i?x[k] + Be,[k] + Eé.[k] (719)
eylk] = Ce,lk]
with
ex[k] = x*[k] — 2[k]
eylk] = g [k] — ylk]
eulk] = u"[k] — ulk]
&:[k] = 2*[k] — 2[k] = —z[K]
Similar to the continuous-time case (6.38), the observer-based state feedback
eulk] = —iiglk] = —Ké,[K] (7.20)

is designed for the difference system (7.19) for the undisturbed case, where e,[k] is
the estimation of state difference vector, and K € R1*("tditdo) denotes the controller
gain. In addition, the control law (7.20) can be extended to include the disturbance
compensation based on the estimation zZ[k] = —e.[k]. The control input u[k] for the
system (7.18) is composed of the feedforward part u*[k] and the feedback part, which is
based on e,[k] and e, [k]

ulk] = u*[k] + Ke.[k] — é.[k]. (7.21)
In the following sections, a discrete-time LQG regulator is applied for the difference
model (7.19). Note that we do not consider the delayed model for the design of the

feedforward control in this section. It will be instantiated later for our application in
Section 8.6.

7.4.1 Discrete-Time Optimal Control

Since there are many state variables, mainly from the spatial discretization and time-
delay models, it is useful to directly apply a discrete-time optimal control for System
(7.19) to determine the controller gain K for the control law (7.20). The optimal control
is obtained by minimizing the cost functional J

mln J = min Z [k]Qe.[k] + eu[k|Re,[k]). (7.22)

R € R is a positive definite weighting factor for the control input &,[k], while the state
X n+dz+do)

vector €,[k] is weighted by a positive semidefinite matrix Q € R(Hdi+do)x(
By solving the Riccati equation

P-Q+A"PA- A"PB(R+B"PB)'BPA, (7.23)
the optimal controller is calculated as follows

K=(R+B"PB)"'B"PA (7.24)

with a positive definite matrix P, for details see [50].
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7.4.2 Discrete-Time Disturbance Observer

In order to describe the friction torque in discrete time, a piecewise constant function is
chosen as the disturbance model

&5k + 1] = asés[k]

e.[k] = cseslk], (7.25)

where a; = 1 and ¢ = 1. The time-delay system (7.19) can be extended with disturbance

T
model (7.25) for the substituted state vector e, = [ég, és}

A e [k] + B.éylk] (7.26)
Coe.lh |

ek +1]
ey[k]

ol

with system matrices

A E
A, =

_OT 0
_ 'B]
B, =

_0
C.=[Cc 0.

. A 1T
According to [50], the observer dynamics for the estimated state vector e, = [éT e s}
is described as

Gelli + 1] = Age[k] + Beculk] + Le(ey[k] — &,[k]). (7.27)

The observer gain L, should be determined to eliminate the observation error for each
sampling time

lim ‘
k—o00

&c[k] — ée[k]H ~ 0. (7.28)

It is noticeable that the input difference e,[k] and the output difference e,[k] at time k&
are used to predict the state difference é.[k + 1] at time k + 1. If the calculated output
difference éy matches the measurement e,, the observer simply uses the plant model to
predict the state ée[k + 1]. If an output error exists, the prediction is then corrected by
the term L.(€,[k] — €,[k]), see details in [50]. In our case, the observation gain L. is
determined by the Kalman filter.

7.4.3 Implementation Procedure in MATLAB

Figure 7.4 illustrates the implementation procedure of an LQG regulator for the time-
delay system in MATLAB. Since the difference model (6.36) is linear time-invariant, its
discrete-time model (7.6) is derived directly with the MATLAB function ¢2d(T). Based
on the discrete time-delay difference model (7.19), the Riccati controller is determined
by the MATLAB function digr(e). In addition, the extended time-delay model (7.26)
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is used to design the Kalman filter with dlgr(e), which calculates the observer gain L.
with the selected weighting matrices for the extended model in discrete time.

difference model
(6.36)

c2d(T)

Y
discrete
difference model
(7.6)

+ (7.11)(7.15)

discrete
time-delay
difference model
(7.19)

+(7.25)

éxtended dlgr(e)
time-delay
difference model
(7.26)

dlgr(e)

Y
observer design | LQG | controller design
(7.27) X . (7.20)

A4

Figure 7.4: The LQG regulator’s implementation procedure for the time-delay system
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Chapter 8

Experimental Control Results for
a Flexible Robot Arm

There are two control issues: On the one hand, the beam tip should follow the desired
trajectory as quickly as possible; on the other hand, the oscillation of the flexible beam
should be suppressed as much as possible. To this end, the motion task to demonstrate
the quality of the selected control strategy is a fast PTP motion of a flexible robot by
90 degrees.

In this chapter, four control strategies are considered by combining different feedforward
and feedback control approaches, see Table 8.1. Comparing Experiment A with B only
makes a difference in the model chosen for the feedforward control design. One is based
on a rigid body model (rbFFC), which is presented in Section 4.2, while the other uses
an inverse model (ibFFC) that accounts for the beam elasticity, see Section 4.3. In both
experiments, disturbance compensations based on a linear static friction model are added
to the PD feedback control (pdFBC). The comparison of these two experiments shows
the tracking quality of the different feedforward strategies. Both Experiment C and D
combine an ibFFC and an LQG regulator with a disturbance observer. The difference
is that in Experiment D, the time delay model is considered for the feedforward and
feedback control design. In the following, two experimental scenarios are considered: (a)
the undisturbed execution of the motion task and (b) the reaction of the control system
to an exogenous disturbance — after the PTP motion, the beam is hit with a broomstick.

. FFC FBC Friction Compensation | Delay Model
Experiment
rbFFC ibFFC | pdFBC LQG | static dynamical without with
A v v v v
B v v v Vv
c v v v v
D v v v v

Table 8.1: Experiment variants (FFC: feedforward control, FBC: feedback control)
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8.1 Modeling and Discretization Parameters

This section contains the tables with the parameters for the drive unit, the steel beam,
the structure-preserving discretization and model order reduction used to generate the
model for the control design.

Parameter Value Unit
Iy 2.29-107%  kgm?
Iy 1.69-104 kg m?
Cs 5-10* Nm/rad
Th 0.025 m

Table 8.2: Gear motor parameters

Table 8.2 shows the model parameters of the drive unit derived from the CAD design. As
mentioned in Section 3.2, the moments of inertia of the motor and the hub are considered
separately. According to the characteristic of the torsional stiffness of the Harmonic
Drive gear, its elasticity is approximated by a linear torsion spring with stiffness cs.

Parameter Value Unit
Length 1.20 m
Height 0.03 m
Thickness 0.005 m
Volumetric mass density ~ 7856 kgm >
Young’s modulus 215 GPa
Poisson’s ratio 0.28 -
Shear correction factor % -

Table 8.3: Parameters of the steel beam

Table 8.3 lists the beam model parameters. The thin steel beam has a length of 1.2m, a
height of 0.03m, and a thickness of 0.005m. Since the beam is modeled as the Timoshenko
beam model, we choose the commonly used Poisson’s ratio and shear correction factor
from [45].

Parameter Value
Number of collocation points N 9
Order of the discretized beam model 4N 36
Order of the reduced beam model r 12

Shift points sg [16, 18.43, 115.6]

Table 8.4: Parameters of the spatial discretization and the model reduction of the beam model

The beam model is spatially discretized using the PS method, see Section 3.4.1. As shown
in Section 3.4.2, the more collocation points are selected, the more accurate the model
is. Thus, N = 9 collocation points are chosen as the zeros of Legendre or Chebyshev
polynomials to approximate well the first low eigenfrequencies and eigenfunctions of
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the beam, see Table 3.1 and Figure 3.6. This beam model leads to a system order of
4 -9 = 36, which brought the selected PLC to its limits. To obtain a small-scale, finite-
dimensional beam model that retains the first eigenmode, the discretized beam model
is reduced using the Krylov subspace method. Thus, 3 shift points are selected near the
first natural frequency to produce a reduced beam model with a system order of r = 12,
see Figure 3.8(a). This reduced beam model is used for the proposed control design, see
e.g. Sections 6.4 and 7.4.

