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Abstract

Polarized neutron reflectometry (PNR) is a power tool to investigate the atomic and
magnetic structure of thin films. The measured reflectivity, however, cannot be mapped
to a unique sample description as the complex reflection coefficient (or phase information)
is lost during the data acquisition.

In this work, the theory for phase-sensitive PNR is presented based on reference layers,
which uniquely determine the reflection. A comparison with traditional data fitting
techniques for PNR is carried out, which demonstrates the advantages of the more
sophisticated phase-sensitive PNR technique.

As the reference layer method allows only the reconstruction of the reflection above
the total reflection edge, a fixed-point algorithm is presented which retrieves the missing
reflection. Without this information, the inversion of the reflection to recover the sample
description is futile. The fixed-point algorithm only requires the knowledge of the total
film thickness to guarantee the convergence to a superb approximation of the reflection.
Studies based on actual experiments and simulated data are successfully carried out.

The feasibility of phase-sensitive PNR technique is demonstrated using in situ PNR
measurements on Cu/Fe thin films. The reconstruction is based on magnetic Fe reference
layers, whose nuclear and magnetic structure is varied. Two different reference layer
approaches are compared.

Zusammenfassung

Polarisierte Neutronen Reflektometrie (PNR) ist ein mächtiges Werkzeug, um die atom-
are und magnetische Struktur von dünnen Schichten zu untersuchen. Die gemessene
Reflektivität kann jedoch nicht einer Probenbeschreibung eindeutig zugeordnet werden,
da der komplexe Reflektionskoeffizient (bzw. Phaseninformation) während der Date-
nakquisition verloren geht.

In dieser Arbeit wird die Theorie für phasensensitive PNR basierend auf Referen-
zschichten vorgestellt, welche die Reflektion eindeutig bestimmt. Ein Vergleich mit
der herkömmlichen Ausgleichsrechnung für PNR wird getätigt, der die Vorteile der
anspruchsvolleren phasensensitiven PNR Technik aufzeigt.

Die Methode der Referenzschichten ermöglicht die Rekonstruktion der Reflektion nur
oberhalb der Totalreflektionskante, weshalb ein Fixpunkt–Algorithmus vorgestellt wird,
der die fehlende Reflektion wiederherstellt. Ohne diese Information ist eine Invertierung
der Reflektion, um die Probenbeschreibung zu erlangen, erfolglos. Der Algorithmus
benötigt nur die Kenntnis der gesamten Probendicke, um eine Konvergenz zu einer
hervorragenden Approximation der Reflektion zu gewährleisten. Studien basierend auf
tatsächlichen Experimenten und simulierten Daten werden erfolgreich durchgeführt.

Die Machbarkeit der phasensensitiven PNR Technik wird anhand von in situ PNR
Messungen an Cu/Fe Dünnschichten demonstriert. Die Rekonstruktion basiert auf mag-
netischen Fe Referenzschichten, dessen nukleare und magnetische Struktur variiert wird.
Es werden zwei verschiedene Ansätze von Referenzschichten verglichen.
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1 Introduction

Thin film and heterostructures gave rise to a whole new world of interesting physical
phenomena. The reduced dimensionality of a layer or the influence of two surfaces on
each other changes the internal physical properties and processes of an object and are,
therefore, different from those of a bulk material. Moreover, advances in this scien-
tific field are accomplished due to reliable and highly adjustable thin film deposition
techniques like molecular beam epitaxy, thermal evaporation, pulsed laser deposition
or sputter deposition which allows the systematic production of samples with varying
characteristics.

The discovery of novel physical phenomena like the giant magnetoresistance (GMR)
[1, 2] or the tunnel magnetoresistance (TMR) [3–5] has led to an increasing interest in
the magnetism and morphology of thin films and heterostructures. These phenomena
(GMR, TMR) play an important role in spintronics [6], e. g. magnetoresistive random
access memory (MRAM), magnetic sensors or logic devices [7]. The investigation of
the structural composition and magnetic structure of heterostructures leads to a deeper
understanding of these phenomena. Parameters like film thickness, interfaces and density
play a crucial role for the appearance of these phenomena. In the case of (i) Fe/Cr
multilayers the GMR decreases with an increase in the Cr layer thickness due to the
weakening of antiferromagnetic coupling between the Fe layers [1] or in (ii) Fe/MgO/Fe
sandwich junctions the TMR is enhanced with an increase in the MgO layer thickness
[8]. These correlations are then used to fine tune the physical properties of thin films in
applications.

An ideal tool to analyze both the morphology and magnetic structure of thin films is
polarized neutron reflectometry (PNR) [9–13]. It is a non-destructive scattering tech-
nique, capable of resolving the structural and magnetic depth profile of a thin film or
heterostructures on length scales between 10�A up to several hundred nanometers. PNR
is sensitive to light elements and isotopes [14] due to the unique properties of neutrons
which can be exploited by variation of contrast of specific components by isotopic sub-
stitution, e. g. deuteration [15, 16].

A mathematical analysis of the acquired PNR data extracts the desired information by
fitting a model to the reflectivity data. This approach, however, has several drawbacks,
namely, (i) the fitting is time consuming and impedes the evaluation of the feedback
from experiments which may be carried out in much shorter time scales [17] (ii) it re-
quires a priori knowledge of the sample to set up a suitable model and (iii) the extracted
information is neither unique nor necessarily correct due to the phase problem: In re-
flectometry experiments the measured quantity is the squared modulus of the complex
reflection, i. e. the reflectivity. The phase information is lost. Hence, a manifold of equiv-
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1 Introduction

alent models exists which generate the exact same reflectivity but differ in the reflection.
This ambiguity is known as the phase problem.

Recent advances in artificial neural networks and machine learning [17–20] alleviate
problems (i) and (ii) and research is still ongoing. These new tools can quickly and
reliably (provided a proper training data set was used) estimate layer thickness, density
and roughness of reflectivity curves, which are used as an initial prediction for a subse-
quent conventional fit and dramatically support the researcher. The predictions can be
calculated within a few milliseconds [17] and the reliability depends on the training data
set used for the learning process of the artificial neutral network [19]. For example, esti-
mating the parameters of a four layer sample using a neural network which was trained
on reflectivity curves with no more than three layers will not be successful.

In this thesis, the novel technique of in situ polarized neutron reflectometry is utilized
to tackle the phase problem (iii). The aim is to develop a framework in which the
phase information or reflection is retrieved using in situ PNR measurements to track
the evolution of a sample. Additionally, tools for the reconstruction of the reflection and
inversion of the sample description are implemented and for a practical assessment of
the quality of the retrieved reflection, the influence of various systematic and random
(statistical) measurement uncertainties is analyzed. Measurements of Fe/Cu thin films
conducted at the neutron reflectometer Amor at the Swiss Spallation Neutron Source,
Paul Scherrer Institut, Villigen have been successfully analyzed and prove the feasibility
of phase reconstruction for in situ PNR which provides a unique sample description.

This work is arranged in three main chapters. The basic theory of neutron reflec-
tometry is introduced in chapter 2. The primary features of a reflectometry curve are
explained using the Born-Approximation and the exact reflection computation within
the dynamical theory is shown to derive important facts about the reflection.

The two main analysis techniques in neutron reflectometry which are data fitting and
the method of potential inversion with phase reconstruction is discussed in chapter 3.
For this purpose, the reflection reconstruction using reference layers is presented and an
algorithm to retrieve the reflection at the total reflection edge is described together with
two simulated examples. Additionally, the influence of limitations of the measurement,
e. g. bandwidth limitation, resolution and measurement noise on the retrieved reflection
and inverted potential is simulated and discussed.

The developed framework of phase sensitive in situ polarized neutron reflectometry is
then applied in chapter 4 to a Fe/Cu thin film to yield a unique determination of the
sample structure. Subsequently, the influence of the reference layer on the quality of the
reconstructed reflection is discussed and an extrapolation of the reflection is carried out
to eliminate bandwidth limitation effects.

2



Definitions and Notation

The Lp space is a function space which contains all measurable functions which have a
finite p-Norm:

Lp := {f : R→ R measurable : ‖f‖Lp < +∞} (1.1)

with the usual norm

‖f‖Lp :=

(∫
R
|f(x)|pdx

)1/p

. (1.2)

For f ∈ L1, the non-unitary Fourier transform F is defined by

F [f ](q) =

∫ ∞
−∞

f(z)e−iqzdz (1.3)

and the corresponding inverse Fourier transform of a function f̂ is then

F−1[f̂ ](z) =
1

2π

∫ ∞
−∞

f̂(q)eiqzdq. (1.4)

The Heaviside function Θ is defined by

Θ(z) =

{
0, z < 0

1, z ≥ 0
(1.5)

and its (improper) Fourier transform is F [Θ](q) = (iq)−1 [21].
The characteristic or indicator function of a set S ⊂ R is denoted by χS and defined

as

χS(x) =

{
1, x ∈ S
0, otherwise

. (1.6)

The complement of a set S ⊂ R is Sc := R \ S, the identity matrix in Rn×n is denoted
by 1n and the complex conjugation of z ∈ C is indicated by z.

Let X be a topological space and f : X → R a function. The support of f is the
closure of the non-zeros of f

supp f := {x ∈ X | f(x) 6= 0}. (1.7)

3





2 Neutron Reflectometry

In a neutron reflectometry experiment a beam of neutrons with a well-defined incident
wave vector ~ki ∈ R3 interacts with the sample under investigation. Due to the inter-
actions between the sample and the neutrons, the neutrons are scattered to a different
state with reflected wave vector ~kr (figure 2.1).

In free space, a neutron is represented by a plane wave ψ with a wave vector ~k by

ψ(~k,~r) = ei
~k·~r. (2.1)

As usual, the squared modulus of the wave function |ψ|2 is interpreted as the probability
density of finding the neutron in a given location (~r) and momentum (~k). The interac-
tion of the neutron with the sample is described by the time-independent Schrödinger-
equation [

V (~r)− ~2

2m
∇2

]
ψ = Eψ, (2.2)

where m is the neutrons mass, V is the interaction (scattering) potential, ~ is the reduced
Planck constant and E is the total energy. Assuming elastic scattering (|~ki| = |~kr|), the
total energy equals the kinetic energy of a neutron in free space

E =
~2|~ki|2

2m
. (2.3)

Figure 2.1: Schematic of a reflectometry experiment. Incident neutrons with wave vector ~ki
interact with the sample and are reflected with wave vector ~kr.
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2 Neutron Reflectometry

2.1 Nuclear Scattering Potential

The interaction of a neutron with a nucleus located at position ~R can be described with
the Fermi pseudopotential [22, 23] by

V (~r) =
2π~2

m
bδ(~r − ~R), (2.4)

where δ is the Dirac delta distribution and b is the bound coherent neutron scattering
length. Inside a material with a collection of nuclei j located at ~Rj , the neutron beam
interacts with the sum of nuclear scattering potentials, i. e.

V (~r) =
2π~2

m

∑
j

bjδ(~r − ~Rj). (2.5)

If, instead, assuming a continuous distribution of matter1, the (nuclear) scattering in-
teraction potential V can be expressed as

V (~r) =
2π~2

m
ρn(~r), (2.6)

where ρn is the nuclear scattering length density (SLD) and defined as [24, 25]

ρn = NA

∑
j njbj∑
j njMj

ρdensity. (2.7)

The variable ρdensity denotes the mass density of the material, NA is the Avogadro
constant, Mj is the molar mass, bj is the bound scattering length and nj is the number
of the j-th constituent in a unit volume.

The bound scattering length b = b′ + ib′′ of a nucleus is a complex quantity. It is
related to the scattering and absorption cross section by [14, 26]

σs = 4π|b|2,

σabs =
4π

k
b′′.

(2.8)

The imaginary part b′′ corresponds to the absorption of a neutron by the nucleus. In
neutron reflectometry with cold neutrons (1�A to 10�A) the imaginary part of the SLD
is negligible for most materials; exceptions are e. g. Gd, Eu, Sm and Cd. The real part
b′ describes the magnitude of refraction of the neutron with the material.

For x-rays, the SLD is similarly defined, however, since the incident wave mainly
interacts with the electron cloud of the atoms, the scattering length is [27]

bX-ray = Z + f ′ + if ′′, (2.9)

1In fact, this assumption is supported by simulations with varying discretizations step sizes, i. e. atomic
scale granularity, see figure 2.10.
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2.2 Magnetic Scattering Potential

where Z is the atomic number and f ′, f ′′ are correction terms depending on the specific
atom and x-ray wavelength being used. In comparison with neutron scattering the
absorption effects for x-rays cannot be neglected.

2.2 Magnetic Scattering Potential

Neutrons do not carry any electric charge, however, they have a magnetic dipole moment
~µn which interacts with the atomic magnetic moments in samples. Being spin-1

2 particles,
neutrons have a quantized associated spin angular momentum allowing only two discrete
energy states in a magnetic field ~H (spin-up (+) and spin-down (−)). The two discrete
neutron spin states are parallel to the axis of quantization, which is defined by the
direction of a magnetic field ~H.

The magnetic interaction corresponding to a spin state is described by the Zeeman
energy [25]

Vmag,± = ∓µn| ~B|, (2.10)

where ~B is the magnetic induction and µn ≈ −9.66× 10−27 J/T. The magnetic contri-
bution adds to the total scattering interaction potential Vtotal,

Vtotal = Vnuclear + Vmag,± (2.11)

and a magnetic SLD ρ±m = ∓ m
2π~2µnB is introduced to express the total scattering

interaction by

Vtotal =
2π~2

m

(
ρn + ρ±m

)
=

2π~2

m

(
NA

∑
j njbj∑
j njMj

ρdensity ∓
m

2π~2
µnB

)
. (2.12)

The (total) SLD ρ± is defined as the sum of the nuclear and magnetic SLD

ρ± = ρn + ρ±m. (2.13)

In the following the explicit spin dependence of the SLD is suppressed, i. e. ρ = ρ±.

2.3 Reflection

Substituting the SLD and kinetic energy E =
~2k2i
2m into the Schrödinger-equation (2.2)

yields the three dimensional wave equation

[k2
i,x,y,z − 4πρ+∇2]ψ = 0, (2.14)

where ki,x,y,z is the neutron wave vector in free space and ∇2 =
∑

j
∂2

∂x2j
is the Laplace

operator. If the scattering potential (or equivalently the SLD) varies only along z, no
force along the x and y direction can act on the neutron and the corresponding moments

7



2 Neutron Reflectometry

and wave vectors components are conserved, resulting in a reduction of dimensionality[
k2 − 4πρ+

∂2

∂z2

]
ψ = 0, (2.15)

with k = ki,z.

2.3.1 Helmholtz Equation

Before considering solutions of the wave equation for neutron and x-ray reflectometry,
it is instructive to consider the Helmholtz equation in only one spatial dimension:

∂2ψ

∂z2
= −k2ψ, (2.16)

where k2 is the eigenvalue and ψ the eigenfunction of the equation. Note that the
Helmholtz equation originates from the wave equation in reflectometry (2.15) by re-
moving the scattering potential, i. e.V = ρ = 0. Also the Helmholtz equation is the
time-independent representation of the wave equation

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
= 0 (2.17)

after a separation of variables. Solutions of the Helmholtz equation are of the form

ψ(k, z) = e±ikz. (2.18)

The wave equation in reflectometry can be viewed as a perturbation of the Helmholtz
equation, hence, if the perturbation ρ is of sufficient decay at ±∞ it is plausible that
solutions of the wave equation exist which have the same asymptotics as solutions of the
Helmholtz equation for z → ±∞. The pertubation ρ is sufficiently decaying at infinity
if ‖zρ(z)‖L1(R) <∞ [28].

Indeed, reformulating the wave equation (2.15) as an integral equation at ±∞ yields
the following representation [29] for k 6= 0 called the Jost equation

ψ+(k, z) = e+ikz − 4πk−1

∫ ∞
z

sin (k(z − ξ))ρ(ξ)ψ+(k, ξ)dξ, (2.19)

ψ−(k, z) = e−ikz + 4πk−1

∫ z

−∞
sin (k(z − ξ))ρ(ξ)ψ−(k, ξ)dξ. (2.20)

If ψ solves one of the integral equations then ψ is a solution of the wave equation as well.
The point here is that for sufficiently decaying perturbations ρ the solution ψ± behaves
as e±ikz as z → ±∞.

From a mathematical point of view, these integral equations are of great interest.
They are Volterra type integral equations and a standard method of solving them is by
successive iteration [30], also known as Picard iteration.

8



2.3 Reflection

Figure 2.2: Exemplary SLD distribution of a sample corresponding to equation (2.21).

2.3.2 Reflection Coefficient

The coordinate system of the sample is chosen such that the substrate extends towards
z = −∞ and the top surface is at z = 0. The structure of the sample is depicted in
figure 2.2. More precisely, the structure of the SLD is assumed to be of the form

ρ(z) =


ρ0, z ≤ 0

ρ̂(z), 0 ≤ z ≤ L
0, L ≤ z

(2.21)

with L > 0 denoting the film thickness of the sample.

Trivial solutions of the wave equation (2.15) with a constant SLD are ψ(z) = e±iκz

with κ2 = k2 − 4πρ, which correspond to solutions of the Helmholtz equation with a
shift of the wave vector by the SLD. Hence, in the region z ≥ L with the scattering
potential being zero, the general solution is the superposition of an incident plane wave
with amplitude I traveling to z → −∞ and with a reflected plane wave with amplitude
R propagating to z →∞

ψ(k, z) ∼ Ie−ikz +R(k)eikz, z →∞ (2.22)

The incident amplitude I is usually normalized to 1. The variable R is called the
reflection (coefficient), which is in general a complex quantity and cannot be measured
directly. Likewise, in the region z ≤ 0 the solution ψ behaves asymptotically as

ψ(k, z) ∼ T (k)e−ikn(k)z, z → −∞, (2.23)

where T is the transmitted amplitude and n(k) =
√

1− 4πρ0/k2 is the refractive index
of the substrate for k2 > ρ0.

9



2 Neutron Reflectometry

Figure 2.3: Illustration of the four different situations corresponding to ψ±
±k of the wave equa-

tion (2.15). The solution ψ+ travel trough air and is reflected at the top layer
whereas ψ− travel through substrate and is reflected at the bottom layer. The
change ψk → ψ−k describes a reversal of time.

Proposition 1. Let ψ be a solution of the wave equation (2.15) such that the asymptotics
(2.22) and (2.23) for z → ±∞ hold. Then the reflection for k 6= 0 can be calculated by

R(k) =
2π

ik

∫ ∞
−∞

e−ikzρ(z)ψ(k, z)dz.

Proof. Multiplying equation (2.15) by ϕ(k, x) := e−ikx and integrating gives

4π

∫ b

a
ϕ(k, z)ρ(z)ψ(k, z)dz =

∫ b

a
k2ψϕ+ ϕψ′′dz

=
[
ψ′ϕ+ ikψϕ

]b
a
−
∫ b

a
ϕ′ψ′ + ikψϕdz

=
[
ψ′ϕ− ψϕ′

]b
a

= W [ψ,ϕ](b)−W [ψ,ϕ](a)

where integration by parts was used and the last integral on the right hand side vanishes.
The right hand side is called the Wronskian W and is defined as W [f, g] = f ′g − fg′.
Passing to the limit a→ −∞ and b→∞ yields

4π

∫ ∞
−∞

ϕ(k, z)ρ(z)ψ(k, z)dz = 2ikR(k),

10



2.3 Reflection

Figure 2.4: Illustration of specular reflection from a thin film of thickness L. The neutrons are
polarized along the polarization axis ~P , which is perpendicular to ~q and defined
by the external magnetic guide field ~H. The sample magnetization ~M lies in-plane
and can vary from layer to layer.

since W [ψ,ϕ](b) → 2ikR(k) and W [ψ,ϕ](a) → 0 hold due to the asymptotics of ψ at
z → ±∞. In particular W [ψ,ϕ](b)→W [e−ikx+R(k)eikx, e−ikx] = 2ikR(k) as b→ +∞.
Note that ϕ was chosen to be the solution of the wave equation with ρ = 0. A more
general statement holds even by taking ϕ as a solution of the wave equation (2.15) with
non-zero SLD, see [31, 32].

Assuming elastic and specular scattering, the incidence and reflected wave vector of a
neutron plane wave have the same modulus, i. e. ki = kr = k. The resulting wave vector
transfer qz is then equal to

qz =
∣∣∣~kr − ~ki∣∣∣ = 2kz =

4π

λ
sin θ, (2.24)

where θ is the angle of incidence relative to the samples surface.

The squared absolute value of the reflection R is called the reflectivity |R|2, which is
the quantity measured in reflectometry experiments as a function of the moment transfer
q = qz. In experiments it is measured by

|R|2 =
Number of reflected neutrons

Number of incident neutrons
. (2.25)

As neutrons interact with the magnetic field inside the sample, the reflectivity is
spin-dependent. Thus, polarized neutron reflectometry (PNR) can resolve the samples
magnetization as a function of depth and due to the Halperin effect, only the component
of the film magnetization perpendicular to the neutron wave vector transfer q is probed
[25].

11



2 Neutron Reflectometry

2.3.3 Total Reflection and Critical Wave Vector

Total reflection refers to the physical phenomena when all incoming neutrons are reflected
at the interface of two (non-absorbing) materials. The reflectivity |R|2 is then equal to
1, however, the reflection R itself is an element of the unit circle in the complex plane
and is usually not equal to 1.

Materials with a positive SLD are optically denser than air for neutrons and it is
possible for neutrons to be totally reflected at the interface for a specific critical angle
θc. From Snell’s law, the critical angle is

θc = arccosn(k) ≈ λ
√
ρ/π, (2.26)

where θ is the angle of grazing incidence, i. e. the angle between the neutron beam and the
surface, and n the refractive index of the material for neutrons, which can be expressed
as

n(k) =
√

1− 4πρ/k2. (2.27)

For k2 < 4πρ, the refractive index is extended to n(k) = i
√

4πρ/k2 − 1. Expressing the
critical angle in terms of the critical wave vector results in

qc =
4π

λ
sin θc =

√
16πρ. (2.28)

An alternative way of describing the total reflection is as follows. Total reflection
occurs if the energy of the neutron is not sufficient to penetrate into the sample, i. e. if the
kinetic energy of the neutron is smaller than the scattering potential. This immediately
leads to the equation of the critical wave vector and the refractive index comes from the
difference of the kinetic energy with the scattering potential in the wave equation (2.15),
namely [

k2n2 +
∂2

∂z2

]
ψ = 0. (2.29)

2.3.4 Symmetry of the Reflection

This section shows the symmetry relation R(k) = R(−k) and T (k) = T (−k) if the
scattering potential is real valued, i. e. the sample is non-absorbing. This relation will
be important later in this work for the calculation of the Fourier transform of R as it is
reduced to a simpler cosine or sine transform over only half of the k space.

There is a common misconception of the quantity R(−k). It does not correspond to
the reflection of the “reversed” sample, i. e. the back reflection that is measured when
“flipping” the sample upside down. R(−k) rather corresponds to the mathematical
extension of the reflection to negative wave vector transfers, which are in general not
possible to measure.

The wave equation (2.15) has in general two solutions as it is a second order linear
differential equation. A specific solution is specified by the asymptotic behavior as
z → +∞ or z → −∞. As previously stated, the two solutions of the wave equation

12



2.3 Reflection

satisfy either one of the following integral equations

ψ+
k (z) = e+ikz − 4πk−1

∫ ∞
z

sin (k(z − ξ))ρ(ξ)ψ+
k (ξ)dξ,

ψ−k (z) = e−ikz + 4πk−1

∫ z

−∞
sin (k(z − ξ))ρ(ξ)ψ−k (ξ)dξ.

(2.30)

The solution ψ+ corresponds to the reflectometry setup, when the neutrons impinge
on the surface (top), whereas ψ− corresponds to the reversed case, when the neutrons
travel through the substrate and impinge on the flipped sample (bottom). See figure 2.3
for an illustration of the described situations. From a mathematical point of view, ψ−

originates from ψ+ when changing ρ(z)→ ρ(−z) in the integral equations (2.30). Hence,
ψ− is also called the reversed wave ψ+ as it originates by simply reversing ρ.

Furthermore, the wave equation is invariant under the change k → −k since k appears
as a squared quantity in the wave equation. This property can be verified with the
integral equations as well. Thus there are two additional solutions ψ+

−k and ψ−−k. The

wave ψ+
−k is thus called the mirrored wave of ψ+

k since it originates by mirroring the z axis
(in principle a reversing of ρ is required as well, but this makes the naming convention
unnecessarily complicated). The four solutions are linearly dependent as the solution
space is only two dimensional. Thus, it is possible to find coefficients α+

k , β
+
k ∈ C such

that

ψ−k = α+
k ψ

+
k + β+

k ψ
+
−k. (2.31)

Setting it equal with the asymptotic solution in (2.22) and (2.23) yields

ψ(k, z) = T (k)ψ−k (z) = 1ψ+
−k(z) +R(k)ψ+

k (z). (2.32)

After dividing by T , one finds the following relations for the reflection and transmission
coefficient

β+
k =

1

T (k)
, α+

k =
R(k)

T (k)
. (2.33)

To derive the symmetry of R and T , it is sufficient to show that α+
k = α+

−k and

β+
k = β+

−k holds.

Taking the complex conjugate of the integral equations (2.30) will result in exactly the
same integral equation when replacing k → −k if the SLD ρ is real. Since the equation

has a unique solution, it follows that ψ±k = ψ±−k and thus the symmetry of R and T
follows immediately when considering equation (2.31) as well.

2.3.5 Conservation of Probability and Number of Neutrons

For a non-absorbing material the number of incident neutrons should equal the number
of transmitted plus reflected neutrons. In terms of the reflection and transmittance
coefficient, the following equation holds

13



2 Neutron Reflectometry

1 = |R(k)|2 + |T (k)|2. (2.34)

This equation can also be read from a probabilistic point of view, stating that the
total probability of finding a neutron being reflected or being transmitted is equal to
unity.

