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Abstract
Entirely programmable network devices are a dream-come-true for network operators. Finally,
they can have complete control over packets within their networks, independent of the function-
ality provided by switch vendors. Network operators can use custom protocols for specialized
processing or gather detailed telemetry data from within data planes, significantly improving
efficiency within their network. Thereby, intellectual property is kept internal, instead of sharing
it with switching fabric and operating system designers. Vice-versa, open-source solutions, with
all their benefits and drawbacks, can be used. This newfound freedom in network data planes
also sparks and revitalizes a plethora of new and old research domains. In this thesis, we want
to tackle three different domains.

First, we propose a novel methodology for reproducible experimental evaluation of programmable
data plane targets. All experiments presented in this thesis focus on producing reproducible
results. We reduce the network setup to the bare minimum of two nodes, a load generator, and
the device under test. Using a high degree of automation and gathering all experiment artifacts
allows to run measurements and publish their results efficiently. We achieve this through our
purpose-built testbed orchestrating software, which enforces reproducibility by design. Although
we only apply this approach to analyzing data planes in this work, we designed our testbed setup
and management software to enable generic network experiments.

Second, due to the increasing landscape of data plane applications and data plane targets that
can be programmed using domain-specific languages, modeling and predicting the performance
for each possible combination becomes infeasible. However, this ability is essential to understand
how and why an application behaves in a certain way on a data plane target. Network operators
may use this information to determine bottlenecks that might arise before buying hardware,
indicating a necessity to switch to another network device. To combat this complexity, we
instead opt to model components of data plane processing pipelines individually. Based on our
experiment methodology and testbed environment, we designed a framework for the automated
evaluation and modeling of parameter changes for data plane program components. As control-
flow graphs can be derived from such programs, as a second step, we determine the cost of each
path through the data plane. We argue to focus modeling efforts on key performance impacting
components. Based on the worst-case path, i.e., the path with the highest cost, we derive traffic
that hits this path, resulting in a worst-case evaluation of the program.

Lastly, we analyze how cryptographic hash functions can be integrated into programmable data
planes. Using our evaluation framework, we evaluate the performance of such a component
for various software and hardware targets. We argue that cryptographic hashes are an essential
component for many applications that could be moved to the data plane. This includes low-level
protocols that require built-in data integrity or the creation of cryptographic challenges for the
mitigation of attacks. We use our prototypes to successfully implement SYN flood mitigation
approaches for a selection of programmable data planes. Furthermore, we implement the same
strategies using a traditional framework for high-performance packet processing. Based on
implementation effort and performance figures, we discuss the advantages and disadvantages of
both approaches.





Zusammenfassung
Vollständig programmierbare Netzwerkgeräte sind für die Betreiber von Netzwerken ein wahr
gewordener Traum. Die Betreiber haben die vollständige Kontrolle über Pakete in ihren Netz-
werken, unabhängig von der Funktionalität, die von Switch-Anbietern bereitgestellt wird. Netz-
betreiber können benutzerdefinierte Protokolle für spezielle Verarbeitungen verwenden oder de-
taillierte Telemetriedaten innerhalb der Data-Planes sammeln, wodurch die Effizienz in ihrem
Netzwerk erheblich verbessert wird. Zusätzlich wird geistiges Eigentum geheim gehalten, an-
statt es mit den Entwicklern von Switch-Hardware und Betriebssytemen zu teilen. Umgekehrt
können Open-Source-Lösungen mit all ihren Vor- und Nachteilen eingesetzt werden. Diese neu
gewonnene Freiheit in Netzwerk-Data-Planes führt auch zu einer Vielzahl neuer und alter For-
schungsbereiche und belebt diese neu. In dieser Arbeit wollen wir uns mit drei verschiedenen
Bereichen befassen.

Zunächst schlagen wir eine neuartige Methodik für die reproduzierbare experimentelle Bewer-
tung programmierbarer Data-Planes vor. Alle in dieser Arbeit vorgestellten Experimente konzen-
trieren sich auf die Erzeugung reproduzierbarer Ergebnisse. Wir reduzieren den Netzwerkaufbau
auf ein Minimalsetup bestehend aus zwei Geräten, einem Lastgenerator und einem Device-under-
Test. Durch einen hohen Automatisierungsgrad und die Aggregation aller Experimentartefakte
können wir Messungen effizient durchführen und ihre Ergebnisse veröffentlichen. Wir erreichen
dies durch unsere eigens entwickelte Testbed-Orchestrierungssoftware, die die Reproduzierbar-
keit gewährleistet. Obwohl wir diesen Ansatz in dieser Arbeit nur auf die Analyse von Data-
Planes anwenden, haben wir unsere Testbed-Setup- und Management-Software so konzipiert,
dass sie auch generische Netzwerkexperimente ermöglicht.

Zweitens ist es aufgrund der wachsenden Anzahl von Data-Plane Anwendungen und Plattfor-
men, die mittels domänenspezifischer Sprachen programmiert werden, nicht mehr möglich, die
Leistung für jede mögliche Kombination zu modellieren und vorherzusagen. Diese Fähigkeit
ist jedoch unerlässlich, um zu verstehen, wie und warum sich eine Anwendung auf einer Ziel-
plattform auf eine bestimmte Weise verhält. Netzbetreiber können diese Informationen nutzen,
um mögliche Engpässe bereits vor dem Kauf von Hardware zu ermitteln. Entsprechend kann
dann ein passenderes Gerät gekauft werden. Um dieser Komplexität entgegenzuwirken, model-
lieren wir stattdessen die Komponenten der Data-Plane Verarbeitungspipelines einzeln. Auf der
Grundlage unserer Experimentmethodik und Testbed-Umgebung haben wir ein Framework für
die automatisierte Auswertung und Modellierung von Parameteränderungen für Programmkom-
ponenten der Data-Plane entwickelt. Auf Grundlage der Kontrollflussgraphen dieser Programme,
bestimmen wir in einem zweiten Schritt die Kosten für jeden Pfad durch die Data-Plane. Wir
plädieren dafür, sich bei der Modellierung auf die wichtigsten Komponenten zu konzentrieren,
die sich auf die Leistung auswirken. Anhand des Worst-Case-Pfads, d.h. des Pfads mit den
höchsten Kosten, leiten wir Netzwerkpakete ab, die durch diesen Pfad verarbeitet werden, was
zu einer Worst-Case-Bewertung des Programms führt.

Schließlich analysieren wir, wie kryptografische Hash-Funktionen in programmierbare Data-
Planes integriert werden können. Unter Verwendung unseres Evaluationsframeworks bewerten
wir die Leistung einer solchen Komponente für verschiedene Soft- und Hardwareziele. Wir ar-



gumentieren, dass kryptografische Hashes eine wesentliche Komponente für viele Anwendungen
sind, die in die Data-Plane verlagert werden könnten. Dazu gehören Low-Level-Protokolle, die
Datenintegrität oder die Anwendung kryptografischer Verfahren zur Abwehr von Angriffen er-
fordern. Wir verwenden unsere Prototypen, um erfolgreich SYN-Flood-Abwehrmechanismen für
eine Auswahl von programmierbaren Data-Planes zu implementieren. Darüber hinaus imple-
mentieren wir dieselben Strategien unter Verwendung eines traditionellen Frameworks für die
Hochleistungs-Paketverarbeitung. Anhand des Implementierungsaufwands und der Leistungsda-
ten diskutieren wir die Vor- und Nachteile beider Ansätze.
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Chapter 1

Introduction

Researchers and network operators have been chasing the dream of fully programmable networks
and network operating systems (NOSes) over the past decades. During this endeavor, step by
step, they have gotten closer and closer to achieving these goals. OpenFlow was a first step
that implemented software-defined networking (SDN) concepts, allowing to make decisions in
the centralized control plane, which can then be propagated to individual data planes. How-
ever, the number of possible fields that can be matched in the data plane on a packet is limited
to selected fields of existing protocols. Similarly, possible actions, how the packet should be
processed, cannot be programmed freely. The complexity and capabilities of networks and the
requirements for networked applications are steadily increasing. This added complexity also
raises the requirements for achieving a programmable network. Thus, fully programmable data
planes are the next step in this evolution. With the advent of languages like Programming
Protocol-independent Packet Processors (P4)1 [23], the behavior of the network device’s data
plane can be—almost—freely defined using higher-layer, abstract programming languages. In-
stead of only allowing a limited set of actions for a limited set of fixed bytes that can be matched
in a packet, P4 allows for arbitrary operations triggered by matching any sequence of bits in
the packet—independent of existing or future protocols. Such new paradigms for programming
high-performance packet processing platforms enable a shift of network applications, previously
located in the control plane or an end host, to the data plane—located anywhere in the network.

The first aspect discussed in this thesis considers the ever-increasing number of programma-
ble network targets and their performance characteristics. Several broad categories of different
technologies as the basis for such devices exist; containers, using namespaces or cgroups; vir-
tualization based on Xen or KVM; high-performance software packet processing platforms like
the Data Plane Development Kit (DPDK), netmap, or Snabb; and, finally, actual hardware de-
vices based on smart network interface cards (NICs), field-programmable gate arrays (FPGAs),

1 Not to be confused with the P4 (Programmable Protocol Processing Pipeline) platform for protocol boosters
in FPGAs proposed by Hadzic et al. in 1997 [22]
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or application-specific integrated circuits (ASICs). In addition, several features, like multi- or
many-core CPUs or multi-queue NICs, further increase the complexity of the packet processing
landscape. It is clear that this list of possible targets, architectures, and approaches will only
get longer in the future. Combining this aspect with the shift of entirely new applications to
such programmable devices poses the challenge of understanding the performance of a particular
program on a specific target device. In other words, which aspects of a program, e.g., an longest
prefix matching (LPM) table lookup, cause performance degradations on a target device, for
instance, the used algorithm. To improve the understanding, models are required that predict
the performance of packets through data plane programs. In particular, the model for the actual
program behavior on a given target can be compared to the expected theoretical performance.
We present a modeling framework that uses reproducible measurements to model the behavior
of individual P4 program components. We then combine these models to provide performance
estimates for the processing of the worst-case packet, i.e., a packet that takes the path with the
highest predicted cost through the plane.

The possibility to move network applications to data planes anywhere in the network also sparks
new research questions: which applications could and, more importantly, which applications
should be moved to the data plane in the first place? While the current set of P4 instructions
allows for manifold network applications in the data plane, additional functionality might be de-
sired. For instance, cryptographic functions for encryption or hashing, required in many widely
used network protocols and applications, are currently not part of the core language specifica-
tion. Therefore, this functionality might only be available through external, target-dependent
application programming interfaces (APIs). However, providing this set of cryptographic func-
tions would enable the use of P4 in entirely new domains like industrial networks. In this thesis,
we discuss how cryptographic hashing can be integrated into programmable data planes. We
implement different approaches for a selection of target devices and discuss limitations. Whether
such an integration is worth the effort in terms of resource requirements, throughput, latency,
and other performance criteria is analyzed using a case study: moving TCP SYN flood defense
to the data plane by implementing several promising strategies as prototypes. Further, we com-
pare the resulting implementations with a classic approach using a high-performance packet
processing framework.

1.1 Research Questions
We want to answer the following research questions in the context of this thesis:

• RQ1: How can we perform reproducible measurements for a heterogeneous set of software
and hardware data planes?

• RQ2: How can we operate multi-user testbeds for reproducible experiments using hetero-
geneous hardware?

• RQ3: How can we model the performance of individual data plane components in an
automated fashion?

2
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• RQ4: How can we determine the packet that takes the worst case path through the data
plane?

• RQ5: How can we extend programmable data planes with cryptographic hashing func-
tionality?

• RQ6: How can we defend against TCP SYN floods from within the data plane?

The context and content covered by each research question are further detailed in the following.
Each research question focuses on a networking domain, for which we want to improve the
state-of-the-art through our contributions.

RQ1: How can we perform reproducible measurements for a heterogeneous set of software and
hardware data planes?

Producing reproducible network experiments is essential to present and publish results that
others can verify and understand. Typically, three stages are distinguished: repeating the same
experiment using the same setup; reproducing the experiments of others using the same setup;
and, finally, replicating experiment results of others using a different setup. To obtain the highest
degree of reproducibility—replicability,— several aspects, like documenting and collecting the
entire configuration and setup, and automation to reduce human error, are vital.

To achieve reproducibility in this thesis, we reduce our measurement setup to the bare minimum
whenever possible: a load generating node, directly connected to the device under test (DuT).
As we are only interested in the behavior of the DuT, this approach reduces, for instance,
external influences caused by other network devices like switches or middleboxes on the path.
Furthermore, independent individuals can easily set up this simple setup, enabling them to
reproduce the experiment.

As a second step, we specifically designed our experiments and the management software for
our testbed, coined the plain orchestrating service (pos), via which experiments are executed,
to not only enable but enforce reproducibility. This includes a high degree of automation
and the central collection of all experiment artifacts, for instance, configuration and setup of
experiment nodes, executed scripts, and all generated results. Typically, the same measurement
is repeated several times for the same DuT, only varying one parameter to analyze its impact
on the performance. To reflect this, experiments via pos are executed using so-called loops. As
input, the testbed controller expects all parameters of the experiment that may vary and the
respective parameter space. The measurement is then automatically executed for every possible
combination of these parameters, drastically simplifying the process and, therefore, reducing
potential causes for human error, which directly contradict reproducibility.

We define terms and important performance metrics used throughout this thesis in Chapter 3.
Then, we introduce our methodology to achieve reproducible network experiments using our
testbed orchestrating service. Thereby, the enforced structure of experiments and usage of pos
are key components.

3
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RQ2: How can we operate multi-user testbeds for reproducible experiments using heterogeneous
hardware?

The presented testbed and pos are not solely implemented for the reproducible measurements
discussed in this thesis. Instead, we designed pos to allow multiple users with different back-
grounds, like students and researchers, for a wide range of network experiments. While this
includes the two-node setup used throughout this thesis, the testbed may also be used, for in-
stance, for pure computation or large-scale distributed experiments with several dozen connected
nodes. This changes the requirements towards the testbed and respective management software:
testbed nodes need to be efficiently shared between users; multiple users may simultaneously
use different nodes; and testbed nodes themselves are based on a wide variety of heterogeneous
hardware, providing different management APIs.

In Chapter 3, we present how our testbed management software pos helps to reduce and stream-
line administrative efforts and allows efficient usage of testbed resources. We discuss require-
ments and present its core components. In a case study, we highlight how our testbed controller
can be used to manage a variety of testbeds for different purposes, including a hybrid teaching
and research testbed consisting of 48 nodes for distributed experiments.

RQ3: How can we model the performance of individual data plane components in an automated
fashion?

Domain-specific languages (DSLs) like P4 allow programming the packet processing behavior of
the entire data plane. This processing pipeline can be split into individual components, includ-
ing parser, match-action tables, or deparser stages. Each component has different parameters
that describe their complexity, e.g., the number of parser states. This clear modularization of
processing allows investigating individual features of each component, in theory.

Understanding the performance of a P4 program on a given target platform is crucial to know
whether the target fulfills the requirements towards the expected performance. However, the
landscape of both P4 applications and target platforms is steadily increasing, such that modeling
the performance of every complete application for every target becomes infeasible. Tehrefore,
modeling the performance of individual components of the data plane processing pipeline can
help to predict the performance of programs using the modeled components. This approach
reduces the overall effort for performance measurements, limiting experiments to components of
different targets.

As the search space is still large we present a framework for automated measurements and model-
ing of P4 program components to achieve reproducible performance models. The auto-generated
models can be used to compare the behavior of a component to the theoretically expected per-
formance. Potential deviations can be further investigated to find the root cause, e.g., inefficient
or incorrectly implemented data structures or limitations of the target’s architecture.

Chapter 4 details our framework for the automated generation of models for P4 data plane
components. It is based on the pos structure for experiments, wherefore, all measurements and
created models are reproducible. The framework is specifically designed to be data plane target-
independent, and testbed-independent, further increasing the reproducibility. We present a case
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study for a software and a hardware target, inspecting the core component of P4-based data
planes: match-action tables.

RQ4: How can we determine the packet that takes the worst case path through the data plane?

Using a DSL to program the data plane of network devices allows using tools for the analysis of
control-flow graphs (CFGs). In other words, based on the program, the path of a packet through
the data plane can be determined. This opens up new possibilities to verify correct program
behavior but also to predict the performance of the program for different packets. Using the
CFG, i.e., which processing component exists how many times for a certain path, in combination
with the performance models for individual program components, results in the total cost for
each path.

Not all components will significantly impact the overall program performance similarly. We as-
sume that key components will dominate, for instance, match-action tables, while other actions,
like simple calculations, will only marginally impact the performance. Therefore, modeling the
entire path can be reduced to modeling the key components while using fixed offsets for other,
minor operations.

After modeling all paths, the worst-case path through the data plane program can be determined
and, with it, the packet that uses this path. Therefore, generating this specific sort of traffic
triggers the worst-case behavior of the program on the target device. A similar approach is
possible for the average case.

In Chapter 4 we propose our methodology to determine such worst-case traffic for P4 programs.
We discuss different tools to generate CFGs and how this information can be combined with our
presented models for individual data plane components. After parameterizing the cost of each
path we deduce the worst-case traffic. This is then used to verify the quality of our model.

RQ5: How can we extend programmable data planes with cryptographic hashing functionality?

Cryptographic functionality is detrimental for modern networks. Whether these means are used
directly between network nodes or on application-level between two or more communicating par-
ties, with their usage, communication channels can be authenticated, confidential, and integral.
Although cryptographic properties are included in many essential protocols, e.g., for tunneling
applications, cryptographic functionality is not yet available in the core of DSLs like P4. In-
stead, such functions can only be used through external libraries or interfaces provided by the
concrete target. However, programmable hardware targets often do not provide cryptographic
functionality or require complex integration efforts.

Given all different classes of cryptographic functions, we have a closer look at cryptographic
hash functions. These hashes are primarily used to provide authentication and data integrity
in network protocols. Furthermore, specialized use cases exist, e.g., client puzzles to protect
against certain network attacks.

Chapter 5 outlines how cryptographic hash functions can be integrated into P4-programmable
data planes. We showcase prototype implementations for a variety of software and hardware
targets, using different integration approaches. Further, we discuss limitations encountered due
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to hardware-specifics and quantify the achievable performance regarding throughput, latency,
and resources using measurements. We argue that the importance of cryptographic functionality
for network devices and applications merits a more thorough discussion about integrating them
closer into programmable data plane targets.

RQ6: How can we defend against TCP SYN floods from within the data plane?

Distributed denial-of-service (DDoS) attacks are a threat to the Internet and all its stakehold-
ers, including content providers and network operators. If successful, i.e., attack traffic is not
mitigated, such attacks can cause financial losses by overwhelming network devices. With ever-
increasing bandwidths, DDoS attacks will likely become even more devastating in the future.
Consequently, the cat and mouse game, finding solutions capable of defending against such
attacks, will—and has to—continue.

One popular attack vector among more significant denial-of-service (DoS) attacks are SYN
floods, exploiting a flaw in the TCP handshake that causes asymmetric usage of resources for
the attacked server compared to the attacking client(s). Typically, every network stack of modern
operating systems provides countermeasures, however, with limited performance. Commercial
closed-source solutions can be deployed within the network instead of mitigating the flood at the
end host. While a plethora of potential defense approaches has been proposed, solutions that
cannot be circumvented by an intelligent attacker typically require a client puzzle, which uses a
cryptographic hash function for its calculation. We use this popular attack vector to demonstrate
how cryptographic hash functions can be used to mitigate SYN floods in programmable data
plane targets anywhere in the network.

Chapter 5 includes a critical discussion of general SYN flood mitigation mechanisms and in which
setups they can be deployed. We investigate state-of-the-art implementations using the Linux
TCP/IP stack as a case study. Based on our findings, we narrow down potential candidates for
porting them to the data plane. We implement and compare prototypes using two approaches:
using a traditional framework for high-performance packet processing in software; and using
the P4 language to create programs for a variety of software and hardware targets. We use
the same underlying framework for both approaches using software targets, allowing a detailed
comparison of implementation effort, limitations, and performance.

1.2 Outline
Chapter 2 covers the history and road towards programmable network devices and compares
general properties of such target devices and data plane applications. We introduce our mea-
surement methodology based on our testbed and tools for reproducible network experiments
in Chapter 3. Our approach for automatically modeling the components of P4 language con-
structs on different target devices is presented in Chapter 4. Furthermore, this chapter discusses
the application and interesting findings of our modeling framework to a software-based target
platform. In Chapter 5, different strategies to integrate cryptographic hashing capabilities into
programmable data planes are presented. These approaches are used to implement multiple
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high-performance TCP SYN flood defense prototypes directly in the data plane. The contribu-
tions of this thesis and open topics for future work, are summarized in Chapter 6.
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Chapter 2

Programmable Network Devices

The landscape of packet processing applications has always been broad. They range from
software devices, for instance, allowing to implement custom networking capabilities on top
of operating system (OS) network stacks or dedicated frameworks, to purpose-built hardware
devices. How to define the networking behavior, is a similarly complex domain: standard
programming languages, switch OSes, or limited configuration options for fixed-function ASICs,
are only a few prominent possibilities. Therefore, the urge to develop a DSL, a high-level
language to define data plane packet processing, has obvious advantages.

This chapter introduces important terms, concepts, DSLs, and investigated software and hard-
ware platforms. Furthermore, we present a survey of the current landscape of research and
applications for programmable data planes.

2.1 Historic & Related Approaches
Programming custom network functions instead of buying fixed-function, ASIC-based appliances
is possible for both software- and hardware-based platforms. These have been developed and
improved over time to achieve higher throughputs, lower latency, and allow for more complex
functionality. In this section, we focus on and discuss properties, advantages, and disadvantages
of approaches not using standardized or high-level DSLs for data plane programming.

2.1.1 Software Devices
Section 2.1.1 is based on two publications by the author [1], [2]; and a collaboration between
Daniel Raumer, Florian Wohlfart, Dominik Scholz, and Georg Carle [3].

The virtualization of network functions, moving networking functionality onto software-based
systems, has increased the importance of CPU-based packet processing. Compared to dedicated
networking hardware, a CPU-based system has several advantages, incentivizing the shift from
hardware to software: commercial off-the-shelf (COTS) hardware is cheaper compared to dedi-
cated hardware; a wide range of different software OSes and libraries, as well as COTS hardware
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to choose from exists; and development cycles are quicker compared to custom-made hardware
that cannot be changed after production. We distinguish two major approaches to networking
in software: performing the networking tasks as part of the OS’s network stack or using an
optimized packet processing framework.

In-kernel Network Stack
Common OSes like Windows and Linux provide a network stack that is located within the
OS’s kernel. The network stack is typically located within the kernel to protect the system
from accidental or intentional misuse, which could lead to system crashes. The goal is a simple
networking API for applications, without the need for low-level networking tasks. As such, the
network stack supports a vast range of protocols and features. Performance, while important
for modern networks with bandwidths potentially beyond 10 Gbit/s, is often only a secondary
goal. In the following, we use Linux’ network stack as an example for in-kernel networking.

Processing Steps: With the reception of the packet by the NIC the packet data is stored in
main memory using direct memory access (DMA). As part of the OS’s internal representation
of the packet, metadata required for several protocols is added. Using a hardware interrupt, the
kernel is informed that the packet is ready for processing. Depending on the mode, for instance,
the New API [24] is used to poll all available devices and receive their available packets. The
processing within the network stack happens layer by layer: on the network layer, basic checks
are performed before a routing lookup is executed to determine the destination of the packet.
If the result is a local application, the packet is passed to the next layers, for instance, UDP or
TCP. After this, the packet is handed over to the application via the socket API, resulting in a
copy operation of the data to user space.

For transmitting packets, either after a forwarding decision was made for a received packet or for
packets from user space, processing happens top-down. Eventually, the next hop and outgoing
interface are determined, and the packet is handed to the outbound NIC.

While passing the network stack, further processing of the packet can happen. For instance,
packet filtering can be applied using hooks of the netfilter module.

Performance Limiting Factors: The Linux network stack, as an example for network stacks in
mainstream OSes, is designed for general purpose networking including routing and higher layer
protocols. The goal is to provide an easy to use interface for applications and high robustness,
without the user having to care about the underlying networking subtasks. However, this
results in a trade-off between usability and performance, creating performance bottlenecks when
surpassing 1 Gbit/s Ethernet [25]–[30]. Bolla and Bruschi formulate bottlenecks that limit the
performance of software packet processing platforms as follows: the “CPU limits the number of
packet headers that can be processed, while bandwidth and latency of the I/O buses limit the
total throughput” [31].

The complexity of possible per-packet processing is defined by the available CPU cycles—the
most common bottleneck in CPU-based packet processing systems. If a processor operates with
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a maximum frequency f and requires C̃ cycles to process a single packet on average, the resulting
maximum packet rate p̃ can be computed with Equation 2.1:

p̃ = f

C̃
(2.1)

Vice-versa, for a packet processing system equipped with a 3 GHz CPU to achieve line-rate
of 14.88 Mpps for 10 Gbit/s Ethernet, less than 207 CPU cycles must be spent per packet on
average. We use Equation 2.1 throughout this thesis to determine the metric of CPU cycles per
packet from the measured packet rate.

Another limiting factor is the system’s memory. Per-packet allocation and deallocation of mem-
ory for received or sent packets requires a significant number of CPU cycles spent using the
memory BUS. According to Dorado et al., this can be up to “63 % of the CPU usage in the
reception process of a single 64 B sized packet” [25]. Further, packet data is copied multiple
times. When receiving a packet, data is copied from special DMA memory of the NIC to the
kernel’s internal buffer. From this buffer, the packet data may be copied to user space applica-
tions. Doing these operations at high speeds causes the CPU to idle waiting for data loaded via
the memory BUS, consequently increasing the CPU cycles required per packet.

Due to the generality of the network stack, the internal data structure is bloated, containing
metadata for several protocols. This can also cause bottlenecks due to the memory hierarchy.
If packet data including metadata, or other data structures like the routing table, surpasses
the size of the cache, data has to be fetched from slower memory. This can even lead to cache
thrashing effects, requiring constant load operations for cache misses, leading to idle processing
cycles.

Another performance limiting factor are context switches between the user space application and
the network stack residing in the kernel. While this increases the CPU cycles, the separation
between user space and kernel is intentional as it increases the system’s robustness. Another
mechanism to improve system reliability are locking mechanisms. Linux uses active waiting locks
to protect access to several data structures. This can be a potential bottleneck when multiple
CPU cores are used for packet processing in parallel.

Packet Processing Frameworks
As general purpose network stacks are not able to perform even simple processing tasks at high
speed, dedicated software packet processing frameworks have been developed. To circumvent
or improve on the identified bottlenecks of in-kernel network stacks, they implement different
techniques [28]: bypassing the kernel’s network stack; using polling instead of interrupt-driven
notification of new packets; pre-allocation of data structures, including packet buffers; no addi-
tional copy operations for packet data; and processing of packets in batches.

Over the years, several frameworks have been developed, using different architectures and pro-
gramming languages. The following lists a selection of different approaches and discusses their
advantages and disadvantages.
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Data Plane Development Kit: The DPDK [32] is a framework consisting of optimized packet
processing libraries and drivers for fast packet I/O on multi-core architectures. It completely
bypasses the Linux kernel, allowing for high-performance packet processing applications in user
space. All required processing steps, including low-level operations, are implemented in user
space from scratch. While this increases the effort for developing and implementing the ap-
plication, it also increases performance as only necessary processing is performed. Further, by
bypassing the kernel the applications do not benefit from the guarantees in terms of robustness
provided by the kernel’s network stack. To avoid interrupts entirely, devices are accessed using
active polling. Further, packets are processed in batches.

The libraries are optimized for common tasks, such as memory allocation of network packets,
buffering, routing decisions, or hashing. DPDK uses a run-to-completion model, i.e., a single
CPU core is responsible for the entire processing of a packet. All resources required during
runtime are allocated during the startup of the application. This reduces CPU cycles spent per
packet to create necessary data structures. During startup the application can allocate pools of
memory for fixed-sized objects using a lock-less ring data structure. During runtime, an object
can be retrieved from such a pool, circumventing the costs for allocating its memory. A sample
use case are network packets. For this purpose, DPDK uses a special data structure, which is in
turn stored in a memory pool. This packet structure is optimized to fit inside a cache line, while
larger packets can be created by chaining multiple buffers together. It also contains metadata,
which can be application-specific. DPDK further optimizes processing by utilizing hardware
features of modern NICs, offloading functionality like the calculation of checksums to save CPU
cycles.

DPDK does not provide out-of-the-box support for the IP protocol or higher layer protocols
like UDP or TCP. All functionality has to be programmed for the specific application using
DPDK’s C libraries. The libmoon framework improves on this by providing an easy to use
Lua scripting layer on top of DPDK. Using a scripting language to wrap typically verbose
tasks simplifies the creation of applications using DPDK. libmoon maintains the performance of
the underlying framework written in C through just-in-time (JIT) compilation and Lua’s foreign
function interface (FFI). Furthermore, libmoon extends the functionality of DPDK by providing
a powerful library for working with protocol stacks, which is introduced in Section 3.3. This
allows the creation of high-performance packet generators like MoonGen or routers [4], [33], [34].

Another framework that takes advantage of DPDK is Vector Packet Processing (VPP) [35].
Instead of using scalar processing, i.e., processing each packet individually, packets are processed
as a vector. For all packets within this vector, one processing step is performed before moving
on to the next step. As this approach makes better use of the caches, this reduces the overall
processing latency.

Snabb: Snabb is a high-performance framework for traffic processing beyond 10 Gbit/s using
open-source software. It is intended as alternative to existing hardware appliances used by
Internet service providers or general network operators. All processing happens in user space
bypassing the kernel, however, Snabb leverages features of modern commodity x86 architectures
and NICs. Thus, the raw performance of the Ethernet device can be reached, while abandoning
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all security features of the network stack in the kernel. Using memory mapped I/O, the PCI
device is directly bound to the Snabb application in user space. Read and write access of the
NIC for packets is allowed via DMA. Similar to libmoon, Snabb uses a JIT-compiled language,
in this case Lua. This enables writing applications using a high-level programming language,
while the profiling of the JIT compiler allows for high-performance. For the same reasons, even
low-level modules like the NIC drivers are written in Lua.

Computationally expensive tasks are offloaded to the hardware whenever possible. However,
compared to DPDK, Snabb prefers offloading to the CPU over offloading to the NIC. For in-
stance, checksums as part of headers like IPv4 or TCP can be computed using CPU-specific
Single Instruction Multiple Data (SIMD) instructions. Advanced Vector Extension (AVX) in-
structions are typically highly parallelized and can be computed in fewer CPU cycles compared
to using traditional operations. Snabb offloads these tasks to the CPU, using, for instance, Data
Direct I/O, instead of offloading it to the NIC due to a different design philosophy. Offloading
to the CPU using SIMD instructions can be performed for workloads, independent of the used
NIC. Thus, the resulting code is simplified and not NIC-specific. [36]

Snabb puts emphasis on virtualization to further optimize the usage of hardware resources.
It uses single root I/O virtualization, vhost-user, Unix domain sockets, and QEMU/KVM to
circumvent the kernel of the host system and to allow virtual switches to access shared data
structures in the memory space of the guest machine.

In Snabb, each networking functionality is represented as small module called app. Within each
app, representing a specific functionality usually implemented in hardware, packets are pulled
from an input, processed, and finally send to the output. Several apps can be combined to form
more powerful functionality, similar to actual networks. This approach, comparable to network
function chaining, fosters reuse and simplifies the development of new applications.

netmap: Instead of bypassing the kernel, netmap provides high-speed packet I/O as kernel
module [37]. The framework tries to solve the identified problems of the network stack: per-
packet allocation of memory, overhead produced by system calls, and multiple memory copies of
the same data. Similar to DPDK, netmap uses batch processing and an optimized, lightweight,
and pre-allocated data structure to store packet data. Further, netmap uses memory that is
shared between all processes, requiring no copy operations when forwarding a packet from one
interface to another. While an error in the user-written application cannot cause the kernel to
crash, other netmap-specific data structures can be corrupted.

netmap has been used to implement the Click modular software router [38], [39] and the switched
Ethernet VALE [40].

PF_RING: PF_RING [41] is a kernel module that provides an API for high-performance
capturing, filtering and analyzing of packets. It uses polling to avoid the impact of interrupts,
pre-allocation of packet buffers, multi-core processing, and memory mapping techniques. Using
the zero copy module, no copy operations are required to access the packet data from user space.

13



Chapter 2: Programmable Network Devices

DPDK Snabb netmap PF_RING
Kernel bypass + + − +/−
Polling mechanisms + +/− + +
Memory pre-allocation + + + +
Shared mapped memory + + + +
Batch processing + +/− + −
Multi-core support + + + +
Simplified packet buffer + + + +
Standardized DSL − − − −

Table 2.1: Comparison of techniques used by different high-performance software packet processing frameworks

The downsides are that only one application can access the data in parallel and misbehavior
can lead to system crashes.

Comparison: Table 2.1 showcases different features the presented frameworks use to achieve
high-performance packet processing. They either completely bypass the existing network stack
of the kernel and also lose all guarantees provided by it, or extend and improve selected aspects of
the kernel’s network stack. Processing can be further sped up by using batch processing of pack-
ets. All frameworks use variations of the same conceptual ideas: they use polling mechanisms
instead of costly interrupts to start processing received packets; memory allocation during the
startup of the application to reuse buffers during the actual runtime of the application, reducing
CPU cycles spent on memory allocation; memory regions shared between NIC and application
to remove or reduce copy operations; multi-core support by using, for instance, receive-side
scaling; and a simplified data structure representing network packets, only containing critical
metadata. Further, the packet buffer does not differentiate headers or payload of the packet as
this is entirely up to the processing of the application.

None of the introduced packet processing frameworks uses a standardized DSL for creating net-
working applications. Therefore, development is different for each platform, limiting the porta-
bility of the solutions. Even basic processing steps, for instance, network and transport layer
processing, have to be implemented from scratch, although selected optimized algorithms, like
LPM, may exist. Further, the frameworks are limited to software platforms, i.e., porting a solu-
tion to dedicated hardware is not trivially possible. Depending on the framework’s architecture,
programming language, and API the development effort can vary. Using a scripting language
like Lua can simplify the development process. As these frameworks allow low-level packet
processing, however, the applications can be optimized, resulting in potentially higher perfor-
mance. In general, the introduced packet processing frameworks are able to reach 10 Gbit/s
line-rate [28], [42], however, results can vary depending on the used hardware and complexity
of the application-specific processing.

The discussed frameworks are only a selection of existing high-performance packet processing
platforms. A notable mention is PFQ as it provides its own functional language for defining
packet processing tasks, called pfq-lang [43]. While this DSL is similar to approaches like
Extended Berkeley Packet Filter (eBPF), PFQ-lang is not as widely used.
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2.1.2 Programmable Hardware
Programmable hardware platforms are systems of which the core processing functionality can
be changed after manufacturing. This is in contrast to fixed-function hardware like ASICs.
This definition includes that the device behaviour cannot only be changed by setting different
options, but instead fundamentals like parsed headers, bytes modified or lookups performed in
data structures based on the packets data can be programmed. Examples for such hardware
platforms are network processing units (NPUs) and FPGAs. The advantage of these platforms
is the high performance, extending even beyond 100 Gbit/s [44].

Smart NICs using, e.g., the Netronome NFP-4000 NPU [45] chip, are specialized NICs using
network flow processors. These are many-core processing units that allow highly parallelized
processing and multithreading. Each flow processing cores can process a single packet. The
NFP-4000 can be programmed, for instance, using a variation of C, called micro-C.

FPGAs can be programmed using low-level hardware description languages like VHDL. Be-
fore the existence of higher level compilers that allow to compile, for instance, C [44] or P4 to
VHDL, domain-specific knowledge was required to create basic packet processing logic. Early
approaches, for instance, tried to increase the performance of regular network stacks by “boost-
ing” selected processing steps dynamically [22]. The authors called their FPGA-based prototype
architecture the Programmable Protocol Processing Pipeline, which shares the same abbrevia-
tion as the primary subject of this thesis, P4.

Designing FPGA-based packet parsers that can cope with ever increasing speeds is ongoing
research [44], [46]. While most of the design principles are specific for FPGA targets, the
authors also propose high-level description languages to simplify the creation of packet parsing
programs on FPGA targets [44]. According to Gibb et al., adding programmable packet parsers
doubles the required area for parsers, however, this only increases resource consumption from 1
to 2 % [46].

Compared to the discussed software processing platforms, these hardware platforms excel in
performance, both throughput and latency. The downsides are that the available resources
are limited and that the devices are even more difficult to program, requiring domain-specific
knowledge. Although the targets might offer higher-layer languages like C or DSLs for parts of
the packet processing like packet parsing, developed applications are still not portable. Creating
the same application on two different targets, e.g., NPU and FPGA, requires completely different
languages, design principles, and program architectures.

2.1.3 OpenFlow
OpenFlow [47] is a network protocol that allows to modify the data plane of network devices,
enabling SDNs by decoupling the control plane from the data plane. This was one of the
first successful attempts to standardize a cross-vendor interface for remotely managing network
switches. The protocol allows to add, modify, or delete rules composed at the control plane for
the forwarding table of a switch. Packets that do not match any rule can be forward to the
control plane to create new or updated rules. The configurability of OpenFlow-enabled devices
is limited: both, the possible match fields and actions performed after a match, are defined by
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protocol and cannot be arbitrary. Exceptions are target-specific extensions that allow to match
additional fields or perform additional actions.

The downside with such a limited number of match fields is the continuous development and
evolution of new and existing protocols. For instance, if a data center operator wants to use
a new or custom tunneling protocol within the data center, OpenFlow and OpenFlow-enabled
devices will likely not or not yet support the protocol. Consequently, no rules that match the
custom tunneling protocol can be inserted and matched against as the hardware needs to be
updated. This requires both monetary and temporal resources.

Compared to both the introduced software and hardware platforms, OpenFlow provides a stan-
dardized interface for changing the forwarding behavior of network devices. While this is a
step towards SDNs, the approach also limits its usability: Outside of the forwarding behavior,
customizing general device behavior is not or barely possible. Furthermore, the standardized
match fields and actions are limited as the data plane is still coupled to protocol formats.

2.2 Domain-specific Languages for Programming Data
Planes

In the previous section, we surveyed packet processing frameworks that can be used to create
networking applications for a specific target, typically CPU, NPU, or FPGA. Every target
has a different architecture, uses different features and approaches, and comes with its own
advantages and disadvantages. However, they also all use different programming languages and
offer different APIs. Hence, an application programmed for one device is typically not portable
to another platform, especially not from one hardware platform to another. For these platforms,
DSLs like Click [38] for creating routers on software-based platforms or G [48] for FPGAs exist.

To solve these problems, DSLs have been proposed to program the data planes of heterogeneous
devices and target platforms. Compared to what is possible using, for instance, OpenFlow, their
goal is to further decouple the data and control plane and extend the programmability of the
data plane. However, they are not intended to replace OpenFlow as they are two different use
cases: OpenFlow is a protocol that manages the communication between control and data plane,
while these new DSLs focus on the programmability of the data plane. Even fully programmable
data planes still require means to communicate with the control plane to retrieve new or update
existing configuration.

Several DSLs have been proposed, including, for instance, packetc [49], baker [50], or NPL [51].
However, these either lack features or were not adopted by a wide range of vendors. Another
example that entirely decouples the data plane and protocols is Protocol-oblivious Forwarding
(POF) [52]. Instead of defining actions that perform on protocol fields, POF defines match keys
based on arbitrary bit ranges of the packet. This key is then used to perform actions, which
are also protocol agnostic. An initial hardware prototype implementation by Song is based on
the Huawei NE5000 platform [52]. Ongoing research on POF is primarily presented by Chinese
research groups [53].
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In the following we introduce more prominent approaches that are adopted by different hardware
vendors and are the focus of this thesis.

2.2.1 Extended Berkeley Packet Filter
Section 2.2.1 is based on a collaboration between Dominik Scholz, Daniel Raumer, Paul Em-
merich, Alexander Kurt, Krzysztof Lesiak, and Georg Carle [5].

Berkeley Packet Filter (BPF) exist since 1992 in UNIX OSes [54]. They were developed to
improve the performance of packet filtering, for instance, using tcpdump. In Linux, the BPF
VM was extended with a JIT compiler, which enabled the Linux kernel to translate the VM
instructions to assembly code on the x86_64 architecture in real time [55]. Further improve-
ments and generalizations led to eBPF. Instead of sole packet filtering, eBPF can be used for
general purpose filtering systems, allowing the creation of traffic control, shaping, and tracing
applications.

The 64 bit instructions of the eBPF VM are mapped to assembly instructions of the underlying
hardware architecture using an interpreter or JIT compilation. The memory that an eBPF
program can access is set up by the kernel on startup depending on the type of the program.
Further, the kernel allows calling a predefined and type-dependent set of functions. [56], [57]

eBPF programs are like regular programs running on hardware with two exceptions: all eBPF
programs are subject to static verification before being loaded into the kernel for security reasons.
This step ensures that the program contains no backward jumps, which are required for loops.
Since Linux 5.3, bounded loops are allowed [58]. Further, the program must not exceed a
maximum number of 4096 instructions, which was extended with Linux 5.1 to one million
instructions [59]. The goal of the static verifier is to protect the kernel from DoS attacks
by making sure that the eBPF program terminates. Thus, a malicious eBPF program cannot
compromise or block the kernel, allowing unprivileged users to use eBPF in the kernel [60]. The
second difference are special key-value stores, coined maps, used to maintain program state or
communicate with other applications. In contrast to using dynamically allocated memory, files,
or sockets, eBPF programs only have read and write access to maps. Maps are memory regions
set up before the program is loaded into the kernel. Thereby, key size and value type, as well
as the maximum size are determined at instantiation. Via a file descriptor, the kernel provides
secure access to the map from user space. [56], [57]

Netronome has adopted eBPF for their SmartNICs. eBPF programs for eXpress Data Path
(XDP), which are usually executed within a kernel VM, can be offloaded to the Agilio CX
SmartNIC, which is based on the NFP-4000 NPU platform [61]. Furthermore, XDP programs
developed for Linux can be compiled to and run on FPGAs using the hXDP framework [62].

2.2.2 Programming Protocol-independent Packet Processors
P4 [23] is a standardized DSL for programming software and hardware data planes. As part
of the Open Networking Foundation, it is managed by the P4 language consortium p4.org in
several working groups for language, application, and architecture design. Unless mentioned
otherwise, we use P4 to refer to the 2016 version of the language.
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Figure 2.1: Protocol-Independent Switch Architecture model

Goals: Bosshart et al. describe the three goals of reconfigurability, protocol independence, and
target independence. The processing of the device should be reconfigurable by the control
plane in the field. Thereby, the program freely defines the parser of the device independent
of existing protocols, i.e., moves the definition of protocol headers from protocol specifications
to the programming language. Based on this definition, fields are named and extracted from
the packet. These can than be used for further processing. Lastly, the programming should
be agnostic regarding the underlying switch hardware architecture. The target-independent
program should be transformed by a respective compiler to target-specific instructions. [23]

With these goals the P4 language achieves portability. The program is developed independent
of the target. Depending on the desired usage scenario, the device can be chosen based on
different key performance indicators (KPIs) like speed, reliability or cost. Further, it allows
later upgrades or replacements with equal or completely different devices, while retaining the
same software.