8.2 Parameterization of the Desired Trajectory

To generate the desired trajectory for PTP motion control, the trajectory planning is
specified according to Section 4.1. The configuration parameters are listed in Table 8.5.

Parameter Value Unit

Qs 0 rad
Qe 5 rad
Gm 3 rad/s
Gm 2 rad/s?

ts 0.5 S
AT 1.5 s

te 2 S

Table 8.5: Parameter configuration of the path

Figure 8.1 shows the simulated trajectories of angle, angular velocity, and acceleration.
The movement starts at ts = 0.5s from position ¢g; = 0 and ends at ¢, = 2s at position
ge = Grad, see Figure 8.1(a). At the beginning of the motion, the speed increases to the
maximum value ¢,, = §rad/s within 0.5s. In this phase, the acceleration is given by a
sinusoidal profile whose maximum value is G, = 27wrad/s?. After a uniform movement,
braking is performed with the maximum deceleration until the speed is reduced to zero,
see Figures 8.1(b) and 8.1(c). The entire route takes AT = 1.5s. This path specifies
the desired trajectory of the beam tip for our tracking task. Based on this path, the
required trajectories of the control input and the state variables are calculated by the
feedforward control.
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Figure 8.1: Simulation of the desired path
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8.3 Experiment A: Rigid-Body-Based FFC and PD Joint
Feedback Control

Friction Model

A

%f 91\/1
Ui FFC M ™ Elastic
—> . . —————p >
(rigid body) f Robot Arm
PD Control
0%, 0%, l — Orr, Onr
>( )

Figure 8.2: Two-degrees-of-freedom regulation: A rigid-body-based feedforward control (rbFFC)
and a PD joint feedback with a static friction compensation

To illustrate the flexibility of the beam, Experiment A is performed with a feedforward
control based on a rigid body model and with a simple PD joint feedback using the
measurement of motor angle 0y, and angular velocity O, see F igure 8.2. The nom-
inal motor torque 73,(t) and the desired trajectories of 63, and 9}‘\/[ are calculated by
Equations (4.15), (4.14), and (4.16), respectively. Moreover, the friction compensation
in this setting is based on the linear static model (5.2) using a set of identified nominal

parameters. The parameters of the friction model and the PD controller are listed in
Table 8.6.

Parameter Value Unit
o bl 3.04 Nm - s/rad
S8
53 b, 7.684 Nm
=
k 60 -

£ Kp 320 Nm/rad
0%
. g Kp 200 Nm - s/rad

O

Table 8.6: Experiment A: Parameters of the friction model and the PD controller

In this experiment, we only consider the tracking behavior! of the beam tip with respect
to the angle ¥ 1, and the angular velocity &L, see Figure 8.3. The results give evidence of
the high flexibility and the low natural damping of the beam. The blue dashed line and
the red solid line represent the desired trajectory and the corresponding measurement,
respectively. At the beginning of the acceleration at ¢ = 0.5s, the beam tip moves in the
opposite direction due to the inertia of the structural flexibility. From a control point of
view, the flexible robot arm is a non-minimum-phase system with respect to the selected

1See the video of the corresponding experiment under https://youtu.be/KzOalFq6B_ g.


https://youtu.be/KzOa1Fq6B_g
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input and output, which has unstable internal dynamics. The delay of the input signal
is more pronounced in these systems compared to the minimum-phase case, see details
in Section 4.3.1. After the movement, there is still a very large oscillation.

To carry out the experiment, the calculated control torque is given as the setpoint 75¢*
in the torque control loop, see Figure 2.6. The setpoint 75¢ (blue dashed line) and the
measured torque 74 (red solid line)) are illustrated in Figure 8.4. Since the current
controller works quite fast with a cycle time of 50us, the measurement almost matches

the desired value. After ¢ = 2s, there is some control effort due to the remaining
stationary error.

¢ in rad/s

tins tins
(a) Beam tip angle (b) Beam tip angular velocity

Figure 8.3: Experiment A: Tracking behavior of the beam tip angle and angular velocity using
rbFFC and PD joint feedback
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Figure 8.4: Experiment A: Motor torque for tracking the desired trajectory using rbFFC and
PD joint feedback
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Figure 8.5: Two-degrees-of-freedom regulation: An inversion-based feedforward control (ibFFC)
and a PD joint feedback with a static friction compensation

In Experiment B, a flexible beam model is exploited to design an ibFFC, see Figure
8.5. The desired trajectory for the tip angle ¥*(¢, L) is generated based on the initial
and final conditions, under the constraints of maximum joint velocity and acceleration,
see Figure 8.1(a). The desired angular velocity at the beam tip ¢)* (¢, L) serves as input
to the inverse model (4.28) for generating ¢/*(t,0) at the hub using ibFFC. Figure 8.6
shows the desired angular velocity at the beam tip (blue dashed line) and the calculated
angular velocity at the hub (red solid line). If we compare the two lines, in particular
before t = 0.5s and after ¢ = 2s, we can see the pre- and post-actuation input outside
the transition interval T = [0.5s, 2s]. The required motor torque can be calculated using
the dynamic model of the drive unit (3.35). In this experiment, the parameters of the
PD controller and the friction model are the same as in the rigid case, see Table 8.6.
The experiment is carried out for both the tracking and disturbance behaviors?.

1.5

= 1
©
g

2 0.5

0 1 1 1 1
0 0.5 1 1.5 2 2.5
tin s

Figure 8.6: Experiment B: Desired and computed trajectories for output and input (77/12 desired
angular velocity at the beam tip, 94: computed angular velocity at the hub)

2See the video of the corresponding experiment under https://youtu.be/yme5FREaSog.


https://youtu.be/yme5FREaSog
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Figure 8.7 shows the tracking behavior of the beam tip with respect to the angle ¢,
and the angular velocity ¥;. At the beginning of the movement, the beam tip follows
the desired trajectory faster, and the amplitude of the angular velocity in the opposite
direction is much smaller compared to Figure 8.3(b). Although the beam tip is still
oscillating in the dominant first mode after t = 2s, the oscillation amplitude is greatly
reduced compared to Experiment A.

Figure 8.8 represents the corresponding torque setpoint 75¢ (blue dashed line) and the
actual value 74 (red solid line). The range of motor torque is approx. between —20Nm
and 50Nm, while Experiment A requires more motor torque — between —40Nm and
60Nm — for the same tracking task, see Figure 8.4. In robotics, feedforward control
design generally requires an accurate model to avoid a large tracking error that can lead
to saturation in feedback control. In this way, the drive system can be protected and
spared.

1.5¢ 1.5¢
g L
g1 El
k= .
=05 505
0 0
1 2 3
tins tins
(a) Beam tip angle (b) Beam tip angular velocity

Figure 8.7: Experiment B: Tracking behavior of the beam tip angle and angular velocity using
ibFFC and PD joint feedback

-20

tins

Figure 8.8: Experiment B: Motor torque for tracking the desired trajectory using ibFFC and PD
joint feedback
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Figure 8.9 shows the disturbance behavior of the beam tip, which is hit with a broomstick
after the PTP movement. It is obvious that the PD controller is not able to suppress
the oscillations of the beam in the presence of external disturbance.

v in rad/s

1.5

tin s tin s

(a) beam tip angle (b) beam tip angular velocity

Figure 8.9: Experiment B: Disturbance behavior of the beam tip angle and angular velocity
using ibFFC and PD joint feedback

8.5 Experiment C: Observer-Based Trajectory Control
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Figure 8.10: Two-degrees-of-freedom regulation: An inversion-based feedforward control (ibFFC)
and a state feedback based on the observation of the state difference and the friction torque

Figure 8.10 shows the control scheme with ibFFC and state feedback based on the
observation of state difference &, and friction torque é,. The state (disturbance) observer
is designed using the method described in Section 6.4. In addition to the motor angle
and angular velocity, the tip angular velocity, which is measured with an IMU, is fed
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back to the controller. In this experiment, we evaluate the quality of this control strategy
in terms of the tracking and disturbance behavior? of the beam tip.