Before stating a proof of the conservation of neutrons, a simple fact about the Wron-
skian is needed. The following lemma states that for solutions of the integral equations
(2.30) the wave ψ+

k and the mirrored wave ψ+
−k are linearly independent and the Wron-

skian can be calculated explicitly for these solutions.

Lemma 1. Let f, g be two solutions of the wave equation (2.15) for a fixed k ∈ R \ {0}
with a real-valued ρ. The Wronskian W [f, g] is constant and the integral equation solu-
tions ψ+, ψ− satisfy W [ψ±k , ψ

±
−k] = ±2ik.

Proof. Taking the derivative of W [f, g] and observing that f and g solve the wave equa-
tion gives

∂zW [f(z), g(z)] = f ′′(z)g(z)− f(z)g′′(z)

=
(
4πρ(z)− k2

)
f(z)g(z)− f(z)

(
4πρ(z)− k2

)
g(z) = 0.

Hence, the Wronskian is constant in the limit z → +∞ as well and the solutions ψ+
k and

ψ+
−k yield

W [ψ+
k , ψ

+
−k] = lim

z→∞
W [ψ+

k (z), ψ+
−k(z)] = lim

z→∞
W [eikz, e−ikz] = 2ik.

By taking the limit z → −∞, the Wronskian of ψ−±k evaluates toW [ψ−k , ψ
−
−k] = −2ik.

The value of the Wronskian corresponds to the frequency difference of ψ+
k and ψ+

−k
which is to be expected since the waves have an asymptotic angular frequency of ±k.
This result allows to relate the Wronskian of ψ−±k with the Wronskian of ψ+

±k by the

coefficients α+
±k and β+

±k, which determine R and T .

Proposition 2. Let ρ be a real-valued SLD. Then the total number of neutrons is con-
served for any k ∈ R \ {0}

|T (k)|2 + |R(k)|2 = 1.

Proof. As shown in section 2.3.4, the solutions ψ−±k are a linear combination of ψ+
±k, and

the Wronskian is by Lemma 1 given as

−2ik = W [ψ−k , ψ
−
−k] = W [α+

k ψ
+
k + β+

k ψ
+
−k, α

+
−kψ

+
−k + β+

−kψ
+
k ]

= α+
k α

+
−kW [ψ+

k , ψ
+
−k] + β+

k β
+
−kW [ψ+

−k, ψ
+
k ]

= 2ik
(
|α+
k |

2 − |β+
k |

2
)
,

since α+
k = α+

−k and β+
k = β+

−k. Thus, |β+
k |

2 = 1 + |α+
k |

2 and the proposition follows by

the relations T (k) = 1/β+
k and R(k) = α+

k /β
+
k .
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2.4 Born-Approximation

Exact dynamical Theory Born-Approximation

Figure 2.5: Illustration of the dynamical theory (exact) and the BA. The wave vector kni and
knr the incidence and reflected wave from layer n, respectively.

In the context of the inversion of the reflection, i. e. retrieving the scattering potential
from the reflection, the transmission coefficient does not need to be measured. The
transmisson coefficient is related to the reflection: The modulus is computed by |T (k)| =√

1− |R(k)|2 and the phase of the transmission can be computed by methods of complex
analysis [33].

2.4 Born-Approximation

The above calculations are exact but not appropriate for making the transformation
from real to reciprocal space transparent. For a better understanding of the reflection
and reflectivity the (kinematic) Born-Approximation (BA) can be used. The gist of the
BA is that the reflection can be expressed as the Fourier transform of the SLD.

The BA assumes that the solution ψ of the wave equation is not substantially distorted
from the plane wave (2.1). In particular, the BA assumes the following [27]

1. No multiple reflections

2. The effects of refraction are neglected

3. The reflection is proportional to the variation in the SLD

The reflection is then computed by replacing ψ with the undistorted plane wave e−ikx

in the integral (1). The reflection is then just a Fourier transform of the SLD

R(q) =
4π

iq

∫ ∞
−∞

ρ(z)e−iqzdz =
4π

iq
F [ρ](q), (2.35)

where q = 2k is the wave vector transfer, see equation (2.24).

The assumptions for the BA are valid for large q values. However, as q → 0 the solution
of the wave equation is substantially distorted from the free form by multiple reflections
inside the sample or by total reflection at the top surface. Thus, for q being close to
the critical wave vector transfer qc, the BA fails to approximate the true reflection.
In particular, the reflection diverges to infinity at q = 0 in the BA, whereas the true
reflection is always bounded by one.
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Figure 2.6: Comparison of the reflectivity computed using the BA and the exact dynamical
theory of Si/[Au(50 �A)/Pt(50 �A)]5/air. The inset shows the SLD of the multilayer
sample used for the calculation of the reflectivity.

Figure 2.6 depicts the reflectivity computed by the BA and computed by the exact
dynamical theory for an exemplary multilayer system. At small q, the assumption of an
undistorted plane wave in the BA is violated, resulting in a significant mismatch of both
curves. For large q, the BA is a good approximation to the dynamical theory.

If the SLD is continuously differentiable one can easily see by integration by parts
that the reflection is only due to variations in the SLD. The derivative ρ′(z) completely
determines the reflection

R(q) =
−4π

q2

∫ ∞
−∞

ρ′(z)e−iqzdz (2.36)

and the reflectivity is expressed as

|R(q)|2 =
16π2

q4

∣∣F [ρ′](q)
∣∣2 , (2.37)

where F denotes the Fourier transform operator. For qc � q the reflectivity asymptoti-
cally decays as ∼ 1/q4 for a continuously differentiable SLD. If the SLD is even smoother,
i. e. k times continuously differentiable, the reflectivity decays as ∼ 1/q2k+2 for q →∞.

2.4.1 Estimation of the Layer Thickness

Reflectometry can determine the thickness of individual layers inside a sample. The
reflection may exhibit oscillations, called Kiessig fringes [34, 35], which correspond to
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2.4 Born-Approximation

the thickness L of a layer inside the sample by

∆q =
2π

L
. (2.38)

This relation between the period ∆q and the layer thickness L can easily be shown using
the BA. For this purpose consider the case of a single layer on a substrate:

ρ(z) =


ρ0, z ≤ 0

ρ1, 0 < z ≤ L
0, otherwise

(2.39)

where L > 0 is the thickness of the top layer and ρ0, ρ1 are the SLDs of the substrate
and the top layer, respectively. The SLD can be equivalently expressed by

ρ(z) = ρ1Θ(L− z)− (ρ1 − ρ0)Θ(−z), (2.40)

where Θ denotes the Heaviside function.

The Fourier transform of the Heaviside function Θ does in principle not exist, however,
by taking the average one can show that F [Θ(z)](q) = 1

iq . Here, a δ-distribution at z = 0,
which is responsible for the correct offset in the ordinate of the transform, is ignored
since it is not influencing the following calculations. The reflection R is

R(q) = 4π

(
ρ1
eiLq

q2
− ρ1 − ρ0

q2

)
. (2.41)

The oscillations by the first term are caused by the top layer and the frequency corre-
sponds to the layer thickness L and equation (2.38) holds.

2.4.2 Bragg Peaks from Multilayer Repetitions

If the SLD contains repetitive features, the reflectivity exhibits Bragg peaks which orig-
inate from constructive interference. The Bragg equation [36]

2d sin θ = nλ (2.42)

relates the thickness of a bilayer d to the angle θ and wavelength λ for the Bragg order
n ∈ N. In terms of the wave vector transfer, the Bragg equation can be expressed as

q =
2πn

d
. (2.43)

Hence, the Bragg peaks for neutron and x-ray reflectivity are always at the same q value
in the BA. However, some of the possible Bragg peaks will vanish due to destructive
interference. figure 2.6 shows an example of such a situation with a repetitive multilayer

structure with length scale d = 100�A. Only for q = 2π(2n+1)
d ≈ (2n+ 1)0.0628�A−1

there
is constructive interference, resulting in Bragg peaks.
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Figure 2.7: Schematic illustration of a SLD for a sample with m bilayers on a substrate. Each
bilayer consists of two layers with thicknesses d1 and d2, and is represented by the
bilayer function B. Bj is the function which is shifted by j(d1 + d2) to the right.

To understand this feature in more detail consider the following sample SLD ρ with
m ∈ N repetitive bilayers B

ρ(z) = (ρ0 − ρ2)Θ(−z) +
m∑
j=1

Bj(z) + ρ2Θ(md− z), (2.44)

where Bj(z) = ∆ρΘ(jd− z)−∆ρΘ(jd−d1− z) is a single bilayer representation shifted
by jd = j(d1 + d2) to the right with d1, d2 being the thicknesses and ρ1, ρ2 being the
SLDs of the first and second layer of the bilayer. The difference ∆ρ = ρ1 − ρ2 describes
a jump from the first to the second layer inside the bilayer. The value ρ0 is the SLD of
the substrate.

The definition represents the repetitive structure quite well: The sample has three
components where the second component corresponds to m bilayers. The first and
third component are nuisance terms which are included for completeness. The first term
corresponds to the jump from the bilayer to the substrate ρ2 → ρ0. The third term is the
jump from air to the bilayer 0 = ρair → ρ2. More precisely, the jump is ρair → ρ1, hidden
in the summation term of the bilayer. This subtlety allows “nice” ρ to be formulated:
The sample consists of just a single layer of thickness md and the bilayer is merely a
variation on top of the single layer. Figure 2.7 illustrates the sample description.

To calculate the reflection in the BA the Fourier transform of each component of
the SLD is required. Recall that the Fourier transform of the Heaviside function is
F [Θ(z)](q) = 1

iq . The Fourier transform of a single bilayer is F [Bj ](q) = − 1
iq∆ρeijdq +

1
iq∆ρeiq(jd−d1) by the translation2 and scaling3 property of Fourier transforms. Multi-

2F(f(z − d))(q) = e−idqF(f(z))(q)
3F(f(−z))(q) = F(f(z))(−q)
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Figure 2.8: Rough interface with height variation z(x, y) around z = 0. The right figure shows
the histogram of the height variation and its height density H (red curve).

plying the reflection with q2 results in

q2

4π
R(q) =∆ρ(1− e−id1q)

m∑
j=1

eijdq (2.45a)

+ (ρ0 − ρ1) + ρ2e
imdq. (2.45b)

The second term (2.45b) corresponds to the scattering from the substrate and from
the total film thickness md. The first term (2.45a) contains the Bragg peak oscillations.
The leading factor (1− e−id1q) describes the scattering from the structure of the bilayer,
i. e. the scattering inside a bilayer. This factor is responsible for the elimination of Bragg
peaks if d1q = 2πn for a n ∈ N. The sum in (2.45a) expresses the interference of the m
bilayers as a whole and generates all possible Bragg peaks as it is periodic with period
dq = 2πn. Due to the periodicity of both terms, the following condition has to be fulfilled
for a Bragg peak at q of order n ∈ N to exist

q =
2πn

d
and q 6= 2πn

d1
. (2.46)

These conditions explain the Bragg peaks in figure 2.6: Every second Bragg peak
is eliminated, since the bilayer consists of two layers with exactly the same thickness:
d = 100�A and d1 = d2 = 50�A.

2.4.3 Roughness

The surface and interfaces of thin films are not perfectly flat, but exhibit variations, aka
roughness, which has to be taken into account in modeling reflectometry experiments.
Due to its complexity, a complete and precise description of the geometrical aspect of
an interface is typically unknown such that a statistical characterization, like the height
distribution or correlation (see [37]) is usually used.
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2 Neutron Reflectometry

The influence of roughness in specular reflectometry is estimated by averaging the
reflectivity |R(q)|2 over the x−y plane using a roughness degraded SLD substitute ρrough:
At an virtual interface, arbitrarily chosen at z = 0, the quantity z(x, y) is the height
above the interface and H is its probability density (figure 2.8). The (local) convolution
of H with the original SLD ρ is then used as ρrough which acts as an averaging.

The main parameter influencing the reflectivity is the root-mean-square (rms) rough-
ness σ which is defined by the variance of the height density H [38]

σ2 = VarH =

∫
R
z2H(z)dz. (2.47)

The roughness dampens the oscillations in the reflectivity. If the height density is as-
sumed to be a normal distribution, the damping factor is called the Névot-Croce factor
[39], which is in the BA given by [27]

e−σ
2q2/2. (2.48)

This factor resembles the Debye-Waller factor which describes the attenuation of inten-
sity for elastic scattering in crystals by thermal motion [27, 40, 41]. The Névot-Corce

factor is also evident when considering equation (2.36) with Gaussian functions e−z
2/2σ2

j

as ρ′. As the class of Gaussian functions is invariant under Fourier transforms, the

reflection contains oscillations of the form eiqdje−σ
2
j q

2/2 for each layer j.

2.5 Dynamical Theory

The BA is useful for a qualitative understanding of the reflectivity but fails to be precise
enough for a quantitative calculation, especially for wave vector transfers q close to the
total reflection edge (figure 2.6). Instead, the exact method to calculate the reflection is
the Dynamical Theory. In this chapter, the Abelès matrix formalism [42] in reflectometry
will be derived, which is crucial for deriving phase-sensitive PNR.

Another method to calculate the reflection is the Parratt algorithm [43]. This method
relates the intensity of the reflected neutrons with the reflection from one layer below,
creating a recursive relation. Both methods, the matrix and Parratt algorithm, yield the
exact same reflection. However, the matrix method is used more often in practice for
the following reasons: Parallelization of the Parratt algorithm is possible, but will likely
not yield a speed-up in computation time as each recursion step cannot be computed
independently of the previous one. In contrast, the matrix method is merely a multipli-
cation of multiple 2×2 matrices where each matrix corresponds to a layer in the sample.
Parallelization is possible [44], but it is usually not done as the time of distributing the
work load exceeds the gain of parallelization4. One of the major benefits is the possibility
to distribute the computation of the reflection for different sample models on a graph-

4Multiplication of two 2×2 matrices can be explicitly written out and the overhead of using a dedicated
library like basic linear algebra subprograms (BLAS) slows down the computation. But for larger
matrices a parallelization can yield a significant gain in computing speed.
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2.5 Dynamical Theory

ical processing unit (GPU) and simultaneously evaluate them. The recursive nature of
the Parratt algorithm is problematic for GPUs as some frameworks (OpenCL5) do not
support recursion and an efficient pipelining of the calculations cannot be achieved.

2.5.1 Matrix Method

The SLD is approximated by a step function, i. e. piecewise constant function, and each
step corresponds to a slab (or layer). As shown in section 2.3.2, the solution of the
wave equation (2.15) the superposition of a reflected and transmitted wave in a slab of
constant SLD. Thus, the full solution is the sum of each particular solution in its slab:

ψ(k, x) =

N∑
j=1

ψj(k, z)χSj (z)

=
N∑
j=1

(
rj(k)eikn(k,z)z + tj(k)e−ikn(k,z)z

)
χSj (z)

(2.49)

where rj and tj are the amplitudes of the reflected and transmitted wave, respectively,
and χSj denotes the indicator function on the slab Sj . The slabs Sj = [zj , zj−1) with
−∞ = zN < zN−1 < · · · < z2 < z0 < z−1 = ∞ are chosen such that ρ(z) and the
refractive index n(k, z) =

√
1− 4πρ(z)/k2 are constant for each slab Sj . The indicator

function in equation (2.49) assures that only one ψj actually contributes to ψ for a
specific depth z. The slabs Sj are chosen such that they exactly cover the whole space

R =
⋃̇N

j=1Sj and do not overlap Sj ∩ Si = ∅ for i 6= j. The ordering of the slabs starts
with the top slab and ends with the substrate: S0 corresponds to the air slab and SN is
the substrate slab. Figure 2.9 depicts the slab model.

The general shape of the solution is already known, only the amplitude rj , tj of the
waves are missing. From a mathematical point of view, these amplitudes have to be
appropriately chosen such that ψ is twice continuously differentiable in order for ψ to be
a classical solution to the wave equation. This can be achieved by enforcing continuity
of ψ and ψ′ at the interfaces zj . The continuity of ψ′′ is automatically given by the
continuity of ψ. The differentiability condition inside each slab is trivially fulfilled as ψj
is simply the sum of exponential functions.

The physical reasoning for the continuity of ψ at the interfaces is the conservation of
the number of neutrons (for non-absorbing materials) and the conservation of momentum
requires the derivative to be continuous ψ′j(zj) = ψ′j+1(zj) as well. These conditions
relate the transmission and reflection amplitudes from slab j with the ones from slab
j + 1 and can be expressed in matrix form by(

tj
rj

)
=

1

2n(zj)

(
pje
−ikmjzj −mje

ikpjzj

−mje
−ikpjzj pje

ikmjzj

)(
tj+1

rj+1

)
(2.50)

5at least in versions prior 2.0

21



2 Neutron Reflectometry

S0	=	[z0,	∞)

z	=	z0
z	=	z1
z	=	z2

z	=	zN-2
z	=	zN-1

tN-2 rN-2
rN-1

r2

r1

r0t0

tN

tN-1

t2

t1

.	.	.

.	.	.
S1	=	[z1,	z0)

S2	=	[z2,	z1)

SN-1	=	[zN-1,	zN-2)

SN	=	(-∞,	zN-1)

z

x,	y

Figure 2.9: Schematic illustration of a slab model. tj and rj are the transmission and reflection
amplitudes of a plane wave inside slab Sj . The substrate and incident medium
correspond to the slab SN and S0, respectively.

with
mj := n(zj+1)− n(zj) and pj := n(zj+1) + n(zj). (2.51)

The matrix (including the prefactor) appearing in equation (2.50) is denoted by Tj+1

and called the transfer matrix. The transfer matrix Tj+1 transforms the reflection and
transmission from slab j to the next slab j+ 1 and successive application of the transfer
matrices finally gives(

t0
r0

)
= T1T2 · · ·TN

(
tN
rN

)
=

(
T11 T12

T21 T22

)(
tN
rN

)
. (2.52)

As the substrate is assumed to be infinitely thick, there will be no reflection back from
the substrate itself, allowing to set the reflection rN = 0. The reflection R is the ratio
of the reflected to the incident amplitude and is calculated by

R =
r0

t0
=
T21

T11
. (2.53)

To finish this paragraph, some remarks about the transfer matrix Tj and the numerical
discretization have to be said which justify the selection of the step-wise approximation
of the SLD:

1. Similar as in the BA, the transfer matrix is only sensitive to changes or variations
in the SLD, which can be seen in the definition of mj and pj : If the SLD does not
vary between two slabs, the transfer matrix Tj degenerates to the identity matrix
as mj = 0 and pj = 2n(zj).
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2.5 Dynamical Theory

2. A refinement of the slabs, i. e. passing to a finer grid while the SLD approximation
stays fixed, does not change the reflection since the additionally introduced transfer
matrices are identity matrices. In other words the calculation of the reflection using
the matrix method is independent of the selection of the slab grid (but depends
on the SLD approximation).

3. The matrix method shown here can be understood as a numerical discretization
of a continuous6 matrix evolution [45]. With finer and finer approximations of the
stepwise ρc to the exact ρ, the step solution ψc converges to the exact solution ψ
of the wave equation. Similarly, the reflection computed by the matrix method
converges to the exact reflection with finer grids. This will be elaborated in the
next section.

2.5.2 Continuous Matrix Method for the Wave Function

Here, we will develop an alternative matrix method relating the wave function inside the
sample with the wave function outside the sample, instead of relating the transmission
and reflection amplitude inside the sample with the amplitudes outside the sample. The
major advantage of the different approach is a “nicer” structure of the transfer matrix,
that will later help establishing a relation to retrieve the phase information. In particular
it will be shown later, that the unimodularity of the transfer matrix helps to reduce the
number of required measurements to two for a phase retrieval [46]. To establish the
improved matrix representation, denote the vector consisting of the wave function and
its derivative by

Ψ(k, z) =

(
ψ(k, z)

k−1∂zψ(k, z)

)
. (2.54)

If there exists a transfer matrix T (k, z) which transfers the wave function from outside
the sample z = L to some depth z inside the sample, it has to satisfy the following
relation of the wave function and its derivative

Ψ(k, z) = T (k, z)Ψ(k, L). (2.55)

The transfer matrix is the central object of interest in this approach as it enables to di-
rectly compute the wave function. The transfer matrix itself satisfies a linear differential
equation of first order. The differential equation stems from the wave equation (2.15)
with the usual method of reducing a second order to a first order differential equation:

∂zT (k, z) =

(
0 k

4πρ(z)
k − k 0

)
T (k, z) (2.56)

with the initial condition T (k, L) = 12, assuring consistency of equation (2.55). The
transfer matrix T is uniquely determined for each k by the differential equation as long

6Continuity in the sense that the transfer matrix depends on the spatial variable z and is continuous
in z. It can thus predict the reflection and transmission at any depth z in the sample with arbitrary
(non-stepwise) SLD
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2 Neutron Reflectometry

as ρ′ is bounded7 by the Picard–Lindelöf theorem. Plugging the asymptotic behavior of
ψ (see equations (2.22) and (2.23)) into equation (2.55) one can solve for the reflection
R. A subsequent rationalizing of the complex denominator (assuming a non-absorptive
potential) results in the reflection coefficient being

R = e−2infL
(n2
fn

2
bT 2

12 + n2
fT 2

22)− (n2
bT 2

11 + T 2
21) + 2i(nfn

2
bT11T12 + nfT21T22)

(n2
fn

2
bT 2

12 + n2
fT 2

22) + (n2
bT 2

11 + T 2
21) + 2nfnb

, (2.57)

where nf and nb are the refractive indices of the fronting and backing material, respec-
tively. Notice that the formula stated here differs from the literature [45, 46] because
(i) the exponential prefactor expresses a shifted (by z → z − L) sample description and
(ii) the time is reversed (k → −k) which results in a change of the sign of the imagi-
nary part (see section 2.3.4). The exponential prefactor vanishes when considering the
squared modulus of the reflection as it has unit length and in phase reconstruction it
only appears when using a shifted coordinate system. Hence, this prefactor is usually
ignored.

The transfer matrix has a multiplicative property [45], similar to the matrix multi-
plication as in the previous section: Consider an arbitrary cut at z = z1 < L in the
SLD

ρ(z) =

{
ρ2(z), z < z1

ρ1(z), z1 ≤ z
. (2.58)

The transfer matrix T1 for the fronting ρ1 transfers the initial wave function to the inside
in the film Ψ(k, L−z1) = T1(k, L−z1)Ψ(k, L) and similarly, the transfer matrix T2 (with
adjusted initial conditions) transfers the wave function deeper z < z1 into the sample
Ψ(k, z) = T2(k, z)Ψ(k, L−z1). The resulting wave function can then be expressed as the
matrix multiplication of the two transfer matrices Ψ(k, z) = T2(k, z)T1(k, L− z1)Ψ(k, L)
and because of the uniqueness of the transfer matrix, the multiplicative property follows

T (k, z) = T2(k, z)T1(k, L− z1). (2.59)

This means that the transfer matrix for the whole film is just the product of transfer
matrices of the parts. Neither the concrete shape of ρ(z) nor the position of the cut at z1

play a role in the deviation, and, consequently, the transfer matrix can be decomposed
into a matrix multiplication based on any partitioning {zi}Ni=1 (with zi < zj for i > j)
of the SLD

T (k, z) = TN (k, z)TN−1(k, zN−1 − zN ) · · · T2(k, z1 − z2)T1(k, L− z1). (2.60)

The multiplicative property of the transfer matrix is of great importance. It can be
used to approximate the exact reflection by the reflection of a series of slab profiles, en-
abling a relatively simple and fast algorithm for computing the reflection. Furthermore,
the multiplicative property is the starting point in the deviation of the phase reconstruc-

7global Lipschitz-continuity is generally sufficient
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2.5 Dynamical Theory

tion algorithm, since any sample can be split into known and unknown segments, where
each is represented by a transfer matrix.

As previous stated, the unimodularity (determinant is of unity) of the transfer matrix
will help to reduce the required measurements for a phase retrieval. The unimodularity
of the transfer matrix is an intrinsic property of the continuous transfer matrix itself
and is not a property of a discrete representation.

Lemma 2. Let T (k, z) be the solution of the transfer matrix evolution equation (2.56)
with initial condition T (k, L) = 12. Then the determinant of T (k, z) is independent of
z and, in particular, det T (k, z) = 1 for all z.

Proof. The statement of the lemma easily follows by taking a look at the derivative of
the determinant

∂z det T (k, z) = T ′11T22 + T11T ′22 − (T ′12T21 + T12T ′21).

As the transfer matrix satisfies equation (2.56), it follows (suppressing the dependence
of k and z for easier reading)

∂z det T = kT21T22 +

(
4πρ

k
− k
)
T11T12 −

[
kT22T21 +

(
4πρ

k
− k
)
T12T11

]
= 0.

Thus the determinant of T is independent of z and the initial condition guarantees the
unimodularity.

2.5.2.1 Transfer Matrix for Step Profiles

An analytic expression for the transfer matrix is in general not possible. The transfer
matrix is just a reformulation of the wave equation, and an analytic expression of the
transfer matrix is equivalent to solve the wave equation for arbitrary scattering poten-
tials. However, with a step function approximation of the SLD the transfer matrix can
be exactly computed. To start, let the SLD be of the following step-like form

ρ(z) =

N∑
j=1

ρjχSj (z) (2.61)

where Sj = [zj , zj−1) is again the interval of the slab j. The solution of the wave
equation with a constant SLD is of exponential form (see section 2.3.2) and with the
initial conditions, it follows that the transfer matrix of the j-th slab is

Tj(k, z) =

(
cos knjz n−1

j sin knjz

−nj sin knjz cos knjz

)
with nj =

√
1− 4πρj/k2, (2.62)

where ρj is the SLD of the j-th slab. Again, notice that solving the “evolution” equa-
tion (2.56) for the transfer matrix is equivalent to solving the wave equation with the
given constant SLD. Now, the complete transfer matrix is just by the multiplicative
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2 Neutron Reflectometry

property (2.60) the multiplication of the transfer matrices of each slab representation,
and consequently, the full transfer matrix takes the form

T =
1∏

j=N

(
cos knjdj n−1

j sin knjdj
−nj sin knjdj cos knjdj

)
, (2.63)

where dj = zj−1 − zj is the thickness of the j-th slab.