Using a standardized DSL and developing target-independent also enables rapid development
cycles. As long as the functionality can be expressed by the language and the target fully
implements the feature set, new functionality, program variations, or bug fixes can be developed
using common software practices. These can then be tested on real hardware, without the need
for a lengthy production of a new, purpose-built device.

Keeping software development independent of the hardware manufacturing can also be an im-
portant property for companies in regards to intellectual property. The device behavior can be
developed in-house and closed source without the need to share critical know-how with other par-
ties, e.g., competitors. In contrast, P4 programs, or snippets thereof, can be made open-source
and incorporated into different programs, enabling reusability of code.

Implementing only required functionality increases the robustness and security of the applica-
tion. In fixed-function devices, any functionality that exists, but is not required still increases
the risk that it is faulty and can be exploited.
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Language Components: A basic P4 program consists of three different stages as arranged in
the Protocol-Independent Switch Architecture (PISA) architecture model1 shown in Figure 2.1:
parser, pipeline with match-action tables, and deparser. The parser is a finite state machine that
defines the parsing of the packet, ending in accepting or rejecting the packet. For the current
state, the next following packet data is parsed into a header data structure. Based on this data,
a transition to the next state can be performed.

The centerpiece of P4 is the match-action programming paradigm. In the match-action pipeline,
matches can be performed on the extracted header data or metadata. Thereby, P4 defines
different match types: exact, ternary, and LPM. If a matching entry is found, the corresponding
action is performed. An action may perform various processing, e.g., manipulating header or
metadata fields. Table entries, defining the match key and action to be performed, are not
defined by the P4 program. Instead, tables are populated by the control plane, while the P4
program solely defines the properties of the table.

Finally, the deparser constructs the outgoing packet. It defines which headers are applied in
which order. Packet payload, i.e., data that was not parsed, is appended.

Other constructs, like registers or hash functions, are not part of the P4 specification as they
would be too restrictive for different devices. Instead, P4 defines externs, i.e., functionality that
may be provided by a concrete target device.

Architecture Models: Network devices are heterogeneous. They differ in various aspects, in-
cluding price and throughput, but also in processing complexity. Therefore, P4 does not assume
every network device to have the same architecture. Instead, a P4 program can be written for a
specific target architecture, i.e., the programming model of the target device. Each architecture
provides a logical view of the data plane processing pipeline: arrangement of different stages
like parser and match-action pipelines, additional functionality like traffic manager, and extern
function capabilities. For a given architecture it is the job of the respective compiler to generate
target-specific code from the P4 program. For example, the PISA model is the primary archi-
tecture for the P414 version of the language and consists of only a single match-action pipeline
stage. In contrast, the Portable Switch Architecture (PSA) model targets a more general switch-
ing device. Its complete pipeline consists of multiple match-action stages and defines a set of
externs, e.g., for hashing.

For the sake of simplicity we will use the PISA architecture throughput this thesis for explana-
tions unless mentioned otherwise. However, explanations can be applied to other architecture
models. [63]

Control Plane Interface: The P4 language consortium also proposed an API for communication
between control plane and P4-enabled data planes, coined P4runtime. The goal of this interface

1 The PISA architecture model was designed for P414 and is not used by modern targets. However, we use it for
explanations throughout this thesis due to its simplicity.
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is to allow remote management of such devices, including loading and starting new P4 programs,
as well as managing the program state by inserting, updating, or deleting match-action table
entries. In this work, we focus on the capabilities and performance of the data plane by itself,
excluding the P4runtime interface.

2.2.3 Future Trends
The introduced languages are only a first step towards fully programmable networks and NOSes.
They still lack in several aspects, in particular portability. Although P4 tries to overcome this
issue by providing explicit architecture models, a program still needs to be developed for a
certain architecture, using the respective number of, for instance, match-action pipelines. To
combat this, Soni et al. [64] propose a higher-level abstraction, using libraries of composed P4
code snippets. This approach further increases modularity, composability, and portability of P4
programs.

To add an additional layer of abstraction, higher-layer languages like Lyra [65] have been pro-
posed. Its goals are to allow cross-platform compilation, overcoming the mentioned portability
issues, allow for program composition, i.e., running multiple programs in the same data plane,
and being extensibility. Compared to P4, Lyra uses a simplified programming abstraction,
coined one-big-pipeline. Within the pipeline, a packet is processed by different algorithms, com-
posed of simple if-else, read, and write statements. The Lyra compiler suite is responsible for
creating target-specific code, e.g., translating if-else statements to P4 tables. Using a simpler
and higher level programming abstraction also has the additional advantage that the P4 pro-
grams generated by the Lyra compiler may even use less hardware resources and lines of code
compared to the manually developed counterparts.

2.3 Target Platforms
The introduced data plane programming languages target different software or hardware plat-
forms using varying architecture models. Furthermore, they come with different toolchains, e.g.,
for P4 program compilation, control plane interfaces, or device debugging. In this section, we
introduce and discuss the properties of the targets and toolchains important for the context of
this thesis. While other architectures exist, we chose these targets as they are commonly used
by related work and are easily available commercially.

2.3.1 Software on CPU
Software-programmable CPU-based systems run on general-purpose COTS hardware. In gen-
eral, they are flexible, i.e., it is simple to fit a program to the target, and extensible, i.e., new
functionality can be added easily. While a CPU-based system can provide almost arbitrary and
complex functionality, this comes at the cost of performance. Typically, the system’s throughput
is limited by the processing power of the CPU. Further, latency and jitter may be impacted by
interrupts and cache effects.
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p4c
p4c is the primary frontend compiler for P4 programs. It generates a platform-independent
intermediate representation in JSON format that can be used by backend compilers to generate
target-specific code. As part of the p4c suite, compilers for the behavioral model version 2
(bmv2), eBPF, and Userspace eBPF (uBPF) targets, as well as for the generation of program
graph representation and testing exist.

Emulation
The behavioral model version 2 (bmv2) is the P4 reference software switch implementation tar-
geting the Mininet emulation framework [66]. While it is not intended for high-performance
applications, it represents a close-to-specification implementation of the standardized P4 lan-
guage. Therefore, bmv2 is best suited for prototyping applications before testing them on a
target intended for production deployment.

BPF
The eXpress Data Path (XDP) [67] is available in the kernel since Linux 4.8 and provides a
stateless and high-performance programmable packet processing path. To achieve this, network
drivers of various NIC vendors were extended to expose a common API, allowing processing
at the lowest level of the entire software stack. As a result, the eBPF programs, which are
configurable from user space, have read and write access to the packets stored in DMA buffers
of the NIC’s driver. Due to its simplicity and location before the kernel’s network stack, XDP
is ideally suited for discarding packets early in the processing path. Use cases include the
mitigation of DoS attacks, as well as quick forwarding of packets to egress buffers without the
interception of the network stack. [5]

P4 can be used to program XDP using the p4c-XDP [68] backend for p4c.

DPDK
The t4p4s [69] P4 compiler generates platform-independent C code. Based on the JSON in-
termediate representation, t4p4s generates its own high-level intermediate representation. This
can be used with target-specific libraries, for instance, for the DPDK backend, to generate
high-performance, P4-programmable switching devices on COTS hardware. The t4p4s target is
actively developed and primarily serves academic purposes, allowing rapid prototyping of new
high-performance applications and P4 mechanisms like asynchronous processing of externs [70].
P4 programs use the v1model architecture model. We use the name t4p4s synonymously for
both the P4 compiler and the DPDK-based P4 target throughout this thesis.

2.3.2 Hardware
Compared to software targets, hardware devices are limited in resources and flexibility for pro-
gramming and extending them. However, they excel in throughput and latency metrics.

We compare three different hardware-based targets: NPUs are many-core architectures, whereby
the cores are optimized for packet processing; FPGAs can be programmed using a hardware de-
scription language (HDL) to provide almost arbitrary functionality based on the chips available
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logic and memory blocks; and purpose-built ASICs, which have a dedicated, but limited instruc-
tion set.

Smart NIC
The Netronome Flow Processor (NFP)-4000 chips from Netronome [45] are available for Agilio
SmartNIC NPUs equipped with 10, 40, or 100 Gbit/s ports. This platform relies on a 32 bit
many-core architecture, equipped with 48 packet processing cores and 60 freely programmable
flow processing cores. Netronome offers support for various programming languages, including
backend compilers for C, eBPF, and P4. The NFP-4000 uses the v1model architecture model
for P4 programs.

FPGA
P4 programs can be synthesized for various FPGA-based hardware platforms [71], [72]. The
academic P4→NetFPGA project by Ibanez et al. [72] provides an open-source framework to
compile P4 programs using the Xilinx SDNet, generating a hardware design for the NetFPGA
SUME. This board is based on the Xilinx Virtex-7 XC7VX690T FPGA and es equipped with four
10 Gbit/s Ethernet ports, as well as a total of 216 Mbit static random-access memory (SRAM)
and 8 GB of DDR3 RAM.

Ibanez et al. also propose an event-driven P4 architecture model and discuss their prototype
implementation for the NetFPGA SUME [73]. Compared to standard P4, this model also
generates events, for instance, for the expiration of timers, packet generation, or en- or dequeuing
packets in buffers, which can then be processed by the P4 pipeline. The authors argue that these
events allow for even more complex P4 applications, while only requiring an additional amount
of the FPGA’s resources of up to 2 %.

ASIC
The Intel Tofino is a fully P4-programmable switching ASIC [74]. The first generation chip is
equipped with up to 65 100 Gbit/s Ethernet ports, while the ports of Tofino 2 are capable of up
to 400 Gbit/s. Always 16 ports are bundled together and served by one P4 pipeline, of which
each individual pipeline can be configured with a separate program or connected for programs
requiring more complex processing pipelines. The Tofino uses the Tofino Native Architecture
model, which is an extended version of the PSA. The list of additional functionality comprises
a traffic manager, various externs including meters, counters, and registers, and a traffic gener-
ator. The Tofino ASIC guarantees processing of packets at line-rate, independent of program
complexity. [74]

2.3.3 Other Targets
Other prominent targets, compilers, and transpiler not used in this thesis include various P4
backends for BPF [75]–[78]; the discontinued PISCES framework [79], a P4-enabled software
switch based on Open vSwitch (OvS) on top of DPDK; VPP with pvpp [80]; the P4-enabled
Xilinx Raymax SmartNIC for cloud acceleration [81]; SmartNICs by Pensando; P4FPGA [71]
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CPU NPU FPGA ASIC
Throughput + ++ +++ ++++
Latency > 10µs 5µs to 10µs < 2µs < 2µs
Jitter −−−− −−− −− −
Resources ++++ +++ ++ +
Flexibility ++++ +++ ++ +

Table 2.2: Comparison of different P4 target architectures. Performance categorizations are estimates for
available products based on own measurements and related work [7], [83], [84].

to generate Bluespec System Verilog code targeting Xilinx and Altera FPGAs; and P4-to-
VHDL [82] for 100 Gbit/s FPGAs. Further targets including their supported P4 language ver-
sions and architecture models are listed in related work [74, Table 2] or online1.

2.3.4 Comparison
Section 2.3.4 is based on a collaboration between Dominik Scholz, Henning Stubbe, Sebastian
Gallenmüller, and Georg Carle [6].

Generally speaking, CPU, NPU, FPGA, and ASIC-based devices can be categorized using per-
formance KPIs like shown in Table 2.2. In addition to runtime characteristics like throughput,
latency, and jitter, we compare the amount of resources a device can offer, as well as, its flexi-
bility, i.e., how easily the target can be extended with custom functionality.

The advantages of CPU-based systems are the virtually unlimited amount of resources, as ad-
ditional hardware can be added or existing hardware can be upgrade easily, and high flexibility,
as arbitrary functionality can be implemented. Consequently, complex programs with custom
functionality, including externs or even customized architecture models for P4 programs, can
be developed and executed. However, the downside of CPU-based systems is typically the per-
formance in form of throughput, latency, and jitter: throughput is limited by the processing
power of the CPU, i.e., each packet requires a certain number of CPU cycles; latency and jitter
is influenced by interrupts and cache effects [28].

NPU architectures and their processing cores are optimized for packet processing and provide
high throughput and consistently low latency. However, due to the specialized hardware ar-
chitecture, fewer commercial products are available compared to, for instance, fixed-function
NICs. Compared to a pure software target, the flexibility is also reduced, however, common
programming languages like C are often available to program an NPU. Similar, resources are
more limited, in particular, available on-board memory and its architecture will restrict program
complexity and performance.

FPGAs often surpass NPU and CPU targets in throughput, latency, and jitter metrics. As
arbitrary functionality can be implemented, FPGAs are highly flexible. The challenge is for

1 https://github.com/hesingh/p4-info
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bmv2 t4p4s NFP-4000 NetFPGA
SUME Tofino

Use Case Reference
Model Academic Commercial Academic

& Commercial Commercial

Backend multiple DPDK SmartNIC FPGA ASIC
Toolchain CLI CLI CLI/GUI CLI CLI/GUI

Architecture v1model
& PSA v1model v1model SimpleSume-

Switch
TNA

& v1model

Throughput << 1 Gbit/s < 10 Gbit/s < 100 Gbit/s 10 − 100 Gbit/s > 100 Gbit/s
Resources ++++ ++++ +++ + ++
Flexibility ++++ ++++ +++ ++ +
Maturity +++ + ++ + +++

Table 2.3: Overview of different P4 targets investigated in this thesis. Performance categorizations are subjective
estimates for available products.

the toolchain to synthesize a working hardware design utilizing the limited resources of the
hardware architecture without, for instance, timing issues. A downside is that programming
and debugging FPGAs requires domain- or hardware-specific knowledge. Therefore, for the
untrained, developing network functionality using an HDL is a time-consuming task.

ASICs are highly optimized, for instance, through a high degree of parallelism. Consequently,
they can achieve higher throughput with lower latency and jitter compared to the other target
platforms. This comes at the cost of flexibility: an ASIC is a fixed-function chip, i.e., the
expressiveness of the instruction set is limited. This makes it impossible to add new functionality
after manufacturing. Similar to FPGAs, the total amount of resources is limited.

Summarizing, a clear trade-off for the introduced CPU and hardware-based targets can be
identified: either a target excels for runtime properties like throughput, latency, and jitter, or it
offers high flexibility and resources to develop complex networking functionality.

For the target platforms relevant for this thesis, a summary of the intended use case, platform-
specific properties, and performance values is shown in Table 2.3.

2.4 Data Plane Programming Taxonomy
Cross-platform DSLs like P4 enable functionality, that was previously only available on end hosts,
to shift to data planes within the network. This also opens up the opportunity for completely
new applications. Consequently, plenty of research has emerged, discussing which applications
can and should be shifted to the data plane. Figure 2.2 shows the number of publications in
recent years including the keywords P4, Programmable Data Plane, and Programmable Switch
in the publication title when searching only on dblp1.

1 https://dblp.uni-trier.de/
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Figure 2.2: Popularity of P4 and programmable data planes in related work. Search for keywords in paper titles
using dblp.

This section provides an overview of different applications and research domains for P4-pro-
grammable data planes. We discuss which areas are still lacking research, and for which areas
the remainder of this thesis contributes to fill discovered holes.

2.4.1 P4 Application and Research Domains
Kfoury et al. [85] and Hauser et al. [74] surveyed the landscape of P4, including approximately
300 and 500 references, respectively. The primary focus of both publications are research do-
mains and applications. Kfoury et al. split their findings into seven categories: in-band network
telemetry, network performance, middlebox functions, accelerated computations, Internet of
Things, security, and testing. In comparison, Hauser et al. list six different P4 domains: moni-
toring, traffic management and congestion control, routing and forwarding, advanced network-
ing, network security, and miscellaneous research domains. Compared to Kfoury et al., Hauser
et al. specifically list related work on applications for industrial networks and applications that
require or benefit from cryptographic functionality in programmable data planes. Hauser et al.
not only discuss a broad survey of applications, but provide an overview of P4 language con-
cepts, architectures, targets, and control planes. In contrast, Kfoury et al. further discuss and
compare the surveyed applications and provide an outlook on future research trends. [74], [85]

2.4.2 Discussion
Due to the overwhelming number of existing and newly published papers regarding P4 and re-
lated topics it is difficult to maintain an overview of all application and research domains. The
presented taxonomies show that P4 is applied to multiple, vastly different areas: basic switching
and routing, gathering of network statistics like in-band network telemetry [86]–[88] or on a
per-flow basis [89]–[91], DoS and other attack mitigation [92], [8], in-network computation [93],
[94], and other applications commonly used in data center environments. However, P4 is also ap-
plied to other network domains with sometimes drastically different requirements, including, for
instance, wireless communication [95], mobile communication [96]–[98], Internet of Things [99],
or industrial networks [100]. Research also extends to the language itself as P4 enables program
optimization [101], [102], as well as program verification for bug-mitigation approaches [103]–
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[106]. Lastly, a related area of research is the integration of control plane interfaces and support
for network controllers for NOSes [107]–[109].

The variability also extends to the different layers of the ISO/OSI model that a P4-enabled
device operates at: ranging from L2 and L3 switching and routing, to middleboxes [110], and
even higher layer protocols or applications like DNS [111] or consensus [112], [113], seemingly
all network layers are represented. While many applications require no persistent state across
individual packets (e.g., [114]), stateful processing is becoming a topic of interest [9], [115].

We notice two shortcomings among these existing taxonomies. Neither of the presented tax-
onomies includes an extended survey of P4 performance aspects, for both, targets and applica-
tions. We provide a survey of P4 target performance, approaches for performance improvements,
and modeling of programmable data planes in Chapter 4. Furthermore, we extend the discus-
sion on the benefit of cryptographic functions in programmable data planes, in particular for
industrial networks, in Chapter 5.

2.5 Key Results
This chapter demonstrates the recent history and efforts towards fully programmable networks.
While highly potent network stacks exist for all major OSes, they lack performance due to their
complexity. For software-based systems, high-performance packet processing frameworks have
been developed to create arbitrary networking functionality on COTS devices. Through various
techniques like kernel-bypass or memory pre-allocation for packet buffers, these frameworks
exceed in performance compared to common network stacks, however, at the cost of having
to implement all functionality from scratch. For hardware platforms, programmable network
devices based on NPUs and FPGAs exist. They exceed in performance metrics like throughput
and latency, but the downside is domain-specific knowledge required to program the devices.

The commonality of these approaches is the lack of a standardized and unified language to pro-
gram network devices, independent of the concrete underlying architecture or hardware. The
advantages of such an abstract programming language are similar to other high-level program-
ming languages: quick development cycles; increased portability as the implemented program
may run on several different target platforms; and decreased entrance hurdle for programming
network devices. These advantages open up the process of creating new network functions on
high-performance devices to a wider audience. Consequently, new functionality is moved to the
data plane.

Domain-specific languages like P4 have been proposed exactly for this purpose. Using standard-
ized and abstract architecture models, as well as a specified set of instructions, data planes of
network devices can be—almost—freely programmed. Although the P4 instruction set is fixed,
additional functionality may be offered by a target and be used within the P4 program through
externs. In addition to the already mentioned advantages, P4 is independent of existing proto-
col definitions. Thus, the programmer has full reign over how the data plane interprets data in
existing, custom or future protocols. For the operators of network infrastructure, the intellec-
tual property of the implemented network functionality remains within the company, instead of
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contracting the hardware manufacturer. Alternatively, functionality can be open-sourced and
reused by many.

The survey of current ongoing research and application domains for programmable data planes
shows that P4 is applied to a plethora of areas, not only limited to data center applications.
In parallel, over a dozen of software- and hardware-based targets have been developed and are
either available open-source or commercially with throughputs extending to the terabit range. A
property that is not thoroughly discussed in related work are performance aspects, in particular,
how program complexity influences the performance when run on different target platforms.
Depending on the concrete target or application, the importance of different performance metrics
like throughput, latency, or resources, might differ. Therefore, we propose a modeling framework
in Chapter 4 that analyzes the influence of individual P4 program components.

Another area for languages like P4 are industrial networks. However, these require increased
security measures, already on the data link layer. In Chapter 5, we discuss how the functionality
to calculate cryptographic hashes in programmable data planes can further enhance the applic-
ability of P4. Further, we will show how this functionality can be used to protect, for instance,
against DoS attacks.

2.6 Statement on Author’s Contributions
Section 2.1.1 is based on two publications by the author [1], [2]; and a collaboration between
Daniel Raumer, Florian Wohlfart, Dominik Scholz, and Georg Carle [3]. The discussion of
network stacks and software packet processing systems (cf. Section 2.1.1) was extended and
modified to fit the context and research questions of this thesis. Similar, the comparison of
different packet processing frameworks and techniques presented in Section 2.1.1, including
Table 2.1, was enhanced for this work. The notation presented in Equation 2.1 was unified to
match the notation used throughout the remainder of this thesis.

Section 2.3.4 is based on a collaboration between Dominik Scholz, Henning Stubbe, Sebastian
Gallenmüller, and Georg Carle [6]. The entire section was significantly extended for this thesis.
Table 2.2 is a modified version based on [6, Table 1], while Table 2.3 was created for this work.
Due to these changes, Section 2.3.4 goes significantly beyond the scope of the original work.

The taxonomy presented in Section 2.4 was created by the author for this thesis and extends
the related work.
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Chapter 3

Measurement Methodology

In this chapter we introduce the underlying terminology, methodology, and tools used throughout
this thesis. We want to analyze the performance of networking devices. For this, we formulate a
measurement methodology to perform measurements and obtain result data. We define perfor-
mance metrics to assess and quantify the performance of the analyzed networking device based
on the gathered results of the experiment. We created a testbed environment that implements
this methodology. Thereby, we enforce a specific experiment structure and automate many steps
of the methodology, ensuring that the results are reproducible. Within this framework, we use
different tools that help executing the experiment in a reproducible fashion.

3.1 Terminology and Experiment Metrics
We define an experiment, in our case a network experiment, as a set of measurements
involving one or more interconnected networking nodes, called DuTs. The goal is to solve a
certain research question and creating, refining, or confirming a formulated model as shown
in Figure 3.1. Thereby, the model is a mathematical representation of the system’s behavior.
During an experiment, one or more individual measurements are performed. A networked
system, and therefore the experiment, typically has several input parameters that influence the
system’s behavior. A measurement run investigates the outcome for one possible combination
of these input parameters. To accurately model the system and achieve high coverage, the
experiment consists of many measurements with different combinations of input parameters.
The experiment creates artifacts that help to answer the research question. Vice-versa, the set
of artifacts fully describes the experiment. Artifacts are data that describe the setup, e.g., tools,
measurement scripts, topology information or device configuration, and measurements results,
e.g., raw data or plots.

Measurement results are gathered and used to generate KPIs, describing the performance of
the DuT. RFC 2544 [116] defines four KPIs for evaluating network devices: throughput, latency,
frame loss rate, and back-to-back frames. In addition to these runtime properties, other metrics,
like overall functionality or setup time, might be of interest. In this thesis, however, we focus on
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a slightly adjusted set of KPIs: throughput, often in the form of packet rate, as measure for
a DuT’s maximum capable load; latency, as measure for the processing time of an individual
packet from ingress to egress of the DuT; and resource usage, as measure for the percentage
usage of the DuT’s available hardware resources when performing a certain network task or
program.

Experiment artifacts help in creating reproducible results. In this thesis, we follow the ACM’s
definition for three levels of reproducible research [117]:

• Repeatability: using the same experimental setup, the same research group can reliably
repeat the experiment outcome.

• Reproducibility: using the same experimental setup, a different team can reliably re-
produce the experiment outcome.

• Replicability: using a different experimental setup, a different group can reliably replicate
the experiment outcome.

Throughout this work, experiments will be performed using the two-node setup shown in Fig-
ure 3.2 unless mentioned otherwise. In this setup, one node acts as the DuT, the target of the
experimental evaluation. A second node, the load generator, will be used to generate traffic
that the DuT will be subjected to. The DuT will process the traffic and send back the result to
the load generator, which also serves as sink. For all experiments, the nodes are connected via
10 Gigabit Ethernet (GbE) cables.
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3.2 Orchestrating Reproducible Network Device Mea-
surements

Sections 3.2.1, 3.2.3, and 3.2.4 are based on a collaboration between Sebastian Gallenmüller,
Dominik Scholz, Henning Stubbe, and Georg Carle [10]; and a joint work between Sebastian
Gallenmüller, Dominik Scholz, Florian Wohlfart, Quirin Scheitle, Paul Emmerich, and Georg
Carle [4].

Testbed environments are essential for network research experiments. In the context of this
thesis, we distinguish two types of testbed designs: purpose-made one-off testbeds, typically
only used to answer one research question by one research group; and multi-purpose testbeds,
used over a long time period by multiple users in parallel. While the former sort of testbeds are
quick to set up and use for measurements, their temporary existence clearly limits reusability.
We focus on the latter: long-term, multi-user, multi-purpose testbeds, intended for reproducible
network measurements. This sort of testbeds requires sophisticated orchestration software. A
testbed controller manages the testbed and its usage, i.e., users, testbed resources, and ongo-
ing measurements. This section introduces our approach for orchestrating such a multi-user,
heterogeneous testbed with a focus on reproducible results.

3.2.1 Types of Testbeds and Testbed Controllers
Bajpai et al. [118] formulate best practices for performing reproducible research experiments,
and, therefore, also indirectly for testbeds. They emphasize the need for repetition, perform-
ing multiple iterations of an experiment with slightly adjusted parameters. To solve this, they
recommend a high degree of automation. This also helps with their observation that documen-
tation of the whole experimental workflow is key. This does not only include a description of
the setup and all metadata, but also the collection of all artifacts. [118]

There exist a wide variety of scientific testbeds, characterized by their purpose, size, and gov-
ernance. Wired networks, cloud computing, Internet of Things, mobile networks and 5G, or
Internet-wide measurements are typical areas for testbed deployments. They can be locally oper-
ated, for instance, by a chair of an university, or by national or even international co-operations.
Predominantly found in literature are domain-specific testbeds on national or international
level [119]: the french Grid5000 [120] for grid computing with 5000 nodes; European initiatives
like Fed4Fire [121], a collection of several, primarily wireless testbeds [122], and OneLab [123],
a federation for testbeds for the Internet of the future, including embedded, IoT, wireless, and
Internet overlay testbeds [124]; the Chameleon [125] and GENI [126] cloud testbeds (USA); or
PlanetLab [127], a world-wide testbed for “broad-coverage network services” [127]. In particular,
testbeds for distributed computing research can scale in size to international co-operations.

Nussbaum [119] investigated the three testbeds Chameleon, CloudLab, and Grid’5000. He fo-
cused on their ability to execute reproducible network experiments and concluded that the
investigated testbeds are indeed capable of performing such experiments. However, the testbeds
neither guarantee nor enforce the creation of reproducible experiments. Zhuang et al. [128]
evaluated the testbeds Emulab, PlanetLab, Seattle, and GENI for teaching. They found sev-
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eral problems, such as involuntary configuration changes during the running experiments and
fluctuating bandwidths that may impact the repeatability of the experiments running on these
testbeds. Although focusing their analysis on teaching aspects, these findings also hold true for
research experiments.

Locally operated testbeds are often reused between multiple publications of the same research
group with slight alterations to the hardware setup. Thereby, a specification of the complete
setup is not always provided, limiting the reproducibility of the results.

Testbeds based on simulation and emulation frameworks exist [11], [12], however, in this work
we focus on testbeds built from physical hardware.

A testbed controller manages the resources of the testbed and supports the experimental proce-
dure. OMF [129] is a testbed controller which has its own DSL to program network experiments.
OMF enables the creation of reproducible experiments relying on automation. The DSL of OMF
allows the specification of complex experimental workflows as Petri nets.

The OneLab federation solves the issues of managing distributed heterogeneous resources that
are controlled by multiple authorities. The focus is on providing easy and uniform access to
these testbed resources. OneLab does not further enforce a certain experimental workflow or
how reproducibility can be achieved. [124]

We focus on small to mid scale testbeds for network devices and assume a scaling of multiple
racks or even multiple sites. Furthermore, our testbed and controller focus on reproducible
experiments: how they can be created, supported, and enforced by design.

3.2.2 Testbed Life Cycles
Testbeds typically involve two different stakeholders that use the nodes of the testbed: users, e.g.,
researchers, and administrative staff, operating and maintaining the testbed. Based on these
entities, users, administrators, and nodes, testbed processes can be modeled as three separate
life cycles as shown in Figure 3.3. The common denominator where all life cycles intersect, is
the testbed’s management node and controller software.

Users want to answer a research question and, therefore, will follow the experimental work-
flow. During the user life cycle, users will create a model based on which they will create
an experiment using the testbed. This experiment will consist of one or more measurement
runs performed using the testbed controller and its nodes. Each run will create measurement
results, which are then evaluated. The circle continues: based on the evaluation, the model and
respective experiment can be refined, and new measurements can be executed.

The node life cycle is triggered by the testbed controller during a measurement run. Nodes
taking part in the measurement typically have to be booted first. Before the device can perform
the actual measurement, all required configuration has to be made. At the end of the measure-
ment, the node can be shut down to reset all configuration. This allows a clean slate for the
next iteration.
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Figure 3.3: Common administration, user and node life cycles of experimental testbeds

Lastly, the administrative life cycle is for maintaining or improving the state of the testbed.
This includes, but is not limited to creating or updating the configuration of the management
node and controller, images used by the network devices, the network topology, and user docu-
mentation about the experimental process.

3.2.3 Requirements Analysis for Testbed Controller
A testbed controller is required to offer, orchestrate and manage the entities and actions of the
different life cycles. Although the execution of reproducible experiments is of highest priority,
other requirements regarding the usage of the testbed need to be observed. The following ana-
lyzes the requirements for a testbed controller based on the introduced life cycles with increasing
importance.

Maintainability (RQ1): Although not of scientific value, the maintainability of the testbed
and its controller from an administrator’s perspective is crucial to allow continuous operation
of the testbed. This includes a first setup of the management node and controller software, as
well as continuous maintenance. During the life time of a testbed, hardware can be replaced
or added or configurations can change. This must be reflected by the controller to reduce the
administrative overhead.
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Usability (RQ2): A testbed is commonly used by many users in parallel. These users might
have a different background and familiarity with networking devices, or measurement and eval-
uation software. Consequently, the controller must be easy and intuitive to use and offer an
abstract interface for testbed nodes. To prevent accidental or intentional interference of an ex-
periment by one user with the experiment of another, the controller must ensure, that a resource
is used exclusively by one user. However, a particular node might be required by multiple users,
facilitating the need for temporal sharing and allocating the node resources of the testbed.

Heterogeneity of Network Devices (RQ3): The Internet is a collection of heterogeneous
devices communicating with each other using a common protocol. Consequently, networks in-
volve a wide variety of drastically different participants. This includes, but is not limited to,
smart NICs built to accelerate specific network tasks, embedded, resource-constrained devices,
packet processing software on off-the-shelf hardware, and high-performance switches with dedi-
cated ASICs. To allow effective experiments, a testbed controller must be able to incorporate a
wide variety of heterogeneous devices.

Experiment Automation (RQ4): Network devices often require complex configuration, con-
sisting of several steps and configuration files, before the desired behavior is obtained. Providing
an accurate setup is required not only for performance reasons, but also to allow recreation of
the experiment at a later point. The best way to gain a reproducible setup is by fully automating
the process. Specifying all configuration steps and files can mitigate potential sources of errors
and reduce invested time.

Experiment Isolation (RQ5): Due to the distributed nature of network experiments, different
devices may influence the behavior of other devices. As this would influence the experimental
outcome, the testbed and its controller needs to isolate experimental devices from other devices
that are not part of the investigated network. Only then, the influence of unwanted effects on
the experimental result can be diminished.

Experiment Recoverability (RQ6): The trial-and-error approach to answer a research ques-
tion is often used for experiment-driven science. Applying this methodology to network experi-
ments causes frequent configuration changes for the participating devices and the experimental
network. In the worst-case, these modifications might result in an unresponsive device or net-
work outage. Independent of the state of the network or individual devices, the testbed controller
must be able to recover from faults and reset the experiment to a well-defined state. Commonly,
the controller restarts the whole experiment, starting from an initial state again.

Publishability of Artifacts (RQ7): Only a full specification of experimental artifacts allows
reproducibility. This includes scripts, results, evaluation tools, and other necessary information
that needs to be well-documented and accessible for others. The testbed controller should aid
the researcher with the final goal of publishing all experimental artifacts.

3.2.4 Plain Orchestrating Service
We have developed the plain orchestrating service (pos) testbed controller to model the life
cycles and fulfill the requirements of experimental testbeds. pos enables operating local or
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Figure 3.4: Steps performed during an experiment using the pos testbed controller. The sample experiment uses
two nodes, a load generator (LoadGen) and the DuT. The ansible playbook is used to set up 0 the testbed and
components of pos, whereby mandelstamm generates images for the testbed nodes. The experiment specification
is passed 1 via the poslib to posd. posd initializes 2 and configures 3 the participating testbed nodes according
to the experiment specification. The measurement is executed 4 and raw data is gathered 5 via posd. Lastly,
the raw data is evaluated and results are generated 6 .

remote, heterogeneous, multi-user testbeds, and enforces an experiment structure that supports
reproducibility. The domain-independent testbed controller can be used to manage a large
number of network devices in an experiment.

Components of pos
pos consists of the core controller software, utility software and scripts provided by the testbed
user shown in Figure 3.4.

Controller Core: The heart of pos is the daemon posd, running the controller software. It
consists of a postgresql database that stores the configuration of the testbed and its nodes.
Further, posd exposes a RESTful API that allows to interface with the testbed nodes and all
steps of the experimental procedure. To manage the temporal allocation of testbed resources,
the daemon can optionally host a web interface with access to a testbed calendar, documentation
about the testbed topology and hardware, and remote out-of-band capabilities.

Testbed users can use the pos library poslib to interact with the daemon’s API. This python
library consists of wrappers for all RESTful API calls, which are also available as command-line
interface (CLI).
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The third part of the core pos software are the postools. This is a collection of utility tools
available on the testbed nodes. Their purpose is to provide an easy method for the nodes to
interact with posd or with other testbed nodes.

Utilities: mandelstamm is a tool to automatically and reproducibly build Linux live images
for network devices of the testbed. Its modularized architecture allows to easily add configura-
tions for new images. In contrast, the core modules insert mandatory software into every image:
configuration required by pos to control the node and programs commonly used by testbed users.
Providing the configuration for an image once allows to re-build the image on a regular basis
for regression testing. Further, the specification can be published for reproduction by others.

A collection of evaluation scripts can be used to analyze commonly produced raw data, for
instance, for throughput or latency measurements using MoonGen or profiling using perf. For
these data formats, several different representations, including cumulative distribution function
(CDF) plots or regular and high dynamic range (HDR) histograms, are generated automatically.
This serves testbed users as starting point and allows to quickly bootstrap their experiment
evaluation. The evaluation scripts also consist of a module for the automated generation of
models based on the measurement data. This module uses heuristics and linear regression to
determine one or more partial functions matching the data. The modeling module will be further
explained in Section 4.3.

The complete configuration of the management node, the controller software pos, and the testbed
nodes is centrally maintained in an ansible playbook. The configuration of the management
node includes the network setup, e.g., interfaces and IP addresses, and services like DHCP or
DNS. User management, i.e., users allowed to login to the management node and/or use pos, can
be done manually using ansible or using external authentication like LDAP. The playbook also
includes installation and configuration instructions for the latest stable versions of pos software.
Lastly, a list of testbed network devices and their network and pos-related configuration is
maintained. Using software like ansible increases the maintainability for the administrators
of the testbed (RQ1). New testbeds can be set up by only providing a new configuration
file for the management node. Changes, e.g., new pos versions, can be deployed remotely,
fully automatically and centrally to one or more testbeds. This includes adding new, updating
existing, or removing testbed nodes.

We have also developed a fully virtualized version of an exemplary testbed, including manage-
ment node and pos, called vpos. Typically a testbed is bound to the hardware and, in particular,
the topology of testbed devices. A virtualized version not only allows simple topology changes,
but also permits sharing the testbed including its controller. Consequently, other researchers can
use vpos to create and test experiments in the testbed. Once the experiment works as expected,
the experiment specification can be used to perform the experiment in a physical testbed. This
allows to more efficiently use the hardware resources as these are typically used by multiple
users and, therefore, are time-constrained.

Provided by the Testbed User: Software not included by pos is the experiment specification,
which has to be provided by the testbed user. The script contains successive calls using the poslib
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to interact with testbed devices via posd. Details of of the experiment specification using pos
are provided in the following sections.

Experimental Structure
pos enforces a specific structure to program and execute network experiments. The reason is
so that all experimental artifacts can easily be gathered and processed for publication. This is
vital for other researchers to achieve reproducibility.

Experiment scripts created by the testbed user distinguish two different types of files: script
files, containing an individual sequence of commands that should be executed on the experiment
node to perform setup or experiment steps; and parameter files, used to parameterize the script
files according to the concrete instance of the measurement run. This approach in splitting the
experiment specification is similar to HTML—defining the syntactical structure of the content—
and CSS—defining the design. For instance, a script file defines the insertion of a routing table
entry for the DuT with the name $TABLE_ENTRY, the variable file assigns $TABLE_ENTRY the value
10.0.0.10/25. This separation allows different iterations, referred to as runs, of the experiment
to use different variables without having to duplicate the entire script. Further, this mechanism
can be used to run the experiment in a different (hardware) setup, for instance, using a variable
to specify the port of the NIC that should be used.

Experiment scripts, which can be any executable running on the target node, are further split
per experiment node to simplify the experimental structure. Every experiment node requires
two separate scripts for the different phases of the experiment: in the setup phase all necessary
configuration of the node is performed. Consequently, the setup script contains the complete
configuration of the experiment node. In the measurement phase a multiple runs of the
experiment are performed, yielding measurement results. The measurement script therefore
contains the sequence of commands executed to obtain the measurement results of an individual
run. Combined, the per-node setup and measurement scripts define the complete experiment.
Enforcing the user to provide them per node enables reproducibility of the experiment.

pos differentiates between three kinds of variables: local variables are defined for each experiment
node and only accessible on this particular node; global variables are defined for and accessible
from all experiment nodes; and loop variables are like global variables, but change for every run
of the experiment.

Experimental Workflow
Figure 3.5 describes the high-level workflow of an experiment controlled using pos. The example
assumes the experiment setup presented in Figure 3.4, consisting of two nodes, load generator
and DuT. In general, the workflow is independent of the number of nodes involved. Compared
to, for instance, the OMF testbed controller, pos assumes a simpler experimental workflow. It
distinguishes three separate phases that are traversed by all experiment nodes: setup, measure-
ment, and evaluation.
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Figure 3.5: pos experimental workflow

The experiment script provided by the user is the central part of the experiment. This script
defines all actions for every node of the experiment for each experimental phase. Every action
performed is thereby an interaction with the posd API using the poslib.

Setup Phase: First, the experiment script allocates the desired devices, in our example the
DuT and LoadGen. As we operate a multi-user testbed, we use an integrated calendar to
temporally separate the experimental devices between users (RQ2). Allocations via the calendar
are enforced, i.e., only if the calendar indicates that the devices are free for the planned duration
of the experiment, the allocation can be created.
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Afterwards, the devices are configured by loading the global and loop variables. The local
variables are loaded for each experiment host individually. Moreover, an image is selected for
every device, if the device supports images like Linux live images for COTS x86 devices. This
image is being used by the device for booting. pos relies on live-boot images to avoid any shared
state between the different executions of the experiment. Such images enforce repeatability,
as the OS repeatedly starts from a well-defined state, and the researcher must automate and
thereby document the device configuration (RQ4 and RQ6). Optionally, boot parameters for
the image can be set.

Finally, the experiment script instructs pos to start the devices. Thereby, the boot is internally
executed by posd using the respective initialization interface. This abstraction improves the
usability for users, as they do not need to take care of boot specifics (RQ3). Details about this
interface are explained in Section 3.2.4.

Once the experiment hosts have finished booting, pos deploys a set of utility tools, the postools.
These can be used during measurement runs to read or communicate variables, or synchronize
testbed nodes using barriers. Furthermore, all the output of the executed commands can be
captured and automatically uploaded to the management server as a result.

Lastly, the per-node setup scripts can be loaded and executed to complete the setup phase. The
entire initialization process and configuration of a network device is automated via user-defined
scripts (RQ4).

Measurement Phase: During the measurement runs, pos executes each node’s measurement
script. The number of executions depends on the number of individual parameters contained in
the loop variables file. Each of these loop parameters can represent either a single value or a
list of values. A pos experiment performs measurements for each possible combination of loop
parameters. If lists are used as parameters, pos automatically generates the cross product over
all the available loop parameter values to ensure full coverage. Then, for every set of parameters
contained in the calculated cross product, it executes the measurement script of every node
once. Parameters must be carefully chosen, as the exponential growth in the measurement runs
may cause infeasibly long experiment completion times.

pos’ loop variables reflect possible input values of a packet processing system presented in Fig-
ure 3.4. A single loop variable represents an input, a list of concrete values for a loop variable
represents the scaled input values. Calculating the cross product of all loop variables, therefore,
represents all possible combinations of inputs for the DuT. Performing a measurement run for
every input combination results in all possible output values for the investigated system.

pos automatically queues one run after another, starting the next run only after the current run
has been completed. The complete output of the experiment script is captured and stored in
the result folder of the experiment. This enforced central collection of artifacts, including the
output of the utility tools and all executed scripts, variables, and device hardware and topology
information, guarantees publishability (RQ7).
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Evaluation Phase: During the evaluation phase the user can either use a custom-made script or
a modified version of the pos evaluation scripts. The evaluation script processes the result files
either after all runs have been completed or asynchronously during their runtime. Due to the
enforced structure of pos experiments, each run of the experiment is associated with a specific
instance of loop parameters and result files. This information can be used to evaluate loop
experiments, which is supported by the included evaluation scripts. The evaluation script can
filter or aggregate specific parameters and values, thus enabling automated evaluation. Using
a set of different representations (histogram, CDF, and violin plot) the scripts generate default
plots for standard parameters. Researchers can adapt or extend the evaluation script to reflect
the concrete experiment setting and to create custom graphs. The generated plots are exported
to multiple formats, e.g., tex, svg, and pdf.

Further, the modeling component of the evaluation scripts can be used to deduce models from
the measurement data.

Our structured experimental workflow allows all artifacts linked to an experiment, i.e., executed
scripts, used variables, generated results, and created plots, to be gathered. The publication
script bundles these artifacts into a release format, e.g., an archive or a repository. In addition, it
generates a website and inserts all the collected artifacts documenting the experimental structure
in a format that can be easily read by researchers.

Controller Features
The complete core of pos, consisting of posd, poslib, and the postools, is written in python to
enable portability of the software across different OSes. This allows to run the daemon and
CLI on a wide range of management nodes, while the postools are not limited to a certain OS
distribution for testbed nodes.

posd is implemented using python’s modern asynchronous libraries asyncio and aiohttp. This
allows for lightweight parallelism, processing dozens of API calls, queued commands, or scheduled
jobs virtually in parallel using only a single CPU core. Documentation for the posd, poslib,
and postools APIs is automatically generated (RQ2). Persistent data, including the testbed
configuration, node configuration, allocations and commands are stored in a postgresql database.

Modularized Interfaces to Access Heterogeneous Devices: From a user’s perspective, the con-
crete method to, for instance, start up a network device is not of interest. In other words, the
user wants to just start the device, but not care about the steps that have to be performed to
actually start it. In general, the user wants to perform several different actions with a network
node that can be reduced to the following: starting a network node that is currently offline or
even without power, also referred to as booting a node; stopping a network node to shut it off
and reset all configuration, independent of the current state the device is in; and executing a
command on a running network node. This can be a script or configuration file that should
be performed.

