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Abstract

Mechanistic mathematical models are powerful tools in systems biology to describe and under-
stand biochemical systems, allowing to unravel underlying causal mechanisms. Such models
depend commonly on parameters that need to be estimated from experimental data. Param-
eter estimation typically comprises both the identification of optimal point estimates, e.g. via
optimization, and uncertainty quantification, e.g. via sampling. When the likelihood cannot be
evaluated, which is often the case for complex stochastic models, likelihood-free methods such
as approximate Bayesian computation (ABC) are useful. Depending on the system, data, and
research question, different model types are employed, common examples including ordinary dif-
ferential equation (ODE) models and multi-scale agent-based models. Increasing computational
resources, growing biological knowledge, and improving experimental techniques have led to the
development of increasingly complex models. While this ultimately allows for a more holistic
description and understanding of biochemical systems, parameter estimation for such models
becomes challenging, necessitating the development of novel methods.

In this thesis, we develop efficient, accurate, and robust parameter inference methods, specif-
ically for optimization of large-scale ODE models, and ABC methods for Bayesian inference for
stochastic models.

Firstly, we develop a hierarchical optimization approach scalable to high-dimensional ODE
models that efficiently calculates optimal observable and measurement noise parameters via a
problem decomposition, while using scalable adjoint sensitivity analysis to compute gradients. On
a pan-cancer model with thousands of state variables and parameters, this approach improves
performance by orders of magnitude and facilitates the estimation of scale, offset, and noise
parameters with virtually no computational overhead and thus the integration of heterogeneous
relative datasets.

Secondly, turning to ABC, we develop an efficient, self-tuned, sequential approach to perform
exact inference using ABC methods in the presence of measurement noise. While ignoring noise,
which is easy to do in ABC, can lead to erroneous parameter estimates, we demonstrate on
various test problems that our approach provides orders of magnitude speed-up compared to
established approaches, and allows to estimate noise parameters, facilitating exact inference for
a wide range of problems.

Thirdly, we develop a generally applicable, adaptive distance metric for ABC that is robust
to outliers in the data. While established adaptive ABC distance metrics can give erroneous
parameter estimates in the presence of outliers, we demonstrate on various test problems that
our approach is substantially more robust and efficient, performing well on both outlier-corrupted
and outlier-free data, while making no assumptions on the type of data or model.

Fourthly, we develop an ABC distance weighting scheme accounting besides scale for infor-
mativeness of data points on parameters, by using sensitivities of inverse regression models. On
various test problems, we demonstrate efficiency and robustness of our approach, in particular its
ability to identify uninformative data points. Further, we demonstrate general advantages of ac-
counting for both scale and informativeness, and tackle problems of established regression-based
approaches in the presence of parameter non-identifiability.

In conclusion, the methods presented in this thesis allow for more accurate inference compared
to established approaches, have better scaling properties, are more widely applicable, more robust
to heterogeneous data, and computationally more efficient. We hope that these contributions
will facilitate the understanding of, in particular biochemical, systems at an unprecedented level.
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Zusammenfassung

Mechanistische mathematische Modelle sind in der Systembiologie ein leistungsfähiges Instru-
ment zur Beschreibung und zum Verständnis biochemischer Systeme, mit dem sich die zugrunde
liegenden kausalen Mechanismen entschlüsseln lassen. Solche Modelle hängen in der Regel von
Parametern ab, welche aus experimentellen Daten geschätzt werden müssen. Die Parameter-
schätzung umfasst in der Regel sowohl die Ermittlung optimaler Punktschätzungen, z.B. durch
Optimierung, als auch die Quantifizierung der Unsicherheit, z.B. durch Sampling. Wenn die
Likelihood-Funktion nicht ausgewertet werden kann, was bei komplexen stochastischen Modellen
häufig der Fall ist, sind Likelihood-freie Methoden wie approximative Bayes’sche Inferenz (engl.
ABC) nützlich. Je nach System, Daten und Forschungsfrage werden verschiedene Modelltypen
verwendet, wie z.B. gewöhnliche Differentialgleichungen (ODE) und agentenbasierte Modelle.
Zunehmende Rechenressourcen, wachsendes biologisches Wissen und verbesserte experimentelle
Techniken haben zur Entwicklung von immer komplexeren Modellen geführt. Während dies
letztlich eine ganzheitlichere Beschreibung und ein besseres Verständnis biochemischer Systeme
ermöglicht, wird die Parameterschätzung für solche Modelle zu einer Herausforderung, welche
die Entwicklung neuer Methoden erforderlich macht.

In dieser Arbeit entwickeln wir effiziente, akkurate und robuste Methoden zur Parameter-
inferenz, insbesondere für die Optimierung großer ODE-Modelle, sowie ABC-Methoden für die
Bayes’sche Inferenz stochastischer Modelle.

Erstens entwickeln wir einen hierarchischen Optimierungsansatz, der auf hochdimension-
ale ODE-Modelle skalierbar ist und optimale Beobachtungs- und Messrauschparameter über
eine Problemzerlegung effizient berechnet, sowie skalierbare adjungierte Sensitivitätsanalyse zur
Berechnung von Gradienten verwendet. Bei einem Krebsmodell mit Tausenden von Zustandsvari-
ablen und Parametern verbessert dieser Ansatz die Effizienz um Größenordnungen und ermöglicht
die Schätzung von Skalen-, Versatz- und Rauschparametern praktisch ohne Rechenaufwand und
damit die Integration heterogener relativer Datensätze.

Zweitens entwickeln wir einen effizienten, adaptiven, sequenziellen Ansatz zur exakten In-
ferenz mit ABC-Methoden in Gegenwart von Messrauschen. Während das Ignorieren von Mess-
rauschen, bei ABC leicht möglich, zu fehlerhaften Parameterschätzungen führen kann, zeigen
wir an verschiedenen Testproblemen, dass unser Ansatz im Vergleich zu etablierten Ansätzen
um Größenordnungen schneller ist und die Schätzung von Messrauschparametern ermöglicht,
und somit exakte Inferenz für eine große Bandbreite von Problemen ermöglicht.

Drittens entwickeln wir eine allgemein anwendbare, adaptive Distanzmetrik für ABC, die ro-
bust gegenüber Ausreißern in den Daten ist. Während etablierte adaptive ABC-Distanzmetriken
bei Vorhandensein von Ausreißern zu fehlerhaften Parameterschätzungen führen können, zeigen
wir an verschiedenen Testproblemen, dass unser Ansatz wesentlich robuster und effizient ist und
sowohl bei ausreißerbehafteten als auch ausreißerfreien Daten gut funktioniert, wobei keine An-
nahmen über die Art der Daten oder des Modells getroffen werden.

Viertens entwickeln wir ein ABC-Distanzgewichtungsschema, das neben der Skala auch den
Informationsgehalt von Datenpunkten über die Parameter berücksichtigt, indem wir Sensitiv-
itäten inverser Regressionsmodelle verwenden. Anhand verschiedener Testprobleme demonstri-
eren wir Effizienz und Robustheit unseres Ansatzes, insbesondere seine Fähigkeit, uninformative
Datenpunkte zu identifizieren. Darüber hinaus demonstrieren wir allgemein die Vorteile der gle-
ichzeitigen Berücksichtigung von Skala und Informationsgehalt, und gehen Probleme etablierter
regressionsbasierter Ansätze bei Nichtidentifizierbarkeit von Parametern an.

Die in dieser Arbeit vorgestellten Methoden ermöglichen im Vergleich zu etablierten An-
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sätzen genauere Inferenz, haben bessere Skalierungseigenschaften, sind breiter anwendbar, ro-
buster gegenüber heterogenen Daten und rechnerisch effizienter. Wir hoffen, dass diese Beiträge
das Verständnis von, insbesondere biochemischen, Systemen beträchtlich erweitern werden.
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Chapter 1

Introduction

1.1 Research topic

Modeling

Mathematical models are in many scientific areas important tools to describe and study real-
world systems, famous examples including, and far from limited to, e.g. in physics Newton’s and
Einstein’s laws of motion [Einstein, 1905, Newton, 1833] or Bohr’s atom model [Bohr, 1913],
in epidemiology SIR models of disease spread [Kermack et al., 1927], in biology the Hodgkin-
Huxley neuron spiking model [Hodgkin and Huxley, 1952], or in economics the Black-Scholes
financial markets model [Black and Scholes, 1973]. Modeling typically comprises decision on
level of abstraction, model scope and type, construction of the model, fitting it to the described
system by comparison to observed data, evaluation, and, potentially, using the model to study
the system and make predictions [Bender, 2012, Gershenfeld and Gershenfeld, 1999, Kitano,
2002a].

Depending on in particular purpose, knowledge, and data, there exist a variety of model types.
Since the second half of the twentieth century, continuously improved computational capabilities
and experimental techniques generating large quantities of data have enabled the development,
simulation and analysis of increasingly complex models relying on computer simulations [Kitano,
2002b, Shiflet and Shiflet, 2014]. As by the aphorism “all models are wrong, but some are useful”
attributed to the statistician George Box [Box, 1976], models only provide a simplified description
and potentially approximation of a real-world system such that their limitations must be kept
in mind, however they can be useful in their respective scope. Often, “Occam’s razor“ [Blumer
et al., 1987] finds application, in the sense that, for a given purpose, among models with similar
power, simple ones are preferable, as easier to analyze and computationally less demanding.

Of marked interest are quantitative mechanistic models, which explicitly simulate important
causal system mechanisms, and whose equations are often based on fundamental physical or
biochemical laws. Compared to purely statistical machine learning models, mechanistic models
rely on hypotheses of latent causal mechanisms underlying observations, mitigating the need
for calibration data, and allowing to gain insights into underlying processes between inputs and

1



2 CHAPTER 1. INTRODUCTION

outputs [Baker et al., 2018]. Therefore, mechanistic models particularly allow to “[measure what
can be measured and] make measureable what cannot be measured”, a quote attributed to Galileo
Galilei.

Computational systems biology models

In the field of computational systems biology, mechanistic models are widely used to describe
and understand the complex interactions in biochemical systems [Cho and Wolkenhauer, 2005,
Kitano, 2002a,b]. Arguably due to the wide range of scales, systems under consideration, and
research questions in the life sciences, in systems biology there exists a variety of modeling
approaches, including qualitative and quantitative, deterministic and stochastic, and spatially
homogeneous and resolved models [Hasenauer et al., 2015].

A popular approach, as they often provide a reasonable trade-off between quantitative insights
and computational tractability, are ordinary differential equation (ODE) models [Ingalls, 2013,
Klipp et al., 2005]. ODE models have been e.g. used to describe cell signaling [Bachmann et al.,
2011, Fröhlich et al., 2018], cell cycle [Lloyd, 2013, Münzner et al., 2019], metabolism [Smallbone
and Mendes, 2013], apoptosis [Spencer and Sorger, 2011], and diseases such as cancer [Hass
et al., 2017, Raimúndez et al., 2020]. Alternative approaches when assumptions underlying
ODE models, of sufficiently abundant species and spatial homogeneity, are not met, include
e.g. partial differential equations (PDE) incorporating spatial dynamics [Schaff et al., 1997],
chemical master equation (CME) based stochastic models describing random discrete dynamics
at low copy numbers [Ingalls, 2013, Klipp et al., 2005], stochastic differential equations (SDE)
for continuous stochastic dynamics [Wilkinson, 2011], or agent-based models, representing e.g.
cells as interacting agents [Turner et al., 2004].

Biological and biochemical processes often interact on different spatial or temporal scales, from
molecular, cellular, tissue, organ, up to organism, and potentially population, level, with ordered
dynamics on the macro-scale often emerging from complex micro-scale interactions [Martins
et al., 2010]. To efficiently describe the resulting macro-scale behavior, multi-scale models often
couple various of the aforementioned models or model types at the different scales [Dada and
Mendes, 2011, Hasenauer et al., 2015]. Multi-scale models have been e.g. used to describe heart
mechanics [Hunter and Borg, 2003], cancer tissue growth [Anderson and Quaranta, 2008, Jagiella
et al., 2017], whole-cell life cycle [Karr et al., 2012], and virus dynamics of e.g. HIV [Imle et al.,
2019] or HCV [Durso-Cain et al., 2021].

Parameter estimation

Quantitative mechanistic models are usually subject to unknown parameters that cannot be
directly measured, but need to be estimated by comparison of model outputs to observed ex-
perimental data, giving rise to an inverse problem to the forward problem of model simulation
[Tarantola, 2005].

Commonly, a likelihood function relating model outputs to observed data is formulated, poten-
tially combined with prior knowledge in a Bayesian setting [Fröhlich et al., 2019]. Parameter
estimation then typically comprises both the identification of optimal point estimates, e.g. using
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optimization methods, as well as uncertainty quantification, e.g. using profiles or sampling [Raue
et al., 2013b]. The inverse problem gets often complicated by the computational complexity of
the forward model simulation, numerical instabilities, and parameter multi-modalities, such that
reliable and efficient methods and tools are of interest. If the problem is sufficiently smooth,
often the case for ODE models, derivatives provide good search directions, generating interest in
e.g. efficient gradient calculation methods [Fröhlich et al., 2017, Raue et al., 2013b].

Especially for complex stochastic models, the likelihood function can become intractable, in
which case methods circumventing its evaluation can be used, such as approximate Bayesian
computation (ABC) [Hartig et al., 2011, Price et al., 2018, Sisson et al., 2018]. In systems
biology, ABC has in particular facilitated inference for complex multi-scale models [Durso-Cain
et al., 2021, Jagiella et al., 2017].

1.2 Challenges

With improving computational capabilities and growing biological knowledge, increasingly com-
plex models have been developed, which facilitate a more holistic understanding at a system
level, ultimately the goal of systems biology [Kitano, 2002a]. To cope with such models, novel,
scalable methods have been and are being developed, such as efficient gradient calculation meth-
ods for ODE models via adjoint sensitivity analysis [Fröhlich et al., 2017], high-performance
infrastructure parallelized tools [Dutta et al., 2017, Klinger et al., 2018, Schmiester et al., 2019],
or methods that exploit or adapt to the problem structure [Loos et al., 2018, Prangle, 2017],
render the analysis robust to errors in the data [Maier et al., 2017], or identify informative data
points [Fearnhead and Prangle, 2012]. Yet, there exist countless open questions and challenges
in computational systems biology, of which we address the following in this thesis:

(i) Large-scale ODE models have the potential to provide deeper insights, their parameter-
ization however is challenging and requires scalable methods. In addition, data used to
calibrate large-scale models are often only on a relative scale, and noise levels unknown.
Hierarchical optimization approaches have been developed to efficiently estimate linear ob-
servable transformations and noise parameters for ODE models [Loos et al., 2018, Weber
et al., 2011]. However, these can so far in particular not be combined with adjoint sensitivity
analysis [Fröhlich et al., 2017], prohibiting their application to large-scale models.

(ii) The correct and efficient assessment of measurement noise is also a problem in ABC, in
which the overall approximation error introduced is often unclear, and it is unfortunately
easy to neglect noise altogether, leading to erroneous parameter estimates. An interpreta-
tion of ABC as giving exact inference for a noise-corrupted model has been used to define
algorithms that perform exact inference in the presence of noise [Daly et al., 2017, van der
Vaart et al., 2018, Wilkinson, 2013]. However, existing approaches only consider special
noise models, and do not scale to computationally demanding models and high-dimensional
data.

(iii) Outliers or highly deviant data points are problematic for parameter estimation [Maier
et al., 2017], however in ABC commonly used distance metrics comparing simulated and
observed data are highly sensitive to outliers, yielding erroneous or uncertain estimates.
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As the automatic or manual removal of outliers can be difficult especially for structured
data, ABC methods that yield efficient and robust inference for both outlier-corrupted and
outlier-free data are of interest.

(iv) The practical performance of ABC relies on its ability to efficiently compare informative
data features via distance metrics and summary statistics. Common distance metrics adapt
to the problem structure by scale normalization, but do not take informativeness of different
data points into account. Approaches have been developed to construct low-dimensional
summary statistic representations, e.g. based on inverse regression models [Fearnhead and
Prangle, 2012], however these may lose information and substantially rely on the accuracy
of employed models. Thus, robust methods that directly operate on the full data and
weight them by informativeness, instead of only correcting for scale, are of interest.

1.3 Contributions of this thesis

The overall aim of this thesis could be described as developing efficient, accurate, robust compu-
tational methods that facilitate scalable parameter estimation for complex and high-dimensional
problems. We tackle various problems in the two fields of optimization for ODE models, and of
likelihood-free inference for stochastic models via ABC. Specifically, we address in this thesis the
challenges outlined in Section 1.2 by the following contributions:

(I) Scalable hierarchical optimization for ODE models using adjoint sensitivity analysis. This
contribution addresses challenge (i). We present an approach that combines adjoint sensitiv-
ity analysis for efficient high-dimensional gradient calculation with a hierarchical formula-
tion that allows to efficiently handle affine observable transformations and noise parameters.
On a pan-cancer model with > 4000 parameters, we demonstrate far superior performance
compared to established approaches.

(II) Exact efficient inference in ABC with noisy measurements. This contribution addresses
challenge (ii). Besides illustrating the problem of measurement noise in ABC and dis-
cussing conceptual solutions, we present an efficient, self-tuned sequential method that
allows to perform exact likelihood-free inference in the presence of measurement noise, and
to estimate noise parameters alongside. On various test problems, we demonstrate orders
of magnitude speed-up compared to established approaches, facilitating exact inference via
ABC for a wide range of application problems.

(III) Outlier-robust adaptive distances in ABC. This contribution addresses challenge (iii). We
present a widely applicable, adaptive distance metric that is robust to outliers in the data,
further allowing for online, simulation-based detection thereof. On various test problems
with both outlier-free and outlier-corrupted data, we demonstrate, compared to established
approaches, its substantially more robust performance.

(IV) Informative and adaptive distances and summary statistics in ABC. This contribution ad-
dresses challenge (iv). We present an approach defining distance weights based on sensitiv-
ities of inverse regression models to account for data informativeness. Further, we discuss
advantages of the combination of scale-normalization and regression-based summary statis-
tics, and we discuss shortcomings of regression-based summary statistics in the presence
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of parameter non-identifiability. On test problems, we demonstrate superior and robust
performance of the sensitivity-weighted approach over established approaches.

Thus, (I) deals with ODE models, while (II-IV) are in the field of ABC. In part, (I) and (II) deal
with efficient and accurate ways of accounting for measurement noise in inference for complex
models, while (III) further considers outliers that cannot be explained by common measurement
noise. (IV) complements (III) by focusing on informative data, thus increasing efficiency.

Some of these contributions are part of articles that have either been already peer-reviewed and
published, are currently under peer-review, or are in preparation. Therefore, parts of this thesis
are based on and partly identical to the following first-author or shared first-author publications
of the thesis author:

• Schmiester, L.∗, Schälte, Y.∗, Fröhlich, F., Hasenauer, J. and Weindl, D. (2019). Efficient
parameterization of large-scale dynamic models based on relative measurements. Bioinfor-
matics, 36(2), pp.594-602. (∗equal contribution)

• Schälte, Y. and Hasenauer, J. (2020). Efficient exact inference for dynamical systems with
noisy measurements using sequential approximate Bayesian computation. Bioinformatics,
36(Supplement 1), pp.i551-i559.

• Schälte, Y., Alamoudi, E. and Hasenauer, J. (2021). Robust adaptive distance functions
for approximate Bayesian inference on outlier-corrupted data. bioRxiv.

• Schälte, Y. and Hasenauer, J. (2021). Informative and adaptive distances and summary
statistics in approximate Bayesian computation. In preparation.

Further, results of the following publications of the thesis author are used, albeit not discussed
in detail:

• Schälte, Y., Stapor, P. and Hasenauer, J. (2018). Evaluation of derivative-free optimizers
for parameter estimation in systems biology. IFAC-PapersOnLine, 51(19), pp.98-101.

• Schmiester, L.∗, Schälte, Y.∗, Bergmann, F., Camba, T., Dudkin, E., Egert, J., Fröhlich,
F., Fuhrmann, L., Hauber, A. L., Kemmer, S., Lakrisenko, P., Loos, C., Merkt, S., Müller,
W., Pathirana, D., Raimúndez, E., Refisch, L., Rosenblatt, M., Stapor, P., Städter, P.,
Wang, D., Wieland, F.-G., Banga, J. R., Timmer, J., Villaverde, A. F., Sahle, S., Kreutz,
C., Hasenauer, J. and Weindl, D. (2021). PEtab—Interoperable specification of parameter
estimation problems in systems biology. PLoS computational biology, 17(1), p.e1008646.
(∗equal contribution)

• Städter, P.∗, Schälte, Y.∗, Schmiester, L.∗, Hasenauer, J. and Stapor, P. (2021). Bench-
marking of numerical integration methods for ODE models of biological systems. Scientific
reports, 11(1), pp.1-11. (∗equal contribution)

• Fröhlich, F., Weindl, D., Schälte, Y., Pathirana, D., Paszkowski, Ł., Lines, G.T., Stapor,
P. and Hasenauer, J. (2021). AMICI: High-Performance Sensitivity Analysis for Large
Ordinary Differential Equation Models. Bioinformatics, p.btab227.
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Other publications of the thesis author’s doctoral research that are not directly used in this thesis
are:

• Olbrich, L.∗, Castelletti, N.∗, Schälte, Y.∗, Garí, M.∗, Pütz, P., Bakuli, A., ..., Fuchs,
C., Wölfel, R., Hasenauer, J., Hoelscher, M., and Wieser, A. (2021). A Serology Strat-
egy for Epidemiological Studies Based on the Comparison of the Performance of Seven
Different Test Systems-The Representative COVID-19 Cohort Munich. medRxiv. (∗equal
contribution)

• Pritsch, M., Radon, K., Bakuli, A., Le Gleut, R., Olbrich, L., Noller, G., Michelle, J.,
Saathoff, E., Castelletti, N., Garí, M., Pütz, P., Schälte, Y., ..., Hasenauer, J., Fuchs,
C., Wieser, A., and Hoelscher, M. (2021). Prevalence and risk factors of infection in the
representative COVID-19 cohort Munich. International journal of environmental research
and public health, 18(7), p.3572.

• Radon, K., Bakuli, A., Pütz, P., Le Gleut, R., Noller, J.M.G., Olbrich, L., Saathoff, E.,
Garí, M., Schälte, Y., ..., Wieser, A., Hoelscher, M., Hasenauer, J., and Fuchs, C. (2021).
From first to second wave: follow-up of the prospective Covid-19 cohort (KoCo19) in
Munich (Germany). medRxiv.

• Syga, S., David-Rus, D., Schälte, Y., Meyer-Hermann, M., Hatzikirou, H. and Deutsch,
A. (2020). Inferring the effect of interventions on COVID-19 transmission networks. arXiv
preprint arXiv:2012.03846.

• Durso-Cain, K., Kumberger, P., Schälte, Y., Fink, T., Dahari, H., Hasenauer, J., Up-
richard, S.L. and Graw, F. (2021). HCV spread kinetics reveal varying contributions of
transmission modes to infection dynamics. bioRxiv.

• Vanhoefer, J., Marta, R., Pathirana, D., Schälte, Y. and Hasenauer, J. (2021). yaml2sbml:
Human-readable and-writable specification of ODE models and their conversion to SBML.
Journal of Open Source Software, 6(61), p.3215.

• Contento, L., Castelletti, N., Raimúndez, E., Le Gleut, R., Schälte, Y., Stapor, P., Hinske,
L. C., Hölscher, M., Wieser, A., Radon, K., Fuchs, C., Hasenauer, J. (2021). Integrative
modelling of reported case numbers and seroprevalence reveals time-dependent test effi-
ciency and infection rates. In preparation.

Besides these articles, the thesis author has been involved in the development and maintenance
of the following computational toolboxes, which, in particular but not only, provide reusable,
tested and documented implementations of various of the methods presented in this thesis, and
have already been used in numerous peer-reviewed publications:

• pyPESTO (https://github.com/icb-dcm/pypesto): A Python-based parameter esti-
mation toolbox, providing an integrated framework including in particular optimization,
profiling and sampling algorithms.

• pyABC (https://github.com/icb-dcm/pyabc): A Python-based package for sequential
approximate Bayesian computation on local and high-performance infrastructure.

https://github.com/icb-dcm/pypesto
https://github.com/icb-dcm/pyabc
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• PEtab (https://github.com/petab-dev/petab): A systems biology parameter estima-
tion standard based on SBML models and TSV files, alongside a Python-based library.

• AMICI (https://github.com/amici-dev/amici): A C++-based ODE simulation and
sensitivity calculation package with interfaces to Python and MatLab, interfacing the highly
performant ODE and DAE SUNDIALS solvers CVODES and IDAS. It allows the definition
of likelihood functions and provides first and second order derivatives using forward, adjoint,
and steady-state sensitivities.

• yaml2sbml (https://github.com/yaml2sbml-dev/yaml2sbml): A Python-based tool to
convert ODE models specified in the easily accessible YAML format to SBML and PEtab.