Notice that the order of multiplication has changed compared to equation (2.52). Here,
the transfer matrix moves the wave function deeper into the sample (from the surface
to the substrate), whereas the matrix method of section 2.5.1 moves the wave function
in the opposite direction, i. e. a multiplication from the left corresponds to moving the
wave function towards the samples surface.
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Figure 2.10: Influence of the discretization step size dz of the step profile approximation on the
calculated reflectivity. The upper graph shows the reflectivities calculated by the
step profile shown below. The reflectivities are shifted by one order of magnitude
and the SLDs are vertically shifted by two units for reasons of clarity.
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The step profile can be interpreted as a numerical approximation of the continuous
profile. In the limit of finer discretizations of the step profile, the approximated transfer
matrix converges to the continuous transfer matrix. The reflection can thus be approxi-
mated in equation (2.57) by replacing the continuous transfer matrix with the step-like
approximation.

Figure 2.10 shows simulated reflectivities with various discretization step sizes. The
SLD was generated from a Si/Fe(100�A)/Cr(100�A)/Pt(100�A)/Air sample with step sizes
dz = 5�A, 1�A, 0.5�A and 0.1�A. Even the very coarse 5�A grid yields good results

compared with the finest grid dz = 0.1�A. Only at the dips at q = 0.34�A−1
and around

q = 0.5�A−1
, a slight deviation can be observed. An even finer discretization than

dz = 0.1�A does not yield any observable difference in the reflectivity. A reasonable
choice of the discretization size is between 0.1�A to 1�A as atomic lattice constant are in
the order of a few angstroms and the depth resolution is of comparative magnitude for
PNR experiments.

2.5.2.2 Reversing the Sample

The continuous transfer matrix exhibits another remarkable property if the sample is
reversed in space, i. e. ρ(z) → ρ(L − z). Namely, the diagonal entries of the transfer
matrix are just interchanged while the off-diagonal entries are not affected [45].

In fact, this property can easily be proven by using the decomposition of the transfer
matrix into multiple step transfer matrices. The reversed transfer matrix T rev is simply
the reversed matrix multiplication of the individual step transfer matrices

T =
1∏

j=N

Tj
inversion of←−−−−−→

order
T rev =

N∏
j=1

Tj . (2.64)

The matrix multiplication is in general not commutative T 6= T rev but a switching of
the diagonals can recover the equality. To prove that, first the notion of an interchanged
matrix is required.

Definition 1 (Interchange of diagonal entries). Let A ∈ R2×2 be any matrix. The

interchanged matrix
←→
A is the matrix with interchanged diagonal entries, i. e.

A =

(
a11 a12

a21 a22

)
⇒
←→
A =

(
a22 a12

a21 a11

)
. (2.65)

The following lemma is the crucial feature of a transfer matrix to show the connection
of T rev with T . It states that an inversion of order of a matrix multiplication of transfer
matrices acts like an interchange of diagonal entries and vice versa.

Lemma 3. Let A,B ∈ R2×2 be transfer matrices of the form in equation (2.62). Then
it follows that ←−→

A ·B =
←→
B ·
←→
A = B ·A.
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2 Neutron Reflectometry

Furthermore, for the product of N ∈ N transfer matrices Tj, j = 1, . . . , N it holds that

←−−→
N∏
j=1

Tj =
1∏

j=N

Tj .

Proof. The claim follows from a simple computation of the matrix multiplication, while
observing that any transfer matrix is invariant under interchanging diagonal entries,

i. e.
←→
A = A or equivalently a11 = a22. Then it follows that

←−→
A ·B =

←−−−−−−−−−−−−−−−−−→(
a11 a12

a21 a22

)
·
(
b11 b12

b21 b22

)
=

←−−−−−−−−−−−−−−−−−−−−−−−−−→(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
=

(
a21b12 + a22b22 a11b12 + a12b22

a21b11 + a22b21 a11b11 + a12b21

)
=

(
a21b12 + a11b11 a11b12 + a12b22

a21b11 + a22b21 a22b22 + a12b21

)
= B ·A =

←→
B ·
←→
A ,

where the equation with the star follows from a11 = a22 and b11 = b22.

The second claim follows by induction over N . In fact, the base case is shown above
and the induction step is trivial.

Now, by applying Lemma 3 on T =
∏1
j=N Tj and identifying T rev with ρ(L− z) one

has the following corollary.

Corollary 1. By reversing the sample, i. e. ρ(z) → ρ(L − z), only the diagonal entries
of the corresponding transfer matrix are interchanged. It holds that

←−→
T rev = T .

2.5.2.3 Extension of the Reflection

The theory established so far for the reflection and transmission coefficients only holds
for k 6= 0. The case k = 0 is special as it does not describe a scattering of a neutron on a
thin film. However, one can still continuously extend the reflection R and transmission
T at k = 0 and the asymptotic behavior of the solution ψ changes its meaning.

Here, a vague argumentation of R(0) = −1 and T (0) = 0 is given. A rigorous proof,
relying on a modified scattering matrix, can be found in [33]. The transfer matrix (see
equation (2.63)) representation of a constant SLD is used for a single slab. A single
transfer matrix, and thus the product of all matrices asymptotically behave as

T ∼
(

1 −ik
ik−1 1

)
as k → 0 (2.66)

since n(k) ∼ ik−1, if all the involving constants are ignored as they do not change the
limit and only make the deviation more tedious. Plugging the asymptotic transfer matrix
into the reflection (2.57) with air as a fronting material (nf = 1) yields the following
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asymptotics

R(k) ∼ 1 + k−2 − 2k−1

1− k−2 + 2ik−1
∼ −1 + k

1 + k2
+
−k + k2

1 + k2
i as k → 0. (2.67)

It is now easy to see that R(k)→ −1, ImR(k)→ 0− and similarly T (k)→ 0 as k → 0.
Notice that these limits are all independent of the sample. The asymptotic solutions
behave now as ψ ∼ 0 as z → ±∞, meaning, that no scattering has occurred.

Alternatively, the limit of R can be shown by using the Fresnel formula [47]

R =
cos θi − n cos θt
cos θi + n cos θt

→ 1− n
1 + n

(2.68)

in the limit θi, θt → 0.
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3 Data Analysis Techniques for
Reflectometry

Reflectometry measurements are traditionally analyzed by setting up a physical model
and optimizing the parameters of the model such that a specified objective function1

is minimized. This approach heavily depends on the selection of the physical model.
Furthermore, the optimized parameters are usually not unique, in the sense that there
might exist a different set of parameters which describes the reflectometry data equally
well. Finally, as there does not exist an algorithm for finding a global2 minimum for
non-linear objective functions, and as the search space usually exhibits multiple local
minima, the final solution depends on the initial guess of the researcher and the amount
of computing time allocated for the algorithm to search for an optimum.

In contrast, a model-free approach by using the phase of the reflection determines
the SLD of the sample uniquely [33], assuming that bound states (see section 3.2.1) do
not exist. This method does not rely on any minimization algorithm to search for a
minimum point nor does it require any a priori knowledge of the sample. Instead the
data analysis is straightforward as shown in section 3.2 and section 3.3. However, the
retrieval of the phase information is not trivial and requires significant effort. Further-
more the degradation of real PNR data by various effects like resolution, background or
measurement noise has to be considered (section 3.4).

3.1 Data Fitting

In data fitting, the goal is to find a set of parameters Θ, which best describes the
measured system. In the context of reflectometry, the measured system is the reflectivity3

R2(q) as a function of wave vector transfer q. The physical model is constructed as a
slab system (or layer system) of which each layer has a defined thickness and density
(or more generally the SLD if the chemical composition is not precisely known). At
each interface of two layers, a roughness or interdiffusion parameter can additionally be
applied. The substrate and the incident media (typically air) of the sample are modeled
with a semi-infinite thickness. The vector Θ contains all these information and it is the
central object of interest.

1referred to as cost function, figure-of-merrit or goodness-of-fit
2Algorithms for finding local optimal points do exist, but usually do not guarantee a global minimum;
only if additional constraints on the objective function or search space are given, e. g. strict convexity
of the objective function.

3By abuse of notation, the reflectivity is denoted as R2 instead of the correct |R|2 to simplify the
following formulas
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The description of the system by means of the parameter vector Θ is quantitatively
evaluated by an objective function f . The relation between the optimal parameter vector
Θ and the objective function is

Θ = arg min
θ

f(θ), (3.1)

where the objective function f measures the residuals of the theoretical model R2 to the
measured reflectivity (qi, R

2(qi)). The choice of the objective function strongly influences
the optimal Θ vector.

The objective function f is interpreted as a metric and should satisfy the following
conditions in reflectometry experiments [48]:

1. f has a unique global minimum

2. f has few local minima and these local minima should be much higher compared
to the global minimum

3. f is easy and fast to calculate

4. f is sensitive on a locale scale, but not on a global scale

The points (1) and (2) are self-explanatory: Multiple global minima do not yield a unique
optimal parameter Θ and local minima can be hard to deal with by some optimization
algorithms, e. g. Gauss-Newton method or gradient descent as they tend to be stuck at
local minima. A detailed discussion is given in section 3.1.3. Point (3) guarantees a
fast evaluation and thus allows a fast convergence to a minimum. The last condition
makes the objective function more sensitive to changes in the relative magnitude, which
is appropriate as reflectometry data spans multiple orders of magnitude.

A common choice for the objective function is the mean squared weighted error
(MSWE)

ε(Θ) =
1

N

N∑
i=1

(
R2(qi)−R2[qi; Θ]

σi

)2

, (3.2)

where R2 is the theoretical model function, computing the reflectivity given the wave
vector transfer qi and the physical model parameter vector Θ, and σi being the mea-
surement uncertainty of the reflectivity.

However, analyzing reflectivity data using MSWE with constant σi (i. e. ignoring mea-
surement uncertainty) is less suited, since the reflectivity decays with R2(q) ∼ 1/q4 or
faster (see equation (2.37)), thus the MSWE is more sensitive to reflectivities at lower
q values and pays less attention to reflectivities at higher q values, which violates point
(4) of the list above. In practice the measurement uncertainty behaves as σi ∼ 1

q2
and

the MSWE decays as ε ∼ 1
q4

. Hence, the sensitivity of the objective function is still not

in good accordance with point (4).

If all measurements are equally likely (σi is constant), alternative objective functions
which are more suited for the decay of the reflectivity is the mean squared logarithmic
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Table 3.1: Fitted parameters corresponding to the fits shown in figure 3.1 of a Si/Pt/Fe/Au/air
sample using different objective functions. The column “expectation” shows the
nominal values of the thicknesses and the densities of the bulk material.

Layer Parameter MSWE MSEsqrt MSElog expectation

Au
thickness [�A] 106 107 107 100
density [g/cm3] 19.00 19.10 19.02 19.32

roughness [�A] 5.3 5.1 4.8 -

Fe
thickness [�A] 50 50 49 50
density [g/cm3] 7.94 8.00 8.25 7.87

roughness [�A] 4.2 5.1 3.8 -

Pt
thickness [�A] 103 102 102 100
density [g/cm3] 21.02 20.84 21.60 21.45

roughness [�A] 2.0 2.7 3.2 -

Si (Sub)
density [g/cm3] 2.47 2.19 2.19 2.34

roughness [�A] 6.4 3.1 3.9 -

error (MSElog) defined as

ε(Θ) =
1

N

N∑
i=1

∣∣logR2(qi)− log R2[qi; Θ]
∣∣2 , (3.3)

and the mean squared root error (MSEsqrt) defined as

ε(Θ) =
1

N

N∑
i=1

∣∣∣√R2(qi)−
√

R2[qi; Θ]
∣∣∣2 . (3.4)

These objective functions (MSElog and MSEsqrt) weight residuals for high q stronger
than MSWE, satisfying point (4) of the list above.

To illustrate the influence of the objective functions on the optimal parameter a
Si/Pt/Fe/Au thin film was analyzed with x-ray reflectometry. Figure 3.1 compares the
optimal fits of the corresponding objective function MSWE, the MSEsqrt and MSElog. As
it can be seen, the worst fit by eye is achieved when using the MSWE objective function
with constant σi, and the best fit is obtained with the MSElog objective function. The
MSWE is least sensitive to the residuals for high q less into account and thus the fitting
algorithm fails to select parameters which improve the resemblance of the fit and the
data in this region. In comparison, MSElog is asymptotically ∼ | log q|2 for q → ∞ and
thus weights the residual for high q stronger than MSWE. The resulting fitted parame-
ters are shown in table 3.1. The thickness is consistent for the three objective functions,
however, the roughness of the interface and density can vary by up to ≈ 200% (roughness
of the Si substrate in table 3.1) and ≈ 10%, respectively.
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Figure 3.1: Comparison of optimal fits to the same x-ray reflectivity measurement of a
Si/Pt(100 �A)/Fe(50 �A)/Au(100 �A)/air sample using different objective functions ob-
tained from the software GenX [49]. For each group of graphs, the upper graph
depicts the optimal fit with the objective function being a) MSWE with constant
σi b) MSEsqrt and c) MSElog. The lower graph shows the individual contributions
to the objective function ε(q), i. e. the addend in the sum definition of the objective
function.
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3.1.1 Bayesian Analysis

The method mentioned above of minimizing the MSWE yields an optimal parameter
vector Θ but reveals no information of the statistical properties of Θ, e. g. the credible
interval, variance and correlation among components. Furthermore, a priori knowledge,
e. g. about the thickness of a specific layer from previous experiments (not necessarily
from PNR), are not expressed in equations (3.2) and (3.3).

To deal with these peculiarities, the notion of probability has to be interpreted differ-
ently. Here, the probability is interpreted in the Bayesian point of view and it has to be
differentiated from the (classical) Frequentist interpretation. The Bayesian interpreta-
tion expresses the probability as the belief or reasonable expectation of knowledge. In
the Frequentist interpretation, however, probability is the relative frequency of an event
happening in the limit of many trials. In the Frequentist interpretation, it is not possible
to assign a probability to an unobserved parameter Θ as the parameters are considered
fixed in the first place before experiments are performed [50].

In the Bayesian interpretation, every parameter has an associated probability density
function (PDF), which is based on the a priori knowledge, thus called the prior distri-
bution. If no specific information of a parameter Θ is known but the bounds a ≤ Θ ≤ b,
the prior PDF can be set as a uniform distribution pU(a,b)(x) = 1

b−aχ[a,b](x). However,
if a parameter Θ was measured before in the form of Θ = µ ± σ, a suitable prior is a

normal distribution N (µ, σ2) with the density function p(x) = 1√
2πσ2

exp
(
−1

2
(x−µ)2

σ2

)
[51].

Choosing an adequate prior helps finding a more reliable estimate of the true param-
eter. Besides this, the prior will not influence the estimate of the parameter in the limit
of infinitely many experiments. Thus, the prior can be viewed as a better initial guess
of the true parameter and its error bounds.

The credible interval of an unobserved parameter Θ is the interval such that Θ is
located therein with a particular probability. In other words, it expresses the probability
of finding the parameter between the lower and upper bounds. Similar to uncertainties
in measurements, the credible interval is a measure indicating how sensitive and accurate
the unobserved parameter was inferred from the data.

To calculate the credible interval, the PDF of Θ given the measured data has to
be known, referred to as posterior PDF. It can be calculated with Bayes Theorem for
probability density functions

p(Θ | R2, I) =
p(R2 | Θ, I)p(Θ | I)

p(R2 | I)
. (3.5)

The left hand side is the posterior PDF which is the PDF of the parameters Θ given
the measured reflectivities R2, i. e. the likelihood of the parameters to describe the mea-
sured reflectivity. The variable I denotes the a priori knowledge of the experimenter,
e. g. contextual information of the measurement device, previous measurements, and
other experiences. It expresses the fact that the probability depends on the knowl-
edge of the experimenter as well and is usually left out in the formula. Again, the notion
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of probability in the Bayesian point of view expresses the degree of reasonable likeliness
or plausibility.

The terms on the right hand side of equation (3.5) are

1. p(R2 | Θ, I) which is the likelihood function, expressing how likely the measured
reflectivity R2 is under the assumption that the physical parameters are Θ;

2. p(Θ | I) which is the prior function, expressing the a priori belief of the parameters
Θ;

3. p(R2 | I) that is a normalization constant. It expresses the belief of measuring the
reflectivity R2.

From a more intuitive point of view, Bayes Theorem simply states how the belief of
a parameter should be updated (posterior probability) after a measurement (likelihood
probability) has been conducted and how previous measurements (prior probability)
influence the new belief. For example, repeated measurements of the same sample with
x-rays and neutrons can be used to make the parameter estimation more precise.

The most likely parameter is assumed to be a good estimate to the true parameter of
the system. That maximum likelihood estimator (MLE) is defined as

Θ̂MLE = arg max
Θ

p(Θ | R2, I) = arg max
Θ

p(R2 | Θ, I)p(Θ | I), (3.6)

where the normalization constant p(R2 | I) is irrelevant for estimating the MLE as it
only scales the posterior by a positive constant, independently of Θ.

The probability of counting n ∈ N reflected neutrons in a fixed time interval with a
known intensity λ = Int(q) is modeled by the discrete Poisson distribution PoisInt(q)(n)
with the PDF

Poisλ(n) =
λne−λ

n!
. (3.7)

It is well known that the Poisson distribution can be approximated by the normal
distribution with µ = Int(q) and σ2 = Int(q) if the intensity is sufficiently large4. After
dividing the reflected intensity Int(q) by the incident intensity I0, the likelihood function
for the reflectivity at a single qi is given by

p(R2(qi) | Θ, I) =
1√

2πR2(qi; Θ)
exp

(
−1

2

(
R2(qi)−R2(qi; Θ)

)2
R2(qi; Θ)

)
. (3.8)

4Intensities larger than 100 counts are usually sufficient for the normal distribution to be a good
approximation to the Poisson distribution.
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Assuming that the reflectivity measurement at different qi are independent, the likelihood
function of R2 is simply the product of all likelihood functions of R2

i

p(R2 | Θ, I) =
N∏
i=1

p(R2(qi) | Θ, I) ∼ e−
1
2
χ2

with

χ2 =
N∑
i=1

(R2(qi)−R2(qi; Θ))2

R2(qi; Θ)
.

(3.9)

The notation here for χ2 expresses the fact that the quantity χ2 converges to a chi-
squared distribution if the reflectivities are normally distributed, i. e. the error is normally
distributed. If this is the case, χ2 is chi-squared distributed with (N − d − 1) degrees
of freedom where d is the number of independent population parameters [52]. Thus,
to evaluate the goodness-of-fit the reduced chi-squared quantity χ2

red = 1
N−d−1χ

2 is

considered, in order for the expectation value to be E[χ2
red] = 1. In general, if χ2

red > 1
either the model does not capture the data (the model is insufficient) or the errors are
underestimated. On the other hand, if χ2

red < 1 the model is overfitting the data or the
errors are overestimated [53].

Taking the logarithm of a function does not change the location at which the maximum
is attained, and because of the duality5 of maxima and minima, the MLE is

Θ̂MLE = arg max
Θ

e−
1
2
χ2(R2;Θ)p(Θ | I)

= arg min
Θ

1

2
χ2(R2; Θ)− log p(Θ | I).

(3.10)

The Bayesian approach thus justifies the selection of the MSWE as an objective func-
tion for data fitting: If the prior distribution is merely a uniform distribution (no prior
knowledge available) and the errors in measuring the data is approximately normally
distributed, the MLE is the minimum of χ2 and is a minimizer of MSWE.

3.1.2 Estimation of Parameter Uncertainty

This allows the uncertainty in the parameter Θ to be estimated as the posterior distribu-
tion together with the MLE are in principle possible to compute. For a fixed γ ∈ (0, 1)
the γ ·100%-credible interval [a, b] of a parameter Θ is defined by a, b ∈ R that fulfill [54]

P (Θ ∈ [a, b] | R2) =

∫ b

a
p(Θ | R2, I)dΘ = γ. (3.11)

The definition states that the unobserved parameter Θ lies in the γ·100%-credible interval
with a probability of γ. Note that this definition is crucially different from the confidence
interval. Contrarily, the confidence interval is defined such that if the experiment is
arbitrarily often repeated then the unobserved parameter lies in the confidence interval

5meaning arg maxx f(x) = arg minx−f(x)
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in γ · 100% of all trials. The subtle difference is that the Bayesian approach treats the
bounds of the credible interval fixed and the estimated parameter as a random variable.
On the contrary, the Frequentist approach treats the bounds as random variables and
the parameter as fixed. The Bayesian approach answers the question “What is the
probability of Θ being located in the credible interval given the data?” whereas the
Frequentist approach answers the question “How often does the confidence interval given
the data contain the true parameter Θ?”. In specific cases the credible interval and
confidence interval coincide, but in general they do not [55].

The difficulty of calculating the credible interval is the high-dimensionality of the
integration space. Each layer in the sample adds three additional fitting parameters
to the theoretical model and twenty or more parameters are not uncommon for fitting
reflectivity data. The integral in equation (3.11) cannot be given in closed form and hence
a numerical quadrature of the integral has to be used. Numerical integration schemes like
Newton-Cotes [56] with equally spaced evaluation grid-points or the Gaussian quadrature
are useful for lower dimensional integrals [57]. Higher dimensional integrals can be
reduced to repeated integration of one-dimensional integrals by Fubini’s theorem, but
the number of function evaluations grows exponentially with the dimension which renders
this approach unpractical.

To overcome the problem of high dimensional integrals, a randomized approach us-
ing Markov Chains can be used. Instead of evaluating the integrand on a uniform or
pre-defined grid, e. g. the zeros of orthogonal polynomials for Gaussian quadrature, the
integrand is evaluated at random grid-points such that the grid is more dense where the
integrand has larger contribution to the overall integral [58].

A common algorithm for computing the grid points, i. e. sampling from a PDF, and
the integral, i. e. the expectation value, is the Metropolis-Hastings (MH) algorithm; the
markov chain monte carlo (MCMC) method. Its idea is to generate candidates which
will be accepted with probability α given by [59]

α = min

{
p(Θnew candidate | R2)

p(Θold candidate | R2)
, 1

}
. (3.12)

Hence, if the new candidate has a higher probability density than the previous sample,
it will always be accepted whereas a candidate with a lower probability density might
be rejected. The distribution of accepted candidates will converge in the limit to the
desired probability distribution.

The advantage of dealing with the ratio of the PDF is that normalization constants of
the PDF can be ignored, i. e. the PDF does not need to be a proper probability density6

but can be any arbitrary non-negative function whose integral exists and is finite. The
lack of needing the normalization constant is especially advantageous in light of Bayes
Theorem (see equation (3.5)) as the denominator, which is another high dimensional
integral, can be neglected.

6the integral of the density does not need to be equal to one
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Figure 3.2: Visualization of a three-dimensional normal distribution θ ∼ N3(µ,Σ) with mean
µ = (1, 2, 3)T, variances σ2 = (2, 0.125, 2)T and covariances σ13 = 0.2, σ23 = −0.2.
The covariance matrix Σ is completely determined by σij . The diagonal graphs
show the one-dimensional projection of the marginal distribution θi. The graphs at
row i and column j depict the two-dimensional projection of the joint probability
distribution θi,j which reveals covariances. The blue lines correspond to the true
mean value µ of the projections. Plotting is performed with the corner library [60].

Having an independent and identically distributed sample (Xn)Nn=1 drawn from a PDF
p(x), the law of large numbers guarantees that

1

N

N∑
n=1

f(Xn)→
∫
Rd

f(x)p(x)dx = E[f(X)] as N →∞. (3.13)

By taking Bayes Theorem, one can now estimate the integral of the credible interval
with the help of MCMC∫

p(Θ | R2, I)dΘ =

∫
p(R2 | Θ, I)

p(Θ | I)

p(R2 | I)
dΘ ≈ 1

N

N∑
n=1

p(R2 | Θn, I), (3.14)

where Θn is a sample drawn from the distribution p(Θ | I), ignoring the denominator
p(R2 | I) as it is only a scaling factor, and the MH sampler is invariant under scaling
the PDF.
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Figure 3.3: Evolution of the computed expectation value E[XN ] as a function of number of
samples N and Enumeric(n) as a function of function evaluations of the PDF. The
expectation value E[XN ] is calculated using the MH algorithm, whereas Enumeric is
computed using the trapezoidal integration rule. The expectation value is computed
with respect to the marginal distribution of the third component of figure 3.2.

An example consisting of 1.6× 106 samples drawn from a three-dimensional normal
distribution is shown in figure 3.2. The one-dimensional marginal distributions (integra-
tion along all the remaining axes) of the sample show a good match to a one-dimensional
normal distribution and the two-dimensional contour plot shows no obvious discrepancy
from the exact two-dimensional normal distribution. The samples have been drawn using
the software library emcee [61] and visualized with the library corner [60].

Figure 3.3 compares the integral approximation of equation (3.13) with a traditional
trapezoidal integration scheme. The samples from figure 3.2 were used to approximate
the expectation value of the sampling distribution itself, i. e.E[X] with X ∼ N (3, 2)
and taking f(x) = x. The trapezoidal integration was implemented by a successive
integration over [−10, 10]3. The discretization step size was fixed but arbitrary in each
integration. Notice that taking a grid with n = 10 points requires n3 function evaluations
in the numerical scheme.