The CLI of pos exposes these functions to the user. The daemon, however, has to map the
abstract command to the steps required by the concrete device. Therefore, posd uses interfaces
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Figure 3.6: pos configuration and initialization interfaces

to map the API action to the correct implementation for the category of hardware as shown in
Figure 3.6. Based on the information in the database, the type of the target node is resolved
and respective interfaces are used.

pos differentiates two mandatory interfaces per node. The initialization interface defines
functions for remotely changing the state of the device. The primary functions to reset or boot
a node are power on and power off, i.e., turning the node on or off. This may, for instance,
include providing or cutting the power for the device. A typical representative for this interface
is the Intelligent Platform Management Interface (IPMI). However, pos also supports other
initialization interfaces, including Intel’s vPro or AMD’s Pro features, or a remotely switchable
power plug that triggers a device reboot. Via this interface the initialization of a device can
be triggered out-of-band (RQ6), i.e., the device can be reinitialized in the case of configuration
errors.

After the experimental node has been initialized, the device can be configured via the config-
uration interface. This includes the general execution of commands on the device, including
setup and experiment steps. A typical configuration interface is ssh, for instance, to access Linux
servers.

Interfaces can be combined to form new interfaces. This can be used to create, for instance,
proxy interfaces, accessing a node using ssh via a proxy management node in another network
(see proxy_ssh in Figure 3.6).
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There exist two additional interfaces that are optional: an energy interface in case the node
supports energy measurements; and a switch interface in case operating the node also requires
to make modifications to a switch in the network. An example use case for this interface is
provided in Section 3.2.5.

The advantage of pos interfaces is the reusability of interface implementations. For a certain
type of node an interface has to be implemented only once. Detailed per-node configuration of
an interface is provided via the database, e.g., the location of the ssh private key when using the
ssh interface. Further, adding a new type of device to the testbed requires to only implement the
interfaces for this type. This allows the testbed controller to manage numerous heterogeneous
resources (RQ3). The abstraction of the CLI provides ease of usability for researchers (RQ2).

Executing Commands on Testbed Nodes: The pos API allows to perform arbitrary commands
on the testbed nodes. This can be a shell command or any executable script like the setup or
measurement scripts. Commands can be executed in one of three ways: Synchronous execution
blocks until the result of the command is returned. Asynchronous execution enqueues the
command into the command queue of the target node and returns immediately. The command
is executed once the previous command in the queue finished successfully. The result of the
command can be fetched at a later stage using the command’s ID.

Finally, pos allows the scheduled execution of commands as job. This can either be at a fixed
date in the future, or as soon as possible after a given date. Scheduled execution has several
advantages. First, it further improves the temporal usage of testbed nodes as an experiment
can be executed as soon as the nodes are available. Second, experiments can be scheduled
to run at times where the user is not available, e.g., during the night. Lastly, the scheduler
also supports repeated execution of commands. This can be used for regression testing, for
instance, performing an experiment monthly to detect performance regressions, or to perform
testbed maintenance. Administrative duties include automatically updating testbed images or
the documentation about the topology on a regular basis (RQ1 and RQ2).

Evaluation
We have shown that the experimental workflow of pos models the general workflow of network
experiments. The design of pos experiments enforces reproducibility, while allowing to be used
for heterogeneous multi-user testbeds. Utilities provided by pos guide the user through every
step of the experiment.

Deployments: Since the end of 2019, pos has been used to orchestrate four testbeds. These
independent instances of pos manage testbeds for different research domains, with different
number of nodes and testbed users. An overview of these testbeds and relevant usage statistics
is given in Table 3.1.

In total, over 240 unique users have used the testbeds since their establishment. Of these,
more than 130 have performed experiments using pos within the span of 18 months. For various
reasons, the testbeds can be used without being forced to use pos. This explains the discrepancy
between users with access to a testbed, and users that use pos.
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Domain Wired Networks Distributed Computing TSN Wireless Networks
Established 2012 2019-10 2020-11 2019-12
Uses pos since 2019-10 2019-10 2020-11 2019-12
Nodes 27 80 15 8
Users (Access) 128 113 18 11
Users (pos) 40 78 13 5
Calendar Events 3423 8736 1422 493

Table 3.1: Statistics about testbeds orchestrated using pos (as of 2021-08-16)

Performance: Due to the daemon’s lightweight parallelization using an asynchronous REST
API, pos can be used for mid- to large-scale testbeds using only a single CPU core. We tested
booting up to 48 nodes in parallel. Thereby, the utilization of posd was not significantly no-
ticeable. In fact, the bottleneck is the management network—in our case 1 Gbit/s—as every
node will individually fetch an image using unicast. Using multicast for this purpose, booting
all nodes in parallel required the same amount of the time as booting just one node individually.

Limitations of pos
Changing the network topology of the testbed or specific experimental setups is not possible
using pos and requires manually and physically changing the hardware configuration. Using
switches to create a highly interconnected L2 topology is possible, however, all network devices
connecting load generator and DuT influence the measurement. For instance, a common for-
warding delay of cut-through switches is approximately 300 ns [130]. L1 switches, which provide
remotely controllable switching using optical fiber links between ports add less than 15 ns [131]
latency. While these L1 switches would be a valid option to achieve reconfigurability of the
network topology, the price tag is often six figures and does not merit the benefits.

pos only provides limited access for device configuration outside of the OS. While, for instance,
BIOS settings or the firmware of the NIC may influence the device behavior, their interfaces are
highly varying and manufacturer-dependent.

3.2.5 Case Study: Orchestrating a Combined Teaching and Re-
search Testbed

The iLab teaching testbed is used to teach students in practical hands-on exercises about net-
working as part of the iLab teaching concept [132]. While it is primarily intended for teaching,
its architecture and availability of hardware resources makes the iLab laboratory an ideal test-
bed for distributed computing experiments. However, this dual usage further increases the
requirements for the testbed orchestration software: it has to combine the requirements for the
teaching and research testbeds, in particular, research experiments must not interfere with on-
going teaching exercises. This section introduces the iLab teaching testbed and details how we
use pos to also use the resources as measurement testbed for distributed computing.
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Related Work on Teaching Testbeds
Searching for the keywords “teaching testbed” on dblp returns only a few results that are
typically domain-specific: Silva et al. [133] propose a low-cost 4G testbed, consisting of two
COTS devices, which can be optionally virtualized, and open-source software. Their aim is to
improve 4G cellular teaching capabilities with additional teaching units. KYPO4INDUSTRY is
a cybersecurity lab proposed by Celeda et al. [134]. They combine COTS devices and domain-
specific hardware to teach about security threats in industrial control systems. Hanna et al. [135]
developed a combined research and teaching testbed for wireless communications and networks.
The testbed consists of COTS devices with wireless interfaces running more than 100 VMs.
They use a testbed manager to enable multiple simultaneous users, while enforcing strict node
isolation. However, common problems of VMs persist, namely longer execution times and VMs
influencing other VMs running on the same parent node. While our testbed also consists of
COTS devices, it can be used to teach a broad spectrum of networking domains.

Zhuang et al. [128] analyze the usage of large-scale public testbeds for teaching purposes. In-
vestigating Emulab, PlanetLab, Seattle, and GENICloud they discover multiple problems when
exposing student teams to those infrastructures, e.g., the lack of higher level debugging func-
tions. Approaches based on simulation or emulation for teaching exist [136], [137], however, our
goal is to teach students using different hardware platforms.

To verify the validity of results obtained using measurements, reproducibility of artifacts is
an essential property for experiments [117], [138]. While we deem it an essential requirement
towards a networking testbed, the related works shows that it should also be a requirement
towards teaching testbeds: reproducibility is essential for teaching. Our proposed infrastructure
combines both, a teaching and measurement testbed using shared COTS devices, managed using
pos as testbed controller. While the design is motivated by the teaching concept, it converges
with the requirements for a research testbed without having to repurpose parts of the infra-
structure. The dedicated testbed controller simplifies the complete measurement procedure for
users of the measurement testbed, while collecting all artifacts, enabling reproducible research.
pos also guarantees that measurement experiments do not conflict with teaching experiments.

Extension from Teaching to Research Testbed
Using the teaching infrastructure consisting of 48 powerful and expensive devices for research is
an obvious idea. However, previous hardware generations lacked critical remote control capabil-
ities. Therefore, many tasks had to be done manually: the infrastructure could only be used for
research during lecture-free periods, where all nodes had to be temporarily wired and manually
started once. For the duration of the experiment, all nodes were continuously running and there
was no remote recovery from error states.

With deprecation of the previous hardware generation, the new hardware was primarily selected
with teaching requirements in mind. In addition, the problems encountered when being used for
research were tackled. To allow integration of the hardware with pos, remote control capabilities
and a permanent and dedicated measurement network were required.
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Lab Setup Goals & Requirements
The lab room infrastructure should be designed to support the iLab didactic concept [132]. This
requires supervisors to make frequent changes to the infrastructure, while allowing reproducible
hands-on networking exercises for students. Further, to optimize the usage of costly hard-
ware resources, the infrastructure should be available for research experiments performed by
researchers. However, teaching has precedence, i.e., research experiments can only be performed
when the nodes are not being used for teaching. To facilitate more students or experiments in
the future or permit upgrades to the hardware, the design should be scalable.

Due to the dual usage as teaching and research infrastructure the requirements are two-fold.
The didactic concept of the iLab course has the following requirements per isle used by a student
team of two:

RQT1 six Linux nodes to provide sufficient capabilities for creating network topologies and
performing experiments;

RQT2 full access to the hardware and OS to both, change physical topologies and configure
software used;

RQT3 Internet access via the browser to access instructions via the e-learning platform;

RQT4 and easy access between nodes of the isle to simplify working on six nodes using a set
of two peripheral devices.

Thereby, it must be guaranteed that

RQT5 no additional services or background tasks are running on the nodes to give students
the chance to understand all processes by themselves;

RQT6 students are not able to actively or passively tamper with other teams’ experiments
(interference);

RQT7 and students are not able to actively or passively tamper with the nodes (obstruction).

To be used as testbed, it is also required that

RQR8 nodes can be accessed and controlled, i.e., power on and off, remotely without physical
presence;

RQR9 no manual cabling has to be performed for research experiments, permitting 24-hour
usage;

RQR10 and teaching operations have higher priority than testbed experiments: while a node is
being used by a student for a teaching exercise, this node must not be used as testbed
experiment node. However, if a student is supposed to work on a given node, although
this node is currently being used as part of the testbed, the student is allowed to simply
take the node.

We show that our life cycle-based tooling fulfills all requirements to allow the symbiosis of
teaching and measurement testbed.
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Figure 3.7: Administration (left) and usage (right) life cycles. Supervisors can continuously deploy and update
the management and image configuration. Students can boot, use, reboot (optional) and shutdown/hand-off isles
to the next team. Remote access is possible to access the administration life cycle as supervisor and the usage
life cycle as student or researcher.

Life Cycle-based Tooling
Based on the goals, roles, and requirements introduced in Section 3.2.5 we have designed our
tooling for the life cycles of our lab room.

Lab Room Life Cycles: Figure 3.7 visualizes the different components of the lab room’s two
asynchronous life cycles: The first life cycle is for supervisors (administrators) to create and
update the configuration of A the management node and B the image used by the nodes.

Second, the usage life cycle for teaching experiments performed by a student team consists of
four steps: 1 physically booting the nodes of an isle, 2 performing experiments, 3 optionally
rebooting the isle to reset the configuration, and 4 shutdown of all nodes to handover the isle
to the next student team.

R Remote access and control of testbed nodes is possible via the management server for both
students and researchers. Thereby, the steps of the usage life cycle can be performed remotely,
while only supervisors can update the configuration.

Infrastructure Overview: The lab room consists of eight identical isles. Each isle as shown in
Figure 3.8a is set up to be used by a team consisting of two students on-site.

Per-Isle Workspace A single isle consists of six commercial COTS desktop nodes (RQT1),
two 1 GbE switches and two Cisco 881 routers. These devices can be freely power-cycled and
wired by the students using common RJ-45 Ethernet cables (RQT2). A group of three of
the COTS nodes are connected via a keyboard-video-monitor switch to be used with one set
of peripherals (RQT4). A central unmanaged switch connects the management port of every
COTS device. Via this switch, the isle is connected to the labroom’s management switch.

Management & Measurement Networks All isles are connected via the management
switch to the management node, which provides Internet access as shown in Figure 3.8b. Within
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Figure 3.8: iLab infrastructure: wireable devices (green), and fixed management (blue) and measurement (red)
networks.

the management network, the isles are separated using VLANs. This avoids traffic interference
between isles (RQT6). To allow usage as research testbed, one port of every COTS node is
permanently connected via one of four managed 10 GbE switches. These switches are fully
interconnected (RQR9). While this reduces the number of usable ports for students, iLab
teaching exercises are designed with only three ports in mind. Using independent hardware
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for 1 GbE management network and 10 GbE measurement networks has the advantage that one
cannot influence the other.

Management Node: The management node manages all devices in the room. Among others, it
provides uplink connectivity, an HTTP proxy (RQT3), and remote access via ssh (RQR8). It
also provides services for the boot process, as well as for monitoring and remote control (RQR8)
of the infrastructure.

The monitoring capabilities provide information relevant when used as both, teaching and re-
search testbed: students can inquire which isles are currently free to be used as spare isle, while
researchers can monitor which nodes are currently available as measurement nodes.

The complete configuration of the management node and the network topology A is automated
using ansible. Its powerful templating engine allows to provide configuration to the COTS nodes,
which only differs in details, e.g., the hostname or IP address prefix. This permits supervisors
to easily setup a new infrastructure or change parts of an existing one.

A second configuration file is provided by the supervisor to create or update the live image B

used by the nodes.

Boot Process: A static installation of 48 is not feasible, as updating or even just a one-time
installation is not scalable. Further, the users have physical access to the nodes with root
privileges (RQT2). Consequently, users can create erroneous configuration state by modifying
files of the OS, which would persist through the boot of a static installation.

When a student team boots an isle 1 or a testbed user remotely initiates the process R , the
node boots via the management network. We use Debian live images to boot a completely clean
OS (RQT7). While the initially downloaded image is stored in RAM, we also store the image
on the node’s SSD after erasing its previous content. This offers the possibility to boot the node
with a clean image, but also select to boot the previous installation in case of an accidental reset
or power outage 3 . Each node also receives a templated script that configures its management
interface and ssh for easy console access between the nodes of an isle. Further, the script disables
all unnecessary services and autoconfiguration.

The image is an unmodified up-to-date Debian image that includes all tools used during the labs.
The applications required during the labs are statically configured, for instance, the browser
to use the management node as HTTP proxy for Internet access. We chose an open-source
distribution commonly used for networking tasks to teach students the concepts of state-of-the-
art networking on commodity hardware. None of the installed services like DHCP are started
after the boot process. This is to provide a clean system that does not perform networking tasks
in the background, unknown to the students.

To reduce the load on the management network, the image is only downloaded in one of two
cases: the image stored on the node has been tampered with or a newer version of the image
exists on the management node. On boot, a hash of the currently stored image is calculated
and compared with the hash of the current image provided by the management node. Only
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if the hash differs, the image has to be downloaded. Further, we use a custom-built multicast
provider to deliver the same image to all nodes in parallel. Unicast is used as fallback, to
download missing parts and to receive the per-node configuration script. This saves bandwidth
of the 1 GbE management network, allowing to boot all nodes simultaneously in the same time
as booting a single node.

No nodes require any manual installation of the OS. Instead, only the BIOS, which is password
protected to avoid tampering, has to be configured once to enable booting via the management
network. Consequently, the infrastructure is scalable: additional nodes can be added or changes
to the image can be deployed at any time without the need for upgrading the network or
slowing down the existing management operations. Pre-installing all software used during the
labs further reduces stress on the management network and uplink connection.

Operation as Research Testbed: The teaching infrastructure is not used continuously, as it is
unoccupied during lecture free periods or at night. Even during the term, selected isles might
be available at times. This downtime allows all 48 COTS devices to be used as research testbed
for distributed experiments, CPU-intensive computation, e.g., for machine learning, or network
device performance measurements.

As on-site execution of experiments is unpractical and often infeasible during the night, remote
access and control capabilities are required (RQR8). This is done by using the management
node as central hub, allowing researchers to remotely control and access the nodes. pos is used as
testbed management software and to guarantee that experiments do not interfere with teaching
(RQR10), e.g., by rebooting a node used by students. The life cycles and features of pos
match the requirements of the iLab life cycles: multi-user temporal management of available
nodes, controlling nodes, deploying experiment tools, running (scheduled) experiments, and
centrally collecting measurement artifacts. For logistical reasons, pos is not directly running on
the labroom’s management node. Instead, the iLab nodes are integrated with another testbed,
physically located in separate rooms, and controlled by that testbed’s pos instance. pos uses
the management node of the iLab labroom as proxy, i.e., pos uses respective proxy interfaces
for configuration and initialization.

The nodes boot a separate research image, which does not include the pre-installed software
used by teaching exercises. This image is also used to distinguish whether a node is being used
for teaching or research. Before trying to boot a node for a research experiment using pos,
pos checks the current state of the node. If the node is currently booted into the teaching
image, it cannot be used for research. Only if the node is currently offline, i.e., unused, or
already booted into the research image, pos is allowed to use the node. This protects against
accidentally shutting down a node used for teaching. In contrast, physical access by students
allows to always reboot the node into the teaching image, independent of the previous state.

Due to the static 10 GbE measurement network shown in Figure 3.8b, no manual cabling is
required (RQR9). Students cannot take part in research experiments as the respective port
connected to the measurement network is only enabled by pos on-demand. Further, in the
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teaching image this statically cabled interface is not bound to any driver, i.e., it is hidden from
students.

For remote control capabilities, the nodes are equipped with a mainboard that includes an out-
of-band management engine, which are state-of-the-art for enterprise PCs. This interface is used
by pos as initialization interface. For redundancy and for power cycling, other devices like the
Cisco routers are plugged into remote controllable power supply units. These are also connected
via the management network and can be controlled from the management node as shown in
Figure 3.8b.

Remote Usage during Corona Pandemic
Due to the global Covid-19 pandemic all teaching had to be performed remotely for the summer
and winter terms of 2020. This posed two separate challenges for iLab teaching exercises using
the lab infrastructure and presented life cycles.

Challenge 1—Remote Access: Remote access is possible due to the requirement for the
infrastructure to be used as research testbed. Instead of using access tokens to physically access
the lab room, a process to collect and install an ssh public key per student on the management
server was implemented. Furthermore, all isles were upgraded with remote controllable power
supply units to also remotely control additional devices like the Cisco 881. This setup enables
teamwork as the students can still use the nodes of an isle simultaneously.

However, remotely controlling the nodes proved more challenging than regular physical access.
For instance, higher-level debugging functionalities that usually exist by looking at the graphical
output of the device during the boot process either did not exist or could only be used with
additional effort. Considering that the course is intended for students without prior knowledge
of networking and Linux devices, the entry barrier was increased significantly.

Monitoring capabilities are vital for remote users to identify the status of the nodes, including
error states, and allowing temporal division of the nodes between the teams.

Challenge 2—Network Experiments: An integral part of iLab exercises is to allow the
students to create and change the physical network topology by plugging in Ethernet cables
between the nodes. For obvious reasons, wiring the nodes is not possible when working remotely.
Instead, every week the setup was statically wired by the supervisors. All teaching experimental
instructions were updated to not include tasks that require re-cabling, e.g., to investigate the
influence of a changing topology when using routing protocols. An exception were experiments
where the cable could be virtualized using a Linux bridge. This allowed, for instance, simulating
“unplugging” by shutting down the bridge interface. Instead of only one isle, each team received
two isles for each lab so that two different topologies could be set up. This further increased the
number of experiments that could be performed remotely.

Effects on Teaching: For the students, losing the ability to create the topologies and plugging
in and out Ethernet cables by themselves is a huge loss, as it is a central part of computer
networking basics. While it is a didactic loss, it also complicates the lab work and increases
the difficulty for newcomers. An advantage is that students gained the ability to learn how to
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Available for Total Teaching Research
Linux Nodes 48 48 48
CPU cores 288 288 288
RAM 3.07 TB 3.07 TB 3.07 TB
10 GbE interfaces 192 144 48
Wireless interfaces 152 152 144
Cisco Routers 16 16 0

Table 3.2: iLab lab room hardware resources

work remotely, including how to configure and debug networks without physical access. We
consider this a valuable skill in the field of networking, especially during a global pandemic and
working from home. Further improvements are possible, e.g., by uploading detailed pictures of
the physical setup for the students to provide them with a better feeling for the actual physical
topology.

Second, the course is designed for teams of two working together, i.e., socially interacting with
each other while using networking terminology. Further, interaction with other teams in the lab
room is encouraged. This exchange is hardly the same when working remotely.

Our metadata evaluation also shows that some labs required significantly more time to complete
for the students. In particular, labs that relied on tools with graphical outputs, e.g., using
Wireshark or a web browser, were more challenging due to lag introduced by the amount of
data being transferred. However, most problems could be solved by using slightly different
workflows, e.g., remote capturing using ssh and Wireshark.

Evaluation
We evaluate the potency of the combined teaching and research testbed using different metrics.

Testbed Resources: An overview of the lab’s hardware resources are shown in Table 3.2. With
a total of 48 nodes, this results in an aggregated 3.07 TB of RAM, 288 CPU cores, 192 10 GbE
interfaces and 152 wireless interfaces. In total, the 10 GbE interfaces in the static measurement
setup combined are capable of producing 480 Gbit/s of traffic. As the teaching and the test-
bed infrastructure share the same nodes, all computing resources are shared, too. Only the
10 GbE interfaces are split: three per node are used for teaching, while one is permanently con-
nected to the measurement infrastructure. Furthermore, an additional per-isle WiFi adapter is
only plugged in on-demand for teaching experiments, therefore, cannot be used by the testbed
environment by default.

Research Usage: The infrastructure in its current form or using previous hardware generations
have been used for various research domains. The lab room hardware was used to evaluate
secure multiparty computation using a star topology of up to 18 nodes [139] and to analyze
the performance of distributed ledger technologies [13]. The nodes are also well suited for com-
putational tasks, including large-scale analysis and evaluation of experiment data, or machine
learning.
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Figure 3.9: Weekly isle usage during iLab1 course. Remote due to Covid-19 pandemic

Quantitative Analysis: As of March 2021, approximately 1500 students have taken part in
iLab courses at TUM since 2008. Figure 3.9 shows the isle usage during the summer and winter
terms of 2020, influenced by the Covid-19 pandemic. We distinguish usage for teaching and
measurement experiments, as well as nodes being offline.

Due to remote work, each team received two isles, which are statically cabled by the supervisors
at the beginning of the week, to allow more experiments with up to two setups, which usually
would require re-cabling the nodes during the exercise. Isles A and B were used by a total
of five dedicated teams, C and D by 4, and E and F by three teams. A team was allowed
to use the pair of isles one complete day per week. Usage during the weekend was permitted
on a first-come-first-serve basis. Isle G was reserved for supervisors for emergency testing and
debugging purposes. Only isle H was allowed to be used as testbed measurement nodes to reduce
interference with teaching during the pandemic.

A total of twelve teams participated during the eleven week summer term, while 15 teams
participated in the winter period of twelve weeks, including public holidays. While we do not
yet have monitoring data for a regular on-site term, we estimate that the occupancy for teaching
is usually even higher. Up to 30 teams can use the lab room, each receiving one isle for a whole
day. Further, roughly 50 % of the occupancy can be expected during the weekend and for the
spare isle. Estimating eight hours per team per day, results in an occupancy of over 30 % per
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isle. Vice-versa, this shows that even during a full on-site term, the devices have at least 50 %
downtime, which can be used for research purposes.

3.2.6 Conclusion
The pos testbed controller models the typical experiment life cycle. During every step, pos’
experimental workflow enforces a structure that guarantees reproducible research. Thereby, it
simplifies the execution and scaling of several individual measurement runs, required to test
a network system with all possible combinations of inputs. Even after the conclusion of the
measurements, pos provides means to evaluate the data, automatically generating graphical
representations and models. pos increases the efficiency of the testbed, allowing multiple users
to use the testbed resources in parallel. Using temporal allocations, it is guaranteed that an
individual resource is only used within one experiment at the same time.

The case study, orchestrating a combined teaching and research testbed, has shown that pos can
even be used in complex scenarios. Its modular design and differentiation between initialization
and configuration interfaces allows to extend the orchestration software to manage additional
heterogeneous network nodes. This can include additional requirements, like testbed usage
must not interfere with teaching, or even physical separation between management and testbed
nodes.

3.3 MoonGen as Dynamic Load Generator
Section 3.3 is based on a collaboration between Sebastian Gallenmüller, Dominik Scholz,
Florian Wohlfart, Quirin Scheitle, Paul Emmerich, and Georg Carle [4].

MoonGen [33] is a high-performance software packet generation framework based on the lib-
moon/DPDK packet processing platform. Its abilities to perform precise latency measurements
and generating 10 Gbit/s of variable traffic using COTS devices makes MoonGen an ideal can-
didate for replicable network device measurements. It is used throughout this work as load gen-
erator in various setups, generating different kinds of traffic depending on the concrete scenario.
Although in these use cases MoonGen’s performance and precision are of primary relevance, cre-
ating traffic based on a multitude of different protocols can become cumbersome when having
to craft all packets manually from scratch. To make the generation of different packets using
different protocol stacks simpler, flexible and extensible, we implemented a new protocol stack
for libmoon, MoonGen’s underlying packet processing framework.

3.3.1 Motivation
The continuous increase in performance raises the requirements for soft- and hardware network-
ing devices. With the standardization of 40 and 100 GbE [140], devices have to be capable of
managing multiples of this load. To test and verify that networked devices behave as expected in
high-performance scenarios, packet generator and processing frameworks are required. In Sec-
tion 2.1.1, we introduce several software packet processing frameworks that have been developed
to meet these demands [25], [28]. They utilize techniques to circumvent traditional bottlenecks
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of networking applications. A common approach is to bypass the conventional network stack
of the OS and perform all packet related operations themselves [28], [37]. While all required
features, typically provided by the OS’s network stack, have to be implemented from scratch,
performance is gained as all unnecessary processing steps can be left out or replaced with op-
timized solutions. Furthermore, device-specific features of modern NICs are used to offload
computationally complex tasks to the hardware [33]. The lack of a unified API across different
vendors increases the difficulty using these offloading features.

However, low-level access to and processing of packets is the common functionality of packet
processing and generation frameworks. Thereby, the protocol stack employs the protocol header
definitions of the different levels of the ISO/OSI model. A packet is made up of a concrete pro-
tocol stack, i.e., a specific order of protocol headers. Via the protocol stack’s API, modifications
to the packet can be made. A wide spread of different protocols with unique usage scenarios
and varying complexity and requirements makes the implementation of a proper protocol stack
difficult. Combining these aspects with the fundamental requirement towards the packet pro-
cessing framework—high performance—is challenging. Therefore, the protocol stack is often
reduced to offer only basic functionality or compromises are made in regard to utility, flexibility,
or extensibility.

libmoon’s high-performance, flexible protocol stack is based on dynamic code generation and
JIT compilation. We show that dynamically generating the protocol stack offers a high degree
of utility without impacting the performance. Further, the protocol stack is modular, allowing
to extend it with future protocols, only requiring minimal implementation effort. A well-defined
DSL to define the protocol stack not only allows to easily create new stacks, but also to reuse
stacks, making setups and results replicable. We verify that the protocol stack fulfills these
aspects by applying it to a tunneling setup typically found in data centers. Implementations of
high-level protocol semantics beyond header validations are beyond the scope of this work.

3.3.2 Survey of Protocol Stacks
The term protocol stack often refers to fully featured implementations of protocol semantics
typically found in protocols of the ISO/OSI model. One example is the networking stack found
in all OSes, featuring a large variety of supported protocols and, therefore, protocol stacks.
High-performance packet processing frameworks typically use kernel-bypass methods and come
without support for such a stack. Specialized user space stacks like mTCP [141] for DPDK exist
that fill this gap. However, such implementations are out of scope for this work as we only
discuss representing and addressing packet headers on a lower level than the mTCP framework.

Frameworks, tools, and applications for software packet processing at rates up to and beyond
10 GbE such as DPDK, PF_RING, or PFQ allow the user to modify packets in one way or
another. The usability, flexibility, richness of features and maturity of the code basis of these
protocol stacks differ depending on the project size and general aim of the application. Further-
more, as the primary goal usually is the achieved maximum performance, for instance, saturating
a 10 GbE link—or more—with minimum sized packets and minimum effort in terms of CPU uti-
lization, the protocol stack tends to be reduced to core utility functions, if not only raw byte
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manipulations of the packet. Our emphasis in the following survey is put on the protocol stack
rather than the overall architecture of the framework.

Pktgen-DPDK: DPDK comes with data structure definitions and helper functions for common
protocols that can be used to build stacks manually. Pktgen-DPDK [142], a packet generator,
is an interesting case study for the representation of protocol stacks. The application is ca-
pable of achieving line-rate when generating minimum sized packets while allowing to modify,
for instance, the Ethernet or IP address of consecutive packets. It supports generating traffic
with common protocols such as UDP, TCP, ARP, and ICMP. Moreover, it can generate traf-
fic encapsulated with the Generic Routing Encapsulation (GRE) tunneling protocol, a feature
requiring a more sophisticated approach towards the protocol stack if implemented properly.
The utility functions per protocol are reduced to filling the header based on a sequence object.
This centralized object for the whole protocol stack contains a list of keywords reflecting certain
fields like the IP source address field. In addition, keywords, that translate to specific protocol
header fields or bit-masks like the IP source address, can be used to set the respective bits to a
concrete value. Other header fields like the IP version are preset and hard-coded to fixed values
and cannot be customized.

Moreover, Pktgen-DPDK offers a scripting interface which allows to define streams of packets
during runtime. By defining the starting and ending address in combination with a delta,
consecutive packets will be modified accordingly.

Generating a full protocol stack of, for instance, an ICMP Echo request is only possible by hard-
coding the sequence of the respective headers. This is even more cumbersome for encapsulation
protocols like GRE, as each type, based on either IP or Ethernet, is hard-coded separately. This
approach does not scale well when more protocols are added.

PFQ: The PFQ [43] networking framework focuses on creating applications that make use of
“in-kernel functional processing and packets steering across sockets/end-points” [143] using C,
C++, Haskell, or their own pfq-lang DSL. It is able to transmit and capture packets at 10 GbE
and higher line-rates using vanilla ixgbe drivers. The C++ interface offers no support for packet
headers, e.g., the packet generator tool1 creates ICMP packets by manually setting all bytes.
The functional language allows to query, filter, and modify the properties of the packet, but is
limited to simple stacks with monotonically increasing layers, i.e., tunneling protocols are not
supported. It has to be noted that the focus of this application is on sending packets from pcap
files.

PF_RING ZC: PF_RING ZC [41] is a network socket intended for capturing, filtering, and
analyzing packets in high-performance environments. It utilizes techniques like Direct NIC
Access or Zero Copy to speed up or completely circumvent the kernel processing. The sample

1 https://github.com/pfq/PFQ/blob/master/user/pfq-tools/pfq-gen.cpp
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packet generator application1 defines its own header structures. These are then filled member
by member, whereby all values are hand-crafted and no utility functions are used, for instance,
for the calculation of the IP checksum. Furthermore, the offsets and header sizes have to be
calculated manually when allocating the structures. However, PF_RING also supports to send
packets from pcap files. The suggested work-flow is to generate the traffic as a pcap with
another tool that allows for easy modification and crafting of packets and then sending it with
PF_RING.

netmap: The netmap [144] kernel module is designed for fast, but also safe packet I/O using
standard system calls. This approach makes it easy to modify existing applications based on
raw socket or libpcap to work on top of netmap [37]. The sample packet generator application2

shows that common C structures are used to build packets. No further utility functions are
provided.

Ostinato: The multi-platform traffic generator and analyzer Ostinato [145] is different com-
pared to the previously introduced frameworks as it focuses on providing a powerful graphical
interface for the protocol stack to craft, modify and analyze packets. While Ostinato is able
to directly send crafted packets, the primary goal is to create or edit pcap files which can then
be replayed by a processing framework intended for high-performance. It therefore primarily
focuses on the protocol stack and utility functions instead of performance, making it an inter-
esting case study to formulate requirements regarding the usability and flexibility of a protocol
stack. The tool supports all common network protocols, a variety of tunneling protocols and
also higher level, text-based protocols like HTTP. Not only can these protocols be stacked in
any order, but also every header field can be set via the GUI to user defined values. All fields
are initially set to reasonable defaults, e.g., the IP length field depending on the packet length.
The option to generate streams of packets with a continuously changing member value is also
provided. This is a very useful implementation for a packet generator frontend, but unsuitable
for general-purpose high-performance packet processing.

Tcpreplay: The Tcpreplay [146] suite focuses on replaying captured traffic. The typical work-
flow looks as follows: a pcap file is loaded, modifications to the headers are made and finally
the complete stream of packets is replayed.

The editing options via the tcpwrite tool are limited to operate on layers 2 to 4 of the ISO/OSI
model. Addresses and ports can easily be rewritten or remapped, but also other protocol fields
can be changed. For layer 5 and higher, only padding of the packets, in case these layers were
truncated in the pcap file, is supported to create packets of correct length again. Because the
focus is on modifying existing packets, a complete protocol stack is not implemented.

1 https://github.com/xtao/PF_RING/blob/master/userland/examples/pfsend.c

2 https://github.com/luigirizzo/netmap/blob/master/apps/pkt-gen/pkt-gen.c
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Snabb: Snabb [147] is building on a user space driver to speed up packet processing. As with
libmoon, it uses Lua as programming language in combination with LuaJIT to offer the user
a simple, yet fast, scripting environment. Snabb provides a protocol stack called lib.protocol,
which offers versatile utility functions to manipulate headers and craft packets. In general, an
unknown packet can be parsed, which as a result returns a list of the headers representing the
full protocol stack. Each header can then be manipulated using setter and getter functions for
the fields. Furthermore, a full protocol stack even for a complex packet, e.g., for tunneling, can
be crafted. However, because of performance issues, these utility functions cannot be used for
performance-critical parts of the program [148].

Summary: None of the introduced processing frameworks combines the aspects of fast perfor-
mance, flexibility, usability, and extensibility in one protocol stack. This is either because the
tool is not focusing on packet modifications or a compromise between performance and utility
is being done, favoring the former. Furthermore, the extensibility compared to the surveyed
protocol stacks has to be improved. Adding new protocols to allow the creation of new protocol
stacks should be possible without code duplication, meaning the full protocol stack should not
be hard-coded every time to fit the current use-case.

3.3.3 libmoon Framework
libmoon is a framework for building packet processing applications in the scripting language
Lua [33], [149]. It combines the user space packet processing framework DPDK [150] with Lua’s
JIT compiler LuaJIT [151]. Using a high-level language allows for short development cycles of
packet processing applications. Lua code compiled with LuaJIT can be as fast as equivalent
code written in C and can embed existing C code. This is achieved by using low-level C data
structures instead of the default Lua data structures in all performance-critical paths. The
disadvantage of this approach is that the usual safety features of a scripting language, e.g.,
memory-safety, are not available in these paths. However, the critical code is handled by the
framework, not by the user application. Related work has shown that libmoon can be used to
create applications for manifold networking tasks, including the packet generator MoonGen [4],
[33].

The downside of working with libmoon’s old, static protocol stack API is that packets have to be
crafted by setting every byte manually. While this is fast, it is error-prone. Further, it is neither
flexible nor reusable as, for instance, the programmer has to take care of correct byte order and
calculating all offsets within the packet. For every new application, the complete protocol stack
has to be crafted from scratch. This results in a large amount of duplicated code as protocols
are typically reused and several protocol fields are set to the same standardized value.

The typical structure of a libmoon processing task is composed of two different phases: the
setup phase and the actual runtime of libmoon. Especially for sending custom-crafted packets,
this differentiation is important for the protocol stack.
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Setup Phase
Before a task starts receiving or transmitting packets it has to prepare all data structures. This
includes, for instance, parsing addresses or setting up statistics counters. Most importantly, it
has to allocate memory space for packet buffers that should be send out. As this is based on the
underlying mempool structure of DPDK, each packet from a specific pool will look the same, i.e.,
a packet template can be defined. Instead of initializing the packets with zeros, all bytes can be
set at this stage to custom-defined values to mimic as much of the final packet as possible. This
reflects that a processing task only sends a certain type of traffic, for instance, TCP packets.
All of these packets have a vast percentage of their bytes in common, while only minor changes
have to be made on a per-packet basis.

Finally, an array of the previously defined template packet buffers is allocated. This is done
to allow batch processing of packets in the upcoming processing loop to increase the perfor-
mance [33], [149].

The implication of this phase for the protocol stack is that the allocation of new packet buffers
happens before the actual processing runtime of libmoon and, therefore, does not impact the
performance. The elapsed time to fulfill these tasks is irrelevant for the final application. How-
ever, the API for configuration of packet templates should be easy to use and provide high
usability.

libmoon Runtime
During runtime, the task performs the actual processing in terms of receiving, modifying and
transmitting packets. All actions performed are critical in regard to the performance. No
new buffers have to be allocated in memory, instead modifications are performed either on the
received packet, or on a new template taken from a pre-allocated memory pool. Ideally, only
slight modifications on a per-packet basis have to be done to further reduce CPU cycles spent
per packet. This does not require utility functions that modify the complete stack, but rather
target single operations. This is accomplished by iterating over the array of packet buffers and
modifying every single packet individually. This may include, for instance, setting a different
address or payload.

When all packets of the batch are have been processed, they are transmitted. Sending of packets
is asynchronous, pointers to the packet buffers are placed into a queue and then accessed by
the NIC [33], [149]. This implies that packet buffers must not be reused or even be modified
after calling the send function, as they are only recycled by DPDK when the NIC actually sent
them. Instead, for each iteration new, pre-filled template buffers have to be allocated from the
mempool and then adjusted per packet.

3.3.4 libmoon’s Dynamic Protocol Stack
The protocol stacks surveyed in Section 3.3.2 are static: the specific required stack has to
be built by the programmer, in most cases from scratch. The advantage is that they can
easily be optimized by an ahead-of-time compiler. However, the drawbacks are manifold, as
becomes apparent when looking at modern tunneling protocols like VXLAN. Two different
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protocol stacks, one for each en- and decapsulated packets, are required. With an inflexible
approach, both have to be hard-coded separately, yielding code duplication, although a large
amount of structure and bytes, the decapsulated packet, is shared by both stacks. Further,
the data of the encapsulated part does not have to be modified at all, as merely headers are
prepended.

A related problem is that higher layer protocols in the ISO/OSI model can be based on different
protocols underneath, a prominent example being IPv4 and IPv6 on the network layer. In most
of the frameworks presented in Section 3.3.2, if the user wants to create a UDP packet once
based on IPv4 and once on IPv6, both protocol stacks would have to be implemented separately,
for all layers and from scratch. This duplication of code continues even further when adding
new protocols, generating more and complex stacks that have many layers in common.

The requirements for the dynamic protocol stack of the libmoon framework are as follows.

Performance: The protocol stack must not reduce the processing performance of the frame-
work, i.e., packets have to be processed at line-rate of 10 GbE or beyond. In other words, an
equal performance level as if the task would have been implemented with low-level operations
has to be achieved.

Flexibility: While granting the user full customizability to create even malformed packets, the
protocol stack must be flexible to allow complex operations like packet en- or decapsulation
with low computational overhead. Thereby, the user should not have to calculate offsets when
building a complete stack out of individual protocol headers.

Usability: The API of the protocol stack must be easy to understand and intuitive to work
with. It must offer functions providing utility to the user by obsoleting repetitive tasks. This
includes data type and byte-order conversions, as well as generating complete, pre-filled, and
legal packets per default.

Extensibility and Composability: The protocol stack must be modular, i.e., every protocol
header is implemented by itself, allowing to easily add new protocols in the future. Individual
headers must be combinable to complex stacks. At the same time, this process should be easy
and automated, requiring only minimal developing effort whenever possible.

The survey of existing packet generators has shown that usually a trade-off between performance
and usability is required. The following outlines the concept and architecture of libmoon’s
protocol stack, which not only unifies these contradictory points, but, moreover, fulfills all listed
requirements.

Conceptual Overview
Not all functions need to be fast: functions used during the setup phase are allowed to be slow.
Only the startup time of the application will be delayed, which is not a time-critical aspect. In
turn, these functions offer as much utility as possible during this phase, generating templated
packets with even only one line of code. During the actual runtime of the application, all called
functions are critical to the performance, i.e., need to be fast.
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The only actual implementation effort is defining the layout of a concrete protocol header,
i.e., defining the syntactical structure of the header. However, this has to be done only once,
i.e., for protocols or headers that libmoon does not yet support. The complete generation of a
protocol stack is performed automatically and dynamically through JIT compilation on demand.
Users can define their desired protocol stack by defining which header should appear in what
order. This concept follows and is based on the ideas of the ISO/OSI model. Each protocol
layer—ideally—is independent and self-contained from the next layer, wherefore each protocol
header can be implemented separately. Within a certain stack, the header itself must contain
information that reveals which data follows next.

Statically Implementing a New Header
libmoon’s protocol stack requires only the minimal information about a protocol header, which
has to be implemented once. Primarily, this includes the structure of the header, i.e., its members
and their respective bit-sizes. Based on this information, utility functions for all members are
generated. This process is automated and only requires manual code changes by the developer
when using data types with additional semantics like IP addresses. Optionally, further semantic
information can be specified manually. This includes determining the size of the header or the
next following header, based on the data of the current header.

Header Structure: The format of a header is defined as if it was a C data structure object,
consisting of the data types and names for each member. In fact, libmoon creates an actual C
structure based on this information of the header using LuaJIT’s FFI. Data types can be basic
ones, or specifically created as is the case, for instance, for Ethernet or IP addresses. Members
with variable size, e.g., TCP options, have to be implemented as variable-length array members.
Furthermore, the name of such a member has to be marked as variably sized in the header’s
Lua object. This allows for special treatment within the complete protocol stack and to create
concrete, fixed-sized instances of the header, depending on the current data of a packet.

Wrapper for Members: To prevent working with low-level data types, wrapper setter and getter
functions for all members are created in Lua. These functions provide a first level of utility as
data type conversions, correct byte order and other data type problems are taken care of. This
process is automated for standard data types like integers. Only if the automatically generated
utility functions are not sufficient, e.g., because of custom data types, the set and get function
has to be manually defined by overwriting the generated one.

As these functions are merely thin wrappers in Lua they do not cause performance losses. As a
result, these functions are fast while providing a minimum of usability. Therefore, the wrapper
functions should be used during the actual runtime of libmoon to modify packets on a per-packet
basis.

Wrapper for Header: libmoon also adds several templated functions that perform tasks on the
complete header. Their purpose is twofold: firstly, functions that provide utility for the user
in form of a set and get function for the complete header. In the case of the set function,
the passed argument is a table of labels, each referencing a concrete member of this header.
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Within the function, for each member the respective set function is called. This way, using
one function call, the complete header is filled with default values, while each single member
can be customized by the user. This function comes at the cost of a significant performance
loss. Hence, this function belongs to the group of methods that should only be used before the
runtime of libmoon to pre-allocate packet buffers when initializing a templated memory pool.
At this abstraction level, performance is not the primary concern, instead, usability on a broader
range becomes important.