• FitMultiCell (https://gitlab.com/fitmulticell/fit): A Python-based pipeline that
combines pyABC with Morpheus (https://gitlab.com/morpheus.lab/morpheus), a tool
to model and simulate multi-cellular and multi-scale systems.

• PESTO (https://github.com/icb-dcm/pesto): A MatLab-based parameter estimation
toolbox, the predecessor of pyPESTO.

1.4 Outline of this thesis

The remainder of this thesis is structured as follows: In Chapter 2, we introduce terminology
and provide background knowledge on the underlying inference concepts, with focus on ODE
based problems, as well as ABC. Chapters 3-6 contain the main contributions of this thesis, the
first one on ODE problems, and the remaining ones on ABC methods. In Chapter 3, we present
the adjoint hierarchical optimization approach for large-scale ODE models with affine observable
transformations. In Chapter 4, we discuss implications of the ignorance of measurement noise in
ABC, and present an efficient exact method to address it. In Chapter 5, we discuss the impact
of outliers in the data on common ABC distance metrics, and present a widely applicable robust
method. In Chapter 6, we discuss the combined problem of data informativeness and scale on
ABC analyses, and present sensitivity-weighted distance metrics. The thesis is concluded in
Chapter 7 with a short summary and an outlook on potential further steps.

https://github.com/petab-dev/petab
https://github.com/amici-dev/amici
https://github.com/yaml2sbml-dev/yaml2sbml
https://gitlab.com/fitmulticell/fit
https://gitlab.com/morpheus.lab/morpheus
https://github.com/icb-dcm/pesto
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Chapter 2

Background

In this chapter, we introduce and provide background information on the terminology and
methodology underlying and relevant throughout this thesis. We begin with the notions of
process, observation and noise models in systems biology. Then, we give a general introduction
of relevant statistical inference methods, covering point estimates and uncertainty quantification.
Thereafter, we firstly focus on gradient calculation and optimization methods for ordinary dif-
ferential equation models, and secondly introduce approximate Bayesian computation. While
this chapter provides a general and rather high-level overview, the subsequent main contribution
chapters may contain further specific background relevant for the respective topics.

Parts of this chapter are based on and partly identical to the following publications of the thesis
author:

• Schälte, Y., Stapor, P. and Hasenauer, J. (2018). Evaluation of derivative-free optimizers
for parameter estimation in systems biology. IFAC-PapersOnLine, 51(19), pp.98-101.

• Schmiester, L.∗, Schälte, Y.∗, Fröhlich, F., Hasenauer, J. and Weindl, D. (2019). Efficient
parameterization of large-scale dynamic models based on relative measurements. Bioinfor-
matics, 36(2), pp.594-602. (∗equal contribution)

• Schälte, Y. and Hasenauer, J. (2020). Efficient exact inference for dynamical systems with
noisy measurements using sequential approximate Bayesian computation. Bioinformatics,
36(Supplement 1), pp.i551-i559.

• Schälte, Y., Alamoudi, E. and Hasenauer, J. (2021). Robust adaptive distance functions
for approximate Bayesian inference on outlier-corrupted data. bioRxiv.

• Schälte, Y., and Hasenauer, J. (2021). Informative and adaptive distances and summary
statistics in ABC. In preparation.

2.1 Modeling of biochemical systems

In this section, we define the mathematical model including process description, observation and
noise model, likelihood function and Bayesian posterior, which will be subject to the statistical

9
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inference methods discussed in this thesis.

Throughout this thesis, we consider for simplicity of notation and argumentation, and as it
represents the most common application case, continuous random variables given via probability
density functions with respect to Lebesgue measure on Rd, d ≥ 1. Most statements however
similarly hold for discrete random variables given via probability mass functions with respect to
count measure, or mixed continuous-discrete variables.

2.1.1 Mathematical models of biochemical processes

Throughout this thesis, we attempt to describe the behavior of a vector of biochemical states x
via a generative process model

x ∼ π(x|θ) ∈ Rnx , (2.1)

which may be deterministic or stochastic, and continuous or discrete. The states are typically
cell or molecule abundances, counts or concentrations, of biochemical species such as proteins,
protein complexes, ligands, or RNA levels, or also e.g. spatially resolved cell structures, depending
on the model purpose and resolution. Here, θ ∈ Rnθ denotes unknown model parameters that
we intend to estimate, such as reaction rate coefficients or initial abundances. The notation of,
e.g., nx, nθ, indicates, by slight abuse of notation, the dimensions of states and parameters, and
will be used similarly throughout.

2.1.2 Observation and noise model and likelihood function

Typically, not all of x is directly measurable, but only a vector of observables

y = h(x, θ) ∈ Rny , (2.2)

with a possibly parameter-dependent observation function h, which can include both projection
and recombination components.

However, even if the model perfectly reflects the underlying processes, measurements are usu-
ally noise-corrupted. Thus, we consider some possibly parameter-dependent noise distribution
π(ȳ|y, θ) such that the actually observed data ȳobs ∈ Rny are a realization

ȳobs ∼ π(ȳ|y, θ). (2.3)

All things combined, we can formulate a likelihood

ȳobs ∼ π(ȳ|θ) =

∫
π(ȳ|y, θ)π(y|θ) dy =

∫
π(ȳ|h(x, θ), θ)π(x|θ) dx (2.4)

of observing data ȳobs given model parameterization θ, which simplifies for deterministic process
models via a Dirac distribution to π(ȳ|θ) = π(ȳ|h(x, θ), θ).

Often, a system is measured at different time points, with technical or biological replicates, or
under different experimental conditions. For ease of notation and without loss of generality, we
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assume that x, y, ȳ already incorporate such temporal, replicate, and condition multiplicity, and
hold dependence on potential time, replicate, or condition-specific inputs implicit, unless a more
explicit formulation is required.

2.1.3 Bayesian posterior distribution

In Bayesian inference, the likelihood (2.4) is combined with a prior distribution π(θ) on the
parameters encoding information and beliefs before observing the data. Together, by Bayes’
Theorem, these give the posterior distribution

π(θ|ȳobs) =
π(ȳobs|θ)π(θ)

π(ȳobs)
∝ π(ȳobs|θ)π(θ), (2.5)

where the evidence π(ȳobs) =
∫
π(ȳobs|θ)π(θ) dθ is a normalization constant that is usually hard

to compute, but can luckily be disregarded in common inference methods [Kramer et al., 2010].

In systems biology, prior knowledge on parameters of biochemical systems has been collected
in publicly available databases [Chang et al., 2009, Wittig et al., 2012], which can be queried
manually or automatically. Often, lacking more detailed information, the prior is simply a
uniform distribution over a biologically plausible regime, θ ∼ U(V ) with V ⊂ Rnθ .

2.1.4 Ordinary differential equation models

In systems biology, there exists a variety of modeling approaches for (2.1), including qualitative
and quantitative, stochastic and deterministic, and spatially homogeneous and resolved models,
arguably owing to the variety of system and data types and model purposes corresponding to
different research questions [Hasenauer et al., 2015] (see also Chapter 1).

While we will later also use other model types as application examples, here we present in more
detail ordinary differential equation (ODE) models, both exemplarily and as we will exploit their
precise structure later. ODEs are a very common approach to biochemical kinetics modeling, as
they allow quantitative insights while being computationally comparably tractable. Assumptions
underlying ODE models are that all involved species are sufficiently abundant such that the pro-
cesses can be described by deterministic concentration dynamics, and that spatial inhomogeneity
is negligible.

Temporal evolution

Typically based on chemical reaction rate equations assuming mass action kinetics, or e.g.
Michaelis-Menten or Hill enzyme kinetics [Wilkinson, 2009], ODE models describe the tempo-
ral evolution of a state vector x = x(t, θ) ∈ Rnx of continuous species concentrations by the
parameterized initial value problem

ẋ(t, θ) = f(x(t, θ), θ), x(t0, θ) = x0(θ) (2.6)
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with vector field f : Rnx × Rnθ → Rnx , time t ∈ [t0, T ] ⊂ R, and unknown parameters θ ∈ Rnθ .
Thus, for ODE models (2.1) is a deterministic mapping.

We assume that f is Lipschitz-continuous in x, such that the Picard-Lindelöf Theorem guarantees
the existence and uniqueness of a solution x(t) at least in a neighborhood of the initial condition
[Coddington and Levinson, 1955]. While in general a unique solution over [t0, T ] may not exist,
it usually does for biologically plausible inputs, and assuming the model describes the system
behavior sufficiently accurately, since biological systems are subject to fundamental physical
constraints such as limitation of speed.

In general, an analytical solution to (2.6) is not available, necessitating the use of numerical
methods, such as Runge-Kutta, Adams-Moulton, or Backward differentiation formula (BDF)
[Hindmarsh et al., 2005, Maiwald and Timmer, 2008, Mendes et al., 2009]. In a benchmark of
different numerical solvers on 142 biological models, we could give guidelines on the choice of
solver and hyperparameters, to ensure fast and reliable simulations [Städter et al., 2021]. Overall,
we found BDF, with Newton-type solver for the non-linear problem within the implicit method,
and sparse direct solver (KLU) for the inner linear problem to work robustly and efficiently. In
particular, this supported previous hypotheses that biological problems often exhibit (informally)
stiff dynamics, indicated by the presence of both fast and slow dynamics, in which case implicit
methods are favorable [Garfinkel et al., 1977, Mendes et al., 2009].

Observation model and measurement data

As typically not all states can be observed, we define an observable function h : x 7→ y as in
(2.2), here treating for notational simplicity, as in Sections 2.1.1 and 2.1.2, x as a vector of states
at potentially multiple observed time points, keeping in particular time dependence implicit.
While the underlying process behavior is assumed to follow a deterministic ODE, measurements
are usually noise-corrupted. Most frequently, noise is assumed to follow an additive Gaussian
distribution

ȳi = yi + εi, εi ∼ N (0, σ2
i ).

A Gaussian distribution can be loosely motivated by the Central Limit Theorem, assuming a
variety of small independent noise contributions. The random variables {εi}i≤ny are commonly
assumed to be independent, unless correlation e.g. between time points or conditions must be ac-
counted for. If the noise standard deviations σi are unknown, they can be modeled via additional
parameters, σi = σi(θ). Assuming independence, the likelihood function is given by

π(ȳobs|θ) =
∏
i≤ny

1√
2πσi(θ)2

exp

(
−1

2

(
ȳobs,i − yi(θ)

σi(θ)

)2
)
, (2.7)

with y(θ) = h(x(θ), θ).

During the measurement process, errors can occur that cannot be described by general measure-
ment noise, including e.g. human labeling or technical errors. Those distorted measurements,
also referred to as outliers, can lead to erroneous parameter estimates if unaccounted for. There
exist various methods that try to detect outliers [Ben-Gal, 2005, Hodge and Austin, 2004, Niu
et al., 2011] in order to remove them from the data. However, actual outliers can be hard to



2.2. STATISTICAL INFERENCE METHODS 13

distinguish from measurement noise, especially in high-dimensional, complex data. An alterna-
tive is the use of models that are stable with respect to outliers. A common method is to use
heavy-tailed distributions such as the Laplace distribution [Maier et al., 2017], given by

π(ȳobs|θ) =
∏
i≤ny

1

2σi(θ)
exp

(
−
|ȳobs,i − yi(θ)|

σi(θ)

)
. (2.8)

If noise levels are proportional to measurement values, a multiplicative noise model can be used
instead of an additive one [Raue et al., 2013b].

2.2 Statistical inference methods

Irrespective of the exact process model used, the model π(ȳ|θ) typically depends on latent param-
eters θ, such as kinetic rates, observable scale factors, or noise terms, which cannot be directly
measured. The goal of statistical inference is to, based on the model and measured data ȳobs,
make statements about the latent parameters. One is usually interested in firstly good point
estimates, but secondly also uncertainty quantification. Extending beyond mere parameter esti-
mation, this then allows to evaluate the ability of the model to describe the data, to compare
models, or to make quantitative predictions (e.g. Raue et al. [2013b], Villaverde et al. [2021],
Wilkinson [2011]).

A fundamental distinction is between frequentist and Bayesian paradigms, following the respec-
tive notions of probability: In frequentist inference, the underlying model parameters are con-
sidered fixed and statements made only in terms of probabilities corresponding to long-term
expected frequencies upon repeated draws of data from the same experiment, as only repeatable
random events can be assigned a probability. In contrast, in Bayesian inference, probabilities
are viewed as a more general concept, and probabilistic statements made also about parameters,
updating prior beliefs on parameters by measured data. Thus, in Bayesian inference parameters
are regarded as random variables, and are assigned probabilities before and after observing the
data.

Frequentist inference typically deals with testing hypotheses, identifying the underlying true pa-
rameters, or giving an interval covering the true parameters with high probability upon repetition.
Bayesian inference makes statements typically in terms of expectations over the full parameter
posterior distribution. In practice, the choice of paradigm and method is often rather based on
the problem at hand, e.g. the informativeness of the data, the existence or necessity of prior
knowledge, and the computational complexity [Raue et al., 2013a].

2.2.1 Point estimates

Point estimates are supposed to give a, with respect to some criteria, single “best” guess of the
underlying parameters.
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Maximum likelihood estimation

A common method is Maximum likelihood (ML) estimation (MLE), which aims to find the
parameters that maximize the likelihood of observed data as a function of θ [Fisher, 1922],
giving an optimization problem

θML = arg max
θ

π(ȳobs|θ). (2.9)

Already in order to limit the search space, the parameters are usually constrained to an appropri-
ate domain θ ∈ V ⊂ Rnθ , so-called box constraints. The interpretation of MLE as yielding those
parameters under which the observed data are most probably is intuitive, and its application
flexible, so that MLE has become an important tool in statistical inference. The ML estimator is
an example of frequentist extremum estimators. While it has generally no optimality properties
for finite sample sizes, MLE possesses, like other point estimators, under certain assumptions, in
particular identifiability, a number of desirable limit properties towards infinite sample size, such
as consistency (convergence in probability to true parameter), efficiency (no other consistent es-
timator has lower mean square error), asymptotic normality (θML ∼ N (θtrue,FIM−1) with FIM

the Fisher information matrix), and functional invariance (conserved under reparameterization)
[Newey and McFadden, 1994, Wilks, 1962, Zacks, 2014].

In practice, instead of using the likelihood directly, one commonly works with the log-likelihood
log π(ȳobs|θ), giving the maximization problem

θML = arg max
θ

log π(ȳobs|θ). (2.10)

Because the logarithm is strictly increasing, this problem is equivalent to (2.9). Practically,
working with the log-likelihood is more convenient, as it is firstly numerically more stable, and
secondly many common probability distributions, particularly the exponential family, are only
logarithmically concave, concavity (or convexity in minimization) being a desirable property in
optimization [Nocedal and Wright, 2006].

While we quantify the support observed data give to model parameters via a statistical likelihood
function π(ȳobs|θ), occasionally inference of optimal parameters is done solely in terms of cost
functions. Typical examples of such are (weighted) Euclidean or Manhattan distances, which
are however, respectively, equivalent to Gaussian or Laplace log-likelihoods with known noise
variables, thus those approaches can be integrated in the statistical framework presented here.
E.g. for a Gaussian noise model we have

log π(ȳobs|θ) = −1

2

∑
i≤ny

[
log(2πσi(θ)

2) +

(
ȳobs,i − yi(θ)

σi(θ)

)2
]
. (2.11)
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Maximum a-posteriori and Bayesian point estimation

The equivalent of MLE in a Bayesian framework is the maximum a-posteriori (MAP) estimate,
defined as the maximum over the posterior distribution

θMAP = arg max
θ

π(θ|ȳobs) = arg max
θ

[log π(ȳobs|θ) + log π(θ)] . (2.12)

The optimization problems (2.10) or (2.12) can usually not be solved analytically and can possess
multiple modes, necessitating the use of iterative global and local optimization methods. For
these, at least for smooth problems, an efficient calculation of derivatives is often essential. We
discuss common methods for ODE models in Section 2.3.

MLE with box constraints θ ∈ V ⊂ Rnθ can also be interpreted as the MAP estimate with
a uniform prior distribution U(V ), as then π(θ|ȳobs) ∝ π(ȳobs|θ). It should however be noted
that MAP is, unlike ML, not invariant under reparameterization, which introduces a Jacobian
in density transformation and usually results in a shift of the maximum. Thus, as for Bayesian
inference in general, care should be taken regarding the space on which parameter priors are
defined (e.g. in linear or log-space, a transformation commonly applied to e.g. reaction rate
coefficients).

Other frequently reported Bayesian point estimates are the posterior mean Eπ(θ|ȳobs)[θ] and me-
dian, which minimize, respectively, the expected mean square error and mean absolute error over
the posterior distribution, also referred to as Bayes estimators [Jaynes, 2003]. Bayesian inference
frequently involves generating a sample from the posterior distribution, in which case these are
straightforward to calculate.

2.2.2 Uncertainty analysis: Local approximations and profiles

Beyond optimal point estimates, as obtained e.g. via ML or MAP estimation, one is, indepen-
dent of frequentist or Bayesian paradigm, usually interested in assessing the uncertainty in such
estimates, i.e. how well constrained its values are given model and observed data. In particular
in the presence of non-identifiability or few data, the obtained estimates might be unreliable, and
conclusions drawn not taking into account parameter uncertainty can e.g. underestimate predic-
tion uncertainty and associated risks, and need in general not yield representative predictions
[Maier et al., 2020].

In frequentist inference, uncertainty quantification typically amounts to identifying for a param-
eter mapping ξ : V ⊂ Rnθ → Γ (e.g. identity or projection) a data-based confidence region
C(ȳobs) ⊂ ξ(V ) that contains the true parameter with high probability in the sense of long-term
frequency, Pθ[{ȳ ∈ Rny : ξ(θ) ∈ C(ȳ)}] ≥ 1 − α, to a confidence level of e.g. 1 − α = 95%. For
1-dimensional projections, confidence intervals are common. Analogous in Bayesian statistics are
credible regions or marginal credible intervals C covering e.g. 95% of the posterior distribution
probability mass, Pπ(θ|ȳobs)[C] ≥ 1− α.

To select (approximate) confidence regions or intervals, there exist various strategies. For the
problems considered here, they are often based on the ML estimate θML. Given its asymptotic
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normality, e.g. the FIM or Hessian of the negative log-likelihood at θML can be used to obtain
symmetric asymptotic confidence intervals via a local quadratic approximation [Venzon and
Moolgavkar, 1988, Wilks, 1962]. This is computationally cheap and scalable to high-dimensional
problems, where often no other methods are feasible, and can therefore be used to provide first
insights [Kapfer et al., 2019, Villaverde et al., 2019], however especially for non-linear problems
and few data, this approximation is often crude [Joshi et al., 2006].

Alternatives that are often more robust for small sample sizes can be derived from Wilk’s Theo-
rem of asymptotic χ2 distribution of likelihood ratios [Raue et al., 2009, Venzon and Moolgavkar,
1988]. For 1-dimensional confidence intervals, similarly profile likelihoods can be used, i.e. max-
imum projections PLi(θi) = maxθ̂:θ̂i=θi log π(ȳobs|θ̂), i = 1, . . . , nθ, onto single coordinates. In
systems biology, these were introduced by Raue et al. [2009], as they are in particular robust in
the presence of structural non-identifiabilities [Fröhlich et al., 2014]. They can be calculated us-
ing e.g. step-wise optimization or integration methods and are generally more expensive but also
more accurate than local approximations [Stapor et al., 2018]. In a Bayesian context, similarly
profile posteriors can be employed [Raue et al., 2013a].

For dynamical systems, uncertainty analysis typically also relates to structural (parameters can
be theoretically uniquely determined under model and observation function given infinite data)
and practical (parameters can be sufficiently constrained given the actual data) identifiability
analysis. Non-identifiabilities may hinder inference approaches, their identification and model
refinement thus being desirable [Villaverde et al., 2021].

2.2.3 Uncertainty analysis: Bayesian sampling

In Bayesian inference, one usually tries to take the full posterior distribution into account, thus
statements are typically made in terms of expectations Eπ(θ|ȳobs)[ξ(θ)] for functions ξ : Rnθ → R.
Examples are mean and variance as, respectively, measures of average behavior and variability. As
the (non-normalized) posterior distribution is for most models not directly tractable, a common
strategy is to draw a representative sample θi ∼ π(θ|ȳobs), i = 1, . . . , N , for a population size
N ∈ N, from the posterior distribution and perform Monte Carlo integration

Eπ(θ|ȳobs)[ξ(θ)] ≈
1

N

∑
i≤N

ξ(θi).

In general, for a random variable X ∈ Rd and function ξ such that ξ(X) is integrable, the Monte
Carlo estimate of the expectation is given as

EX [ξ] ≈ ξ̂ :=
1

N

∑
i≤N

ξ(xi), (2.13)

for i.i.d. xi ∼ X, i = 1, . . . , N . The estimate is unbiased, i.e. EX [ξ̂] = EX [ξ]. Further, ξ̂ → EX [ξ]

almost surely for N →∞ by the strong law of large numbers, with error of order N−1/2 if ξ(X)

has finite variance (independent of the problem dimension d) [Robert and Casella, 2004].

Sampling is computationally often more expensive than e.g. profile calculation [Ballnus et al.,
2017], however usually provides the most holistic information beyond optimal points and is, up
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Algorithm 2.1 Rejection sampling
repeat

sample x ∼ g, u ∼ U [0, 1]
accept x if u ≤ f̃(x)/(M · g̃(x))

until acceptance
out: a sample x ∼ f

to Monte Carlo error, exact. In the following, we shortly discuss common sampling approaches,
in particular in preparation of Section 2.4 on ABC.

Rejection and importance sampling

Monte Carlo integration requires the simulation of random variables. For simple distributions,
inverse transform can be used, if the cumulative distribution function can be efficiently inverted,
or other transformations exploiting relations to distributions that can be efficiently sampled
from [Robert and Casella, 2004]. For distributions considered here, this is scarcely possible.
More common is the use of methods based on rejection or importance sampling. While rarely
used in their pure form, we shortly sketch them here as they will find re-use in the discussion
of ABC. Consider a random variable X ∈ Rd given via density function f (in our applications,
usually f(x) =̂ π(θ|ȳobs)). Instead of directly sampling from f , a different (non-normalized)
proposal distribution g can be used that is easy to sample from, with f � g, i.e. f is absolutely
continuous with respect to g. Both approaches generate samples x ∼ g and, respectively, reject
some or re-weight them in order to target f .

Proposition 2.1 (Rejection sampling). Consider non-normalized versions f̃ , g̃ of densities f, g,
such that f̃(x) ≤M · g̃(x) for all x for some M ∈ R>0. Then, we can generate a sample from f

by repeatedly sampling x ∼ g and accepting with probability f̃(x)/(M · g̃(x)), until a sample gets
accepted.

Here, non-normalized means that the densities are known only up to normalization, f = Cf · f̃ ,
g = Cg · g̃, which is practically relevant as normalization constants can be hard to compute.
Practically, this procedure can be implemented as in Algorithm 2.1.

Proof. Given X ∼ g, U ∼ U [0, 1], for a measurable set A, the probability of X ∈ A conditioned
on acceptance is

P[X ∈ A | U ≤ f̃(X)
M ·g̃(X) ] =

∫
A

f̃(x)
M ·g̃(x)g(x) dx∫ f̃(x)
M ·g̃(x)g(x) dx

=

∫
A
f(x) dx = Pf [A],

as all normalization constants cancel out. For further details and discussion, see e.g. Robert and
Casella [2004, Chapter 2] or Sisson et al. [2018, Chapter 4].

A major drawback of rejection sampling is the requirement of a normalizing constant M , which
should further be chosen as a tight bound, as it is inversely proportional to the acceptance rate
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P[U ≤ f̃(X)
M ·g̃(X) ]. In importance sampling, samples are, instead of rejecting some, assigned a

weight to give expectations over the target distribution:

Proposition 2.2 (Importance sampling). Consider densities f � g. With weights v(θ) :=

f(θ)/g(θ), for functions ξ integrable under f holds, assuming all integrals exist, for i.i.d. xi ∼ g,
i = 1, . . . , N ,

Ef [ξ] = Eg[vξ] ≈ ξ̂ :=
1

N

∑
i≤N

v(xi)ξ(xi), (2.14)

where the Monte Carlo estimate is unbiased, i.e. Eg[ξ̂] = Ef [ξ], and ξ̂ → Ef [ξ] almost surely for
N →∞.

Usually, we know at least one distribution only up to normalization. In that case, we use the
following

Proposition 2.3 (Self-normalized importance sampling). Consider non-normalized versions
f̃ , g̃ of densities f, g, with f � g. With weights w(x) := f̃(x)/g̃(x) ∝ v(x), for functions ξ
integrable under f holds, for i.i.d. xi ∼ g, i = 1, . . . , N , and self-normalized weights Wi :=

w(xi)/
∑

j≤N w(xj),

Ef [ξ] =
Eg[wξ]
Eg[w]

≈ ξ̂ :=
1
N

∑
i≤N w(xi)ξ(xi)

1
N

∑
i≤N w(xi)

=
∑
i≤N

Wiξ(xi), (2.15)

where ξ̂ → Ef [ξ] almost surely for N →∞.