8.5.1 Parametrization of the LQG Regulator

At first, we parametrize the LQG regulator, which involves the Kalman filter and the
Riccati controller. In general, the weighting matrices are selected as identity matrices,
whose individual elements are then adjusted, depending on the practical application and
the control objective.

Parametrization of the Kalman filter. The goal of a disturbance observer is to
reconstruct the unknown state variables and the missing friction torque. For this pur-
pose, the Kalman filter is designed in the modeling state variables. According to the
extended difference model (6.40), the weighting matrix Q, € R'™*17 for state vector e
can be directly decomposed into the submatrices for drive system Q% € R*** beam
model Q% € R'?*12 and disturbance model Q% € R as follows

Q, = Qb . (8.1)

In this way, we can roughly determine the weighting factors for each subsystem separately
and fine tune them according to their coupling effects. Moreover, the weighting matrix
for the measurement S, € R3*3 is chosen as the identity matrix.

Parametrization of the Riccati controller. In order to suppress the oscillations
of the beam, the weighting factors of the Riccati controller can be adjusted in terms of
the different eigenmodes. In our configuration, the low-frequency eigenmodes dominate
the movement. So, the Riccati controller is designed based on the Jordan normal form
of the difference model (6.36)

6y = Ayo, + Bey, A =diag {Xl,...,Xn}, (8.2)

where B = V. 1B, V, € R™ " is the matrix of right eigenvectors of A, and o, = V, e,
is the vector of modal coordinates. The cost functional (6.3) is also rewritten in modal
coordinates as follows

1 o0
J=3 / (€T Quey + Sec?)dt
0

1 foo - (8.3)
= 7/ (UZQCUQC + Scei)dt
2 Jo
with new weighting matrix Q. € R16x16
Yh
Qc = ‘/xTQC‘/:I) = Qc , (8.4)

Q.

3See the video of the corresponding experiment under https://youtu.be/17VVtNAMGIQ.


https://youtu.be/17VVtNAMGlQ
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where Q~lc and QZ are the weighting matrices for the low-frequency and remaining high-
frequency eigenmodes, respectively. The low-frequency eigenmodes — in our case the
first and second eigenmodes — are heavily weighted by choosing large values of the
corresponding matrix Qlc The weighting matrix Q. € R'6*16 for the modeling state
variables is then calculated by

Qc = %—TQC%—l. (8.5)

Note that the weighting factor* S. € R for the control input is the same in both forms.

Table 8.7 lists the reference parameters of the LQG regulator for Experiment C. It is
worth noting that the disturbance state is weighted more heavily in the Kalman filter
than the motor and beam state variables. Moreover, the first and second eigenmodes
are dominant in the control design, while the other high-frequency eigenmodes are only
weakly weighted. The weighting matrices S. and S, are defined as the identity ma-
trix. Based on the design procedure as shown in Figure 6.4, the LQG regulator can be
determined directly in MATLAB.

LQG Parameter Value
E Qs 04
L: Qg 1074 - Io
&
E Q; 5107
<
= So IS
=8 Q" 5-1073 - Ipo
o) -
RE Q. 3-10%- 1,
[a=ifS;
O Se 1

Table 8.7: Experiment C: Parameters of the LQG regulator. Q%, Q%, and Q%: Observer weighting
matrices for the (modeling) state variables of the drive (a) and the beam model (), as well as
the disturbance (s), respectively. Qlc and Qf} Controller weighting matrices for the first and
second eigenmodes (/) and the remaining high-frequency eigenmodes (h), respectively.

8.5.2 Experimental Results

Figures 8.11 and 8.12 illustrate the quality of the control strategy outlined in Figure
8.10. The beam tip perfectly follows the desired trajectory, and the beam oscillation is
quickly suppressed in the dominant first mode in response to the external disturbance.
Residual oscillations with two distinguished frequencies are visible in both the angle and
velocity signals. These can be a consequence of the motor’s stiction torque, which must
be overcome for movements close to the rest position, and which is not captured in the
simple friction model.

4Because of e, € R, S is a scalar.
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(a) Beam tip angle (b) Beam tip angular velocity

Figure 8.11: Experiment C: Tracking behavior of the beam tip angle and angular velocity using
ibFFC and observer-based state difference feedback
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(a) Beam tip angle (b) Beam tip angular velocity

Figure 8.12: Experiment C: Disturbance behavior of the beam tip angle and angular velocity
using ibFFC and observer-based state difference feedback
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Figure 8.13: Two-degrees-of-freedom regulation: An inversion-based feedforward control (ibFFC)
and an observer-based state difference feedback for the time-delay system

As in Chapter 7, the cyclic and hierarchical task execution of the PLC causes time delays
of different magnitudes. Therefore, in our case, we consider the input delay for the control
torque and the output delay for the measurement from the IMU when modeling. Figure
8.13 represents the two-degrees-of-freedom control scheme for a time-delay system, which
consists of the ibFFC and the state feedback based on the estimated state difference and
friction torque. The time delay models are used for both the feedforward and feedback
control design.

Considering the input delay u[k] = ulk — d;] in the feedforward control, the nominal
control torque u*[k| is replaced by u*[k] = u*[k + d;]. Thus, the control input u[k] can
be actually set to the desired value u*[k] at the time k

ulk] = alk — d;] = @k — d;] = w*[K].

Compared to the measured signals from the encoder, there is a relatively large delay in
the measurement from the IMU. Similarly, this output delay y3[k] = y3[k — d,] should
also be considered in feedforward control, which calculates the desired output trajectory

g3 (K]
g3 = y3[k — do]

instead of the undelayed value y3[k]. Thus, the desired and measured angular velocity
of the beam tip at the same time k are evaluated.

Moreover, the LQG regulator is designed based on the time-delay plant model, which
finally results in the control law

alk] = a*[k] + arlk],

where u[k] is calculated in the PLC plane, while u[k] is executed in the servo amplifier
plane for the motor torque control loop, see Figure 2.11.
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8.6.1 Parametrization of the LQG Regulator

The weighting matrices of both the Kalman filter and the Riccati controller for a time-
delay system can be chosen according to the concept in Experiment C, see Section 8.5.1.

Parametrization of the Kalman filter. The observer design is based on the dif-
ference model (7.26) in the modeling coordinates to estimate the state difference vector

s _ [sT
€. = [ex,

T _
és} . Thus, the weighting matrix Q, € R?**?* can be divided into two
parts as follows

Qoz{g _], (8.6)

where Qﬁ € R?3*23 stands for the state vector e, and Qf) € R stands for the disturbance
state es. In our case, the weighting matrix S, is the identity matrix.