3.1.3 Choice of Optimization Algorithms

In the Bayesian approach with normally distributed measurement uncertainty, the opti-
mal model description is obtained by the MLE given in equation (3.10). An analytical
solution to the non-linear minimization problem is not possible to find, thus a minimiza-
tion algorithm has to be utilized.

Traditional (deterministic) minimization algorithms like the gradient descent, Gauss-
Newton method or Levenberg–Marquardt guarantee a fast convergence [56, 62, 63] to a
minimum under suitable prerequisites, e. g. convexity of the objective function. However,
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no assurance can be given whether the minimum is local or global. Furthermore, the
current candidates of these algorithms tend to run into local minima (even with different
initial conditions) and cannot evade from this point.

To escape from a local minima, a step in a non-optimal direction (in the sense of
the derivative) has to be taken which is not allowed for gradient based minimization
algorithms. A Monte-Carlo algorithm randomly selects directions, and some of the new
directions might improve the objective function as the algorithm steps across a hill. Ex-
amples of such algorithms are the differential evolution (DE) and the simulated annealing
algorithm. These algorithms are heuristic which means that there is no mathematical
proof for finding a global optimum or even terminate after a finite number of steps.
However, these algorithms are particularly useful when dealing with high-dimensional
problems with many local minima. Especially for fitting the reflectivity data, which
typically exhibits a lot of local minima, heuristic algorithms proved to perform better
than the classical algorithms.

An example of an ill-behaved objective function for reflectivity data is depicted in
figure 3.4. It shows the evolution of the objective function by (MSElog was used) varying
a single parameter and fixing all the others. The global optimum is clearly visible,
but the objective function reveals multiple local optima when projecting on a single
parameter. Especially for deterministic algorithms, the local minima close to the global
minimum is highly problematic as even a good initial guess does not necessarily result
in a convergence to the global minimum.

Differential Evolution

In the following the DE, and genetic algorithms in general are discussed. A thorough
discussion can be found in [64–66].

Algorithm 1 (Differential Evolution). Let X0 ⊂ Rd be the initial population consisting
of N ∈ N, N ≥ 4 candidate solutions and let f be the objective function which should be
minimized. Denote by XG the current population of generation G. The next population
XG+1 is calculated in the following four steps for each parameter x ∈ XG:

1. Mutation: A mutated parameter is calculated. Select randomly three pairwise dis-
tinct parameters x1, x2, x3 ∈ XG from the current generation. The mutation is
achieved by adding a weighted difference F > 0 of x1 with x2 to the third one x3:

xmutated = x3 + F (x1 − x2). (3.15)

2. Update: A trial parameter xtrial is constructed. The old parameter x is taken and
its components xi are randomly updated by xmutated,i with the crossover probability
CR ∈ [0, 1]. At least one component (e. g. the d-th one) must be updated:

xtrial,i =

{
xmutated,i, with probability CR or i = d

xi, otherwise
(3.16)
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Figure 3.4: Evolution of the MSElog objective function by fixing all parameters except one.
The varying parameter is the thickness of a) Au b) Fe (shifted by 0.5) and c)
Pt (shifted by 1.0) while the remaining parameters stay fixed. The scanning of
the layer thickness parameter is performed in the (global) optimum with the same
model and data shown in figure 3.1c). The (global) optimum is at dAu ≈ 100 �A,
dFe ≈ 50 �A and dPt ≈ 100 �A (circles).
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3. Selection: The current generation XG will be updated. If the trial parameter xtrial
improves the objective function, then it will be added to XG+1 otherwise the old
parameter x will be kept:

XG+1 ←

{
xtrial, f(xtrial) < f(x)

x, f(x) ≤ f(xtrial).
(3.17)

4. Repeat: Repeat the process until a fixed number of iterations is reached or the
objective function attained a certain threshold.

The main virtue of the DE algorithm are the simplicity and usability. It can easily
be parallelized and intuitively one expects the algorithm to find a solution. In the third
step, the generation will be updated only if the new candidate improves the objective
function. The randomization in the second step and the generation of new candidates in
the first step should explore the search space sufficiently well. Still, as DE is a heuristic
algorithm, there is no guarantee that a global minimum is ever found. Nonetheless, the
reflectivity fitting software GenX uses DE as the minimization algorithm [49], which
proved to be a robust algorithm.

The selection of the initial condition and the parameters N,F and CR is still subject
to research [66]. However, there are some rules of thumbs one can use to achieve a
reasonable result as the selection influences the convergence and the candidate solution
of the DE algorithm:

As an initial population a uniform distribution in the search space can be taken. If a
guess x0 of the minimizer of the objective function is known, the initial population can
be sampled from a normal distribution centered at x0, too. The spread of the sampling
distribution, however, should encompass the possible global minimum.

The selection of the parameters N,F,CR is not straightforward and they can also
be optimized with respect to the objective function. Nonetheless, using F ∈ (0, 1)
(e. g.F = 0.2), 0 ≤ CR ≤ 0.2 and N = 30 are good guesses in most cases [66].

Another reflectivity fitting software Refl1D uses a combination of the DE and the MH
algorithm [67–69], referred to as differential evolution adaptive metropolis (DREAM)
[70]. The algorithm is capable of searching for a global minimizer of the objective
function while at the same time drawing samples from the posterior PDF. The objective
function and the posterior PDF are the same functions in this case. The major advantage
is, that not only a minimum is searched, but at the same time a statistical analysis is
performed.

3.1.4 Application: Pt/Fe/Au Thin Film

To see the statistical analysis using the DE and MH algorithm in action, a thin film of
Pt(100�A)/Fe(50�A)/Au(100�A) was grown by DC magnetron sputtering in an ultrahigh
vacuum chamber [71, 72] on a 2×2 cm2 Si substrate at a base pressure of 1.5× 10−7 mbar.
After completion of the deposition, the reflectivity of the sample was measured ex situ
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on a two-circle x-ray diffractometer (D5000, Siemens GmbH) with parallel beam optics
and CuKα (λ = 1.5419�A) source in a θ-2θ scattering geometry.

The sample is modeled by a composition of Si/SiO2/SiPt/Pt/Fe/Au/air which in-
cludes a natural oxidized Si layer and a PtSi interdiffusion layer. Other sample models
by adding interdiffusion layers like PtFe or FeAu did not result in any improvement in
the objective function MSWE or resulted in unreasonable densities larger than 25 g/cm3.
There is no a priori knowledge taken into account and the objective function is the usual
chi-squared or MSWE.

χ2red	=	4.8
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Figure 3.5: The top graph depicts the measurement of the Si/Pt/Fe/Au/air sample (see fig-
ure 3.1) and the best fit obtained by the fitting software Refl1D [68]. The bottom
graph shows the SLD used for the fitting. It is noted that the absorptive (imagi-
nary) part of the SLD is one order of magnitude smaller than the real part. The
colored regions correspond the 68% or 95% credible interval of the SLD.

Figure 3.5 shows the best fit to the measured reflectivity (top) and in the bottom
graph the best SLD together with 68% and 95% credible intervals (shaded area) is
shown. The reflectivity is well fitted, but at larger q-values some mismatches are visible
due to the decay of MSWE (see section 3.1). The best fit of the SLD is shown as the
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Table 3.2: Maximum likelihood parameters obtained from the fitted model. The uncertainties
describe the 68% credible interval which corresponds to the 1− σ uncertainty if the
parameter is normally distributed.

Layer thickness density (rms) roughness

d [�A] ρ [g/cm3] σ [�A]

Au 107.1± 0.1 18.70± 0.03 5.7± 0.1
Fe 48.6± 0.1 7.78± 0.06 5.0± 0.1
Pt 102.8± 0.1 21.39± 0.04 2.6± 0.1
PtSi 13.0± 0.7 15.23± 1.00 7.0± 0.5
SiO2 16.8± 0.3 0.50± 0.32 5.7± 0.1
Si ∞ 2.56± 0.36 5.8± 0.2

black solid (real part) and green dashed (imaginary part) line. The imaginary part of the
SLD is approximately one order of magnitude smaller than the real part. The credible
intervals display possible variations of the SLD based on a slab model which express the
uncertainty in the best fit and which should ideally be narrow. The credible intervals
are hardly distinguishable at depths above 25�A, however, at the substrate or the SiPt
interdiffusion layer they are visible. The uncertainties in the retrieved parameters are
unusual low with the exception of the bottom layers (Si, SiO2 and PtSi), see table 3.2,
which explains the small credible intervals in the top layers.

Parameters in reflectivity models are usually substantially correlated. A corner plot
shows the correlation between these parameters. The correlation in the case of the
Si/Pt/Fe/Au sample is shown in figure 3.6. Each sector in the corner plot shows the
correlation of two variables. The correlation is estimated by sampling from the posterior
PDF using the DREAM algorithm. The range of the horizontal and vertical axis of
each sector are selected by the minimal and maximal occurrence of the corresponding
parameters from the drawn samples.

For example, the red box in figure 3.6 shows the correlation between the parameters
σAu and σPt. A correlation can be understood as a functional dependence of the pa-
rameters and in this example a negative linear correlation is visible which means that a
smaller roughness in the Au interface is compensated in the fit by a higher roughness in
the Pt interface. The distinct high intensity point reveals a low uncertainty (or variance)
of both roughnesses.

A negative linear correlation is common for the thickness of layers, for example dAu

and dFe (green box) or dSiO2 and dPtSi show this behavior. The reason for the negative
correlation is the fact that the total film thickness can reliably be estimated from the
data. Thus, if the thickness di of layer i increases, the thickness dj of layer j decreases
in order for the sum di + dj to stay constant.

The blue boxes in figure 3.6 show the correlations of ρSi with all other parameters.
It reveals that ρSi is uncorrelated with the other parameters as varying the density of
Si has virtually no influence on the other parameters. This leads to a high uncertainty
in ρSi (see table 3.2). For highly correlated parameters, the determination of the true

45



3 Data Analysis Techniques for Reflectometry

parameter becomes less accurate. The correlation plot is thus crucial to understand the
accuracy of the inferred parameters.

Figure 3.7 shows the histogram of the sampled parameters. The histogram is used
to derive credible intervals of the individual parameters. It also shows the modality of
the marginalized distribution from which for example one can determine whether the
normal distribution is a suitable approximation of the marginalized distribution. This is
important when specifying the uncertainty of a parameter as the 1−σ uncertainty should
only be used when the normal distribution can approximate the marginalized distribution
of the parameters. Otherwise, the credible interval is more accurate. For example, the
marginalized parameters ρSiO2 , ρSi, Ibkgrd and resolution cannot be approximated by a
normal distribution, as shown in figure 3.7.

For evaluating the convergence of the DREAM algorithm, a history plot of the log
likelihood function can be used, see figure 3.8. At the start of the algorithm, the negative
log likelihood function should decrease7 until it reaches a minimum. The algorithm then
explores the likelihood around the minimum. A linear fit of the likelihood function with
respect to the drawn samples should ideally show a slope of zero, indicating a convergence
of the DREAM algorithm. A non-zero slope suggests that the algorithm is still searching
for an optimum and has not yet explored the search space sufficiently well.

Furthermore, to ensure that the DREAM algorithm has sufficiently well explored the
likelihood function, a trace plot of the individual parameters can be examined. A trace
plot depicts the evolution of the Markov chains with respect to a single parameter. A
well explored parameter space should have an erratic behavior of the Markov chains as
shown in the inset in figure 3.8. In addition, the Markov chains should be well mixed
in the sense that the individual traces cross each other, in order to fully explore the
parameter space.

7The maximum of the likelihood function is attained at the minimum of the negative log likelihood
function
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Figure 3.6: Correlation or “corner” plot of the fitted parameters (I0, Ibkgrd, resolution are
excluded for clarity). The color bar depicts the intensity of the two-dimensional
projection of the drawn samples. The red box shows the correlation of σAu with
σPt, the green box shows dAu with dFe and the blue boxes show the correlations of
ρSi with all other parameters.

47



3 Data Analysis Techniques for Reflectometry

2 4
1e 8

IbkgrdE*

1.185 1.190

I0 E *

0.0310 0.0315

Res E *

5.6 5.8

Si E *

2.25 2.50

Si E *

6.5 7.0

PtSi E *

14 15 16

PtSi E *

13 14

dPtSiE*

5.6 5.7

SiO2 E *

0.6 0.8 1.0

SiO2E<*

16.5 17.0

dSiO2
E*

2.54 2.56 2.58

Pt E*

21.35 21.40 21.45

Pt E*

102.7 102.8

dPt E *

4.90 4.95 5.00

Fe E *

7.7 7.8

FeE*

48.55 48.60 48.65

dFeE*

5.70 5.75

Au E *

18.675 18.700 18.725

AuE*

107.1 107.2

dAu E*

Figure 3.7: Histograms of the projected parameters. The range of the abscissa is the 95% cred-
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The red “E” and “∗” show the expectation value and the best fit of the marginalized
parameter, respectively. The green curve shows the logarithmic maximum likeli-
hood estimator of the marginalized parameter. The variable ρ denotes the density
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Figure 3.8: Convergence plot of the DREAM algorithm. The abscissa shows the generation
number as in the DE algorithm. The ordinate is the negative log likelihood which is
minimized. The black curve is a linear fit of the negative log likelihood distribution
at the drawn samples. The inset depicts the traces of all populations of the DREAM
algorithm of the Si substrate density. A mixing of the traces indicate a good
sampling from the posterior distribution.
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3.2 Inversion of the Reflection

In this section the theory of inverse scattering in one dimension is briefly presented. The
theory asserts the existence of the inverse operator R−1 which computes the scattering
potential V from a given reflection function R and the bound states information. An
explicit algorithm for computing the inverse scattering potential is given by the Gel’fand-
Levitan-Marchenko (GLM) method.

3.2.1 Bound States

In general the reflection R alone is not sufficient to uniquely determine the scattering
potential due to bound states. Informally speaking, a bound state represents the situa-
tion whenever the wave function of a neutron is contained in a bounded region of space.
That means the neutron cannot “escape” from the scattering potential and the neutron
is bound to the scattering potential. This state is in a sense the opposite of a scattering
state when the neutron is either transmitted or reflected.

To understand why a bound state is relevant in scattering theory, one has to consider
the spectral theorem. It states that a special class of operators, i. e. self-adjoint bounded
linear operators, can be expressed based on its eigenvalues and eigenvectors [73]. In
scattering theory the linear operator is the Hamiltonian H = V −∂2

z . All positive k2 > 0
are eigenvalues of the Hamiltonian and the corresponding eigenfunctions are exactly the
solutions of the wave equation (2.15)

Hψ = k2ψ, (3.18)

which are linked to the reflection R and transmission T coefficient by equation (2.22)
and equation (2.23).

If a negative eigenvalue −β2, β > 0 of the Hamiltonian H exists, the corresponding
eigenfunction ψ(z, iβ) is called a bound state of H [31, 33, 74] which satisfies

H(z)ψ(z, iβ) = −β2ψ(z, iβ). (3.19)

These negative eigenvalues differ substantially from the positive eigenvalues as only
finitely many (and thus isolated) bound states can exist [31]. Every bound state with
energy −β2 is closely correlated with the transmission coefficient T . As a matter of
fact, every bound state corresponds to a simple pole in T at k = iβ with residuum
(normalization constant) [33]

resk=iβ T (k) = i

(∫ ∞
−∞

ψ+
iβ(z)ψ−iβ(z)

)−1

∼ i
∥∥∥ψ+

iβ

∥∥∥−2

L2
, (3.20)

where ψ±k are the solutions of equation (2.30), i. e. the wave equation solutions.

The modulus of the transmission |T | is determined by R using the conservation of
probability equation (2.34). By applying tools from complex analysis [33] it is possible
to construct the phase of T from the reflection R, without the simple poles of T . Hence,

50



3.2 Inversion of the Reflection

not only the position of the poles k = iβj , or equivalently the energy −β2, but also the
residuum resk=iβj T is required to fully determine the transmission T from the reflection
R.

Both, the energy −β2 and residuum, depend on the scattering potential and cannot be
determined beforehand. In particular, one can construct scattering potentials V which
have a bound state with any energy β > 0 and any normalization constant c. For a given
scattering potential V one can construct a new potential V ∗ with bound state β∗ and
normalization constant c∗ = 2β∗

α T (iβ∗) with any α > 0 by the Darboux-transformation
[31]

V ∗(z) = V (z)− 2
d2

dz2
log gα(z), (3.21)

where gα(z) = ψ+
iβ∗(z) + αψ−iβ∗(z). The reflection R∗ and transmission T ∗ of the new

potential V ∗ are

R∗(k) = −k + iβ∗

k − iβ∗
R(k),

T ∗(k) =
k + iβ∗

k − iβ∗
T (k).

(3.22)

Similarly, a bound state β∗ can be removed from a scattering potential by reversing the
procedure, i. e. by setting

V (z) = V ∗(z)− 2
d2

dz2
logψ+∗

iβ∗(z). (3.23)

Thus, it is desirable that the scattering potential has no bound states such that the
reflection R determines both the transmission T and, hence, the scattering potential V
uniquely [31, 75]. A simple, but useful condition for excluding bound states in neutron
reflectometry is the requirement V > 0 [76], or more generally

∫
V dz > 0 [77].

Bound states cannot exist if elements with a negative scattering length are excluded. In
neutron scattering, most of the elements have a positive scattering length and only a few
are the exception such as H, Li, Ti, V and Mn in their natural abundance, as well as some
specific isotopes like B10, Ca43 and Cr50 and a few more [78]. Hence, if these elements
or isotopes are completely excluded, bound states cannot exist. This strict requirement,
however, might be hard to realize in practice, especially for the isotopes. Alternatively,
if the sample does not contain a significant concentration of these exceptional elements
or isotopes such that V > 0, bound states are already excluded.

3.2.2 Uniqueness and Inversion

The uniqueness of the reflection is the main reason for phase-sensitive neutron reflectom-
etry. It guarantees that the gain in the phase information is sufficient (modulo bound
states) to recover the scattering potential uniquely. In section 3.3.1 it will be shown that
one can easily construct differing scattering potentials with the same reflectivity.
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Theorem 1 (Uniqueness [31, 79]). The scattering potential V ∈ L1 with finite first
absolute moment

∫
|zV (z)|dz = ‖zV (z)‖L1 <∞ is uniquely determined by its reflection

coefficient R, bound states −β2
n < . . . < −β2

1 and normalization constants cj = ‖ψ+
iβj
‖2L2.

In particular, if there are no bound states, the scattering potential V is uniquely de-
termined by the reflection R.

The proof of the uniqueness for bound states can be reduced to the case with no bound
states by removing them as described in section 3.2.1. The proof for no bound states is
rather technical and can be found in [79].

The uniqueness is an important key to phase-sensitive reflectometry, however, an
explicit computational method for determining the associated scattering potential to a
given reflection is crucial as well. The GLM integral equation enables the scattering
potential to be directly calculated.

Algorithm 2 (Gel’fand-Levitan-Marchenko Method [80, 81]). Let R be the reflection co-
efficient with bound states −β2

n < . . . < −β2
1 and normalization constants cj = ‖ψ+

iβj
‖2L2.

Compute the Fourier transform of the reflection

ĝ(z) =
1

π

∫ ∞
−∞

R(k)e2ikzdk (3.24)

and set

g(z) = ĝ(z) + 2

n∑
j=1

cje
−2βjz. (3.25)

Compute the unique solution K(x, y) of the Marchenko equation

K(x, z) + g(x+ z) +

∫ ∞
0

g(x+ z + ξ)K(x, ξ)dξ = 0, z > 0. (3.26)

The scattering potential is recovered by

V (z) = − d

dz
K(z, 0+). (3.27)

The remarkable feature of the GLM method is the reduction from the highly nonlin-
ear operator R−1 to a linear integral equation, which can easily be solved by a direct
discretization approach (see section 3.2.3).

In the literature [76, 81, 82] there exists a variety of equivalent GLM integral equations,
which are dealing with the reflection “from the right” (mirrored scattering potential).
The algorithm 2, stated here, deals with the reflection “from the left”, which is depicted
in figure 2.3a). These variations, however, affect the inverted potential only by mirroring
and shifting it, and are thus easily reversible.

Another important property of the GLM method is the fact that only the Fourier
transform of the reflection is required. This property is presumable the most useful
feature in application as the real or imaginary part alone are sufficient to determine the
Fourier transform: The reflection is symmetric with respect to complex conjugation (see
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section 2.3.4) and thus the Fourier transform is completely real

ĝ(t) =
1

π
Re

∫ ∞
0

R(k)e2iktdk. (3.28)

Furthermore, the scattering potential can always be shifted such that z = 0 denotes the
distinction between non-scattering medium and sample which ensures that the Fourier
transform is causal and hence ĝ(t) = 0 for any t ≤ 0. It immediately follows that

ĝ(t) =
2

π

∫ ∞
0

ReR(k) cos (2kt)dk =
2

π

∫ ∞
0

ImR(k) sin (2kt)dk. (3.29)

The consequence is that one needs only the real or imaginary part of the reflection to
recover the scattering potential, and in particular, this reduces the number of required
measurements to retrieve the phase information from three to two (see section 3.3.2.1).

3.2.3 Numerical Implementation

There are multiple implementations of a GLM solver available with computational com-
plexity of O(N3) or faster [76, 83, 84] with N being the number of discretization points
which is proportional to the number of z values where the potential V (z) is evaluated.
A direct discretization approach has a complexity of O(N4), however, with an approxi-
mation trick it can be realized in O(N3).

As there are only limited implementations freely available, which, additionally, be-
haved badly with truncated reflection data, a new implementation was developed using
a direct discretization scheme. As the GLM method is extensively used later in this work,
e. g. in section 3.3.3, the implementation was further optimized to a computational com-
plexity of O(N3) which is comparable with the implementations in the literature [76].
The details of the implementation are shown in appendix B.3 and only a rough overview
is given here.

The GLM integral equation is discretized on a uniform grid for each z ∈ R which
yields a linear equation in the unknown kernel ~K(z) ∈ RN+1

Ω(z) · ~K(z) = −G(z), (3.30)

where the vector G(z) ∈ RN+1 only contains the Fourier transform of the reflection, ~K(z)
is the discretization of the kernel K(z, ·) in the second variable and Ω(z) ∈ R(N+1)×(N+1)

is the discretization scheme of the integral term using the trapezoidal rule in the GLM
equation (3.26).

By exploiting the structure of the discretization scheme Ω(z), one can relate Ω(z1)
with Ω(z) for any z1 < z. Similarly, the LU decomposition of Ω(z) = L(z)U(z) is
used to approximate the LU decomposition of Ω(z1) = L(z1)U(z1). Hence, one needs
to perform only one LU decomposition of Ω(z) and the LU decompositions of Ω(z1)
are approximated from L(z) and U(z). As one LU decomposition has computational
complexity O(N3) and the approximated LU decompositions are easily derived with
negligible computational effort, it is possible to compute K(z, 0+) for all z on a grid
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with N points in O(N3). Finally, the scattering potential V is determined by a finite
difference approximation.̧

The implementation of the direct discretization algorithm is freely available [85]. It
is written in the Python programming language [86] utilizing the numpy [87] and scipy
[88] package for the LU decomposition and matrix inversion. This implementation is
used for any reflection inversion in this work.
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3.3 Phase Information

An alternative and more sophisticated approach to analyze reflectivity data is by taking
the phase information of the reflection into account. The phase information φ(q) is the
angle of the reflection R(q) in the complex plane with respect to the real axis

R(q) = |R(q)|eiφ(q). (3.31)

Knowing the phase information φ and the reflectivity |R| is thus equivalent to knowing
the reflection R.

The advantage of the phase-sensitive approach is that the retrieved SLD profile will
be unique (see section 3.2.2) under some mild requirements, like only non-absorptive
materials can be used and no bound states (see section 3.2.1) exist [31, 76]. In contrast
to the fitting approach of section 3.1, the fitting method can only determine consistent
models but cannot give an exact model.

Also, the SLD reconstructed from phase-sensitive PNR is computed solely on the
available data. On the one hand, if the reflection is known only for a limited q-range,
the reconstructed SLD will reflect the limited knowledge. The fitting approach, on the
other hand, deceives the researcher with a too accurate SLD, i. e. small layer structures
are ignored.

The major difficulty for phase-sensitive PNR is the retrieval of the phase information.
As only the reflectivity |R(q)|2 is measured, the phase-information is generally lost and
has to be retrieved.

3.3.1 Phase Problem

In traditional reflectometry experiments, only the squared modulus of the reflection is
measured and the phase φ is lost. The phase information, however, contains valuable
information for the reconstruction of the scattering potential. The loss of the phase
information and thus the loss of the uniqueness between the reflectivity and the scattering
potential is known as the phase problem.

There are multiple examples how the loss of the phase causes an ambiguity in the
scattering potential. For example consider a compactly supported and continuous scat-
tering potential V with co-domain being a subset of the real numbers. By mirroring
the potential V at the y axis, a new potential V̂ is generated, which in general does
not coincide with the first one. The reflections of these potentials do not coincide as
well R[V ] 6= R[V̂ ], however, the reflectivities are equal R2[V ] = R2[V̂ ] [46]. Another
example, however of academic nature, has already been shown in section 2.5.1 when
deriving the reflection using the matrix method. A shifting by L units of the potential
is achieved by multiplying the reflection with eiqL. This obviously does not change the
reflectivity as the factor eiqL has unit modulus, but the resulting scattering potential
“changed” in the sense that it has been shifted.
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Figure 3.9: Equivalent potentials which yield the same reflectivity. The derived (red curve)
potential is generated by taking a phase modifier function φ(q) = 2/q sin4(3q) and
applying equation (3.32) with R = F and R−1 = F−1.