Proof of 2.2 and 2.3. The first identity in (2.14) is just an application of the Radon-Nikodym
change of measure, informally

∫ f(x)
g(x) ξ(x)g(x) dx =

∫
ξ(x)f(x) dx, unbiasedness and asymptotic

convergence follow as in (2.13). In (2.15), effectively a second Monte Carlo estimate is employed in
the denominator, to approximate the unknown normalization constant. While ξ̂ is here generally
not unbiased due to the biased estimation of the inverse normalization constant, we may rewrite
(2.15) as

ξ̂ =
1
N

∑
i≤N v(xi)ξ(xi)

1
N

∑
i≤N v(xi)

,

with v the normalized weights, where numerator and denominator converge almost surely, i.e.
outside null sets, to, respectively, Ef [ξ] and 1 by the strong law of large numbers, thus so does
their quotient, as unions of null sets are null sets. See e.g. Robert and Casella [2004, Chapter 3]
or Sisson et al. [2018, Chapter 2] for further details.

Besides being a means to sample from an intractable distribution, importance sampling can also
be used as a variance reduction method, or e.g. to focus on regions of interest of ξ [Robert and
Casella, 2004, Chapter 3].

Effective importance sample size

As particles in importance sampling are weighted, some contribute more to estimates than others,
which can be interpreted as having a lower effective sample size (ESS) than a sample of the same
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size directly from the target distribution. A common definition of ESS for importance sampling
[Liu et al., 1998, Martino et al., 2017] can be motivated as follows: Consider a weighted linear
combination

SN =

∑
i≤N wiXi∑
i≤N wi

of independent random variables Xi of variance σ2 > 0. The unweighted mean 1
Ñ

∑
i≤Ñ Xi of Ñ

variables has variance σ2/Ñ . Equating gives

σ2

Ñ

!
= Var[SN ] =

∑
i≤N w

2
i

(
∑

i≤N wi)
2
σ2 ⇒ ESS := Ñ =

(
∑

i≤N wi)
2∑

i≤N w
2
i

(2.16)

as a scale-invariant quantification of the ESS of the weighted sum.

Markov chain Monte Carlo sampling

Stand-alone, rejection and importance sampling suffer for higher-dimensional problems from
the need of an appropriate choice for the proposal density g similar to the target density, as
discrepancies result in high rejection rates or highly variable weights with a low ESS. More
commonly used are methods based on Markov chains (MCMC) or sequential importance sampling
(SMC) [Neal, 2011, Robert and Casella, 2004, Sisson et al., 2018].

Markov chain Monte Carlo (MCMC) methods construct a Markov chain {xi}i≥1 that has the
target density f as its stationary distribution. Various methods exist to define the Markov
transition kernel. One of the first is the Metropolis-Hastings (MH) algorithm, which, given a
current state x, firstly proposes a new state x′ ∼ K(x′|x) via some perturbation kernel K, and
secondly accepts and moves to x′ with acceptance probability

A(x′|x) = min

[
1,
f(x′)

f(x)

K(x|x′)
K(x′|x)

]
, (2.17)

otherwise stays at x [Hastings, 1970, Metropolis et al., 1953]. This step is such that the transi-
tion probability distribution P (x′|x) = A(x′|x)K(x′|x) satisfies the condition of detailed balance
P (x′|x)f(x) = P (x|x′)f(x′) necessary for stationarity of f . Provided the Markov process is
ergodic, convergence of the empirical distribution to f is guaranteed [Robert and Casella, 2004].
Variations of the MH algorithm have been proposed that e.g. choose g adaptively [Haario et al.,
2001], delay rejection [Haario et al., 2006], use multiple Markov chains e.g. via parallel temper-
ing [Miasojedow et al., 2013, Vousden et al., 2016] or parallel hierarchical sampling [Rigat and
Mira, 2012], sample from conditional marginals [Casella and George, 1992], or employ derivative
information, e.g. via Hamiltonian Monte Carlo [Hoffman and Gelman, 2014, Neal, 2011] or the
Metropolis-adjusted Langevin algorithm [Girolami and Calderhead, 2011]. MCMC-based sam-
pling is popular e.g. for small-to-medium sized ODE models in systems biology [Ballnus, 2019,
Ballnus et al., 2017]. For further information on MCMC methods see e.g. Neal [2011], Robert
and Casella [2004], Wilkinson [2011], or Ballnus et al. [2017] for a review of different variants on
ODE models, or Robert and Casella [2011] for a historical review of MCMC methods.

While widely used in Bayesian computing since the 1990s [Martin et al., 2020], MCMC has a
number of disadvantages: While long-term convergence to the target distribution is guaranteed,
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practical assessment of sample quality is challenging. Tests such as Geweke or Gelman-Rubin
can be used to reject the hypothesis of converged chains [Brooks and Gelman, 1998, Geweke,
1992]. Often an initial burn-in phase, which may deviate from the long-term behavior, needs to
be identified and disregarded. Thus, performing optimization prior to sampling to obtain start
points in high-density regions is recommended [Ballnus et al., 2017]. Further, MCMC depends
on the quality of the transition kernel, as too large, unstructured, or small average jump sizes can
result in slowly mixing chains with high autocorrelation. Moreover, while e.g. parallel tempering
allows to use parallel infrastructure to some degree, a chain is inherently sequential and the use
of massively parallel infrastructure thus limited.

Sequential Monte Carlo sampling

In importance sampling, designing a proposal distribution g that places a large number of
samples in regions of high density or interest can be difficult. Sequential Monte Carlo (SMC)
methods overcome this problem by constructing a sequence of intermediary distributions ft(x),
t = 1, . . . , nt, with fnt = f . For every generation t, a population of particles Pt = {(xti, wti)}i≥1

targeting ft is generated from a proposal distribution gt, with (potentially non-normalized) im-
portance weights wt(x) = ft(x)/gt(x). The proposal distribution gt is based on the previous
population Pt−1, with a typically broad initial distribution g1, e.g. g1 = f1, or the prior in a
Bayesian setting.

While SMC as presented above only defines a general concept, there exist a variety of strategies
to create concrete, efficient and robust SMC algorithms. For example, geometrically tempered
intermediary distributions ft = f1/Tt · g1−1/Tt

1 with Tt ↘ 1, can be used to smoothly transition
to the target distribution [Del Moral et al., 2006, Gelman and Meng, 1998, Neal, 1993]. In the
case of Bayesian inference with data ȳobs = {ȳobs,i}i≤nt consisting of nt observations, e.g. via
a hidden Markov model, alternatively ft(θ) = π(θ|ȳobs,1, . . . , ȳobs,t) using partial data can be
used. In that case, SMC is also referred to as particle filter [Chopin, 2002, Del Moral, 1997]. As
one easily sees, the variance-minimizing proposal distribution is gt = ft, from which sampling
is in general however not possible. Instead, commonly samples are be drawn from the previous
weighted population and perturbed via a transition kernel [Sisson et al., 2007]. As the variability
of importance weights especially in later generations can get large, resulting in a low ESS (2.16),
occasional (e.g. when the ESS falls below half the population size) resampling from population
Pt according to the particle weights has been suggested, to concentrate on samples with large
weights [Douc and Cappé, 2005, Doucet et al., 2000]. Complementarily, rejuvenation e.g. via an
MCMC kernel can be used, which moves each resampled particle, increasing particle diversity
[Del Moral et al., 2006]. While usually particles from generations for t < nt are discarded in the
final result Pnt , there exist approaches to make use of all [Dau and Chopin, 2020]. Further, the
sequential nature of SMC allows to successively adjust hyperparameters to the problem, or to
e.g. use different levels of model resolution [Latz et al., 2018]. For further information on SMC
methods, see e.g. Doucet et al. [2000], Del Moral et al. [2006], Sisson et al. [2018].

An essential advantage of SMC over MCMC alone is that the particles for generation t are
independent, such that their generation can be parallelized, enabling the full exploitation of
high-performance infrastructure, scaling to thousands of cores. Further, the population-based
approach is inherently better suitable for multi-modal distributions, while for the efficient ex-
ploration of complex local shapes such as non-linear correlations, gradient-based methods, such
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as Hamiltonian Monte-Carlo, may perform better. Unlike a single MCMC chain, SMC particles
of a population are uncorrelated, such that a determination of burn-in phase or assessment of
convergence are not required [Sisson et al., 2007]. Each generation already provides a sample
from a tempered target, with the tempering error decreasing over time. However, the ESS may
be low, which can result in degenerated, non-representative populations [Klinger and Hasenauer,
2017].

2.3 Parameter optimization for ODE models

In parameter inference, optimization is often a first step to identify optimal point estimates
(Section 2.2.1). In this section, we give a short overview of common methods, with focus on
ODE models. We consider a generic objective function to minimize, typically given as

min
θ
J(θ) with J(θ) = − log π(ȳobs|θ) or J(θ) = − log π(θ|ȳobs) (2.18)

via (2.10) or (2.12) as the negative log-likelihood or negative log-posterior, the underlying pro-
cess model being given via an ODE (2.6), with some observation model (2.2) and noise model
(2.3) (e.g. given via normal (2.11) or Laplace noise). The formulation as a minimization instead
of a maximization problem is just due to convention in the field of optimization. While opti-
mization can be performed for any generic objective function, (2.18) has the advantage that
it enables statistical interpretation and the use of previously outlined methods for uncertainty
quantification.

2.3.1 Numerical optimization methods

Minimizing the objective function (2.18) presents a continuous, usually non-convex and often
multi-modal optimization problem. Further, the solution of the ODE involved in every objec-
tive function evaluation (and its derivative, see Section 2.3.2) can usually only be numerically
approximated, and is computationally expensive [Fröhlich et al., 2019, Klipp et al., 2005, Raue
et al., 2013b]. Commonly, parameters are subjected in (2.18) to box constraints V ⊂ Rnθ of
biologically plausible values, which for Bayesian inference carry the interpretation of a uniform
prior (see Section 2.2).

A variety of numerical optimization approaches exist to solve (2.18) [Fröhlich et al., 2019, Nocedal
and Wright, 2006]. Broadly, these can be classified as global and local, or as derivative-free and
derivative-based methods, or combinations thereof. Local searches modify candidate solutions
locally, in attempts of converging to the closest local optimum. While local optima may be of
interest on their own, the overall aim is usually to find the global optimum. Thus, for multi-
modal problems global searches are required that consider the whole search space. Derivative-
based methods exploit first and possibly higher-order derivatives, in contrast to derivative-free
methods.
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Global optimization methods

Global optimization methods aim to efficiently explore the whole search space, often involving
both global exploration, to find remote areas of interest, and local exploitation or concentration,
to refine current solutions. The arguably simplest approach is multi-start local optimization,
which performs many local optimizations initiated at different randomly chosen starting points
[Raue et al., 2013b]. Numerous further methods have been developed, often motivated by natural,
e.g. biological or physical, principles, simulating e.g. swarm behavior [Kennedy, 2011, Vaz and
Vicente, 2007], evolutionary processes [Bäck, 1996, Hansen and Ostermaier, 1996], or physical
annealing [Kirkpatrick et al., 1983]. Hybrid approaches such as scatter searches explicitly combine
global and local approaches in an iterative process [Egea et al., 2014].

Local optimization methods

Derivative-based local searches use derivatives of J to find a good search direction and step
length [Nocedal and Wright, 2006]. For example, via first and second-order Taylor approxima-
tions, assuming sufficient differentiability, one easily sees that the negative gradient −∇J(θ)

gives the direction of steepest descent, while the Hessian ∇2J(θ) allows to formulate a local
quadratic approximation, containing information about local curvature, in particular its mini-
mization giving Newton’s step s = −(∇2J(θ))−1∇J(θ). Thus, various algorithms using first,
second, or higher-order derivative information for local optimization have been developed. A
basic distinction is into line-search methods, which first define a direction of descent, and then
determine an adequate step length ensuring sufficient decrease [Wächter and Biegler, 2006], and
trust-region methods, which instead first define a region giving a maximum step length, and in
which a candidate step is subsequently proposed by minimizing a surrogate model [Coleman and
Li, 1996]. Typical search directions are based on steepest descent via the gradient, [Curry, 1944],
conjugate gradients [Branch et al., 1999], Newton’s method using explicit second-order deriva-
tives, or quasi-Newton methods such as (L)BFGS [Fletcher and Powell, 1963, Goldfarb, 1970,
Liu and Nocedal, 1989] or SR1 [Byrd et al., 1996], which use iterative first-order approximations.
See e.g. Boyd and Vandenberghe [2004], Nocedal and Wright [2006] for further information.

In contrast, derivative-free local methods do not use or approximate gradients, but rather em-
ploy heuristics to find good descent directions, including simplex-based methods [Nelder and
Mead, 1965], hill climbing [De La Maza and Yuret, 1994], or linear or quadratic models [Powell,
1994, 2009]. Unlike for derivative-based methods [Nocedal and Wright, 2006], for derivative-free
methods (efficient) convergence guarantees can scarcely be given [Rios and Sahinidis, 2013].

As we also observed in an own study [Schälte et al., 2018], if derivatives can be calculated effi-
ciently and robustly, derivative-free local methods are usually inferior to derivative-based ones,
especially for higher-dimensional problems, however can be advantageous for unstable derivatives
or non-smooth problems (see Figure 2.1). For ODE models in systems biology, various studies
have demonstrated that global optimization methods with gradient-based local searches outper-
form other approaches [Egea et al., 2014, Raue et al., 2013b, Schälte et al., 2018, Schmiester et al.,
2021b, Villaverde et al., 2018]. Multi-start local optimization with efficient gradient calculation
has been shown to perform robustly for systems biology ODE models [Raue et al., 2013b]. A
particular advantage is that it can easily be parallelized, which is also possible but more intricate
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Figure 2.1: Performance of various optimization methods on eight ODE models of biochemical reaction
networks. M1 (nθ = 2) describes a conversion reaction, M2 (nθ = 4) an enzyme-catalyzed reaction, M3
(nθ = 5) mRNA transfection [Leonhardt et al., 2014], M4 (nθ = 7) a discretized spatial model of Pom1
gradient formation [Hross et al., 2016], M5 (nθ = 11) a Hopf bifurcation [Ballnus et al., 2017], M6 (nθ = 17)
Epo-induced JAK-STAT signaling [Swameye et al., 2003], M7 (nθ = 28) RAF-MEK-ERK signaling, and
M8 (nθ = 48) histone methylation [Zheng et al., 2012], always assuming Gaussian additive noise (2.11).
Considered were derivative-free local optimizers BOBYQA and DHC, derivative-free global optimizers
DIRECT, MCS, CMAES, PSWARM, and MEIGO, as well as gradient-based FMINCON, with (+g) or
without provided efficient gradients. A: Number of converged runs out of 100 multi-starts as a measure
of reliability (top), and converged runs per time as a measure of efficiency (bottom). B, C: Waterfall
plots (i.e. sorted multi-start results) for M5, which is highly multi-modal, and higher-dimensional M6.
This figure is taken from the author’s publication Schälte et al. [2018], see there for details and further
analyses.

for e.g. hybrid approaches with iterated exploration and exploitation phases [Penas et al., 2017].
Further, optimal values obtained from single multi-starts allow for an assessment of the objective
function landscape and quality of convergence e.g. via waterfall plots (Figure 2.1B+C). However,
for complex problems, more efficient global exploration e.g. via scatter searches, in combina-
tion with efficient gradient-based local optimization, has been shown beneficial [Villaverde et al.,
2018].

2.3.2 Gradient calculation

For a sufficiently smooth objective function J , especially in optimization (Section 2.3.1), but also
e.g. for profile calculation (Section 2.2.2) and sampling (Section 2.2.3), efficiently calculated and
accurate derivatives, in particular the gradient, are useful. In this section, we discuss common
strategies for ODE based objectives.
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Finite differences

Finite difference approximate the derivative tangent by a secant of small step size,

dJ

dθk
(θ) ≈ J(θ + h1ek)− J(θ − h2ek)

h1 + h2
,

with k-th unit vector ek and h1, h2 ≥ 0. Common are central (h1 = h2 > 0), forward (h1 >

0 = h2), and backward (h1 = 0 < h2) differences. While they are easy to implement for
any black-box objective, their accuracy depends on the choice of step size, and they can be
numerically unstable especially if the objective relies on numerical approximations. Further, the
computational complexity of the gradient is linear in nθ [Raue et al., 2013b].

Forward sensitivity analysis

Given an ODE model, we can obtain reliable gradients semi-analytically by augmenting the
underlying system of equations. Consider a general sufficiently differentiable objective

J(θ) =

nt∑
i=1

Ji(y(ti, θ), θ), (2.19)

as a sum over discrete measurement time points, with observable function

y(t, θ) = h(x(t, θ), θ),

with x given via an ODE (2.1). Here, we only make time dependence explicit, as we will need it
later, while keeping potential multiple observables and conditions implicit. The gradient is then
given as

∇J(θ) =

nt∑
i=1

[
∂Ji
∂θ

+
∂Ji
∂y

dy

dθ

]
=

nt∑
i=1

[
∂Ji
∂θ

+
∂Ji
∂y

∂h

∂θ
+
∂Ji
∂y

∂h

∂x

dx

dθ

]
, (2.20)

where we used
dy

dθ
=
∂h

∂θ
+
∂h

∂x

dx

dθ
.

Note that here and in the following, we drop all obvious arguments for ease of readability, and
indicate by ∂ partial and by d total derivatives. While all other derivatives are easily derived,
the problematic part here are the state sensitivities sx := dx

dθ , as the state x itself is given only
via the solution of an ODE.

Differentiating sx by time, we can find via Schwarz’ Theorem and ODE (2.1) an additional
system of ODEs, the forward sensitivity equations

ṡx(t, θ) =
df

dθ
=
∂f

∂θ
+
∂f

∂x
sx, sx(t0, θ) =

dx0

dθ
(θ)

These can be solved alongside (2.1) over [t0, tnt ], giving an augmented system of ODEs of dimen-
sion nx(1 +nθ), the solution of which is the state x together with its sensitivities sx, allowing to
calculate (2.20). The errors in the numerical approximation of x and sx can be controlled jointly,
allowing an accurate gradient computation. While forward sensitivity analysis (FSA) is generally



2.3. PARAMETER OPTIMIZATION FOR ODE MODELS 25

more accurate and efficient than finite differences due to exploitation of common structure in the
joint solution of the augmented system, it scales still linearly in nθ [Hindmarsh et al., 2005, Leis
and Kramer, 1988, Raue et al., 2013b].

Adjoint sensitivity analysis

Adjoint sensitivity analysis (ASA) circumvents evaluation of sx altogether by introduction of an
adjoint state p : [t0, tnt ]→ Rnx taking the role of a Lagrange multiplier. This can be advantageous
when sensitivities of few outputs have to be calculated with respect to many parameters [Cao
et al., 2003, Fröhlich et al., 2017, Hindmarsh et al., 2005, Li and Petzold, 2004]. Defining J0 = 0,
we can write for i = 0, . . . , nt − 1, by adding a zero-term,

∂Ji
∂y

∂h

∂x

dx

dθ
=
∂Ji
∂y

∂h

∂x

dx

dθ
+

∫ ti+1

ti

pT (
dẋ

dθ
− ∂f

∂θ
− ∂f

∂x

dx

dθ
) dt

=
∂Ji
∂y

∂h

∂x

dx

dθ
+ ( lim

t↗ti+1

pT
dx

dθ
− lim
t↘ti

pT
dx

dθ
)

−
∫ ti+1

ti

(ṗT + pT
∂f

∂x
)
dx

dθ
dt−

∫ ti+1

ti

pT
∂f

∂θ
dt,

using integration by parts in the second step. Here, it becomes apparent that it is convenient to
choose p such that it satisfies on (ti, ti+1], i = 0, . . . , nt − 1, the backward differential equation

ṗ = −∂f
∂x

T

p with terminal condition p(ti+1, θ) = lim
t↘ti+1

p(t, θ)− ∂Ji+1

∂y

∂h

∂x
, (2.21)

with p = 0 for t > tnt . This is such that in the above expression the first integral vanishes, and
due to the re-initialization of the backward equation at measurement time point ti, the expression
simplifies to

∂Ji
∂y

∂h

∂x

dx

dθ
=
∂Ji
∂y

∂h

∂x

dx

dθ
+ pT

dx

dθ

∣∣∣∣
t=ti+1

− (pT +
∂Ji
∂y

∂h

∂x
)
dx

dθ

∣∣∣∣
t=ti

−
∫ ti+1

ti

pT
∂f

∂θ
dt

= pT
dx

dθ

∣∣∣∣
t=ti+1

− pT dx
dθ

∣∣∣∣
t=ti

−
∫ ti+1

ti

pT
∂f

∂θ
dt

Summing over i = 0, . . . , nt − 1, simplifying the telescope sum, and using p(tnt) = −∂Jnt
∂y

∂h
∂x , we

find for (2.20)

∇J(θ) =

nt∑
i=1

[
∂Ji
∂θ

+
∂Ji
∂y

∂h

∂θ

]
− pT dx0

dθ

∣∣∣∣
t=t0

−
∫ tnt

t0

pT
∂f

∂θ
dt . (2.22)

This is independent of the state sensitivities, unlike FSA, except at t0, which are usually straight-
forward to calculate. With (2.1) and (2.21), in ASA two ODEs of dimension nx must be solved,
besides a quadrature of dimension nθ, which is however typically computationally less expensive.
In practice, computation time for ASA was found to hardly increase with nθ [Fröhlich et al., 2017,
Özyurt and Barton, 2005]. As for FSA, for ASA dedicated solvers exist that solve the forward
and adjoint ODEs jointly [Fröhlich et al., 2021, Hindmarsh et al., 2005, Serban and Hindmarsh,
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2005]. A downside is however that, unlike FSA, ASA cannot be employed for least-square type
optimization. Especially for large-scale sytems with many parameters, ASA has been shown to
be by far the most efficient method [Fröhlich et al., 2017, Fröhlich et al., 2018, Kapfer et al.,
2019].

While most computational tools trivially allow to calculate derivatives via finite differences, only
few (e.g. Raue et al. [2015], Fröhlich et al. [2021]) allow FSA [Fröhlich et al., 2019]. To our
knowledge, only AMICI (see Section 1.3) currently allows ASA [Fröhlich et al., 2021]. pyPESTO
can be used with all three methods for gradient calculation, the latter two via AMICI.

Higher-order derivatives

Finite differences, FSA, and ASA can similarly also be employed to obtain higher-order deriva-
tives, following similar principles. In particular the Hessian is of interest as a measure of curvature
in optimization and profile calculation (see e.g. Stapor et al. [2018]).

2.4 Approximate Bayesian Computation

In the statistical inference methods presented heretofore, we have always assumed that we can
evaluate the likelihood π(ȳobs|θ), and thus, in Bayesian inference, can calculate the posterior
density, at least up to normalization. However, in practice this is often not possible for complex
stochastic models, for numerical or computational reasons [Hasenauer, 2015, Jagiella et al., 2017,
Martin et al., 2020]. In such cases, it is however often still relatively easy to simulate data
ȳ ∼ π(ȳ|θ) from the model, which amounts to implementing the model as a generative process,
taking parameters and returning simulated data. Examples of such models include Markov
processes, stochastic differential equations, or stochastic agent-based models (see Section 1). In
systems biology, these are frequently used to describe e.g. gene expression, signal transduction,
or multi-cellular processes, whenever the system dynamics cannot be adequately captured by a
deterministic model [Lenive et al., 2016, Picchini, 2014, Wilkinson, 2009]. Especially to describe
multi-scale and multi-cellular systems, often different modeling approaches on different spatial
or temporal scales are combined, yielding highly specific high-dimensional stochastic models
[Durso-Cain et al., 2021, Hasenauer, 2015, Imle et al., 2019].

Likelihood-free inference methods, i.e. methods that do not require evaluating the likelihood,
have thus gained interest. For example, given an intractable target density f , pseudo-marginal
methods have been developed, which use an unbiased estimator f̂x, i.e. E[fx] = f(x), in place
of f(x), based on a finite number of samples [Andrieu and Roberts, 2009, Warne et al., 2020],
for example particle MCMC (PMCMC) employing a particle filter for likelihood estimation in
(2.17) [Andrieu et al., 2010]. While pseudo-marginal methods conceptually generate samples
from the true target distribution, reliable sample-based likelihood estimators are expensive, and
the Monte-Carlo error may be not unsubstantial [Martin et al., 2020]. In contrast, approxi-
mate methods only target an approximation to the target distribution. Especially, approximate
Bayesian computation (ABC) [Sisson et al., 2018] has become increasingly popular in various
research areas, owing to its asymptotic exactness, simplicity, and its broad applicability. In a
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Figure 2.2: Illustration of approximate Bayesian computation (ABC). Given parameters θ sampled e.g.
from the prior π(θ), or another proposal distribution g(θ)� π(θ), data ȳ are simulated via a generative
black-box model, and compared to observed data ȳobs on the level of summary statistics sobs = s(ȳobs), via
a distance metric d. The particle (θ, ȳ) is accepted if their discrepancy is below an acceptance threshold,
d(s(ȳ), s(ȳobs)) ≤ ε , otherwise rejected.

nutshell, in ABC the likelihood evaluation is replaced by simulating data from the model, and
accepting if simulated and observed data are sufficiently close.