Parametrization of the Riccati controller. Since the state difference vector e, =

T
el e?, eﬂ can extend the plant state vector e, with the delay difference vectors

e¢ and eg, the cost functional for the Riccati controller is extended by the delay state

vector with the corresponding weighting matrix Q%% € R™7 as follows
T
_ 1 [® e e _
i=3 / (€T Ques + || Q|| +8.22)dt. (8.7)
0 es es

To parameterize Q., we use the Jordan normal form (8.2) for e,. The low-frequency
eigenmodes are considered for the control design mainly by choosing large Qlc, see Equa-
tion (8.4). The weighting matrix Q. corresponding to the modeling state variables is
then determined by the back transformation (8.5). Moreover, S. is chosen as 1 to weight
the input difference. The reference parameters of the LQG regulator are listed in Table
8.8.
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Parameter Value
qé - T 1.2ms
E8 5 !

d, 3
§ ’ Q® 1074 Ins
Sz @ 10*
S‘o IS
= Qf 10~2. I5
B3 Q. 5-10%- 1,
: £ £B 0
~
g @ 7
S, 1

Table 8.8: Experiment D: Parameters of the LQG regulator for the time-delay system. Q‘fj and
Q,: observer weighting matrices for the state (r) and disturbance (s) variables, respectively.
! h and QZP: controller weighting matrices for the first and second eigenmodes (1), the

c) c)

remaining high-frequency eigenmodes (h) and the time delay model (¢f3), respectively.

8.6.2 Experimental Results

Figures 8.14 and 8.15 show the tracking and disturbance behavior® of the beam tip with
respect to the angle and the angular velocity, respectively. In the tracking behavior,
the beam tip responds very quickly at the beginning of the movement and moves almost
directly in the positive direction. After deacceleration, the angular velocity is also quickly
reduced to zero. However, the beam tip oscillates more strongly in the uniform movement
and at the end of the movement compared to Experiment C. In this case, the state
variables of the drive system and the beam model, as well as of the time delay model are
weighted identically in the observer, while the weighting matrices for the LQG regulator
are larger than the values of the Experiment C. Thus, the controller compensates the
tracking error faster and is sensitive to the external disturbance.

®See the video of the corresponding experiment under https://youtu.be/fZMYw9102_ M.


https://youtu.be/fZMYw9lO2_M
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Figure 8.14: Experiment D: Tracking behavior of the beam tip angle and angular velocity using
ibFFC and observer-based state difference feedback based on the time-delay model
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Figure 8.15: Experiment D: Disturbance behavior of the beam tip angle and angular velocity
using ibFFC and observer-based state difference feedback based on the time-delay model

Figures 8.16 and 8.17 compare the tracking behaviors related to the motor angle and the
beam tip angle and show the zoom of the chosen transition interval (green rectangle)
t = [1s, 1.2s]. Compared with the experimental results of Experiment C, we obtain a
shorter time delay between the measured and desired value in both Figures 8.16(b) and
8.17(b). It is observed that the measured motor angle #%, matches almost the desired
value 03, (from about 0.006s to 0.0012s), while the transmission of the beam tip angle
is reduced from 0.015s (see ¥¢) to 0.006s (see ¥P). Some remaining time delays still
exist because CAN bus is asynchronous communication where the time interval of the
transmission is random and cannot be predicted.
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Figure 8.16: Comparison of the motor angle (6%,: desired value, #¢;: measurement from Exper-

iment C, 01;: Measurement from Experiment D)
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(b) Zoom of the beam tip angle

Figure 8.17: Comparison of the beam tip angle (¢%: desired value, p¢: measurement from
Experiment C, pP: Measurement from Experiment D)
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Chapter 9

Conclusions

In this thesis, a holistic approach for the trajectory control design of an elastic robot
arm based on the PH representation has been presented. The flexible arm is driven
horizontally by a brushless DC motor with a Harmonic Drive gear. The drive system
was directly described by a finite-dimensional PH model, while the flexible beam model
was discretized and reduced using structure-preserving numerical methods that preserve
certain (geometric or structural) properties in the lumped parameter model. The two
subsystems were coupled by interconnection to form an overall PH system. The struc-
ture of the obtained finite-dimensional beam model has been shown to be suitable for the
design of inversion-based feedforward control. An LQG regulator, which incorporates a
simple estimate of the disturbance (friction), complemented the two-degrees-of-freedom
controller structure to suppress the residual oscillations and achieve a high-fidelity track-
ing of the reference trajectory. The control quality of the proposed approach was demon-
strated by experimental validation and compared with other control strategies.

This dissertation has shown that the energy-based modeling and the use of physically
consistent numerical methods can contribute greatly to the successful design of control
systems, especially with respect to a structured and modular approach and the task of
motion planning. Furthermore, the results show (once again) the high utility of the linear
state space tools in their application within the — also modular — two-degrees-of-freedom
control structure.

The results of this work were generated on a test bench controlled by an industrial
PLC, which was designed and constructed in the frame of this thesis. The cyclic and
hierarchical task execution of the PLC generates time delays of different magnitude
(multiples of the lowest sampling time). This can lead to a deterioration of the control
performance or even to the instability of the controlled system. Therefore, the proposed
approach was extended to account for the time delays in the discrete-time domain, using a
simple Fuler integration scheme for the discrete-time implementation of the continuously
derived control.

A topic for future work on this flexible robot arm configuration, in addition to structure
preservation in the spatial discretization, is the application of structure-preserving time
integration schemes for discrete-time control design, such as in [33], [41], [82] to the PLC
controlled flexible manipulator.

The present results serve as a reference for the systematic approach from modeling to
control design and implementation in a structured energy-based framework. The flexible

119



120 Chapter 9. Conclusions

three-link setup depicted in Figure 2.1 is an example for a real world lightweight robot
arm. For this system class, the seamless integration of modern control design in modular
automation systems poses numerous questions for ongoing and future works.



Appendix A

Dynamical Modeling of the
Timoshenko Beam

In this appendix, we first derive the nonlinear motion equations of a flexible beam using
Hamilton’s principle. Then, some simplifications are taken into account according to the
small deformation assumption. Furthermore, it is assumed that the motor torque 7y
acts directly on the hub!, i.e., r;, = 0.

Yoa
A
Yo Ya

* P(z,y)

(a) Undeformed beam (b) Deformed beam

Figure A.1: On the coordinates of a point P(z,y) on the cross section of the beam under
deformation (w.(z): deformation, ¥.(z): rotation)

Coordinate system. The beam moves in the horizontal plane and the gravity is
neglected. Therefore, we define some 2D Cartesian coordinate systems® to express the
coordinate transformations of the movement, see Figure A.1.

¢ Inertial frame of reference XpYp: It describes the absolute movement in the inertial
coordinate system.

o Floating frame of reference XpYp: The deformation only occurs in relation to this
coordinate system. Using the floating frame of reference approach, flexible bodies
can be decomposed into rigid body motion and elastic deformation.

'Here, the dynamics of the gear motor is neglected.
2In our case, the manipulator configuration follows the Denavit-Hartenberg convention.

121
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» Coordinate system of a point XoYg: In order to describe the motion of an arbitrary
point of the beam, we define a point-fixed coordinate system based on the deformed
beam’s cross section.

Rotation matrix. Based on Figure A.1, the relative motion between XopYp and
XBYpg, and between XpYp and XYy can be expressed by the rotation matrices

Aoy — cos(fp) — sin(@h)]
sin(0p)  cos(0n)

Apo = cos(the) — sin(zpe)]
sin(ye)  cos(t)e)

0n describes the rigid body rotation, and 1, denotes the rotation of the deformed cross
section.