Besides these academic examples, there exist a manifold of scattering potentials with
the same reflectivity. Take any scattering potential V and compute

V̂ := R−1[R[V ]e−iφ], (3.32)

where R−1 is the inverse reflection operator8, which calculates based on a reflection
a matching scattering potential, and φ is any continuous and odd (φ(−q) = −φ(q))
function. The phase φ has to be odd in order for the new scattering potential V̂ to be
real valued as it has to satisfy the symmetry relation R(−k) = R(k), see section 2.3.4.
Calculating the reflectivity of both scattering potentials yields

R2[V̂ ] =
∣∣∣R ◦R−1[R[V ]e−iφ]

∣∣∣2 =
∣∣∣R[V ]e−iφ

∣∣∣2 = R2[V ], (3.33)

which, in fact, shows that V̂ and V produce the same reflectivity.

Surprisingly, it seems that the reflection operator in the dynamical theory can be
replaced by the BA reflection operator. In particular, choosing R = F and its inverse,
i. e. using simply the Fourier transform and skipping the 1/q prefactor, works as well
and bypasses the computational expensive inversion algorithm in the dynamical theory.
Figure 3.9 shows a scattering potential V̂ which produces the same reflectivity as V with
R = F .

It is important to notice that there is virtually no restriction on the phase function φ,
except that it has to be continuous and odd. Thus, arbitrarily many scattering potentials
exist with the exact same reflectivity.

8The existence of the inverse reflection operator is postponed to section 3.2
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As a last method to generate equivalent potentials is to use the Darboux transfor-
mation [31, 33]. The transformation is used to remove or add bound states to the
differential operator corresponding to the wave equation (more details in section 3.2.1).
The transformation for adding a bound state −β2 is

R∗(k) = −k + iβ

k − iβ
R(k). (3.34)

This transformation does not change the reflectivity, i. e. |R(k)|2 = |R∗(k)|2, but it
changes the scattering potential to

V ∗(z) = V (z)− 2
d2

dz2
log gα(z), (3.35)

where gα(z) = ψ+
iβ(z) + αψ−iβ(z) and ψ± are the asymptotic solutions of equation (2.30)

and α > 0 is an arbitrary constant [31].

3.3.2 Retrieval of the Phase Information

The retrieval of the phase information from the reflectivity is the most difficult task in
the process of phase-sensitive PNR. Multiple methods to retrieve the phase information
in neutron and x-ray reflectometry have been proposed and the most promising methods
are presented here.

The usage of an ordinary differential equation relates the phase of the reflection with
the dwell time (viz. the time the neutron “spends” inside the sample) [89]. The solution
of the differential equation can be used to determine the phase and thus the reflection.
The problem therein is the measurement of the dwell time as the measurement is only
correct to first order in the absorption [90].

Another idea is to use the Kramers-Kronig relation [91–93]. A logarithmic dispersion
relation is established to associate the phase with the reflectivity R2[ρ] ∼ |F [ρ′]|2 in the
BA by [91]

φ(q) =
2q

π

∫ ∞
0

log(|F [ρ′](ζ)|/|F [ρ′](q)|)
q2 − ζ2

dζ. (3.36)

The method seems to be promising at first glance, however, the logarithmic dispersion
relation is a global method, requiring the knowledge of the reflectivity over the whole q
range to determine the phase. The method was therefore not further investigated.

The most prominent method for phase reconstruction is the reference layer method
[46, 94]. The idea is to constrain the phase with multiple reflectivity measurement of the
same sample while varying known regions in the sample until the phase can uniquely be
determined.

In the reference layer method one can vary the SLD by

1. using buried or fronting layers [95, 96];

2. changing the magnetization of the sample [97, 98];
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3. varying the sample’s surroundings [99].

Other approaches with the reference layer method use specific materials which exhibit
resonance effects for wavelengths close to absorption edges. Known parts of the SLD
can be varied while the remaining part stays constant. These variations in the SLD lead
to a variation in the reflectivity which are used to constrain the phase. The resonance
method is mainly used for x-rays [100] and rarely for neutrons as only few materials
exhibits resonance effects when using neutrons as a probe. However, progress in neutron
reflectometry using rare earths as suitable resonance materials [101] has been made
recently and experiments have been performed [102–104].

For in situ PNR the most suited phase retrieval approach is the reference layer method
with varying fronting layers. Additional layers can easily be deposited on top of the
sample while the sample stays aligned in the neutron beam, thus, enabling a variation
in the top reference layer.

3.3.2.1 Reference Layer Method

The reference layer method uses a known part of the SLD to constrain the phase informa-
tion of the reflection. The basic property which allows this approach is the multiplicative
property of the transfer matrix. As shown in section 2.5.2 the transfer matrix can be
split into two transfer matrices at any z inside the sample, see equation (2.60). For
the fronting reference layer method, the splitting of the SLD is performed such that the
transfer matrix is decomposed into a known and unknown transfer matrix. The known
matrix corresponds to the top layer

T (k) = TU(k)TK(k). (3.37)

If one has four known transfer matrices TK,i(k) and measure their response on Ti, it
is clear that one can completely determine the unknown matrix and the reflection. In
fact, as the goal is rather the reflection than the transfer matrix, already three measure-
ments are sufficient: Recall that the reflection can be understood as a function of the
transfer matrix. If one ignores the shifting of the potential by the exponential factor in
equation (2.57), the reflection is expressed in the form

R(T ) =
(n2
fn

2
bT 2

12 + n2
fT 2

22)− (n2
bT 2

11 + T 2
21) + 2i(nfn

2
bT11T12 + nfT21T22)

(n2
fn

2
bT 2

12 + n2
fT 2

22) + (n2
bT 2

11 + T 2
21) + 2nfnb

= −α
fb − βfb − 2iγfb

αfb + βfb + 2
= −α

fb − βfb ∓ 2i
√
αfbβfb − 1

αfb + βfb + 2
,

(3.38)

where the unimodularity (Lemma 2) of the transfer matrix (γfb)2 = αfbβfb − det2 T =
αfbβfb−1 was used and the quantities αfb, βfb and γfb are introduced for easier reading,
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which are defined as
αfb = n−1

f nbT 2
11 + n−1

f n−1
b T

2
21

βfb = nfnbT 2
12 + nfn

−1
b T

2
22

γfb = nbT11T12 + n−1
b T21T22.

(3.39)

The indices f, b denote the fronting and backing surrounding of the sample and nf
denotes the refractive index of the fronting material which is usually vacuum or air.
Here, the point is that the reflection is determined by three parameters, and hence, only
three variations of the reference have to be performed. The connection between the
measured reflectivity and these parameters is easily established by

Σ := 2nfnb
1 + |R|2

1− |R|2
= nfnb(α

fb + βfb), (3.40)

where the unimodularity property was used again.

Now, the matrix decomposition for the reflection is used to solve for the unknown
parameters α, β and γ in terms of the known matrix elements of TK. As this is a rather
tedious algebraic procedure it is moved to appendix B.1 and only the result is presented
here. The following result does only hold as long as the transfer matrix T is real valued,
meaning, only a non-absorptive SLD yields the relation

Σ = 2nfnb
1 + |R(TUTK)|2

1− |R(TUTK)|2
= cK ·

αβ
γ

bb

U

. (3.41)

The subscript K and U denotes the correspondence of the known and unknown transfer
matrix, respectively, and the superscript corresponds to the fronting and backing ma-
terial. The superscript and subscript is applied on all components of the vector. For
example, αbbU = T 2

11,U + n−2
b T

2
21,U . The row vector cK ∈ R1×3 denotes a “constrain” of

the reflection; it depends only on the known transfer matrix and the fronting material.

The rather surprising feature of this equation is that the measured reflectivity can be
decomposed into a linear equation involving a vector cK which depends on the known
transfer matrix and the unknown parameter vector.

Consequently, a combination of three different transfer matrices Ti = TUTK,i with
corresponding reflectivities |Ri|2 uniquely determines the unknown vector

Θbb
U :=

αβ
γ

bb

U

= C−1
K Σ, (3.42)

where CK = (cK,i)i=1,2,3 is the constraint matrix and Σ = (Σi)
T
i=1,2,3 is the transformed

reflectivity vector.

Some care has to be taken when interpreting the retrieved reflection Rret associated
with the parameter vector Θbb

U . The retrieved reflection corresponds to the sample with
the fronting reference layer removed and the fronting refractive index is replaced by the
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Figure 3.10: Illustration of the reference layer method and the potential corresponding to the
retrieved reflection. The reconstructed potential corresponds to the unknown
sample but with the fronting and backing being equal. An equivalent potential of
a free film can be calculated by subtracting the backing SLD ρbacking.

backing refractive index. Hence, the retrieved reflection Rret differs from the reflection
of the unknown sample R(TU) and, of course, also from the reflection of the sample with
the reference layer attached on top R(Ti):

Rret = R(Θbb
U ) = R(TU)

∣∣
nf←nb

6= R(TU) 6= R(Ti). (3.43)

The SLD of the unknown sample can then be calculated by a free standing film as the
fronting and backing material is known. Figure 3.10 illustrates the situation, relating
the reflection of the measured samples with the retrieved reflection and the reflection of
a free-standing film.

The reference layers can have an arbitrary structure. They neither need to have the
same thickness nor density. They can be made up of multiple different layers if desired
or simply be a single layer. In particular, mono-layers can be used as reference layers,
however, numerical errors and measurement uncertainty can impede the retrieval.

It is noted that the matrix CK might not be invertible, however, this rarely happens
in practice and if the matrix is not invertible it happens only at isolated k values. Still,
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the condition number of the constraint matrix in a neighborhood of a singular ks value
is high, resulting in larger numerical errors of the inverted reflection in a neighborhood
of ks. The condition number of a matrix A is a bound on how inaccurate the solution x
to Ax = b will be if b is only approximated. The condition number is the maximum of
the relative error in x to the relative error in b. Higher condition numbers yield a worse
solution x, whereas low condition numbers guarantee a good approximate solution x. As
a rule of thumb, a condition number of 10d indicates that the solution x of the equation
Ax = b has lost d digits of precision [105]. Alternatively, high condition numbers signalize
an almost singular matrix.

Figure 3.11 shows a phase reconstruction using three reflectivity measurements. The

deviation of the retrieved reflection from the exact reflection at for example q ≈ 1.2�A−1

is primarily caused by the bad condition number of the constraint matrix which indicates
that the constraint matrix is nearly singular, or equivalently, the constraints of the ref-
erence layers are almost redundant. This problem can be overcome by taking more than
three reflectivities and associated reference layers into consideration. However, some
attention has to be paid on the influence of measurement uncertainty, see section 3.4.1.

Interestingly, the real part of the reflection can be “easier” reconstructed as the imag-
inary part. The imaginary part in equation (3.38) in principle depends on α, β and γ9,
whereas the real part only needs the information of α and β. This subtle fact can be
exploited to reconstruct the real part only with the knowledge of two reflectivities mea-
surements instead of three. In section 3.2 it was shown that the real or imaginary part
alone are sufficient to invert the reflection and obtain the desired scattering potential.

3.3.3 Retrieval at the Total Reflection Edge

The reference layer method can uniquely retrieve the reflection and phase information
locally of the unknown sample. Yet, the reference layer method is unable to retrieve
the phase at the total reflection edge where |R(q)|2 = 1, because the involved quantity

Σ ∼ 1+|R(q)|2
1−|R(q)|2 is undefined.

The regime of total reflection is usually quite small; for example a sample with a

Si substrate has a critical wave vector qc ≈ 0.01�A−1
which can be estimated with

equation (2.28). Even though the regime is small, the reflection therein influences on
the reconstructed potential drastically. Figure 3.12 shows the influence of the low q
reflection on the reconstructed potential. It is therefore crucial to retrieve the reflection
at the total reflection edge.

Tricks like flipping the sample upside down and measuring the reflectivity through
the substrate are not feasible for the phase retrieval. Flipping the sample removes the
total reflection edge qc, however, it also introduces a shift in the wave vector transfer
which is exactly equal to qc. Hence the effective wave vector transfer becomes q2

flipped =(
4π
λ sin θ

)2
+ 16πρSubstrate [45] and a retrieval below is not possible as qc ≤ qflipped.

Earlier works [95, 97] circumvented this problem by extrapolating the reflection from
the last retrievable q value to q = 0 as the reflection at q = 0 is always known to

9Actually, α and β together with the sign are sufficient due to unimodularity: γ = ±
√
αβ − 1
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62



3.3 Phase Information

1)	Model
2)	Reconstruction
3)	Reconstruction	with	q	≥	qc

SL
D
	[1

0-
6 	Å

-2
]

−2

0

2

4

6
8

depth	[Å]
0 25 50 75 100 125 150

a)

R(q)
R(q);	q	≥	qc

qc	≈	0.01	Å-1

b)

(1
00
q)

2 	R
e	
R
(q
)	[
Å-

2 ]

−1

−0.5

0

0.5

1

1.5

q	[Å-1]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.12: Influence of the low q truncated reflection onto the reconstructed SLD. a) The
reconstructed potentials. 1) Corresponds to the exact model 2) is the inverted

SLD using the reflection R(q) for 0 ≤ q ≤ 4 �A
−1

3) is the inverted SLD using

R(q) for qc ≤ q ≤ 4 �A
−1

. b) The exact reflection of the model SLD based on a
Si/Fe(50 �A)/Cu(100 �A)/air sample. The black vertical line indicates the critical
edge qc which is determined by the Si SLD.

be R(0) = −1, see section 2.5.2.3. Indeed, an extrapolation is possible, however, this
requires a slab model of the sample which should be avoided in a model-free approach.

In fact, there is phase retrieval technique which additionally measures the polarization
of the reflected neutrons to determine the phase of the reflection, even in the regime of
total reflection [106, 107]. Assuming suitable conditions, the reflection below the critical
edge can be numerically approximated using only the retrieved reflection [108]. The
algorithm is presented in the following.
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3.3.3.1 Fixed-point Algorithm

If the scattering potential10 of the sample is known, it is obviously possible to calculate
the reflection, in particular in the regime of total reflection. However, the scattering
potential is unknown, but it may be possible to guess a scattering potential which is
approximately equal to the true scattering potential. The reflection is then simply
calculated from the approximated sample and the true reflection below the critical edge
is replaced by the approximated reflection with an additional interpolation between
R(0) = −1 to R(qc). This procedure has been common practice [95, 99] since the time
the reference layer method has been developed.

The numerical algorithm to retrieve the phase information is based on the idea of
approximating the scattering potential, however, the guessed scattering potential is re-
placed by the inverted reflection ignoring the fact that the reflection is not known in the
regime of total reflection. The process (guessing a scattering potential and calculating
the reflection) is repeated until a termination criterion is met.

Before the algorithm is exactly defined, some advantages of this ansatz need to be
pointed out:

1. The algorithm can be run with no additional information except an estimate of
the film thickness. The film thickness, in turn, is estimated from the measured
reflectivity.

2. The algorithm can be expressed as a fixed-point iteration. It is relatively easy to
show the convergence to a unique solution in the BA.

3. The termination criteria can be set for example such that the improvement from
consecutive iterations is below a given threshold. The true scattering potential
corresponds to a fixed point of the iteration, making the above termination criteria
a reasonable choice.

4. The rate of convergence for this fixed-point iterations is linear. Thus, the fixed-
point algorithm converges quickly. It is noted that the rate of convergence is called
linear if the ratio of consecutive iterations xk converges:

lim
k→∞

|xk+1 − x∞|
|xk − x∞|

= µ with µ ∈ (0, 1).

More intuitively, one could say that the algorithm exponentially fast decays to the
fixed point with respect to the iteration number. For example, xk = 1/2k has a
linear rate of convergence to x∞ = 0 with µ = 1/2.

The direct problem in scattering theory is the challenge to calculate the reflection R
given a scattering potential V . The indirect problem is the inverse operation, namely,

10This section uses the scattering potential V as the sample description instead of the SLD ρ and uses the
wave number k instead of the wave vector transfer q. Recall that V = 4πρ in the wave equation (2.15)
and 2k = q by equation (2.24).
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calculate the scattering potential V based on the reflection R. In section 3.2 the require-
ments for the inversion are discussed. The direct and indirect problem are denoted by D
and I, respectively, and in the BA there exist explicit formulas. The direct problem was
already discussed in section 2.4, however, here the formula is stated for the scattering
potential instead of the SLD

DBA = RBA[V ](k) =
1

ik

∫
R
V (z)e−ikzdz, k 6= 0

IBA = R−1
BA[R](z) =

i

2π

∫
R
kR(k)eikzdk.

(3.44)

In practice one can never retrieve the reflection up to k →∞ and hence some degrada-
tion operators, which are the truncation and projection operator, need to be introduced.
To ensure convergence of the algorithm, a constraint operator is required as well.

The truncation operator T Kκ acts on any function f : R→ C by

T Kκ [f ](k) =

{
f(k) if κ ≤ |k| ≤ K,
0 otherwise.

(3.45)

In the context of reflectometry, the truncation operator will be applied on the reflection
function. Its purpose is to cut off the reflection where the reflection could not be recon-
structed. This region is defined by the total reflection edge and the maximal measured k
value. It is noted that the truncation operator uses the region κ ≤ |k| ≤ K. In fact the
reflection is retrieved only for positive k values, but because of the symmetry relation
R(−k) = R(k) (see section 2.3.4) is extended to negative k values, which is taken care
of in the definition of the truncation operator.

The projection operator PR acts on any function f by selecting either the function f
or R to evaluate, based on the maximal measured k value. It is defined as

PKR [f ](k) =

{
f(k) if 0 ≤ |k| ≤ K,
R(k) otherwise.

(3.46)

This operator guarantees that the fixed-point algorithm will always use the retrieved
(or measured) reflection R instead of an approximative reflection whenever the retrieved
reflection is available.

And finally, the constraint operator C is introduced. As this operator highly depends
on the available a priori knowledge of the potential V , there is no general definition.
However, if, for example, the film thickness L of the sample is known, a suitable choice
of the constraint operator is

C[V ](x) = χ[0,L](x)V (x), (3.47)

where χ[0,L](x) denotes the indicator function. Note that the retrieved reflection corre-
sponds to a free-standing film, and the potential is thus indeed zero on [0, L]c. However,
other choices of the constraint operator are possible as well, e. g. if the reflection does not
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correspond to a free-standing film but has a substrate Vsub, or the scattering potential
inside the film on [a, b] ⊂ [0, L] is known to be Vknown

C[V ](x) = χ(−∞,0)(x)Vsub + χ[0,L]\[a,b](x)V (x) + χ[a,b](x)Vknown(x). (3.48)

Similarly, a non-vacuum fronting can be implemented as well. The crucial point in the
constraint operator is that the unknown part of the sample has a bounded support.

Definition of the Fixed-point Algorithm Assume that the reflection Rret = R[V ] is
retrieved for kc ≤ |k| ≤ K with a theoretically exact potential V ∈ L1([0, L]). In terms
of the recently introduced operators, only T Kkc [Rret] is known. Because of the incomplete
knowledge of Rret, the ideal operators R and R−1 are replaced by

R → D := T K0 ◦ P
kc
Rret
◦ R,

R−1 → I := C ◦ R−1,
(3.49)

with D and I being the direct and indirect problem, respectively. The fixed-point
algorithm A is defined as

A := I ◦ D,
Vn+1 := I[Rn],

Rn+1 := D[Vn+1],

(3.50)

with the initial scattering potential V0 :=
(
I ◦ T Kkc

)
[Rret].

For an in-depth explanation of the fixed-point iteration, it is useful to state the algo-
rithm in a single formula

A[Vn] = Vn+1 = C ◦ R−1 ◦ T K0 ◦ P
kc
Rret
◦ R (3.51)

The process of the fixed-point algorithm is described in the following and the first step
is illustrated in figure 3.13:

Initialization: The initial reflection R0 is constructed from the retrieved reflec-
tion Rret by setting the unknown values to zero using T Kkc . The initial scattering
potential V0 is computed from the initial reflection R0 by V0 = I[R0].

1. An intermediate reflection R̂ is calculated from Vn by R.

2. The reflection R̂ above |k| > kc is discarded and replaced with the retrieved re-
flection Rret by applying the operator PkcRret

. The reflection above |k| > K is also

discarded by T K0 and the reflection obtained by the operations is denoted Rn+1.

3. An intermediate potential V̂ is computed from the reflection Rn+1 using R−1.

4. The intermediate scattering potential V̂ has in general an unbounded support
because the high |k| > K and low |k| < kc frequency oscillations of Rn+1 are
truncated. The potential Vn+1 is computed by the constraint operator Vn+1 = C[V̂ ]
and has bounded support.
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5. The procedure is repeated until the change in the reflections Rn+1 − Rn is suffi-
ciently small.

The fixed-point algorithm originates from the properties of the Fourier transform
which map the reflection in the reciprocal space to the scattering potential in the real
space in the BA. Large features in the potential correspond to low frequencies and
small features are transformed to high frequencies by a Fourier transform. Thus, the
knowledge of the thickness, which is, in principle, a large feature, affects primarily the
low frequencies of the reflection. This is the reason why one expects that the algorithm
is able to retrieve the reflection.
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Figure 3.13: Illustration of the first iteration of the fixed-point algorithm (3.50). The left
column shows the real part of the scaled reflection for k ≥ 0, the right column
shows the potentials. The labels in the top left corner correspond to the steps
described in the text. The graph 1’. shows the algorithm in the second iteration.
The gray shaded graphs show the steps performed in the initialization step.

The fixed-point algorithm is defined as a mapping A : V 7→ V ′, however, an analogous
fixed-point algorithm A′ := D ◦ I : R 7→ R′ is possible as well. The initial reflection is
then T Kkc Rret.

The choice of the initial reflection or initial potential is, in fact, not crucial. In
principle, any initial reflection can be used, however, a reflection which is closer to
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Figure 3.14: Distinction of the ideal to the exact notion. The ideal R∗ and exact R reflection
is shown in the top graph and the ideal V ∗ and exact V scattering potential is
shown below.

the fixed point decreases the number of iterations. Here, the absence of additional
information of the scattering potential prevents an improvement of the initially guessed
reflection.

The reflection T K0 ◦R[V ] is called ideal since it matches the true reflection of the true
scattering potential V up to the truncation in high k values. The exact reflection R[V ]
is the theoretically true reflection, which does not suffer from the truncation at |k| > K:

Rideal = T K0 ◦Rexact. (3.52)

Likewise A[V ] is the ideal scattering potential as it is the best possible retrieved scat-
tering potential with k truncated reflection and V is exact. It is noted that A[V ] 6= V ,
however, the equation holds in the limit K →∞. The distinction between the ideal and
exact scattering potential and reflection is shown in figure 3.14.

It is noted that the ideal and exact reflection are both not a fixed point of the algorithm
A′ and thus, the fixed point iteration cannot converge to either one. The reason is the
truncation operator T K0 . In fact

A′[T K0 ◦ R[V ]] =T K0 ◦ P
kc
Rret
◦ R ◦ C ◦ R−1[T K0 ◦ R[V ]]

6=T K0 ◦ P
kc
Rret
◦ R ◦ C ◦ R−1[R[V ]] = T K0 ◦ R[V ],

(3.53)

and analogously, R[V ] is not a fixed point of algorithm A. However, in the limit K →∞,
the exact potential V is a fixed point of the iteration A, because T K0 = id as K → ∞;
likewise R[V ] is a fixed point of A′ as K →∞.

Corollary 2 relates the fixed point potential of A to the ideal potential in the BA.
In particular, having retrieved the reflection R(k) for a sufficiently large range of wave
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numbers k, the fixed point potential is an approximation to the ideal potential, and thus
it is an approximation to the exact potential as well.

Corollary 2 (From [108]). Let kcL < π and consider the constraint operator C[U ](x) =
χ[0,L](x)U(x). Then algorithm A (3.50) converges and it has a unique fixed point V ∗ ∈
L1([0, L]) for any initial potential. Furthermore, if the exact potential V is n-times
continuously differentiable for n ≥ 2 and the support of V is a subset of (0, L), the
following estimate holds

‖V ∗ −A[V ]‖L1([0,L]) ≤
kcL

2K1−n

π(π − kcL)(1− n)

∥∥∥V (n)
∥∥∥
L1([0,L])

.

In particular, the fixed point V ∗ = V almost everywhere in L1 in the limit K →∞.

The condition kcL < π ensures that the scattering potential does not contain large
features which influence the reflection for |k| ≤ kc. It is possible to loosen this assumption
if additional constraints are imposed on a set of measure (or “size”) l; the condition in
Corollary 2 relaxes to kc(L − l) < π. Additional constraints simply reduce the total
thickness by the “amount” of constraints. For example, if the scattering potential is
known on [a, b] and the constraint is implemented as in equation (3.48), the assumption
relaxes to kc(L− (b− a)) < π.

3.3.3.2 Numerical Experiments

The algorithm is tested on two different realistic potentials. It usually converges in less
than 100 iterations, however, this strongly depends on the selection of kc and L, i. e. the
smaller kcL− π < 0 the faster the convergence to the fixed-point.

As choice of the stopping criteria the L1 or supremum norm is suitable, where the
supremum norm usually is stronger in the sense that it achieves a more precise retrieval
at the cost of additional iterations. In the following the supremum norm11 is used, which
is defined as

‖Rn+1 −Rn‖∞ = max
0≤k≤kc

|Rn+1(k)−Rn(k)|. (3.54)

As the stopping criteria, the condition ‖Rn+1 −Rn‖∞ < ε is taken with the tolerance
ε = 10−8. The accuracy of the retrieval is measured with the metric of total relative
error which is defined as

Acc(R∗) =
1

N

∑
0≤k≤kc

∣∣∣∣R∗(k)−R(k)

R(k)

∣∣∣∣, (3.55)

where N is the number of elements in the sum, R∗ and R are the reflection of the fixed-
point and the exact reflection, respectively. The number N is assumed to be finite as
the reflection is retrieved at discrete points in k space.