There are various alternative approximate likelihood-free inference methods. Indirect inference
methods use an auxiliary tractable model πa(ȳ|φ) with parameters φ, which can be a simplified
mechanistic or also a purely data-analytic model. Inference is then based on the binding function
φ(θ) := arg maxφQ({ȳi}i≤n|φ), where Q is an estimating function, e.g. the likelihood πa, and
ȳi ∼ π(ȳ|θ) are i.i.d. simulations from the original model. Bayesian synthetic likelihood (BSL)
approaches use a multivariate normal approximation to the intractable (summary statistic) like-
lihood, with mean and covariance matrix dependent on θ and determined via simulation [Martin
et al., 2020, Price et al., 2018]. Indirect inference, and in particular BSL approaches have the
potential to be more efficient than ABC [Price et al., 2018], which can be interpreted as using
a non-parametric likelihood approximation (see below), however rely on the adequacy of the
auxiliary model.

2.4.1 The basic method

The core principle of ABC, as introduced in Pritchard et al. [1999] following ideas in Tavaré et al.
[1997], consists of the following three steps (illustrated in Figure 2.2):

1. sample parameters θ ∼ π(θ),

2. simulate data ȳ ∼ π(ȳ|θ),

3. accept (θ, ȳ) if d(ȳ, ȳobs) ≤ ε.

Here, d : Rny × Rny → R≥0 is a distance metric measuring the proximity of simulated and
observed data (see Chapter 5 for commonly used metrics), and ε ≥ 0 is an acceptance threshold
defining the permitted discrepancy. This is repeated until sufficiently many, say N , particles
have been accepted, see Algorithm 2.2.

Like most ABC algorithms, this routine actually targets the joint distribution over parameters
and data,

(θ, ȳ) ∼ πABC,ε(θ, ȳ|ȳobs) ∝ I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ)π(θ), (2.23)
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Algorithm 2.2 ABC-Rejection algorithm
while less than N acceptances do

sample parameter θ ∼ π(θ)
simulate data ȳ ∼ p(ȳ|θ)
accept θ if d(ȳ, ȳobs) ≤ ε

end while
output: samples {θi}i≤N

where I denotes the indicator function, such that by projection to the first component, samples
from the target marginal of interest, the ABC posterior

πABC,ε(θ|ȳobs) ∝
∫
I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ) dȳ ·π(θ), (2.24)

can be obtained [Sisson et al., 2018, Chapter 4]. Specifically, while in the first two steps samples
(θ, ȳ) ∼ π(ȳ|θ)π(θ) are generated, in the third step Algorithm 2.2, thus also called ABC-Rejection,
implements a (here binary) rejection step as in Proposition 2.1, such that accepted particles
exactly target (2.23).

2.4.2 Asymptotic behavior

Monte-Carlo estimates based on samples {θi}i≤N from (2.23) converge to integrals over (2.24),
πABC,ε(θ|ȳobs), forN →∞, as in Section 2.2.3. In turn, πABC,ε(θ|ȳobs) serves as an approximation
to the actual parameter posterior distribution π(θ|ȳobs) ∝ π(ȳobs|θ)π(θ). Defining the ABC
likelihood

πABC,ε(ȳobs|θ) ∝
∫
I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ) dȳ, (2.25)

we can write πABC,ε(θ|ȳobs) ∝ πABC,ε(ȳobs|θ)π(θ), and thus interpret ABC as regular Bayesian
analysis with an approximated likelihood [Sisson et al., 2018, Chapter 2], as an average over
likelihoods of simulation values close to ȳobs.

For discrete data, the observation that the chance of simulating ȳ = ȳobs is given by the prob-
ability mass function π(ȳobs|θ), accepting if ȳ = ȳobs in the third step gives rise to an exact
likelihood-free algorithm [Rubin, 1984], while for continuous data this is not possible. Rather,
for small ε, πABC,ε(θ|ȳobs) is usually assumed to approximate π(θ|ȳobs), with limit

πABC,ε(θ|ȳobs)→ π(θ|ȳobs) for ε→ 0 (2.26)

in an appropriate sense. Informally, with Kε(ȳ) := I[d(ȳ, ȳobs) ≤ ε], if Kε → δȳobs converges to
the Dirac delta distribution at ȳobs for ε → 0, then πABC,ε(ȳobs|θ) → π(ȳobs|θ) such that (2.26)
follows. This can be formulated more rigorously for general acceptance kernels Kε e.g. in terms
of generating functions of Dirac delta sequences [Kanwal, 1998]. For the most commonly used
ABC formulation, with distance metric e.g. induced via an Lp norm, we give an explicit proof of
(2.26) in Section 5.3.3.
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2.4.3 Summary statistics

Due to the curse of dimensionality, as simulating ȳ ≈ ȳobs is unlikely for high-dimensional
data, ABC inference is often based on a summary statistics representation s : Rny → Rns of
the data, with ns ≤ ny, the proximity d(s(ȳ), s(ȳobs)) of which is evaluated in the third step
above, for a distance metric d : Rns × Rns → R≥0. Denoting s = s(ȳ), sobs = s(ȳobs), and
π(s|θ) ∝

∫
δs(s(ȳ))π(ȳ|θ) dȳ the intractable summary statistics likelihood, the population of

accepted particles constitutes a sample from the approximate posterior distribution

πABC(θ|sobs) ∝
∫
I[d(s, sobs) ≤ ε]π(s|θ) ds ·π(θ).

Only if s is sufficient, i.e. π(θ|ȳ) = π(θ|s(ȳ)), can the original posterior π(θ|ȳobs) be recovered in
the approximate limit ε → 0. In practice, sufficient statistics are however scarcely known, such
that commonly focus is on the construction of lower-dimensional, informative summaries of the
data. Semi-automatic methods to derive such statistics have been developed, e.g. based on subset
selection, selecting an optimal subset from a pool of candidate summary statistics [Joyce and
Marjoram, 2008, Nunes and Balding, 2010], auxiliary likelihoods, using aforementioned indirect
inference methods for summary statistic construction [Drovandi et al., 2011, Gleim and Pigorsch,
2013], or regression, learning an inverse mapping from data to parameters [Borowska et al., 2021,
Fearnhead and Prangle, 2012, Jiang et al., 2017]. See e.g. Blum et al. [2013] or Sisson et al. [2018,
Chapter 4] for further information.

In summary, ABC methods have four levels of approximation (adapted from Sisson et al. [2018,
Section 1]):

• Firstly, every model is just an approximation of a real-world system.

• Secondly, as for every sampling method, there is a Monte-Carlo error due to finite sample
size.

• Thirdly, also simulations not exactly matching the data are accepted, effectively using a
different likelihood (2.25).

• Fourthly, insufficient summary statistics result in a loss of information.

Typically, there is a trade-off between the last two sources of errors, with good summary statistics
being both low-dimensional, and informative [Blum et al., 2013]. Conversely, ABC methods allow
to consider more realistic models of real-world systems, thus reducing the first error.

In this thesis, we will for simplicity of notation usually assume that the summary statistics
mapping is already incorporated in y, unless mentioned otherwise.

2.4.4 Sequential Monte Carlo sampling

The above vanilla ABC algorithm exhibits a trade-off between decreasing the acceptance thresh-
old ε to obtain a better posterior approximation, and maintaining high acceptance rates, further
it suffers from the deficiencies common to plain rejection and importance sampling algorithms.
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Algorithm 2.3 ABC-SMC algorithm
for t = 1, . . . , nt do
while less than N acceptances do

sample parameter θ ∼ gt(θ)
simulate data ȳ ∼ p(ȳ|θ)
accept θ if d(ȳ, ȳobs) ≤ εt

end while
compute weights wti =

π(θti)

gt(θti)
, for accepted parameters {θti}i≤N

normalize weights W t
i = wti/

∑
j w

t
j

define gt+1 and εt+1 based on {(θti ,W t
i )}i≤N

end for
output: weighted samples {(θnti ,W

nt
i )}i≤N

Instead, any of the likelihood-based approaches mentioned in Section 2.2.3 can be “ABC-fied”,
commonly then targeting the joint posterior (θ, ȳ) ∼ πABC,ε(θ, ȳ|ȳobs). For example, a Metropolis-
Hastings ABC-MCMC algorithm can be formulated by replacing (2.17) by

A(θ′|θ) = min

[
1,
I[d(ȳ′, ȳobs) ≤ ε]
I[d(ȳ, ȳobs) ≤ ε]

π(θ′)

π(θ)

K(θ|θ′)
K(θ′|θ)

]
,

with proposal distribution K((θ′, ȳ′)|(θ, ȳ)) = π(ȳ′|θ′)K(θ′|θ), free of intractable likelihood terms
[Bortot et al., 2007, Marjoram et al., 2003]. See e.g. Sisson et al. [2018, Chapter 4] for an overview
of ABC samplers.

In this thesis, we will focus on samplers using sequential Monte Carlo (SMC) methods (see
Section 2.2.3), based on Sisson et al. [2007], Toni et al. [2009]. SMC methods are particularly
amenable to combination with ABC, as the acceptance threshold ε provides a natural base
for intermediate distributions, allowing for a gradual decrease of ε and thus improvement of
the posterior approximation, and avoiding prior tuning of hyperparameters. In ABC-SMC, a
series of particle populations Pt = {(θti , ȳti , wti)}i≤N with acceptance thresholds ε1 > . . . > εnt ,
t = 1, . . . , nt, are generated, constituting samples of successively better posterior approximations
(Algorithm 2.3). Particles for generation t are sampled from a proposal distribution gt(θ)� π(θ)

based on the previous generation’s accepted particles Pt−1, e.g. via a kernel density estimate,
only initially g1(θ) = π(θ). The importance weights wit are the corresponding non-normalized
Radon-Nikodym derivatives (Proposition 2.3)

wt(θ) =
π(θ)

gt(θ)
, (2.27)

see Section 2.4.5 for details on the employed rejection-importance sampling algorithm and weight-
ing scheme.

An acceptance threshold scheme that has been shown to perform well and is also employed in
most parts of this work, is to adaptively set εt to a quantile, e.g. the median, of the previous
generation’s accepted distances [Drovandi and Pettitt, 2011, Klinger and Hasenauer, 2017]. In
addition, we base the initial threshold on a calibration sample of size N , which is also used to
calibrate any other components that require problem-specific adjustment. See e.g. Silk et al.
[2013] for alternatives. A common form of the proposal distribution, which we also employ
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Algorithm 2.4 ABC-IS algorithm
while less than N acceptances do

sample parameter θ ∼ g(θ)
simulate data ȳ ∼ p(ȳ|θ)
accept θ if d(ȳ, ȳobs) ≤ ε

end while
compute weights wi = π(θi)

g(θi)
, for accepted parameters {θi}i≤N

normalize weights Wi = wi/
∑

j wj
output: weighted samples {(θi,Wi)}i≤N

here, is based on a multivariate normal perturbation kernel, gt(θ) ∝
∑N

i=1N (θ|θt−1
i ,Σt−1) with

generation-specific covariance matrix Σt−1 ∝ Σ({(θt−1
i , wt−1

i )}i≤N ) based on the previous gen-
eration’s sample covariance matrix, thus exploiting correlations, which can further be localized
[Filippi et al., 2013]. For discrete parameters, similar random-walk approaches can be employed
[Syga et al., 2020]. For details on the underlying ABC-SMC implementation used here see e.g.
Klinger and Hasenauer [2017], Klinger et al. [2018].

Advantages of ABC-SMC include the simple possibility to adjust components such as the afore-
mentioned acceptance threshold [Drovandi and Pettitt, 2011, Silk et al., 2013] and distance
metric [Harrison and Baker, 2020, Prangle, 2017] to the problem structure, as well as the same
advantages as for SMC in general, as mentioned in Section 2.2.3, in particular adjustment of
proposal distribution [Filippi et al., 2013] and ease of parallelization, which is paramount for
computationally expensive models. Throughout this thesis, we employ parallelization based on
dynamic scheduling [Klinger et al., 2018], which uses all available computational infrastructure
for sampling at near-all times, afterwards correcting for simulation time bias, and which has been
shown to substantially reduce the overall wall-time compared to established static scheduling,
where only exactly as many particles as required are generated. Further, especially ABC-MCMC
methods can suffer from bad mixing, as the step acceptance probability is proportional to the
likelihood, requiring the simulation of data close to ȳobs [Sisson et al., 2007].

2.4.5 Rejection-importance sampling

All ABC-SMC routines used in this thesis employ a sequence of importance sampling (ABC-IS)
generations. For a proposal distribution g(θ)� π(θ) and a target population size N , we use an
ABC-IS scheme as shown in Algorithm 2.4. In ABC-SMC, Algorithm 2.4 is then iterated over
successively refined acceptance thresholds ε, proposals g(θ), and, possibly, distances d as well as
summary statistics. This form of ABC-IS generates samples from the distribution

(θ, ȳ) ∼ G(θ, ȳ) ∝ I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ)g(θ). (2.28)

Here, the g(θ) is because we sample θ ∼ g(θ), additionally we simulate data ȳ from the likelihood
and discard particle not satisfying the acceptance criterion, such that, conditioned on θ, accepted
simulations are distributed as

ȳ|θ ∼ I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ).
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Therefore, the importance weights, Radon-Nikodym derivatives, of the proposal distribution
(2.28) against the target (2.23) are given by

v(θ, ȳ) =
πABC,ε(θ, ȳ|ȳobs)

G(θ, ȳ)
=

C · I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ)π(θ)

CG · I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ)g(θ)
=

C

CG

π(θ)

g(θ)
=

C

CG
w(θ),

with normalization constants C, CG such that
∫∫

C · I[d(ȳ, ȳobs ≤ ε]π(ȳ|θ) dȳ ·π(θ) dθ = 1 =∫∫
CG ·I[d(ȳ, ȳobs) ≤ ε]π(ȳ|θ) dȳ ·g(θ) dθ. Here, w(θ) = π(θ)/g(θ) denotes the importance weight

factor (2.27) related to parameter sampling.

Supposing we have i.i.d. samples (θi, ȳi) ∼ G(θ, ȳ), i = 1, . . . , N , if all normalization constants
were known, for a function ξ : Rnθ ×Rny → R an unbiased and asymptotically exact importance
estimate over the ABC posterior could be obtained via

EπABC,ε(θ,ȳ|ȳobs)[ξ] = EG(θ,ȳ)[vξ] ≈
1

N

∑
i≤N

viξ(θi, ȳi),

with weights vi = v(θi, ȳi), see Proposition 2.2. Typically, ξ will just be a function of θ, e.g.
ξ(θ, ȳ) = θ yielding the mean over the ABC parameter posterior distribution. In general, C/CG
is however not known and thus v only up to normalization, such that one has to resort to the
estimate

EπABC,ε(θ,ȳ|ȳobs)[ξ] =
EG(θ,ȳ)[wξ]

EG(θ,ȳ)[w]
≈

1
N

∑
i≤N wiξ(θi, ȳi)

1
N

∑
i≤N wi

=
∑
i≤N

Wiξ(θi, ȳi), (2.29)

with self-normalized weights
Wi :=

wi∑
j≤N wj

,

as in Algorithms 2.3 and 2.4. The approximation (2.29) is in general no longer unbiased, but
asymptotically so for N → ∞ by Proposition 2.3 applied to the joint sampling space over
parameters and data.

In Algorithm 2.4, we use a rejection step based on the distance value, inside the importance
sampling routine. Alternatively, this step could be replaced by importance sampling, effectively
giving a proposal distribution G(θ, ȳ) ∝ π(ȳ|θ)π(θ), such that the acceptance kernel becomes
part of the weighting, giving weights v(θ, ȳ) ∝ I[d(ȳ, ȳobs) ≤ ε]w(θ), which would result in a
number of samples generated equal to N , however in a high weight variability and low ESS
(2.16), with many weights at zero. A similar interplay of rejection and importance sampling on
different levels is source to many variations of ABC algorithms [Sisson et al., 2018, Chapter 4].

2.4.6 Further topics

ABC is an active research field with many developments, applications and algorithms beyond
what has been and will be discussed in this thesis. For example, various strategies for MCMC
and SMC algorithms as discussed in Section 2.2.3 can be transferred to an ABC context [Sisson
et al., 2018], post-processing of results to account for simulation mismatch via regression can be
performed [Beaumont et al., 2002], model selection can be formulated as a hierarchical problem
[Toni et al., 2009], low-fidelity models can be used to determine whether costly simulations should
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be performed [Prescott and Baker, 2021], the acceptance step can be re-interpreted as introducing
a noise term [Wilkinson, 2013] (see also Chapter 4), or components such as population size
[Klinger and Hasenauer, 2017] or distance metric [Prangle, 2017] can be automatically adjusted
to the problem (see also Chapter 5). See e.g. Sisson et al. [2018] for an overview of ABC methods,
history, and recent developments.

2.5 Standardization

It is important to ensure findability, accessibility and reusability of data and models, interoper-
ability of analysis pipelines, and reproducibility of results [Wilkinson et al., 2016]. In the field of
systems biology, thus several community standards have been defined [Stanford et al., 2019].

In particular, biochemical process models can be defined in the Systems Biology Markup Lan-
guage (SBML) [Hucka et al., 2003], CellML [Cuellar et al., 2003], or the BioNetGen Language
(BNGL, for rule-based formulations) [Harris et al., 2016]. Atop model definition, simulation exper-
iments can be described via the Simulation Experiment Description Markup Language (SED-ML)
[Waltemath et al., 2011], or similarly the Systems Biology Results Markup Language (SBRML)
[Dada et al., 2010]. Various software tools, e.g. for visualization, simulation or inference, support
such model standards as exchange format (e.g. Balsa-Canto and Banga [2011], Fröhlich et al.
[2021], Hoops et al. [2006], Raue et al. [2015]). Furthermore, both data (e.g. Barretina et al.
[2012], Eduati et al. [2017], Li et al. [2017]) and models (e.g. Li et al. [2010], Olivier and Snoep
[2004]) have been made available in large online databases, which supports reusability.

Complementary to existing standards, we have in Schmiester et al. [2021a] developed the parame-
ter estimation format PEtab (https://petab.readthedocs.io). It allows to describe all compo-
nents required to define a parameter estimation problem, including data, observation and noise
model, parameter boundaries and scales, priors, and condition-specific mappings, via human-
and machine-readable TSV files, besides the model specification via SBML. It is supported by
currently nine systems biology toolboxes, namely COPASI [Hoops et al., 2006], Data2Dynamics
[Raue et al., 2015], dMod [Kaschek et al., 2019], parPE [Schmiester et al., 2019], MEIGO [Egea
et al., 2014], AMICI [Fröhlich et al., 2021], pyPESTO [Schälte et al., 2021b], and pyABC [Klinger
et al., 2018], as well as more recently SBML2Julia [Lang et al., 2020]. Initially focused on single-
model ODE problems, extensions to encompass e.g. model selection problems and spatial multi-
cellular or multi-scale models [Starruß et al., 2014] are underway (not published yet). Further,
we have in Vanhoefer et al. [2021] developed a format for manual and programmatic ODE model
construction in YAML with export to executable SBML models, and PEtab parameter inference
problems.

https://petab.readthedocs.io
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Chapter 3

Scalable hierarchical optimization using
adjoint sensitivity analysis

Mechanistic modeling of biochemical processes using ordinary differential equation models facili-
tates the quantitative understanding of biological processes. Usually, a model possesses unknown
parameters that need to be estimated from experimental data. In order to get a more holistic
understanding of processes and reaction networks, comprehensive models comprising hundreds
to thousands of species and parameters have been developed. Parameter estimation for such
large-scale models is challenging, in particular as data are often only available on a relative scale
and noise levels are unknown. Thus, scaling parameters and noise parameters must be estimated
alongside model parameters influencing the process dynamics.

In this chapter, we present a novel adjoint hierarchical optimization method combining the
efficient analytical calculation of optimal scaling, offset, and noise model parameters via a hier-
archical formulation with the scalable, efficient evaluation of objective function gradients using
adjoint sensitivity analysis. We evaluate the novel approach on a pan-cancer model with > 1000

states and > 4000 parameters [Fröhlich et al., 2018], demonstrating that it provides a substantial
improvement of optimizer performance, and facilitates the estimation of scale, offset and noise
parameters with virtually no computational overhead.

This chapter is based on and partly identical to the following shared first-author publication of
the thesis author:

• Schmiester, L.∗, Schälte, Y.∗, Fröhlich, F., Hasenauer, J. and Weindl, D. (2019). Efficient
parameterization of large-scale dynamic models based on relative measurements. Bioinfor-
matics, 36(2), pp.594-602. (∗equal contribution)

In this publication, the thesis author developed the hierarchical optimization approach with effi-
cient gradients based on adjoint sensitivities and analytical solutions for optimal affine observable
transformations and noise parameters, which we focus on here. The implementation was per-
formed jointly with, and the evaluation on a high-dimensional application problem mainly by,
Leonard Schmiester and Daniel Weindl.

35
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3.1 Introduction

Ordinary differential equation (ODE) models are widely used in systems biology to mechanis-
tically describe and understand the temporal evolution of biochemical reaction networks (Sec-
tion 2.1.4). Growing biological knowledge, efficient simulation routines, and increasing, in partic-
ular parallel, computational power have facilitated the development of larger and more compre-
hensive models, with up to thousands of state variables and parameters [Bouhaddou et al., 2018,
Fröhlich et al., 2018]. Such large-scale models give a more detailed and holistic understanding at
a system level, which decoupled or simplified models cannot provide [Kitano, 2002a], e.g. allow-
ing to capture pathway cross-talk, or to understand and predict drug effects and combinations
[Fröhlich et al., 2018, Hass et al., 2017, Korkut et al., 2015]. However, with increasing numbers of
state variables and parameters, parameterization of large-scale models gets challenging [Kapfer
et al., 2019].

Commonly, data-driven parameter estimation is based on the quantitative comparison of simu-
lated and measured observables via a noise model (Section 2.1.2). Large-scale transcriptomics,
proteomics, and pharmacological data sets have been acquired and made available in public
databases (e.g. Barretina et al. [2012], Eduati et al. [2017], Li et al. [2017]). However, such
datasets often contain only measurement values relative to the absolute concentrations of the
species under consideration, often requiring an unknown affine transformation, via scaling fac-
tors and offsets, to enable the quantitative comparison of model simulations and data [Degasperi
et al., 2017, Raue et al., 2013b, Weber et al., 2011]. For example, frequently employed measure-
ment techniques such as Western blotting [Renart et al., 1979] or flow cytometry [Herzenberg
et al., 2006] only provide relative information about absolute molecular quantities, in addition
measurements in large-scale databases are often normalized and thus also only relative. An
alternative approach occasionally employed is the comparison of relative changes only, termed
data-driven normalization by Degasperi et al. [2017], by dividing simulations and data in the
same way by a control. While this does not increase the problem dimension, the noise distribu-
tion is non-trivial and residuals are not uncorrelated, which can result in incorrect confidence
intervals (see e.g. Thomaseth and Radde [2016] and the supplementary information of Loos et al.
[2018]). In addition to the problem of relative data, measurements are usually noise-corrupted.
When no reliable estimates of noise levels are available, e.g. via experimental replicates, corre-
sponding noise parameters can also be learned simultaneously with the model dynamics. Thus,
frequently parameters describing observable transformations, and parameters quantifying noise
levels must be learned alongside parameters governing the dynamics of the modeled states (2.1).
This increases the parameter dimension (e.g. by a factor of two in Bachmann et al. [2011]), and
it was shown that even the presence of only a few scaling parameters can substantially harm
optimizer performance [Degasperi et al., 2017].

To facilitate inference for large-scale ODE models, scalable methods have been developed, in
particular exploiting parallelization [Fröhlich et al., 2018, Penas et al., 2015], and adjoint sensi-
tivity analysis (ASA) for efficient gradient computation (Section 2.3.2), permitting efficient local
optimization (Section 2.3.1).

To improve inference in the special case of data with unknown linear transformations, and as-
suming additive normal noise with known standard deviations, Weber et al. [2011] developed a
hierarchical optimization approach that, instead of estimating parameters governing model dy-
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namics and scaling parameters defining the observable transformation jointly, exploits the fact
that for given dynamics parameters and model simulations, the optimal scaling parameters can
be computed analytically, improving optimizer convergence for the reduced problem of estimat-
ing the remaining parameters. This approach was generalized by Loos et al. [2018], who provided
analytical solutions for both scaling factors and noise parameters, for different noise distributions,
in particular additive normal and Laplace noise. However, their approach only considers scaling
factors, but not offsets, which are often required to e.g. describe background noise, or when
normalization such as mean subtraction was applied. Further, their approach is not compatible
with ASA, but only forward sensitivity analysis (FSA), which is computationally prohibitive for
large-scale models [Fröhlich et al., 2018].