The second set of functions is used to provide semantic information about the header in the
context of a complete protocol stack: how to resolve the next following header, e.g., the Ether-
Type of an Ethernet frame; how default parameters change, e.g., IPv4’s protocol field based on
the next header; how the size of the variable member is determined, e.g., the size of the IPv4
options field depending on the Internal Header Length member; or how the sub-protocol can
be determined, e.g., a VLAN tagged Ethernet header or TCP options. If one or multiple of
these apply to the protocol, the developer has to overwrite the automatically generated empty
functions to provide the semantic information.

The end result of this is that a new protocol, its layout, and required semantic information, is
defined. From now on, an instance of it can be used by libmoon within a complete protocol
stack.

JIT-compiled Protocol Stack
The implemented protocols can be used by an application developer to generate arbitrary pro-
tocol stacks dynamically on demand. The implemented header information is sufficient to fully
specify one layer of a protocol stack. For a concrete stack, merely the order of protocols within
the required stack has to be defined. Internally, libmoon then performs multiple steps to dy-
namically offer complex utility functions for the whole stack.

Protocol Stack Definition: Creating a new protocol stack can be performed with one function
call, passing as argument a list of protocols using the simple and intuitive embedded DSL defined
in Listing 3.1.

1 <stack> ::= <protocol > | <protocol >, <stack>
2 <protocol > ::= <header> | { <header> [,name = "<str>"] [,subType = "<str>"] [,length = <int>] }
3 <header> ::= "eth" | "ip4" | "ip6" | "udp" | ...

Listing 3.1: DSL to define a protocol stack

In the simplest case, the DSL defines the order of required protocols, starting with the lowest
layer. Syntactic sugar is added by allowing to specify a table instead, which allows for optional
arguments to cope with special scenarios: in case a protocol is used multiple times within a stack
it has to be uniquely labeled. Second, the subtype, e.g., Ethernet with or without a VLAN tag,
can be specified. Lastly, for headers which can be variably sized, the length of the variably-sized
member can be set.

A concrete example for a realistic and complex protocol stack that can be observed in a data
center environment is illustrated in Listing 3.2. This stack consists of an Ethernet frame with
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1 -- create protocol stack
2 local asVxlanStack = createStack(
3 {"eth", subType="vlan"},
4 "ip4",
5 "udp",
6 "vxlan",
7 {"eth", name="innerEth"},
8 {"ip4", name="innerIp4"},
9 {"udp", name="innerUdp"},

10 {"sflow", subType = "ip4"}
11 )

Listing 3.2: Creating a VXLAN protocol stack

VLAN tag and is used for VXLAN tunneling. The tunneled packet, consisting of another set of
Ethernet, IPv4, and UDP headers prefixed with “inner”, is of type sFlow.

Creating a stack creates a function to cast a packet buffer to the desired stack.

Internal Data Structure: Based on the defined sequence of protocols using the DSL, internally a
C structure for the full protocol stack is automatically generated. The data structure’s members
are the C structures of the respective defined protocols. Depending on the subtype or length,
concrete structures are dynamically defined and loaded once by the JIT compiler.

Casting a packet buffer to this structure allows to interpret the array of bytes as defined by
the structure of the stack and its protocol members. The C object is extended with a Lua
metatable to define utility functions for the complete protocol stack. This includes the per
protocol implemented utility functions.

As final member of each protocol stack, a payload structure is added, which allows to access
arbitrary bytes beyond the last specified header.

Generated Utility Functions: Functions operating on the complete protocol stack are twofold.
First, setter and getter functions, operating on the complete stack are created. These functions
use the per-protocol implemented functions, passing a table of labels referencing individual
members. To uniquely reference members of different headers, which could appear multiple
times within the stack, each label is built by prefixing the member name with the header name.
An example based on the previously introduced VXLAN example is given in Listing 3.3.

1 pkt:fill{
2 -- member of the outer Ethernet header
3 ethSrc = "01:02:03:04:05:06",
4 -- member of the inner Ethernet header
5 innerEthSrc = "0a:0b:0c:0d:0e:0f"
6 }

Listing 3.3: Referencing stack members

Default values for undefined labels are intelligently set using the logic implemented per header.
This can be based, for instance, on the next following header, e.g., for the EtherType of an
Ethernet frame, or the accumulated length of the preceding headers, e.g., for the IPv4 length
member. Automatically setting these default values is possible as the necessary information is
available at the abstraction level of the complete stack. These setter and getter functions allow

62



3.3 MoonGen as Dynamic Load Generator

to easily create legitimate packets, or parse and recursively resolve even completely unknown
packets as far as possible. These functions, however, are slow because of the use of Lua tables or
recursive operations, while providing high utility, and should only be used to generate templates
or for debugging.

The second group of functions are performance-critical functions to be used during actual run-
time. This includes the calculation of checksums or setting all attributes that depend on the
size of the complete packet. In this case, the function is optimized for performance by load-
ing it dynamically through JIT compilation during runtime. Whenever possible, the offloading
features of the NIC should be utilized to gain performance.

Variably Sized Headers: Headers with variable size complicate the generation of a complete
stack, as the C structures of the respective protocol cannot be increased on demand. Using an
undefined size results in wrong alignment of the following header. Therefore, the only solution
is to create a completely new stack for each different size. While this increases the number of
generated stacks, it has no negative impact on the application as recasting the packet buffer to
another stack costs virtually no performance. Furthermore, the new stack is comprised of the
same utility functions, adjusted slightly to accommodate the new size.

Creating a new protocol stack is a CPU-intensive task because of internal processing overhead.
However, for most applications, the protocol stacks of interest are known in advance and can,
therefore, be generated during the setup phase. Even during runtime, creating a new protocol
stack is a one-time performance penalty.

Summary
libmoon’s protocol stack offers functions to dynamically create new packet types and functions
for a particular protocol stack. Because libmoon uses DPDK’s mempool structure, functions
are either slow and provide usability, or optimized for performance, but only fulfill one certain
task. Overall the API offers functionality on five different levels of abstraction as shown in
Listing 3.4: the low-level DPDK structure (1), which is fast, but has low utility; the low-level
protocol stack structure (2), which is like (1), but takes care of offsets within the protocol stack;
the protocol member wrappers (3), which are like (2), but add support for data types; the full
header wrappers (4), which are slow, but allow to automatically set all members of the header
with default or custom values; and the full stack wrappers (5), which are like (4), but perform
everything for the full stack with intelligent default values.

1 -- Setting the source IP address of an IP packet
2 local ip = parseIPAddress("10.0.0.5")
3
4 -- create protocol stack
5 local getIP4Packet = packetCreate("eth", "ip4")
6
7 mbuf.pkt.data[25] = 5 (1)
8 mbuf.pkt.data[26] = 0
9 mbuf.pkt.data[27] = 0

10 mbuf.pkt.data[28] = 10
11
12 -- Cast to IP4 protocol stack
13 local pkt = mbuf:getIP4Packet()
14
15 pkt.ip4.src.uint8[0] = 5 (2)
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16 pkt.ip4.src.uint8[1] = 0
17 pkt.ip4.src.uint8[2] = 0
18 pkt.ip4.src.uint8[3] = 10
19
20 pkt.ip4.setSrc(ip) (3)
21 -- fast
22 -------------------------------------------------------
23 -- slow
24 pkt.ip4:fill{ ip4Src=ip } (4)
25
26 pkt:fill{ ip4Src=ip } (5)

Listing 3.4: Summary of libmoon’s protocol stack API

3.3.5 Performance Evaluation
We use measurements to verify that the JIT-compiled protocol stack retains the required per-
formance level of libmoon. As sample application we en- and decapsulate packets using the
VXLAN protocol. The DuT is equipped with an Intel Xeon E3-1230 v2 at 3.3 GHz and 8 MB
L3 cache and an 82599ES 10-Gigabit SFI/SFP+ NIC. A second, directly connected host is
generating and receiving traffic using the MoonGen [33] packet generator.

On the load generator and sink the transmitted and received packets are counted to calculate
the throughput and packet rate of the DuT. All measurements were run for up to 60 s to obtain
reliable results. All graphs plot the mean value with error bars showing the standard deviation
interval where applicable as calculated by the statistics module of MoonGen. Error bars are
omitted if they would be smaller than the mark indicating the average.

Encapsulation Sample Script
The DuT is used as Virtual Tunnel Endpoint (VTEP), encapsulating incoming packets by
prepending an Ethernet, IPv4, UDP, and VXLAN header. This requires flexible handling of
multiple protocol stacks, as well as utility functions to fill in the header information. The full
libmoon script implementing this scenario is accessible online1, an excerpt is shown in Listing 3.5
and discussed in the following.

Before processing packets, the required protocol stacks are defined and a template of the encap-
sulating headers is created. This is done with one function call during which all members that
have to be modified are set using their respective labels.

During runtime, every single received packet is looked at as raw data. Only its total size is
required to copy all data as payload to the created encapsulating protocol stack. The remaining
tasks are to update the size of the buffer and setting the length members of the IPv4 and UDP
headers. All used functions are dynamically generated, yet optimized for the concrete protocol
stack. As last step, the NIC is instructed to calculate the checksums before transmitting the
packet.

1 https://github.com/emmericp/MoonGen/blob/master/examples/vxlan-example.lua
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1 -- create stack
2 local asRawPacket = createStack()
3 local asVxlanPacket = createStack("eth","ip4","udp","vxlan")
4 -- creation of packet template
5 local mem = memory.createMemPool(function(buf)
6 asVxlanPacket(buf):fill{
7 -- define the VXLAN tunnel
8 ethSrc="aa:bb:cc:dd:ee:ff",
9 ethDst="00:11:22:33:44:55",

10 ip4Src="192.0.2.1",
11 ip4Dst="192.0.2.254",
12 vxlanVNI=1234,
13 }
14 end)
15 local txBufs = mem:bufArray()
16 -- [...]
17 while libmoon.running() do
18 local rx = rxQ:tryRecv(rxBufs, 0)
19 txBufs:allocN(rx)
20 for i = 1, rx do
21 -- cast to generic packet
22 local rxPkt = asRawPacket(rxBufs[i])
23 local size = rxBufs[i]:getSize()
24 -- cast tx template to VXLAN packet
25 local txPkt = asVxlanPacket(txBufs[i])
26
27 -- copy rx raw payload to tx packet payload
28 ffi.copy(txPkt.payload , rxPkt.payload , size)
29
30 -- add length of added headers to size
31 local totalSize = 46 + size
32 -- adjust buffer size
33 txBufs[i]:setSize(totalSize)
34 -- set the IP/UDP length members
35 txPkt:setLength(totalSize)
36 end
37 -- offload checksums and send
38 txBufs:offloadChecksums()
39 txQ:send(txBufs)
40 end

Listing 3.5: Excerpt from the VXLAN encapsulation task using libmoon’s protocol stack
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Figure 3.10: Peak performance when encapsulating Ethernet frames using VXLAN

Performing these operations without utility functions is error prone and cumbersome. It requires
knowledge about the header offsets within the complete stack to copy the data to the correct
position. While the copy operation itself remains the same, setting the bytes of the encapsulating
headers, including addresses, ports, and length members, byte by byte is time consuming, prone
to errors and requires more lines of code.

Encapsulation Performance Comparison
This first measurement analyzes the maximum throughput and packet rate when encapsulating
minimum sized 64 B packets at line-rate. Both, packet rate and throughput, are displayed in
Figure 3.10. Because of the nature of the VXLAN scenario, the size of received and transmitted
packets differ.

libmoon is able to process all incoming packets already at a CPU frequency of 2.8 GHz, even when
using the dynamically generated utility functions. The transmitted packets are encapsulated and
therefore larger, resulting in not reaching the maximum packet rate of 14.88 Mpps, as the link
capacity of 10 Gbit/s is reached first. Before this point the throughput and packet rate increase
linearly with the configured frequency.

Influence of Memory Locality Effects
Figure 3.11 illustrates the achieved packet rate at a CPU frequency of 1.6 GHz when encapsu-
lating packets of different size. The only difference in the encapsulation program is the amount
of data that has to be copied to the TX buffer.

Figure 3.11 shows that the location of the read or modified data is important. The performance
does not decline linearly with increasing packet size and, therefore, number of copied bytes.
Instead, multiple continuous performance levels can be identified. Within one level, the maxi-
mum achieved rate decreases only marginally by about 0.1 Mpps. The levels have a size of 64 B,
indicating a correlation with the cache line size. Packet data is an array of sequential bytes,
which the dynamically generated protocol stack only casts to a different structure, retaining
memory locality. A performance loss is only noticeable when accessing data in a different cache
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Figure 3.11: Performance when copying different amounts of consecutive bytes. Blue arrows indicate the
identified performance levels, correlating to the CPU’s cache line size of 64 B.
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Figure 3.12: Performance when using low-level DPDK structures versus libmoon’s protocol stack

line, generating an additional cache miss. Actual data manipulation within that line only costs
cycles depending on the performed operation.

Comparison with Low-level Byte Access
The JIT-compiled utility functions are optimized and produce no new performance overhead.
This experiment compares the performance when performing a typical operation on the packet
using the JIT-compiled utility functions, to setting the bytes of the packet manually. The
concrete task is to set the source IP address of the packet.

Figure 3.12 shows the results for different CPU frequencies when sending minimum sized packets
at 10 GbE line-rate. The total performance loss with less than 0.2 Mpps for this operation can
be explained with the results of the previous section. In the concrete example, the JIT-compiled
functions yield better results compared to manually setting bytes.

3.3.6 Conclusion
libmoon’s protocol stack combines requirements that seem mutually exclusive at first. It offers a
dynamic, flexible, and extensible API, while maintaining the performance of direct low-level byte
operations. High-level utility functions to perform packet modifications provide usability and
flexibility, but retain acceptable performance through JIT compilation. The API of the protocol
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stack in combination with the Lua scripting language lowers hurdles for developers creating
new software-based networking applications. The library of existing protocols in libmoon’s
protocol stack can be extended with low effort: the structure and low-level semantics of each
protocol header is implemented completely separately, ensuring modularity. Utility functions are
generated automatically and extend to the full stack. New headers are available immediately to
be used in a custom made protocol stack using a DSL. The DSL allows the creation of complex
stacks with multiple layers, including tunneling and other encapsulating protocols.

Compared to the state-of-the-art, a wide-ranging set of utility functions without the need for
tedious manual implementation, is automatically generated. In fact, the JIT compiler is able to
optimize the dynamically generated code such that even complex operations are performed as
if manual low-level byte by byte manipulations were used instead. While utility functions for
setting the full header or protocol stack are slow, these are primarily intended to be used during
libmoon’s setup phase to create packet templates where performance is not critical

The proposed protocol stack also aids the replication of results: a full protocol stack can eas-
ily be described using libmoon’s protocol stack DSL and recreated by others. The protocol
header syntax is implemented for several protocols that are commonly used. As libmoon and
its packet generation framework MoonGen are software packet processing and generation frame-
works available for COTS hardware systems, these tools can be used for research in various
networking domains without the need for specialized hardware.

3.4 Key Results
This chapter introduced the tools used throughout this thesis. Emphasis is put on creating
and conducting reproducible experiments. For this, the pos testbed controller was developed,
which not only enables, but enforces a reproducible experimental workflow. All experiment
artifacts are collected to fully define the experiment, allowing future reproduction of the results.
Repeating a measurement with slightly adjusted parameters, commonly used to analyze the
effect of these parameters on the DuT, is directly supported using pos’ loops. Furthermore, pos
fulfills the requirements for managing multi-user testbeds consisting of heterogeneous software
and hardware devices. Importantly, all node resources can be used by each user using temporal
division. Time conflicts, i.e., scheduling multiple experiments on the same node, are prohibited
by pos to prevent interferences. Full automation, even towards publishing experiment results,
is supported. The support for heterogeneous devices and a broad range of users is also vital for
pos to be used for several different testbeds, including the combined teaching and measurement
iLab testbed.

A second important tool used throughout this work to achieve reproducible results is the Moon-
Gen load generator. We have extended MoonGen and its underlying libmoon framework with
a flexible high-performance protocol stack. Freely and quickly generating traffic consisting of
different scenario-specific protocol stacks is a powerful tool for performance evaluations of dif-
ferent network devices. Furthermore, the dynamic protocol stack, built using a classic packet
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processing framework like DPDK, serves as a point of comparison with modern approaches for
data plane programming in the next chapters.

3.5 Statement on Author’s Contributions
Sections 3.2.1, 3.2.3, 3.2.4, and 3.3 are based on a collaboration between Sebastian Gallenmüller,
Dominik Scholz1, Henning Stubbe, and Georg Carle [10]; and a joint work between Sebastian
Gallenmüller, Dominik Scholz, Florian Wohlfart, Quirin Scheitle, Paul Emmerich, and Georg
Carle [4]. The author significantly contributed to the concepts of pos and implemented all
components of pos. Mandelstamm is based on an interdisciplinary project by Alexander Kurtz,
co-supervised and integrated with pos by the author. The in-depth explanations of the experi-
mental process (Section 3.1), testbed life cycles (Section 3.2.2), and pos including its evaluation
(Section 3.2.4), in particular Figures 3.1, 3.3, 3.4, and 3.6, were created for this thesis. Excerpts
from the original publication, e.g. pos’ limitations, were modified to fit the research questions
of this work. Compared to the original publications, the author extended the descriptions of
technical aspects of pos and added the statistical evaluation regarding deployments and perfor-
mance.

The discussion about the hybrid teaching and research testbed presented in Section 3.2.5 was
created for this thesis. Based on the addition of these Sections and Figures, the analysis goes
significantly beyond the scope of the original publications. vpos was developed as part of a
Bachelor’s Thesis by Jonatan Juhas, which the author co-supervised and helped integrating
with pos.

The author significantly contributed to the concepts of libmoon’s protocol stack and provided
its implementation. The survey of protocol stacks in Section 3.3.2 and the explanations for
the architecture and implementation of the protocol stack in Section 3.3.4 were created for this
work. The author performed the measurements presented in Section 3.3.5.

1 Joint first authorship with Sebastian Gallenmüller
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Chapter 4

Performance Modeling of Programmable Net-
work Devices

We use and extend the idea of a high-level view of a generic packet processing system s proposed
by Gallenmüller [152]. This system is a single node within a larger network, whereby incoming
packets are processed, resulting in them being discarded or one or more potentially modified
packets are being sent out. When deployed, the system is subjected to a vector of input pa-
rameters ~I, for instance, the bandwidth and packet rate of incoming packets, traffic patterns,
or packet sizes. Through the processing behavior of the system, the system creates a vector of
output parameters ~O. These are measurable and can be quantified using KPIs like throughput,
processed packet rate, latency, or jitter, as defined in Section 3.1. We use the mathematical
notation shown in Equation 4.1 throughout this work to define this generic packet processing
system s, also referred to as DuT:

s(~I) 7→ ~O (4.1)

Often, no or only limited knowledge about the internal processing of a packet processing system
is available, resulting in a black-box view. The reason is, that such a system is typically the result
of a symbiosis between hardware and software. While software might be accessible through open-
source access, fully understanding the hardware requires full documentation or its blueprints.
For purely software or CPU-based systems, like the Linux network stack, this might be possible,
however, for hardware targets, e.g., ASICs, information is typically limited as companies do not
release the necessary information.

In reality, such packet processing systems are complex, which becomes obvious when inspecting
them as white-box as shown in Figure 4.1. In combination with all possible input parameters,
it becomes infeasible to accurately measure and characterize all possible output parameters,
i.e., fully understand the system’s processing behavior. The cost, measured, for instance, in
time or money, to investigate the system, becomes unsustainable. Furthermore, not all output
parameters might be of interest.
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Figure 4.1: White-box view of a generic packet processing system s
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Figure 4.2: Model for a packet processing system s

To combat this complexity, instead of a full system description, we want to derive a model of its
behavior as shown in Figure 4.2. This means, that the system is exposed to a selected subset ~I∗

of input parameters and a subset ~O∗ of output parameters is measured. The system behavior
is then described by a modeling function m as defined in Equation 4.2:

m( ~I∗) 7→ ~O∗ (4.2)

4.1 Modeling Approach
Sections 4.1.2 and 4.1.5 are based on a collaboration between Dominik Scholz, Hasanin Hark-
ous, Sebastian Gallenmüller, Henning Stubbe, Max Helm, Benedikt Jaeger, Nemanja Deric,
Endri Goshi, Zikai Zhou, Wolfgang Kellerer, and Georg Carle [14].

In the following, we outline our proposed modeling approach. In this work, we limit our efforts
to fully programmable data planes, in particular, such that are programmed using the P4 DSL.

4.1.1 Components of P4 Data Planes
While there is a plethora of different P4 architecture models like PISA, SimpleSumeSwitch,
or PSA, they share the same basic set of stages, including parser, processing pipeline, and
deparser [83]. Within each segment, it is well defined what operations can be performed. For
instance, headers are parsed, added or removed in the parser and deparser stages, while match-
action tables are applied in the processing pipeline. Furthermore, modifications to headers and
metadata can be performed and target-dependent externs can be called. Simplified, we define a
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P4 program P4 as the sum of its components Ci:

P4 =
∑

i

Ci = Cpars + Cpipe + Cfield_mod + Cext + Cdepars (4.3)

Each of the components can be further specified. For instance, the field modification component
is the sum of all header field and metadata field modifications:

Cfield_mod =
∑

Chead_mod +
∑

Cmeta_mod (4.4)

These individual components can then have additional characteristics, like the size of the field or
the performed operation. Another example is the pipeline component, consisting of all applied
match-action tables of the program:

Cpipe =
n∑

i=1
Ci

mat(k, e) (4.5)

Thereby, each table is defined by the number, type, and size of match keys k, and the number
and size of table entries e.

For the sake of simplicity, we treat the parser and deparser stages as one combined stage. The
extern component is target-dependent, i.e., what externs are available and how they are imple-
mented differs between targets. We discuss further details about what features of components
we identified and modeled in Section 4.4.

This description is not a complete reflection of the actual program, but only a model of selected
components. Similarly to the above approach, all other components can be further specified and
described by their respective features. While doing so increases the accuracy of the program
description, it also increases the complexity of the program model.

4.1.2 Deriving Parameterized Component Models
The advantage of using a standardized, high-level packet processing language like P4, is that
it can be analyzed using similar tools as for other standard programming languages. While
this includes static verification or bug-hunting approaches, we focus on tools for generating
CFGs. Given a P4 program, such a tool generates and visualizes the control flow, i.e., all
possible processing paths, of the program. Therefore, for a data plane program, all possible
paths through data plane components to process incoming packets are derived. Mapping this
representation of one program onto a programmable packet processing system enables a partial
white-box view of it. While the exact hardware or software processing steps are unclear, the
system must be composed of and, therefore, process the components Ci identified in the CFG.
These components represent the complete program defined in Equation 4.3. While mapping
one concrete program to the data plane might not cover all processing capabilities of the target
system as the CFG only represents a subset of the complete system, the components important
for common P4 programs are represented.

73



Chapter 4: Performance Modeling of Programmable Network Devices

Ca

Cb

Cc

Ce

Cc

Ce

Cd

Ci
Cf

s

~I∗~I ~O∗ mCd

Figure 4.3: Modeling of an individual P4 data plane component

As it is infeasible to individually model the performance of all programs for all target devices,
we instead propose modeling individual components identified by the CFG of a P4 program.
For this, we use short, synthetic programs targeting individual components, i.e., P4 language
constructs, similar to the modularized approach introduced by Dang et al. [83]. The main idea
is to evaluate the behavior of different components in P4 programs behave on a target system
using a bottom-up approach. Focusing on an behavioral analysis of small building blocks in P4
programs serves multiple purposes. First, these experiments can be used as regression tests by
developers of the compilers. Second, the measurements allow application developers to gain a
fundamental understanding for the cost of P4 language constructs in software or hardware data
planes. This is required as the impact of one component on performance and resource metrics
can change drastically based on the concrete target. For instance, an LPM functionality can be
implemented using different algorithms, which can map to different hardware building blocks.
As a consequence, this influences not only the performance but also the required resources. A
model for the impact of components on a concrete target can be used to estimate the cost of
the complete application by extrapolating and adding up the costs of individual components.

We derive these lumped component models using measurements for individual components.
Each measurement only contains a single language feature in addition to a baseline program,
i.e., the minimum P4 program to forward a packet. Throughout a measurement series, the
program includes the feature 1, 2, ..., n times. The goal is to understand and model the impact
introduced by this component, e.g., how the latency changes when including this construct x
times in a program.

However, the problem of program complexity remains. Depending on the depth of the program
model shown in Equation 4.3, the number of components that need to be modeled increases.
Therefore, we do not aim for a full model of the program, i.e., model all features of all components
to the last detail. Instead, we want to identify those components, that have a high influence
on the performance for the given architecture or target device. For instance, simple arithmetic
operations are assumed to be of low cost on most platforms, compared to performing a lookup
in a match-action table.

4.1.3 Path-specific Performance Model
After having modeled individual components, we can then use these component models to model
the performance of entire paths through the data plane. For this, we again use the CFG of the

74



4.1 Modeling Approach

Ca

Cb

Cc

Ce

Cc

Ce

Cd

Ci
Cf

s

~I∗~I ~O∗ mPacdf

Figure 4.4: Modeling of an individual P4 data plane path

program to determine all paths and the number of occurrences of each component per path. To
model the cost for a specific path Px as shown in Figure 4.4 we then apply the program model
defined in Equation 4.3: we sum up the costs as determined by our component models mCi

of
all components Ci found on the path Px as shown in Equation 4.6:

mPx
=

∑
Ci∈Px

mCi
(4.6)

However, there are metric-specific exceptions. For instance, to calculate the required resources
for a program, calculating the cost for individual paths is not helpful. Instead, we add all
occurrences of all components for the entire program:

mresources
P4

=
∑

Ci∈P4

mCi
(4.7)

We choose the approach of adding up the individual component models due to its simplicity.
Alternative approaches include using, for instance, network calculus or probabilities for the
calculation of composed models [15].

4.1.4 Per-packet Performance
After computing path-specific performance models for all paths of a program we can compare
and order the paths by cost, e.g., to determine the worst-case path through the P4 program. For
each path we are interested in constructing respective packets that, when received by the DuT,
will traverse the program using the selected path. Generating, for instance, only traffic that
will match the path of highest cost will result in a worst-case evaluation of the DuT. Similarly,
best-case and average-case studies can be performed.

While generating all possible paths based on a P4 program’s CFG is trivial, deriving the packets
that match a certain path, however, is not. Although a P4 program defines the syntax of the
data plane, its semantic is provided by the control plane in the form of, for instance, match-
action table entries. Only based on the concrete entries it is clear which match keys, i.e., packet
data, will result in which path being taken as result of the applied match-action table. As we
are only interested in the performance of the data plane, we are not analyzing P4 control planes.
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We leave this task for related and future work. To demonstrate per-packet performance, we
assume full knowledge about the state of the device, including control plane information.

4.1.5 Model-first Approach
The primary use case for the outlined model is to predict the performance of individual data
plane components and paths. Thereby, the derived model’s priority is not to be semantically
correct, i.e., explain the behavior of the device. Instead, the model should mathematically reflect
the observed behavior. This information obtained using a model-first approach—independent
of why the device behaved in a certain way—can then be used for performance prediction.
Furthermore, the obtained model can be compared with the theoretically expected model. If
a difference is observed, e.g., exponential instead of linear growth for a certain component, the
actual cause—the semantics—can be further investigated. Consequently, the derived models
can be used for regression testing and to uncover and inspect unexpected behavior.

The proposed model-first approach employs a high degree of automation. As result of the
measurement and evaluation of an individual component, the derived model is returned. To
obtain this mathematically optimized model automatically, we use error metrics that quantize
how accurately the model fits the measured data. However, a common problem of such derived
models is that more complex models usually result in a smaller error. The more free parameters
the model has, the better the fit typically is when using only such an error function. A solution
for this are information criteria that include the number of free parameters or even the number
of measurement points in the error metric, i.e., penalize complex models [153]. As a consequence
the behavior is modeled using a simpler function at the cost of a higher mathematical error and a
slightly worse fit. However, typically, device behavior can and should be explained using simpler
functions. Only then, the model can be understood, increasing its value.

Depending on the metric that should be modeled, we use black- or white-box measurements.
In general, metrics based on black-box measurements are simpler to obtain as they can be
observed simply based on the input and output vectors of the DuT. This passive approach
also reduces the performance impact caused by the measurement itself. In contrast, white-box
measurements require access to and are performed on the DuT, impacting the accuracy of the
obtained performance results.

4.2 Related Work
We surveyed two areas of related work: approaches for generating or using P4 CFGs for the
analysis of program paths; and performance evaluations and modeling approaches for program-
mable data planes.

4.2.1 P4 Control Flow Graphs
The official p4c reference compiler compiles P4 programs to the JSON format. This intermediate
representation contains all components of the program and how they are linked together, i.e.,
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the program’s control flow. p4c also has a backend for generating visual representations of the
control flow, called p4c-graphs1.

An attractive property of P4 is its design that fosters the simplified verification of program
behavior, e.g., by the absence of loops in P4. Liu et al. [154] and Neves et al. [155] demonstrate
the verification of P4 programs using asserts to identify bugs in applications. Nötzli et al. have
proposed p4pktgen [106], a tool that generates packets and match-action table entries, such that
all paths of the P4 program will be traversed. Their approach can be used to verify that the
program behavior is as expected on a target platform. The authors state that generating all
possible paths is not a trivial task. Programs may be complex through a vast number of applied
match-action tables or the usage of state that can be changed by processed packets. Therefore,
Nötzli et al. refer to falling back to branch coverage instead of full path coverage. Further,
externs represent an unknown factor as the respective processing and result of an extern is not
known from the data plane program. p4pktgen is currently limited to the bmv2 architecture
model and does not yet support all standard P4 language statements. Packets that match a
certain path are generated using a satisfiability modulo theories solver. Our model of P4 data
planes extends the analysis of program paths beyond coverage to performance predictions. [106]

Kodeswaran et al. [104] use Ball-Larus encoding to track the execution paths of packets through
P4 data planes. Due to program complexity, they argue to inspect disjoint parts of the data plane
individually. Their prototype for the Intel Tofino target transforms the P4 CFG into separate,
smaller CFGs, which are then modified to add tracking capabilities. This process works even for
complex programs like the switch.p4 with approximately 1034 different execution paths. Paths
taken by processed packets are encoded for further analysis with low overhead. In contrast to
our approach, Kodeswaran et al. track program paths at runtime. [104]

Liveness testing of networks, i.e., testing the status of all possible links in the network, is desirable
for modern complex ISP or data center networks. Zeng et al. [156] have shown that this is
possible, for instance, for the Stanford university network. However, they report limitations of
their approach, in particular, devices that behave in non-deterministic ways or keep per-packet
state [156]. Similarly, using the control flow of P4 programs allows to perform liveness testing
of the data plane, covering all possible paths. Our modeling approach attributes performance
predictions for those paths.

4.2.2 Performance Analysis & Modeling of P4 Devices
Performance reported in related work often depends on the target platform, measurement
methodology, processing complexity, and testbed setup. Therefore, we focus on the baseline
performance of different programmable data planes, either as reported by the respective authors
or through performance studies testing multiple devices within the same setup. Further, we
discuss proposals for performance improvements and efforts to model the performance behavior
of such devices.

1 https://github.com/p4lang/p4c/tree/main/backends/graphs
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Target-specific Baseline: As the Mininet-based bmv2 target is only intended as reference im-
plementation it is neither suited nor optimized for high-performance applications [66]. Conse-
quently, we disregard this target in our performance analysis.

Vörös et al. analyze the performance of t4p4s as L2 and L3 router and in a load balancing
scenario [69]. Using Mellanox and Intel NICs between 1 and 100 Gbit/s, t4p4s has shown
linear scaling with the number of CPU cores and constantly outperforms OvS or PISCES using
the same setup. Adding complexity to the processing pipeline significantly reduces the overall
throughput of t4p4s, e.g., 7 Mpps for checksum computation in some scenarios. Using 1024 B
packets, Vörös et al. show that t4p4s can process up to 67 Gbit/s of packets in the L2 switch
example. The authors claim that in this case the limit is not the Ethernet bandwidth of the
100 Gbit/s NIC, but rather the bandwidth of the PCIe interface. While the authors also include
an evaluation of Freescale hardware, they do not include latency values or analyze individual
P4 program components. [69]

Osinski et al. evaluate the performance overhead of their proposed extension for OvS, called
P4rt-OVS [77]. In three simple scenarios they compare complex processing pipelines to basic
OvS, each including one or more of using a match-action table, adding a header, or modifying
a header field. In these cases, the authors claim a similar performance between P4rt-OVS and
OvS. In a second set of measurements, Osinski et al. analyze individual P4 components. Parser
and deparser are analyzed for an increasing number of headers. However, as the added headers
themselves are heterogeneous, limited conclusions about the overhead caused by adding other
headers can be made. In their tests, the deparser, which also includes the cost for modifying
header fields, is less costly in terms of CPU cycles required compared to the parser for an in-
creasing number of headers. Regarding match-action tables, CPU cycles increase approximately
linearly with the number of tables, while lookups and updates of tables with up to 10000 ta-
ble entries are constant. We reproduce this behavior using the DPDK-based t4p4s target. In
the last scenario, programs implemented using P4 and C are compared. The results show, that
equivalent programs in C can be significantly more performant due to optimizations and reduced
overhead. We provide a similar comparison and conclusion when comparing a P4-programmed
to a manually implemented application, both based on the DPDK platform, in Section 5.3.7. [77]

The NFP-4000 is available for 10, 40, or 100 Gbit/s Ethernet ports [45]. The NIC is capable
of line-rate processing for sample P4 programs, however, no further performance analysis for
complex programs or individual components is provided by the vendor.

The NetFPGA SUME when programmed with P4 using the P4→NetFPGA workflow can reach
10 Gbit/s line-rate for simple programs, however, Ibanez et al. provide no further performance
analysis [72]. Wang et al. show that the latency of P4FPGA is below 0.5µs for baseline programs,
compared to PISCES with more than 6µs [71].

Harkous et al. evaluated t4p4s, the NFP-4000, and the NetFPGA SUME using a setup consisting
of two directly connected nodes. The end-to-end latency of these targets for a baseline scenario
under equal circumstances is below 45µs, 8µs, and 4µs, respectively [157]. Our measurements
presented in Section 5.3.7 confirm these performance levels.
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The Intel Tofino is available in variants of up to 64 ports with each 100 Gbit/s, or up to 32 ports
with each 400 Gbit/s for the Tofino 2 as of April 2021. These chips allow operation at line-rate
per port independent of the P4 program complexity [74]. Latency depends on the processing
complexity, as each additional stage required within the P4 pipeline adds latency. This, however,
is limited by the number of stages available and is typically below 1µs [158].

Geyer et al. [100] investigate P4 in the context of avionic applications. They benchmark P4
implementations of Avionics Full-Duplex Switched Ethernet (AFDX) on different targets. Their
investigation shows that latency differs between target platforms, but the latency is comparable
to existing dedicated AFDX hardware.

Performance Improvements: Several publications implement a certain functionality on one or
more P4 targets and provide a performance analysis. However, as these always try to highlight
the performance of the implemented application, these are hardly usable for a discussion of
target-specific performance. Instead, in this section we summarize related work that specifically
tries to improve general performance aspects of P4 applications and targets.

Laki et al. extend t4p4s to allow the asynchronous execution of externs [70]. Their evaluation,
subjecting a given percentage of the overall traffic to an extern that requires a specific number
of CPU cycles, reveals a trade-off when comparing synchronous and asynchronous execution.
Which mode of operation is superior in terms of maximum throughput processed, depends on
the complexity of the extern. In their setup, only for externs exceeding approximately 2000 CPU
cycles, asynchronous execution achieves better performance. However, asynchronous execution
requires buffering of packets and context between processing units. This is limited in size,
causing overflows, i.e., no asynchronous execution of the extern, for externs requiring more than
2000 CPU cycles and when subjecting more than 50 % of the traffic to the extern. [70]

FlexMesh [159] improves performance of various network functions running in parallel on pro-
grammable data planes by automatically chaining them together. The author’s framework does
so for various targets, reducing overhead and redundancies. They show that their proposal can
improve throughput and latency. The authors provide absolute throughput and latency values
for the NFP-4000 and Tofino platforms in different scenarios. Using a baseline P4 program,
Zhou et al. confirm that these platforms can process packets at the respective line-rates of 10
and 100 Gbit/s, while latency is lower for the ASIC-based target (below 5 ms) by a factor of
seven. Using the P4 recirculation feature, the throughput of the SmartNIC remains stable for
up to three recirculations, while the throughput of the Tofino is roughly halved with every
additional recirculation. Latency increases linearly, but steeper for the SmartNIC. [159]

MATReduce [160] follows a similar goal of cutting redundant operations in P4 programs by
combining and reducing duplicate match invocations. Instead of using the same match key
multiple times in different tables, they combine these tables, consequently also reducing the
number of matches performed. The authors evaluate their framework for bmv2 and the Net-
FPGA SUME. The FPGA was able to reach line-rate in all scenarios. The authors report an
end-to-end latency below 1.4 ms in their complex scenario consisting of a firewall, access control
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list, network address translation, and routing. Thereby, MATReduce can yield improvements
up to 45 % compared to regular P4 implementations. [160]

Bressana et al. enhance programmable ASICs with FPGAs for the use case of generating storage
fingerprints [158]. They propose this heterogeneous hardware design to overcome the shortcom-
ings of both ASIC and FPGA-based platforms. However, this comes at the cost of increased
latency and the potential for the lower throughput FPGA to throttle the ASIC. For the scenario
of storage fingerprinting the authors demonstrate a latency of approximately 5.5µs using the
proposed architecture. [158]

Modeling of Data Plane Components: Breaking down the processing of a network device into
different components and evaluating and modeling individual components separately is no new
approach. For instance, Rotsos et al. [161] have used this approach in their OFLOPS bench-
marking suite for OpenFlow switches. They focus on inserting and benchmarking the behavior
of the switch with different OpenFlow rules. The results show that the performance of Open-
Flow switches depends heavily on the hardware or software implementation. This approach to
benchmark individual components has also been proposed for P4 by Dang et al. They present
the WhipperSnapper benchmarking suite [83] to evaluate the performance of a wide range of P4
target devices. Whippersnapper is split into target-independent benchmarks, i.e., benchmarks
executed for all target platforms available on the test system, and target-specific benchmarks,
i.e., benchmarks executed only for a specific target platform. They divide the P414 language into
the five components parser, processing, including match-action tables and checksum calculation,
state access through registers, packet modifications like adding and deleting headers, and action
complexity composed of writing fields and expressions. Depending on the target, they focus on
different metrics that have to be investigated: throughput and latency for software and NPU
platforms; and resource usage for FPGAs and ASICs. The authors perform an abstract evalu-
ation of selected components of the bmv2, PISCES, and P4FPGA targets. We extended this
approach for the modeling of components and apply it to the P416 specification of the language.

Harkous et al. [84] propose a method for estimating the packet processing latency as a function
of the configured P4 program when running on different P4 targets. They measure the latency
cost of basic P4 constructs when running on the NFP-4000 SmartNIC. The authors note no
measurable impact of modifying one or all headers fields using Ethernet, IPv4, or UDP traffic.
Similar, binary operations have no significant impact on the latency, while arithmetic operations
show an increase up to 1.9µs for 25 operations. Parsing up to three headers has no impact on
latency, however, when modifying, for instance, the complete UDP header, an increase up to
3.3µs is noted. Further, Harkous et al. state that neither this increase is additive, nor the number
of parsed and modified headers is independent in terms of resulting latency. Lastly, they show
that the latency increase for an additional number of match-action tables can be approximated
with a polynomial of second degree, whereby ten additional tables yield approximately 5.5µs
increased latency. Based on their measurements, Harkous et al. propose a model based on the
number of parsed headers, modified headers, and tables. Further, they provide a lookup table for
one to three parsed or modified headers and their polynomial approximation for the number of
table entries. Their validation shows an error up to 187 ns. [84] In comparison, our approach for
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the evaluation and modeling of these components is independent of existing or future protocols.
Further, our framework can use arbitrary metrics for evaluation.

Harkous et al. extended their work to include t4p4s and the NetFPGA SUME target plat-
forms [157]. They note target-specific influences. For instance, increasing the number of parsed,
modified, copied, or removed headers has a measurable impact for the NFP-4000. However, only
the former operation has a noticeable impact for the NetFPGA SUME. The t4p4s framework
shows no noticeable changes for any of those actions applied up to ten times. However, for 256 B
packets, starting with four match-action tables, the DPDK-based target experiences packet loss.
For all other targets and packet sizes, latency increases linearly. For each of the targets the au-
thors determine a vector including the estimated coefficient of the respective approximated slope
for each tested component. Based on the CFG of the P4 program, Harkous et al. determine the
number of occurrences of each of the features within the program. The latency estimation for
a program is given as sum of the baseline latency plus the product of the target-specific vector
times the occurrence of each feature within the program. The validation shows a measurement
error below 1µs. We provide further insights into the processing pipeline of the t4p4s target, in
particular, that header modifications do have a performance influence for this target. [157]

Lukács et al. propose a probabilistic model of the program execution to calculate the expected
cost for a given control flow graph [162], [163]. The authors explicitly decouple the analysis of
the control flow from the requirement of black-box testing. Only based on the P4 source code
and information about the execution environment, i.e, target platform and implementation, the
worst-case and the expected cost when executing the program can be statically determined.
Thereby, this cost is a result of the sum of the cost of all possible execution paths times their
respective execution probability. In their model the authors consider that execution conditions
depend on program state and might not be independent. Through incremental refinement,
constantly modeling more parts of the program and adding additional target-dependent infor-
mation, Lukács et al. plan to improve the accuracy of the model. They apply their model to
LPM, comparing a trivial linear search algorithm to DIR-24-8 used by DPDK. In a case study,
they show that their model can predict the effects of increasing cache sizes on the execution cost
of performing a single LPM lookup depending on the probability that the prefix is longer than
24 bit. This confirms the properties of the DIR-24-8, risking performance penalties for longer
prefixes, as it assumes that the majority of prefixes is 24 or less bits. Our evaluation confirms
these findings for the DIR-24-8 LPM data structure and extends the modeling for exact and
ternary match types. [162], [163]
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Figure 4.5: Automated measurement framework for data plane component modeling

4.3 Measurement Framework for Automated Compo-
nent Modeling

Section 4.3 is based on a collaboration between Dominik Scholz, Hasanin Harkous, Sebastian
Gallenmüller, Henning Stubbe, Max Helm, Benedikt Jaeger, Nemanja Deric, Endri Goshi,
Zikai Zhou, Wolfgang Kellerer, and Georg Carle [14].

P4-programmable devices come in a wide variety regarding their underlying hardware architec-
ture, such as CPU-based systems or ASICs as representatives of both ends of the spectrum.
CPU-based P4 target platforms offer limited performance but are easily extensible. In compari-
son, ASIC target platforms have dedicated P4 processing pipelines with limited programmability
but offer optimized performance in terms of throughput and latency. To obtain and parameter-
ize the component model presented in Section 4.1.2 for target platforms with such fundamental
differences, we propose a framework for the automated measurement, evaluation, and model-
deriving for P4 data plane components. The framework displayed in Figure 4.5 is available as
open-source [16] and operates in three stages: for the chosen component, an experiment speci-
fication is generated, the measurements are executed, and the generated artifacts are evaluated
to derive the component model.