11Actually the maximum norm is used, however, as the Fourier transform of an L1 function is continuous
and the domain is compact, the supremum is attained; thus the supremum norm is equivalent to the
maximum norm.
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A k-spacing of ∆k = 5× 10−3 �A−1
is used in the following examples. The fixed-point

algorithm is performed in the dynamical theory and not in the BA.

Random Scattering Potential A free-standing scattering potential V with a thickness
of L ≈ 330�A was generated by randomly choosing the thickness, roughness and SLD
for a random number of layers. The reflection R(k) is simulated from V in the range

8.5× 10−3 �A−1
= kc ≤ |k| ≤ K = 0.25�A−1

. The reflection R(k) for |k| ≤ kc is retrieved
by the fixed-point iteration, where the film thickness was assumed to be 330�A. The
prerequisites of Corollary 2 are thus fulfilled. Figure 3.15 shows selected iterations of the
fixed-point algorithm A. The algorithm terminated after 66 iterations with an accuracy
of Acc(R∗) = 2.5× 10−4.

In practice, the solution R∗ has to be verified by comparing with the measured reflec-
tivity. They should coincide, but the K truncation prevents a perfect match in general.
Figure 3.15 (bottom) shows exactly this behavior. The exact reflectivity does not coin-
cide with |R66|2 at high q values.

Even higher values of kc lead to a convergence of the algorithm. In fact, the algorithm

A with same configuration but using a higher critical edge kc = 1.3× 10−2 �A−1
con-

verges anyway but many more iterations ≥ 5000 are required. The accuracy decreases
to 1.8× 10−2, which is is still acceptable, see figure 3.16. The condition kcL < π in
Corollary 2 is violated by roughly 37%, i. e. kcL ≈ 1.37π, but the algorithm still con-
verged. This suggests that the condition is not necessary, but rather sufficient for the
retrieval.

The algorithm A retrieves a continuous reflection without any additional constraints.
The condition R(0) = −1 (see section 2.5.2.3) is inherently given by the direct problem D
(see figure 3.15 middle). It is noted that the reflectivity in figure 3.15 (bottom) appears
to have a total reflection edge, but this is not the case since the scattering potential is
free-standing. The deception is caused by the fact that the scattering potential V has a
high average SLD and it is relatively thick.

Thin Layer The next example is an air/Au(40�A)/Cu(30�A)/Fe(45�A)/Cu(40�A)/air
free-standing film. The fixed-point algorithm is tested again on simulated data. The
SLD profile is generated with the refl1d software [68] using randomly selected rms rough-
nesses in the range 3.7�A to 8.2�A. The total film thickness is L ≈ 150�A. The reflection

R(k) is simulated for kc = 0.01�A−1 ≤ |k| ≤ K = 0.1�A−1

Figure 3.17 depicts selected iterations of the fixed-point iteration. A critical edge

kc = 10−2 �A−1
is used which is reasonable compared to kc ≈ 5× 10−3 �A−1

for a silicon
substrate.

The algorithm uses only a total film thickness of 200�A as the single constraint. After
47 iterations the algorithm converged with an accuracy of 2.0× 10−3. The fixed-point
V ∗ = V47 perfectly resembles the structure of the ideal potential.

The rate of convergence seems to decrease rapidly with increasing kc, but surprisingly,
K does not seem to have any influence on the number of iterations for convergence, see
figure 3.18. It shows the number of iterations until convergence and the accuracy as a
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Figure 3.15: Fixed-point algorithm of A applied on a randomly generated potential. The re-

flection R(k) was simulated for kc = 8.5× 10−2 �A
−1 ≤ k ≤ K = 0.25 �A

−1
. (Top)

Iterations 1, 10, 20, 66 of the fixed-point algorithm together with the exact V
and ideal A[V ] potential, respectively. The difference of the fixed point V ∗ = V66

to the ideal potential is shown below. (Middle) Real and imaginary part of the
reflection computed from the potentials shown above. The left side is calculated
by the fixed-point algorithm whereas the right side is simulated. (Bottom) Reflec-
tivities of the scattering potential shown above. The reflectivity curves are shifted
by two orders of magnitude for clarity.
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function of kc and K, respectively. In addition, the rate of convergence decreases as the
assumed film thickness increases.

3.4 Effects of Degraded Reflection

The scattering potential is inverted by using the retrieved reflection data, which in turn
is determined by the reflectivity of the same unknown sample but with different reference
layers. Mathematically, the reflection R is retrieved by the operator Ret which takes
N ∈ N, N ≥ 3 measured reflectivities |Ri|2 and associated reference layers Li and
calculates the reflection based on the reference layer method

R = Ret
[(
|Ri|2, Li

)N
i=1

]
. (3.56)

To obtain the scattering potential, the reflection is inverted which is expressed by

V = I[R]. (3.57)

Every physical measurement is subject to a measurement error ε. In context of neutron
reflectometry, the true reflectivity |Ri|2 cannot be measured but only estimated from the
observed reflectivity which is

|R̂i|2 = |Ri|2 + εi, (3.58)

where the error εi ∼ N (0, σ2
i ) is assumed to be normally distributed at µ = 0 with

variance σ2
i . Hence, neither the true reflection nor the true scattering potential are

accessible but only the estimated reflection and the estimated scattering potential can
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be determined

R̂ = Ret

[(
|R̂i|2, Li

)N
i=1

]
, V̂ = I[R̂]. (3.59)

In the following sections the influence of random and systematic errors on the reflec-
tion and inverted scattering potential are discussed. On the one hand, random errors are
always present in measurements and they vary from one observation to another. Sys-
tematic errors, on the other hand, occur always with the same value if the experiment
is repeated in the exact same way [109].

3.4.1 Random Measurement Error

To incorporate more than three measurements into the reference layer method, the
linear equation (3.41) is generalized to a (weighted) linear least squares problem. The
measurement uncertainty can be included in this ansatz:

χ2(Θ) =

N∑
i=1

(
CK,i ·Θ− Σi

σΣi

)2

. (3.60)

The χ2-minimizing reflection parameter Θ̂ is used as an estimate of the true parameter
Θbb

U . The minimizer of χ2 can be analytically computed by the linear least squares
method. In this ansatz, σΣi is the standard deviation of Σi which is calculated from the
uncertainty of the reflectivity σi by σΣi = 2

(1−|Ri|2)2
σi.
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Unfortunately, the minimizer Θ̂ is biased, i. e.E[Θ̂] 6= Θbb
U , as the error in Σ has a

non-zero expectation: To correctly derive the error one has to consider the reflected
intensity Ir instead of the reflectivity since the error in the intensity is modeled as a
(discrete) Poisson distribution and the error in the reflectivity is a (continuous) normal
distribution. The expectation value exists only in the discrete case; the continuous
case fails to yield a finite value as the integration is carried out over a pole of order
1. The measurable quantity Σ in equation (3.60) is calculated by Σ = I0+Ir

I0−Ir where I0

is the incident intensity such that |R|2 = Ir/I0. The expectation of the error is (see
appendix B.2 for the deviation)

E[εΣ] =
1

CDFPois(Ir)(I0 − 1)

I0−1∑
j=0

Ijr e−Ir

j!

(
2I0(j − Ir)

(I0 − j)(I0 − Ir)

)
, (3.61)

where CDFPois(Ir) is the cumulative distribution function (CDF) of the Poisson distribu-
tion. The normalization term which includes the CDF is required because the reflected
counts k cannot exceed the incident intensity j < I0. The incident intensity I0 acts here
as the uncertainty or standard deviation parameter σ|R|2 = 1/

√
I0 when passing to the

continuous case. The first term in the sum corresponds to the probability of measuring
j counts if the mean is Ir assuming a Poisson distribution. The second term in the
brackets is the distortion from the non-linearity caused by Σ = Σ(Ir).

On the one hand, if the uncertainty in σ|R|2 is sufficiently small, the minimizer Θ̂
is usually overestimated for small reflectivities, i. e.E[εΣ] > 0. On the other hand, if
the reflectivity is sufficiently close to the total reflection edge, the expected error E[εΣ]
is negative resulting in an underestimation of Θ̂. The reason for this behavior is that
the symmetric error εIr is asymmetrically cut as |R(k)|2 + ε has to be bounded by 1.
See figure 3.19 for the cases of overestimation and underestimation. An overestimation
and underestimation is indicated if the relative error is above zero and below zero,
respectively.

The overestimation and underestimation is only problematic if the reflectivity is too
close to the regime of total reflection, and usually both effects can be neglected for
lower reflectivities or, equivalently, higher k values. For high reflectivities the practical
approach is to increase the counting time in order to increase the accuracy of the re-
flectivity. Alternatively, an approximation of the expectation value might be subtracted
from the estimated Σ̂. However, as the true reflected intensity Ir is not precisely known,
the expectation value can only be approximated and an improved Θ̂ can be achieved by
replacing Σ̂ with Σ̂− E[εΣ].

Figure 3.19 shows the relative error of E[Σ̂] as a function of reflectivity. The samples
are drawn from a Poisson distribution instead of a normal distribution, because the
normal distribution cannot be used as an approximation to the Poisson distribution for
low intensities or rates. For high uncertainties or, equivalently, low maximal intensities,
the estimated Σ̂ can considerable deviate from the true Σ. With increasing incident
intensity, the peak of the relative error is shifted closer to |R|2 = 1. An incident intensity
of 106 to 107 counts is not uncommon for reflectivity experiments, thus, only the reflection
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Figure 3.19: Relative error E[Σ̂]−Σ
Σ as a function of the reflectivity with varying incident inten-

sities I0 which influence the relative uncertainty of the reflectivity. Σ̂ is drawn
from a Poisson distribution with rate λ = I0|R|2 (not confuse with wavelength)
using 106 samples. The dotted curves indicates the theoretical error calculated
by equation (3.61), the solid lines are the randomly drawn samples. Both curves
agree because of consistency. A relative error above zero indicates an overestima-
tion of Σ̂ whereas an underestimation happens if the relative error is below the
horizontal line. Any deviation from zero corresponds to a bias of the estimator Σ̂.
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Figure 3.20: Real part of retrieved reflections using three simulated reflectivities with mea-
surement errors. The curves are split into two groups and are shifted by 0.25

for reasons of clarity. The vertical dashed line is located at k ≈ 0.01 �A
−1

which
corresponds to |R(k)|2 ≈ 0.4 in the simulated reflectivities.

close to the total reflection edge is distorted from measurement noise in the reflectivity.
At reflectivities of R ≤ 0.4 this effect has almost no relevance anymore even for incident
intensities as low as I0 = 102 counts.

The influence of the errors in the reflectivity on the retrieved reflection is shown in
figure 3.20. The effect of measurement noise is most pronounced at small k values
which correspond to high reflectivities. At higher k values the noise in the measurement
becomes less relevant. Furthermore, with an increase in the incident intensity I0 (lower
uncertainty) the effect of random noise in the retrieved reflection becomes less significant.
Thus, the reference layer method is well-suited for retrieving the reflection with noise
degraded data. However, to retrieve the reflection close to the regime of total reflection,
some care has to be taken to minimize the effect of noise degraded data.

To summarize, there are two sources of errors which especially affect the high reflec-
tivity region. First, there is the measurement noise which distorts Σ such that small
errors in the reflectivity cause large errors in the retrieved reflection, simply by the fact
that 1

x behaves “badly” for x ≈ 0 with measurement error εx. Secondly, the quantity Σ
is biased which prevents to use arbitrary many measurements to improve an estimator
Θ̂ for the reflection based on a linear least squares approach as this requires an unbiased
error εΣ.
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Figure 3.21: Effect of truncated reflection on the inverted scattering potential. The reflection
was simulated using the theoretical SLD (∼ V ) shown in the top graph. The top
graph shows the inverted SLDs using the truncated reflection T kmax

0 ◦ R[V ]. The
bottom graphs depicts the difference of the SLD computed by V −R−1 ◦ T kmax

0 ◦
R[V ].

3.4.2 Bandwidth Limitation

The major issue when inverting the reflection to obtain the scattering potential is the
limitation (or truncation T kmax

0 ) in the available k range. As the reflectivity can only
be measured up to a maximal kmax the resulting reflection is also truncated. Obviously,
one cannot obtain the true scattering potential from truncated reflection data, i. e.

V 6= R−1 ◦ T kmax
0 ◦ R[V ]. (3.62)

It is thus important to analyze the influence of the truncation operator acting on the
retrieved reflection.

The reflection inversion procedure exhibits similar features as a Fourier inversion, as
the inversion relies on a Fourier transform shown in section 3.2. Thus, the truncation of
high k values implants oscillations in the inverted scattering potential. The amplitude
and frequency of these oscillations highly depend on kmax. Figure 3.21 shows the effect
of truncated reflection.

In the BA one can explicitly state the influence on the inverted potential V̂ by [110]

V̂ (z) = T L0
[∫ ∞
−∞
Kkmax(z − ζ)V (ζ)dζ

]
, (3.63)
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where

Kkmax(z) =
sin 2kmaxz

2kmaxz
= sinc 2kmaxz (3.64)

is the kernel of the convolution which is the sine cardinalis. Indeed, the truncation can be
viewed as a simple convolution of the true scattering potential with the sine cardinalis.
This result shows that the bandwidth limitation acts like a low-pass filter. In the limit
kmax → ∞, the convolution kernel Kkmax converges to the dirac delta function in the
distributional sense. This explains why the complete knowledge of the reflection for any
k ∈ R is not required for a practical inversion. Hence for a sufficiently large kmax, one
has

R−1 ◦ T kmax
0 ◦ R[V ] ≈ V. (3.65)

In general, one can only give approximate values for kmax which produces sufficiently
good inverted scattering potentials. A general rule of thumb is

kmax =
π

dmin
, (3.66)

where dmin is the smallest layer size inside the sample. If the scattering potential contains
for example sharp interfaces with no roughness kmax needs to be larger, if the scattering
potential is smooth then kmax can be smaller than π

dmin
. The reason is that for smooth

functions the Fourier transform decays quicker than for discontinuous functions.

The truncation effect is shown in figure 3.22 for three sample models which differ
only by the roughness. One can clearly see that the truncation of the reflection has a
lesser effect for rougher samples. The inversion with roughness σ = 3�A (third column
in figure 3.22) is already sufficient if the reflection is retrieved for |k| ≤ 0.75kmax ≈
0.236�A−1

.

The difference of the inverted potential VK to the true potential V as a function of
K is shown in figure 3.23. Again, it shows that potentials with a higher roughness
between layers can be better reconstructed with the same amount of “knowledge” of the

reflection. Interestingly, for K between 0.16�A−1
and ≈ 0.25�A−1

the inverted potential
VK does not substantially improve the matching with the true potential V at least in the
L1 sense. In this context when planning an experiment at a beamline, it might be more
beneficial to invest the valuable beamtime in e. g. lowering measurement noise instead of
increasing the reflection domain k, since the additional reflection information does not
significantly improve the inverted scattering potential, at least in this special case. It is,
therefore, advantageous to investigate such a behavior prior executing PNR experiments
to maximize the information output.

The bandwidth limitation has another interesting consequence which is similar to the
Gibbs phenomenon [111]. The Gibbs phenomenon describes the fact that a finite Fourier
series of a piecewise continuous function has large oscillations near jump discontinuities.
The width of the oscillations decrease the more terms are added to the Fourier series,
however, they do not vanish for any finite number of terms. In particular, the Fourier
series will exhibit an overshoot right to a jump discontinuity and an undershoot left to
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Figure 3.22: Inversion of a free-standing [Al(10 �A)/Fe(15 �A)/Cu(20 �A)]3 multilayer. Each col-
umn shows the true SLD (dashed curve) with roughness σ. Each row corresponds
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.
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Figure 3.23: Difference of the true potential V to the inverted potential VK as a function of
the truncation quantity K and roughness σ measured in L1. The potential VK is
calculated by VK = R−1◦T K0 ◦R[V ]. The potential V is a Al/Fe/Cu free-standing
film, see figure 3.22.

a jump discontinuity. The truncated Fourier series has an overshoot or undershoot of

−1

π

∫ ∞
π

x−1 sin(x)dx =
1

π

∫ π

0
x−1 sin(x)dx− 1

2
≈ 9% (3.67)

near a jump discontinuity [112–114]. This behavior can be seen in the inverted scattering
potential as well, however, the relative overshoot and undershoot can vary between ≈ 6%
to ≈ 12%. This situation is exemplary shown in figure 3.24 where a 45�A thick sample
was used to show the overshoot and undershoot at the interface of two layers with zero
interdiffusion or roughness.

Note that the feature of the overshoot and undershoot cannot be removed even when
increasing the maximal k value. To remove this feature, the reflection over the complete
k range has to be measured, i. e.K =∞, which is not feasible.

In practice, the “ringing” usually does not exist inside the sample as perfectly sharp
interfaces rarely exist, however, the “ringing” feature appears in regard to phase recon-
struction by the reference layer method: As the whole sample is split into the unknown
and reference part, a sharp interface is created there. In the context of in situ PNR
by putting the reference layer on top of the sample, the ringing will thus appear at the
interface of the top sample to the surrounding (air) in the scattering potential inverted
from the reconstructed phase.

By extrapolating the reflection to higher q values the ringing effect can be reduced to
an acceptable amount. The disadvantage with this approach is that a suitable extrapo-
lation model has to be chosen. In section 4.2.2, an extrapolation has exemplarily been
successfully carried out.
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.

3.4.3 Resolution

The reflectivity used for the phase reconstruction is inevitable degraded by the resolution.
The reflection will be degraded as well and one has

Ret
[(

Res
[
|Ri|2

]
, Li
)N
i=1

]
6= R. (3.68)

The resolution in q is given by

σq = q

√(σλ
λ

)2
+

(
σθ

tan(θ)

)2

(3.69)

and the resolution of the reflectivity Res |R|2 is computed by the convolution with a
normal distribution N (0, σq) with mean µ = 0 and standard deviation σ = σq by

Res
[
|R|2

]
= |R|2 ∗ N (0, σq). (3.70)

To evaluate the resolution effect on the reconstructed reflection and inverted SLD, the
reflectivity is simulated first without including any resolution and then with a constant
relative wavelength and constant relative angular resolution. The results are shown
in figure 3.25. The main effect of the resolution on the reconstructed reflection is the
damping of the oscillations accompanied by a slight decrease of the frequency. The
decrease of the frequency causes the inverted SLD to be slightly thinner. The damping
in the reflection overestimates the true SLD at the top surface (140�A to 200�A), where
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as deeper inside the sample the SLD is underestimated (0�A to 100�A) until the substrate
is overestimated again. The oscillations induced by the bandwidth limitation are not
affected.

It is noted that the retrieval operator Ret and the resolution operator Res cannot be
interchanged, i. e. none of the following reflections are equal

Ret
[
(Res

[
|Ri|2

]
, Li)i

]
, Res

[
Ret

[
(|Ri|2 , Li)i

]]
, Res

[
|R|2

]
. (3.71)

Recall that Ret[(|Ri|2, Li)] = R holds, i. e.R is the true reflection reconstructed from the
reflectivities |Ri|2 and reference layers Li. Especially, it is not possible to reconstruct the
true reflection of the unknown sample from resolution degraded reflectivity data without
further refinement of the measured reflectivity data. To see that the reflection mentioned
above are not equal, figure 3.26 shows the corresponding reflectivities of each term. As
the reflectivities do not match, the reflections and reflectivities cannot match either.

The peak at 0.31�A−1
stems from a bad condition number in the constraint matrix (see

section 3.3.2.1), which causes the imaginary part to diverge, independent of the applied
resolution.

It is not yet clear how to optimally remove the resolution from the reflection data since
a precise description of how the resolution of an instrument influences the reflection of
the sample is not known. A naive idea would be to deconvolute the reflectivity and
then retrieve the reflection. However, this approach did not yield any useful results as
deconvolution is in general an ill-posed problem [115], especially if measurement noise is
present in the reflectivity data.

3.4.4 Background

The background in reflectivity data plays an insignificant role when retrieving the re-
flection provided the background is constant for the various reflectivity measurements.
For varying backgrounds the reflection can only be retrieved up to the q value where
the background is substantially influencing the reflectivity, i. e. the background is of the
same order of magnitude as the reflectivity or higher. More precisely, the following cases
are considered

constant background: |R̂i(q)|2 = |Ri(q)|2 +B

varying background: |R̂i(q)|2 = |Ri(q)|2 +Bi
(3.72)

with B,Bi > 0 being additive constants.

To understand why a constant background can be neglected in the context of phase
reconstruction, consider the background B > 0 degraded quantity Σ̂i (see section 3.3.2.1
for the definition of Σ) for small reflectivities |Ri|2 � 1 and where the background
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Figure 3.25: a) Reflection reconstructed from three reflectivities, which are degraded by the
resolution operator Res with fixed angular divergence σθ and fixed σλ. b) The
inverted SLD of the reflection shown above. The vertical lines indicate the Si/Au
and Au/Cu interface, respectively c) The resolution degraded reflectivity used for
the phase reconstruction. Only the reflectivities corresponding to one reference
layer are shown.
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a)	simulated	reflectivity	with	resolution
b)	resolution	applied	after	reconstruction
c)	resolution	applied	before	reconstruction
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Figure 3.26: Comparison of the reflectivities after phase reconstruction with resolution σθ =
σλ = 0.2. a) shows the reflectivity as measured by a traditional reflectometry

experiment Res |R|2. b) shows the reflectivity of the reconstructed reflection with
perfect data and resolution applied afterwards Res[Ret(|Ri|2, Li)i]. c) shows the
reconstruction of resolution degraded reflectivity data Ret[(Res(|Ri|2), Li)i].

dominates the reflectivities. One can show that

Σ̂i = 2nfnb
1 + |Ri|2 +B

1− |Ri|2 −B
= Σi

(
1 +

2B

(1− |Ri|2 −B)(1 + |Ri|2)

)
≈ Σi

(
1 +

2B

1−B

)
.

(3.73)

Hence, the background degraded parameter vector Θ̂bb
U , which uniquely determines the

reflection, can be estimated by

Θ̂bb
U = C−1

K Σ̂ ≈ C−1
K Σ

(
1 +

2B

1−B

)
= Θbb

U

(
1 +

2B

1−B

)
, (3.74)

where CK is the constraint matrix and Σ = (Σi)
T
i=1 is the transformed reflectivity vector.

This result only holds if the background is independent of the reflectivity measurement.
The background degraded reflection R̂ is calculated by equation (3.38), which is

R̂ = − α̂− β̂ − 2iγ̂

α̂+ β̂ + 2
≈ − α− β − 2iγ

α+ β + 2
1+ 2B

1−B

≈ R. (3.75)

for a background B sufficiently small. It is noted that the background can be relatively
large 0 ≤ B ≤ 10−2 without substantially distorting the reconstruction of the reflection,
which is shown in figure 3.27. To put this into perspective, in PNR experiments the
reflectivity is routinely measured to |R|2 ≤ 10−5 and below [116–118].
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Figure 3.27: Influence of the background on the reconstructed reflection. The top graph a)
shows a constant background B for each used reflectivity measurement, i. e.R =
Ret[(|Ri|2 + B,Li)i]. b) depicts the case if the background is varying for each
reflectivity curve and chosen from a uniform distribution.

However, if there is a variation in the background, the situation changes for the recon-
structed reflection and it can only be reliably reconstructed as long as each reflectivity
measurements is above the background level.

Figure 3.27 shows the two cases of the reconstruction: a) a constant background and
b) a varying background in each reflectivity measurement drawn from a uniform distri-
bution. On the one hand, one clearly sees that a constant background does change the
reflection, and even for a high constant background B = 10−1 there is only a small shift

of ≈ 7× 10−6 �A−2
in the real part of the q2 scaled reflection visible. On the other hand,

the reflection reconstructed with a varying background exhibits tremendous deviations
if the reflectivity is of the same order of magnitude as the background (indicated by the
vertical dotted lines).
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4 Phase Retrieval for in situ Polarized
Neutron Reflectometry

In this chapter the phase retrieval and inverse scattering theory is applied for in situ
polarized neutron reflectometry to recover a unique SLD profile of the inspected sample.

4.1 Experimental Setup

For retrieving the phase information, a compact in situ deposition chamber is used,
which was designed by the University of Augsburg in cooperation with the Technical
University of Munich [71, 72]. It allows PNR experiments to be performed while at the
same time material can be deposited onto the sample.

The design of the chamber was gradually improved from the first version in 2010, which
proved the feasibility of in situ PNR [72], to the current state, which e. g. incorporates
a cryostat to allow the sample to be cooled or heated in a temperature range of 10 K
to 1000 K [71, 119]. Further features of the in situ deposition chamber are (i) improved
ultra-high-vacuum conditions with a base pressure below 5× 10−9 mbar (ii) three 2′′

sputter guns operable in DC and RF mode which are rotated above the sample in order
to maintain the sample’s alignment and (iii) a fully automated deposition process with
scripting capabilities which is integrated in the beamline control software.

As thin film deposition method magnetron sputter is applied in the in situ deposition
system. In this process a inert gas, typically Ar, is inserted into the vacuum chamber
by a leak valve in a controlled manner. The gas is then ionized to form a plasma whose
ions are accelerated towards the sputter target. On impact of the ions, target material
is released. This sputtered off material condenses on the sample. A shutter between the
sample and sputter gun controls the amount of deposited material by the opening time
of the shutter.

The in situ deposition chamber can be installed on any neutron reflectometer with a
horizontal sample geometry, however, it is best suited for the Amor beamline at Swiss
Spallation Neutron Source (SINQ), Paul Scherrer Institut (PSI), Switzerland, where a
high neutron flux on the sample can be realized by applying the focusing Selene optics
[120, 121]. The Selene optics is mounted in front of the in situ setup as shown in
figure 4.1.