In this chapter, we firstly take a more general perspective on hierarchical optimization, provid-
ing insights into how splitting up a problem hierarchically can be beneficial. Then, for ODE
models, we demonstrate how a general hierarchical problem can be integrated with FSA and, in
particular, ASA, permitting efficient gradient-based optimization for high-dimensional problems.
Complementarily, we provide analytical optimal solutions for the specific case of affine observ-
able transformations and unknown additive normal noise levels, i.e. for scaling factors, offsets,
and noise parameters, yielding a highly efficient solution of the corresponding hierarchical inner
sub-problem. We evaluate the novel hierarchical approach on a large-scale pan-cancer signaling
model. Compared to standard optimization, we demonstrate substantially improved performance
in terms of parameter estimates and fits. In particular, the hierarchical approach provides an
unbiased way to weight heterogeneous data sets, and estimate observable and noise parameters
with negligible computational overhead.

3.2 Hierarchical optimization with adjoint sensitivity analysis

In this chapter, we employ the notation of ODE constrained optimization problem from Sec-
tion 2.1.4, with modifications to encompass the hierarchical approach presented here, in par-
ticular splitting the parameter vector hierarchically into outer and inner parameters. While in
Section 3.2.1 we consider a generic objective function, it is thereafter based on the inference prob-
lem (2.18) as a negative log-likelihood, with an underlying ODE model and specific observation
function and noise model.

3.2.1 A general hierarchical optimization problem

Splitting the parameter vector θ = (ψ, η) into outer parameters ψ and inner parameters η, we
consider for an objective function J : V ⊂ Rnψ × Rnη → R, (ψ, η) 7→ J(ψ, η) the minimization
problem

inf
ψ,η

J(ψ, η), (3.1)

over a suitable domain V . Instead of solving (3.1) jointly, we decompose the problem hierarchi-
cally as

inf
ψ
Ĵ(ψ) where Ĵ(ψ) := inf

η
J(ψ, η), (3.2)
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i.e. into an outer problem of minimizing over ψ the inner problem of minimizing over η conditioned
on ψ. Problems (3.1) and (3.2) are clearly equivalent.

Assuming overall infimum and all conditional infima to be finite and assumed, which will be the
case in our applications, we can further define

η̂(ψ) := arg min
η

J(ψ, η) such that Ĵ(ψ) = J(ψ, η̂(ψ)). (3.3)

Note that in general η̂(ψ) need not be uniquely defined.

In practice, a hierarchical decomposition can be in particular beneficial if the inner problem
can be efficiently solved, i.e. the conditional minimum given ψ efficiently calculated, as then
the outer problem is of lower dimension and potentially simpler than the joint problem. When
iterative numerical optimization as outlined in Section 2.3.1 is used to solve the joint or outer,
and potentially the inner, problem, practically the hierarchical problem translates to an iterative
two-step procedure, where in an outer loop parameters ψ are proposed, conditional on which
the inner problem is solved for η, either numerically in an inner loop, or analytically, yielding
the corresponding function value Ĵ(ψ) as well as potentially derivative information, such as the
gradient ∇Ĵ(ψ), to be used in the outer loop to guide exploration for the next step.

It is of interest whether a numerical optimizer will converge to the same local minimum for the
joint and the hierarchical problem. This can in general not be answered, as it depends on the
properties of both J and the employed optimizer. Effectively, the objective function becomes
a different one. It is straightforward to construct problems with multi-modal inner problems,
in which local optimizers started from the same point (projected onto ψ for the hierarchical
problem) will converge to different local minima in both approaches, because the inner problem
may focus on a different valley of attraction. However, in general the reduction of dimension
of the hierarchical outer problem compared to the original joint one, as well as the objective
function landscape simplification as a profile projection can be expected to yield improvements
in optimizer convergence, as in practice e.g. confirmed by Loos et al. [2018], Weber et al. [2011].
In particular, there is a surjection of local minima from the original problem to the hierarchical
outer one, which becomes a bijection if the inner problem is uni-modal with unique minimum.

To solve the joint and the hierarchical outer problem, and potentially the hierarchical inner
problem if an analytical solution is not available, derivatives are highly useful to guide numerical
local searches. As we will thus later be interested in calculating derivatives for hierarchical
problems, the following observation is central:

Theorem 3.1. Assume that J and η̂ are k times continuously differentiable, and the conditional
minimum satisfies

∂ηJ(ψ, η̂(ψ)) = 0 (3.4)

for all ψ. Then
∇κĴ(ψ) = ∂κψJ(ψ, η̂(ψ))

for all κ ≤ k.

Proof. It is by chain rule

∇Ĵ(ψ) = ∂ψJ(ψ, η̂(ψ)) + ∂ηJ(ψ, η̂(ψ))∇ψη̂(ψ) = ∂ψJ(ψ, η̂(ψ)),
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due to (3.4). The general statement for higher-order derivatives follows by induction and Schwarz’
Theorem.

This implies that e.g. gradient and Hessian of Ĵ are just the projections of the corresponding
derivatives of J to the first component, such that the objective function landscape relevant for
e.g. optimization of the hierarchical outer problem, such as convexity, is based on and simplified
from the original joint one. Note that (3.4) is satisfied in particular if η̂(ψ) ∈ V \∂V is assumed
in the interior of V , by necessary condition of a local minimum.

In our applications, η̂ will be constructively given. However, in general note that assuming e.g.
that J is twice continuously differentiable and convex in the second component, i.e. ∂2

ηJ(ψ, η) > 0

for all (ψ, η), and that the conditional minimum minη J(ψ, η) is assumed in the interior V \∂V
of V for all ψ, the Implicit Function Theorem gives existence and (global) uniqueness of a
continuously differentiable function η̂(ψ) such that ∂ηJ(ψ, η) = 0 ⇔ η = η̂(ψ), with Ĵ(ψ) =

J(ψ, η̂(ψ)).

3.2.2 ODE constrained hierarchical problems with efficient inner problem

In this section, we formulate a generic hierarchical problem based on a biochemical ODE model
as introduced in Section 2.1.4. Splitting the parameter vector θ = (ψ, η), we assume that we can
decompose the observation function (2.2) as

y(t, ψ, η) = h(h̃(x(t, ψ), ψ), η),

where
ỹ(t, ψ) = h̃(x(t, ψ), ψ) (3.5)

denotes the mapping from states x to raw, unscaled, observables ỹ, which need to be transformed
by h in order to allow for a comparison to the observed data ȳobs. Here, states x and unscaled
observables ỹ depend on outer parameters ψ instead of the full vector θ, while h directly depends
only on inner parameters η. Similar to (2.19), we then consider a generic objective function

J(ψ, η) =

nt∑
i=1

Ji(ỹ(ti, ψ), ψ, η),

where in particular noise parameters could be included in η instead of ψ. Note that often, h̃
and Jj will not directly depend on ψ, however the here used formulation allows for greater
flexibility, permitting to not treat all parameters not directly involved in the simulation of x as
inner parameters. Further, we now regard Ji as a function of the unscaled observables ỹ, such
that, besides the noise model, also the observable transformation is considered as a part of Ji
here, for ease of notation.

Assuming all conditional minima of the hierarchical problem minψ minη J(ψ, η) to exist, we can,
as in (3.3), further define

η̂(ψ) = arg min
η

J(ψ, η)
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and
Ĵ(ψ) = min

η
J(ψ, η) = J(ψ, η̂(ψ)). (3.6)

3.2.3 Relative measurements

To provide context prior to further discussion, let us introduce the specific hierarchical problem of
interest in our applications. When measured data are only available on a relative scale, often an
affine transformation can be used to map model outputs to data. While this is usually implicitly
incorporated in the observation function h and parameters θ, here we use an explicit formulation,
in order to decompose the inference problem later. With scaling factors s and offsets b, we assume
that observed data ȳobs = {ȳobs,i}i≤ny can be compared to rescaled simulated observables

yi = si · ỹi + bi,

where ỹ denotes unscaled observables (3.5) derived from x. Assuming additive normal noise of
variance σi, the negative log-likelihood is then explicitly given as

J(ψ, η) =
1

2

∑
i≤ny

[
log(2πσ2

i ) +

(
ȳobs,i − (si · ỹi + bi)

σi

)2
]
, (3.7)

where ỹi = ỹi(ψ) and si, bi, σi = si(η), bi(η), σi(η) are, if they are unknown, incorporated via
projection in additional parameters η, besides the parameters ψ governing the model dynamics,
so that the overall parameter vector is θ = (ψ, η).

Commonly, experimental data are available for various observables, at various discrete time
points, and potentially for various experimental conditions or replicate measurements. Often,
observable transformations and noise parameters are assumed to coincide for multiple such data
points, e.g. when the same normalization is applied to all data points within an experiment. In
that case, only a single parameter is to be incorporated in η, with projections coinciding across
the corresponding data points, e.g. si1 = si2 = ηi for some i, for data points i1, i2 sharing the
same scaling factor.

In the standard approach, dynamics parameters, observable transformation parameters, and noise
parameters are optimized simultaneously, e.g. via multi-start local optimization, see Section 2.3.1.
However, we can exploit the specific structure of the problem by considering it hierarchically. The
time-critical part in calculating the objective function is usually the numerical simulation of x. As
observable transformation parameters and noise parameters do not affect x, they can be efficiently
optimized conditional on a single simulation of x for given outer parameters ψ. The same applies
to the generic hierarchical problem in Section 3.2.2. Given their simple functional form, in some
scenarios even analytic formulas for the inner problem are available, see Section 3.2.5.

3.2.4 Derivatives for ODE problems with exactly solved inner problem

In this section, we are concerned with efficient methods of calculating gradients for the outer
parameters of an ODE constrained hierarchical problem, which is crucial for efficient and reliable
parameter optimization (see Section 2.3). We assume J and η̂ as defined in Section 3.2.2 to be
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Algorithm 3.1 Hierarchical optimization with exactly solved inner problem, using forward
sensitivity analysis

1. compute ỹ, dỹ
dψ via the augmented ODE system using FSA, given ψ

2. compute η̂(ψ), given ψ, ỹ
3. compute Ĵ(ψ), ∇Ĵ(ψ) via (3.6) and (3.9), given ψ, ỹ, η̂(ψ), dỹ

dψ

sufficiently differentiable.

Easily possible is the use of finite differences. However, as these are neither robust nor efficient,
in the following we present routines using forward (FSA) and adjoint sensitivity analysis (ASA)
(Section 2.3.2).

Forward sensitivity analysis

Similar to (2.20), we can write the gradient of (3.6) as

∇Ĵ(ψ) =
∂J

∂ψ
+
∂J

∂η

dη̂

dψ
=

nt∑
i=1

[
∂Ji
∂ψ

+
∂Ji
∂ỹ

dỹ

dψ
+
∂Ji
∂η

dη̂

dψ

]
, (3.8)

dropping all obvious arguments for ease of notation. Assuming that the inner problem was
solved such that ∂ηJ(ψ, η̂(ψ)) = 0, which we refer to as solving the inner problem exactly, (3.8)
simplifies by Theorem 3.1 to

∇Ĵ(ψ) =

nt∑
i=1

[
∂Ji
∂ψ

+
∂Ji
∂ỹ

dỹ

dψ

]
. (3.9)

Here, dỹ
dψ = ∂h̃

∂ψ + ∂h̃
∂x

dx
dψ depends on the state sensitivities, as in (2.20). In practice, we can thus,

in an optimizer iteration, for a given ψ, calculate Ĵ(ψ) and ∇Ĵ(ψ) using FSA as outlined in
Algorithm 3.1: First, only the unscaled observables ỹ and their sensitivities dỹ

dψ are computed,
involving a simulation of the model states x. Then, based on ỹ, the conditionally optimal
inner parameters η̂(ψ) are calculated. In the last step, all parts are combined to calculate the
transformed observables and thence the objective function value Ĵ(ψ), as well as its derivative
∇Ĵ(ψ). This is essentially what Loos et al. [2018] did for a specific inner problem and specific
noise models, thus here recovered in a more general context.

Adjoint sensitivity analysis

For large-scale models, the computational cost of FSA is prohibitive, such that ASA would be
preferable for the hierarchical outer problem. A problem however is that the terminal conditions
of the adjoint state (2.21), updated at each measurement time point, depend on the data ȳobs
and the transformed simulated observables y via the objective function values Ji. In turn, y
depends, unlike ỹ, on the inner parameters η, as does Ji directly via noise parameters. Thus,
we cannot first simulate the ODE and then compute optimal inner parameters and assemble the
objective function gradient, as done with FSA.
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Algorithm 3.2 Hierarchical optimization with exactly solved inner problem, using adjoint sen-
sitivity analysis
1. compute ỹ via the state ODE (2.1), given ψ
2. compute η̂(ψ), given ψ, ỹ
3. compute adjoint state p via the adjoint ODE (2.21), given ỹ, η̂(ψ)
4. compute Ĵ(ψ), ∇Ĵ(ψ) via (3.6) and (2.22), given ψ, ỹ, η̂(ψ), p

Yet, the combination of hierarchical optimization with ASA is possible. The core insight is
that, as long as condition (3.4) is fulfilled, i.e. the inner problem solved exactly, can the inner
parameters be treated, once known, as constants in the calculation of ∇Ĵ(ψ) = ∂ψJ(ψ, η̂(ψ))

via Theorem 3.1 as the partial derivative of J with respect to ψ. More concretely, (3.9) does
not involve derivatives with respect to η and thus has virtually the same form as (2.20), with h
replaced by h̃ and θ by ψ. Explicitly, the adjoint state (2.21) here takes the form

ṗ = −∂f
∂x

T

p with terminal condition p(ti+1, ψ) = lim
t↘ti+1

p(t, ψ)− ∂Ji+1

∂ỹ

∂h̃

∂x

on (ti, ti+1], for i = 0, . . . , nt − 1, with p implicitly dependent on η̂(ψ) via Ji+1, such that the
objective gradient can be written as

∇Ĵ(ψ) =

nt∑
i=1

[
∂Ji
∂ψ

+
∂Ji
∂ỹ

∂h̃

∂ψ

]
− pT dx0

dψ

∣∣∣∣
t=t0

−
∫ tnt

t0

pT
∂f

∂ψ
dt .

Thus, we can proceed as outlined in Algorithm 3.2: First, given outer parameters ψ, we simulate
ỹ, however without sensitivities. Having then derived η̂(ψ), we can simulate the adjoint state p
as in (2.21) with h replaced by h̃, and can thereby calculate ∇Ĵ(ψ) using ASA. The procedure
is also visualized in Figure 3.1 for the specific case of an affine observable transformation.

To implement Algorithm 3.2, we can represent η̂(ψ) as fixed inputs, which common ODE simula-
tion and sensitivity calculation tools such as AMICI already support besides parameters, in order
to accommodate for e.g. condition-specific variables defined at run-time. While Algorithm 3.2
solves the forward and adjoint equations exactly once and thus has no computational overhead
over the standard joint approach, a simpler implementation with some computational overhead is
possible by in the third step simply re-simulating the forward equations besides the adjoint ones,
with adjusted inputs η̂. Similarly, in Algorithm 3.1 in the first step only ỹ can be simulated, and
in the third step re-simulated alongside the FSA equations, with η̂(ψ) encoded as fixed inputs,
yielding Ĵ(ψ) and ∇Ĵ(ψ). This gives for both FSA and ASA, at slight computational overhead,
easily implementable algorithms, without the need to manually assemble results, especially the
gradient.

3.2.5 Analytical formulas for optimal scalings, offsets, and normal noise vari-
ances

While we discussed in the previous section the efficient gradient calculation for the outer problem,
in this section we derive an explicit analytical solution to the inner problem in specific situations,
thus yielding a highly efficient solution. We consider the setting of Section 3.2.3 of unknown
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Figure 3.1: Illustration of the hierarchical optimization scheme using adjoint sensitivities. In the outer
loop, ψ is updated by the employed iterative gradient-based optimization method. When a new value of
ψ is proposed, an inner loop is entered, in which unscaled observables ỹ are simulated, and optimal inner
parameters η = (s, b, σ) conditional on ψ computed. Then, the adjoint state p is simulated, and objective
function value Ĵ(ψ) and gradient ∇Ĵ(ψ) are returned. Here, the solution of the inner problem is shown
in detail. The red boxes involve the simulation of ODEs and are thus computationally more expensive.
If the gradient is not required in an optimizer iteration, the adjoint and gradient steps can be omitted.
This figure is adapted from the author’s publication Schmiester et al. [2019].

scaling factors, offsets, and noise parameters for additive normal noise.

As already outlined, often observable and noise parameters will be shared across data points.
Denote index sets Isis , I

b
ib
, Iσiσ , for is = 1, . . . , ns, ib = 1, . . . , nb, iσ = 1, . . . , nσ, for data points

sharing, respectively, scaling factors, offsets, and noise parameters, i.e. e.g. si = sis for all i ∈ Isis .
We will make the following assumptions, necessary for the validity of the here derived analytical
solutions. We assume firstly that {Isis}is = {Ibib}ib , i.e. scaling factors and offsets are shared
across the same data points, and secondly that for every is, there is an iσ with Isis ⊂ I

σ
iσ
, i.e. data

points that share a scaling parameter also share the noise parameter. For a subset on which σ is
externally provided, e.g. calculated from experimental replicates, the second assumption can be
dropped, as can the first assumption when either scalings or offsets do not exist or are externally
provided. From an application point of view, both assumptions constitute usually no restriction,
while there are counter-examples. In particular, scaling factors and offsets are typically shared
among the same data points, as required by the first assumption, while the second assumption
states that noise parameters are assigned on the same level as observable transformations, or
more coarsely.

Scaling factors and offsets

Consider single scaling factor and offset parameters, i.e. objective (3.7) restricted to a subset of
indices I such that si ≡ s, bi ≡ b, and, by the assumptions, σi ≡ σ, or noise parameters are
pre-defined. Bare constraints on the inner parameters, a necessary condition for a local optimum
is ∂s,bJ = 0, giving

0 = ∂sJ = −
∑
i

ȳobs,i − (sỹi + b)

σ2
i

ỹi ⇒ s =

(∑
i

ỹ2
i

σ2
i

)−1(∑
i

(ȳobs,i − b)ỹi
σ2
i

)
(3.10)

and

0 = ∂bJ = −
∑
i

ȳobs,i − (sỹi + b)

σ2
i

⇒ b =

(∑
i

1

σ2
i

)−1(∑
i

ȳobs,i − sỹi
σ2
i

)
. (3.11)
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Note that if noise parameters are estimated, by assumption σi ≡ σ, such that they drop out. If
either scaling or offset is fixed, and in that case not necessarily all to the same value, we are
done. In particular, for b = 0, (3.10) recovers the result by Weber et al. [2011]. If both scaling
factors and offsets are to be optimized, inserting (3.10) into (3.11) gives1−

(∑
i

1

σ2
i

)−1
∑i

ỹi
σ2
i

∑
j
ỹj
σ2
j∑

i
ỹ2i
σ2
i

 b =

(∑
i

1

σ2
i

)−1
∑

i

ȳobs,i

σ2
i

−

∑
i
ȳobs,iỹi
σ2
i

∑
j
ỹj
σ2
j∑

i
ỹ2i
σ2
i

 .

This defines b if the left-hand factor is non-zero. Otherwise, the simulations are not diverse
enough to identify both s and b, in which case we can simply fix b = 0. In either case, s is
consequently determined via (3.10).

Inspection of the second-order derivatives

∂2
sJ =

∑
i

ỹ2
i

σ2
i

≥ 0 and ∂2
bJ =

∑
i

1

σ2
i

> 0

shows by sufficiency that the found points are indeed local minima, global due to convexity of
the inner problems.

Noise parameters

All scaling factors si and offsets bi calculated, similarly consider a single noise parameter, i.e.
objective (3.7) restricted to a subset of indices I such that σi ≡ σ. The necessary condition ∂σ2J

for a local optimum gives

0 = ∂σ2J =
1

2

∑
i

[
1

σ2
−

(ȳobs,i − (siỹi + bi))
2

(σ2)2

]
⇒ σ2 =

(∑
i

1

)−1(∑
i

(ȳobs,i − (siỹi + bi))
2

)
.

(3.12)
Inspection of the second derivative at the optimal point gives

∂2
σ2J =

1

2

∑
i

2(ȳobs,i − (siỹi + bi))
2 − σ2

(σ2)3
=

1

2

∑
i 1

(σ2)2
> 0,

i.e. we have a local minimum. An exception is if the optimal σ2 = 0, i.e. the transformed
simulated and observed data exactly match, which is however unlikely to occur in practice. In
particular, for b = 0 and estimated noise parameters, (3.10) and (3.12) recover a result by Loos
et al. [2018].

As no constraints were imposed on the range of values the scaling factors, offsets, and noise
parameters can take, the inner problem was solved exactly by necessary conditions of a local
minimum, such that the requirements of Section 3.2.4 for efficient gradient calculation using
FSA or ASA apply. Further, the inner problem is uni-modal, such that there is a bijection of
local minima of the joint and the outer hierarchical problem.
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3.2.6 Derivatives for ODE problems with inexactly solved inner problem

So far, we have only considered ODE constrained hierarchical problems such that the inner
problem satisfies condition (3.4), i.e. ∂ηJ(ψ, η̂(ψ)) = 0, in which case (3.8) simplifies to (3.9),
and the derivative calculation approaches using in particular ASA as presented in Section 3.2.4
are applicable, as the inner parameters can be regarded as fixed when calculating the partial
derivative of the outer problem. However, it can occur that (3.4) is not satisfied. In particular,
constraints may be imposed on the range of values the inner parameters η can take, e.g. restric-
tions to numerically feasible values, or to biologically plausible regimes, similar to box constraints
commonly applied to ψ. We refer to ∂ηJ(ψ, η̂(ψ)) 6= 0 for brevity as solving the inner problem
inexactly, while it may obviously still be the exact solution under constraints. It is desirable to
be able to efficiently calculate accurate derivatives for the outer problem in this case too. In
this section, we present approaches of doing so. Note that this is rather a conceptual excursion,
going beyond what is discussed and applied in Schmiester et al. [2019].

The problem in case of an inexactly solved inner problem is that in (3.8), the terms dη̂
dψ , with

η̂(ψ) the solution of the inner problem subject to constraints, also depend on the observable
sensitivities dỹ

dψ , and thus on the state sensitivities. To make the dependence explicit, define

η̂(ψ) = G({ỹk}k=1,...,nt , ψ).

Then,
dη̂

dψ
=
∂G

∂ψ
+

nt∑
k=1

∂G

∂ỹk

(
∂h̃k
∂ψ

+
∂h̃k
∂xk

dxk
dψ

)
,

making the time dependence h̃k = h̃(x(tk, ψ), ψ), xk = x(tk, ψ) explicit, such that e.g. dxk
dψ =

dx(tk,ψ)
dψ denotes the derivative of states evaluated at time tk. Thus, from (3.8),

∇Ĵ(ψ) =

nt∑
i=1

[
∂Ji
∂ψ

+
∂Ji
∂ỹi

∂h̃i
∂ψ

+
∂Ji
∂ỹi

∂h̃i
∂xi

dxi
dψ

+
∂Ji
∂η

∂G

∂ψ
+

nt∑
k=1

∂Ji
∂η

∂G

∂ỹk

(
∂h̃k
∂ψ

+
∂h̃k
∂xk

dxk
dψ

)]
.

(3.13)

If we use FSA, i.e. explicitly simulate dx
dψ , then we can simply calculate (3.13) without further

ado, provided all derivatives involving G are, analytically or numerically, available. However, the
application of ASA is prohibited as additional terms involve dx

dψ , which would thus not drop out.
Namely, terms involving state sensitivities dxi

dψ are, regrouped by time dependence,

nt∑
i=1

[
∂Ji
∂ỹi

+

nt∑
k=1

∂Jk
∂η

∂G

∂ỹi

]
∂h̃i
∂xi

dxi
dψ

.

We see by comparison with the derivation of the adjoint state (2.21) in Section 2.3.2 that we can
define a new backward equation with same law ṗ = −∂f

∂x

T
p but terminal condition

p(ti+1, ψ) = lim
t↘ti+1

p(t, ψ)−

[
∂Ji+1

∂ψ
+

nt∑
k=1

∂Jk
∂η

∂G

∂ỹi+1

]
∂h̃i+1

∂xi+1
,
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Table 3.1: Datasets used for parameter estimation. The number of inner parameters of certain types
is indicated, followed, in parentheses, by the number of parameters that were computed analytically in
the hierarchical setting. The noise parameter for Dataset 1 was set to one if the dataset was considered
individually.