Absolute position, velocity of a point P. We consider an arbitrary point P(z,y)
on the deformed beam’s cross section with respect to XgYg:

Y

It is assumed that the beam length is not changed after the deformation. Then, P can
be transformed in the coordinate system XpgYp with the rotation matrix Apg and the
translation vector grg:

prp = prg + Apgorp

_ [ ] cos(the) — sin(we)] [0]
| We sin(ie)  cos(te) y
[

| We +y COS(l/}e)
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Since the absolute velocity is originally defined in the inertial frame of reference, we
describe the position vector rp of P after the deformation in XpYo as follows

orp = AoB Brp

_ _cos(Hh) —sin(&h)]
| sin(0n)  cos(6h)

x —y sin(t,)
We + Y cos(te)

x cos(0r) — we sin(0y) — y sin(fy, + )
|2 sin(0p) + we cos(0p) +y cos(On + Ye)

The absolute velocity pvp =p1p results

ovp = Ao prp + Aop Brp

—x sin(0p,) 0, — e sin(6) — we cos(0y) O — y cos(By + e) (B + he)
x cos(6y) Oy, + e cos(0),) — we sin(0y) 0, — y sin(0y, + ve) (O, + )

(A4)
Energy. The kinetic energy of the rotating beam is defined as
1 rL
T, = 5/ / Pu ovgodeAdx
0 A
_ L G+ e+ (w60 4 (6 + 0)?] dA
= 2/ Pv [(0n + e)” + (we Op)” + y~ (O + Ye)”] (A.5)
A
- // 2y sin(ve)[z (O + o) + e (O + ¢e)]dA}.
A
Using the following relations
/ ydA =0, //ysz:Iz, I, =pulz, p=p4,
A A
Equation (A.5) is simplified to
1L . o
T= /0 [0(x 6 + 10e)? + p(webh)? + L,(6n + )2 de, (A.6)

where I, and p denote the area moment of inertia and the linear density, respectively.

The potential energy of the beam is defined as

P, = ;/OL[EI(%)Q + kG A(We — wl)?]da. (A7)



124 Appendix A. Dynamical Modeling of the Timoshenko Beam

The total energy of the flexible manipulator is composed of the kinetic energy T" consid-
ering the parts of the beam T} and the hub T} with
T= Ty,+1Ty
1 L . . - . oy 1
= 5/0 [p(z 0 + we)” + p(webn)” + 1,(0n + )] dx + §Ih9h,

and the potential energy P = P,. Hamilton’s principle, i.e., stationarity of the action
functional reads

(A.8)

tr
/ (6T + 6W — 6P)dt = 0, (A.9)

to

where 0W = 1,460), denotes the variation of the external work.

In the following paragraphs, the variational calculation of Equation (A.9) is separately
performed with respect to the variables 0y, w,, and ..

Variation with respect to variable 8. The variation® of kinetic energy (A.8) re-
lating to 6, is written as

. . L . . . . .
50, T = I6p30n + / @by + o) + pw2dp + L,(6p + b)) 0nde. (A.10)
0

Because the potential energy (A.7) does not depend on 6y, its variation is

89, P = 0. (A.11)

The virtual work is given by

b0, W = 10160, (A.12)

h

Substituting Equations (A.10), (A.11), and (A.12) into Hamilton’s principle (A.9) results

ty
/ (86, T + 69, W — 6, P)dt

to

t .. ty L . . . . .
= / ! 1,01,60,dt + / ! / [px (20 + we) + pwgﬁh + Ip(é’h + 1) 00y dxdt] (A.13)
t t 0
0 . 0
+ Ta 00 dt.

to

We perform the integration by parts for the first and second integral terms, and consider
that 66;, vanishes at ¢t = to and t = ty. Then, it is simplified to

tf |
(5eh/ (T'+W —-P)dt = 0
to

ty .. L .. . .. .
= — / {10y, + /0 [p(z? + w?)b), + 2pwerirdy + priie + I,(0n + ve)dx — Tar } 065 dt.

to
RG)

(A.14)

3Notice that 0p, T = (5(;hT7 and 60;, = %(59;1).
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Variation with respect to variable w.. Now, the variational derivation of the
kinetic energy (A.8) with respect to we is represented as

L . .
Ow, T = / [p(20), + 1ie)6tbe + pwebidw.)da. (A.15)
0

Using spatial integration by parts, the variation of the potential energy (A.7) related to
we is derived by

L
dw, P = / —kGA(e — wl)dwdx
0

L (A.16)
_RG A — wl)Swe)E + / KGA(W, — w")5weds.
0
Because the external work is not the function of w,, the virtual work is
0w, W = 0. (A.17)
Hamilton’s principle corresponding to w, is calculated by
Ly
/ (6, T + 60, W — 60, P)dt
to
tf L . .
/ [p(20), + e)d1ie + pwebidwe — kGA(, — wl!)ow,]dxdt (A.18)
0

t
+ [ RG AR — w)swe)Edt.

to

Applying the integration by parts for the first and second integral terms, it reads

ty |
bw, [ (T+W—=P)dt = 0
t
boL ) .
/ {—[p(x0y + e — wb3) + KGA(, — wl)] dw, }dadt
0 (A.19)
=@
t
+ [ kGAW. — wl)ow )b dt
to

=k

with dw. = 0 at t = to, t;.

Variation with respect to variable .. The variation of the kinetic energy (A.8)
corresponding to . is given by

50, T = / (6 + )50 da. (A.20)

Using the spatial integration by parts, the variation of the potential energy (A.7) is
derived by

L L
5y, P = / EIY. s de + / KGA(tb, — w))oteds
0 0 (A.21)

L
— [EIYLoE — /0 (1Y — kG A, — wl)|5teda.
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Similarly, there is no virtual work relating to .

Oy W = 0. (A.22)
Substituting the above equations into Hamilton’s principle (A.9), it becomes

t
/ (60T + 64, W — 8y, P)dt

to

= /t ! /0 L{Ip(éh + )60 + [EIY) — kGA(e — w))| 0% ydzdt (A.23)

ty I
 Penisogia

to

Applying the integration by parts for the first integral term with di. = 0 at t = tg and
t =y, we obtain

23
5%/ (T+W—P)dt = 0
to

tf tf L . .
= [T Ervda+ [ 10+ b + BIVL — kGAW. = wl)|}ovedut.
et

to :®
(A.24)

Nonlinear Timoshenko beam equations. The boundary conditions of the clamped-
free beam with respect to the deformation variables are:

Clamped at x = 0: we(0) = 0
@Z}e(o) =0
Free at « = L: KGA(Ye(L) — é(L)) -0 (A.25)
EIL(t,L) =0 .

Substituting (A.25) into the terms *, *x, they vanish
*=0
xx = (.

In order to satisfy conditions (A.14), (A.19), and (A.24), terms (D, @), and @) must be
null. Consequently, the dynamics of the flexible manipulator is rewritten as

p (0 + e — we0?) + KGA (Y, —w”) =0 (A.26a)
I, (0 + o) — EIY! + kGA (1hy — w') = 0 (A.26b)

1,0, + / [px(m@h + 11';6) + p(2weu')€9h + ’wz@h) + ]p(eh -+ we)]dﬂf =TNM. (A.QGC)
0 2%e@eVh T TeVh

It is remarkable that the first two equations characterize the dynamical motion of the
beam, which consists of the rigid body rotation and the deformations, while the last one
describes the dynamics of the hub with reaction effects from the deformed beam.
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Linearized Timoshenko beam model. In many engineering applications, as in our
case, only small deformations occur compared to a reference configuration, so that non-
linear beam model (A.26) can be linearized, see e.g. [22], [92]. Under the small deforma-
tion assumption, the deformation terms in (A.26), i.e., the higher-order terms and the
higher-order product, can be ignored*. Here, weé}% ~ 0, wgéh ~ 0 and 2weu’)eéh ~ 0.

Defining the global configuration variables

w = we + x6),

¢:w6+0h7

and inserting them into Equation (A.26), the nonlinear Timoshenko beam can be lin-
earized as follows

pi+ kGA (W —w") =0 (A.27a)
L) — EIY" + kGA (¢ —w') = 0, (A.27b)
) L .
1n0n + / (px + I,9)dx = T, (A.27c)
0

=—EIy/(0)

where Equation (A.27c¢) is derived using integration by parts with the following boundary
conditions:

x=0: w(0) = 0
¥(0) = b
r=1L KGA@W(L) —w' (L)) = (A.28)
EIY/(L)

Note that the linearized equation (A.27) describes a planar motion of the Timoshenko
beam, which is dependent on both time and space. In this context, without loss of
generality, we define a generalized coordinate z € Z = {0, L} as the spatial coordinate
along the beam Xp axis to describe the one-dimensional deformation, i.e., w(z) and
¥ (z). Thus, w' = 0,w(z) and ¢’ = 9,1 (z). This notation is used throughout Chapter 3.