4.3.1 Component Experiment Specification
The goal of the framework is to model different metrics, e.g., throughput, latency, or resources,
of programmable data planes with entirely different properties, e.g., software- or ASIC-based.
For the sake of reproducibility, each experiment analyzing a single P4 component or feature is
defined by a threefold specification.
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First, the framework specifies which performance metrics are of interest for the evaluation of the
device behavior. Per default, measurements include throughput, packet rate, and latency met-
rics. If supported by the target device, the resource consumption of the P4 program complexity
is measured. Furthermore, internal target-specific parameters like CPU cycle usage or cache
misses can be evaluated. However, not every metric is interesting for every target device [6].
For instance, resource consumption is of little interest for software-based targets, as the over-
all resources are virtually unlimited. Vice-versa, throughput and packet rate metrics are less
interesting, e.g., for the Intel Tofino that guarantees line-rate independent of the P4 program.
Not including irrelevant metrics for a certain target is crucial to limit the search space, reducing
experiment complexity and measurement completion time. The specification of performance
metrics is vital for all other components, including the load generator, P4 program, and the
evaluation.

The second part of the specification defines the traffic that the DuT is subjected to, i.e., the
traffic generated by the load generator. This includes the targeted throughput and packet size.
Further, the specification defines the headers and payload of each packet. In particular, whether
certain bytes of the generated packets have to be changed throughout a measurement series. This
is required to generate traffic, for instance, matching different entries of match-action tables.

Lastly, the framework defines the parameters of the P4 program. As we are interested in eval-
uating individual program components independent of protocols, we define a baseline program.
This is the minimal program required to actually forward a packet from the incoming port to
the outgoing port. Based on the baseline program, we increase program complexity only for
the respective component that we want to analyze. For instance, to evaluate the impact of the
number of table entries for a given match-action table on the performance, the specification de-
fines the range for the different numbers of table entries that should be tested. The specification
contains the number of occurrences for every component and further details, e.g., how many
bits each parser state parses. As a result, the components of the whole P4 program are specified
such that an actual P4 program for a specific target can be generated.

4.3.2 Measurement Execution
Actually running a measurement poses two challenges: First, each testbed is different, be it the
hardware of the management node, testbed nodes, or the testbed controller software. Therefore,
the testbed setup component of the framework requires a testbed-specific implementation. This
component is responsible for starting and synchronizing individual measurement runs between
different nodes and gathering all artifacts. For this work, we implemented this component for
testbeds using pos presented in Section 3.2.

Although P4 programs are intended to be portable, i.e., target-agnostic, in theory, target-specific
knowledge is still required. This includes, for instance, the P4 architecture model that the P4
program needs to adhere to, supported extern interfaces, and the control plane interface required
for loading the program and inserting match-action table entries. Therefore, the automatically
generated P4 program specification needs to be translated to an actual P4 program fitting the
P4 target. For the purpose of this work, we have implemented this target-specific component
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for the DPDK-based t4p4s target. Further, the testbed-specific component needs to implement
means to manage the concrete P4 device.

The MoonGen-based load generator component can be automatically generated based on the
experiment specification. The resulting MoonGen script generates traffic with the properties
set by the traffic specification. By default, two sets of measurements are performed. First,
the maximum throughput and packet rate that the DuT can process without packet loss are
determined. For this, the DuT is subjected to traffic at line-rate. Based on the resulting
maximum packet rate we measure the device’s latency in the second phase. We subject the
target to low, middle, and high traffic load, representing 10 %, 50 %, and 70 % of the maximum
packet rate, respectively.

4.3.3 Artifact Evaluation
As the configuration and execution of the load generator is fully automated, all metrics obtained
from this source can be evaluated, modeled, and visualized automatically. Only data obtained
from the DuT requires a target-specific processing implementation.

We describe our packet processing systems and the model we want to derive using Equations 4.1
and 4.2. To automatically derive the model for an individual component, we use the fully
automated experiments of the framework to obtain measurement data g that defines the behavior
of this component:

M(x) = g (4.8)

with x ∈ G defining the measurement domain. Based on g, we want to derive a model as defined
in Equation 4.2 represented by a modeling function M with an error metric H that quantizes
the quality of M :

m : (M,H) (4.9)

Automated Model Derivation
To derive a model for the measurement data g for the whole or a part of the measurement
domain X ⊆ G, we use curve fitting applying the non-linear least squares Levenberg-Marquardt
algorithm [164]. We use the curve_fit algorithm of the python scipy module1, which works as
follows: for a given function prototype τ with free fitting parameters ~p∗ the algorithm tries to
determine ~p to fit the given measurement data using τ as close as possible. The result is the
parameterized fitting parameter vector ~p. An example for such a function prototype with three
fitting parameters is the polynomial of degree two:

τ(x) = p∗
1x

2 + p∗
2x+ p∗

3 (4.10)

To improve the quality of automatically generated models, we use a set Λ∗ of different function
templates λ. Each template is defined by the function prototype τ for curve fitting and an

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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associated function rank ψ that will be explained later:

λ = (τ, ψ) (4.11)

As function prototypes we use polynomials of degrees zero to five, exponential functions, loga-
rithmic functions, and the inverse of all mentioned functions, i.e., τinv = p∗

0
τ . For every function

template λ from the set of function templates Λ∗, the curve fitting algorithm is applied to solve
for the fitting parameters ~p using the least linear squares approach. The result is the set of
possible solutions Λ for the given measurement data:

Λ := {curve_fit(λ) = (τ, ψ, ~p, η)
∣∣ ∀λ ∈ Λ∗} (4.12)

Model Quality Quantization: We use an error metric η to quantify the quality of each calcu-
lated fitting in Λ. Thereby, the experiment specification defines which metric should be used.
Currently, the framework supports the mean absolute percentage error (MAPE) [153] and the
symmetric MAPE (sMAPE) [153] metrics for regular measurement data. However, other metrics
can be added as plugins.

For MAPE we calculate the absolute percentage error between every measurement and fitting
point and then use the combined mean:

η(x)MAPE =
∣∣∣∣g(x) − τ(x)

g(x)

∣∣∣∣ (4.13)

ηMAPE =
∑

x∈X η(x)
|X|

(4.14)

However, MAPE has drawbacks, e.g., it is sensitive to outliers or artifacts in the measurement
data [153]. SMAPE improves on the issues of MAPE, wherefore, we use the variation defined in
Equation 4.15 as default error metric for the remainder of this work:

ηsMAPE =
∑
x∈X

|τ(x) − g(x)|
|g(x)| + |τ(x)| (4.15)

MAPE, sMAPE, and other metrics, are vulnerable to overfitting, resulting in complex functions
being preferred for fitting. This becomes clear when looking at measurement data for a clearly
linear dependency as shown in Figure 4.6. The resulting parameters for fitting a polynomial of
first (τ1) and fourth degree (τ2) are shown in Table 4.1. Although the polynomial of first degree
visually matches the measurement data, the higher degree polynomial has a lower error and
would be preferred according to the sMAPE-based error metric η. Thereby, |p2

0| is extremely
small and even |p2

1| and |p2
2| are below 0.1, i.e., the respective high degree polynomial factors

are of low relevance for the overall model. While it is mathematically correct to choose the
higher degree polynomial, semantically a polynomial of degree one is desired to fit the linear
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Figure 4.6: Overfitting for a clearly linear dependency

p0 p1 p2 p3 p4 η

τ1 14.77241 659.44034 - - - 1.418%
τ2 |p0| < 10−5 -0.00106 0.09374 11.73365 676.72004 1.196%

Table 4.1: Parameterized fittings showing overfitting

dependency. Therefore, we counteract this behavior using two independent strategies to improve
the calculated error metric η.

First, we forbid small fitting parameters by defining an absolute minimum value γ for the fitting
parameters. All fitting parameters p returned by the curve fitting algorithm are processed
according to Equation 4.16:

p′ =


γ, if |p| < γ, p > 0
−γ, if |p| < γ, p < 0
p, otherwise

(4.16)

The error metric is then calculated, e.g., using Equation 4.15 for sMAPE, based on the capped
fitting parameters p′. We argue, that limiting the granularity of the fitting parameters is war-
ranted and justified as it also reflects the limited measurement accuracy.

The second strategy is based on the Akaike information criterion (AIC) [153]: we assign ranks
ψ to every function prototype, whereby the rank is equal to the number of fitting parameters:

ψ = | ~p∗| (4.17)

If the difference in error metric for two fittings is between a certain margin ω, we choose the
simpler function. ω is based on the minimum of both fitting errors multiplied by a margin factor
κrel. As this would have close to no effect for already small errors, we also define an absolute
minimum margin κ. For two fittings for the same domain F1 and F2, if |η1 − η2| ≤ ω, we choose
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the fitting with lower rank ψ:

τchosen =


τ1, |η1 − η2| ≤ ω, ψ1 < ψ2

τ2, |η1 − η2| ≤ ω, ψ1 ≥ ψ2

τ1, η1 < η2

τ2, otherwise

(4.18)

with
ω = max(min(η1, η2) · κrel, κ) (4.19)

We consider an error metric increased by up to κ = 10 % acceptable to prioritize simpler model
functions. We do not directly use the AIC formula as initial measurements have shown that this
metric is too aggressive in preferring simpler functions in some scenarios. As this is a common
point of critique for AIC, we chose our adjustable approach.

sMAPE in combination with our AIC-based function ranks is the default model quality metric.
However, the framework is designed to support other metrics like MAPE that can be used as
plugins instead. For measurement data that should be modeled using probability distributions,
e.g., gaussian or trapezoid, other metrics, like the earth mover’s distance (EMD) [165], can easily
be integrated.

Resulting Model: The result of this process is a function prototype τ in combination with
the calculated fitting parameters ~p being the best solution according to the error metric η and
function rank ψ out of all calculated fittings Λ. The function models a part of or the full
measurement domain, i.e., X := {x ∈ G

∣∣ α ≤ x < β}. We denote this chosen fitting as shown
in Equation 4.20:

F = (λ, ~p, α, β, η) (4.20)

For simple systems, this fitting, including the adjustable parameters κ, κrel, and γ, represents
the complete model:

m : (F, η;κ, κrel, γ) (4.21)

Multiple Partial Fittings
The behavior of complex systems cannot be modeled using only the function prototypes available
in Λ∗. Events like overloading the system or exceeding the capacity of memory caches can
drastically alter the performance behavior. Therefore, both sides, before and after the event,
should be modeled independently. An example for such a case is shown in Figure 4.7. The
device drastically changes its behavior between x = 350 and x = 512. In this case, the best
single fitting F 1

1 still has an error of η = 34.07%. Clearly, this fitting can not accurately model
the entire measurement domain.

To reflect this, we split the measurement domain G into n ∈ {2, 3, 4, 5, 6} separate domains and
use the above outlined approach for every individual segment. The resulting combined fitting
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Figure 4.7: Drastic change in device behavior requiring two individual fittings

F is denoted as shown in Equation 4.22:

F(x) =



Fn
1 (x), s0 ≤ x < s1

Fn
2 (x), s1 ≤ x < s2

...
Fn

n (x), sn−1 ≤ x ≤ sn

(4.22)

The combined fitting F consists of n individual fittings Fn
i :

Fn
i = (λi, ~pi, si−1, si, ηi) (4.23)

These fittings are divided by n+ 1 splitting points ~s from the set of possible splitting points:

~s ∈ Sn (4.24)

s0 and sn denote the lower and upper bound of the measurement domain G, respectively. The
error θ for the combined fitting is a weighted sum of the individual fitting errors ηi:

θ =
∑n

1 |Xi| · ηi

|G|
(4.25)

Similarly, the rank Φ of the combined fitting is a weighed sum of the individual function ranks:

Φ =
∑n

1 |Xi| · ψi

|G|
(4.26)
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To determine the best combined fitting, we again apply the AIC-based metric of Equation 4.18
to always compare two combined fittings F1 and F2, however, this time using θ and Φ:

Fchosen =


F1, |θ1 − θ2| ≤ ωs,Φ1 < Φ2

F2, |θ1 − θ2| ≤ ωs,Φ1 ≥ Φ2

F1, θ1 < θ2

F2, otherwise

(4.27)

with

ωs = max(min(θ1, θ2) · κrel, κ) (4.28)

With applying Equation 4.27 we eventually select the best modeling function M consisting of
multiple partial fittings for this number of splitting points:

M = (F , θ,Φ) (4.29)

The final model is then as defined in Equation 4.30:

m : (M, θ;κ, κrel, γ) (4.30)

Using this approach with n = 2 for our example shown in Figure 4.7 results in the two fittings F 2
1

and F 2
2 . The algorithm correctly detected the overload event and modeled both sides accurately.

Thus, the resulting error is θ = 2.67%, more than ten times better compared to the model using
a single fitting.

Determining Splitting Points
We use two methods to determine the set Sn of n + 1 splitting points s for multiple partial
fittings. For two or three fittings, we use brute force, i.e., we calculate fittings for all possible
combinations of splitting points:

Sn := {~s ∈ Nn+1 ∣∣ s0 < s1 < sn, s1 < s2 < sn, ..., sn−2 < sn−1 < sn} (4.31)

with s0 = 1 and sn = |G|. This results in a total of O(|G|n) fittings that need to be calcu-
lated. Computing these can be parallelized, while a single curve fitting requires less than 0.5 s,
depending on the number of data points.

For a higher degree of splitting points, brute force is not feasible due to the increase in com-
plexity. Therefore, we use a heuristic to determine likely occurrences of an event that merits a
splitting point. We assume, that an event is indicated by a drastic change in inclination of the
measurement data curve, e.g., a point after which the slope of the curve alters the direction. To
determine these points, we calculate the second derivative of the measurement data and select
the index, i.e., the x-axis index, of local maxima and minima. From the calculated set of maxima
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and minima we use the l highest absolute extrema as splitting points:

Sl := {idx(maxk({|g′′(x)|
∣∣ ∀x ∈ G}))} (4.32)

As the measurement data is neither continuous nor do we know a function approximating the
data, we calculate local piecewise derivates using finite differences.

To reduce the impact of measurement artifacts on the calculation of derivatives, we repeat this
process while including one or more intermediate steps. For instance, one intermediate step can
be to smooth the measurement data using local linear or polynomial regression. Again, the l
highest extrema are added to our set of splitting points for which we calculate fittings.

We specifically perform several different rounds of manipulating the measurement data and
determining splitting points for our total set of splitting points, as each operation, e.g., smoothing
measurement data, may improve or worsen the quality of the determined splitting points for the
current scenario. We further extend this set by adding the j surrounding data points for each
determined splitting point:

Sl,j := Sl ∩ {x+ a
∣∣ ∀x ∈ Sl,∀a ∈ [−j, j] ∈ N0} (4.33)

We then use Equation 4.31 replacing Nn+1 with Sn+1
l,j . Extending the set of possible splitting

points improves the overall accuracy at the cost of computation time. However, compared to
brute force, the number of splitting points is drastically reduced and can be further restricted
by the parameters l and j.

Similar to our error metric, the method to calculate derivatives for the measurement data can
be replaced with other approaches [166] as plugins. For instance, different filters to reduce
the impact of noise, like the Savitzky-Golay filter [167], can be applied to the measurement
data before calculating the derivative function. However, these only provide scenario-specific
optimized solutions, wherefore, the outlined approach is used by default.

4.4 Modeling a Software Data Plane Target
Section 4.4 is based on a collaboration between Dominik Scholz, Henning Stubbe, Sebastian
Gallenmüller, and Georg Carle [6]; The exact match model for increasing number of table
entries in Section 4.4.4 is based on a collaboration between Dominik Scholz, Hasanin Harkous,
Sebastian Gallenmüller, Henning Stubbe, Max Helm, Benedikt Jaeger, Nemanja Deric, Endri
Goshi, Zikai Zhou, Wolfgang Kellerer, and Georg Carle [14].

We apply our measurement framework for P4 data planes generated using the t4p4s compiler.
t4p4s produces DPDK-compatible code that runs on COTS CPU-based systems. As is typical
for such systems, t4p4s’ behavior is influenced by many factors, including interrupts, memory
hierarchies, and cache sizes [28]. While achieving lower throughput and higher latency, the
advantage is the virtual non-existence of limits regarding the P4 program complexity and custom
functionality.
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4.4.1 Framework Integration
All measurements were conducted in an automated and reproducible fashion using the framework
presented in Section 4.3, integrated with our pos testbed controller introduced in Section 3.2.
Due to pos’ enforced automation and reproducibility, the whole process of the modeling frame-
work is automated and reproducible, too. The framework employs the two-node setup shown in
Figure 3.2, directly connecting the MoonGen load generator and the DuT.

Unless mentioned otherwise, we use an upstream t4p4s version from September 20201 with small
changes due to performance2 or functionality reasons. In particular, we templated the control
plane such that it can be generated by the P4 program generator component of our framework.
To further improve the t4p4s startup time, especially for experiments with extreme numbers of,
e.g., match-action table entries, we also templated parts of the data plane startup code. In some
cases, this reduces the startup time from several minutes, to a few seconds. Lastly, for selected
experiments, we have increased limits, e.g., for the maximum size of match-action tables or hash
data structures. We have not modified any components of the P4 processing pipeline.

The DuT running the t4p4s P4 switch is equipped with an Intel Xeon CPU E5-2640 v2 clocked
at 2.0 GHz and an Intel X540-AT2 NIC. For all measurements, turboboost and hyperthreading
were disabled to reduce performance jitter. Further, CPU cores were isolated and the t4p4s
processes were pinned to CPUs. Unless mentioned otherwise, the CPU frequency was set to
2.0 GHz and we used DPDK version 19.03.

We use white-box measurements using Linux’ perf utilities to measure CPU cycles and cache
misses.

4.4.2 Resource Utilization
Memory consumption is typically no issue for P4 programs on a CPU-based system as modern
COTS servers can provide RAM up to the TB range. However, the actual usage of memory has
an impact on the performance when different levels of caches are involved. This may happen for
match-action tables with a large number of entries, i.e., large BGP routing tables. Therefore, we
use the white-box profiling measurements to analyze the impact of memory consumption and
present the results as part of our performance model.

4.4.3 Baseline Model
We use the three-fold approach shown in Figure 4.8 to determine a baseline model for the
t4p4s target. The first step, referred to as DPDK Only, does not include any t4p4s related
code, focusing solely on receiving and sending packets using DPDK. This is done to understand
the performance overhead of the underlying DPDK runtime. The second step, referred to as
Baseline, adds a minimal P4 pipeline that each packet traverses, consisting only of a minimal

1 Commit SHA: b3870d6aee2b68b8f340cabe50ccb21e93a217eb

2 https://github.com/P4ELTE/t4p4s/issues/23
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Figure 4.8: t4p4s’ internal traffic flow
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Figure 4.9: t4p4s baseline scaling of packet rate with CPU frequency

parser and deparser, and setting the egress port via the default action of one exact match-
action table. Similar as before, the goal is to understand the processing overhead generated
through t4p4s’ boilerplate code. We use this Baseline model for comparison with all further
measurements using the full pipeline.

CPU Cycles
Figure 4.9 shows the scaling of processed packet rate with CPU core frequency for two different
versions of t4p4s: the March 2019 version used in our publication [6] (cf. Figure 4.9a), and
the September 2020 version used for this work (cf. Figure 4.9b). At 1.3 GHz the DPDK Only
program for the 2019 version is bound by the 10 GbE line-rate. Simply adding the boilerplate
code generated by the minimal P4 program reduces the packet rate by approximately 6 Mpps. As
the DPDK Only program for the 2020 version is bound by the line-rate even for the minimum
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CPU frequency, we cannot exactly estimate the overhead generated by the boilerplate code.
However, it must be at least 8 Mpps, showing that the 2020 t4p4s version is able to process at
least 2 Mpps fewer packets for the same CPU frequency.

Increasing the CPU frequency on one core or processing with multiple cores results in linear
scaling, bound by the line-rate. A higher frequency equals more CPU cycles per second, allowing
more packet processing operations in the same interval. This is reflected by the linear models
F 1

base2019
and F 1

base2020
.

Typically, the bottleneck of a CPU-based software packet processing system is the CPU, i.e.,
the number of CPU cycles required per packet limits the number of processed packets. Based on
Equation 2.1, we use the measured maximum packet rate p̃ and the configured CPU frequency
f to calculate the cycles per packet C̃:

C̃ = f

p̃
(4.34)

We integrated the calculation of this metric into the framework and use CPU cycles per packet
for the following experiments as default metric. We want to note, that CPU cycles per packet
can only be calculated when we observe packet loss. Only in this case we can actually determine
the maximum number of packets that could be processed.

Using Equation 4.34 to calculate the cycles per packet for the baseline scenarios results in models
consisting only of a constant factor. Processing of a single packet requires approximately 84 and
146 cycles for the DPDK Only and Baseline scenarios of the 2019 t4p4s version, respectively,
and 175 cycles for the 2020 Baseline version. While these values are in the expected range for
DPDK packet processing [28], the calculation also confirms that the 2020 t4p4s version has a
higher baseline cost of almost 30 CPU cycles when processing packets. We attribute this worse
performance to added functionality and, therefore, also the increased complexity of the newer
version.

For all further experiments, we use the 2020 t4p4s version and the CPU is clocked at f = 2 GHz.
Using the notation for the best fitting and resulting model introduced in Equations 4.20 and 4.21,
the model for constant CPU cycles consumption of the baseline program can be written as shown
in Equations 4.35 and 4.36:

Fbase = (〈τ(x) = p∗
1, 1〉, 〈175〉, 1.2, 2.0, 0.13%) (4.35)

mc
base : (Fbase, 0.13%; 10%, 0.5%, 10−5) (4.36)

As the modeling function is constant, the vector of free fitting parameters in Equation 4.35 is
empty. To shorten this verbose notation we assume κrel = 10%, κ = 0.5%, and γ = 10−5 for the
remainder of this work, unless mentioned otherwise. The shortened form of the model presented
in Equation 4.36, solving the function prototype τ with the fitted parameter vector ~p, is then
written as follows:

mc
base : (M(x) = 175, 0.13%) (4.37)

We use this notation for the remainder of this work.
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Figure 4.10: Baseline latency of t4p4s for different CPU loads on a single CPU core

Latency
While latency as metric is not the primary focus of this study, we want to provide a brief
overview of the baseline t4p4s latency. We present different latency percentiles for increasing
load percentages relative to the maximum processed packet rate in Figure 4.10.

t4p4s shows a latency behavior typical for software packet processing systems. As depicted in
Figure 4.10, for less than 10 % load, latency is higher due to batch processing of DPDK. As
shown in the HDR histogram for 2 % load in Figure 4.10b, batches are processed every 100µs
in the worst-case [168], resulting in the plateau for the 99 %-ile. For higher loads, batches fill
quicker and are processed before the timeout, resulting in the higher percentiles being closer
to the median latency. For these loads, system interrupts and other side effects cause a long
tail [169], which persists throughout all following measurements.

4.4.4 Component Models
We derive the component model presented in Section 4.1.2 for t4p4s by applying our automated
measurement and modeling framework introduced in Section 4.3. As it is infeasible to accu-
rately model every single component that the P4 language provides in detail, we try to identify
performance dominating factors and focus our modeling on their features. We assume that
other, unmodeled components, either have a minor impact or add a constant cost to the overall
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Figure 4.11: Scaling parsed header fields

model. The remaining task is to determine, which P4 language constructs and their features
are dominating factors. To answer this, we look at common L2 switch and L3 router programs
and focus on their included P4 language components. We focus on built-in P4 components, i.e.,
externs, like registers or hashing, or not included in our evaluation.

For selected experiments we artificially increase the complexity of the program, e.g., by applying
multiple match-action tables. This is done to ensure that the measurements, when scaling the
actual component of interest, are not limited by line-rate. If this would happen, the actual max-
imum processed packet rate and CPU cycles per packet could not be calculated. As this added
complexity remains constant throughout the measurement series of one component experiment,
the performance overhead will be a constant factor in the resulting model. For the actual scaling
of the component, this constant offset has to be removed from the model.

Parser and Deparser
We identified two primary actions performed in the parser and deparser stages: parsed header
fields that are used in subsequent processing pipelines; and changing the length of the packet
by adding or removing header fields.

Number of Parsed Header Fields: Thereby, we differentiate two scenarios for the parser stage.
First, the parsed header fields are not used throughout the data plane, and, second, the trailing
parsed header fields are used as keys for a match-action table. The distinction is important to
verify that the parser actually parses the header fields, as parsing of unused header fields could
be optimized away during the P4 compilation stage. Furthermore, the compiler might reduce
parsing only up to the last header field that is used throughout the remaining program.

As shown in Figure 4.11, the derived model is constant in both cases, i.e., the cost of simply
parsing additional header fields is not measurable.

A noteworthy curiosity is that t4p4s allows the parsing of more bytes than the length of the
received packet. This is possible because of DPDK’s underlying data structure used to store
packets in memory, the mbuf. This structure has a fixed length to store packets of at least
1500 B. Therefore, parsing additional fields results in continuing to parse the respective mbuf
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Figure 4.12: Scaling field writes

structure, independent of packet size. Similarly, writing beyond the packet, as long as it is
within the mbuf ’s reserved memory, is possible.

Number of Modified Fields: In contrast to the previous experiment the parsed fields are actually
modified by writing a constant value. Although this action is not exclusively performed in the
parser and deparser stages, we consider it tightly coupled with the number of parsed header
fields. We differentiate writing 1 B fields that are parsed from packet headers and metadata
fields. For the former, we use 512 B packets and always parse all fields as single bytes, allowing
us to test up to almost 500 individual header field writes. For metadata fields we use 64 B
packets parsing no additional header fields.

The resulting CPU cycles scale linearly with the number of modified header fields as shown in
Figure 4.12. We exclude showing metadata fields as it displays the same behavior, however, is
limited to approximately 50 modified fields.

mc
fwh : (M(x) = 36.22x+ 109, 1.49%) (4.38)

Based on the resulting model, shown in Equation 4.38, modifying a 1 B header field costs ap-
proximately a constant 36 cycles.

Adding and Removing Headers: This experiment evaluates the feature of adding or removing
additional bytes in the form of headers to or from the parsed packet. Thereby, we differentiate
between adding or removing either one large, or several small headers.

Figure 4.13 shows that adding a single header of increasing size has only a small additional
cost per added byte. In contrast, adding multiple headers of 1 B results in a linearly increasing
model. This is due to the overhead generated by creating and handling separate headers, in
comparison of only increasing the size of a single header. The same relation can be seen for
removing headers. However, compared to the model for adding headers mc

hadd, the per-header
cost is less then a fourth for the removing headers model mc

hrem. This difference fits with the
assumption that removing bytes from the packet is simpler than adding them.
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mc
hadd : (M(x) = 14.77x+ 659.44, 0.55%) (4.39)

mc
hrem : (M(x) = 3.32x+ 881.84, 0.59%) (4.40)

When removing the constant factors from Equations 4.39 and 4.40, we conclude that every
added header causes an overhead of approximately 15 CPU cycles, while removing one costs less
than 4 cycles.

Adding or removing more than 120 B is not possible for t4p4s due to a hard-coded limitation
by DPDK.

Match-Action Tables
In P4, packet processing tasks are expressed as a series of matches and actions on packet or
metadata. Being at the center of every P4 program, the match-action performance is crucial
to understand the performance of the entire packet processing pipeline. Therefore, we argue
that analyzing and modeling match-action table-related features is vital for accurately modeling
paths through the data plane.

We have identified the following features for match-action tables:

• the number of match-action tables in a P4 program

• the table’s match types—exact, LPM, or ternary—which determine the mode of compar-
ison between a packet header or metadata field value and available table entries

• the size of individual table entries, defined by the size and number of keys

• the amount of action data associated with a table entry

• and the number of entries in the match-action table
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Figure 4.14: Scaling number of match-action tables

For the sake of simplicity, we assume that one match-action table only consists of one match
type.

Number of Applied Match-Action Tables: First, we want to analyze and model the number of
applied tables in the P4 program. As, e.g., the switch.p4 program1, a feature-complete switch
intended for use in data centers, contains approximately 160 different match-action tables in its
entirety, we analyze up to 1024 match-action tables.

While hardware P4 targets typically do not allow the application of the same table multiple times
per packet, this restriction does not exist in t4p4s. This flexibility allows a closer estimation of
the cost of the actual table application, i.e., hash calculation for exact matches, without fetching
data for keys and entries. The data fetched is the same for successive table applications, getting
cached and amortizing the cycles required. Therefore, we analyze both scenarios for exact match
tables, applying the same table n times and applying n different tables.

mc
ntesame : (M(x) = 101.74x+ 97.30, 0.67%) (4.41)

mc
ntediff : (M(x) = 109.82x+ 98.40x, 2.63%) (4.42)

As shown in Figure 4.14 and Equation 4.41, per-packet CPU cycles increase linearly with the
number of repeated applications of the same exact match table. The primary factor is the
cost of calculating the hash used to access the table as the cost for loading the match keys is
amortized through caching. When applying different exact match tables—the more common
usage in P4 programs—the derived model in Equation 4.42 shows only a slight increase for the
linearly scaling factor.

For the ternary and LPM match types, we show the derived models for applying different tables
in Equations 4.43 and 4.44, respectively. While they also show a linear dependency, applying
match-action tables of those match types is less expensive. Ternary matches are a simple lookup

1 https://github.com/p4lang/switch
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in a linked list, i.e., no hash has to be calculated. Similar, the lookup in the DIR-24-8 data
structure for the LPM match does not require lengthy calculations, explaining the reduced
per-table cost.

mc
ntter : (M(x) = 44.75x+ 99.57, 0.96%) (4.43)

mc
ntlpm : (M(x) = 77.97x+ 93.26, 3.90%) (4.44)

For exact match tables, we use the model shown in Equation 4.42, applying different tables.
Further, we deduct the constant factor as we are interested in the scaling of the component:

mc
ntex : (M(x) = 118.82x, 2.63%) (4.45)

Increasing the Number of Table Entries: The number of table entries is a key factor for many
P4 applications. As the CPU target has plenty of memory compared to hardware targets, we can
push the limits for the possible number of table entries. A possible deployment scenario are BGP
IPv4 routing tables, which have a steadily increasing count of unique routable prefixes, reaching
more than 860 000 IPv4 entries at the beginning of 2021 [170]. Another example are firewall
rule-sets, which might scale to thousands of exact, ternary, or LPM matches. Scaling the number
of table entries up to millions, might reveal other bottlenecks than the CPU. Each table entry
requires memory for storage, including the match keys and action data. Consequently, we expect
the memory hierarchy, i.e., different caches and their capacity, to influence the performance. To
identify these bottlenecks, we use profiling to determine cache misses as additional metric.

Another aspect are match types that can be realized using specialized hardware, e.g., ternary
content-addressable memory (TCAM) for ternary and LPM matches. In a software target,
however, different algorithms with varying properties in regard to limitations and expected
performance are used.

Caches can accelerate memory accesses by saving entries that are queried with a high probability.
We aim for the worst-case scenario, generating traffic such that every packet hits another table
entry. Consequently, all table entries have to be constantly loaded, evicting old entries. For all
match types, table entries consist of a single 32 bit match key.

Exact Match Figure 4.15a depicts the CPU cycles per packet for an increasing number of
exact match entries. The modeling framework has identified six different parts that are modeled
individually. Using profiling, the first four parts can be explained. Initially, a model with linear
factor of 0.072 is proposed, i.e., the behavior is almost constant for less than 100 table entries.
DPDK exact match tables use cuckoo hashing with constant worst-case lookup time1. Fetching
the data from the packet headers used as match keys is also constant as it is the same for
all numbers of table entries. However, for the linearly increasing number of table entries, the
memory that has to be loaded is also linearly increasing. Starting with approximately 102 table

1 https://doc.dpdk.org/guides/prog_guide/hash_lib.html
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Figure 4.15: Scaling number of exact match entries. The vertical lines from left to right represent the estimations
for L1, L2, and L3 cache exhaustion using the resource model

entries, the data does not fit into the L2 cache any longer, resulting in an increasing number
of L2 cache misses as shown in Figure 4.15b. As a consequence of this increase, at circa 103

table entries, the model switches to a logarithmic function. For more than 105 table entries,
table entry data has to be fetched from main memory as indicated by the increase in L3 cache
misses. As these fetches take significantly longer than fetches from fast caches, the CPU cycles
per packets double after a transition period. This transition is modeled independently as linear
function. After the transition, the load operations from main memory outweigh other effects,
resulting in a constant model. However, after approximately 4.5 · 106 table entries, the level
changes once again, being modeled by another linear transition and constant level thereafter.
This last effect is not explained by any other metric. The resulting CPU cycles model for this
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experiment is given in Equation 4.46 with a combined error of 0.730 %.

Mexact(x) =



F 6
1,exact(x) = 0.072x+ 207.71, 0 < x < 8.5 · 102

F 6
2,exact(x) = 4.66 · log2(188.07x) + 193.01, 8.5 · 102 ≤ x < 1.0 · 105

F 6
3,exact(x) = 0.00226x+ 96.63, 1.0 · 105 ≤ x < 2.5 · 105

F 6
4,exact(x) = 590.74, 2.5 · 105 ≤ x < 4.5 · 106

F 6
5,exact(x) = −0.00002x+ 677.12389, 4.5 · 106 ≤ x < 9.0 · 106

F 6
6,exact(x) = 489.47, 9.0 · 106 ≤ x

(4.46)

Inspecting the implementation of exact matches results in Equation 4.47 to model the required
resources mr

exact in bytes for an exact match table based on the number of table entries e, total
key size rkeys in bytes, and size of the action data ractions in bytes:

mr
exact(e, rkeys, ractions) = 2 · 64 B + ((rkeys + 64 B) · e)︸ ︷︷ ︸

Hash table

+ (8 B · e)︸ ︷︷ ︸
Entries

+ (ractions · e)︸ ︷︷ ︸
Actions

= 128 B + e · (rkeys + ractions + 72 B)︸ ︷︷ ︸
Table entry size

(4.47)

The size of the exact match-action table structures amounts to 2 · 64 B due to cache-line align-
ment. The size of each table entry is defined by the total key size, the calculated hash (cache
aligned), action data (cache aligned), and a fixed-size pointer. We solve Equation 4.47 for e,
using rkeys = 16 B and ractions = 64 B:

Setting mr
exact = 20 MB, the L3 cache size of the used processor, results in 1.32 · 105 entries to

fully fill the L3 cache. This point, marked in Figure 4.15a, is an overestimation as the cache
is not exclusively used for table entries. For instance, the packet data is also loaded into the
caches. Similarly, the point for the performance drops caused by increasing number of L2 cache
misses can be roughly calculated using Equation 4.47 and mr

exact = 256 kB, resulting in 1.68 ·103

table entries. While this estimation is close to the point of the detected event, due to access
time difference between the L2 and L3 caches of less than 5 ns, the performance loss is not as
noticeable as when exceeding the L3 cache [171]. The increase in L1 cache misses is not detected
by the automated modeling approach. This is due to the even smaller difference in cache access
times from L1 to L2 cache. However, using the resource model of Equation 4.47 with the L1
cache size of mr

exact = 64 kB, results in 420 table entries.

The accuracy of the resource model is less accurate when predicting the L1 and L2 cache sizes.
We attribute this to the remaining data that is stored in the caches. However, the performance
impact is also less when exceeding the L1 and L2 caches. Only when exceeding the L3 cache, the
performance in CPU cycles doubles, for which the resource model in Equation 4.47 is accurate.
Therefore, we argue, that the point of exceeding the L3 cache size is the critical factor to model.

While the modeling approach correctly identified the events that lead to a change in performance,
the model might be unnecessarily complex for use in performance prediction. In particular, the
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Figure 4.16: Scaling number of ternary match entries

last two parts of the model are unnecessary for two reasons. First, the analyzed effect is both
unexpected and unexplained, and, second, the number of table entries is in an extreme region,
unlikely to be seen in most P4 applications. Therefore, we simplify the resulting model by
dropping F 6

5,exact and F 6
6,exact. The resulting model is simplified with only four different fittings,

whereby all individual parts can be explained by the memory-based resource model. Further,
we deduct the constant baseline factor of 207.78 to derive the component scaling.

Ternary Match Due to the lack of specialized hardware like TCAM, efficiently implementing
ternary matches in software is difficult. True parallelized lookups can hardly be implemented.
Further, more than one entry could match. The current implementation of t4p4s simply iterates
through the entire linked list of table entries, returning the last matching entry. Thus, in
theory, this results in a search complexity of O(n). As shown in Figure 4.16, only less than
approximately 600 ternary entries can be processed at maximum. The resulting model uses a
second degree polynomial:

mc
ternary : (M(x) = 0.00606x2 + 3.48x+ 238.89, 3.639%) (4.48)

Thereby, the quadratic factor of 0.00606 is very small, only becoming impactful for more than
500 entries. As this is close to the limit of maximum ternary entries, the quadratic factor is
essentially without impact. Consequently, the linear factor, indicating approximately 3.5 CPU
cycles per ternary table entry, is dominating, matching the theoretic complexity of O(n) for this
number of ternary table entries.

Due to the lower number of table entries (< 103) in this scenario, there is no visible impact of
memory accesses and L2 or L3 cache misses on the performance.

LPM Match t4p4s uses a DIR-24-8 data structure [172] for 32 bit key sizes, i.e., IPv4 LPM.
While a different data structure is used to allow 128 bit keys for IPv6 LPM, we focus on the
former. DIR-24-8 uses two different types of tables: tbl24 is a single table to store the most
significant 24 bit of the prefix in up to 224 entries. The second type of table is the tbl8 of which,
by default, 28 tables exist to store the remaining 8 bit. Prefix lengths of less than 24 bit can
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Figure 4.17: Scaling number of LPM match entries

be resolved with one lookup in the first table, longer prefixes require a second lookup in the
respective tbl8. DIR-24-8 assumes that routes with a prefix length of greater than 24 bit are
rare, optimizing lookups for smaller prefix lengths, while limiting the number of greater than
24 bit prefixes that can be stored. This represents a trade-off between memory complexity and
performance. [172]

Figure 4.17a shows the results when comparing using exclusively 24 bit prefixes with using an
additional 256 32 bit prefixes. Inserting more than 100 000 entries takes a considerable amount
of time wherefore those measurements are excluded. For the former case, the derived model
shows three different parts. For only up to nine table entries, the derived model shows the
expected constant scaling. Profiling presented in Figure 4.17b reveals that at this point the L2
cache misses increase. For the second part, the modeling framework determines a linear scaling.
Thereby, the factor is only 0.25, reflecting the small added cost of the L2 cache misses happening
for a percentage of packets. Starting with 200 LPM table entries, the L3 cache is the limiting
factor, as already at this point approximately 30 % of the lookups require data fetched from main
memory. This is due to the large size of the DIR-24-8 structure, as already the tbl24 requires
64 MB [172], [173]. Furthermore, the packet data is stored in the caches. As a consequence,
the shared L3 cache is filled with per-core DIR-24-8 structures. For this third part, we use a
logarithmic function as model:
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Mlpm(x) =


F 3

1,lpm24(x) = 184.79, 0 < x < 10
F 3

2,lpm24(x) = 0.25x+ 204.88, 10 ≤ x < 200
F 3

3,lpm24(x) = 14.43 · log(253.41x) + 135.11, 200 ≤ x

(4.49)

mc
lpm : (Mlpm, 0.655%) (4.50)

As with the previous cases, we deduct the constant effect for one table entry of 184.79 cycles
from the model to reflect only the scaling with table entries.

The influence of prefix length is also shown in Figure 4.17a. We added a constant 256 32 bit
prefixes to tbl8 such that every table match now requires of two lookups. For less than 200
entries a performance increase is noticeable. The additional lookup almost doubles the required
CPU cycles. When further increasing the number of table entries, the cost for the additional
256 entries amortizes, resulting in the cost for the additional lookup in the tbl8 structure. For
simplicity, we do not include the additional cost in our model.

Increasing the Entry Size: The size of an individual table entry can be increased either by
increasing the size or number of match keys, or by increasing the associated action data. In
both cases, this changes the parameters rkeys and ractions for our resource model mr

exact and,
therefore, when the different cache limits are reached. Our experiments show that this is indeed
the case. However, for ternary and LPM tables the already discussed limitations of the respective
table implementations outweigh this effect.

Number of Match Keys The first property that we scale to increase the size of match-action
table entries is the number of 1 B match keys. Figure 4.18 presents the results for up to 150
exact match keys. As expected, it scales linearly, as each additional match key requires another
data access. According to the derived model shown in Equation 4.51, this costs approximately
1.75 cycles per match key.

mc
keyse : (M(x) = 1.75x+ 201.54, 0.407%) (4.51)
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Repeating this experiment for ternary matches results in similar per-key cycle costs. However,
we do not include the number of table keys in our final model for match-action tables for two
reasons. First, every table key is already part of our model for the number of table entries.
Second, the data used as table key originates from the incoming packet or derived metadata and
as such is limited in comparison to potential thousands or more table entries. Thus, we argue,
that memory and caching effects inherited through the number of table entries are dominating.

Due to implementation restrictions, changing the number of table keys is not implemented for
the LPM match type. Furthermore, the supported width for table keys is limited for all match
types, as they depend on available and supported data types. Therefore, we do not include these
factors in our model.

Action Data Size Lastly, we scale the number of 1 B action data that is returned for the
matching table entry. As shown in Figure 4.19, no measurable increase is noted, resulting in a
constant model. Similar to the previous features increasing the size of a table entry, the action
data itself has no unexpected impact. However, storing more than 400 B of data for an entry in
t4p4s is not possible. While we expect this to be no problem for most applications, this does
not allow storing, e.g., cryptographic key material of more than 400 B.
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Data Type Influences Data can be represented using different data types on CPU-based
systems. For instance, a 128 bit match key can be represented using four 32 bit, two 64 bit, or
a single 128 bit data structure. While the former is used as default in t4p4s, we repeated the
measurement with increasing number of exact match entries using the latter two data structures.
As shown in Figure 4.20, the default implementation shows worse performance compared to the
alternative approaches in this scenario. As the total key size is the same, we can rule out
memory access effects as cause for the performance differences. However, profiling reveals that
the reduced performance for the key composed of four times 32 bit is architecture-specific. In
this case, Store Forwarding failed in 100 % of the cases as the data is passed incorrectly to the
hash function. Store Forwarding is a feature to directly forward previous memory writes to a
subsequent memory read. Performance can be saved as the data does not have to be written
to main memory in-between [174]. According to the data sheet for the CPU architecture used
in the DuT, this failure results in a 12 CPU cycles performance penalty [174]. Optimizing the
code generated by t4p4s would allow Store Forwarding to succeed, yielding better performance.
Our measurement shows that the hash function performs better when the passed data is stored
in large consecutive chunks of memory.

Summary
We have identified the dominating component for P4 programs on the t4p4s target to be match-
action tables. Every applied table adds approximately 136 CPU cycles per packet. Thereby,
the content of the table is less important, however, differences between the match types can be
observed. For exact matches, only when the number of table entries that have to be constantly
matched exceeds the L3 cache size a significant performance drop is observed. In contrast, for
ternary matches the memory architecture is not the bottleneck. Instead, the data structure and
resulting search complexity are the throttling factor. LPM matches can be efficiently executed
for up to 100 entries. Afterwards, the L3 cache becomes the bottleneck due to the large DIR-
24-8 data structure. The amount of action data or match keys only shows little influence on the
performance.

For other components, single byte header field modifications are costly with approximately 36
cycles. Further, adding bytes to the packet costs up to 15 CPU cycles, while removing bytes
has only a small influence with 3.3 CPU cycles.