Dataset 1 (CCLE) Dataset 2 (MCLP)
# datapoints 5281 1799
# cell-lines 96 54
# observables 1 48
# scalings 96(96) 0
# offsets 0 102(48)
# noise parameters 1(1) 48(48)

such that the gradient can be written as

∇Ĵ(ψ) =

nt∑
i=1

[
∂Ji
∂ψ

+
∂Ji
∂ỹi

∂h̃i
∂ψ

+
∂Ji
∂η

∂G

∂ψ
+

nt∑
k=1

∂Ji
∂η

∂G

∂ỹk

∂h̃k
∂ψ

]
− pT dx0

dψ

∣∣∣∣
t=t0

−
∫ tnt

t0

pT
∂f

∂ψ
dt .

With this modified adjoint problem, we can thus employ ASA to efficiently calculate the gradient
of the outer problem for large-scale problems also for an inexactly solved inner problem. While
this provides a conceptual solution, it has currently however not been implemented anywhere.

3.2.7 Implementation

Together with Daniel Weindl and Leonard Schmiester, the hierarchical optimization approach
using ASA from Sections 3.2.4 and 3.2.5 was implemented as part of the C++ package parPE
(https://github.com/icb-dcm/parpe), which provides functionality to solve large-scale param-
eter optimization problems on high performance infrastructure using massive parallelization. For
ease of implementation, we re-simulated the forward trajectory during the simulation of the ad-
joint state, as discussed in Section 3.2.4. Further, together with previous implementations by Car-
olin Loos, we also provided implementations of hierarchical optimization using FSA and ASA for
the MatLab toolbox PESTO, and the Python package pyPESTO. A snapshot of all code and data
underlying the study in this chapter is on Zenodo (https://doi.org/10.5281/zenodo.3254429
and https://doi.org/10.5281/zenodo.3254441).

3.3 Application to a large-scale pan-cancer pathway model

We applied the hierarchical optimization approach presented in Section 3.2, with analytically
solved inner problem based on affine observable transformations and normal noise model, to a
large-scale pan-cancer pathway model developed by Fröhlich et al. [2018]. The model comprises
1396 biochemical species, mostly proteins and protein complexes, and 4232 unknown parameters,
and can be individualized to specific cancer cell-lines using genetic profiles and gene expression
data. As the evaluation was performed mainly by Leonard Schmiester and Daniel Weindl, we
here only report main findings, and refer to the publication [Schmiester et al., 2019] for details.

https://github.com/icb-dcm/parpe
https://doi.org/10.5281/zenodo.3254429
https://doi.org/10.5281/zenodo.3254441
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For model individualization and calibration, two datasets were considered (Table 3.1). Dataset
1, the dataset considered in Fröhlich et al. [2018], consists of viability measurements for 96
cancer cell-lines in response to 7 drugs at 8 concentrations, available in the Cancer Cell Line
Encyclopedia (CCLE) [Barretina et al., 2012] as relative measurements. To account for this,
Fröhlich et al. [2018] simulated both condition and control and divided the simulations [Degasperi
et al., 2017]. However, this approach is not applicable when multiple observables need to be
considered, e.g. additional data types incorporated, or more complex normalization applied,
and gives correlated noise models (see the introduction). Therefore, we transformed the model
outputs by cell-line specific scaling factors scell-lineis , giving the observation function

yviabilityi = scell-lineis · ỹviabilityi ,

with i iterating over data points belonging to cell-line is, and ỹviabilityi a weighted sum of
species assumed to determine cell viability. Normal measurement noise with common variance,
ȳviabilityi ∼ N (yviabilityi , σ

2
viability), was assumed.

The viability dataset was complemented by molecular measurements from the MD Anderson Cell
Lines Project (MCLP) [Li et al., 2017], Dataset 2, which contains reverse phase protein array
(phospho-)proteomic measurements for various cancer cell-lines. 32 proteins and 16 phospho-
proteins were identified that were also covered by the model, and in total 54 cell-lines overlapped
with the 95 cell-lines from Dataset 1. In the MCLP database, measurements are normalized
across cell-lines and proteins by subtracting the respective median from the log2-transformed
measured values. To account for this, we included one cell-line specific offset bcell-linejb

, and one
protein-specific offset bproteinib

, giving the observation function

yproteinib ,cell-linejb
= log2(zproteinib ,cell-linejb

) + bcell-linejb
+ bproteinib

,

with zproteinib ,cell-linejb
the simulated absolute protein levels. Normal measurement noise with

protein-specific variance, ȳproteinib ,cell-linejb
∼ N (yproteinib ,cell-linejb

, σ2
proteinib

), was assumed.

The integration of viability and molecular measurements considers information on two levels,
which can improve model reliability, however requires a substantial number of observation and
noise parameters (Table 3.1).

3.3.1 Adjoint sensitivity analysis facilitates gradient calculation on large-
scale problems

To compare FSA and ASA on this large-scale problem, we calculated gradients using both ap-
proaches for a subset of parameters ranging from one to all dynamic parameters. As computation
times for FSA on the full problem were prohibitively large, we used a random subset of simulation
conditions. This showed that the computation time for FSA scaled linearly with the number of
parameters, while it was constant in the number of parameters for ASA, leading to a roughly
2700-fold speed-up when considering all parameters (supplementary information of Schmiester
et al. [2019], Figure S1A). From this and based on the number of gradient evaluations performed
using the adjoint hierarchical approach, we estimated the CPU time for a single local optimization
using the forward hierarchical approach [Loos et al., 2018] to be on the order of 100-1000 years,
roughly three orders of magnitude more than the adjoint hierarchical approach (supplementary
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Figure 3.2: Convergence of standard and hierarchical optimization. Parameter estimation results using
a simulated version of Dataset 1 from Table 3.1 with the Ipopt optimizer. For each setting, 20 multi-
start optimizer runs were performed. A: Pearson correlations of relative training data and corresponding
model simulation after training on relative data, using standard and hierarchical optimization. The
dashed line indicates the correlation for the true parameters used to generate the noise-corrupted training
data. B: Ratio of the average gradient contribution for scaling parameters over dynamic parameters along
optimizer run trajectories, using standard optimization. C: Average gradient for standard and hierarchical
optimization. Only the parameters that were optimized numerically were taken into account. D: Pearson
correlations of absolute data and corresponding model simulation after training on (left and middle)
relative data and (right) absolute data. This figure is taken from the author’s publication Schmiester
et al. [2019].

information of Schmiester et al. [2019], Figure S1B).

3.3.2 Evaluation using simulated data

To analyze the effect of observable parameters on optimizer performance for large-scale problems,
we trained the model on noise-corrupted simulated relative data from Dataset 1, using param-
eters from previous optimization runs. We performed optimization using both the standard
approach, and the adjoint hierarchical approach, with analytical conditionally optimal solutions
for the scaling factors. For the joint and outer problems, we used multi-start local optimization,
with the local gradient-based interior point optimizer Ipopt [Wächter and Biegler, 2006]. Com-
pared to the standard approach, the hierarchical approach achieved substantially better Pearson
correlations between data and optimal simulation, for almost all of 20 local starts, in most cases
close to correlations between data and simulations using the underlying ground-truth parame-
ters, indicating a good quality of fit (Figure 3.2A). Compared to the simulation of the ODE, the
computation time needed to solve the inner problem was roughly five orders of magnitude faster,
and thus negligible.

One reason for this substantial performance improvement may be the dimension reduction of the
outer problem. However, the inner parameters represented only roughly 2% of all parameters.
To assess this, we evaluated the average absolute objective function gradients with respect to
scaling (E[|∇sJ |]) and dynamic (E[|∇ψJ |]) parameters (Figure 3.2B+C). Their ratio revealed
that the joint objective function was in many cases roughly 10 times more sensitive to scaling
parameters than to dynamic ones, throughout the entire optimizer trajectory. Thus, removing
the scaling factors via the hierarchical approach improved the conditioning of the optimization
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Figure 3.3: Computational efficiency of standard and hierarchical optimization for multiple optimiza-
tion algorithms. A: Optimizer trajectories for the four local gradient-based optimizers fmincon, Ipopt,
Ceres and sumsl using standard and hierarchical optimization. Dataset 1 was used. Fmincon runs were
performed on different systems and using a different implementation than the other optimizers, so that
absolute computation times are not comparable. B: Final objective function values obtained after 150
iterations by the different optimizers using standard and hierarchical optimization. C: Speed-up of hierar-
chical compared to standard optimization, defined by the computation time a hierarchical run required to
find the final objective function value of the corresponding standard run, for every local optimization (or
vice versa if standard optimization found a better final value). The dashed red line indicates equal speed
of standard and hierarchical approach. This figure is taken from the author’s publication Schmiester et al.
[2019].

problem, which has an impact on convergence rate [Boyd and Vandenberghe, 2004, Chapter 9.3].

To investigate the information loss from the use of relative data, we further performed optimiza-
tion based on simulated absolute data, using the same underlying ground-truth parameters. For
comparison, we predicted absolute values from the parameters inferred from relative data. The
substantially lower Pearson correlation coefficients far from one indicate that there was indeed
a loss of information due to the normalization process (Figure 3.2D). However, also here the
hierarchical approach outperformed the standard joint approach, indicating that it was able to
extract more information from the data.

3.3.3 All tested optimizers benefit from hierarchical optimization

To provide a thorough comparison of standard and hierarchical optimization, we performed
optimization based on the measured viability data, Dataset 1, using both approaches and four
different gradient-based local optimizers that employ different update schemes, e.g. based on line
searches or trust-region methods. For all four, the hierarchical approach gave consistently better
objective function values after the same computation time, with a generally lower variability
between starts (Figure 3.3A+B). Further, for most starts using the hierarchical approach, we
observed a considerable decrease of objective function value in the first few iterations, compared
to a more gradual decrease for the standard approach. To quantify the computation time benefit,
we determined the computation time required by the hierarchical approach to achieve the final
function value obtained using the standard approach (Figure 3.3C). Except for a single start, the
hierarchical approach was consistently more efficient, with median speed-ups between one and
two orders of magnitude. Given that a single local optimization run in the standard approach
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required up to several thousand hours of computation time, the efficiency improvement achieved
using hierarchical optimization, obtaining better results in tens to hundreds of hours, is crucial.

3.3.4 Hierarchical optimization enables integration of heterogeneous data
sets

As viability measurements (Dataset 1) provide limited information on molecular mechanisms,
we complemented them using (phospho-)protein measurements (Dataset 2). We estimated noise
parameters for both datasets to ensure an unbiased weighting. Further, Dataset 2 introduced
cell-line and protein specific offsets. When using the hierarchical approach on both datasets, we
treated as inner parameters (i) the cell-line specific scaling factors of the viability observables,
(ii) the protein specific offsets of the log-transformed protein observables, and (iii) the noise
parameters of both datasets, resulting in a total of 193 inner parameters. The cell-line specific
offsets were treated as outer parameters, as the analytical solution from Section 3.2.5 requires
nested sets of parameters sharing offsets and noise parameters, and further does not accommodate
the estimation of multiple offsets.

We performed optimization using the standard and hierarchical approach, using Ipopt for the
outer problem. Again, the hierarchical approach yielded substantially better objective function
values and was computationally substantially more efficient (Schmiester et al. [2019], Figure 4A).
While the standard approach yielded values around J ≈ 104, for the hierarchical one the values
can be grouped into two categories. The first group yielded objective function values similar to the
standard approach, while the second group yielded values J < 3×103. The simulations obtained
from the standard approach and the first group were able to fit the viability measurements, but
failed to describe the protein measurements (Schmiester et al. [2019], Figure 4B). In contrast,
the second hierarchical group fitted both viability and protein measurements well. Consequently,
only the hierarchical approach was able to integrate both datasets, finding parameters that
provided an overall better description of the data.

3.4 Discussion

While large-scale mechanistic models have the potential to lead to a more holistic and detailed
understanding of biochemical processes, their parameterization is challenging, requiring efficient,
scalable methods. To calibrate such models, large, heterogeneous datasets are required, which of-
ten provide only relative measurements. In this chapter, we combined the concept of hierarchical
optimization to efficiently handle observable transformations and noise parameters [Loos et al.,
2018, Weber et al., 2011] with adjoint sensitivity analysis to efficiently calculate objective func-
tion gradients [Fröhlich et al., 2017]. Further, we derived analytical formulas for optimal scaling
factors, offsets and noise parameters under the assumption of additive normal noise, extending
the work of Loos et al. [2018] to affine transformations, allowing for a highly efficient solution
of the hierarchical inner problem. In addition, we presented a more generic view on hierarchical
optimization, independent of noise and observation model, generalizing previous considerations,
and permitting the use of forward and adjoint sensitivity analysis also for an inner problem
subjected to constraints.



3.4. DISCUSSION 51

We evaluated the adjoint hierarchical approach on a large-scale pan-cancer pathway model by
Fröhlich et al. [2018], on which adjoint sensitivity analysis enabled inference in the first place.
The comparison of hierarchical to standard optimization revealed substantially improved op-
timizer convergence using the hierarchical approach in all considered scenarios. We obtained
speed-ups of one to two orders of magnitude, irrespective of the used local optimizer. Given that
the overall CPU time is on the order of thousands of hours, this is a substantial improvement.
On synthetic data, for the hierarchical approach correlations of the data with simulations for
inferred parameters were close to correlations with simulations for the underlying ground-truth
parameters. Further, only the hierarchical approach was able to integrate two heterogeneous
datasets of viability and protein measurements, by effectively weighting them appropriately via
conditionally optimal noise levels. The inferred noise parameters provide estimates for the scale
of measurement noise when no or few experimental replicates are available, which is the case in
many large-scale databases (e.g. CCLE and MCLP). While previous studies had already demon-
strated a detrimental impact of observable rescalings for relative data on optimizer convergence
[Degasperi et al., 2017], we identified comparably large gradients with respect to scalings as a pos-
sible explanation, resulting in numerically stiff gradients for the joint problem. Our hierarchical
approach fully circumvents this problem, allowing for the introduction of observable transforma-
tions and noise parameters at virtually no computational overhead, and without increasing the
dimension of the outer optimization problem.

Here, we only considered additive normal measurement noise, which is not applicable to all
problems. One alternative is Laplace noise, the assumption of which as noise model is more
robust in the presence of outliers in the data (Maier et al. [2017], see also Chapter 5 in the
context of approximate Bayesian computation). Restricted to scaling factors, noise parameters,
and forward sensitivity analysis, Laplace noise was considered already in Loos et al. [2018].
Further, in many applications log-transformed observables are considered (Raue et al. [2013b],
see also the supplementary information of Loos et al. [2018]). Deriving analytical solutions
there for an inner problem consisting of affine observable transformations and noise parameters
would allow for highly efficient hierarchical optimization for a greater variety of applications.
Further, already the here considered application problem defined multiple offsets per observable.
Extending the inner problem to all offsets may improve performance of the hierarchical approach
further here.

It may not always be possible or straightforward to derive an analytical solution of the inner prob-
lem. In that case, the inner problem can be solved numerically, which further has the advantage
of a straightforward implementation. As discussed in Section 3.2.1, in that case an investigation
of the inner problem structure, e.g. regarding convexity, is beneficial, to guide e.g. the number of
local starts to perform. In tests, we observed for small-scale models the computation time spent
in the numerical solution of an inner problem to be not unsubstantial, which may however be dif-
ferent for large-scale problems, and more efficient implementations. A systematic benchmark of
such approaches would be required. Moreover, as efficient and scalable numerical ODE solvers as
employed in AMICI are implemented in C++, a re-implementation of the inner problem, solved
both analytically and numerically, in C++, and an integrated formulation avoiding the repeated
simulation of the forward problem as employed for the application example in this chapter, could
improve efficiency further.

When numerical difficulties occur due to extreme inner parameters, or e.g. boundaries on the
range of values they can take, imposing constraints on the inner problem may be required. While
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we have, in Section 3.2.6, given an outlook on how such a problem could be efficiently solved
using both forward and adjoint sensitivity analysis, the implementation of such a routine would
be more intricate. An evaluation of this approach, and a comparison to e.g. just considering the
partial derivatives as in Section 3.2.4, may be of interest.

Recently, optimization using mini-batch stochastic gradient descent, which uses in each gener-
ation only a subset of the full dataset to update the parameters, has been demonstrated to
improve performance for inference on mechanistic ODE models with many experimental condi-
tions [Stapor et al., 2019]. A combination of mini-batch stochastic and hierarchical optimization
would require a more careful batch selection or consideration of conditionally optimal inner pa-
rameters, but could provide further improvements for large datasets.

Similar hierarchical approaches have more recently also been used e.g. for marginalized sampling
(not published yet), and for categorical data via an optimal quantitative surrogate data based
approach [Schmiester et al., 2020, 2021b]. This shows that the general concept thus has promising
further application fields. The possibility of a combination with adjoint sensitivity analysis for
scalable gradient evaluation in those cases however remains to be investigated.

In conclusion, we developed a scalable hierarchical framework to efficiently estimate observable
transformations and noise parameters, and using adjoint sensitivity analysis to efficiently calcu-
late objective function gradients. We expect this approach, as well as the general concept, to
improve inference in many application problems.



Chapter 4

Exact efficient inference in ABC with
noisy measurements

While increasingly popular for likelihood-free inference, the approximation error introduced in ap-
proximate Bayesian computation (ABC) is often not apparent. In this chapter, we demonstrate
exemplarily how ABC yields erroneous parameter estimates when measurement noise present
in the data is neglected, which often happens in practice. Then, we discuss ways of addressing
measurement noise in the analysis. In particular, we present a novel exact, efficient, adaptive,
sequential importance sampling based algorithm, applicable to general model types and noise
models. We demonstrate how, compared to established approaches, we obtain orders of magni-
tude speed-up, thus facilitating exact inference via ABC for a wide range of application problems
for the first time.

This chapter is based on and partly identical to the following publication, in which all methods
were developed and all analyses performed by the thesis author:

• Schälte, Y. and Hasenauer, J. (2020). Efficient exact inference for dynamical systems with
noisy measurements using sequential approximate Bayesian computation. Bioinformatics,
36 (Supplement 1), pp. i551-i559.

4.1 Introduction

Measurement data are usually corrupted by noise due to unavoidable inaccuracies in the mea-
surement process. In likelihood-based inference, it has been widely adopted to include a model
of measurement noise in the likelihood function [Raue et al., 2013b]. Especially for deterministic
process models, this allows to define a non-degenerate likelihood in the first place. In contrast, in
likelihood-free inference, in particular ABC, it is easy to ignore noise altogether, due to the non-
necessity of even formulating a likelihood that relates process states to measured values. Further,
the various inherent approximation levels of ABC often do not allow to pinpoint error sources
from the result (see the discussion in Section 2.4.3). In the past, noise has often been disregarded
in ABC analyses [Eriksson et al., 2019, Imle et al., 2019, Jagiella et al., 2017, Lenive et al., 2016,

53
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Figure 4.1: Illustrative conversion reaction ODE example. (A) The employed data. (B) Acceptance
thresholds over sequential ABC-SMC iterations for 3 estimation methods: Using a non-noisy model and
an L2 or L1 distance in the ABC acceptance step, and using a noisy model (and an L2 distance). The
minimum obtainable values for the respective distances are indicated by dashed lines. (C) Histograms
of the corresponding ABC posterior approximations after the last iterations. The true posteriors are
indicated by dashed, the true parameter values by dotted lines. This figure is taken from the author’s
publication Schälte and Hasenauer [2020].

Toni et al., 2009]. Asymptotic exactness, i.e. recovery of the true posterior distribution, of ABC
is however guaranteed only if the data-generation process is perfectly reproduced. Omitting the
measurement noise can lead to substantially wrong parameter estimates.

The problem is illustrated in Figure 4.1 on an ODE model of a conversion reaction, with one
unknown parameter θ1. Synthetic data ȳobs were generated by adding normal noise to the model
simulation y(θtrue) (Figure 4.1A). Three different ABC-SMC analyses were performed: Using
the noise-free model y together with an L1 (I) or L2 (II) distance, and adding a corresponding
normal random variable to the model output to account for noise (III). Usually, in ABC we would
hope to decrease the acceptance threshold ε asymptotically to 0 for t→∞. For (I) and (II), this
was however not possible (Figure 4.1B): The thresholds converged to different positive values.
This is reflected also in the inferred posterior distributions (Figure 4.1C), where (I) and (II)
converged to different point estimates. The parameters corresponding to these point estimates
are maximum likelihood estimators under the assumption of normal (I) or Laplace (II) noise (see
the supplementary information of Schälte and Hasenauer [2020, Section 1.5] for details), which
is far from the result one would aspire in a Bayesian analysis. In contrast, (III) gives a good
approximation of the true posterior. In the supplementary information of Schälte and Hasenauer
[2020], we illustrate consequences of neglecting measurement noise on further models, including
stochastic ones.

In practice, errors in ABC parameter estimates due to model error and in particular the omission
of measurement noise can be hard to detect, as usually the model is not deterministic, and the
inference computationally so expensive that convergence cannot be reached, such that e.g. in
the above analysis not a point estimate, but a highly concentrated distribution indistinguishable
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from a posterior for highly informative data would be the result, making it important to correctly
account for measurement noise.

In this chapter, we discuss ways of addressing measurement noise: Either the model output
can be randomized, or the ABC acceptance step modified, in accordance with the noise model.
The latter method builds on the insight by Wilkinson [2013] that ABC gives exact inference,
however from the wrong model, namely an additional implicit uniform noise model induced by the
acceptance step. Introduced by Wilkinson [2013] for ABC-Rejection and ABC-MCMC and used
in van der Vaart et al. [2018] in the case of replicate measurements, the approach was extended
by Daly et al. [2017] to ABC-SMC, presenting two algorithms to perform exact inference given
additive normal measurement noise, and relying on certain tuning parameters. Here, we extend
the existing ideas by presenting an exact algorithm based on the ABC-SMC formulation of Toni
et al. [2009], applicable to various model types and noise models. We present robust approaches
to automatically select certain hyperparameters, like initialization and step size selection, and
include ideas from rejection control importance sampling [Liu et al., 1998, Sisson and Fan, 2018]
to increase sampling efficiency. We evaluate and compare the presented methods on various
models including ordinary and stochastic differential equations, discrete Markov jump processes,
and agent-based models, and noise models including normal, Laplace, and Poisson noise.

4.2 Background: Model error in ABC

In this chapter, we employ the notation of general parameter inference problem from Section 2.1,
and of ABC-SMC methods from Section 2.4. In particular, let θ denote parameters, ȳobs the
observed data, d the ABC distance metric, ε the acceptance threshold, and N the number of
samples constituting a population.

In ABC, instead of the full likelihood π(ȳ|θ) (2.4), often the model likelihood π(y|θ) (2.2) is
considered in the formulation of the ABC algorithms in Section 2.4, i.e. the simulation and
acceptance steps from Section 2.4.1 are defined as

2.’ simulate data y ∼ π(y|θ),

3.’ accept (θ, y) if d(y, ȳobs) ≤ ε.

This effectively assumes perfect measurements, which is practically rather uncommon. In the
following, we assume that the observed data ȳobs are noise-corrupted and thus a realization of
a distribution π(ȳ|θ), resulting from the noise-free model likelihood π(y|θ) via a parameterized
noise model π(ȳ|y, θ) (2.3), so that we can write π(ȳ|θ) =

∫
π(ȳ|y, θ)π(y|θ) dy. This is in line with

the notation of Section 2.1. We assume that we can simulate data y ∼ π(y|θ) from the model
likelihood, while evaluation of the model likelihood is not possible. The noise model π(ȳ|y, θ) is
usually simple, e.g. a normal or a Laplace distribution, thus we may assume that we can evaluate
it. More generally, we thus consider an intractable likelihood that we can decompose into a first,
intractable, component, the model likelihood, and a terminal, tractable, component, the noise
model.
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Figure 4.2: The different conceivable ways of accounting for noise in ABC. (A1): Using a uniform kernel
with ε � 0. The posterior is visibly off. (A2): Adding random measurement noise to the model output.
The posterior still has a slightly higher variance. (A3): Modifying the acceptance kernel. The posterior
matches the true distribution accurately. This figure is adapted from the author’s publication Schälte
and Hasenauer [2020].

4.2.1 Approaches to account for noise

ABC inference with the noise-free model π(y|θ) but noise-corrupted data ȳobs implies that infer-
ence for the wrong model is performed. To tackle this discrepancy, there are in principle three
different approaches, visualized in Figure 4.2.

Using an appropriate uniform kernel

The first approach (A1) is to simply use a uniform acceptance kernel based on an appropriately
defined distance metric d, and an acceptance threshold ε chosen comparably large, such that the
resulting acceptance kernel is similar to the underlying noise distribution, e.g. regarding variance
(e.g. in Daly et al. [2017], Toni et al. [2009]). An advantage of this approach is its computational
efficiency, since acceptance is deterministic. Further, it is straightforward to apply, as it only
uses standard methods available in most ABC implementations. However, a major problem is
that this approach effectively assumes a uniform noise distribution (see Theorem 4.1), which is
in practice rarely appropriate. In addition, the exact choice of ε is ambiguous. Here, we only
mention this approach for completeness, and focus on (asymptotically) exact methods.