4The nonlinear terms play a major role in the dynamics of an elastic arm only if the motion speed is
extremely high, see details in [22].
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Appendix B

Restricted Bilinear Form and
Resulting Conditions

Isotropy condition of the PH beam model. In order to describe the isotropy
condition on the bond space (3.50) with respect to the vectors m; = [, n?", n:*, nfT]T

pt | pr et el
and @; = [p;", @i @i’ ¢;"]
E:

,i € {1, 2}, we consider the bilinear form! between F and

({(m, Mo, Mar 1, Pla: Pla)s (M2 Moo, Mrgs P2, Pro: Pha)))
L (B.1)
= /O (M1 P2 + 13 p1)dz + (110)" 5o + (110)" 5o + (V1) M3 + (£10) M-

Inserting the undamped beam model (3.44) in Equation (B.1), it becomes
Lor T T T
(B.1) = —/0 (m P10:m2 + my Pomz + my PLO2m + m; Pom )d
+ (M) @59 + (M19) T pho + (1) Moy + (#10) Mo
L
= —/0 (ni P10.m2 + m3 P10.m1)dz

+ (M) Pho + (Mi9) T @ha + (010) Mho + (©10) Mba

(B.2)

with

Py

[
S = O O
3
I

0
0
0
1

o o o O

0
1
0
0

o O = O
o o o O
|
—_

1
0
0
0
Using integration by parts for Equation (B.2) gives

L
(B.1) =~ [ " dinf Pua) + (ko) eha + (mi)” 05+ (#1) mho + (20) "

L . B.3
=~ [nTPim] |+ (mfo)oho + (50) " 050 + (B0 b + () Ty (B
=0.

'Notation: njy = [-n:*(0), ni*(L)], mip = [-n5"(0), 5" (L)), wis = [F*(0), n¥*(L)], wip =
(777 (0), mim(L)], i € {1, 2}.
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Approximation of the bilinear form. Based on the discretization, the isotropy con-
dition of the Stokes-Dirac structure can be also approximated on the finite-dimensional
space, see e.g. [60)].

Inserting (3.56) and (3.70) into (B.1), the following relation is obtained:

(B.1) = (ef" )" M £ + (ef") " M5 + (ef) M f5¢ + (eF") M f57
+ ( ft)TMTegt + (‘flr)TMTegr + ( ft)TMTegt + ( fT)TMTegT (B4)
+ (el9)T fio + (€10)T F35 + (fla) €by + (fla) €5s.

It is noteworthy that the expression of the isotropy condition depends on the discrete
port variables f”, e, v € {pi,pr,et, &} and the discrete bilinear form (3.69), which
appears on the right side of Equation (B.4). Moreover, inserting the relation (3.78) in
(B.4), the bilinear form can be expressed only in terms of the discrete effort variables

(6/1”7 elQ/i)a 1% S {ptap’r‘astyer}a Ve {5t)57‘7pt7p7‘}5 1= 1727374 as:

(B4) = (ef")" M (—De3') + (ef")" M(—Dey — S™'M"e5)

"M(-Deb' + S'M"ely) + (e")" M(—De})

T(—DTYMTeh + (e5)T(—DT — MS™TYM™T el

T(-DT + MS T)MTe5 + (ef)T (-DTYMT ey

TRI(Pe + (e7) DT(DeEL + () DT (DeE + (ef) BT (Pey
= ()T (~MD — D"MT + ®T¢®)es

)
™
o

)
=M
o
S~—

+ (T (~MD — DT"MT + ®T¢®)ey
+ ()T (~MD — D" MT + ®T¢®)el
+ (€T (=MD — DTMT + ®T¢®)ely
+ ()" (MSTTM" —MS'M") ey + (e")" (MST'M" — MS™"M")ely

=0due to S=8T =0
(B.5)

Resulting condition. Since (B.5) holds for any (e}, es?), the following condition is
deduced, see also [60]:

~MD+ D"MT + 3T¢® = 0. (B.6)



Appendix C

Free and Forced Vibrations of the
Timoshenko Beam

We sketch the derivation of exact expressions for the eigenforms and the computation
of the natural frequencies of the Timoshenko beam as described in [56]. It is based
on a single fourth-order differential equation for the free and forced vibrations of the
Timoshenko beam. Moreover, we summarize the reasoning of [10] to obtain transfer
functions for the case of inhomogeneous boundary conditions (BCs).

C.1 Eigenvalue Problem

To characterize the free vibrations of the Timoshenko beam, we employ a separation of
variables ansatz

w(t,z) =T(t)X(z)

P(t,z) =T)Y (2), (C.1)

which leads the variables w(t, z) and ¥(¢, z) to the form of a product of a spatial function
X(2), Y(z) and a time function T'(t). Here, the same time function is considered for
both variables.

Then, the beam equations (3.37) become

1"

pX (2)T(t) — KX (2)T(t) - Y (2)T()] = 0 (2)
LY (2)T(t) + Ko[Y (2)T(t) — X (2)T(t)] — K,Y T(t) = 0. '
Separation of variables yields
T K(X"-Y')  KY" - K(Y - X') (C.3)

T pX Y

For harmonic vibrations with frequency w, the time function satisfies 7'(t) +w?T'(t) = 0.
Using this relation, we arrive quickly at the expressions

Y =X"+a(w)X (C.4)
—b(w)Y = X" + [a(w) + c(w)] X’ (C.5)
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with the frequency-dependent coefficients

2
_ P
a’(w) - Ks
Lw? K
_ _ s C.6
b(w) K5 K (C.6)
c(w) = g‘;

From Equations (C.4) and (C.5), we eliminate Y (z) to obtain the single fourth-order
differential equation for the displacement function

XW 4+ dw)X” +e(w)X =0, (C.7)
where!
d(w) = a(w) + b(w) + c(w)
=W+ L)
Ko K (C3)
e(w) = a(w)b(w)
B L""Q Iw?

(22 ).

B Ky © Ky
The function Y (z) depends on the derivatives of the spatial function X (z). Thus, Equa-
tions (C.4) and (C.5) can be used to define the boundary conditions, which are only in
terms of X (z) as well as its derivatives.

By parameterizing the solutions of Equation (C.7) via X(z) = Ce’?, we obtain the
characteristic equation

AW £ d(w)A? + e(w) = 0. (C.9)
With r := A2, this becomes a quadratic equation whose roots are given by
1 1
T2 = —§d(w) + B A(w), Aw) = d*(w) — 4e(w) >0 Vw. (C.10)
At the critical frequency w. = %, the root r; changes sign, while ro < 0 for all w.

We distinguish the cases

1. w>w, = r1 <0. Only pairs of complex eigenvalues occur:
:E’i)\l = :f:i\/ -1, :t’i)\g = :f:i\/ —T9. (C.ll)

The corresponding solution of the displacement function X (z) for the high frequencies
can be described only in terms of trigonometric functions cos(e) and sin(e) using Euler’s
formula:
X(Z) — Clei/\lz + C2€—i)\12 + Csei)\zz + C4€—i/\2Z
= Pjcos(A\12) + Pysin(A1z) + P cos(A2z) + Pysin(Aez).