After having modeled the individual components, we can revise our baseline model. As it consists
of one applied exact match-action table, we deduct the respective value from the original baseline:

Fbase_revised = Fbase − Fntex(1) = 175 − 109.82 = 65.18 (4.52)

According to our model, the DPDK-based t4p4s code requires approximately 65 cycles, inde-
pendent of the remaining processing in the data plane. We use this constant offset for our path
calculations as adjusted baseline.
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4.4.5 Modeling of Program Paths
We use the component models for the t4p4s target to model paths of two of the most common
data plane programs: an L2 learning switch and an L3 router. As discussed in Section 4.2.1,
there are currently no tools for reliably deriving all paths from a P4 program. Therefore, we
perform this step manually based on the program’s intermediate JSON representation generated
by p4c. For each of the paths we then sum up the cost as determined by our models of the
individual components on the path. To judge the quality of the resulting path models, we
perform measurements that target each individual path.

Generating packets that match a certain path requires knowledge about state information pro-
vided by the control plane. Therefore, we limit our discussion to whether, using this approach,
it is possible to determine the worst-case or average case path and to create respective matching
packets for the programs at hand.

Layer 2 Switch
The L2 learning switch example applies a total of two tables after parsing the Ethernet header:
the first table matches on the packet’s source layer two address. If the address is known, no action
is performed, otherwise, the address is learned using a digest to communicate with the control
plane. The second table matches on the destination Ethernet address. If the outgoing port was
already learned, it is set and the packet is forwarded. Otherwise, the packet is broadcast.

Both tables are always applied, whereby each has two possible actions as outcome, resulting in a
total of four different paths. However, whether the packet is forwarded or broadcast only results
in one header field being modified, i.e., according to our model, these paths can be merged.
Therefore, we only differentiate two paths: with and without sending the digest to the control
plane, referred to as P1

L2 and P2
L2. Information about the number of each table’s entries can

only be retrieved from the control plane and might change during program execution. For this
model, we assume that the tables only consist of one entry such that the desired path is taken.
Both paths consist of the same components, aside from the additional digest for the former path:

P1
L2 = P2

L2 + Cdigest (4.53)

P2
L2 = mc

base +mc
ntex(2) +mc

exact(2) +mc
fwh(1) = 321.18 (4.54)

Using measurements, we observed that the actual cost for the second path is 253.81 CPU cycles,
i.e., the model presented in Equation 4.54 results in an overprediction of approximately 26.55 %.
We identified three reasons for this overprediction. First, the full program does not strictly
consist of components that can be added up. For instance, the P4 frontend and the t4p4s
backend compilers might perform optimizations. While we observe influences like the memory
architecture for individual components, their influence for the whole program might be different.
The model does not take into account that data might already be loaded into the cache, because
it was used by a previous component. The experiments to derive component models, however,
assume that each byte has to always be loaded. Further, every measurement to determine the
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Figure 4.21: Relative error of the model for scaling different numbers of tables

scaling of an individual component always also includes other components. While we try to
reduce their impact, it is possible that their influence is notable in the derived model.

Second, the high error is a result of using the curve fitting approach. We intentionally scaled each
component to extreme values, e.g., thousands of tables or millions of table entries. Modeling
the resulting slope with our curve fitting approach may result in selected data points being
inaccurately modeled. Figure 4.21 shows the relative error between every measured and modeled
data point for the number of different applied exact match tables. In particular for the case of
two tables, the value used for the above path calculation, the error is at approximately 18 %.

The accuracy for fewer tables could be improved by modeling, e.g., only up to 100 applied tables.

The last reason are fluctuations caused by DPDK. We commonly observe that the maximum
packet rate of a program differs for each restart of the program and DPDK. These fluctuations
can be up to 0.5 Mpps. While our measurements for deriving the model use the maximum of
three repeated measurements, this maximum might still be influenced by these fluctuations.
Further, the measurement for the complete program path is subject to these fluctuations. This
leaves the chance that, for instance, not the true performance optimum was modeled, resulting
in a higher per-packet cycle usage for a specific component.

The digest is an extern function we did not include in our model. However, as the cost will be
greater than zero cycles, P1

L2 including the digest will be the worst-case path. The average case
for the L2 program is one of the paths where the source Ethernet address is already learned.
Generating traffic for this path is possible: for every packet with new source layer two address,
the first packet will trigger the learning mechanism via the digest, however, subsequent packets
will take the cheaper path. For the same reason, generating traffic only for the worst-case path
is not possible. Each initial worst-case packet influences the state of the device, resulting in the
source Ethernet address being learned, i.e., future packets will not take this path. Consequently,
the traffic has to consist of packets with always new source Ethernet addresses, however, this is
limited by the size of the 48 bit address field.
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Layer 3 Router
The L3 router is more complex than the L2 switch, consisting of up to three tables. After
parsing Ethernet and IP headers, an exact match-action table is applied on the destination
Ethernet address for the purpose of whitelisting. If no entry is found, the packet is dropped,
i.e., no further processing occurs. Otherwise, the next table is applied using an LPM match on
the destination address. The result is either the next hop or the packet is dropped. Finally,
using another exact match on the next hop, the third applied table determines and modifies the
outgoing Ethernet addresses, port, and TTL. We use an L3 router example without checksum
calculation as this hash function is not included in our model.

The program consists of four different paths as the packet might be dropped immediately after
each of the table applications. We list the components and cost of each path in the following:

P1
L3 = mc

base +mc
ntex(1) +mc

exact(1) +mc
fwh(1) = 211.29 (4.55)

P2
L3 = mc

base +mc
ntex(1) +mc

exact(1) +mc
ntlpm(1) +mc

lpm(1) +mc
fwh(1) = 289.33 (4.56)

P3
L3 = mc

base +mc
ntex(2) +mc

exact(2) +mc
ntlpm(1) +mc

lpm(1) +mc
fwh(2) = 435.37 (4.57)

P4
L3 = mc

base +mc
ntex(2) +mc

exact(2) +mc
ntlpm(1) +mc

lpm(1) +mc
fwh(5) = 544.03 (4.58)

The actual measurements for each of the paths shows 162.21, 219.54, 356.51, and 440.53 cycles
per packet, resulting in a relative error of 30.26 %, 31.79 %, 22.12 %, and 23.50 %, respectively.
We note that the error always remains within the same range. In fact, for paths of higher
complexity, the model becomes more accurate. This is due to the component models being
more accurate for high values.

For this example, the worst-case path can be clearly identified as the path that traverses all
match-action tables successfully, i.e., P4

L3. As there are no externs or other functionality that
changes the program state based on previous processed packets, we can derive the worst-case
packet, assuming full knowledge about table entries. Our manual measurement to determine the
actual cost for the fourth part represents this measurement. Similar, an average case evaluation
would evenly hit all of the paths, which can be generated in this scenario.

4.5 Model Limitations
The proposed modeling approach is target dependent, i.e., a model derived for one target plat-
form will likely be inaccurate for other targets. E.g., a model derived for a software device
might not be accurate for another target system using COTS hardware due to differences in
the system’s hardware components like the CPU. However, this is the reason for the highly
automated model-first approach: if the details of the hardware change, the modeling framework
can be automatically executed for the target platform again, updating the parameters for the
derived component and path models.

As shown in Section 4.4.5, cost, be it measured in throughput, latency, or resources, caused by
different components of a packet processing system, is not always strictly additive. Different
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targets or compilers might optimize the code, such that adding up individually measured com-
ponents for path models might result in an overestimation. For instance, several actions in the
processing pipeline that are stated individually in the P4 program and, therefore, also in the
CFG of the program, might be merged by the compiler. For this example, the model will add
up the cost n times, however, on the target it only occurs once. Consequently, the path model
will provide an upper bound. Vice-versa, unknown side effects or unmodeled components cause
the real performance to be even worse.

The measurement and modeling approach assumes that each packet during a measurement is
processed individually. In particular, packets do not influence other packets by changing the
state of the DuT. Furthermore, it is assumed that no packet blocks other packets. While this
assumption might be true on a highly pipelined ASIC platform, packets influencing each other
is more likely on software-based platforms.

The accuracy of the modeling framework is limited by the set of possible prototype functions
Λ∗. Only the functions presented in Section 4.3.3 are currently included with the framework
and can be used for the curve fitting approach. Extending this set, for instance, with higher
degree polynomials, is possible, however, we deem it unlikely that such a high-degree polynomial
would semantically fit the device behavior. Furthermore, for each function, removing certain
free fitting parameters, or setting them to a fixed no-influence value, would improve the overall
result. In this case, the function rank ψ would be lower, i.e., according to the AIC-based metric
this function would be treated as less complex, and, therefore, be preferred over other more
complex functions. For example, the function τ = p∗

0x
2 + p∗

1x+ p∗
2 has ψ = 3, however, adding

the same function template while setting p∗
0 = 1 would result in ψ = 2. Applying this approach

to generate all possible functions with lower ψ for all current functions of Λ∗ would increase the
overall computation time.

Components that only allow measurements with a low number of data points will result in models
with low accuracy. For instance, outliers will have a higher impact, resulting in overfitting. In
such cases, alternative error metrics or higher error tolerances have to be used

4.6 Key Results
This chapter presents our approach for modeling the performance of P4-programmable data
plane programs. The P4 DSL allows to derive the CFG of the program, which can be used for
further analysis. We use this representation to analyze different components and features of the
language in isolation. By measuring programs of increasing complexity in only one component,
we can model and predict this components behavior. Later, full applications can be broken
down into how often they contain these components. Thus, for each path, a performance model
can be derived.

This approach is target-dependent, i.e., component models for one target platform are likely not
applicable for other platforms. Therefore, a high degree of automation in deriving these models
is required. We propose a measurement and modeling framework that provides a clear specifi-
cation of each experiment. Thereby, a report for the whole experiment is generated, specifying
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the metrics, traffic parameters, P4 program, etc., enabling reproducibility. While the framework
includes testbed- and target-dependent components, these are modularized, implementing the
specification for the concrete testbed or target device. By integrating it with our pos testbed
environment we achieve full automation, resulting in a model-first approach. Each data plane
component is individually analyzed and, based on the resulting measurement artifacts, a perfor-
mance model is derived automatically. Our curve fitting-based approach uses different metrics,
which can be changed or customized as plugins. Further, the model detects events that change
the performance behavior of the system, resulting in individual models for each part.

By applying our framework to the software-based t4p4s target we have highlighted the advan-
tages of such an automated approach. Important components found across all P4 programs,
e.g., the parser, header field modifications, and match-action tables, are analyzed. The auto-
matically generated models can be used to detect regressions between different implementation
versions [17] or can be compared to theoretical models, e.g., for the implementations of different
table match types. Furthermore, by scaling to extreme values, limitations of the components
and, therefore, the target architecture, can be discovered. For match-action tables using exact
matches, we explained the automatically generated model with a manually derived resource
model. As a result, we can model the relationship between the number of table entries and the
cache sizes. In particular, when exceeding the L3 cache limit, entries that have to be fetched
from main memory cause a huge performance penalty.

By evaluating many components, we identified, which statements of the P4 language specification
have a significant influence on the performance. We argue that, in the case of P4, the focus of
performance studies should be on the main component of P4 processing pipelines, the match-
action tables. While other actions, like adding or removing bytes to the packet headers, has a
measurable influence, the number of applied tables is the primary performance impacting factor,
at least for a software target.

Combining these component models to model the performance of complete program paths has
revealed that the resulting models overestimate between 20 and 30 percent. While each compo-
nent can be modeled by itself, revealing influences related to such a component, the combined
model does not include individual effects and the interplay of multiple components. Individual
model inaccuracies add up, while compilers might optimize, essentially merging components
together. Therefore, the path models only provide an approximation for the upper bound.

Using the path models for worst-case evaluation of a program can be challenging. While deriving
the worst-case path is typically possible based on the path models, externs or other components
that are either not known or not modeled add uncertainties. Even when, e.g., the worst-case
path can be determined, reliably generating traffic to only match the isolated path is complex.
For instance, if the path uses an extern that changes the state of the device, e.g., by inserting
a new table entry through sending a digest to the control plane, packets might suddenly take
another path. In all cases, this information cannot be derived just form the data plane. Only
with data provided by the control plane a P4 data plane program receives its semantics, e.g., in
the form of table entries.
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Further, we argue, that not all metrics like throughput, latency, or resources, are of interest
for all targets. For a software target, resources are virtually unlimited, wherefore modeling
them is of low interest. Only when exceeding certain boundaries, e.g., for extreme numbers of
table entries, local effects can be observed. Vice-versa, for hardware targets like the ASIC-based
Tofino, throughput is guaranteed, but fitting the program is the challenge. Here, modeling the
resource consumption should be prioritized.

4.7 Statement on Author’s Contributions
The model for generic packet processing systems presented in Figure 4.2 and Equation 4.2 is
based on the dissertation by Sebastian Gallenmüller. This model was significantly extended and
applied to P4 programmable data planes by the author. Thereby, the notation was adjusted
to fit the notation used throughout this thesis. Sections 4.1.2 and 4.1.5 are based on a collab-
oration between Dominik Scholz, Hasanin Harkous, Sebastian Gallenmüller, Henning Stubbe,
Max Helm, Benedikt Jaeger, Nemanja Deric, Endri Goshi, Zikai Zhou, Wolfgang Kellerer, and
Georg Carle [14]. These sections were extended and adjusted to fit the context of this thesis.
Sections 4.1.1, 4.1.3, and 4.1.4, including Figures 4.3 and 4.4, were added for the purpose of this
work.

The discussion on related work in Section 4.2 was performed by the author.

Section 4.3 is based on a joint work between Dominik Scholz, Hasanin Harkous, Sebastian
Gallenmüller, Henning Stubbe, Max Helm, Benedikt Jaeger, Nemanja Deric, Endri Goshi, Zikai
Zhou, Wolfgang Kellerer, and Georg Carle [14]. The measurement and modeling framework
was implemented by the author. The framework uses a P4 program generator, which is based
on an interdisciplinary project work by Henning Stubbe, co-supervised by the author. The
author repurposed and extended the program generator for this work. The mathematical model
presented in Section 4.3.3 was developed by the author. The notation was extended and unified
compared to the original publication.

Section 4.4 is based on a collaboration between Dominik Scholz, Henning Stubbe, Sebastian
Gallenmüller, and Georg Carle [6]. All measurements, figures, and models were performed and
created by the author. Compared to the original work, all measurements and models were
created with the framework for automated modeling introduced in Section 4.3. The analysis
regarding the impact of different data types on data plane performance provided in Section 4.4.4
is based on profiling results reported in the Master’s thesis of Maximilian Endrass, which was
supervised by the author. The exact match model for increasing number of table entries in
Section 4.4.4 is based on a publication by Dominik Scholz, Hasanin Harkous, Sebastian Gal-
lenmüller, Henning Stubbe, Max Helm, Benedikt Jaeger, Nemanja Deric, Endri Goshi, Zikai
Zhou, Wolfgang Kellerer, and Georg Carle [14]. The respective resource model for exact match-
action tables was extended and improved by the author. The model is based on the same
research project by Maximilian Endrass. Further, the t4p4s version used for all measurements
in Section 4.4 includes changes provided Maximilian Endrass. The data plane programs used
in Section 4.4.5 are based on t4p4s example programs and were modified by the author for the
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purpose of path modeling. Compared to the original publication, all notations were unified to
match the notation used throughout this work. The author excluded a section of the original
work about modeling the resources of an ASIC-based target, as it does not fit the focus on
software targets in this thesis.
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Chapter 5

Cryptographic Hashing in Programmable Data
Planes

Secure and resilient networking protocols and applications are vital in modern network commu-
nication. While P4 introduces a standardized way for data plane programming, it lacks language
building blocks for cryptographic mechanisms, including functions for encryption and hashing.
These functions require complex, therefore, resource-intensive implementations [9], which can be
highly target-dependent, or require the complete packet data as input. Therefore, cryptographic
functions are currently considered language externs. Especially cryptographic hash functions
have a wide range of potential use cases: secure communication including data integrity and
authentication, challenge-response mechanisms, and robust hash-based data structures, among
others. Thinking outside of regular, data center-focused applications, these mechanism become
even more important in industrial applications like the automotive or aeronautical industries.

P4 allows to perform almost arbitrary computation in the data plane of different software and
hardware devices. This opens the general question, which tasks should be performed in the data
plane. While the cost for performing packet I/O is typically low in hardware devices, the cost
for computation remains. These devices have limited hardware resources, restricting the total
amount of computation per packet [175]. Further, complex computation typically comes at the
cost of performance, for instance, reducing throughput or increasing latency.

In this chapter we answer the question, whether cryptographic hash functions can be imple-
mented in P4 programmable data planes efficiently. We argue, why the availability of hash
functions with cryptographic properties in programmable data planes is important. Then, we
discuss how cryptographic functions can be integrated into P4 target platforms and what per-
formance reductions and resource requirements can be expected. Lastly, we use our different
hashing implementations in a case study and compare the flexibility, usability, and performance
of implementing DDoS mitigation techniques in programmable data planes to conventional soft-
ware packet processing frameworks.
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5.1 Motivation
Section 5.1 is based on a collaboration between Dominik Scholz, Andreas Oeldemann, Fabien
Geyer, Sebastian Gallenmüller, Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and
Georg Carle [7]; and a joint work between Dominik Scholz, Sebastian Gallenmüller, Henning
Stubbe, and Georg Carle [8].

Hash functions are a vital element of network communication in the modern Internet. They
play a fundamental role in many network applications, such as tasks like routing, consensus
protocols [112], caching [176], packet sampling, heavy hitter detection [90], [177], or pattern
recognition in deep packet inspection [178], [179]. A typical scenario is to provide a deterministic
method for distributing flows over a number of fixed outputs. This can be used to select the
outgoing queue in scheduling implementations, the concrete link from a set of aggregated links, or
the next hop for load balancing. Second, hash functions can be used to implement data structures
found in networking applications. As they can be calculated efficiently both in software and in
hardware, while requiring a low memory footprint, hash functions excel in structures like simple
hash tables, count-min sketches, or more complex bloom filters. Lastly, hash functions are
required to provide secure communication in the form of authentication and data integrity. For
instance, such security requirements are supposed to become even more important for the next
generation 6G standard [180].

Thereby, different hash functions have varying properties. For the sake of this work, we split
hash functions into two groups: regular hash functions and hash functions with cryptographic
properties. Regular hash functions provide a deterministic way to map an input of arbitrary
length to an output of fixed size. Cryptographic hash functions need to also withstand cryptan-
alytic attacks [181]. To classify as cryptographic hash function, they need to provide the three
properties of pre-image resistance, second pre-image resistance, and collision resistance [181].

5.1.1 The Need for Cryptographic Hashing
While many applications require hash functions, often hash functions without a cryptographic
security level are sufficient. We identified two use cases for hash functions with cryptographic
properties: to improve the reliability of data structures susceptible to attacks; and to provide
secure communication, using authentication or data integrity.

While hash-based data structures can be built from regular hash functions, doing so can create
attack vectors on the data structure. Various attacks have been proposed on poorly implemented
hash-based data structures. A prime example are poorly implemented hash tables: if an attacker
is able to craft packets in a certain way and, therefore, also the input to the hash function, the
hash table can degenerate to a linked list. This can lead to worse memory footprint or high
CPU usage [182]. While this can be counteracted with chained hash tables, collisions can still
lead to data loss or inaccurate sampling. A family of hash functions often used for such data
structures due to their simplicity and efficiency are cyclic redundancy checks (CRCs). However,
CRC is susceptible to the birthday paradoxon and can be attacked, for instance, when used for
packet sampling [183]. Therefore, a hash function with high collision resistance, reducing hash
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collisions, is vital when the hash-based structure is attackable from the outside. For these use
cases, keyed pseudo-random functions and cryptographically-strong random number generators
are recommended [182], [183].

5.1.2 Usage in Networking Protocols
Cryptographic hash functions are found in various network protocols that are based on or
require cryptographically secure communication [184]. For instance, message authentication
codes (MACs), which provide data integrity and authenticity for packet content. They can be
found in numerous networking protocols like IEEE 802.1AE MACsec, IPsec, or TLS, in the form
of hash-based message authentication codes (HMACs). While TLS is a widely used protocol in
the Internet, implementing TLS in the data plane is challenging as it requires a functioning
implementation of TCP.

The IEEE 802.1AE MACsec standard provides data confidentiality and integrity on the data
link layer. For this, it uses a security tag and a MAC. These properties on the data link layer are
especially interesting for industrial use cases, including automotive [185], [186] and aeronautical
applications [187]. While programmable data planes are interesting for these industries as they
allow rapid prototyping, they also have strict security requirements [18]. For instance, airplanes
may include several Ethernet-based networks, e.g., for cabin communication or entertainment,
using specialized protocols like Avionics Full-Duplex Switched Ethernet [100]. However, using
Ethernet-based communication for critical infrastructure requires the authentication of Ethernet
frames and switches and data integrity.

MACsec and IPsec implementations for P4 programmable data planes have been proposed,
however, the authors note the lack of support for cryptographic hash functions, especially for
hardware targets [188], [189].

Other use cases are digital signatures or challenge-response protocols. These use token or cookie
mechanisms to either prove the possession of an authentication token or to encode state that
is being exchanged. One example are TCP SYN cookies [190], which are calculated for each
incoming TCP SYN packet during an ongoing attack and, therefore, have to be efficiently
generated and verified.

Other approaches try to establish new functionality in the data plane. One example is the
SPINE [191] framework for surveillance protection. Datta et al. provide a prototype for the PISA
architecture, using the pseudo-cryptographic SipHash hash function due to its high performance
and low memory footprint [191].

Supporting hash functions with strong cryptographic properties will be a key enabler to allow
offloading these network protocols to the data plane.
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5.2 Feasibility and Integration of Hashing with Cryp-
tographic Properties

Section 5.2 is based on a collaboration between Dominik Scholz, Andreas Oeldemann, Fabien
Geyer, Sebastian Gallenmüller, Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and
Georg Carle [7].

A wider set of hash functions with cryptographic properties may be beneficial for a variety of
applications. We want to address two classes of secure and advanced applications in the data
plane: First, resilience to hash collisions can be improved for programs that utilize hash-based
data structures. High susceptibility to hash collisions can create attack vectors, leading to
poor resource usage or DoSs [192]. Second, integrity protection, which is typically implemented
using a MAC or HMAC with cryptographic hash functions, for instance, for digital signatures
or challenge-response protocols. These are essential for secure communication not only on the
Internet, but also in industrial networks.

We argue for the benefits of including hash functions with cryptographic properties in P4 plat-
forms. In this section, we present our prototype implementations for and evaluation of three
different P4 software and hardware target platforms: the t4p4s software platform, the Netronome
Agilio NFP-4000 SmartNIC, and the NetFPGA SUME.

5.2.1 Related Work
We analyze the current usage and existence of hash functions in P4 data planes with regard to
security and resilience. Further, we discuss recommended hash functions and their properties for
networking applications. Lastly, we present a brief discussion of hash function implementations
in hardware.

Hashing in P4 Applications
Use of hash functions for networking applications implemented in the P4 data plane can be
found in various work. Ghasemi et al. [193] investigate performance diagnostic of TCP with
Dapper, using standard 5-tuple hashes. Zaoxing et al. [177] propose UnivMon for network flow
monitoring based on a sketch data structure where multiple, pairwise-independent hash functions
are used. Cidon et al. [194] propose AppSwitch, a cache for key-value storage using hashes of
keys. Sivaraman et al. [90] introduce HashPipe for heavy-hitter detection, using a pipeline
of hash tables, which retain counters for heavy flows while being memory efficient. Finally,
Kucera et al. [91] also address heavy-hitter detection using Elastic Trie, a novel trie-based data
structure. The mentioned works either do not detail the hash algorithm used, or make use of
CRC32 as hash function, making them potentially vulnerable to security attacks. Only Ghasemi
et al. [193] explicitly describe the strategy used to deal with hash collisions. They use a hash
chaining technique combining the hashed value and the TCP sequence number. Depending on
the workload and the level of security required, these applications may benefit from the usage
of cryptographic hash functions to minimize the impact of hash collisions.
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SPINE [191] is a framework for surveillance protection proposed by Datta et al. They encrypt
header fields containing sensible data, for instance, IPv4 addresses, and store the result in IPv6
headers. Datta et al. use SipHash for performance reasons, noting the constrained memory
resources available on P4 platforms. Hauser et al. propose P4-MACsec [188] for the automation
of MACsec deployments by shifting the MACsec implementation entirely to the data plane of
P4 targets. They implement prototypes for the bmv2 model and the NetFPGA SUME, but the
solution for the latter was not feasible due to problems encountered during integration of the
hashing externs [188]. Hauser et al. also propose a similar approach for IPsec [189], but their
prototype implementation for the NetFPGA SUME has the same restrictions as their MACsec
proposal. They also developed an ASIC prototype, however, all cryptographic processing is
performed by a CPU-based controller. The ASIC neither offers cryptographic algorithms nor
allows adding new functionality as externs. This limits performance and functionality [189].

We observe that current P4 targets neither support secure nor resilient communication. There-
fore, applications and protocols, which require MACs, authentication, or hashing structures that
are resilient against attacks such as DoS, cannot be implemented.

Hash Functions for Networking Applications
Various work already evaluated the suitability of hash algorithms for network packets. Molina
et al. [195] and Henke et al. [196] evaluate several different functions, with a focus on packet
sampling. Both works highlight that CRC32 is not recommended due to its linear dependency
between hash input and hash value, making it vulnerable to bias and security attacks. They
recommend BOB [197] as hash algorithm in non-adversarial scenarios due to its performance
and avalanche properties. Another non-cryptographic hash function with fast calculation on
CPU systems is MurMurHash [198]. While it only uses simple mathematical operations, it has
low collision rates [199].

Due to the use of relatively small messages in packet processing, the choice of a hash function
with cryptographic properties for efficient processing is not straightforward. While the SHA2
family of hash functions is a strong candidate regarding cryptographic features and security,
these functions were not designed with good performance for small inputs.

Aumasson et al. propose the pseudo-cryptographic SipHash [200] function. It is optimized
for performance when using short inputs and is used as hash function in many programming
languages, for hash table implementations, and DoS protection [200]. We use SipHash-2-4
throughout this work, consisting of two rounds of computation per message block and four
finalization rounds. HalfSipHash uses the same scheme as SipHash, but produces an easier to
brute-force 32 bit output hash.

Another popular candidate is the BLAKE2 family [201], designed for good performance for small
inputs. It provides similar cryptographic security compared to SHA3 [201].

Poly1305-AES [202] was proposed by Bernstein et al. as an algorithm for MACs in IPsec [203]
and TLS [204]. The cryptographic properties of the hash function are similar to AES and can
be computed efficiently on software systems [202].
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Hardware Implementations of Hash Functions
Regarding hardware implementations of non-cryptographic hash algorithms for networking ap-
plications, Hua et al. [205] evaluated 18 different functions. They propose a family of hash
functions achieving good properties in terms of hashing at a reduced cost regarding hardware
footprint and cost per cycle.

Pseudo-cryptographic and cryptographic hash functions are available on FPGA and even ASIC
platforms. Over the years, the performance of SHA-based and other hash functions in ASICs
has been improved [206], [207]. Lately, large-scale experimental prototypes such as Bitcoin
have shown that these cryptographic operations can be implemented in hardware with high-
performance. In fact, the performance of hashing operations in ASICs has increased such that
it can threaten the decentralization of blockchain-based networks [208].

5.2.2 Interface for Hashing in P4
The interface for using hash functions has changed between the initial version of P4, P414, and
the current specification P416. Initially, hashes could be calculated using so called calculated
fields or direct function calls. Listing 5.1 shows the usage when hashing the 5-tuple, for instance,
to identify flows, commonly found in data plane applications. The programmer could define a
list of values that should be used as input for the hash function. Later, the field list calculation
defines the input, hash function algorithm and output width. This calculation can then be used
to modify arbitrary fields.

1 // define field_list
2 field_list five_tuple_list {
3 ip4.src;
4 ip4.dst;
5 l4.src;
6 l4.dst;
7 ip4.protocol;
8 }
9

10 // define hash calculation
11 field_list_calculation five_tuple_hash {
12 input {
13 five_tuple_list;
14 }
15 algorithm : crc32;
16 output_width : 32;
17 }
18
19 // use hash calculation
20 action some_action() {
21 modify_field_with_hash_based_offset(some_field ,
22 offset,
23 five_tuple_hash ,
24 32);
25 }

Listing 5.1: Hash function interface in P414. Definitions taken from [209]

In P416, hash algorithms can be accessed via externs, i.e., standard function calls of external
libraries. The interface for the extern and supported algorithms depends on the concrete ar-
chitecture model shown in Listing 5.2. For instance, the v1model.p4 offers the generic hash
function with a predefined set of algorithms, including identity, CRC32, checksum, and random
functions. The hash function’s parameters include the hash algorithm to use, the output field,
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minimum and maximum values, and a list of parsed header or metadata fields to be used as
input. Compared to P414, the invocation of the extern more closely resembles the invocation
of a standard C function call. Using a different architecture model, e.g., the ubpf_model, the
interface for the hash function changes.

1 // v1model architecture
2 extern void hash<O, T, D, M>(out O result,
3 in HashAlgorithm algo,
4 in T base,
5 in D data,
6 in M max);
7
8 // sample invocation using 5-tuple as input
9 action some_action() {

10 hash(result_variable ,
11 crc32,
12 32w0,
13 { h.ip4.src, h.ip4.dst,
14 h.tcp.src, h.tcp.dst
15 h.ip4.protocol },
16 max_value);
17 }
18
19 // ubpf architecture
20 extern void hash<D>(out bit<32> result,
21 in HashAlgorithm algo,
22 in D data);
23
24 // PSA architecture
25 extern Hash<O> {
26 Hash(PSA_HashAlgorithm_t algo);
27 O get_hash <D>(in D data);
28 O get_hash <T, D>(in T base,
29 in D data,
30 in T max);
31 }

Listing 5.2: Hash function interfaces in P416. Definitions taken from [210] and https://github.com/p4lang/
p4c/tree/master/p4include

The PSA defines five different hash functions in addition to the identity function that should be
available for switch data planes: four variations of CRC and the 16 bit one’s complement used
for IP, TCP, and UDP checksum calculation.

While the hash functions defined by these architecture models may serve as useful hash functions
in common networking applications [211], none of them provides any cryptographic properties.
Therefore, the standard set of hash functions available in P4 makes it a limited platform for
applications that require or benefit from security properties. The extern interfaces are specif-
ically intended to add custom functionality to individual target platforms. Extending P4 and
its software and hardware targets with cryptographic algorithms enables offloading of secure
applications to the data plane. As it is the current specification of the language, we limit our
integration of hash functions to P416.

5.2.3 Choice of Hash Function
Operating on Ethernet frames, the input for the hash function will typically be less than 1500 B.
However, when hashing full frames, this can be as few as 64 B for minimum-sized Ethernet
frames. When hashing only parts of the packet headers it can be even less, e.g., 13 B for
the typical five tuple consisting of IPv4 addresses, protocol field, and transport layer ports.
Consequently, the hash function must retain its cryptographic properties even for short inputs.
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Algorithm Cryptographic Hash Output [B] Implementation
Checksum no 16 DPDK (v19.02)
CRC32 no 32 DPDK (v19.02)
MurmurHash3 no 32/128 [198]
Half-SipHash-2-4 pseudo (MAC) 32 [200]
SipHash-2-4 pseudo (MAC) 64 [200]
Poly1305-AES yes (MAC) 128 [212]
BLAKE2s yes 8-256 OpenSSL (v1.1.0)
BLAKE2b yes 8-512 OpenSSL (v1.1.0)
SHA256 yes 256 OpenSSL (v1.1.0)
SHA512 yes 512 OpenSSL (v1.1.0)
SHA3-256 yes 256 OpenSSL (v1.1.0)
SHA3-512 yes 512 OpenSSL (v1.1.0)
HMAC-BLAKE2s yes (HMAC) 8-256 OpenSSL (v1.1.0)
HMAC-BLAKE2b yes (HMAC) 8-512 OpenSSL (v1.1.0)
HMAC-SHA256 yes (HMAC) 256 OpenSSL (v1.1.0)
HMAC-SHA512 yes (HMAC) 512 OpenSSL (v1.1.0)
HMAC-SHA3-256 yes (HMAC) 256 OpenSSL (v1.1.0)
HMAC-SHA3-512 yes (HMAC) 512 OpenSSL (v1.1.0)

Table 5.1: Properties of investigated hash functions

We assume use cases where the output of the hash function is stored in the packet. Consequently,
a hash function producing short outputs, e.g., below 100 B, will typically be sufficient.

The performance of the hash function should be high, i.e., in the worst case it needs to perform
at line-rate using 64 B packets. To improve portability of the P4 program, the hash function
implementation should be available for different platforms, including software, FPGA, and ASIC.

We investigate software implementations for the set of non-cryptographic, pseudo-cryptographic
and cryptographic hash functions shown in Table 5.1. The non-cryptographic functions are
included to serve as a baseline comparison. The SipHash and HalfSipHash family of hash
functions, optimized for hashing on 64 bit and 32 bit CPU architectures, respectively, are only
pseudo-cryptographic hash functions. However, they are designed to be used as MACs using
short inputs, which is sufficient for our use case. Similarly, Poly1305-AES is only intended to be
used as MAC. While in this work we focus on applying a single hash operation, we also include
HMAC implementations for the mentioned OpenSSL implementations for the sake of providing
a better picture regarding performance levels. We want to note, that depending on use case, an
HMAC scheme might be necessary to achieve the required cryptographic properties.

Metrics for Hash Functions
We differentiate cryptographic and performance metrics when comparing cryptographic hash
functions. Cryptographic properties of a hash function may depend on a defined input length,
which is relevant in our scenario as we hash, e.g., a typical 5-tuple or the complete packet
payload. Similarly, the type of input data, comparing the entropy of passwords with that of
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Figure 5.1: Performance benchmark results of selected hash functions on COTS CPU

random data, is of relevance. These properties might influence, for instance, the function’s
collision resistance. Finally, different applications may have different constraints regarding the
length of the produced output hash. While a short HMAC included in an Ethernet frame causes
only minor packet overhead, it can negatively impact its effectiveness.

Several performance metrics depending on the requirements of the application and capabilities
of the target software or hardware platform are of relevance when choosing a hash function.
In high-performance applications, the performance of the hash function in terms of latency
and processing time, e.g., measured using clock cycles, is an important characteristic. When
implementing the hash function, its memory footprint and, when implemented in hardware,
resources of the hardware required, e.g., logic elements and registers for an FPGA, have to
be considered. As an example, a VHDL SipHash implementation takes 10 % of available logic
cores on a Cyclone II FPGA [213]. Whether the algorithm can take advantage of parts of the
hardware target’s architecture, e.g., embedded memory blocks, greatly influences the achieved
performance [214].

In this work, we focus on the performance aspects of the introduced cryptographic hash func-
tions. We refer to related work regarding their cryptographic properties and cryptanalysis.

Hash Function Performance
The cost to calculate a (cryptographic) hash for input data of m bytes consists if two parts: a
fixed part to initialize the calculation and a cost per byte of input data. Consequently, the fixed
cost is amortized and less significant for large m.

Using an artifical benchmark, we measure the fixed and per-byte costs of the introduced hash
functions on a COTS server system equipped with an Intel Xeon E5-2640 v2 CPU clocked at
2 GHz. We calculate the hash for input data lengths from 2 B to 1500 B, which are relevant for
our use case. We measure the execution time in CPU cycles using the timestamp counter. This
process is repeated 1 000 000 times for every hash function.
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Algorithm Cycles/B Fixed Cycles m = 64 B m = 1500 B
Checksum 0.39 5.25 29.86 594.89
CRC32 0.47 0.00 17.20 712.87
MurmurHash3 1.25 7.79 82.48 1881.07
Half-SipHash-2-4 3.52 67.65 293.46 5345.67
SipHash-2-4 1.76 71.93 184.16 2700.92
Poly1305-AES 2.51 106.21 237.31 3929.02
BLAKE2s 7.85 682.72 968.16 12 644.99
BLAKE2b 4.81 1029.96 1244.96 8267.09
SHA256 10.21 876.31 1755.84 16 038.59
SHA512 7.10 1216.02 1464.20 11 614.31
SHA3-256 10.89 1729.56 2179.94 18 828.76
SHA3-512 20.76 1506.47 2179.72 32 076.32
HMAC-BLAKE2s 7.85 2355.07 2632.07 14 324.56
HMAC-BLAKE2b 4.81 3179.02 3385.79 10 398.10
HMAC-SHA512 7.21 2320.12 2585.61 12 845.54
HMAC-SHA256 10.23 1584.61 2467.06 16 769.44
HMAC-SHA3-256 10.91 3326.17 3782.52 20 462.48
HMAC-SHA3-512 20.75 3097.79 3763.00 33 655.29

Table 5.2: Hash function performance benchmark on COTS CPU

We want to note that the performance figures are highly dependent on the concrete CPU used.
However, while the exact numbers might vary, different performance levels separating individual
functions will remain the same.

Figure 5.1 displays the measured CPU cycles for different input lengths for a selection of hash
functions. In general, we can split the hash functions into two different groups of performance
levels: non-cryptographic and pseudo-cryptographic hash functions, including Poly1305-AES;
and SHA-based cryptographic hash functions and HMAC schemes. In the former group, SipHash
and the cryptographic Poly1305-AES stand out for having a performance comparable to the non-
cryptographic hash functions, while being suited for MACs. SHA-based functions do not show a
linear increase in CPU cycles. As they operate on certain block sizes of input data, they display
a typical step-wise increase. HMAC schemes further increase the fixed part compared to the
respective regular hash function used for the scheme.

Table 5.2 lists the results for all investigated hash functions on our software DuT. Using linear
regression we calculate the fixed and per-byte costs for each hash function. Furthermore, the
table displays the two extrema for our use case: hashing minimum and maximum sized packets
with 64 B and 1500 B, respectively.

The number of fixed CPU cycles per packet reported in Table 5.2 matches the data presented
in Figure 5.1: SipHash and Poly1305-AES are better suited for processing small input data
such as network packets than SHA-based cryptographic functions. The latter have significantly
larger fixed and per-byte costs, making them unsuited for the intended purpose of this work for
software targets. HMAC schemes add up to 1600 of additional additional CPU cycles.

124



5.2 Feasibility and Integration of Hashing with Cryptographic Properties

Figure 5.2: Hashing functionality as extern

A relevant metric to compare the values of Table 5.2 is the CPU cycle budget, which can be
allocated per packet. To process line-rate of 14.88 Mpps for 10 GbE with 64 B packets on a
single CPU core clocked at 2.00 GHz, the processing for each packet must be completed within
134 CPU cycles. On this particular CPU not even SipHash is able to do so within the cycle
budget. However, using additional CPU cores or a more potent or newer-generation CPU, the
pseudo-cryptographic SipHash function is able to meet our requirements. For the remainder of
this work, we will focus on SipHash as hash function as it combines fast execution times with
short in- and outputs. Furthermore, implementations for FPGA platforms exist.

5.2.4 Integration Strategies
As introduced in Section 5.2.2, hash functions are regarded as externs in P4. While this is
the intended and preferred way of integrating additional functionality with P4 targets, the
feasability of integrating hashing as extern can be limited for a given target platform. We will
discuss limiting aspects and additional integration approaches in the following section.

As Extern
Figure 5.2 displays the integration of the hash function as extern that can be called from within
a P4 pipeline. Thereby, P4 does not specify where or how the extern is implemented. Conse-
quently, the implementation can be in software or hardware, close to the data plane or close to
the control plane.

The challenge with any integration is to support operations at line-rate. Further, when permit-
ting hashing of packet payload, i.e., the complete packet, all data needs to be sent to the extern
function. While this might be trivial on software targets, aside from cache effects, streaming this
amount of data seamlessly to an extern can be challenging on hardware targets. The reasons
include the challenge to provide the necessary bandwidth for the programmable connection,
e.g., a bus system or wires of fixed size, between P4 pipeline and extern location. Further,
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Figure 5.3: Hashing functionality integrated with architecture model

the resources required for the extern implementation and connection might limit the remaining
program complexity or the streaming of the data causes high latency.

As Architecture Model Extension
To tackle the mentioned problems, we propose a tradeoff between flexibility and hardware re-
sources: integrating the hash function as separate part of the architecture model as shown in
Figure 5.3. Instead of accessing it as extern, the P4 pipeline does not have direct access to
the hash function. However, either before or after the pipeline, the full packet data including
metadata is sent to the hashing module by default. The hashing module performs the necessary
calculation and stores the result in a field of either the packet or metadata. Thereby, per-packet
metadata, which traverses alongside all modules of the P4 data plane, can be used to enable
programmable control over the hashing module, determining input data, hash function, and
output field from within the P4 pipeline.

In this scheme, the P4 pipeline can be before, after, or before and after the hashing module. If the
pipeline is only before the hash function, the resulting hash cannot be used by the P4 program
for packet modifications or forwarding decisions. Vice-versa, the hashing module cannot be
programmably configured per packet if the P4 pipeline is only located after the hash function.
If the target is limited to only one pipeline, recirculation of packets can be used to simulate
having a pipeline before and after the hashing module. The metadata in the hashing module
could also be used to implement more complex HMAC schemes, e.g., providing cryptographic
key material via metadata.

While this scheme also requires resources to integrate the hashing module with the data plane,
these resources are fixed already during manufacturing. Using them within a P4 program will
not take away resources for other constructs.

The disadvantages are that every packet traverses the hashing module, which increases the
overall processing path and, therefore, the latency. Further, only one hash can be computed per
packet (except recirculation), limiting the usability and flexibility of the hash function in the P4
program. To combat this, the architecture model can be extended to include additional hashing
modules and P4 pipelines.

Further changes to the architecture model can improve this concept. For instance, using a traffic
manager, packets could be selectively steered into or around the hashing module, depending on
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whether a hash needs to be calculated or not. This would reduce latency for packets not requiring
a hash.

Using Basic P4 Language Components
Instead of using extern functionality, the hash function could in theory be programmed using only
native P4 constructs, including match-action table lookups and basic mathematical operations.
So far, such an approach has only been proposed for encryption using AES [215]. The downside
is the extensive use of the target’s native P4 resources required, for instance, for match-action
tables. Further, the complex operations, including multiple table lookups and calculations,
reduce the performance.

As External Node
Lastly, the hash functionality can be offered outside of the current data plane by another node.
Although, strictly speaking, it is not an integration of the hash function with the P4 data plane,
it is noteworthy as it can be achieved by altering the network topology or using control plane
logic. The downsides of this approach are the latency penalty for sending the packets that
require a hash calculation to another node and the added network and controller complexity.

5.2.5 Prototype Implementations
We have extended three different P4 target platforms with externs calculating cryptographic
hashes. Each platform has its own approach how P4 externs can be added. We focus on a small
selection of hash functions to reduce implementation overhead. As it best fits our use cases and
shows satisfying performance, we implemented the SipHash function on all targets.

Hash Externs in t4p4s
t4p4s only supports the TCP/IP checksum calculation as hash algorithm, which is implemented
using the rte_raw_cksum function from DPDK. We extended this target with a selection of the
open-source non-cryptographic, pseudo-cryptographic, and cryptographic hash function imple-
mentations listed in Table 5.1: MurmurHash3, SipHash-2-4, Poly1305-AES, BLAKE2s, SHA256,
HMAC-BLAKE2s, and HMAC-SHA256. Furthermore, we added an SSE4.2-accelerated, non-
cryptographic CRC32 function based on functionality provided by DPDK.

As t4p4s is an open-source software target, integrating these functions as extern libraries is
straight-forward.