The neutron beam is polarized using a m = 4.3 Fe/Si multilayer polarizer and its
polarization is selected by an rf spin flipper. Along the neutrons flight path, a magnetic
guide field with permanent magnets are used to maintain the direction of the spin and the
polarization of the neutron beam. Inside the in situ vacuum chamber, the guide field is
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Figure 4.1: A photograph of the in situ deposition chamber installed on the Amor reflectometer
beamline at PSI, Switzerland, in 2018.

maintained and at the sample position a magnetic field of 70 mT is applied perpendicular
to the scattering plane by permanent magnets.

4.1.1 Sample Homogeneity

To create a sample with a homogeneous material distribution the sample is usually
rotated around its surface normal while the sputtering gun is pointing at the sample at
angle of 22.5° to the sample normal, however, the in situ vacuum chamber is designed
such that the sample is kept aligned in the neutron beam at all time, incuding and in
particular during deposition. Therefore, the sample might have an inhomogeneous layer
thickness distribution, and care has to be taken when performing PNR experiments on
in situ grown samples.

To assess the inhomogeneity of the sputtered samples in the in situ chamber, a SiO2

specimen slide (76 mm×26 mm (x× y)) was cleaned with isopropyl alcohol and inserted
into the vacuum chamber. The substrate was placed directly under one of the sputtering
guns at a distance of approximately 11 cm which was loaded with a 1.5 mm thick 2′′ Ni
target with a purity of 99.99%. A slight misplacement of the sample with respect to the
sputtering gun is due to the fact that the alignment was performed by eye.
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4.2 Proof-of-Concept: Fe/Cu Thin Film

The in situ sputtering chamber was then evacuated to a base pressure of pbase =
4.7× 10−7 mbar. Prior to deposition, the target was pre-sputtered for 5 min to remove
any oxidation or contamination on its surface. Subsequently, a nominally 200�A thick Ni
layer was deposited at room temperature using DC magnetron sputtering at a constant
power of 50 W and an ultra-pure (7N) Ar sputtering gas at a pressure psputtering =
6.5× 10−3 mbar, which corresponds to a deposition rate of 1.0�As−1. The thickness of
the Ni layer was controlled by the opening time of the shutter. The sputter time of 200 s
was electronically controlled.

After deposition, the sample was analyzed ex situ in an x-ray reflectometer (D5000,
Siemens GmbH). The reflectometer is operated in a θ− 2θ geometry with parallel beam

optics and uses a Cu tube with a characteristic wavelength λCu Kα = 1.5419�A−1
. The

sample was measured at 15 equidistant positions along the long side x, yielding a spacing
of ∆x = 4.75 mm. A knife edge was used to ensure a localized measurement of the
sample’s thickness.

The fitted x-ray reflectometry (XRR) curves and the resulting sample inhomogeneity
is shown in figure 4.2. The fitting model is based on a SiO2/Ni/NiO slab model where the
NiO layer corresponds to a natural oxidation of the Ni layer. The total thickness of the
XRR fits comprises the thicknesses of the Ni and NiO and it varies by ≈ 3�A (1.3%) and
≈ 8�A (3.8%) over a distance of 10 mm and 20 mm, respectively. The incident neutron
beam on the sample at the Amor beamline at PSI has a beam width of at most 2 mm
[120] which corresponds to a thickness inhomogeneity of ≈ 0.3% along the short side y of
the sample if a radial symmetric thickness distribution is assumed. Along the long side
x, the incident neutron beam has a footprint < 10 mm. Hence, the inhomogeneity of the
sample’s thickness is negligible in both directions when performing PNR experiments at
the Amor beamline.

4.2 Proof-of-Concept: Fe/Cu Thin Film

A 2 cm× 2 cm Si(001) substrate was cleaned by isopropyl alcohol and etched in a bath
of 5% hydrofluoric acid, after which it was immediately placed into the in situ vacuum
chamber. This treatment removes the native oxide layer and results in a hydrogen-
terminated silicon surface, which restricts oxidation with ambient air [122]. The vacuum
chamber was evacuated to a base pressure of pbase < 5× 10−9 mbar and a 45 nm thick Cu
seed layer was grown using DC magnetron sputtering. Fe reference layers were deposited
with approximately monolayer thickness (d = 2.6�A) in 28 repetitions, resulting in a
≈ 73�A thick Fe layer. All deposition steps were carried out at room temperature. After
each repetition, PNR measurements were carried out, but after the 14th repetition, only
every second deposition is examined by PNR [123]. The resulting spin-up (+) and spin-
down (−) reflectivity is denoted by R±i , where i denotes the deposition step. Figure 4.3
shows the performed PNR measurements of the sample Si/Cu(450�A)/Fe(i× 2.6�A)/air
[123].

The goal is to reconstruct the reflection of the unknown part of the sample, i. e. the
Cu layer, by utilizing the thin Fe layers as reference. Before reconstructing the reflec-
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Figure 4.2: Thickness homogeneity of a single layer of Ni on SiO2 specimen slide substrate. The
top graph shows the XRR measurements (line cross) at equally spaced positions Pi
together with their corresponding fits (solid line). The bottom graph shows the Ni
layer thickness distribution as a function of measured position. The graph is shifted
such that 0 corresponds to the maximal layer thickness at the center position below
the sputtering gun.
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tion of the unknown part and inverting the reflection to obtain the SLD, the necessary
requirements for the reconstruction and inversion are checked to ensure the feasibility.

The true SLD corresponding to the reflectivity measurement Ri is denoted by ρi and
let ρi be split at a z = zs into a unknown part ρu and a reference layer ρr,i for each
deposition step i, i. e.

ρi(z) =

{
ρu(z), z ≤ zs

ρr,i(z), otherwise
. (4.1)

The requirements for the reconstruction and inversion are:

1. The SLDs ρu, ρr,i are real valued for all i: All constituents of the sample, i. e. Si,
Cu and Fe, have a bound scattering length b whose imaginary part is at least 7000
times smaller compared to the real part1. Thus the imaginary part is negligible
and the SLDs are real valued.

2. The support of the SLD ρu is bounded from above, i. e. supp ρu ≤ b: As the sample
is a thin film, it is of finite extent regarding its top surface. Therefore, the support
is bounded from above.

3. The SLD ρu has no bound states: The scattering length of Si, Cu and Fe are
positive [14], thus ρu ≥ 0 and ρu cannot have a bound state by section 3.2.1.

4. The SLD ρu is constant for each PNR measurement Ri: This feature is asserted
by equation (4.1). Nevertheless, this property is worth to be explicitly mentioned.

4.2.1 Choice of Reference Layers

The reference layers can be arbitrarily chosen as long as the requirements for the recon-
struction and inversion are fulfilled and the selected reference layer is precisely known. In
the context of the Cu/Fe sample, only two special reference layer selections are physically
reasonable. As the Fe reference layer is magnetic ρ+

r,i 6= ρ−r,i and due to the roughness
between the reference layer and the underlying unknown part, one has to make sure that
either

a) the splitting point zs is selected such that ρ+
u 6= ρ−u and only one spin polarization

is used for the reconstruction (see figure 4.4 and section 4.2.1.1) or

b) the splitting point zs is selected such that ρ+
u = ρ−u and both spin directions are

used for the reconstruction (see figure 4.5 and section 4.2.1.2).

Other selections of the reference layer are possible as well, but either require more a
priori knowledge of the sample by shifting zs more towards the Cu layer, i. e. shifting zs

to the left in figure 4.5, or do not allow to use all spin direction measurements by shifting
zs more towards the Fe layer, i. e. shifting zs to the right in figure 4.4. Case a) reflects the

1The ratio Re b
Im b

is 88× 103, 13.6× 103 and 7.6× 103 for Si, Fe and Cu, respectively, when using λ =

1.8 �A.
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. . . 

1

Figure 4.4: Case a): Schematic illustration of the selection of the splitting point zs such that
ρ+

u 6= ρ−u . Only the reference layers ρ+
r,i can be used for reconstruction of ρ+

u .

Analogously, ρ−r,i is the reference only for ρ−u .

. . . 

1

Figure 4.5: Case b): Schematic illustration of the selection of the splitting point zs such that
ρ+

u = ρ−u . The references ρ+
r,i =: ρr,2i+1 and ρ−r,i =: ρr,2i can both be used to

reconstruct ρu.

situation where the least amount of a priori knowledge is available, i. e. the interfacial
roughness between Cu/Fe is not known, and case b) corresponds to the situation in
which just enough knowledge of the Cu/Fe interface is given such that spin-up and
down reflectivity measurements R±i can be used to reconstruct ρu.

The thickness is precisely controlled by the shutter system in the in situ deposition
chamber, however, the parameters used for describing the SLD of the Fe reference layer
were determined using a traditional fit [123] and as listed in table 4.1.

4.2.1.1 Remnant Fe Layer

The reflection reconstruction has to be separated based on the spin direction, since
ρ+

u 6= ρ−u because the remnant Fe layer is included in the unknown sample, see figure 4.4.
Furthermore, it is assumed that the SLD of the unknown sample at the Cu/Fe interface
is not known. It is not possible to use all reflectivity measurements, since the roughness
of the Cu layer prohibits the reflectivity measurements below deposition step i = 14 to
be used 3σCu ≈ 19�A ≈ d14

2 (see table 4.1). To correctly determine ρr,i for i ≤ 14 the
SLD of the unknown sample, i. e. the Cu/Fe interface, is required. Thus these deposition
steps are ignored here. The SLD of the reference layers ρ±r,i for i = 16 to i = 28 are
depicted in figure 4.6 for the spin-up and down state.
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Table 4.1: Fitted parameters of the Fe reference layer and of the unknown layer. From [123].

Name
thickness density roughness magnetization

d [�A] ρdensity [g/cm3] σ [�A] M [µB/atom]

R1 6.3 3.07 3.1 0.13
R2 8.3 4.52 4.9 3.51
R3 10.6 5.26 4.5 1.74
R4 12.3 6.57 3.7 1.11
R5 13.9 6.87 4.8 1.19
R6 15.6 7.28 5.6 1.29
R7 17.5 7.36 6.1 1.23
R8 19.9 7.39 5.9 1.26
R9 23.5 7.06 7.4 1.40
R10 25.8 7.00 8.4 1.82
R11 28.3 7.06 9.5 1.85
R12 30.8 7.01 9.3 2.00
R13 33.8 6.98 9.5 1.98
R14 36.7 6.95 9.3 1.91
R16 40.6 7.05 10.1 1.98
R18 46.8 6.97 9.7 1.89
R20 52.5 6.94 8.7 1.92
R22 57.5 6.96 8.4 1.97
R24 61.7 7.01 7.5 1.93
R26 66.4 7.09 8.0 1.98
R28 70.3 7.16 11.0 2.03

d [�A] ρdensity [g/cm3] σ [�A] SLD [10−6 �A−2
]

Cu 451 8.82 6.3 6.45
Si ∞ 2.33 10.7 2.08

After applying the reconstruction method described in section 3.3.2.1, the reflection
R[ρ+

u ] and R[ρ−u ] are retrieved and shown in figure 4.7(top) and figure 4.8(top), respec-
tively. The error bars are calculated by the propagation of errors using the covariance
matrix of the linear least squares fit in equation (3.60). The extrapolated reflection (solid

curve) shows the reflection at the total reflection edge for q ≤ 0.023�A−1
. It is calculated

using the method described in section 3.3.3. Between z = 200�A and z = 350�A the SLD

of the unknown sample was set to the SLD of bulk Cu (ρCu = 6.554× 10−6 �A−2
) to

ensure the convergence of the algorithm.

The inverted SLDs of the unknown sample ρ+
u and ρ−u are shown in the bottom graph

of figure 4.7 and figure 4.8, respectively. The inversion used the data points ReR[ρu]
together with the extrapolation at the total reflection edge. The errors in the SLD are
estimated by the standard deviation of 5000 inversions, which are varied based upon the
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Figure 4.6: Reference layers ρ+
r,i and ρ−r,i for reconstructing ρ+

u and ρ−u , respectively. The refer-

ence layer ρ±r,i are associated with the reflectivity measurement R±
i .

errors in the reflection and excluding possible uncertainties in the extrapolated low q
reflection.

The real part of R[ρ+
u ] and R[ρ−u ] both show good agreement with the expected reflec-

tion (dashed curve), which was calculated from the fitted model. The imaginary part,
however, has a considerable disagreement with the expected reflection. Furthermore,

the errors in the reflection R[ρ−u ] for q ≥ 0.7�A−1
are significantly larger compared to

the errors of R[ρ+
u ]. This is due to the fact that the spin-down reflectivity decays faster

compared to the spin-up reflectivity. On the one hand, the measurement uncertainty in
the reflectivity originating from the background is more pronounced, which mainly influ-
ences the reflection in the high q region (shown in the analysis of a variable background
in section 3.4.4). On the other hand, the errors in R[ρ−u ] are smaller than the errors in
R[ρ+

u ] for q close to the total reflection edge. This feature leads to smaller errors of ρ−u
compared to ρ+

u .

When comparing the two inverted SLDs, the spin-up case resembles the expected SLD
better, even though the errors are higher. The worse phase information reconstruction
in spin-down state can be attributed to this observation.

4.2.1.2 Combination of Spin-Up and Down

Assuming that the Cu/Fe interface is known, the spin-up and spin-down reflectivity
measurements can be combined to reconstruct an improved reflection. The splitting
point zs is selected as shown in figure 4.5, which provides the necessary condition ρ+

u =
ρ−u .

The reference layers are shown in figure 4.9. The vertical dotted line indicates the
virtual Cu/Fe interface with a roughness of σCu = 6.3�A. The reference layer includes a
3σCu thick Cu/Fe interface segment, which reduces the thickness of ρu by exactly 18.9�A.
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Figure 4.7: (Top) Scaled reflection of the unknown sample ρ+
u reconstructed from the reflectivity

measurements R+
i with i ≥ 16. (Bottom) Inverted SLD ρ+

u using the reflection
(with extrapolation) from the top.

The reflectivity measurements Ri for i ≥ 16 are used in order to compare the results
with the previous section 4.2.1.1.

The reconstructed reflection and the inverted SLD is shown in figure 4.10. The same
methods and algorithms from section 4.2.1.1 are used here, except that the uncertainty in
the reflection at the total reflection edge is estimated as well. These errors are estimated
by the standard deviation of the low q retrieved reflection using 2000 normally drawn
samples of the inverted reflection.

The usage of both spin directions results in an enhanced resemblance of the recon-
structed SLD and the fitted SLD, if compared to previous results (see figure 4.7 and
figure 4.7). Additionally, the noise and error bars in the reflection are significantly
reduced.

The best reconstructed reflection is achieved by using all 42 reflectivity measurements
R±i , shown in figure 4.11. The reflection R(q) is reconstructed on a larger q space

(qc ≈ 0.018�A−1 ≤ q ≤ 0.13�A−1
), since a sufficient number of reflectivity measurements

span it.
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Figure 4.8: (Top) Scaled reflection of the unknown sample ρ−u reconstructed from the reflectivity
measurements R−

i with i ≥ 16. (Bottom) Inverted SLD ρ−u using the reflection
(with extrapolation) from the top.
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Figure 4.9: Reference layers for reconstructing ρu using both spin directions.

4.2.2 Reflection Extrapolation

The oscillations in the inverted SLD originate from the limited q range of the reflec-
tion [110]. The q truncation is the major reason which prohibits an even more precise
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Figure 4.10: (Top) Scaled reflection of the unknown sample ρu reconstructed from the reflectiv-
ity measurements Ri with i ≥ 16. (Bottom) Inverted SLD ρu using the reflection
(with extrapolation) from the top.

potential inversion. To further eliminate these oscillations, the reflection R(q) has to
be known for larger q values, which might be possible by extrapolation with a suitable
model function if no small structure features are present in the reflection as these would
be visible in the high q range.

The extrapolation is carried out by fitting a model reflection to the data and evaluating

it up to qmax = 5�A−1
. The model function for the real part of the reflection is based on

the BA and equation (2.45). It is heuristically selected assuming a single layer sample.
It has the form

q2 ReR(q) = (4πρ+ a1q
−1)−

(
4πρ∆ +

a0

q − qc

)
cos
(
qd+ φ0 + φ1q

−1
)
e−q

2σ2
. (4.2)

The parameters a0, a1, φ0 and φ1 are corrections terms and have no physical meaning.
They are used to achieve a better fit as the model function is based on the BA. The
remaining parameters are interpreted as follows: The quantity ρ corresponds to the SLD
of Cu and ρ∆ is the difference in the SLD of Cu and Si. The variable d is the thickness of
the Cu layer, σ is the roughness of the Si/Cu interface and qc corresponds to the critical
wave vector.
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Figure 4.11: (Top) Scaled reflection of the unknown sample ρu reconstructed from all reflec-
tivity measurements Ri. (Bottom) Inverted SLD ρu using the reflection (with
extrapolation) from the top.

The difference in the SLD leads to refraction of the neutrons and thus, the reflection
depends on ρCu − ρair = ρ and ρSi − ρCu = −ρ∆. The first term in equation (4.2),
which corresponds to the refraction at the Cu layer, does not contain any roughness
smoothing as the reference layer method produces a sharp Cu/air interface. The second
term contains the roughness smoothing e−q

2σ2
at the Si/Cu interface, the oscillations

eiqd caused by the Cu layer thickness and the refraction strength ρ∆.

The model is fitted to the reflection shown in figure 4.11. The optimal least-squares
parameters and the expected values (obtained from the reflectivity fit) are shown in
table 4.2. The fitted parameters match the expected parameters, but the SLDs of the
Cu layer and Si substrate differ by ≈ 10%. As the reconstructed reflection contains
the instrument resolution, the fitted roughness σ has to exceed the expected roughness,
which is obtained by a traditional fit.

The reflection extrapolation is shown in figure 4.12(top) and it’s inversion in the
bottom graph. The inverted SLD shows an excellent agreement with the expected SLD,
however, at the Si/Cu interface the two SLDs differ. The reason for the mismatch is the
fact that the resolution has not been removed before reconstructing the reflection, but is
included in the fitting model. The influence of the resolution is discussed in section 3.4.3,
with findings supporting that claim. The sharp and narrow peak at the Cu/air interface
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Table 4.2: Optimal least-squares fitting parameters for the reflection model (4.2) with χ2
red =

1.38. The errors correspond to the standard error 1− σ, which are calculated from
the covariance matrix.

Symbol Fit Expectation Unit

d 433± 2 433 �A
σ 12.2± 0.4 10.7 �A
ρ 5.82± 0.04 6.45 10−6 �A−2

ρ∆ 3.94± 0.28 4.38 10−6 �A−2

qc 0.019± 0.001 0.018 �A−1

a0 (1.5± 0.4)× 10−7 - -
a1 (7.8± 0.2)× 10−6 - -
φ0 (0.12± 0.03)π - -
φ1 (−9.3± 0.2)× 10−2 - -
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Figure 4.12: (Top) Scaled reflection of the unknown sample ρu reconstructed from all reflec-
tivity measurements Ri and extrapolated using model equation (4.2). (Bottom)

Inverted SLD ρu using the reflection (with extrapolation) for 0 ≤ q ≤ 5 �A
−1

.

in figure 4.12 is due to the Gibbs phenomenon [111] originating from the discontinuity
of the SLD at the interface.
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4.2.3 Discussion

It is possible to use monolayers of Fe as reference layers to successfully retrieve the
reflection. The choice of the reference layer, however, influences the quality of the
reflection dramatically. For example, using only spin-down reflectivity measurements
results in an unsatisfactory reflection and inverted SLD if compared to using only spin-
up reflectivity measurements. The large error in the measured spin-down reflectivity
R− is suspected to be the major contribution for the poor reflection reconstruction.
Especially the low signal-to-noise ratio of the spin-down reflectivity measurements cause
high uncertainties in the retrieved reflection at high q values (see figure 4.8), since the
background is of the same order of magnitude as the measured reflectivity (see figure 4.3).

These problems are mitigated when using only spin-up reflectivity as the background
is less affecting the reflectivity even at high q values. The inverted SLD shows in general
a reasonable agreement with the expected slab model (see figure 4.7), except at the
remnant Fe layer at a depth of 400�A to 450�A.

A further improvement of the reflection is achieved by combining spin-up and down
reflectivity R± measurements. The major problem with this approach is the knowledge
of the unknown parameters of the Cu/Fe interface, which are basically the informa-
tion that are to be determined from the experiment. Nonetheless, the accuracy of the
reconstructed reflection is substantially improved when using both spin direction mea-
surements (see figure 4.10). Two factors play an important role: First, a higher contrast
between the spin-up and down reference SLDs is achieved due to the magnetic references.
Second, the number of reflectivity measurements, which are used for the reconstruction,
is doubled. The major factor for the improved reconstruction is, however, the higher
contrast between spin up and down reflectivities. If a single spin-down measurement
replaces a spin-up measurement (or vice-versa) the reconstruction is dramatically im-
proved. It is noted, that the extrapolation at the total reflection edge is almost perfectly
matching the expected reflection, compared to the single spin channel case. The in-
verted SLD shows a good resemblance with the expectation. The deviation at the Si/Cu
interface, which appears as a higher roughness, is attributed to the resolution in the
reflectivity.

The extrapolation of the reflection to high q smoothens the oscillation in the SLD
and a better matching with the expectation at the Cu layer is achieved. At a depth
of z = 20�A a mismatch of 10% in the SLD is observable, indicating a decrease in the
density near the Si/Cu interface.

The structural parameters of the inverted SLD, obtained using the various reference
layers, are compared with the parameters obtained from traditional data fitting in ta-
ble 4.3. The displayed densities are calculated by the average SLD and the roughness is
estimated by approximating the inverted SLD with the inversion of a model reflection2.
Additionally, the fitted Cu layer thickness was reduced by 3σCu/Fe ≈ 19�A to compen-
sate for the Cu/Fe interface thickness (see figure 4.9). It is noted that the parameters

2Another approach to estimate the roughness is to calculate the FWHM of ∂
∂z
ρu at the interface.

However, this method does not take the q truncation into account which influences the shape of the
inverted SLD at the interface as well
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Table 4.3: Overview of the extracted layer parameters for the various reference layer selections.

Method
Si Cu

ρdensity [g/cm3] σ [�A] ρdensity [g/cm3] d [�A]

Only spin-up 2.01 24.1 9.63 427
Spin-up & down 2.20 17.7 8.93 426
Extrapolation 2.57 12.3 8.83 431

Expectation / traditional fit 2.33 10.7 8.82 432

in table 4.3 should only be used for comparison and they do not suffice for parameters
of a slab model. Instead, the full SLD profile as shown in e. g. figure 4.12 must be used.

The thickness of the Cu layer obtained by reflection inversion is consistent with the
fitted parameter. In particular, the thickness of the extrapolated reflection differs only
by 1�A to the fitted thickness. The density of the Cu layer agree with the values reported
in the literature for the spin-up & down and extrapolation case.

The density of the Si substrate is ≈ 10% too high for the extrapolation method. The
discrepancy is explained by the fact that the extrapolation parameters of the SLD (see
table 4.2) have a mismatch (10%) to the expectation, which indicates an imperfect model
function for the extrapolation.

The roughness and interdiffusion cannot reliably be inferred from the inverted SLD.
This is an inherent problem as the resolution degrades the reflectivity which results in
unusual high roughnesses/interdiffusion at interfaces (see section 3.4.3).
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The theory of phase-sensitive in situ polarized neutron reflectometry (PNR) was devel-
oped and applied in this thesis. It was proven that the in situ deposition with PNR
measurements are capable to uniquely determine the complex reflection coefficient. The
results demonstrate that the quality of the reconstructed reflection is excellent to obtain
an inverted scattering length density (SLD).

An introduction to the state-of-the-art reflectivity data analysis was presented. In
particular, the statistical analysis using Bayesian interference was applied to neutron
and x-ray reflectometry. It was shown that the fitted parameters have to be critically
assessed as the fitting program returns optimal parameters which depend on the used
objective function. Indeed, it was shown that the statistically correct objective function
χ2 (MSWE) can yield insufficient optimal fit in some situations.

As every reflectivity measurement is always degraded by the measurement process,
e. g. resolution, Poisson noise or background, the effect on the reconstructed reflection
was investigated. The resulting degraded scattering potential was also studied. The
main conclusions thereof are: The resolution causes a damping in the amplitudes of
the reconstructed reflection. The damping results in an increased roughness in the in-
verted SLD. Apart from this, random measurement noise only affects the reconstructed
reflection close to the total reflection edge where a high deviation is observable. The
bandwidth limitation (because of the restricted q measurement range) causes oscilla-
tions in the inverted SLD which may be removed by extrapolating the reflection. The
background in the reflectivity plays a minor role in the reconstruction of the reflection:
a constant background can basically be ignored and only a non-constant background
influences the reflection in a non-linear manner.

The reference layer method cannot retrieve the reflection (or phase) below the total
reflection edge. Hence, a fixed-point algorithm to determine the reflection in this region
was developed. The algorithm now allows a complete model-free evaluation of phase-
sensitive PNR data, which was previously not possible as the reflection was estimated
using a model of the sample. As the computational requirements are easily met with
widely available computers, the analysis is drastically simplified. A straightforward
and sufficient condition for the convergence of the algorithm based on the total film
thickness was given. The algorithm was verified with two simulated examples, which
are based on a realistic thin film (200�A) and a randomly generated sample (330�A). It
was additionally tested on real data (chapter 4) and all its applications have shown an
excellent accuracy. Even if the prerequisites are not given, a satisfactory result can be
achieved if the algorithm converges.

A successful phase reconstruction was carried out on experimental data of a magnetic
Cu/Fe thin film. The magnetic Fe layers were used as reference layers, which resulted
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in a overall impressive agreement with the parameters obtained by traditional fitting
methods. For example, the deviation in the Cu layer thickness and density is 1�A (0.2%)
and 0.01 g/cm3 (0.1%), respectively. The choice of the reference layers, however, influ-
ences the retrieved reflection. It was identified that the contrast of the reference layer
plays a crucial role therein. Reference layers which differ in approximately a single Fe
layer are theoretically possible to use, but a larger contrast, i. e. spin-up vs. spin-down,
is advantageous in practice. The best result was obtained by extrapolating the reflection
to larger q in order to eliminate the effect of bandwidth limitation.