Randomizing the model output

The second approach (A2) is to account for measurement noise in the forward model, by ex-
plicitly simulating it on top of the model simulation, y → ȳ ∼ π(ȳ|y, θ), and thus using π(ȳ|θ)
as generative model in second step above (e.g. in Toni and Stumpf [2010]). An advantage of
this approach is that its application is again straightforward, only requiring a basic ABC im-
plementation. In addition, if the noise model depends on unknown parameters, these can in
principle be included in the overall parameter vector θ and estimated alongside. Further, this
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approach is in particular applicable to fully black-box models, where noise cannot be separated.
A major problem is however that the randomness in the noise simulation can make the fit to
observed data challenging. Further, the comparison of simulated and observed data still requires
a uniform acceptance kernel with threshold ε > 0. A2 is asymptotically exact for ε → 0 (see
e.g. Theorem 5.1), however in practice a small approximation error remains and can be hard to
quantify.

Modifying the acceptance step

The third approach (A3) simulates noise-free data y ∼ π(y|θ), but modifies the acceptance step:
Based on the insight by Wilkinson [2013] that “ABC gives exact inference, but for the wrong
model”, we modify the acceptance step to

3.” accept (θ, y) with probability π(ȳobs|y,θ)
c .

Here, c ≥ maxy,θ π(ȳobs|y, θ) is a normalization constant such that the quotient is in the interval
[0, 1]. This step can be implemented by sampling u ∼ U [0, 1] and accepting if π(ȳobs|y,θ)

c ≥ u.

The following theorem shows that this indeed gives exact inference from the true posterior:

Theorem 4.1 (Exact noisy ABC). Consider prior π(θ), model likelihood π(y|θ), and noise model
π(ȳ|y, θ), and assume ȳobs ∼ π(ȳ|θ) =

∫
π(ȳ|y, θ)π(y|θ) dy. Then the above ABC algorithm, i.e.

sampling θ ∼ π(θ), simulating y ∼ π(y|θ), and accepting with probability π(ȳobs|y, θ)/c with
c ≥ supθ,y π(ȳobs|y, θ) targets the correct posterior distribution π(θ|ȳobs) ∝ π(ȳobs|θ)π(θ).

Proof. Adapted from Wilkinson [2013]. Denote by A the event that parameter θ is accepted.
Then for arbitrary c > 0 the distribution of accepted parameters is given by

π(θ|A) =
π(A|θ) · π(θ)

π(A)
∝
∫

min

[
π(ȳobs|y, θ)

c
, 1

]
π(y|θ) dy ·π(θ)

by definition of the acceptance criterion.

Moreover, since we assume the data to be generated under ȳobs ∼ π(ȳ|θ), the true posterior
distribution is given by

π(θ|ȳobs) =
π(ȳobs|θ)π(θ)

π(ȳobs)
∝
∫
π(ȳobs|y, θ)π(y|θ) dy ·π(θ).

Thus, if c ≥ supθ,y π(ȳobs|y, θ), we find π(θ|A) = π(ȳobs|θ), i.e. accepted samples constitute a
sample from the true posterior distribution.

This is a reformulation of the main result in Wilkinson [2013], extending it to arbitrary noise
models, and allowing the noise model to be parameter-dependent, which is crucial in practice,
as noise model parameters such as variances are often unknown [Raue et al., 2013b]. Including
these as parameters allows to estimate them alongside the dynamical model parameters. An
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intuitive explanation for why e.g. variance parameters are not estimated arbitrarily large in the
above formulation is that, while allowing to accept simulations that do not tightly match the
observed data, large variances are implicitly punished by a flatter density, leading to smaller
acceptance rates.

It is thus the non-degenerate noise model that allows us to perform likelihood-free inference in an
exact manner (i.e., up to Monte Carlo error), although we still cannot evaluate the full likelihood
in general. Only for deterministic models do we thus evaluate the full likelihood, such that
this approach is equivalent to likelihood-based sampling techniques as described in Section 2.2.3.
Wilkinson [2013] integrated this idea in an ABC-rejection and an ABC-MCMC algorithm, and
Daly et al. [2017] introduced two sequential implementations for Gaussian noise. Building on
both works, we present here a self-tuned sequential, efficient algorithm applicable to a broad
spectrum of noise models.

4.3 Towards an efficient exact sampler

To increase sampling efficiency, we want to integrate the exact sampler A3 in an SMC scheme,
for which we need to replace the gradual decrease of the acceptance threshold ε. Motivated by
MCMC parallel tempering [Earl and Deem, 2005], the basic idea of our approach is to temper
the acceptance kernel to mediate from prior to posterior. In this context, see also the discussion
on variations of likelihood-based SMC samplers in Section 2.2.3. We introduce temperatures
T1 >, . . . , Tnt = 1, and, for a given temperature T = Tt, modify the above third acceptance step
to

3.” accept (θ, y) with probability
(
π(ȳobs|y,θ)

c

)1/T
.

This yields samples from the distribution

πABC,t(θ|ȳobs) ∝
∫
π(ȳobs|y, θ)1/Tπ(y|θ)π(θ) dy, (4.1)

such that Tnt = 1 gives samples from the target posterior distribution. As usual and described
in Section 2.4.4, sequential importance sampling is performed, with a proposal distribution gt(θ)
at generation t, and the accepted particles subsequently weighted by wt(θ) = π(θ)/gt(θ). This
tempering scheme is applicable to any noise model, with the exception of uniform noise, for which
the acceptance step would remain unchanged in t, but this noise model can be effectively dealt
with already by standard ABC.

In the following, we propose approaches to select the normalization constant c, the temperature
schedule, and the initial temperature.

4.3.1 Normalization choice and correction

A problem persistent in the approaches by Wilkinson [2013] and Daly et al. [2017] is the choice
of normalization constant c. If c is too small such that higher values occur during sampling,
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the effective noise distribution sampled from is not π(ȳobs|y, θ), but min
[
π(ȳobs|y,θ)

c , 1
]
, i.e. it is

flattened out to a uniform distribution at values of high probability. In particular as c→ 0, the
effective noise distribution becomes one similar to a uniform distribution of increasing variance.
For a more illustrative discussion of this see Daly et al. [2017].

As discussed in Section 2.4.5 in the context of standard ABC, the rejection step could be replaced
by non-normalized importance weights π(ȳobs|y, θ)w(θ), not requiring a choice of c altogether,
which would however result in highly variable weights and consequently a low ESS (2.16), thus
we want to employ a rejection mechanism here.

A trivial choice for c is the highest mode of the noise distribution, which is for common noise
models assumed at y = ȳobs. In practice, it is however often unlikely or impossible for the noise-
free model to exactly replicate the noise-corrupted measured data, such that unnecessarily low
acceptance rates are the consequence. Of interest is thus the point

c̄ = max
y,θ realizable

π(ȳobs|y, θ) (4.2)

that is realizable under the model. For deterministic models, this point is the maximum likelihood
value and can be computed e.g. by optimization. For stochastic models it is generally unknown.
Due to the problem of finding good values for c, Daly et al. [2017] disregard the ABC-SMC
sampler based on Toni and Stumpf [2010] that we also employ here, in favor of a sampler based
on Del Moral et al. [2012], although the former had shown superior accuracy. We can however
solve the problems of too low acceptance rates or alternatively the decapitation of the noise model
by correcting for the discrepancy in acceptance distribution. Based on ideas from rejection control
importance sampling (RCIS, Sisson et al. [2018, Chapter 4]), given a proposal distribution g(θ),
a temperature T ≥ 1, and any c > 0, we reformulate the above third acceptance step as

3.” accept with probability min

[(
π(D|y,θ)

c

)1/T
, 1

]
,

and modify the importance weights to

w(θ, y) =
π(ȳobs|y, θ)1/T

min

[(
π(ȳobs|y,θ)

c

)1/T
, 1

] · π(θ)

g(θ)
, (4.3)

and formulate the following

Theorem 4.2 (Importance-weighted acceptance). With the notation of Theorem 4.1, consider
a proposal distribution g(θ) � π(θ), a temperature T ≥ 1, and let c > 0 arbitrary. For
an ABC algorithm that samples θ ∼ g(θ), simulates y ∼ π(y|θ), and accepts with probability
min

[
(π(ȳobs|y, θ)/c)1/T , 1

]
, the weighted samples (θ, y, w(θ, y)), with non-normalized weights w

as in (4.3), target the distribution (4.1).

In particular, for T = 1, we thus sample from the target posterior distribution.

Proof. As in Section 2.4.5, we can interpret the above ABC routine as generating tuples (θ, y)

in joint space over parameters and, here, noise-free data. Similar to the proof of Theorem 4.1,
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with acceptance event A, the distribution of accepted particles is

π(θ, y|A) ∝ min

[(
π(ȳobs|y, θ)

c

)1/T

, 1

]
π(y|θ)g(θ),

while the joint target distribution is

πABC(θ, y|ȳobs) ∝ π(ȳobs|y, θ)1/Tπ(y|θ)π(θ).

Thus, we need to, by Proposition 2.3, apply exactly the importance weights (4.3), where π(y|θ)
cancels out as usual. Samples for θ alone are obtained by marginalization.

This means that we can, for arbitrary c, correct for accepting from the decapitated noise dis-
tribution by modifying the acceptance weights accordingly. While a smaller c leads to higher
acceptance rates, it also leads to an increase in the Monte Carlo error by weight degeneration
and consequently a low ESS, therefore it must be chosen carefully. In a sequential approach, we
can iteratively update c by taking into account previously observed values, while the samples
gradually uncover higher-density regions. In this chapter, we set it by default to the maximum
of the values found in previous generations. When acceptance rates are too low, we set it to
η−T c, where c is the maximum found value, and η ≥ 1 increases acceptance rates by roughly
up to that factor. Other schemes, e.g. based on quantiles of observed values, are possible, and
would require further studies. Before the first generation, we draw a calibration sample from the
prior to select the initial normalization.

4.3.2 Temperature update schemes

In order to increase robustness and automation, it remains to select the temperature sequence
T1 > . . . > Tnt appropriately, balancing information gain per generation, and acceptance rate. In
general, the overall required number of simulations depends on both the number of intermediate
populations, and the difficulty of jumping between subsequent distributions. In the following,
we propose two schemes.

Acceptance rate scheme

The idea underlying this scheme is to match a specified target acceptance rate, i.e. to choose
Tt = T such that the expected acceptance rate

γ =

∫ (∫
min

[(
π(ȳobs|y, θ)

ct

)1/T

, 1

]
π(y|θ) dy

)
gt(θ) dθ

matches a specified target rate γtarget, where ct is the previously specified normalization constant
for generation t. As we have no samples from gt(θ) prior to generation t, we employ an importance
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sampling estimate based on the previous proposal distribution gt−1 as

γ =

∫
ut(θ)

(∫
min

[(
π(ȳobs|y, θ)

ct

)1/T

, 1

]
π(y|θ) dy

)
gt−1(θ) dθ

≈ 1

Mt−1

Mt−1∑
i=1

ut(θ
t−1
i ) min

[(
π(ȳobs|yt−1

i , θt−1
i )

ct

)1/T

, 1

]
, (4.4)

with Radon-Nikodym derivatives ut(θ) = gt(θ)/gt−1(θ). Here, in the second line we approximate
the outer integral via a Monte Carlo sample, using all Mt−1 ≥ N particles {(θt−1

i , yt−1
i )}i≤Mt−1

sampled in generation t−1, including rejected ones in order to be representative of the sampling
process and avoid a bias to accepted particles. The inner integral is approximated by the corre-
sponding single value. The Radon-Nikodym derivatives can be omitted if subsequent proposal
distributions are sufficiently close. In practice, it may for computational efficiency further suffice
to restrict to a random subset of all generated particles.

Matching γ ≈ γtarget is a one-dimensional bounded optimization problem that can be efficiently
solved. We employed a bisectional search on the logarithm of the inverse temperature. Compared
to the overall run time of ABC analyses, we found this optimization to be temporally negligible.
Although this scheme only provides a rough estimate of the expected acceptance rate, it proved
sufficient for our purpose.

Assuming for t → ∞ convergence ct → c∞ and gt → g∞ similar in shape to the true posterior
distribution, a temperature T proposed via the above acceptance rate scheme with fixed γ will
converge to a value T∞ > 1 in general. Therefore, the above scheme needs to be backed up
by an additional scheme, e.g. the following one, that ensures T → 1, at the cost of then lower
acceptance rates.

Exponential decay scheme

In standard likelihood-based parallel tempering MCMC, empirically a geometric progression,
i.e. a scheme with constant ratios between adjacent temperatures, has shown to yield similar
probabilities for swaps [Predescu et al., 2004, Sugita et al., 2000]. Since a similar approach was
recently successfully applied in an ABC-SMC setting for normal noise [Daly et al., 2017], we
used a geometric progression here as well, by specifying a ratio α ∈ (0, 1) such that Tt = αTt−1.

The temperature actually used in generation t was then set to the minimum of the temperatures
proposed by the acceptance rate scheme, which ensures that the new criterion is sufficiently
different, and the exponential decay scheme, which ensures an eventual decrease to T = 1.

Initial temperature

The initial temperature T1 should be low enough to avoid simply sampling from the prior without
gaining information, but high enough for reasonable acceptance rates. It is a crucial tuning
parameter, which e.g. in Daly et al. [2017] was simply set to a constant value. Here, we propose
to employ the above acceptance rate scheme with g0(θ) = g1(θ) = π(θ), using a calibration sample
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{(θ0
i , y

0
i )}i≤N from the prior, the same also used to define the initial normalization constant c.

We denote by ASSA in the following the here proposed exact ABC-SMC algorithm with an
adaptive sequential stochastic acceptor, i.e. with normalization constant c sequentially updated
with weight correction as described in Section 4.3.1, and temperature T selected as the minimum
of the two schemes described in Section 4.3.2, with target acceptance rate γtarget = 0.3 and decay
factor α = 0.5.

4.3.3 Implementation

We implemented all methods presented in this chapter in pyABC. We put emphasis on a modu-
lar and easy-to-use, well-documented implementation. To ensure numerical stability, operations
such as density calculation and optimization of T were performed in log-space. The code underly-
ing the study in this chapter can be found on GitHub (https://github.com/yannikschaelte/
Study-ABC-Noise), a snapshot of code and data is on Zenodo (https://doi.org/10.5281/
zenodo.3631120). For details on the hardware used for the study, see the supplementary infor-
mation of Schälte and Hasenauer [2020], Section 5.

As proposal distribution, we used a multivariate normal kernel with adaptive covariance matrix
based on the previous generation’s weighted accepted parameters, with bandwidth according to
Silverman’s rule of thumb, and used the median of the previous generation’s accepted distances as
the new acceptance threshold ε when using a uniform acceptance kernel [Klinger and Hasenauer,
2017]. Unless mentioned otherwise, we used a population size of N = 1000. In general, the
sufficiency of a population size can be checked by comparing results for different population sizes.
While this was for computational reasons not explicitly done here, preliminary tests and previous
studies for the considered problems suggest that the here used population sizes were sufficient
(see e.g. Jagiella et al. [2017]).

4.4 Application to test problems

To verify the exactness of ASSA, and to study its performance and compare it to alternative
approaches, we considered six test problems covering various process model types, including
ordinary differential equations (ODE), stochastic differential equations (SDE), Markov jump
processes (MJP), and agent-based models (ABM), as well as various noise model types, including
normal, Laplace, and Poisson noise. The core model features are described in Table 4.1.

4.4.1 Test problems

Models M1 and M2 are ODE models of a conversion reaction A
θ1


θ2
B, a common component in

biochemical reaction networks, the analytical solution to which is given by(
A

B

)
(t, θ) =

1

θ1 + θ2

[(
θ2 θ2

θ1 θ1

)
−
(
−θ1 θ2

θ1 −θ2

)
exp(−(θ1 + θ2)t)

](
A0

B0

)
.

https://github.com/yannikschaelte/Study-ABC-Noise
https://github.com/yannikschaelte/Study-ABC-Noise
https://doi.org/10.5281/zenodo.3631120
https://doi.org/10.5281/zenodo.3631120
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Table 4.1: Properties of test models used in Chapter 4: Identifier, description, process model type, noise
model type, number of parameters nθ and data ny.

Id Description Type Noise nθ ny
M1 Conversion reaction ODE Normal 2 10
M2 Conversion reaction ODE Laplace 2 10
M3 Hodgkin-Huxley neurons SDE Normal 2 100
M4 Gene expression MJP Poisson 2 10
M5 STAT5 dimerization ODE Normal 11 48
M6 Tumor spheroid growth ABM Normal 7 30

We assumed known initial conditions (A0, B0) = (1, 0) and only species A to be measured. Both
reaction rate constants were estimated, with ground truth values (θ1, θ2) = (0.06, 0.08). Unless
mentioned otherwise, we assumed ny = 10 equidistant measurements in the interval [0, 30]. In
M1, the measured data were assumed to be corrupted by independent additive normal noise
(2.7) with standard deviation σ = 0.02. While this is a commonly used noise assumption, for
outlier-corrupted data a Laplace distribution has shown preferable [Maier et al., 2017]. Thus, in
M2, we instead assumed independent additive Laplace noise (2.8) with scale parameter σ = 0.02.
We assumed uniform priors on [0, 0.4] for both parameters.

Model M3 is an SDE model of intrinsic ion channel noise in Hodgkin-Huxley neurons, based on
Goldwyn et al. [2011]. We used a Fortran 95 implementation made available on ModelDB (https:
//senselab.med.yale.edu/ModelDB). We assumed only the fraction of open K channels to be
measured at ny = 100 equidistant time steps over a time frame covering roughly 9 oscillations, and
employed an independent additive normal noise model with σ = 0.05 accounting for inaccuracies
in the measurement process. We estimated two parameters dc and membrane_dim, describing
the input current, and the square root of the membrane area. We assumed uniform priors dc ∈
[2, 30] and membrane_dim ∈ [1, 12], with ground truth values (dc,membrane_dim) = (20, 10).

Model M4 describes mRNA synthesis and decay, ∅ p1→ mRNA
p2→ ∅. To capture the intrinsic

stochasticity of this process at low copy numbers, we used an MJP model based on the chemical
master equation (CME), with simulations via Gillespie’s direct algorithm [Gillespie, 1977], using
an own implementation. We assumed mRNA counts to be measured at ny = 10 equidistant time
points over the interval [0, 90]. We employed a Poisson noise model, which is frequently used for
regression of count data [Coxe et al., 2009]. We estimated both transcription rate constant p1

and decay rate constant p2, assuming uniform priors p1 ∈ [0, 30], p2 ∈ [0, 0.2], with ground truth
values (p1, p2) = (10, 0.1).

Model M5 is an ODE model developed by [Boehm et al., 2014] describing the homo- and het-
erodimerization of the transcription factors STAT5A and STAT5B, for which three types of
data with 16 measurements each are available. In the original publication, independent addi-
tive normal measurement noise was assumed, which we also did here, and optimal parameter
point estimates were obtained via optimization. We estimated 11 log-scaled model parameters,
including three standard deviations of the noise model, one for each data type.

Model M6 is a multi-scale ABM describing the growth of a tumor spheroid, projected onto a
two-dimensional plane, as described in Jagiella et al. [2017]. We used an implementation in C++
(https://github.com/icb-dcm/tumor2d). Single cells were modeled as stochastically interact-
ing agents, coupled to the dynamics of extracellular substances modeled via partial differential

https://senselab.med.yale.edu/ModelDB
https://senselab.med.yale.edu/ModelDB
https://github.com/icb-dcm/tumor2d
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Figure 4.3: Selection of data sets employed for inference on models M1-6. For all but M5, ground truth
simulations and noisy data created by adding noise to the simulations are shown. As for model M5
no ground truth exists, only the experimentally observed values of the three data types are shown and
connected by lines. This figure is taken from the supplementary information of the author’s publication
Schälte and Hasenauer [2020].

equations (PDE). The model describes three observables: The spheroid radius over time, and the
extra-cellular matrix (ECM) density and the fraction of proliferating cells, at different distances
from the rim, observed at a single time point. For the three data types, we assumed independent
additive normal noise of different variances. The model has seven unknown parameters, which
were estimated on log-scale, with uniform priors. Similar ABMs describing biological processes
such as pathogen spread or tissue growth have recently been frequently analyzed using ABC
methods (e.g. Durso-Cain et al. [2021], Imle et al. [2019]).

For models M1-4 and M6, we created artificial data by simulating the noise-free model under
the ground truth parameters, and adding noise to the simulations according to the respective
noise distributions. Model M5 is based on real data without known ground truth but reported
literature values. Further details on the models can be found in the supplementary information
of Schälte and Hasenauer [2020], exemplary simulated data are shown in Figure 4.3.
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Figure 4.4: Evaluation of the properties of the components of the proposed sampling scheme. (A) Kernel
density estimates (KDE) of four posterior estimates generated for model M1 with one unknown parameter
and 10 data points, with different normalization constants c, only once correcting for the acceptance bias
by re-weighting. (B) Normalization constant c over the iterations for inference for model M1 with 100
data points. (C) Acceptance rate in sampling runs for models M1, M3 and M4 for population sizes
N = 100 and N = 1000, over six generations, using only the acceptance rate criterion was used for
temperature scheduling. Note that the population index t is offset by 1 in (B) and (C), starting with 0
instead of 1. (D) Total number of simulations in runs for model M1 for different initial temperatures T1.
The temperature updates were performed using only the exponential decay scheme. The colors indicate
individual iterations, starting at the bottom with the simulations spent in the calibration iteration, and
then from t = 1 upwards. (E,F) KDE of simulations obtained for model M1 with one unknown dynamic
parameter, and also estimating the normal noise variance. (E) Comparison of a run using the stochastic
acceptor, and a run using a noisy model output. (F) Posterior estimates over the sequential iterations
using the stochastic acceptor. This figure is taken from the author’s publication Schälte and Hasenauer
[2020].

4.4.2 Re-weighting reliably corrects for normalization bias

To verify that the RCIS re-weighting derived in Section 4.3.1 allows for exact Monte Carlo
inference regardless of the normalization constant c, we compared, on model M1 with a single
estimated parameter, the posterior approximations obtained for different fixed values of c to the
true posterior (Figure 4.4A). The theoretical maximum value of the likelihood of the measured
data ȳobs being c̄ = maxθ π(ȳobs|y(θ), θ) ≈ 25.5, as obtained via multi-start local optimization, we
considered values c ∈ {20, 23, 25}. As already pointed out by Daly et al. [2017], employing such
a too low normalization without weight correction resulted in a flattening out of the posterior
distribution at high-density values. The difference to the true posterior became smaller for larger
c. However, if we corrected for the bias induced by the too low normalization by re-weighting
as in Theorem 4.2, we obtained, even for the lowest c = 20, a posterior that matched the true
distribution well.

When using the proposed strategy of automatically updating c after each generation to the
hitherto highest observed value, we observed for all test models that the value of c converged
over time, larger jumps occurring solely in the first few generations. Exemplarily, for model M1
with 2 parameters and 100 data points, c converged to the known theoretical minimum upper
bound c̄ (4.2) (Figure 4.4B).
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4.4.3 Acceptance rate prediction is sufficiently reliable

To analyse the performance of the acceptance rate prediction introduced in Section 4.3.2 as
a means to choose adequate temperature steps T , we ran six generations for models M1-3,
for population sizes N = 100 and N = 1000, with a target acceptance rate of γtarget = 0.3

(Figure 4.4C). Already for t = 1, the fit was decent with values fluctuating around the target value,
thus permitting to find appropriate initial temperatures. As expected, for a higher population
size, the fluctuations decreased. Overall, approximation (4.4) appears to predict acceptance rates
sufficiently well for the purpose of temperature selection.

To demonstrate the importance of a proper selection of the initial temperature, we fixed it
for model M1 to three different values, T1 = 1e1, T1 = 1e4, and T1 ≈ 272, the latter being
the temperature proposed by the acceptance rate scheme. For the following generations we
here employed only the exponential decay scheme (Figure 4.4C). Too low an initial tempera-
ture resulted in many simulations being necessary in the initial generation to bridge from π(θ)

to
∫
π(ȳobs|y, θ)1/T1π(y|θ) dy ·π(θ), sometimes even more than for the entire analysis using the

automatic acceptance rate criterion based initial temperature. Conversely, too high an initial
temperature yielded little information gain and thus a waste of computation time in the first few
generations.

In most cases, the temperature proposed via the acceptance rate scheme for a fixed γtarget did
not converge to T = 1, at which we have exact inference, which was to be expected, as explained
in Section 4.3.2, and necessitated the presence of a secondary scheme to ensure T → 1, e.g.
the exponential decay scheme thus used subsequently. We observed that the acceptance rate
criterion reliably proposed good initial temperatures, and allowed for considerable temperature
jumps of up to orders of magnitude in the first few generations, which accelerated convergence
substantially, while in later generations the exponential decay scheme took over, with decreasing
acceptance rates.