Hash Externs in the NFP-4000
We have also integrated hash functions as externs for the 10G NFP-4000 Agilio SmartNIC NPU.
Out-of-the-box, the NPU supports only the non-cryptographic CRC32 and Checksum functions.
The SmartNIC allows implementing P4 externs and other functionality in Micro-C, a variation
of C used to program the NPU’s processing cores. The compiler then inlines the externs into the
compiled P4 program. For the already mentioned reasons, we have implemented the SipHash-2-4
function in Micro-C, calculating a hash for the full payload of the Ethernet frame. Another factor
for choosing this pseudo-cryptographic hash function over, for instance, SHA3 is its significantly
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reduced code complexity. We want to note that some NICs of the NFP-4000 family feature a
hardware crypto security accelerator supporting SHA1 and SHA2 hash functions. However, the
accelerator module was not available on our device, wherefore we opted for the CPU-optimized
SipHash instead.

Extended Architecture Model for the NetFPGA SUME
The extern interface of P4→NetFPGA only allows data widths of approximately 600 B as in- or
output. While this is a restriction of the SDNet compiler, even for smaller widths the compiler
was unable to resolve resource congestion, resulting in timing violations of the design. Further,
the extern interface is designed without a possibility to indicate a backlog, i.e., it has to accept
new data for the extern with every clock cycle. Consequently, we changed the NetFPGA’s
architecture model to integrate the hash function as additional module. We integrated it after
the P4 pipeline, i.e., in the egress path, to allow P4 metadata being accessed by the hashing
module. We chose two open-source IP cores for hash function implementations: a SipHash-2-41

and a SHA3-5122.

For both hardware platforms, the NFP-4000 and the NetFPGA SUME, we did not implement
HMAC schemes. Consequently, we only perform a single hash operation, excluding any crypto-
graphic key material required for HMACs.

5.2.6 Evaluation
We evaluate the feasibility of hash functions with cryptographic properties in the data plane
with a performance evaluation. We use the two-node setup presented in Figure 3.2. The server
acting as the DuT is equipped with an Intel Xeon CPU E5-2620 v3 (Broadwell) at 2.40 GHz
and either an Intel X540 network card, Netronome NFP-4000 SmartNIC, or the NetFPGA
SUME. For measurements performed using the CPU target, all traffic is pinned to one CPU
core. For the use case of communication integrity and authentication, we evaluate the hashing
of complete packets for our prototype implementations and selected hash functions. The P4
program is a simple L2 forwarder that additionally calculates hashes based on the complete
Ethernet frames, representing the worst case for the actual hash calculation. We focus on
hashing complete Ethernet frames instead of only selected fields, e.g., the 5-tuple, as in the
latter case the setup cost for the hash function will outweigh the per-byte cost and further
reduce maximum performance. For each platform, we perform a baseline measurement, where
the P4 program is only an L2 forwarder, performing no hashing operations.

Throughput
Results for maximum throughput are presented in Table 5.3 and for a selection of hash functions
in Figure 5.4. Independent of the packet size, all three target platforms reach 10 Gbit/s in the
baseline scenario, with the exception for minimum-sized packets on the CPU target. No platform

1 SipHash IP Core: https://github.com/secworks/siphash

2 SHA3-512 (KECCAK) IP Core: https://github.com/freecores/sha3
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Algorithm 64 B 96 B 128 B 512 B 1024 B 1500 B

t4p4s
Baseline 91.2 100.0 100.0 100.0 100.0 100.0
Checksum 51.0 67.1 84.4 100.0 100.0 100.0
CRC32 54.4 73.4 90.6 100.0 100.0 100.0
MurmurHash3 46.6 59.1 69.8 100.0 100.0 100.0
SipHash-2-4 37.9 46.6 57.5 100.0 100.0 100.0
Poly1305-AES 30.0 36.8 42.6 71.5 82.0 85.5
BLAKE2S 9.2 10.3 13.3 23.6 28.2 29.5
SHA256 8.9 9.9 12.6 22.5 26.6 27.8
HMAC-BLAKE2S 5.2 6.5 8.2 18.2 23.8 26.0
HMAC-SHA256 6.4 7.5 9.6 19.4 24.4 26.0

NFP-4000
Baseline 100.0 100.0 100.0 100.0 100.0 100.0
CRC32 100.0 100.0 100.0 100.0 100.0 100.0
Checksum 100.0 100.0 100.0 100.0 100.0 100.0
SipHash-2-4 75.6 80.7 91.6 99.2 10−6 10−6

NetFPGA SUME
Baseline 100.0 100.0 100.0 100.0 100.0 100.0
SipHash-2-4 42.0 42.2 42.3 42.6 42.6 42.5
SHA3-512 48.2 42.5 54.3 65.0 71.8 76.0

Table 5.3: Throughput for hashing full Ethernet frames of different sizes in percent, relative to 10 GbE line-rate

is able to reach line-rate for minimum-sized 64 B packets when calculating the hash using a hash
function with cryptographic properties or intended for MACs. With a maximum performance
of 75 % compared to the baseline, the best results are achieved by the NFP-4000 SmartNIC
using SipHash-2-4. However, despite high throughput for packet sizes up to 900 B, performance
degrades rapidly for even larger packets. This behavior can be explained by the SmartNIC’s
RAM architecture [216] shown in Table 5.4. Only when processing less than 900 B of packet
payload the data is stored in buffers residing in the fast memory regions. Exceeding this packet
size, data is stored in 10 to 100 times slower shared RAM. The slower access times cause packet
loss, resulting in a throughput of only approximately 10−6 % of line-rate. When using the non-
cryptographic hash functions CRC32 and Checksum as hash algorithms, the NPU can hash
packets at line-rate regardless of packet size.

Using SipHash-2-4, the NetFPGA SUME shows almost constant maximum throughput of ap-
proximately 42 % line-rate. This is due to the maximum throughput achieved by the SipHash-
2-4 IP core, processing a theoretical maximum of 21.33 bit/clockcycle. The SHA3-512 IP core
is clocked slower compared to the rest of the P4→NetFPGA pipeline, wherefore this core has
to be placed in a separate clock domain. Despite this imperfect intergation, its higher per-cycle
throughput results in superior performance for all packet sizes. It reaches a maximum of 76 %
line-rate for 1500 B packets. We want to note that the performance figures of the NetFPGA
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Figure 5.4: Throughput when using SipHash and SHA512-based functions for hashing full Ethernet frames,
relative to 10 GbE line-rate

Memory type Size [kB] Access delay [cycles]
Local Memory 4 1 - 3
CLS 64 20 - 50
CTM (shared) 256 50 - 100
IMEM (shared) 2 × 4096 150 - 250
EMEM (shared) 3 × 3072 150 - 500

Table 5.4: Memory hierarchy of the NFP-4000 architecture (cf. Wray [216])

SUME prototype platform are limited because of our choice of open-source IP cores for the hash
function implementations. Using commercial IP cores, with improved per-cycle throughput and
ideal clock frequency, higher maximum throughput can be achieved.

The worst performance is shown by the CPU target, which is unable to reach line-rate for
small packet sizes in the baseline scenario. The performance of the different algorithms on
the CPU target correlate with the latency results presented in Table 5.2. Compared to the
baseline, maximum throughput is more than halved for small packet sizes when using SipHash-
2-4. Only for packets larger than 410 B line-rate is reached. Compared to Table 5.2, the
ranking of the different algorithms changes as the packet size increases, mainly due to different
initialization costs. This becomes apparent when looking at the results for Poly1305-AES, as
it shows significantly increased performance for larger packet sizes due to its low per-byte cost.
Nevertheless, the data shows that most of the hash functions are able to process packets at
a line-rate of 1 Gbit/s, regardless of packet size. Due to the large number of fixed cycles per
packet, SHA256, especially when used in HMAC mode, processes less than 7 % line-rate for
minimum-sized packets and even for large packets is unable to reach line-rate.

Latency
Median latency figures for the NetFPGA SUME target are shown in Figure 5.5 for a throughput
of 2.5 Gbit/s. Overall, latency increases linearly with packet size. As the SHA3-512 IP core
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Figure 5.7: Latency distribution at 5 % and 80 % of respective maximum throughput using 64 B packets

operates on 72 B data blocks, the throughput increase is non-monotonic. While this is also true
for the SipHash-2-4 hash implementation, due to the block size of 8 B the discontinuities are
not noticable. Independent of the packet size, the measured latency values do not differ by
more than 100 ns. Due to this stable behavior we omit more detailed histograms for the FPGA
platform.

Figure 5.6 shows the median latency for the t4p4s target. Latency is influenced by the packet
rate as packets are sent either when a burst size of 32 is reached or after a timeout. This causes
increased latency for packet rates below 0.5 Mpps as the batch is not filled quickly enough,
instead waiting for the timeout. The latency is independent of the algorithm used, however,
increases with packet size due to the increased serialization delay. Overall, the latency is between
10µs and 80µs, however, outliers, which regularly occur when using DPDK, exist as displayed
in Figure 5.7a.

Figure 5.7b shows the NPU’s stable latency behavior below 10µs with no outliers for the baseline
scenario. Performing the SipHash-2-4 operation shifts the latency distribution to the right up
to 30µs and increases the long tail.
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LUTs Registers BRAM
Absolute [-] % Absolute [-] % Absolute [kB] %

Baseline 64 533 14.90 109 783 12.67 16 362 30.92
SipHash-2-4 66 380 15.32 114 282 13.19 17 460 32.99
SHA3-512 73 449 16.95 118 689 13.70 17 460 32.99

Table 5.5: Resource utilization for the NetFPGA SUME (taken from [7])

Resource Consumption
Packet processing, in general, is parallelizable, scaling well using multi-queue NICs and multi-
core CPUs. Therefore, we disregard a longer discussion about resource consumption on CPU
targets. Depending on the use case or library chosen for externs on the CPU target, the hardware
of a CPU-based systems can be tailored to meet an application’s resource requirements.

Apart from the described performance issues, we did not encounter resource restrictions for the
Netronome card as the P4 program is of small size even when adding the SipHash implemen-
tation. For other applications, the program may be too large such that the generated firmware
image can no longer be loaded onto the card. During runtime, the already mentioned memory
architecture was a limiting factor.

Finally, Table 5.5 lists the resource consumption of the NetFPGA SUME implementations in
regard to Look-Up Tables (LUTs), registers, and block random access memory (BRAM). Adding
the open-source hashing IP cores increases resource consumption only moderately by less than
approximately 2 % compared to the baseline program.

5.2.7 Limitations
The performance of the evaluated programmable target platforms depends on the properties of
the chosen hash function and their respective, target-dependent implementation. For this work,
we restricted our selection to open-source implementations, because we are primarily interested
in the general feasibility of using cryptographic hash functions in programmable data planes.
While we have shown that this is possible, it could be possible to reduce implementation artifacts,
improving the performance and resource utilization. For instance, more sophisticated hash
function implementations, e.g., based on commercial FPGA IP cores, in combination with an
optimized integration into the P4 program, using, for instance, a higher degree of parallelization
or pipelining, could be helpful. However, these solutions would require further monetary costs
and engineering effort.

5.2.8 Conclusion
Our review of the current use of hash functions in P4 applications reveals two insights. First,
a prevalent use of CRC, making applications vulnerable to potential attacks targeting hash
collisions. Second, protocols and applications requiring cryptographic hashes for authentication
or integrity cannot at all or only with severe difficulties be described and implemented using P4.
We argue, that the implementation of cryptographic hash functions into existing software and
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hardware targets is possible and would increase the applicability of P4 to a wider range of use
cases.

Specialized hash functions, optimized, e.g., for performance exist. While functions like SipHash
do not provide the full set of cryptographic properties as classic cryptographic hash functions
like, for instance, SHA-based functions, they are often designed for MACs. These are typically
well suited for networking applications in the data plane as they work with low amout of input
data, producing short outputs. Further, they are optimized for high performance, requiring few
CPU cycles comparable to non-cryptographic hash functions, a property critical for network
applications operating at line-rate.

We describe our prototype implementations using two different approaches of integrating cryp-
tographic hashing algorithms in three different P4 target platforms—CPU, NPU, and FPGA.
Our analysis shows that the CPU target is easily extensible, allowing integration of hashes as
platform-specific P4 externs. The disadvantage of this platform is the high worst-case latency
of up to several milliseconds, typical for software packet processing platforms. The tested NPU
allows directly implementing externs in a variation of C. This target platform offers the highest
throughput, but is unable to process packets larger than 900 B efficiently due to a platform-
specific restriction imposed by its memory architecture. The FPGA-based target offers the
lowest latency with small variance. However, the hashing IP core currently cannot be integrated
using native P4 features. Instead, the functionality has to be implemented as separate module,
changing the P4 architecture model. Depending on the number and positioning of P4 pipeline
and hashing modules, the programmability of the hashing module is limited. However, in 2021
Malina et al. [217] have successfully shown that efficiently implementing not only hashing, but
also algorithms for symmetric encryption and digital signatures into P4 data planes as externs
is possible for a Virtex UltraScale+ FPGA platform.

We did not include an implementation and evaluation of an ASIC prototype target as the
hardware and its architecture cannot be changed after manufacturing. However, as both, ASIC-
based P4 target platforms and cryptographic hashing implementations, exist, we assume that
merging them is possible and will be available commercially in the future.

Our evaluation shows that the performance of hash functions is highly target, algorithm, and use
case specific. Therefore, we cannot recommend a one-size-fits-all solution. However, with differ-
ent integration approaches available, we rather suggest that P4 targets should implement hash
functions from a family of different algorithms. The PSA should recommend which functions
and families exist and define how they operate on header and payload data. These recommen-
dations should include cryptographic hashes and take into account the unique characteristics,
i.e., memory footprint and resource consumption, of platforms such as CPU, NPU, FPGA, or
even future ASICs.
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5.3 Case Study: SYN Flood Defense in Programmable
Data Planes

Section 5.3 is based on a collaboration between Dominik Scholz, Sebastian Gallenmüller,
Henning Stubbe, and Georg Carle [8]; and a joint work between Dominik Scholz, Sebastian
Gallenmüller, Henning Stubbe, Bassam Jaber, Minoo Rouhi, and Georg Carle [19], which
itself is based on the Master’s Thesis [20] by the author.

The SYN flood attack is a common attack strategy as part of DDoS attacks. This specific form
of attack generates a flood of spoofed SYN segments pretending to initiate TCP connections.
A flaw in the TCP handshake causes highly asymmetric costs for connection setup: server-side
state allocation has to be done for each SYN segment received, eventually exhausting the server’s
resources. Consequently, the main burden is put on the attackee.

The frequency, volume, and diversity of DDoS attacks continue to increase [218]. Due to the
simplicity of the attack, TCP SYN floods are a popular attack vector used in larger DDoS
attacks [219], [220]. According to Kaspersky Lab’s quarterly reports, from 2017 to 2020, the
share of SYN flood traffic during large-scale DDoS attacks rose up to 92 %, becoming the “most
popular type of attack” [221].

To defend against SYN flood attacks, avoiding downtime of valuable services, malicious traffic
has to be separated from legitimate TCP requests. There are two potential mitigation ap-
proaches: generic defense, that tackles any form of DDoS attacks; and SYN-specific defense,
fighting off TCP SYN flood in particular. Generic defense mechanisms remove, filter, or redirect
malicious traffic through techniques such as blackholing of address ranges or per-flow tracking of
traffic statistics [92]. The SYN-specific approaches use stateless client puzzles like SYN cookies
or SYN authentication [222], [223]. These require the client to behave correctly beyond the ini-
tial SYN segment. The strength of the SYN-specific defense capabilities relies on the available
performance to enforce and check correct TCP behavior before finishing a TCP handshake.

In this section, we investigate powerful off-the-shelf data planes to mitigate SYN flood attacks
in the 10 Gbit/s range without overloading. We use the software-based DPDK and hardware
platforms such as NPU and FPGAs that can be programmed using the P4 DSL, leveraging our
cryptographic hash integrations introduced in Section 5.2. Specifically, we focus on SYN-specific
solutions, protecting entire networks that provide high service guarantees with low latency to
legitimate clients while under SYN flood attack. We discuss the benefits and challenges in regard
to flexibility and usability of implementing these strategies using the P4 DSL compared to tradi-
tional software packet processing frameworks with kernel-bypass and raw packet handling. We
provide insights regarding portability and target-specific code adaptions and use measurements
to highlight connection success probability and latency.

5.3.1 SYN Flood Mitigation
SYN flood mitigation can be separated into generic and SYN-specific approaches.
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Generic Defense
SYN flooding is most successful when utilizing spoofed source addresses. Applying ingress filter-
ing [224] would reduce effectiveness of SYN flooding and other DDoS attacks relying on spoofed
addresses. As RFC 2827 states, “by restricting transit traffic which originates from a downstream
network to known, and intentionally advertised, prefix(es), the problem of source address spoof-
ing can be virtually eliminated” [224]. However, due to the distributed characteristic of the
Internet, this is unlikely to happen [225].

Active or passive traffic monitoring of the total traffic in the network can be used to detect
anomalies, specifically to detect higher than usual volumes of SYN segments, at the network’s
edge [226], [227]. Machine learning or other means, e.g., CUSUM [228], [229], can be used to
discern abnormal traffic patterns. As result, the attack can be thwarted or throttled before the
traffic reaches the targeted server.

The simplest mitigation approach is blackholing all attack traffic, including SYN flood, during
an ongoing attack, for instance, by filtering based on the source subnet. Unfortunately, this
approach also rejects any legitimate connection attempts from these subnets. Another approach,
using IP anycast to spread the load over multiple networks, increasing network resilience and the
attack surface used to mitigate the attack, is an improvement [230]. However, an anycast network
is challenging to implement [230] and during large attacks, collateral damage, impairing other
services in the network, is possible [231]. Lastly, tracking per-flow statistics and using thresholds
can be used to distinguish legitimate from suspected attack traffic [92].

The mentioned generic approaches are simple and effective, but highly unspecific. While these
techniques achieve the goal of mitigating SYN floods and other attacks, they likely cause un-
desired effects, i.e., discard legitimate traffic. Consequently, this reduces the service quality for
legitimate clients.

SYN-specific Defense
SYN-specific defenses have a narrow, highly specific focus to improve on the generic approaches:
they improve the behavior of the network stack and its data structures or employ sophisticated
challenges for TCP clients to specifically target malicious SYN flood traffic.

Parameter Optimizations: As the attack targets the TCP/IP stack of the server, parameter
optimizations of the stack can be utilized on the target server itself. Tweaking parameters of
the architecture or the application results in only minimal, if at all, any success in throttling
the attack as these adjustments only affect the overall performance of the network stack and
application [232], [233].

RFC 4987 describes several SYN flood-specific parameters that can be adjusted. This includes
increasing the backlog, the buffer for unfinished TCP connections, or reducing the SYN/ACK
retransmission times, thereby reducing the timeout per Transmission Control Block (TCB).
However, considering bandwidths of 1 Gbit/s and more, these parameters only marginally delay
the success of the attack by using more memory resources. In fact, the backlog structure might
not be designed to surpass a certain size, as data structures or search algorithms used might
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become inefficient. This may worsen performance during normal operation without an ongoing
attack. Reducing timeouts might lead to legitimate connections not being fast enough to finish
the handshake before the entry gets deleted. [190]

Replacing TCB entries either randomly or by choosing the oldest entry is another approach to
modify the backlog. While this works for SYN flood rates of up to approximately 500 SYN
segments per second [234], for packet rates possible in today’s networks, legitimate connections
are evicted with a probability of more than 99 % before they get established.

SYN Cache: The SYN cache approach only stores essential data, which can be as few as
16 B [235] in the TCB. Secret bits of the SYN segment, in combination with the addresses and
ports, are hashed, to determine the bucket in a hash map [190], [225]–[227], [235]. In FreeBSD
the size of such an entry is reduced to 160 B, compared to 736 B for a TCB [226] in Linux, and
can contain more than 15 000 entries. Furthermore, the linked-list of each bucket has a limited
size, i.e., if a bucket would overflow, the oldest entry gets deleted [236]. The idea is that the
attacker does not know how the hash is calculated, hence, cannot attack the hash structure.
Appropriate hash function choice ensures that memory and computational resources required
are limited [190]. A downside is the restricted or not existing support for TCP options, which
worsens the performance of the connection as the MSS option is required to cope with speeds
encountered in modern networks. The attack will eventually be successful when surpassing a
high enough SYN flood rate to exhaust the data structure.

SYN Cookie: For SYN cookies [222], state, usually kept by the server, is encoded and put into
the initial server-side sequence number y, which can be freely chosen. A legitimate client will
finish the handshake sending an ACK segment, setting the acknowledgment number to y + 1.
The server only accepts the connection and creates the necessary state, if the received sequence
number can be decoded and verified. Using standard SYN cookies, the 32 bit initial sequence
number is made up of three different values: a timestamp value to prevent the collection and
re-injection of old cookies [222]; the Maximum Segment Size option as it is essential for TCP
performance; and a cryptographic hash of the connection 4-tuple, consisting of source and
destination IP addresses and ports, and the timestamp value. This way, it is infeasible for an
attacker to create a valid SYN cookie by itself.

SYN cookies perform a trade-off: instead of consuming memory resources, CPU resources are
exhausted [237]. This allows for connection depletion attacks, exploiting the hash verification
mechanism by performing unresolved handshakes with the server [237]. Even an attack with low
bandwidth can shut down a high-performance server, exploiting the asymmetric nature of the
attack [238]. The server not only has to calculate the cookie, but also verify it in the received
ACK segment. In theory, this makes SYN cookies susceptible to ACK floods, however, the
computational effort is the same as calculating the cookie during a SYN flood. Similar to the
SYN cache, a drawback of this approach is the restricted support of TCP options. An updated
SYN cookie layout uses the TCP timestamp field to also encode other options that are widely
used in modern networks [226], including window scaling and selective acknowledgments [239].
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SYN Authentication: SYN authentication [234], [240] aims to further reduce the resources
required to verify the client’s legitimacy. The server expects a certain response to a triggered,
unusual event, which can be compared to the challenge in client puzzles [223], [237], [241]. If
the client reacts accordingly, any further connection attempt is whitelisted.

The simplest idea is to ignore or reset the initial connection attempt, however, an attacker can
simply resend the SYN segment and is whitelisted. More advanced, the server sends, e.g., a
SYN/ACK segment with an invalid sequence number. Clients are expected to respond with
a RST segment [235], referred to as AuthInvalid. An attacker can circumvent this by includ-
ing a flood of RST segments within their attack. Other SYN authentication approaches only
whitelist once the client has demonstrated its intent to finish a complete handshake (referred to
as Authfull) or even by means of a higher layer protocol, e.g., an HTTP GET request is received.
Fingerprinting techniques can be used to increase the probability that SYN and respective re-
ply segments for a handshake were sent by the same client. For instance, the IPv4 TTL [240]
or TCP options signature can be compared, referred to as AuthTTL. All SYN authentication
approaches can be further enhanced by including a cookie value as sequence number, similar to
SYN cookies [234], referred to as Authcookie.

During the initial connection attempt, no TCB state is created. Instead, only when the client
reacts accordingly, it gets whitelisted, which can be accomplished by storing one bit per flow,
source address, or even source subnet. In particular, no information about TCP options, or only
a signature when fingerprinting, is stored. Successive connection attempts do not have to be
modified or inspected beyond the SYN flag, until the whitelist entry is invalidated.

A drawback is the interruption of the regular protocol flow through a connection reset, increasing
the delay for the initial connection. Furthermore, if the attacker manages to get whitelisted, a
subsequent SYN flood is considered legitimate traffic.

Comparison: We compare the introduced approaches based on metrics also discussed in lit-
erature [234] in Table 5.6. The weakness of the SYN cache is the memory exhaustion, while
SYN cookies shift possible attack vectors towards CPU exhaustion attacks. SYN authentication
neither requires extensive memory nor CPU resources. The exception are AuthTTL to store TTL
values and Authcookie to calculate cryptographic hashes. Calculating cookie values is the limiting
factor for efficiency, i.e., how much SYN flood can be processed. None of the SYN authentica-
tion strategies are transparent for the client application, as they reset the initial connection. It
has to be noted, that, for instance, for modern browser implementations, an automatic retry is
performed in the case of a reset, resulting in no significant service downgrade for the user.

A downside of SYN cookies is the limited support for TCP options. Robustness specifies whether
the signaling capabilities of TCP are compromised [234]. This is the case for all SYN-specific
strategies besides the SYN cache, as no initial state is kept, wherefore a retransmission of
a SYN/ACK segment is not possible. This is more severe for SYN cookies than for SYN
authentication, as the latter works on the assumption that the client retries failed connection
attempts anyway.
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SYN authentication
SYN cache SYN cookie Invalid Full TTL Cookie

Memory immunity −− + + + − +
CPU immunity + − + + + −
Efficiency − + ++ ++ ++ +
Transparency + + − − − −
Option support + −/o + + + +
Robustness + − o o o o

Classified as legitimate traffic
False Positive + + − − o +
False Negative + + + + + +

Table 5.6: Comparison of SYN flood mitigation strategies

Lastly, we evaluate the techniques by whether they correctly classify legitimate traffic. Assuming
all packets are received correctly and within the time frame of the calculated cookie, no technique
produces false negatives, i.e., legitimate traffic classified as malicious traffic. Only the SYN
cache, SYN cookies and Authcookie cannot be circumvented by malicious traffic, i.e., only a
legitimate connection is passed to the server. No other SYN authentication strategy fulfills this
requirement, as a RST or ACK flood can achieve whitelisting for malicious SYN segments as no
cryptographic cookie is used.

SYN cookies and SYN authentication violate the end-to-end principle of TCP. However, only
during attacks, where a TCP SYN flood would likely cause a service downtime, we deem the
application of these approaches justified. The assumption is that the server is under severe
load caused by a SYN flood, while only a small percentage of the traffic is legitimate TCP
traffic. Instead of no service, the goal is to provide a best-effort approach of service quality for
legitimate flows, i.e., higher delay or minor connection disruptions are acceptable. None of the
listed methods reliably shuts down the attack, instead the success of the attack is delayed by
having to use more resources, either memory or computational, for the attack. Furthermore,
no strategy is part of the official TCP specification or standardized by a committee [226]. The
different strategies offer a trade-off between efficiency (performance) and correct classification
(false positives): only the methods using a cryptographic hash reliably protect against the attack,
however, at the cost of reduced performance.

Case Study: SYN Cookies in Linux
Mere parameter changes to the TCP stack cannot effectively defend against SYN floods. There-
fore, the Linux TCP/IP stack has SYN cookies enabled by default. However, they are only used
when the backlog of a socket is already full [242]. Linux follows the proposed SYN cookie layout,
encoding the MSS and a timestamp value with 60 s resolution. If the client sends a timestamp
option it is used to encode further TCP options.

As a case study, we analyze two different Linux versions when subjected to a SYN flood, while
serving a static website: 4.9.0 and 4.19.0, using the SHA1 and SipHash hash functions for
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Figure 5.8: Performance of Linux during SYN flood

cookie calculation, respectively. Figure 5.8 shows the amount of processed SYN flood and the
probability of successfully serving 100 HTTP requests per second for an increasing SYN flood.
When disabling SYN cookies, Linux can only process up to 250 SYN packets per second. Worse,
the connection success probability is close to zero, as no HTTP requests are served successfully.
Profiling of the network stack’s functions shown in Figure 5.9 reveals that this behavior is not
due to CPU exhaustion. The CPU is only fully utilized after 0.4 Mpps, as indicated by the
decline of idle CPU cycles. This leads to the conclusion that the TCP backlog is the limiting
factor.

When enabling SYN cookies, both Linux versions behave similarly, i.e., process up to 0.4 Mpps
of SYN flood, while all HTTP requests are served. When further increasing the SYN flood,
the probability of serving any legitimate requests successfully approaches zero. For Linux 4.19,
it is notable that a percentage of less than 10 % of requests is served successfully, even for
rates of up to 1 Mpps of SYN flood traffic. The profiling reveals that, in this setting with
SYN cookies enabled, the CPU utilization is the limiting factor. A clear difference between the
Linux versions is the number of CPU cycles used for the hash calculation. Cookie calculation
using SHA1 requires up to 15 % of the cycle budget, while SipHash with only 2.5 % is more
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Figure 5.9: Profiling of different Linux versions during a SYN flood

efficient. This performance difference also supports our findings presented in Section 5.2. Given
the cheaper hash function, one would expect an increased performance for Linux 4.19 instead
of the measured decrease. We attribute this development to other networking related changes
between these Linux versions, which are out of scope of this study.

Profiling also reveals common performance limiting factors of the Linux network stack. The
majority of CPU cycles are spent handling packet buffer and memory referred to as skb and
mem in Figure 5.9, driver related processing (driver), IP layer processing (ip/inet), and the
TCP stack itself (tcp). The numbers are in the expected range and comparable to other Linux
studies [3].

Primary goal of the network stack is to support as many protocols as possible, providing a
reliable, stable, and robust interface for user space applications. Thus, raw performance is
secondary, wherefore Linux should not be used for mitigation of large-scale SYN floods. To
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perform the attack mitigation directly on the end host, optimized solutions are required. One
approach to increase performance is to perform filtering operations like DoS mitigation before
the network stack, e.g., by using the eBPF- and P4-programmable XDP.

5.3.2 Deployment Scenario
The aforementioned generic and SYN-specific strategies, targeting transport or application layer,
can be implemented directly on the end host or within the network. A special case of the latter
is deploying SYN-specific mitigation approaches as separate node, called SYN proxy.

On the End Host
All of the parameter optimizations, targeting the application or network stack, are deployed
exclusively on the end host. All other strategies may be deployed on the device being the
target of the attack. However, in this case, mitigation does not scale as it only protects this
particular node. For instance, in a cluster of nodes, each node has to perform its own SYN flood
mitigation. Further, the mitigation wastes CPU cycles that could otherwise be used for running
actual applications. Our case study has shown that when leaving this task up to the network
stack, in our case the Linux TCP/IP stack, in the best-case scenario, the node can cope with a
maximum attack rate of 0.4 Mpps.

Network-wide as SYN Proxy
Generic approaches, including traffic monitoring, statistics gathering, and blackholing of volu-
metric attacks, can be deployed anywhere in the network, typically close to the network edge to
detect malicious traffic early on.

SYN-specific attack mitigation strategies are commonly deployed as SYN proxy. This proxy can
be used to protect multiple servers as shown in Figure 5.10, or, as part of a traffic scrubbing
center or in the cloud, even multiple sites. The concept of a SYN proxy is based on the idea
of intercepting potentially harmful traffic. Instead of the server, the proxy will answer to the
initial SYN segment [190], [225], [226] using, for instance, SYN cookies or SYN authentication
and only forward authenticated packets to the server. SYN proxies can be combined with
monitoring services, i.e., only when an attack is detected, traffic gets routed through the proxy.
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Figure 5.11: Message Exchange for SYN cookie strategy

In the following, we explain the actions performed by a SYN proxy. We focus on using SYN
cookies and SYN authentication as they show the highest potential as discussed in Section 5.3.1.

SYN Cookies: SYN cookies used in a proxy setup as displayed in Figure 5.11 raise several
issues. Only after the verification of the cookie, the full state object for an established TCP
connection is created by the proxy. As the server is unaware of the connection and to uphold the
transparency provided by SYN cookies, the proxy has to perform a second handshake with the
server. While the proxy can reuse the first handshake’s client-side sequence number in its SYN
segment, the server chooses an initial sequence number z at random. As this won’t match the
first handshake’s server-side sequence number, the proxy has to store the difference δ between
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SYN Cookies SYN Authentication
Packet modification every segment handshake
Transparent yes no
Option support limited (encoded) full
State
State per flow flow or subnet
Lookup key 4-tuple 4-tuple or source IP
Memory required > 32 bit/flow 2 bit/flow
Lookup for not SYN every segment

Table 5.7: Comparison of SYN cookie and SYN authentication in proxy setup

the client- and server-side number. For all subsequent segments of the connection, the proxy
has to modify sequence and acknowledgment numbers accordingly.

Another issue is that the first data segment of the client is sent directly after finishing the
first handshake. This poses a problem for the proxy, as its handshake with the server is likely
not completed yet. If the proxy drops this data segment, the client retransmits it after a
timeout, for which 200 ms is a common time period. Considering that typical RTTs are only
a hundredth of this, this retransmission causes a significant delay penalty for the connection
attempt. A solution for the proxy is to temporarily store the client’s initial data segment
instead of dropping it. Once the second handshake is completed, the stored segment can be
translated and forwarded. Alternatively, the proxy can actively notify the client once the second
handshake is completed, by resending the SYN/ACK segment, triggering a retransmission of the
data segment. Further improvements include setting a window size of zero, called zero window,
in the original SYN/ACK segment, indicating that the server cannot process any more data.
Until the SYN/ACK is resent with a non-zero window size, the client will not send the initial
data segment, reducing bandwidth wasted for a segment that will be dropped.

SYN Authentication: SYN authentication is efficient due to its simplicity when used in the
proxy setup. Figure 5.12 shows Authcookie, i.e., SYN authentication using a full TCP hand-
shake with cryptographic cookie. The first connection attempt is interrupted after verifying
the legitimacy of the client, i.e., the client is willing to create its own TCP connection state.
By whitelisting all further attempts for this client, the proxy does not have to keep a separate
connection with the server or perform sequence number translation. No connection state has
to be stored by the proxy, wherefore, a simple bitmap representing the whitelist is sufficient.
However, as ACK segments of established connections cannot be distinguished from the third
segment of the handshake, the proxy has to check every segment against the whitelist. If the
origin is not whitelisted, the segment is assumed to be the third segment of the handshake and,
when using Authcookie, the cookie hash is verified.

Authfull is the same procedure as Authcookie, however, skipping the hash calculation and verifi-
cation. Consequently, Authfull is easier to circumvent.
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Figure 5.12: Message Exchange for SYN authentication strategy

Comparison: SYN cookie and SYN authentication, when used in the proxy setup, retain their
properties regarding transparency and option support as highlighted in Table 5.7. SYN cookie
has to modify every segment, while SYN authentication only modifies segments during the
handshake. For the latter, the size of the kept state depends on the whitelisting granularity,
e.g., per flow, per source address, or per subnet. However, state is reduced to a few bit per entry
compared to keeping the sequence number difference per flow for SYN cookies. Both strategies
need to perform a lookup for every segment, aside from SYN segments for SYN cookie, to
determine the action. However, with P4 devices using match-action pipelines, this can be done
efficiently.
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5.3.3 Related Work
Related work on SYN flood attacks and mitigation is broad. It covers detecting and modeling of
attacks, implementing SYN flood mitigation procedures, and doing so using high-performance
frameworks.

Modeling SYN Flood Attacks: Maregeli analyzes of the impact of SYN flood attacks on servers
and the network and contributes a model of the probability of successfully establishing a TCP
connection during a SYN flood attack [225]. The measurements show that, while shutting down
a server is already successful with less than 100 SYN segments per second, even for larger
backlogs, a large-scale volumetric SYN flood similar to a UDP flood can successfully deprive the
resources of networking devices, affecting the complete network. Compared to other approaches
that use complex mathematical operations like Markov models or solving of differential equations
to model buffer occupancy and residual waiting times [243], [244], Maregeli proposes a simplified
and reduced model based on queuing theory, focusing on the service quality for legitimate clients.
A comparison with other approaches shows that the model is not accurate for low traffic rates.
However, for higher rates the results coincide, especially considering the drastically reduced
mathematical effort of the model [225].

SYN Cookie Implementations: Besides Linux, other major operating systems like Windows and
FreeBSD utilize TCP SYN cookies as preferred mitigation method, enabled by default during
periods with high traffic volumes [245]. However, as our performance evaluation of the Linux
network stack in Section 5.3.1 shows, these network stacks typically do not focus on performance.
Their primary goal is usability and flexibility, supporting as many protocols and scenarios as
possible.

SYN cookies, as part of a SYN proxy, have been implemented by multiple projects. The SYN-
PROXY module for the netfilter framework is available in Linux [246]. Managing the SYN
flood, SYNPROXY forwards only legitimate traffic to the Linux kernel. To do so, the initial
SYN segment is intercepted by netfilter, calculating a SYN cookie. Once the client finishes the
connection establishment with a verified cookie, the proxy sends a SYN segment to the original
server destination, using the initially negotiated options. After finishing the second handshake,
the proxy is only involved in sequence number and timestamp translation [246]. This approach
enables mitigation of a 2 Mpps SYN flood using only 7 % CPU utilization on an eight-core test
system [246]. The disadvantage is that it is integrated with a Linux end host, i.e., it cannot be
deployed as proxy or ported to different target platforms. Our P4 implementations improve on
this as they are portable and can be deployed as SYN proxy.

Zhang et al. propose Poseidon [92], a DDoS defense framework that maps customizable mit-
igation strategies to programmable data planes in the network. The use-case is as part of a
scrubbing center, cleaning the traffic from not only SYN flood traffic, but general DoS traffic
of customer networks. Poseidon uses generic defenses like packet counting and probabilities to
mitigate most attack vectors, including SYN floods. For HTTP floods, Poseidon does not create
client puzzles in P4, but creates them in a separate DPDK proxy. This comes at the cost of
higher end-to-end latency of approximately 70 ms, similar to existing commercial solutions. We
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improve on Poseidon’s SYN flood mitigation by performing puzzles in the data plane without
the need for probabilities or other generic approaches. In fact, our solution could be integrated
as part of Poseidon’s network orchestration framework.

Large-scale commercial solutions exist, however, due to the closed-source nature, implementation
details are rare. For instance, the Arbor Threat Mitigation System [247] provides middleboxes
of different scale for traffic scrubbing, including unspecified SYN flood mitigation. Cloudflare
offloads the TCP handshake to the cloud using an IP anycast network [230], [248]. Only once
the handshake completes, it is forwarded to the target server.

Other proposed techniques and implementations produce unsatisfying performance with less
than 0.1 Mpps mitigated SYN flood [249], break TCP, require specialized clients [250], or only
mitigate attacks in particular scenarios, thus interfering with deployment [251].

Exploiting TCP Simultaneous Open for SYN Flood Mitigation: Two clients can simultaneously
open a TCP connection with each other using TCP simultaneous open [252]. Consequently, a
total of four messages is used during the handshake. Zuquete et al. propose to exploit this for
SYN flood mitigation with SYN cookies [253]: they send the SYN cookie without ACK flag,
simulating a simultaneous open. A legitimate client will respond with a SYN/ACK segment.
The advantages are two-fold: the server can include its TCP options in the initial SYN; and the
client will send its TCP options again in the SYN/ACK segment. Consequently, neither side’s
options are lost compared to the normal SYN cookie approach.

However, there are severe downsides. First, implementing TCP simultaneous open is uncommon
and requires that the end-points use a well-known source port [254]. Further, this exploit depends
on firewalls allowing inbound SYN segments to the client. This is further complicated if the client
is located behind a device performing network address translation. Zuquete et al. tested TCP
simultaneous open support of operating systems. Their results show that none of the evaluated
Windows and Cisco IOS versions supported the feature. Further, for other OSes like Linux and
MacOS only selected versions supported it or the behavior was not correctly implemented [253].
Our tests using Linux 3.16 and 4.6 show that for both versions, the client and server properly
implemented TCP simultaneous open.

Zuquete et al. propose two improvements to tackle these problems. First, using regular SYN
cookies as fallback in case no response is received to trying TCP simultaneous open [253].
However, this approach can be considered even worse as it creates new attack vectors. In
particular, the server itself can be used to perform an amplification attack, generating both a
potentially harmful SYN and a SYN/ACK segment as response to a single connection attempt.
Zuquete et al. counteract this by storing clients without suspected support for TCP simultaneous
open in a cache [253].

High-Performance Attack Mitigation in Software: As standard network stack implementations
are not capable of high-performance packet processing, dedicated frameworks have been created
over recent years [25], [26], [28], [37], [255]. With kernel bypass, memory pre-allocation, paral-
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lelization and batch processing, among others, deficiencies of common bottlenecks are negated,
enabling packet processing beyond 10 Gbit/s on commodity hardware.

DDoStop [256] is an application based on the Snabb virtual switch [147], a framework for fast
packet networking. This NFV-like app offers zombie detection, a term coined by Arbor Networks,
i.e., blocking of “source hosts that exceed certain thresholds” [256]. Subject to the complexity
of the rule-set and required packet parsing, 1 Mpps to 10 Mpps of general DoS traffic can be
mitigated per CPU core [256].

5.3.4 Requirements for SYN Proxy Implementation
We have identified the following requirements for a flexible, open-source and high-performance
SYN proxy:

SYN Flood Mitigation: No traffic part of the SYN flood should reach the protected servers.
The proxy should filter and drop malicious traffic while correctly detecting and forwarding
legitimate connection attempts.

Performance: The proxy should operate at line-rate of 10 GbE, i.e., it should be able to process
14.88 Mpps of SYN flood. Furthermore, it should be scalable to allow for even higher data rates,
e.g., 40 or 100 GbE.

Service Quality: The services provided by the protected servers should be reachable for as
many legitimate clients as possible, reducing service downtime. As connection attempts occur
during a DoS attack period, a best effort approach regarding service quality for legitimate traffic
is chosen. Furthermore, the behavior of the proxy should be transparent and adhere to standards
whenever possible to enable interaction with different client and server implementations.

Portability: The implementation should be platform-independent, facilitating deployments on
a wide range of different software and hardware targets. Additionally, fine-grained configurability
should be possible, avoiding setup dependencies whenever possible.

Extensibility: The proxy should be modularized to serve as starting point for further SYN
flood mitigation strategies and mitigation of other types of DoS attacks, e.g., UDP or DNS
floods.

While the proxy should perform well without any malicious traffic, it is typically only deployed
during an attack. Therefore, the proxy is designed with the assumption that more than 90 % of
all received traffic is malicious, i.e., only a minority of traffic is considered legitimate.

For the remainder of this section, we focus on three techniques: regular SYN cookies, as well
as SYN authentication performing a full handshake with and without including a cryptographic
hash as cookie (Authcookie and Authfull). Only the strategies using a cryptographic hash offer
adequate protection while also achieving high service quality. We also discuss not using the
cookie calculation to highlight the impact of performing the cryptographic hash.

We implement these mitigation methods in SYN proxies using two different approaches: based
on kernel-bypass and raw packet handling with the libmoon packet processing framework; and
using the P4 language to create platform-independent programs for software and hardware
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Figure 5.13: Architecture of SYN flood mitigation in different data planes

targets. The different architectures for these prototypes are shown in Figure 5.13. Further, we
compare our implementations with SYN cookies in Linux’ TCP/IP stack.

5.3.5 Software Packet Processing Prototype using libmoon
Section 5.3.5 is based on a collaboration between Dominik Scholz, Sebastian Gallenmüller,
Henning Stubbe, Bassam Jaber, Minoo Rouhi, and Georg Carle [19]. This publication itself is
based on the Master’s Thesis [20] by the author.

We use libmoon [4], [149] to implement our SYN proxy prototype in software targeting COTS
hardware. The proxy is running as user space program, bypassing the regular network stack of
the OS as shown in Figure 5.13b. libmoon does not offer a TCP stack, therefore, the handling of
the TCP handshake has to be done by the proxy application itself. Utility functions for packet
templating are available due to libmoon’s dynamic protocol stack presented in Section 3.3,
simplifying the implementation of the TCP handshake. libmoon receives and processes packets
as batches. For each packet of a batch, depending on the mitigation strategy used and TCP
flags set, a response is crafted and sent after all packets of the batch have been processed. We
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use the pseudo-cryptographic SipHash hash function for the calculation of cookie values for the
reasons discussed in Section 5.2.