'The coefficients in terms of the volume density p, = % and the moment of inertia I = i—’; read

(C.12)

2 2 2 2 2

Pow Pow kG A 2 1 1 w”  Ipyw
= - = d=w?pe(=+ —), e=—

@), e="TFr ol i) T 5 ha

— Apy).
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2. w <we = r1 > 0. The resulting pairs of real and complex eigenvalues are

+A\ = /1, Hidg = Fiv/—ra. (C.13)

The general solution of the displacement function X (z) can be written in the form of
trigonometric and hyperbolic function
X(Z) — Cle)\lz + 0267)\1,2 + Cgei/\zz + 04672')\22

C.14
= Pj cosh(A1z) + Pysinh(\z) + Pscos(A2z) + Pysin(Agz) ( )

with Py 5 = C1+C3 and P34 = C3+Cy. For our application, we consider only the second
case and describe the eigenvalues and eigenforms for the (dominant) lower frequencies.

C.2 Boundary Conditions, Eigenforms and Natural Fre-
quencies

The clamped-free boundary conditions with 6, = 0 are translated into conditions on
X (2):

z =0 X(0) = 0
X"(0) + (a(w) + ¢(w))X'(0) = 0
z2=1L: X"(L)+dX'(L) = 0 (C.15)
X"(L)+aX(L) =0 ..

With the general solution (C.14) for X (z) and its derivatives, we can formulate a system
of equations for the free parameters that satisfy the boundary conditions (abbreviations:
A = cosh(A\L), B =sinh(A\ L), C = cos(A2L), D =sin(A2L)):

1 0 1 0 P 0
0 M((a+c¢)+29) 0 X((a+c)=A3)| [P| |0 (C.16)
M2 +d)B MM +dA A(AE—dD -2 -d)C | |P o]
(A +a)A (A2 +a)B (=M% +a)C (=M% +a)D Py 0
This system of equations has the form
M(W)P =0 (C.17)

T
with a matrix M (w), whose entries depend on the frequency w, and P = [ P P, P P4] .

The frequencies, at which det M (w) = 0, are the natural frequencies or eigenfrequencies
w; of the cantilever beam. The corresponding non-zero values of P parametrize the
associated eigenfunctions/eigenforms X;(z) of the free vibration. Normally, there is a
free tuning parameter in P, e.g. P;, while the other parameters linearly depend on it.
To determine P;, either choose P; = 1 to get the simple normalized eigenfunctions, or
the eigenfunctions can be orthonormalized by requiring (see e.g. [91]):
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dij, =17

Vi,
0, i#] g

(Xi(2), X;(2)) = {

Table C.1 lists the five low eigenfrequencies for the BCs (C.15) and the corresponding
eigenfunctions are depicted in Figure C.1.

Eigenfrequencies f fa f3 fa fs
Hz 2.9343 18.3873 51.4781 100.8570 166.6820

Table C.1: First five natural frequencies of the Timoshenko beam for the uniform beam in Hz

(w=2nf).

EF=1
EF=2
EF=3
EF=4
EF=5

Normalized displacement
[a)

0 0.2 0.4 0.6 0.8 1 1.2

zinm

Figure C.1: First five eigenforms of the Timoshenko beam.

C.3 Inhomogeneous Boundary Conditions

To obtain a transfer function from the hub angular velocity to the angular velocity of
the beam tip, we assume a harmonic excitation 05(w) of the hub angle. The second
boundary condition in Equation (C.15) is in this case replaced by

—b(w)bp(w) = X" + (a(w) + c(w)) X" (C.18)
The system of Equation (C.17) becomes inhomogeneous
M(w)P = K(w), (C.19)

T
with K(w) = [0 —b(w)bp(w) 0 0} . For det M (w) # 0, we can express the coeffi-

cients of the general solution as P = M ~!(w)K (w), which allows us to establish the
relation

Y (w, L) = G(w)bh(w) (C.20)

between the hub angle and the rotation of the beam tip. The same transfer function
G(w) describes the ratio between the angular velocities, see Figure 3.10.



Appendix D

Runge’s Phenomenon

In the mathematical field of numerical analysis, Runge’s phenomenon illustrates the
numerical oscillation at the edge of an interval, that appears when constructing the
high-degree polynomial interpolation over a set of equidistant interpolation points, see
e.g. [34].

Runge function

Figure D.1: Runge’s phenomenon with different distribution of the collocation points

Amplitude

Amplitude

o points for N=4
-1k * points for N=8 i
-1 -0.5 0 0.5 1
z

————— polyn. N=2

— — — polyn. N=4

polyn. N=8

points for N=2
points for N=4
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0
z

0.5

Runge function
polyn. N=2
polyn. N=4
polyn. N=8
points for N=2

(b) Interpolating polynomials with Gauss-Legendre collocation points
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Consider a Runge function f(z)

1

f(Z):@,

which is interpolated at equidistant points between —1 and 1 with Lagrange interpolating
polynomials of degree N = 2, 4, 8, respectively, see Figure D.1(a). It is observed that
the interpolation oscillates toward the end of the interval, and the error is increased when
the degree of the polynomials increases. In contrast, this phenomenon can be avoided
by choosing the zeros of Gauss-Legendre polynomials, see Figure D.1(b). That is also
the reason why we chose the latter as interpolation points.



Appendix E

Inverse State Space Model

We consider a linear, time-invariant SISO system

T =Ax+bu (E.1)
y=cle+du (E.2)
with d # 0. The Laplace transform of Equations (E.1) and (E.2)
sX(s) —xo=AX(s) + bU(s) (E.3)
Y(s) = X (s) +dU(s) (E.4)
can be described using Rosenbrock-matrix in the following form
A—sI bl |X(s) _ | o (E5)
c’ d| |U(s) Y (s)

The values of s, which make the system singular, are the so-called invariant zeros of
the state space model. It is calculated by the determinant of the Rosenbrock matrix as

follows

A—sI b
det ] = det((A — sI)d — bel)
(E.6)

cr d

1
= ddet(A — sT — gbcT).

Now, we solve the output equation (E.4) for U(s)

U(s) = éY(s) _ %CTX(S), (E.7)
and insert it into Equation (E.3) to obtain the relation between X (s) and Y (s)
(A- ébcT _sDX(s) + ébY(s) — (E.8)
We represent the above two equations in the matrix form
A— CllblcTT— sI élb X (s) _ | o (E9)
—3cC 3 Y (s) U(s)
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As a consequence, the state space representation of Equation (E.9) is obtained by inverse
Laplace transformation

1 1
x=(A—- gbcT):c + gby (E.10)
1 1
u= —gcTa: + il (E.11)

Note that there are no new additional state variables in Equation (E.10) compared with
Equation (E.1). The signals X (s), U(s), Y(s), and x(, which satisfy the original system
(E.1), (E.2), satisfy the system (E.10), (E.11) as well. This means that both models
have identical trajectories of state variables.

o Ifu(t), xo are given for determining x(t), y(t), there exists a solution of Equations
(E.1), (E.2) (e.g. numerical integration, discrete convolution);

o Ify(t), @y are given for determining x(t), u(t), there exists a solution of Equations
(E.10), (E.11) (e.g. numerical integration, discrete convolution).

Because the Rosenbrock matrix in the inverse model (E.10) can be rewritten as

1 1. 1, o 1
gdet(A gbc SI+gbC )= ddet(A sI), (E.12)

the invariant zeros of the model (E.10), (E.11) are identical with the eigenvalues of the
model (E.1), (E.2).

According to Equation (E.5), U(s) can be formulated only related to Y'(s) and xg using
Woodbury matrix identity

1

U(s) = LeT(A = Lbe” — o) ag + (cT(A - %bcT D)7 )Y (s). (B.13)

d d 2

To determine Y (s), we insert Equation (E.13) and the same x( into Equation (E.9) to
obtain

11 1 1,171 1
Y(s)=— [ + =c'(A - b - sI)_lb] —cl(A = Zbel — s tay

it d R d (.14
+[1+1T(A—1bT— I)l}U() |
d dc d C S S).