It was shown that in situ PNR is perfectly suited to retrieve the missing phase infor-
mation and to retrieve a unique nuclear sample description. In particular, by variation
of the magnetic state (with respect to the neutron spin polarization) and variation of the
thickness of the reference layers, the phase is reconstructed with an impressive accuracy.
However, the benefit of using the in situ growth technique is the ability to retrieve not
only the non-magnetic components of a sample, but also the magnetic components by
non-magnetic reference layer, whose thickness is varied. It is thus an ideal tool to probe
the depth resolved magnetism in thin films.

The analysis showed that the resolution in reflectivity data lowers the accuracy of
the reconstructed reflection. It showed that the roughness or interdiffusion at interfaces
is significantly higher compared with results obtained by traditional fits. A sophis-
ticated deconvolution method applied to the reflectivity prior to reconstruction might
improve the reconstructed reflection. The difficulty here is that deconvolution is a highly
ill-conditioned method, especially if the resolution convolution is based on a gaussian
kernel [124]. A more in-depth analysis of the resolution effect should be carried out to
quantitatively describe the degradation of the reconstructed reflection and to alleviate
the effect using mathematical operations.

Another interesting research topic is the combination of reflectometry with informa-
tion theory. Basically, there is no constraint on the shape of the reference layer used to
retrieve the phase information, however, noisy reflectivity data or uncertainties in the
true shape of the reference layer degrade the reconstructed reflection. It is thus reason-
able to grow reference layers which result in the highest possible information gain of the
reconstructed reflection. For example, a high contrast between spin-up and spin-down
reference layers dramatically improves the reconstructed reflection, see section 4.2.1.2.
A thorough investigation on optimizing the information gain by using more suitable
reference layers should be performed. Similar approaches have already been realized in
optimizing the information gain in contrast matching procedures [125, 126].
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K. Bouzehouane, and A. Barthélémy. Mechanisms of exchange bias with multi-
ferroic BiFeO 3 epitaxial thin films. Physical Review Letters, 100(1):017204, 2008.
doi:10.1103/PhysRevLett.100.017204.

[12] E. A. Karhu, S. Kahwaji, M. D. Robertson, H. Fritzsche, B. J. Kirby, C. F. Ma-
jkrzak, and T. L. Monchesky. Helical magnetic order in MnSi thin films. Physical
Review B, 84(6):060404, 2011. doi:10.1103/PhysRevB.84.060404.

[13] M. N. Wilson, E. A. Karhu, D. P. Lake, A. S. Quigley, S. Meynell, A. N. Bogdanov,
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nalen der Physik, 402(6):715–768, 1931. doi:https://doi.org/10.1002/andp.

19314020607.
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[54] Leonhard Held and Daniel Sabanés Bové. Applied Statistical Inference. Springer
Berlin Heidelberg, 2014. doi:10.1007/978-3-642-37887-4.

[55] E. T. Jaynes and Oscar Kempthorne. Confidence intervals vs bayesian inter-
vals. In William Leonard Harper and Clifford Alan Hooker, editors, Founda-
tions of Probability Theory, Statistical Inference, and Statistical Theories of Sci-
ence: Proceedings of an International Research Colloquium held at the Univer-
sity of Western Ontario, London, Canada, 10–13 May 1973 Volume II Foun-
dations and Philosophy of Statistical Inference, The University of Western On-

109

https://doi.org/10.1016/S0921-4526(03)00266-7
https://doi.org/10.1103/PhysRevB.52.10827
https://doi.org/10.1103/PhysRevB.52.10827
https://doi.org/10.1017/CBO9781139644181
https://doi.org/10.1098/rsta.1999.0469
https://doi.org/10.1107/S0021889807045086
https://doi.org/10.1214/aoms/1177728726
http://arxiv.org/abs/1012.3754
http://arxiv.org/abs/1012.3754
http://arxiv.org/abs/1012.3754
https://doi.org/10.1007/978-3-642-37887-4


Bibliography

tario Series in Philosophy of Science, pages 175–257. Springer Netherlands, 1976.
doi:10.1007/978-94-010-1436-6_6.

[56] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics.
Texts in Applied Mathematics. Springer-Verlag, 2 edition, 2007. doi:10.1007/

b98885.

[57] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration - 2nd
Edition. Academic Press, 1984.

[58] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.
doi:10.1063/1.1699114.

[59] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 04 1970. doi:10.1093/biomet/57.1.97.

[60] Daniel Foreman-Mackey. corner.py: Scatterplot matrices in python. The Journal
of Open Source Software, 1(2):24, jun 2016. doi:10.21105/joss.00024.

[61] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The MCMC
hammer. PASP, 125:306–312, 2013. arXiv:1202.3665, doi:10.1086/670067.

[62] El Houcine Bergou, Youssef Diouane, and Vyacheslav Kungurtsev. Convergence
and complexity analysis of a levenberg–marquardt algorithm for inverse problems.
Journal of Optimization Theory and Applications, 185(3):927–944, 2020. doi:

10.1007/s10957-020-01666-1.

[63] Christian Kanzow, Nobuo Yamashita, and Masao Fukushima. Leven-
berg–marquardt methods with strong local convergence properties for solving non-
linear equations with convex constraints. Journal of Computational and Applied
Mathematics, 172(2):375–397, 2004. doi:10.1016/j.cam.2004.02.013.

[64] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global opti-
mization, 11(4):341–359, 1997. doi:10.1023/A:1008202821328.

[65] R. Storn. On the usage of differential evolution for function optimization. In Pro-
ceedings of North American Fuzzy Information Processing, pages 519–523, 1996.
doi:10.1109/NAFIPS.1996.534789.

[66] Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differential evolution:
a practical approach to global optimization. Natural computing series. Springer,
2005. doi:10.1007/3-540-31306-0.

[67] B. J. Kirby, P. A. Kienzle, B. B. Maranville, N. F. Berk, J. Krycka, F. Heinrich, and
C. F. Majkrzak. Phase-sensitive specular neutron reflectometry for imaging the

110

https://doi.org/10.1007/978-94-010-1436-6_6
https://doi.org/10.1007/b98885
https://doi.org/10.1007/b98885
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.21105/joss.00024
http://arxiv.org/abs/1202.3665
https://doi.org/10.1086/670067
https://doi.org/10.1007/s10957-020-01666-1
https://doi.org/10.1007/s10957-020-01666-1
https://doi.org/10.1016/j.cam.2004.02.013
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/NAFIPS.1996.534789
https://doi.org/10.1007/3-540-31306-0


Bibliography

nanometer scale composition depth profile of thin-film materials. Current Opinion
in Colloid & Interface Science, 17(1):44–53, 2012. doi:10.1016/j.cocis.2011.

11.001.

[68] P. A. Kienzle, J. Krycka, N. Patel, and I. Sahin. Refl1D. (Version 0.8.14) [Com-
puter Software]. College Park, MD: University of Maryland, 2011-.

[69] P. A. Kienzle, J. Krycka, N. Patel, and I. Sahin. Bumps. (Version 0.8.0) [Computer
Software]. College Park, MD: University of Maryland, 2011-.

[70] J. A. Vrugt, C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hy-
man, and D. Higdon. Accelerating markov chain monte carlo simulation by
differential evolution with self-adaptive randomized subspace sampling. Inter-
national Journal of Nonlinear Sciences and Numerical Simulation, 10(3), 2009.
doi:10.1515/IJNSNS.2009.10.3.273.

[71] Jingfan Ye, Alexander Book, Sina Mayr, Henrik Gabold, Fankai Meng, Helena
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Appendix A

Developed Programs

This chapter gives an overview of python [86] programs, which were developed to analyze
the reflectivity data. The two main programs, which will be described in detail, are
DiRefl and DirectInversion. The package DiRefl is used to retrieve the reflection from
the reflectivity. The second package DirectInversion calculates the solution of the GLM
integral equation to invert the reflection and obtain the SLD. In addition, it can retrieve
the reflection below the total reflection edge.

Other packages were developed as well. Some of them are

1. UXDConverter : This graphical program converts x-ray reflectivity data files, which
are measured on D500, D5000 and D8 Siemens GmbH/Bruker diffractometers, to
a human readable format, which is used for reflectivity fitting software.

2. skipi : This package provides tools to easily work with one dimensional functions
without needing to specify the domain of the function each time. It supports
Fourier, cosine, sine transforms and their corresponding inverse transforms, con-
volution operators and some statistical operations.

3. Communication protocols for the in situ sputtering chamber: A total of 21 proto-
cols were implemented to fully automate the communication with vacuum gauges,
pumps, valves, sputtering power supplies and temperature control units.

The software is available online on https://github.com/TUM-E21-ThinFilms and li-
censed under the GNU General Public License or MIT License.

A.1 DirectInversion

The DirectInversion software is the implementation of the GLM integral equation. It
directly discretizes the integral equation and solves a linear system to obtain an inverted
scattering potential. The discretization scheme and an approximation for speeding up
the computation is described in appendix B.3 . Furthermore, the fixed-point algorithm
of section 3.3.3 is implemented therein.

Let q = (qi)i be an array of wave vector transfers and r = (R(qi))i be the array of
the evaluated reflection. The scattering potential V is reconstructed with the following
code:
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1 from dinv.glm import PotentialReconstruction

2 from dinv.fourier import FourierTransform

3

4 """ q = [q_1 , q_2 , q_3 , ... q_n], Unit: 1/ Angstrom """

5 """ r = [R(q_1), R(q_2), ... R(q_n)] """

6 thickness = 500 """ Unit: Angstrom """

7 precision = 1

8

9 fourier = FourierTransform(q / 2.0, r.real , r.imag)

10 rec = PotentialReconstruction(thickness , precision)

11 V = rec.reconstruct(fourier)

The scattering potential V is reconstructed on a equidistantly spaced grid z = 0 to z =
thickness with thickness × precision number of points.

To retrieve the reflection below the total reflection edge using the reflection r = R(q)
with q ≥ qc, the following code is used:

1 from dinv.helper import DataRun , Function

2

3 Reflection = Function.to_function(q, r)

4

5 def constraint(potential , z_space ):

6 V = potential(z_space)

7 V[( z_space > 200) & (z_space <= 350)] = 6.554e-6 """ Cu SLD """

8 return Function.to_function(z_space , V)

9

10 run = DataRun(Reflection , is_k_space=False)

11

12 run.iterations = 300

13 run.tolerance = 1e-8

14

15 run.precision = 1

16 run.thickness = 500

17

18 run.setup()

19

20 reflection = run.run(constraint)

21 q_space = run.q_interpolation_range

In this example, the constraint function constraints the scattering potential between
z = 200�A and z = 350�A to a Cu SLD. This can be useful if the algorithm does not con-
verge due to a violation of the requirement in Corollary 2. The variable run.iterations
denotes the maximum number of iterations of the fixed-point algorithm until termina-
tion and run.tolerance is the stopping tolerance for convergence, which is defined by
equation (3.54). In each iteration of the fixed-point algorithm, an intermediate scat-
tering potential is computed. The grid of the scattering potential is defined with the
variables run.thickness and run.precision.

The solution of the fixed-point algorithm is stored in reflection, i. e.R(q) for 0 ≤
q ≤ qc. It is the reflection evaluated at q ∈ q space. The variable q space contains the
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points on a grid from q = 0 to q = qc where the discretization ∆q is determined from
the input data.

A.2 DiRefl

The program DiRefl (Direct Inversion Reflectometry) was developed by the National
Institute of Standards and Technology (NIST) and University of Maryland. The software
reconstructs the reflection by a variation of surrounding approach.

To reconstruct the reflection from measurements performed with the in situ deposition
chamber, the software was upgraded such that it can supports the top and bottom ref-
erence variation approach. The software loads the reflectivity from a text file containing
q, |R|2(q) and ∆|R|2(q) and associates it with a reference SLD. The description of the
reference SLD can either be a user defined function, a slab model assembled with the
refl1d semantic or loaded from file.

The following code shows an exemplary usage of the software API loading one reflec-
tivity measurement. The reference layer is a 35�A thick Fe layer with a roughness 5�A at
the Fe/Air interface. The reference is described with the refl1d semantic:

1 from refl1d.names import *

2 from direfl.api.reference_layer import TopReferenceVariation

3 from direfl.api.sld_profile import SlabsSLDProfile

4

5 Fe_SLD = SLD(rho =8.024)

6 fe_reference = Slab(Fe_SLD , thickness =35, interface =5)

7 reference = SlabsSLDProfile.from_sample(Stack ([air , fe, air]))

8

9 """ Si SLD: 2.077e-6 1/AA^2 """

10 var = TopReferenceVariation (0e-6, 2.074e-6)

11

12 var.load(" reflectivity.dat", reference)

13

14 var.remesh ()

15 var.run()

16

17 q, R, dR = var.Q, var.R, var.dR

The software can reconstruct the reflection with N ≥ 2 reflectivity measurements,
but, if N = 2 it will return two branches of possible reflections. Uncertainty estimation
is performed if N ≥ 3 and it is based on the covariance matrix of a linear least squares
problem.

If the various reflectivity data are not measured on the same grid, a re-mesh is nec-
essary which is achieved with the method var.remesh. It computes the coarsest grid
based on all q grids and linearly interpolates the reflectivity |R|2 and its uncertainty
∆|R|2 on the new grid. The new grid is accessible with var.Q and the reconstructed
reflection and its uncertainty are stored in var.R and var.dR, respectively.
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Additional Calculations

B.1 Calculations for the Reference Layer Method

In this section the reference layer method with a variable top reference is deduced. Basi-
cally, the idea of the reference layer method is reflected in equation (3.41), which states
that there exists a constraint vector cK such that Σ = cK ·Θbb

U , where Σ is a measurable
quantity, cK contains the known reference layer information and Θbb

U corresponds to the
unknown reflection.

The starting point is the structure of the reflection in equation (3.38):

R(T ) = −α
fb − βfb − 2iγfb

αfb + βfb + 2

with
αfb = n−1

f nbT 2
11 + n−1

f n−1
b T

2
21

βfb = nfnbT 2
12 + nfn

−1
b T

2
22

γfb = nbT11T12 + n−1
b T21T22,

(B.1)

where nf and nb are the refractive indices (see equation (2.27)) of the fronting and
backing SLD, respectively. The reflectivity |R(T )|2 is expressed as

|R(T )|2 = R(T )R(T ) =
(αfb − βfb − 2iγfb)(αfb − βfb + 2iγfb)

(αfb + βfb + 2)2

=
(αfb − βfb)2 + 4(γfb)

2

(αfb + βfb + 2)2
.

(B.2)

Notce that this calculation requires that α, β and γ are real valued, which is true if and
only if the transfer matrix T is real valued, i. e. the SLD is non-absorbing.

Plugging the reflectivity into Σ = 2nfnb
1+|R|2
1−|R|2 and using (γfb)2 = αfbβfb − 1 (due to

the unimodularity of T , see Lemma 2) results in

Σ = nfnb

(
αfb + βfb

)
. (B.3)

The transfer matrix is now split into two sub transfer matrices, i. e. T = TUTK, where
TU corresponds to the unknown sample and TK is a known reference. The possibility
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of splitting a transfer matrix and expressing it simply by a matrix multiplication is
discussed in section 2.5.2. The sub transfer matrices TU, TK and the reversed known

transfer matrix1 ←→TK are expressed by

TU =

(
a b
c d

)
, TK =

(
w x
y z

)
and

←→
TK =

(
z x
y w

)
. (B.4)

Plugging in the matrix product of the sub matrices in the definition of α, β and γ and
evaluating the measurable quantity Σ yields, after another algebraic manipulation

Σ =
(
a2 + n−2

b c2
) [
n2
bw

2 + n2
fn

2
bx

2
]

+
(
n2
bb

2 + d2
) [
y2 + n2

fz
2
]

+ 2
(
nbab+ n−1

b cd
) [
nbwy + n2

fnbxz
]
.

(B.5)

The round and square brackets contain only the the unknown and known transfer matrix
entries, respectively. By carefully examining the structure of α, β and γ, one sees that

Σ = n2
bα

bb
U

←→
βffK + n2

fβ
bb
U

←→
αffK + 2nfnbγ

bb
U

←→
γffK , (B.6)

where αbbU , β
bb
U , γ

bb
U are defined by equation (B.1) when taking T = TU and they corre-

spond to the unknown sample with nf = nb. Analogously,
←→
αffU ,

←→
βffU ,

←→
γffU are defined by

equation (B.1) with T =
←→
TK and nb = nf , i. e. they correspond to the reversed reference

layer with backing SLD being the fronting SLD.

As the measurable quantity Σ can be factored linearly into an unknown and known
part, it is possible to construct a constraint vector cK such that

Σ = cK ·Θbb
U with cK :=

←−−−−−−−−→ n2
bβ
n2
fα

2nfnbγ

ff

K

T

and Θbb
U :=

αβ
γ

bb

U

. (B.7)

The vector Θbb
U is then used to reconstruct the reflection based on equation (3.38).

B.2 Deviation of the Expected Error

The intensity I is assumed to be a Poisson random variable with “rate” Ir, hence, the
probability mass of I is expressed as

pI(j) =

{
Ijr e

−Ir

j! , j ≥ 0

0, otherwise.
(B.8)

1This is the transfer matrix that corresponds to the reversed or flipped reference layer. Reversing a
sample is discussed in section 2.5.2.2.
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where j is the number of counts. The quantity Σ is required for the reference layer
method and it is determined from the reflected intensity by

Σ ∼ I0 + Ir

I0 − Ir
. (B.9)

The error of Σ is defined as εΣ = Σ̂− Σ where Σ̂ = Σ(Ir + εIr) is the intensity error εIr
degraded quantity. A simple computation shows that the error of Σ can be expressed as

εΣ =
2εIrI0

(I0 − Ir − ε)(I0 − Ir)
. (B.10)

The error εIr is a shifted Poisson distribution by Ir which is furthermore truncated such
that the intensity I can never equal or exceed the incident intensity I0. The probability
mass of εIr is thus

pεIr (j) =
1

CDFPois(Ir)(I0 − 1)

{
e−IrIj+Ir

r
(j+Ir)!

, −Ir ≤ j ≤ I0 − Ir − 1

0, otherwise
(B.11)

The normalization factor including the CDF ensures that the total probability sums up
to 1. In particular one has

I0−Ir−1∑
j=−Ir

pεIr (j) =
1

CDFPois(Ir)(I0 − 1)

I0−Ir−1∑
j=−Ir

e−IrIj+Irr

(j + Ir)!

=
1

CDFPois(Ir)(I0 − 1)

I0−1∑
j=0

e−IrIjr
j!

= 1.

(B.12)

Putting everything together yields the expectation of the error εΣ which is stated in the
main part of the work

E[εΣ] =
∞∑

j=−∞
pεIr (j)

2jI0

(I0 − Ir − j)(I0 − Ir)

=
1

CDFPois(Ir)(I0 − 1)

I0−1∑
j=0

Ijr e−Ir

j!

(
2I0(j − Ir)

(I0 − j)(I0 − Ir)

)
.

(B.13)

Numerical simulations are displayed in figure 3.19.

B.3 Direct Discretization Scheme of the
Gel’fand-Levitan-Marchenko Integral Equation

To achieve a fast and simple implementation a variant of the GLM integral equation
is used which incorporates the fact that the scattering potential has compact support
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[76, 82]. The upper limit in the integral equation is then replaced by a finite value and
it reads [76]

K(z, t) + g(z + t) +

∫ z

−t
K(z, y)g(y + t)dy = 0, z > t, (B.14)

where the potential is recovered from V (z) = d
dzK(z, z).

The integral equation is discretized for a fixed z ∈ R on a grid G = {k∆ − z}Nk=0

with discretization width ∆ > 0 and N = 2z
∆ ; the grid G thus spans from −z to +z.

The integral itself is approximated by the trapezoidal rule on the grid G and for a fixed
t = n∆− z ∈ G,n ∈ {0, . . . , N} one has the discretization scheme

K(z, z + (n−N)∆) +
n∑
k=0

ωnkK(z, z + (k − n)∆)g(k∆) = −g(n∆), (B.15)

where ωnk is the weighting function for the trapezoidal integration rule, which is

ω0
k = 0 and ωnk = ∆


0, k < 0
1
2 , k = 0

1, 0 < k < n
1
2 , k = n

. (B.16)

The case k = 0 and k = n for ωnk stem from the start and end point of the integration as
they contribute only half the weight compared with the interior points. The discretiza-
tion scheme is a linear equation of n + 2 unknowns K(z, ·), however, by extending the
summation k over all N + 1 unknowns, the same discretization scheme is equivalently
described by

~Ωn · ~K = −g(n∆), (B.17)

where

~Ωn = ~en+1 +

ω
n
n−Ng ((n−N) ∆)

...
ωnng(n∆)

 ∈ RN+1 and ~K =

K(z, z −N∆)
...

K(z, z)

 ∈ RN+1,

(B.18)
and ~en+1 ∈ RN+1 denotes the unit vector in the cartesian coordinate system. Hence, by
establishing the discretization scheme for all n = 0, . . . , N one obtains a linear system
of N + 1 equations in N + 1 unknowns ~K

Ω · ~K = −G, (B.19)

where Ω =
(
ΩT
n

)N
n=0
∈ R(N+1)×(N+1) and G = (g(n∆))Nn=0 ∈ RN+1. To solve the linear

equation a LU decomposition of the matrix Ω = LU is a promising ansatz with U and
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L being an upper and lower triangular matrix, respectively. The equation then reads

U ~K = −L−1G, (B.20)

and the desired value K(z, z) is computed from the last entry of the vector L−1G and
matrix U

K(z, z) =
−(L−1G)N+1

UN+1,N+1
. (B.21)

The LU decomposition of a single Ω has a complexity of O(N3) = O(z3/∆3) and hence
a complete determination of V on the grid G has a complexity of O(N4).

Utilizing the Structure of the Discretization Matrix

The matrix Ω is the sum of the identity matrix 1N+1 with a mirrored (at a virtual
vertical line) lower triangle matrix. For example Ω for N = 6 has the structure

Ω =



1 0 0 0 0 0 0
0 1 0 0 0 1

2g0
1
2g1

0 0 1 0 1
2g0 g1

1
2g2

0 0 0 1 + 1
2g0 g1 g2

1
2g3

0 0 1
2g0 g1 1 + g2 g3

1
2g4

0 1
2g0 g1 g2 g3 1 + g4

1
2g5

1
2g0 g1 g2 g3 g4 g5 1 + 1

2g6


∈ R7×7,

where gi = ∆g(i∆) is used as an abbreviation. The top first row of Ω corresponds to the
integral equation evaluated at t = −z, where the integral vanishes due to the integration
limits being equal. The ones on the diagonal originate from the term K(z, t) in the
integral equation (B.14) and the lower triangular structure is only due to the integral,
where the prefactor of 1

2 indicates the integration limits.

To discuss another structural feature of Ω the notion of an inner matrix is required.

Definition 2. Let A = (aij)i,j=1,...,N ∈ RN×N with N > 2 be a square matrix. The
inner matrix A′ = (aij)i,j=2,...,N−1 ∈ R(N−2)×(N−2) is obtained by removing the top and
bottom rows together with the left and right columns of A. The consecutive application
of the inner matrix is denoted by A(k) and is defined by A(k+1) =

(
A(k)

)′
with A(0) = A

and A(1) = A′.

Denote by Ω(z) = Ω the discretization matrix for the GLM integral equation at
depth z. The matrix Ω(z) is then self similar, meaning that the inner matrix Ω(z)′

after a scaling of the last column by 1
2 corresponds to the same integral equation but

at a depth z → z − ∆. More precisely, denote by T (z) the triangular part of Ω(z),

125



Additional Calculations

Figure B.1: Illustration of the definition of the inner matrix.

i. e.T (z) = Ω(z)− 1N(z), then one has

Ω(z −∆) = 1N(z)−2 + T ′(z) ·


1

. . .

1
1
2

 = 1N(z−∆) + T (z −∆). (B.22)

This structural feature of Ω(z) can be exploited to reduce the number of LU decom-
positions and thus drastically speed up the inversion algorithm. The idea is to replace
the LU decomposition of Ω(z − k∆) for any k with the LU decomposition of Ω(z).
Hence, only one LU decomposition of the Ω(z) ∈ R(N+1)×(N+1) matrix has to be calcu-
lated, while the other LU decompositions Ω(z − k∆) ∈ R(N+1−2k)×(N+1−2k) are derived
from the first one. In particular, as only the last entry of ~K is needed, the following
approximations for the LU decomposition of Ω(z − k∆) are made for 1 ≤ k ≤ N

2

UN+1−2k,N+1−2k(z − k∆) ≈ 1

2

((
U (k)(z)

)
N+1−2k,N+1−2k

+ 1

)
L−1(z − k∆) ≈ (L−1)(k).

(B.23)

The computation of the kernel K is then carried out as follows

K(z, z) =
−(L−1(z)G)N+1

UN+1,N+1(z)

K(z −∆k, z −∆k) =
−2
(
(L−1)(k)Gk

)
N+1−2k(

U (k)(z)
)
N+1−2k,N+1−2k

+ 1
, for 1 ≤ k ≤ N

2
,

(B.24)

where Gk is the vector obtained by removing 2k rows from the bottom of G.

The LU decomposition of Ω(z) = L(z)U(z) and the inverse of L is required for deter-
mining K(z, z). Both operations are of order O(N3) and to evaluate the kernel on other
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grid points, only the inner matrix of L−1 and U are required, which are computational
negligible, resulting in a total computational complexity of O(N3).
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