Connection State Tracking
A crucial part of state maintenance is correct tracking of TCP connection state, i.e., adding new
connections and to regularly remove dead connections. Removing state of finished connections
serves two purposes: freeing memory space and allowing the same 4-tuple to initiate a new
connection. Approaches to state removal are either active or passive. State tracking aims at
actively reacting to FIN and RST segments of the connection to determine when the connection
concludes. For each flow, state kept by the proxy has to reflect whether such a segment has
been seen. If state tracking concludes that the connection has been terminated, i.e., both sides
sent and acknowledged a FIN segment or a RST has been sent, the corresponding state entry
can be removed immediately. This approach is difficult to implement as reordering of segments,
packet loss, retransmissions, or connection timeouts may result in state being deleted too early
or not at all.

A passive approach is to use garbage collection, e.g., applying a second-chance page replacement
algorithm [257]. For this, each state entry is extended with two bits, which are set every time
the entry is looked up. A periodic background process iterates over all entries and unsets one of
the bits. If both bits are unset, the entry is deemed inactive and removed. Common timeouts
for inactive connections, for instance, in Linux are at least 10 min [242], wherefore we chose a
similar timeout for garbage collection.

SYN Authentication
SYN authentication requires no state information besides the previously described connection
state tracking. We chose a fixed-size bitmap as data structure representing the whitelist. For
each entry, two bits are used to implement the second-chance page replacement algorithm. This
results in a total of approximately 1 GB of memory being used when representing the complete
IPv4 address space and whitelisting based on individual source addresses. As the location of
the bits for a particular entry is known, no hash function for the lookup has to be used. Due to
the size of the IPv6 address space, this approach is not possible for IPv6 addresses. Alternative
ideas use either whitelisting based on subnets or a hash-based data structure.

SYN Cookies
The SYN cookie approach requires additional state information besides the connection state
tracking. Increased memory consumption makes the bitmap impractical. Instead, this approach
uses concurrent hash maps, as the garbage collection process has to run as separate process to
not interfere and block time-sensitive lookups. When using a normal hash map implementation,
every insert operation would invalidate the iterator object used to traverse the map. A concur-
rent hash map implementation has the drawback that it is more complex, resulting in reduced
performance. Furthermore, when using only this mechanism to remove invalid entries, the reuse
of ports by the client for future connections is infeasible due to the long timeout.
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To leverage the advantages of both approaches—immediate removal of connections and garbage
collection of left-over entries—we use a hybrid approach, coined swap-out hash maps. Instead of
a concurrent hash map and timeout bits, two normal hash maps, called active and history, are
used in conjunction. Rather than periodically unsetting bits, history is deleted and replaced
by the active map and a new empty active hash map is initialized as shown in Figure 5.14a.

The lookup procedure consists of the two stages visualized in Figure 5.14b. First, the active
map is checked. If the entry exists, it is returned, otherwise, the same lookup is performed in
the history map. If no entry is found, the connection is new. Otherwise, the entry is returned
and copied to the active map, employing the second chance mechanism. Inactive entries are
eventually swapped out to the history map before being deleted with the next swap. Insert
operations are performed exclusively on the active hash map. With this scheme, no hash map
is traversed, removing the need of a concurrent hash map.

Because of the primary assumption of the proxy, i.e., only a margin of all traffic is legitimate and
does not belong to the SYN flood, merely a small number of entries is expected to be maintained
in the hash map. Therefore, we chose Google’s sparse hash map implementation [258]. As each
value object consists of approximately 40 bit, no bottlenecks regarding required memory space,
when keeping thousands of inactive entries up to ten minutes, are expected. The performance
impact of a swap-out and consequent copy-up operations for active connections is reduced by
the long timeout interval.

The second issue of SYN cookies in the proxy setup is receiving data from the client before the
second connection between proxy and server is completed. We implemented two strategies to
delay this initial TCP data: storing the initial request and using active notification after com-
pleting the handshake with the server. Storing the segment at the proxy requires the complete
data to be copied into a buffer, which is stored with the remaining metadata for the connection.
This increases the amount of data stored per connection by up to 1500 B. In particular, it
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requires proper garbage collection of left-over stored packet buffers to prevent memory leaks.
Furthermore, the added complexity makes this approach become infeasible if the client sends
more than one data segment before the second handshake is finished or segments are received
out of order. For both strategies, our evaluation has shown that latency can be reduced to
10 ms or lower, implying that no retransmission after a timeout is required. This is a significant
improvement compared to waiting for a timeout of typically 200 ms.

Optimizations
To reduce computational complexity, offloading features of modern NICs are used for checksum
calculation.

For every TCP segment received by the proxy, exactly one action has to be performed resulting in
one outgoing packet, e.g., sending a SYN/ACK as response to a SYN. Parallelizing the processing
by performing all possible actions for each packet of a batch is infeasible as it generates a lot of
potentially harmful traffic, even increasing the flood attack. Instead, the proxy either answers
with a specific templated segment, where only addresses, etc., have to be updated, or forwards
the received segment with slight changes. Reusing RX buffers is only beneficial for the latter
case. However, this concerns only a small amount of the overall received traffic, assuming that
the majority is SYN flood traffic. Denoting which buffer can be reused and which buffer should
be replaced with a templated packet using “dropout batching” [259] would require a bit-mask.
As this cannot be efficiently done using Lua, calling respective functionality in C using the FFI
would generate additional overhead per batch [259]. Furthermore, RX buffers cannot be reused
when being transmitted on a different port. Instead, RX buffers are never re-used and we utilize
on-demand allocation of reduced batch sizes. For buffers to be forwarded, the complete content
is copied, while for all other replies we use templated TX buffers. For packets that are less likely
to be used, for instance, RST segments after successful whitelisting, buffers are only allocated
on-demand. This reduces overhead when the buffers are not actually used.

5.3.6 Programmable Data Plane Prototype in P4
P4’s match-action-based paradigm makes it an excellent language to realize packet filtering and
DoS mitigation applications. Opposed to raw packet handling demonstrated in the previous
section using DPDK, packets can only be modified through constructs allowed by the language.
Furthermore, P4 has a clear separation between data and control plane as shown in Figures 5.13c
and 5.13d: while the data plane can match the entries of P4 tables to incoming packets and
perform respective actions, only the control plane can insert new entries into a P4 table. The
data plane communicates with the control plane, which in our case runs on the same node that
also runs the P4 data plane, using digest messages.

Realized Programs and Targets
We implemented P4 programs for SYN cookie and SYN authentication strategies and tested
their functionality using the Mininet-based bmv2 P4 switch target. For all platforms, the core
P4 program, available as open source [21], remains the same. However, due to using differ-
ent P4 architecture models and offering different extern interfaces, all platforms require small,
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target-dependent modifications to the P4 program. To reduce overhead, we only ported the
implementations requiring simpler state maintenance, Authfull and Authcookie, to multiple P4
targets: the DPDK-based t4p4s [69] (see Figure 5.13c); the NFP-4000 Agilio SmartNIC [45]
NPU (see Figure 5.13d); and the NetFPGA SUME [72]. We chose t4p4s as it uses the same
underlying framework as our libmoon implementation and offers a comparison between imple-
menting raw packet processing to using a DSL for data plane programming.

Program Core
The P4 implementations for the mentioned strategies follow the same structure independent of
the used strategy. At first, packets are parsed up to and including the TCP header. The following
match-action pipeline at its core works as an L2 forwarder. Depending on the determined
outgoing port, Ethernet addresses are updated using a table lookup. As P4 cannot generate
new packets, the received packet is modified according to the strategy used, TCP flags set in
the received packet, and the state kept by the proxy. State—whitelist or sequence number
difference—is maintained as match-action table, requiring one lookup for every segment. No
changes to the IP layer are performed besides exchanging IP addresses, requiring only an update
of the TCP checksum before the packet is transmitted.

Target-specific Changes
Aside from the core logic that is portable between different P4 targets, few target-specific changes
are required. Individual targets use different P4 architecture models, i.e., the order or number
of pipeline stages and the extern interfaces differ. For the former, this only requires changes
to the structure of the program depending on the concrete model, e.g., v1model for t4p4s and
SimpleSumeSwitch for the NetFPGA. The extern interfaces are challenging for SYN mitigation
as our solutions require a cryptographic hash function.

Cookie Calculation: To calculate a standard-conform cookie, the P4 target needs to offer func-
tionality for generating a timestamp used for replay protection and hash calculation. We use
the insights gained in Section 5.2 for the choice of hash function. Integration of cryptographic
hash functions in P4 data planes is currently possible for software, NPU, and FPGA targets [7]
as discussed in Section 5.2. The integration and use of, for instance, SipHash as extern on the
software target is straight forward as it can be added as library to the hardware-dependent t4p4s
code. We choose SipHash as it is designed for short inputs like packet data [200], while achiev-
ing good performance when integrated into P4 targets [7]. Although the NPU target includes
a crypto accelerator for SHA1 and SHA2, it was unavailable on our card, wherefore we opted
to integrate a SipHash function as extern. The NPU allows to add extern functions written in
a variation of C used to program its processing cores. We are not aware of a P4 ASIC that
supports cryptographic functions.

When raw timestamp access is not possible, replay protection can also be achieved by using a
table containing a counter, which is updated by the control plane.

Whitelisting: The easiest approach to perform whitelisting in a P4 program is to use a match-
action table. The data plane informs the control plane through a digest message whenever a
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flow or IP address should be whitelisted and the control plane inserts an according table entry.
The disadvantage is that this communication results in delay until the rule takes effect in the
data plane.

An alternative approach that does not include a control plane is to use a Bloom filter data struc-
ture built with registers. This precludes additional communication delays, however, depending
on the target and implementation of the register extern, registers might require more resources
or have slower read/write access times compared to match-action table entries. Furthermore,
additional complexity is required to maintain the state in the Bloom filter, in particular, evict-
ing outdated entries. As both methods have trade-offs, which method to use depends on the
concrete target device and deployment requirements, e.g., if the delay to insert table entries is
acceptable.

Buffering Packets: Stalling the initial TCP data segment when using the SYN cookie strategy
is not possible with P4, as P4 has no construct to write entire packets to memory. Stalling is only
possible, if the target provides an extern for this task. To perform this operation at line-rate in
a programmable ASIC, FPGA, or NPU, however, is unlikely due to the memory capacity and
memory bandwidth required.

An alternative is to use a secondary COTS device as storage server, programmed using, for
instance, a framework like DPDK. In this slow-path scheme, if a packet needs to be stalled, the
proxy forwards this segment to the storage server. Once the handshake is finished, the proxy
informs the storage server, e.g., via the controller, to transmit the stalled packet. The downsides
are the increased complexity for the hardware setup and the necessary controller logic.

As the underlying problem can be circumvented by using a TCP zero window or active noti-
fication by resending the SYN/ACK as presented in Section 5.3.2, we did not implement this
slow-path solution.

5.3.7 Evaluation
Software packet processing frameworks allow high flexibility through raw packet handling and
easy addition of complex data structures. However, they require careful development and are
limited to software platforms. Using a standardized DSL like P4 makes program development
simpler and portable to ASIC, FPGA, and NPU devices, but comes at the cost of flexibility as
the set of offered functions is limited. The following evaluation uses empirical measurements to
compare performance indicators of the discussed implementations. As our software implemen-
tation uses the same underlying framework as t4p4s, we compare the P4 solution to a complex
implementation using raw packet handling and kernel-bypass techniques. We compare our im-
plementations regarding latency with the network stack of a standard Linux 4.19 with SYN
cookies enabled.

Key Performance Indicators
The primary performance indicator for a SYN proxy is the total SYN flood processed. From a
user perspective, e.g., the number of HTTP requests served without packet loss and the overall
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Figure 5.15: Measurement setup for SYN flood mitigation mechanisms

latency are a concern. While, in general, the latency of a device or application when operating in
an overload scenario is not of interest, in the case of a SYN proxy, it is highly likely that the proxy
will reach an overload state during a high volume attack. We, therefore, analyze latency values
in low—no SYN flood,—middle—50 % of total processed SYN flood,—and overload scenarios.

Measurement Setup
As shown in Figure 5.15, the load generating host sends malicious SYN flood and legitimate
HTTP traffic via two separate links to the DuT. Using a 10 GbE switch, the traffic is mixed
so that malicious and legitimate traffic arrives at the DuT at the same port, i.e., are indistin-
guishable based on the ingress port. We use MoonGen [33] as load generator for the SYN flood
traffic. A constant load of HTTP queries is generated using wrk2 [260]. All measurements run
for 30 s, allowing for accurate latency results up to the 99.99 %-ile.

Depending on the DuT, the topology slightly differs. Linux as DuT cannot be configured to run
as SYN proxy, wherefore, the web server is located on the same node as shown in Figure 5.15a.
For all other scenarios using our SYN proxy implementations, the DuT forwards traffic classified
as legitimate to a separate web server host as visualized in Figure 5.15b.

For measurements using software targets, the DuT is a COTS server, equipped with an Intel
X722 NIC and an Intel Xeon Gold 6130 CPU clocked at 2.1 GHz. In other scenarios, the DuT
is a server equipped with either a 10 GbE P4-programmable NPU or FPGA. We denote our
libmoon-based software packet processing implementation as “lm”. For all measurements with
the COTS system, we disabled turbo boost, set the CPU frequency to the maximum of 2.1 GHz,
and pinned all traffic to one CPU core. When using Linux as DuT, the web server is pinned to a
different CPU core as we are not interested in measuring the web server’s performance impact.
The nginx web server (version 1.10.3) is limited to a single worker and CPU core and serves a
1 kB static website.
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Web Server Overload
Initial tests displayed in Figure 5.16 show that the web server is capable of processing up to 30 000
HTTP requests per second for 10 to 10 000 parallel connections. However, latency increases when
using more than 1000 parallel connections or more than 4000 requests per second. We measured
a reduced connection probability for more than 700 parallel connections, even when issuing only
100 HTTP requests per second. As we do not want to measure overload artifacts of the web
server, we restrict our measurements to 100 parallel connections, issuing a total of 100 or 1000
HTTP requests per second.

Processed SYN Flood
Figure 5.17 shows the maximum SYN flood each implemented solution is able to process. For
all implementations, the use of a cryptographic hash function is the limiting factor and reduces
the maximum processed SYN flood by up to 50 %, which is comparable to our findings pre-
sented in Section 5.2 [7]. Due to the possibility to manually optimize and parallelize packet
processing, the libmoon/DPDK implementation achieves up to 50 % better performance than
the t4p4s implementation using P4. In contrast, the libmoon/DPDK implementation requires
approximately 1000 lines of code and careful development and optimization. Only the hardware
P4 targets are capable of processing up to 14 Mpps of SYN flood traffic when using the simpler
Authfull strategy.

Batching
For the software implementations, batch processing has a significant influence on performance,
shown in Figure 5.18. The raw packet handling of libmoon allows the complete processing of
packets to be performed in batches. In particular, cookie values are calculated for the complete
batch, reducing the overhead of C calls from libmoon using Lua’s FFI. For t4p4s, the impact of
batching is reduced, as each packet is processed by the P4 pipeline individually, although packets
are received in batches. For all remaining measurements we have used the optimal batch sizes
of 64 and 32 for libmoon and t4p4s, respectively.
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Figure 5.17: Maximum processed SYN flood traffic
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Figure 5.18: Processed SYN flood for different batch sizes on COTS system

CPU Core Scaling
The COTS proxy implementations do not have to share state between cores when using receive-
side scaling to assign flows to CPU cores. This results in the linear scaling with CPU cores
as demonstrated for the libmoon-based implementation in Figure 5.19. All other prototype
implementations scale equally linearly with the number of cores or devices used (not shown).
Consequently, when using enough cores or devices, throughput close to line-rate can be reached,
even when cookies are calculated.

Quality of HTTP Requests
We evaluate the quality of HTTP connection attempts when traversing the SYN proxy proto-
types in regard to the probability of successfully establishing the connection and elapsed time.

Connection Probability: For all implemented solutions, the connection probability for 100
HTTP requests per second is at 100 % until the point of overload as shown in Figure 5.20.
After this point, the probability slowly drops. As the web server is not overloaded, all requests
reaching the server are served. However, with increasing SYN flood, causing processing overload
for the proxy, the chance that the proxy is able to process and forward legitimate traffic drops.
As the NPU is able to process the SYN flood at almost line-rate, no HTTP message is lost.
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Figure 5.19: Multi-core scaling for software system

More requests per second reduce the connection probability during overload. This is due to
the same number of parallel connections being used. The number of connections experiencing a
timeout remains the same, however, in the case of having more requests per second for a given
connection, one timeout has a larger impact. Increasing the number of parallel connections
reverts this effect, as the impact of an individual connection experiencing a timeout is reduced.

SYN cookies are not able to process the increased amount of HTTP traffic even for a small SYN
flood. This is due to the increased complexity of the state keeping, causing problems for rapid
port reuse as previous state still persists.

To reduce clutter, we do not show Authcookie. For these strategies, the slope is the same as for
their respective Authfull counterparts, however, shifted to the left. This shift is correlated to
the reduced maximum SYN flood that can be processed. For the NPU platform the probability
starts dropping when reaching approximately 10 Mpps.

Connection Completion Latency: Connection latencies for the best case, i.e., no SYN flood,
average case, i.e., 50 % SYN flood relative to maximum processed flood, and worst case, i.e.,
overload, are shown in Figure 5.21. For most scenarios, the median latency is between 1 and
1.4 ms, while for the no flood and 50 % cases a long-tail up to 4 ms is visible. Both implemen-
tations for the CPU target show sporadic outliers and a long-tail behavior with up to a second
already for the 90 %-ile during overload. The long-tail is expected due to batch processing and
operating system interrupts typical for software packet processing frameworks like DPDK [28].
Due to the lower probability when issuing 1000 HTTP requests per second for 100 parallel
connections, the median latency during overload is above one second.

The exception is the NPU, showing latencies between 1 and 4 ms without outliers even in the
worst case. Further, the latency for no flood is worse compared to when increasing the SYN flood
load. We attribute this to specifics of the architecture, improving processing when increasing the
backpressure on internal buffers or when reducing idle cycles caused by energy-saving features.

For the Authfull implementation on the NetFPGA SUME, the latency for up to 1000 HTTP
requests per second was stable between 1 to 4 ms without outliers up to a SYN flood of 1.5 Mpps
(not shown). However, for reasons unknown to us, the program stopped working for higher
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Figure 5.20: Connection probability for 100 and 1000 HTTP requests per second

loads of mixed traffic. Related work shows that the NetFPGA SUME, in general, is able to
run P4 programs of higher complexity with latency below 10µs and no long-tail. This is even
possible when modifying the P4 architecture of the NetFPGA to integrate a SipHash or SHA3
core, which can be used to hash even complete packet data. [7]

Whitelisting—Scaling Match-Action Tables
As we have shown in Section 4.4.4, the number of entries in match-action tables on P4 targets
scale in regard to performance and resource usage [6]. For instance, more than one million 32 B
exact match entries for the t4p4s DPDK can be inserted. On a software target, the bottleneck
becomes the CPU cache, quickly reducing the performance when exceeding L3 cache capacity.
However, adding even more entries is still possible. On a hardware target, exhausting the
available resources is a hard limit. While one entry depends on its match size, i.e., the key,
action data, and action performed, sufficient resources for up to several hundreds of thousands
of entries are available on, e.g., the commercial Intel Tofino ASIC, neglecting resources required
by the rest of the P4 program. [6]

If the resources for whitelisting are restricted by the P4 target, whitelisting can also be ag-
gregated. Instead of whitelisting individual flows identified by the 5-tuple, whitelisting can be
performed based only on the source IP or even the complete source subnet. This results in a
trade-off between whitelisting granularity and resource consumption.

FPGA Resource Consumption
For the NetFPGA SUME, the synthesized P4 proxy program only uses up to one third of the total
resources. This leaves enough resources to further enhance the program to defend against other
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Figure 5.21: High Dynamic Range latency for 100 and 1000 HTTP requests per second

attacks. Further, it would allow to add the modified architecture model including a SipHash
hashing module presented in Section 5.2.5 into the data plane [7]. As shown in Table 5.5, this
would only require 2 % of the total resources and would allow to even perform Authcookie.

Programming Experience
Implementing SYN mitigation mechanisms in programmable data planes is drastically simplified
using the P4 language compared to raw packet handling using, for instance, libmoon/DPDK.
Its well-defined programming language, architecture model, and extern interfaces aid the im-
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LUTs Registers BRAM
Abs. % Abs. % Abs. [kB] %

Authfull 98 343 22.71 156 678 18.08 18 450 34.87
Data presented in Table 5.5 [7]
Baseline 64 533 14.90 109 783 12.67 16 362 30.92
SipHash 66 380 15.32 114 282 13.19 17 460 32.99
SHA3-512 73 449 16.95 118 689 13.70 17 460 32.99

Table 5.8: Resource utilization of SYN proxy on NetFPGA SUME compared to P4 hash implementations
presented in Section 5.2.5

plementation of the overall logic independent of the target platform, without the need to take
care of memory and buffer management. Furthermore, P4 supports hardware targets, where
implementing such complex processing was previously infeasible or required domain-specific
knowledge. However, depending on the concrete target, it is subjective and domain-specific
influences of the target device can cause challenges. For instance, when using t4p4s, knowledge
about the code architecture, DPDK, and C is required, while debugging the NetFPGA SUME
requires VHDL expertise. All targets provide different programming frontends, ranging from
Linux command-line scripts for t4p4s and the P4→NetFPGA toolchain, to programmer studios
for the NPU. Thereby, an expected difference in the user experience can be noted between
research projects and commercial products. While using an DSL like P4 speeds up the proto-
typing, deployment, and adds portability, using a software packet processing framework allows
for fine-grained optimizations. Explicitly managing buffers and performing only necessary oper-
ations on raw packets is time consuming, but the optimizations result in increased throughput
and reduced latency and resource consumption.

5.3.8 Conclusion
SYN floods are still the predominant traffic for high-volume DDoS attacks on the Internet and
will likely remain so in the future as the root-cause, a flaw in the TCP handshake, cannot be
fixed. The client puzzle—including a cryptographic hash value—as part of SYN cookies or SYN
authentication is the single effective SYN-specific defense strategy that is not based on black-
holing or heuristics. It guarantees that no malicious connection attempts are successful, while
not falsely rejecting legitimate requests. Due to the computational complexity of cryptographic
hash functions, this is the bottleneck for these implementations. The SYN cookies and SYN
authentication strategies both offer similar protection capabilities, with the former being fully
transparent for TCP clients and the latter being simpler to implement. Performing the attack
mitigation as a SYN proxy running on a dedicated node is scalable. This setup allows the
protection of entire networks without consuming resources of the end hosts.

Our programmable data plane prototypes have shown that SYN authentication, when used
in a proxy setup, can mitigate SYN floods at 10 Gbit/s line-rate. The P4 solutions are easy
to implement and can be ported to different target platforms, in particular, hardware devices,
which achieve end-to-end connection latencies below 5 ms with low jitter. The P4 software target
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achieves latencies comparable to implementations using the libmoon software packet processing
framework. However, using raw packet handling allows for further optimizations compared to
using a DSL for data plane programming, at the cost of added complexity and no portability to
hardware devices.

We conclude that effective and efficient SYN flood mitigation on modern data planes is possible.
With both mitigation strategies, SYN cookies and SYN authentication, performing equally
well, we recommend SYN authentication, being the simpler one to implement. The crucial
limiting factor for hardware data plane solutions is the availability of a suitable cryptographic
hash function. However,we have shown that this is possible on different software and hardware
targets.

5.4 Key Results
In this chapter, we have shown the value of performing cryptographic operations, in particular,
hashing, in programmable data planes. These functions are essential for many modern protocols,
especially when used in industrial applications. There, authenticated communication is already
required at the data link layer, for instance, using IEEE 802.1AE MacSec. Other uses for
cryptographic hashing include DoS mitigation approaches in the form of client puzzles.

Cryptographic hashing can be integrated into programmable data planes using different ap-
proaches, each with up- and downsides. For instance, as extern function or dedicated pipeline
module that is a part of the architecture model. Alternatively, hashing or other functionality
could in theory be implemented based on standard P4 constructs, e.g., using match-action ta-
bles. The best approach is highly target-dependent. Our prototype implementations show that
integration is simple for the software target. Hardware targets offer less flexibility and extensi-
bility. Processing pipelines might have restrictions for the amount of data that can be processed
in externs. On the other hand, a pure P4 solution might limit the resources available for the
remaining program. The most challenging platform are ASICs. They cannot be changed easily,
however, efficient cryptographic operations in the data plane are possible as shown by bitcoin
miners. It is merely a matter of integrating these hardware blocks with the remaining pipeline.
The performance evaluation of our prototypes for software, NPU, and FPGA platforms have
shown promising results.

We have used our prototypes to show the usability of hashing in programmable data planes by
implementing high-performance SYN flood mitigation approaches. TCP SYN floods are still a
difficult problem to handle as they are typically part of bigger DDoS floods. Many potential
solutions have been proposed, however, our literature research shows that only a cryptographi-
cally secured client puzzle can reliably protect against SYN floods. All other approaches can be
circumvented or only mitigate a certain percentage of the overall attack as they use heuristics
to determine malicious traffic.

To highlight the simplicity of implementing SYN flood mitigation in programmable data planes,
we also implemented the same approach using a classic software packet processing framework
based on DPDK. Furthermore, this allows a closer performance comparison with the P4 program
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for the DPDK target. While the P4 programs were not entirely portable to different target
platforms due to different architecture models and extern interfaces, the core of the program
can be reused. Still, the lines of code for the P4 solutions were drastically less compared to
the manually programmed DPDK solution. This allows rapid prototyping using a high-level
programming language. The advantage of using the low-level packet processing framework lies
in the performance as individual parts of the program can be optimized.

Summarizing, cryptographic operations integrated with programmable data planes opens up
new and creative solutions for applications with security aspects. Therefore, we argue, that it is
beneficial to include basic aspects of cryptographic externs using standardized interfaces in the
P4 specification, for instance, as part of the PSA.

5.5 Statement on Author’s Contributions
The motivational introduction in Section 5.1 is based on a collaboration between Dominik Scholz,
Andreas Oeldemann, Fabien Geyer, Sebastian Gallenmüller, Henning Stubbe, Thomas Wild,
Andreas Herkersdorf, and Georg Carle [7]; and joint work between Dominik Scholz, Sebastian
Gallenmüller, Henning Stubbe, and Georg Carle [8]. The author significantly extended this
section with background information on different categories of hash functions.

Section 5.2 is based on a collaboration between Dominik Scholz, Andreas Oeldemann, Fabien
Geyer, Sebastian Gallenmüller, Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and Georg
Carle [7]. The artificial performance benchmark of various hash functions presented in Sec-
tion 5.2.3 was performed by the author. The benchmark is based on a framework by Fabien
Geyer, which the author extended to include more tests with different hash functions. The
discussion of hashing interfaces in P4 (Section 5.2.2), choice of hash functions (Section 5.2.3),
and integration of hash functions (Section 5.2.4) was significantly extended and generalized by
the author compared to the original publication. The integration of hash functions for the t4p4s
target was initially performed by Philipp Hagenlocher as part of a research work, co-supervised
by the author. The author further extended t4p4s by integrating additional hash functions.
The performance evaluation of the integrated hash functions for the t4p4s and NFP-4000 tar-
gets presented in Section 5.2.6 was performed by the author, using a framework developed by
Fabien Geyer and the author. The discussion about the FPGA-based target was shortened and
simplified compared to the original publication, to better fit the focus on software targets in this
thesis. Table 5.3 and Figures 5.4, 5.6, and 5.7 were extended for this work, providing further
insights for the investigated target platforms.

Section 5.3 is based on a collaboration between Dominik Scholz, Sebastian Gallenmüller, Henning
Stubbe, and Georg Carle [8]; and a joint work between Dominik Scholz, Sebastian Gallenmüller,
Henning Stubbe, Bassam Jaber, Minoo Rouhi, and Georg Carle [19], which itself is based on
the Master’s Thesis [20] by the author. The background information on SYN flood mitigation
(Section 5.3.1), deployment scenarios (Section 5.3.2), and related work (Section 5.3.3) was ex-
tended and unified for this work by the author and goes beyond the scope of the individual
publications. Section 5.3.5 is based on a collaboration between Dominik Scholz, Sebastian Gal-
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lenmüller, Henning Stubbe, Bassam Jaber, Minoo Rouhi, and Georg Carle [19]. The complete
implementation of the DPDK-based SYN proxy was performed by the author. The explanations
in Section 5.3.5 were extended for this work. The prototype implementations for the t4p4s target
presented in Section 5.3.6 were created by the author and are based on platform-independent
P4 programs developed during an interdisciplinary project work by Bassam Jaber, which the
author co-supervised. The author performed the performance measurements discussed in Sec-
tion 5.3.7 using the mentioned programs and implementations contributed by Henning Stubbe
and Sebastian Gallenmüller for the NetFPGA SUME and the NFP-4000 targets, respectively.
Figures 5.14, 5.16, 5.18, and 5.19 were added and Figures 5.13, 5.15, 5.17, 5.20, and 5.21 were
extended for this work by the author. Based on the addition of these Figures, the analysis goes
significantly beyond the scope of the original work.
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Conclusion

In this chapter, we summarize the findings presented in this thesis. We reiterate our initially
formulated research questions and outline our key results for the topics of reproducible testbed
orchestration, automated modeling of data plane components, and the integration of crypto-
graphic hashing into programmable data plane targets. Finally, we discuss areas with open
questions, suitable for potential future work.

6.1 Contributions
The following summarizes the key contributions for the research questions introduced in Sec-
tion 1.1.

RQ1: How can we perform reproducible measurements for a heterogeneous set of software and
hardware data planes?

In Section 3.2, we have presented the pos testbed controller, which not only encourages, but en-
forces reproducible experiments. Each experiment consists of scripts for setup and measurement
phases. These scripts provide the sequence of commands that should be executed, e.g., for con-
figuration or execution of the measurement. Further, variables can be defined per measurement
run, which provide further details for each individual measurement. pos explicitly supports the
execution of measurement series, using the so-called loop mode. For every combination of loop
variables, a measurement is executed, e.g., scaling the packet rate and packet size throughout all
measurements. Fully specifying the experiment, including setup, variables, and measurements,
is vital for achieving not just repeatability, but also reproducibility. Furthermore, all measure-
ment artifacts are collected for further processing and evaluation. Bundling this data together
for easy publishing results in replicable experiments.

The introduced testbed controller and enforced workflow are used for all experiments throughout
this thesis. In Section 4.3.3, we extended the evaluation component of pos with a framework for
automatically deriving mathematical models.
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RQ2: How can we operate multi-user testbeds for reproducible experiments using heterogeneous
hardware?

pos is not only designed for reproducible experiments, but also to manage heterogeneous test-
beds, accessed by a variety of users with different backgrounds. Thereby, the testbeds are not
only intended for performance measurements of wired devices. pos supports experiments using
wireless devices, distributed setups, or pure computation tasks, using one or more nodes. All
resources are shared by users. To avoid interferences, nodes are allocated only to one experi-
ment at a time. This is automatically enforced by pos. The setup of pos is also automated and
reproducible, decreasing the effort for testbed administrators.

We currently employ pos to manage more than 130 heterogeneous devices, including COTS
servers, virtual machines, power distributions units, switches, and Raspberry PIs. Further, we
have shown that pos can be used for hybrid teaching and measurement testbeds in Section 3.2.5.

RQ3: How can we model the performance of individual data plane components in an automated
fashion?

We proposed a modeling approach to estimate the behavior of data plane components. As
different target platforms require different models or new parameters for the same model, we
automated the process of measuring and deriving the model. The framework has a target- and
a testbed-dependent component. In this work, we implemented it for pos-controlled testbeds,
achieving full automation and reproducibility. Our model-first approach is optimized for math-
ematically fitting the model for the measurement data using a curve fitting approach. Thereby,
different metrics can be used as plugins to determine the quality of the resulting fitting. One im-
portant factor is the complexity of the model. We use metrics based on AIC, penalizing complex
functions with multiple free fitting parameters. Typically, a simpler function better represents
the actual system behavior. However, certain events, like overload or memory exhaustion, might
drastically alter the behavior of a network device, requiring complexity in the model. Therefore,
our derived models may consist of multiple partial models.The points that split the partial mod-
els are derived by calculating second derivatives and applying different algorithms to process
the data.

We have implemented the target-specific component for the t4p4s P4 target presented in Sec-
tion 4.4. We then applied the automated framework to model components and features typically
found in data plane programs. The resulting models show that the key components of such pro-
grams on a software system are match-action tables. Thereby, we differentiated the match type,
as each type is implemented using different data structures. The model for exact matches re-
vealed multiple different events that alter the scaling of CPU cycles. Using a resource model
we were able to predict the memory requirements of the data structure in relation to cache
sizes. Similarly, for ternary and LPM matches, we could identify and model the impact of the
underlying data structures and memory requirements.

RQ4: How can we determine the packet that takes the worst case path through the data plane?

Based on the models for individual data plane components, we proposed modeling the perfor-
mance of entire processing paths through the data plane. Determining these paths is possible
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based on the data plane program’s CFG. For the path models, we added up the costs of indi-
vidual components as determined by our component models. Doing so for all paths allows to
determine, e.g., the worst-case path through the data plane.

Generating traffic matching a specific path is a complex problem. This requires information
provided by the control plane as, e.g., table entries are only known during runtime. Only this
state information defines the criteria which packet chooses which path.

In Section 4.4.5, we used the calculated component models for the t4p4s target to derive models
for each path through two sample programs. Using measurements, we generated packets that
match only a single path and verified the accuracy of the path models. Thereby, the models
overestimated between 20 and 30 % CPU cycles. Our approach of adding the cost for individual
components does not take into account compiler optimizations. Furthermore, effects identified
for components in isolation might be different for complete programs. Extern functionality
further complicates the process of generating packets for a certain path, especially if language
constructs change the state of the device.

RQ5: How can we extend programmable data planes with cryptographic hashing functionality?

By analyzing related work and current use cases, we have demonstrated the importance of cryp-
tographic hash functions in today’s networks. Consequently, this functionality is also important
for applications based on programmable data planes. Supporting cryptographic hashing en-
ables new protocols and applications, also used, e.g., in industrial networks, to be moved to
the data plane, taking full advantage of P4’s flexibility and portability. We have shown, that
different approaches exist to integrate such functions, preferably either as extern or as part of
the architecture model. Depending on the concrete target platform and underlying technology,
different challenges may arise, resulting in advantages and disadvantages for either of the ap-
proaches. Our performance evaluation has demonstrated that our prototypes are capable of
up to 10 Gbit/s line-rate. One unsolved area are ASICs, which do not allow the integration of
additional functionality. For such targets, either the hash function has to be directly included
in the design and manufacturing process, or the functionality can only be provided through a
separate chip or processing node.

Based on the results presented in Section 5.2, we conclude that cryptographic hash functions can
be integrated with programmable data planes. We argue, that they warrant a direct mention
in the P4 or PSA specifications due to their importance in networking applications. This would
encourage further efforts in simplifying the interfaces between hash functions and data planes
and, ultimately, cause more chip manufacturers to include them in programmable data plane
targets.

RQ6: How can we defend against TCP SYN floods from within the data plane?

In Section 5.3, we have discussed that SYN floods are and will remain a threat for computer
networks. Thereby, only mitigation approaches that employ a cryptographically secured client
puzzle can reliably filter such attack traffic. Other approaches either use heuristics or statistics,
resulting in false positives or negatives, or can be circumvented by clever attackers adjust-
ing the attack traffic. Using our presented prototypes for cryptographic hash functions, we
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implemented the most promising mitigation strategies for different P4 software and hardware
platforms. Furthermore, we implemented the same defense approaches using a classical software
packet processing system based on DPDK, based on the dynamic protocol stack presented in
Section 3.3. Our discussion on implementation complexity and performance has shown that the
SYN flood mitigation solutions can be implemented using both approaches, suitable for high-
performance networks and large attack loads. However, the data planes programmed using a
standardized DSL like P4 have advantages. The same attack mitigation program can be ported
to hardware platforms, only requiring small changes for architecture-specific components. The
upside of the handcrafted solution based on the packet processing framework is the potential
for optimizations, leading to better performance.

The implemented SYN flood mitigation strategies presented in Section 5.3 provide another
argument for the inclusion of cryptographic hash functions in programmable data planes. Our
approach for filtering traffic using a client puzzle to differentiate malicious from legitimate traffic
can be used for protecting against other, e.g., DoS threats.

6.2 Future Work
The pos testbed controller only provides limited access for device configuration outside of the
OS. To fully control and configure all aspects of each testbed, for instance, BIOS or firmware
settings have to be adjusted. Adding support for such interfaces would allow adding even more
heterogeneous devices to pos-controlled testbeds. Furthermore, device configuration would be
further automated and specified, getting closer to full reproducibility.

The component modeling framework does not yet support functions to model probabilistic dis-
tributions, like gaussian or trapezoid functions. However, this would be necessary to model, for
instance, latency histograms. Adding these functions raises several challenges. Often, probabilis-
tic functions have restrictions, either for their defined values or the range of single parameters.
Specifying these is currently not supported. Further, the integral of a probabilistic modeling
function has to be one by definition. This requires a new approach for splitting the overall
model into multiple parts. For instance, instead of using multiple distinct models separated by
splitting points, multiple probabilistic models could be added up using weights, such that the
overall integral remains one. Lastly, better metrics to quantify the fit, like maximum likelihood,
should be used. Integrating these metrics into the component modeling framework is trivial due
to modularized plugin nature of metrics.

A related aspect are the ranges of free fitting parameters for modeling functions. Currently, a
minimum value is used due to the measurement and modeling accuracy. An improvement would
be individual per-parameter ranges. For instance, for a high degree polynomial, whereby the
highest degree fitting parameter is smaller than 0.1, the polynomial could be reduced to the
next lower degree polynomial. Essentially, these restrictions would provide further semantics to
each functions’ fitting parameters.

Our approach for analyzing and modeling paths of data plane programs is not fully automated
as the necessary tools for deriving the CFGs do not yet support all architecture models and P4
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language components. This problem extends towards the automated generation of packets that
match a certain path. Further research and implementation effort is required for such tools to
reliably generate packets for all paths, especially for cases that require control plane information
or when packets modify the state of the device.

We have applied the automated component modeling framework to the software-based t4p4s
target. In a next step, this framework could be applied to other, e.g., hardware-based P4 switch
targets, like the Netronome NFP-4000 SmartNIC, the NetFPGA SUME, or the Intel Tofino
chip. Depending on the concrete target, other metrics than packet rate and CPU cycles are
of interest, like resource consumption for the ASIC platform. Investigating component model
parameters for other available software targets, like P4 transpilers for eBPF or XDP, would
allow a comparison with our presented results.

Our implementations for integrating cryptographic hash functions into programmable data
planes are of prototype nature. In particular, they use open-source implementations of hash
functions, which might not be optimized or ideal for a certain target platform. Similar to
Malina et al. [217], future work includes further simplifying the interface to use cryptographic
functions and integrating optimized hashing cores.
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Appendix

A.1 List of Acronyms

Authcookie Authcookie. SYN authentication strategy using a cryptographic cookie

Authfull Authfull. SYN authentication strategy using a full handshake for
authentication

AuthInvalid AuthInvalid. SYN authentication strategy expecting a specific reaction from
the client in response to invalid data for authentication

AuthTTL AuthTTL. SYN authentication strategy using additional fingerprinting
techniques for authentication

AFDX Avionics Full-Duplex Switched Ethernet. Data network based on Ethernet

AIC Akaike information criterion. Estimator for the relative quality of a set of
statistical models

API Application programming interface. Interface allowing multiple
applications to interact

ASIC Application-specific integrated circuit. Custom-made integrated circuit for
particular use case

bmv2 Behavioral model version 2. Reference P4 software switch

BPF Berkeley Packet Filter. Linux in-kernel virtual machine

BRAM Block random access memory. Random access memory typically used in
FPGAs to store large amounts of data

CDF Cumulative distribution function. Plot variation displaying the empirical
cumulative distribution function of the data
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CFG Control-flow graph. Presentation of all possible execution paths of a
computer program using graph notation

CLI Command-line interface. Input for a computer program in the form of lines
of text

COTS Commercial off-the-shelf. Commercially available product

CRC Cyclic redundancy check. Checksum used to detect errors in digital data

DDoS Distributed denial-of-service. Attacking a victim with traffic originating
from several different sources

DMA Direct memory access. Feature of operating systems to allow I/O devices
to access main memory independent of the CPU

DoS Denial-of-service. Attacking a victim server or network with the goal of
making it unavailable for its intended use case

DPDK Data Plane Development Kit. Framework for creating high-performance
packet processing applications

DSL Domain-specific language. Programming language designed for a specific
application domain

DuT Device under test. Device of interest in a measurement

eBPF Extended Berkeley Packet Filter. Linux in-kernel virtual machine

EMD Earth mover’s distance. Quality metric to compare probability
distributions

FFI Foreign function interface. Interface of a programming language to call
functions of another language

FPGA Field-programmable gate array. Configurable integrated circuit consisting
of programmable logic blocks and interconnects

GbE Gigabit Ethernet. Transmitting Ethernet frames at Gbit/s rates

GRE Generic Routing Encapsulation. Tunneling protocol developed by Cisco

HDL Hardware description language. Computer language to describe the
architecture and behavior of electronic circuits

HDR High dynamic range. Variation of histograms, focusing on high percentiles

HMAC Hash-based message authentication code. Message authentication code
using a cryptographic hash function

IPMI Intelligent Platform Management Interface. Interface to manage a
computer remotely, out-of-band, and independent of the system’s CPU
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JIT Just-in-time. Compilation of computer code during runtime of the
application

KPI Key performance indicator. Metric for a performance measurement

LPM Longest prefix matching. Algorithm used by routers in Internet
Protocol-based networks to select the best route from the forwarding table

LUT Look-Up Table. Programmable block used typically in FPGAs for
performing boolean algebra

MAC Message authentication code. A cryptographic construct to verify a
message’s data integrity and authenticity

MAPE Mean absolute percentage error. Estimator to predict statistical accuracy

NFP Netronome Flow Processor. A network processing unit chip architecture
sold, e.g., by Netronome

NIC Network interface card. Network adapter connecting a computer to a
computer network

NOS Network operating system. Operating system for a network device

NPU Network processing unit. Integrated circuit with feature-set targeted at
network devices

OS Operating system. Software performing basic tasks of a computing system

OvS Open vSwitch. Virtual switch software

P4 Programming Protocol-independent Packet Processors. Domain-specific
language to program network data planes

PISA Protocol-Independent Switch Architecture. Single pipeline forwarding
architecture used by the 2014 version of P4

POF Protocol-oblivious Forwarding. Enhancement to OpenFlow-based SDN
forwarding architectures

pos plain orchestrating service. Testbed controller software for multi-user
heterogeneous testbeds

PSA Portable Switch Architecture. P4 target architecture describing common
capabilities of network switches

SDN Software-defined networking. Approach to programmatically and
dynamically manage computer networks
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sMAPE Symmetric MAPE. Variation of MAPE estimator to predict statistical
accuracy

SRAM Static random-access memory. Volatile random-access memory

TCAM Ternary content-addressable memory. Specialized high-performance
memory using three inputs

TCB Transmission Control Block. Data structure used by the TCP stack to
track connection information

uBPF Userspace eBPF. eBPF virtual machine running in Linux user space

VPP Vector Packet Processing. Framework to build network switches and
routers using vector processing

XDP eXpress Data Path. High-performance data path based on eBPF in the
Linux kernel
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