Then, U(s) is replaced by Equation (E.13), and it results

1 1 4 1, 7 P I o 1, o 4, 1

=Y (s).
(E.15)

It is recognized that the perfect trajectory tracking can be realized by interconnecting
the feedforward part based on Equations (E.10), (E.11) with the plant (E.1), (E.2). Con-
sequently, this tracking behavior can be also indicated by multiplication of the transfer
function, see Equation (E.15).



Appendix F

Bounded Solution of the
Inversion-based Feedforward
Control

In this chapter, we only consider the unstable part of the inverse model in Jordan normal
form

Gu(t) = Aoy (t) + Boytiy(t). (F.1)

If we integrate it in the forward time, it leads to an unbounded solution, which is not
wanted. In order to obtain a stable solution, Equation (F.1) should be integrated in
reverse time. To this end, we define a time variable v to satisfy the following relations:

v=T—t, dv = —dt, (F.2)

with a time interval 7T'.
Substituting Equation (F.2) into Equation (F.1), and eliminating ¢, it becomes
_doy(t) dt

dt  dv (F.3)
=—A, 6,(v) — By up(v)

with new state vector &, (v) and new input uy(v) in terms of v

F.4
’111, V)= ﬁb(T — 'U) ( )
Multiplying the state-transition matrix e« on the left of Equation gives (F.3)
AV &, () + eV AL Gy (v) = —e™ By, g (v). (F.5)
Using the integration by parts on the left terms
d Ayv = Ayv ~
g\ au(v)) = =" By (v), (F.6)
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and integrating Equation (F.6) in the time interval s € [0, v]
v d B v A ~
/ 7(6 e O'U(S)) = / —en? B;. Ub(S) ds
0o ds 0
v
A g, (v) —er06,(0) = / —eMes By g (s) ds,
0
the solution of Equation (F.3) is represented as follows

o,(v) = —/0 e Au(v=s) B, ., ty(s) ds.

Based on the transformation (F.2), we replace v in Equation (F.4) by ¢

Gu(T —1) = ou(T — (T —1)) = ou(t)
(T —t) =up(T — (T — 1)) = up(?).

Then, the solution of o, (t) can be derived by back-transforming (F.8)

T—t
Uu(t) = _/ eiAu(Titis) Bo,u ﬂ'b(s) ds

N 0
t
= / e Au(T-1) B, ., uy(7) dv
T

(F.8)

(F.9)

(F.10)

with the definition 7 =T — 5. Since 0 < s < T — t, the integration time interval for v
is determined by T' > 7 > t. Note that the inertial condition starts with the time 7. In

case T — 00, the solution becomes

t
oult) = [ M0 By () dr

o0

= —/ e Au(m—t) B, uy(7) d.
¢

(F.11)



Appendix G

Hardware and Software

Configuration

G.1 Components of the Test Bench

Type Components Supplier/Amount
Servo Motor RD85x13-HD i=160 TQ-Systems GmbH
— Motor — ILM85x13 TQ-Systems GmbH

— Gear

— Encoder
Servo Drive
—Interface
—Interface
—Cable
Industrial PLC
—Bus module
—CAN module
—Safety input
—Safety output
—Field terminal
—Cable

Sensor IMU
—Cable

— CPL-25A-160-2A

— AksIM MBA4

ACOPOS 8V1016.50-2
—POWERLINK V2 Interface 8AC114.60-2
—Biss Interface 5V 8 AC125.60-2
—POWERLINK X20CA0E61.00100
X20CP1586

—X20BM33

—X201F2772

—X20SLX410

—X20S504110

—X20TB52

—Ethernet Standard

LPMS-CU2

—CAN DB9-5pin Cable

Harmonic Drive AG
Renishaw plc
B&R Industrial Automation GmbH
1
2
1
B&R Industrial Automation GmbH

e e

LP-Research Inc.
1

Table G.1: Components of the test rig
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Appendix G. Hardware and Software Configuration

G.2 Technical Specifications of Motors

1D Motor Parameters Description Value

30 MOTOR_TYPE Motor: Type 1640002
31 MOTOR_ COMPATIBILITY Software compatibility 1640201
46 MOTOR_WIND CONNECT Winding connection 1

47 MOTOR_ POLEPAIRS Number of pole-pairs 10

42 MOTOR_BRAKE_CURR_RATED Holding brake: Rated current 0.5A

43 MOTOR_BRAKE_TORQ_RATED Holding brake: Rated torque 1.68Nm

44 MOTOR_BRAKE_ON_TIME Holding brake: Engaging delay 0.020s

45 MOTOR_ BRAKE OFF TIME Holding brake: Release delay 0.04s

64 MOTOR_ TEMPSENS PARI1 Temperature sensor: Parameter 1 0

65 MOTOR_TEMPSENS PAR2 Temperature sensor: Parameter 2 0

66 MOTOR_TEMPSENS PAR3 Temperature sensor: Parameter 3 0

67 MOTOR_TEMPSENS PAR4 Temperature sensor: Parameter 4 0

68 MOTOR_TEMPSENS_PARS5 Temperature sensor: Parameter 5 0

69 MOTOR_TEMPSENS_PARG6 Temperature sensor: Parameter 6 0

70 MOTOR_TEMPSENS PART Temperature sensor: Parameter 7 0

71 MOTOR_TEMPSENS PARS Temperature sensor: Parameter 8 0

72 MOTOR_TEMPSENS PAR9 Temperature sensor: Parameter 9 0

73 MOTOR_TEMPSENS PARI10 Temperature sensor: Parameter 10 0

75 MOTOR_THERMAL_ CONST Thermal time constant 20s

48 MOTOR_VOLTAGE_RATED Rated voltage 48V

49 MOTOR_VOLTAGE CONST Voltage constant 17.65mV - min
50 MOTOR_SPEED RATED Rated speed 2720 mlin

51 MOTOR_SPEED MAX Maximum speed 2720 mlin

52 MOTOR_TORQ_STALL Stall torque 0.598Nm
53 MOTOR_TORQ_RATED Rated torque 0.598Nm
54 MOTOR_TORQ_MAX Peak torque 1.571Nm
55 MOTOR_TORQ_CONST Torque constant O.ISNT“‘

56 MOTOR_ CURR_STALL Stall current 4.6A

57 MOTOR_ CURR_RATED Rated current 4.6A

58 MOTOR__CURR MAX Peak current 12.085A
59 MOTOR_WIND CROSS SECT Phase cross section 0.985mm?
60 MOTOR_STATOR_RESISTANCE Stator resistance 0.21Q

61 MOTOR_STATOR _INDUCTANCE Stator inductance 4.7-107*H
62 MOTOR_INERTIA Moment of inertia 2.29 - 10~ *kgm?
63 MOTOR_COMMUT OFFSET Commutation offset 2.55rad

74 MOTOR_WIND_TEMP_MAX Limit temperature 125°C

866 MOTOR_TEST_MODE Test Mode 7

872 MOTOR_ CURR ROT DIR Rotational direction of current ncINVERSE

Table G.2: Technical Data of motor RD85x13
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Table G.2 lists the motor datasheet from the motor supplier TQ-Systems GmbH. In
practice, the motor is directly controlled by the servo drive. In order to access it,
each motor parameter owns a writable ID in the servo drive. Because there are no
temperature sensors in the motor, the values of the corresponding parameters such as
MOTOR_TEMPSENS_PARz (Temperature sensor: Parameter z, x = 1,...,10) are
set to zero. In our application, there are parameter settings of the motor brake, which
works in case of emergency. Furthermore, MOTOR_COMMUT OFFSET must be
reconfigured after the motor is mounted in the test rig.
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