4.4.4 Noise parameters can be estimated

In Theorem 4.1, we allowed the noise model π(ȳ|y, θ) to be parameter-dependent. To verify
this, we considered model M1, estimating the standard deviation σ of the additive normal noise
model alongside rate constant θ1 (Figure 4.4E). The posterior distributions for both parameters
obtained via ASSA indeed match the ground truth well. Conceptually, also employing approach
A2, i.e. explicitly simulating the noise as part of the model, and using a standard distance and
letting ε→ 0, should allow to estimate noise parameters in the approximate limit. Remarkably
however, even for this simple model and after 6e6 simulations, compared to 1e5 for ASSA, the
quality of the estimated posterior distribution for σ was considerably worse, while θ1 was well
estimated. This confirms Theorem 4.1 and demonstrates that inference of noise parameters is
practically possible.

Exemplarily considering the same model, the gradual sequential improvement of the posterior
approximation obtained via ASSA over the generations (Figure 4.4F) indicates that the com-
bined temperature update scheme suggests steps with an appropriate, even information gain per
generation.
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A

Figure 4.5: Method comparison for models M1-4. (A) Posterior marginals obtained using the five different
samplers. For runs that had to be stopped due to an acceptance rate below 1e-3, the last finished
population is shown. True parameters are indicated by dotted lines. The colored check marks indicate
the methods reaching T = 1, or for the noisy model an adequate approximation, by visual inspection. (B)
Total number of simulations over all iterations. For samplers that had to be stopped early, in addition to
the number of samples until stopping, estimates for an analysis that would reach T = 1 are shown hatched,
based on the approximation given in the text. (C) Effective sample sizes for the final posterior estimate
obtained by each algorithm in its last iteration. This figure is taken from the author’s publication Schälte
and Hasenauer [2020].

4.4.5 Applicable to various process and noise model types

To evaluate the performance of the proposed method ASSA on different types of process models
π(y|θ) and noise models π(ȳ|y, θ), we compared it to alternative approaches on models M1-4.
Firstly, we employed ASSA with normalization constant not dynamically adapted but set to
c = ĉ := maxy,θ π(ȳobs|y, θ), over the full data space, ignoring whether the model is able to
simulate such values, as was done by Wilkinson [2013]. For all here considered noise models,
this corresponds to y = ȳobs (see the supplementary information of Schälte and Hasenauer [2020,
Section 4]). Secondly, we employed ASSA with only one iteration, nt = 1, giving exact ABC-
Rejection. Thirdly, we considered ASSA with both c = ĉ and nt = 1. As last alternative, we
considered the noisy model approach A2 in a sequential form, using an L2 distance. Runs were
stopped when exact inference with T = 1 was reached, which was always the case for ASSA, or
the acceptance rate fell below 10−3.
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For the deterministic models M1 and M2, we could confirm that the distributions inferred by
ASSA closely matched the true posteriors. While such an analysis is not that easily possible for
the stochastic models M3 and M4, the posterior approximations obtained using ASSA for all
four models are centered around the true parameters to a degree that seems reasonable given
model and data (Figure 4.5A). When other samplers of type A3 reached T = 1, the posterior
approximations were similar in shape. The posterior approximations obtained by the noisy model
approach A2 had for three models a larger variance than those obtained by ASSA, indicating
that this approach is less efficient.

4.4.6 Orders of magnitude speed-up over established methods

In parameter inference, especially for dynamical models considered in systems biology and in
ABC, model simulations are typically the time-critical part (see e.g. Jagiella et al. [2017]). Thus,
here we considered the required total number of model simulations as a measure of efficiency
(Figure 4.5B). For all models, ASSA required the least simulations. For model M4, the advantage
over the other methods was the smallest with a factor of 2, which may be explained by high
stochasticity of the process model itself, not unlikely to replicate the noisy data. The other
models have a higher signal-to-noise ratio, such that model simulations close to the noisy data
were less likely. For models M2 and M3, ASSA with c = ĉ, and the version with nt = 1, did
not even reach T = 1 under the permitted computational budget, resulting in a higher posterior
variance due to an overestimation of the noise variance, or no results being obtained at all for
nt = 1 (see Figure 4.5A).

For our analysis, we provided all methods with a computational budget that was by far sufficient
for ASSA. Yet, for some runs with c = ĉ, this budget was still insufficient. To compare the
expected computational budget required for exact sampling, we made use of the roughly inverse
proportional dependence of the acceptance rate on the normalization factor c (4.4). With s the
number of simulations required by ASSA in the last iteration, we get the estimate ŝ = ĉ

cs for
the required number of simulations for samplers using c = ĉ in the last iteration. The estimates
indicate that the sequential samplers with c = ĉ would, respectively on model M2 and M3,
require at least 4 and 20 orders of magnitude more simulations than those with self-tuned c

(Figure 4.5B). Even with massive parallelization, exact inference with T = 1 would thus not be
possible without the proposed self-tuned scheme for c.

On all models M1-4, ASSA required, respectively, about 22, 11, 6, and 2 times less simulations
than with nt = 1, indicating that the ABC-SMC scheme is superior to ABC-Rejection, as the
temperature selection scheme allows to efficiently bridge from prior to posterior.

To assess the influence of the number of data points, we considered models M1-3 with between
10 and 1000 data points. The value of ĉ grew exponentially with the number of data points,
while this was not the case for the highest c possible under the model, c̄ (4.2), the limiting value
for ASSA. Indeed, we found for models M1-3 that for ASSA the number of required simulations
increased only moderately. The ratio ĉ/c with c the value used by ASSA in the last iteration
increased e.g. for model M1 from about 10 for 10 data points to more than 1e200 for 1000 data
points. This indicates that ASSA scales well with the number of data points, while approaches
with too large normalization c quickly become computationally infeasible. See the supplementary
information of Schälte and Hasenauer [2020], Section 8, for further details.
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Figure 4.6: Posterior marginals for model M5, using ASSA and the noisy model sampler. The literature
MAP values are indicated by dotted lines. The noise parameters have prefix “sd_”. This figure is taken
from the author’s publication Schälte and Hasenauer [2020].

While the number of required model simulations provides information about efficiency, it does
not account for stability of the results obtained via the different methods. This we assessed here
via the effective sample size (ESS) (2.16). As we inflate the weights by (4.3) if the criterion
exceeds 1, it is to be expected that ASSA has a lower ESS than the alternative stochastic
acceptors, which was indeed the case on the test models (Figure 4.5C). However, for all models
the ESS was still reasonably high, indicating that the populations were not degenerated, and
that ASSA is substantially more efficient than other approaches in terms of the ratio of ESS
and required number of samples. E.g. on model M3 an increase of the population size by 25%

may be expected to yield an ESS of more than 1000 for ASSA. Compared to the orders of
magnitude differences between sample numbers, this renders ASSA highly efficient (see also the
supplementary information of Schälte and Hasenauer [2020], Figure S13).

4.4.7 Scales to challenging application problems

To assess the performance of the proposed approach on more realistic application examples, we
considered models M5 and M6. Here, since the acceptance rates when updating the normalization
constant c always to the highest so far observed value were too low, we multiplied c by a factor η
of, respectively, 20 and 10, once the acceptance rate fell below 0.1, increasing acceptance rates at
the cost of higher weight variability, as introduced in Section 4.3.1. As the other exact approaches
would have no chance of success here due to too high sample numbers, as already seen on M1-4,
here we only compared ASSA and a sequential version of the noisy model approach A2.

For model M5, we used a population size of N = 1e4 to guarantee stability of the results. The
posterior marginals (Figure 4.6) indicate that seven parameters can be accurately estimated, two
parameters can be constrained, and two parameters are non-identifiable. The posterior distri-
butions recovered the reported literature values [Boehm et al., 2014], which had been obtained
by optimization, and the parameter samples provide an accurate description of the experimental
data (supplementary information of Schälte and Hasenauer [2020], Figure S14). Importantly,
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Figure 4.7: Posterior marginals for model M6, using ASSA and the noisy model sampler. Ground truth
parameter values are indicated by dotted lines. This figure is taken from the supplementary information
of the author’s publication Schälte and Hasenauer [2020].

in addition to kinetic parameters, ASSA was capable of identifying the standard deviations of
the normal noise models on all three parameters with narrow confidence intervals. In contrast,
the application of the noisy model approach A2 was in particular unable to estimate two out of
three noise parameters at all. The ESS for the stochastic acceptor was 1011, using in total 8e6
simulations, for the noisy model only 83, using in total 12e6 simulations.

For model M6, we used a population size of only N = 5e2 due to the high simulation time of
the model. Again, the comparison of the posterior marginals with the noisy model approach
A2, which was given a similar computational budget as required by ASSA, revealed that ASSA
extracted overall more information (Figure 4.7) expressed by narrower confidence intervals. The
parameter samples described the data accurately under the assumed noise model (supplementary
information of Schälte and Hasenauer [2020], Figure 16). Given the data, the parameters related
to initial conditions cannot be inferred well, but for the others the reference values are accurately
matched. The numbers of simulations were, respectively for ASSA and the noisy model approach
A2, 4.0e5 and 3.2e5, with an ESS of 222 and 153.

4.5 Discussion

While it allows to perform parameter inference on a wide range of models, we saw in this chap-
ter that ABC can easily give erroneous and misleading parameter estimates when measurement
noise is not properly accounted for. We discussed ways of dealing with noise in ABC and in
particular presented a novel adaptive, sequential importance sampling based algorithm (ASSA),
broadly applicable to various process models and noise models. On several test problems, we
demonstrated that the proposed algorithm is accurate and up to orders of magnitude more ef-
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ficient than existing approaches. We achieved this efficiency gain by firstly learning a required
normalization constant in a self-tuned manner, correcting for potential acceptance bias by im-
portance re-weighting. Secondly, we devised an adaptive tempering scheme to transition from
prior to posterior with sensible information gains per generation, in particular permitting by
acceptance rate prediction to find good initial temperatures, usually a critical tuning parameter.
Consequently, we were able to perform exact likelihood-free inference on models on which this
was hitherto not feasible.

Our approach adapts to the problem structure by learning appropriate values for critical tuning
parameters on the fly, making it both stable and applicable to diverse problems, and avoiding
manual tuning, which could otherwise be time-intensive. This is a key difference to related ap-
proaches, in which parameters were manually adjusted to the individual problems. Furthermore,
our approach permits estimating noise parameters such as variances, which are in practice often
unknown, facilitating integrated analysis workflows [Hross et al., 2018].

As ABC has in the past been frequently applied without a proper noise formulation, the question
may be raised whether this may have lead to erroneous parameter estimates, in particular con-
cerning uncertainties. Unfortunately, this is difficult to answer. However, as we have here been
able to apply exact likelihood-free inference even to computationally demanding complex infer-
ence problems, we expect our algorithm to be broadly applicable, thus improving the reliability
of parameter estimates for a broad spectrum of applications.

Still, the presented method could be improved in various regards. One hyperparameter that to
some degree required manual selection on more complex application problems was the multiplica-
tive factor η to the normalization constant c, which induces a trade-off between acceptance rate
and weight heterogeneity and thus between rejection and importance sampling. It could poten-
tially be automatically subjected to limits on acceptance rates or based on quantiles of observed
values. For models with estimated small noise terms and high-dimensional data, acceptance
rates of the presented approach can conceptually become prohibitively low, necessitating further
robust concepts. Another possible path of future research concerns the tempering steps. The
overall required number of simulations depends both on the number of intermediate populations,
and the number of samples required in each. The exponential decay scheme used here was rather
loosely motivated by analogies to MCMC parallel tempering, and could be improved, similar
to dynamically adjusted temperature steps in likelihood-based MCMC [Predescu et al., 2004,
Vousden et al., 2016], or likelihood-based SMC concepts [Del Moral et al., 2006, Gelman and
Meng, 1998]. Further, for likelihood-based SMC, there exist approaches that try to keep the ef-
fective sample size constant [Latz et al., 2018]. Investigating similar concepts in a likelihood-free
context could be of interest. Another interesting use of tempering is for thermodynamic integra-
tion, allowing to compute Bayes factors. The presented sequential method could potentially be
extended to allow to perform model selection, as an alternative to e.g. Toni and Stumpf [2010].

In conclusion, we demonstrated the importance and the benefits of using proper noise models in
ABC. The proposed algorithm enables exact inference on a broad range of problems for the first
time. Having further provided an implementation in pyABC facilitating massive parallelization,
we expect this approach to be useful in many applications.
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Chapter 5

Robust adaptive distances in ABC

Complications for inference in general, and approximate Bayesian computation (ABC) in par-
ticular, can arise from the presence of outliers in the data. In this chapter, we demonstrate
how established ABC distance metrics are highly sensitive to outliers, resulting in erroneous
or highly uncertain parameter estimates. Then, we present a self-tuned outlier-robust distance
metric, based on a popular adaptive distance weighting concept enabling efficient inference for
data varying on different scales, complemented by a simulation-based online outlier-detection
and down-weighting scheme. We evaluate and compare the presented methods on various test
models covering different model types, problem features, and outlier scenarios. Our evaluation
demonstrates substantial improvements on outlier-corrupted data, while giving at least compa-
rable performance on outlier-free data. Note that while some problems related to outliers could
be solved by robust noise models via an exact approach as in the previous chapter (discussed
below), in this chapter, we employ a black-box model perspective on ABC, as is commonly done
in most research, not permitting such a model decomposition.

This chapter is based on and partly identical to the following publication, in which all methods
were developed and all analyses performed by the thesis author:

• Schälte, Y., Alamoudi, E. and Hasenauer, J. (2021). Robust adaptive distance functions
for approximate Bayesian inference on outlier-corrupted data. bioRxiv.

5.1 Introduction

In ABC, simulated data are evaluated based on their proximity to observed data via summary
statistics and distance metrics. As distance metric, often a simple Minkowski distance is used,
alternative approaches include e.g. Kullback-Leibler divergence [Jiang, 2018] or Wasserstein dis-
tances [Bernton et al., 2017] avoiding the use of summary statistics altogether. A popular distance
metric introduced by Prangle [2017] exploits the structure of ABC-SMC algorithms by using a
weighted Euclidean distance that adjusts to the problem structure by iteratively updating model
output, or summary statistic, weights to normalize contributions at different scales, thus enabling
the automatic integration of heterogeneous data.

73
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Figure 5.1: Illustration of the impact of outliers on ABC using two test models and three distance
metrics, namely the established L2+Ada.+MAD distance introduced in Prangle [2017], and two novel
ones, L1+Ada.MAD and L1+Ada.+PCMAD. Left: A model with 10 N (θ, 1) distributed data points,
and an uninformative N (5, 0.12) distributed one, whose observation however is an outlier. Right: A
model with 10 N (θ, 0.22) distributed data points, the first two of which however are outliers. For both
test problems, on the respective left the obtained ABC posterior approximation is shown, and on the
right the underlying outlier-corrupted data, together with, for all three distances, light-colored lines of
30 exemplary accepted simulations from the last ABC-SMC generation, and the respective sample means
as darker-colored lines. It can be seen how the established distance yields highly uncertain (left) or
biased (right) estimates, while the novel methods give far more accurate estimates of the underlying true
parameter. The distance metrics and models shown here are properly introduced in Sections 5.3 and 5.4.
This figure is taken from the author’s publication Schälte et al. [2021a].

Errors can occur in the data generation process of individual measurements, which result in
outliers in the data [Ghosh and Vogt, 2012, Motulsky and Christopoulos, 2003]. By an outlier,
we informally denote a data point corrupted by errors that are not expected under the given
experimental setup. Outliers typically result in large deviations from the expected behavior,
which can hardly be explained by the model, already accounting for common measurement noise.
Reasons for outliers exist plenty, e.g. technical limitations, external perturbations, or human
errors such as missing or incorrect labels [Maier et al., 2017].

In parameter inference, outliers can be problematic, because they can result in erroneous or
highly uncertain parameter estimates. Consequently, methods have been developed that aim to
detect and remove outliers from the data, prior to and often independent of the used inference
method [Ben-Gal, 2005, Hodge and Austin, 2004, Niu et al., 2011]. However, for noise-corrupted
high-dimensional or highly structured data with few replicates, which are common in systems
biology and also as applications of ABC [Durso-Cain et al., 2021, Jagiella et al., 2017], such
methods may be unreliable, and the complete removal of points that are not actually outliers
may bias the analysis or increase uncertainty [Motulsky and Christopoulos, 2003]. To circumvent
this, estimators that are robust to outliers have been developed, using heavy-tailed distributions
[Berger et al., 1994, Fernández and Steel, 1999, Huber et al., 1964, Tarantola, 2005] or pseudo-
likelihoods with robust loss functions or divergences [Basu et al., 1998, Chérief-Abdellatif and
Alquier, 2020, Jewson et al., 2018]. For ODE models of biochemical systems, the use of heavy-
tailed likelihood functions such as Laplace, Huber, or Student’s t, rather than the commonly
used normal distribution, has proven considerably more robust against outliers, without their
explicit removal [Maier et al., 2017].

In ABC, most such methods are however not applicable, as they require a tractable likelihood
function. In this chapter, we propose to make ABC robust in the presence of outliers by a
novel robust adaptive distance metric, based on the scale-normalizing adaptive distance concept
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by Prangle [2017]. It can easily be shown that the original algorithm formulation is sensitive
to outliers and can lead to biased or uncertain estimates (see Figure 5.1 for an illustration of
possible problems on simple test models). We suggest the use of an outlier-robust norm, and
additionally present a routine for simulation-based online outlier detection and down-weighting.

There already exist some approaches aiming at robustness in ABC inference, not necessarily tai-
lored to outliers, but more generally model misspecification. Notably, these include Hellinger or
Cramér-von-Mises distances as robust distances between probability distributions [Frazier, 2020],
operating on high-dimensional data circumventing the definition of summary statistics, and ap-
proaches using distances based on M -estimating functions [Ruli et al., 2020] and γ-divergence
estimators [Fujisawa et al., 2021]. These are however designed for data with many i.i.d. replicates,
which are not commonly available e.g. in systems biology applications, where data are usually
highly structured with single or few replicates, and potentially high-dimensional. Another ap-
proach is presented in Frazier et al. [2020], who suggest to address model misspecification by
parameterized adjustments of either summary statistics or distance metric weights. This ap-
proach is similar to ours in allowing the detection and down-weighting of inconsistent data
points, and could in principle be combined with a scale adaptation scheme as done here. How-
ever, it augments the parameter vector by the number of summary statistics, thus appearing to
require an appropriate, sufficiently low-dimensional, choice thereof. Lastly, a reformulation of
the acceptance step as in Chapter 4 would straightforwardly allow for the use of heavy-tailed
noise models similarly to Maier et al. [2017]. Yet, as in ABC the model must usually be regarded
as a black box, such an approach is not generally applicable and not pursued here.

Our approach makes no assumptions on the structure or dimension of data and is easy to adopt,
allows for the interpretation of generated weights, and yields efficient inference by combination
of robust measures with scale adaptation. We evaluate and compare the presented methods
on several test problems covering various model types, problem features, and outlier scenarios,
including a realistic application example of an agent-based model of tumor growth, on both
outlier-free and outlier-corrupted data.

5.2 Background: Adaptive distances

In this chapter, we employ the notation of general parameter inference problem from Section 2.1,
and of ABC-SMC methods from Section 2.4. For simplicity of notation and as we require, unlike
in Chapter 4, no separation of process and noise model, we assume ȳ = y, i.e. a potential
noise model is already incorporated in y. We refer to y as model output, which then includes
potentially applied summary statistics. In particular, let θ denote parameters, yobs the observed
data, π(θ|yobs) ∝ π(yobs|θ)π(θ) the posterior distribution of interest, d the ABC distance metric,
ε the acceptance threshold, N the number of samples constituting a population, and Pt =

{(θti , yti , wti)}i≤N the population of accepted particles in generation t.

A common choice of distance metric d is, induced by the respective Lp norm, a weighted
Minkowski distance

d(y, yobs) = ‖r · (y − yobs)‖p =

 ny∑
iy=1

∣∣riy(yiy − yobs,iy)
∣∣p1/p

, (5.1)
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with p ≥ 1, as a generalization of, most commonly, Euclidean (L2 norm, p = 2), Manhattan
(L1 norm, p = 1), or Chebyshev (maximum or infinity norm, p → ∞) distance, where the
summation is over the model output, or summary statistic, coordinates iy, and the riy are
model output specific weights. Frequently, simply unit weights r = 1 are used (e.g. Borowska
et al. [2021], Fearnhead and Prangle [2012], Jiang et al. [2017], Toni and Stumpf [2010], Warne
et al. [2018]). It has been argued that, empirically, among similar distance metrics, the exact
form does not matter [McKinley et al., 2009, Owen et al., 2015]. Also theoretically, for ε → 0

the approximation converges to the true posterior independent of the exact distance used (see
Theorem 5.1), provided the data generation model is specified correctly (see Chapter 4 for a
discussion of the impact of distance metric in the case of model misspecification).

As demonstrated in particular in Prangle [2017], adjusting the distance metric to the problem
structure can however improve parameter estimates under a limited computational budget. The
precise problem Prangle [2017] tackle is that data or summary statistics can be and vary on dif-
ferent scales. Unweighted, highly variable statistics dominate the acceptance decision, although
the scale of a statistic is generally not informative of its relevance. This can be corrected for by
the choice of weights riy in (5.1). A common choice is as inversely proportional to measures of
variability of the respective statistics, i.e.

riy = 1/σiy (5.2)

with σiy e.g. given via empirical standard deviations, σiy = Var({yi,iy}i≥1)1/2, where {yi}i≥1 are
a calibration sample. An alternative measure suggested by Csilléry et al. [2012] for being more
robust to extreme sample values, and used in Prangle [2017] and also throughout this chapter,
is the median absolute deviation (MAD) to the sample median,

σiy = MADiy := median({|yi,iy −median({yi′,iy}i′≥1)|}i≥1). (5.3)

It is straightforward to use weights based on a calibration sample, e.g. from the prior distribution,
prior to the actual ABC analysis [Beaumont et al., 2002, Csilléry et al., 2012, Fearnhead and
Prangle, 2012]. However, while applicable to ABC-Rejection, Prangle [2017] demonstrate that
in an ABC-SMC framework, the distribution of model outputs in later generations can differ
considerably from one obtained in pre-calibration. Their relative variability may change as
the proposal distribution focuses on high-density regions in parameter space, such that weights
obtained in calibration may no longer yield similar contributions of model outputs or summary
statistics. Thus, they suggest a sequentially updated generation-specific distance metric dt, by
updating the weights rj = rtj in distance (5.1) anew for each generation. The calibration sample
for generation t consists of all samples created in generation t − 1, including not only accepted
ones but also rejected ones, which makes the model output distribution representative of the
sampling process and allows for greater flexibility of adaptation. This serves as an approximation
to the expected model output scale distribution under the proposal distribution gt of generation
t, without additional simulation cost. To ensure nested acceptance regions, Prangle [2017] then
define the acceptance criterion for generation t as

3. accept (θ, y) if dt′(y, yobs) ≤ εt′ for all t′ ≤ t.

When using an adaptive scheme for εt, e.g. based on quantiles of distance values of accepted
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particles as introduced in Section 2.4, it must be based on distance values recalculated with the
new distance metric, {dt(yt−1

i , yobs)}i≤N .

While the above algorithm bases the weights for generation t on samples from generation t − 1

with a different proposal distribution, Prangle [2017] further suggest a second algorithm that
bases the weights on the current generation, by delaying the acceptance criterion definition. As
this algorithm was found to not substantially improve results over the above-introduced one,
while being not as integrable into existing ABC-SMC frameworks, we did not pursue this second
formulation further here.

5.3 Robust adaptive distances for outlier-corrupted data

In this section, we describe distance metrics that build upon the adaptive distance metrics
introduced in Section 5.2, but are robust to outliers in the data. We assume the data yobs ∈ Rny
to be a realization of the model π(y|θ), except for single outliers that are generated by another
confounding mechanism.

5.3.1 Outlier-robust adaptive distances

While using MAD as a robust measure of sample variability for weight definition, Prangle [2017]
base the overall distance on an L2 norm (p = 2 in (5.1)). Squared residuals emphasize large errors,
which may be desirable, however makes the analysis highly sensitive to outliers, which typically
result in large residuals that can dominate the distance and reduce the relative importance of
other model outputs, leading to an overall worse performance.

In regression analysis, robust approaches have been developed that are more robust to outliers
than standard least squares. The arguably most common alternative are absolute deviations,
corresponding to an L1 norm (p = 1 in (5.1)). For ODE models, it was shown in Maier et al.
[2017] that replacing the most common assumption of a normal noise model, corresponding
to a weighted L2 distance (see Section 2.2.1), by heavy-tailed distributions such as Laplace,
corresponding to an L1 distance, Huber, Cauchy or Student’s t, makes the analysis considerably
more robust to outliers, while performing roughly comparably on outlier-free data. In ABC, if
noise model and dynamics description can be decoupled, similar approaches can be employed,
either by simulating e.g. Laplace measurement noise, or using an appropriate acceptance kernel
[Schälte and Hasenauer, 2020]. However, in general, in ABC the model must be regarded as a
black box that does not allow to do so. In that case, robustification and model error correction
must happen on the level of the distance metric, which quantifies the relative impact of data
points.

Here, based on the above motivation, we propose to replace the weighted L2 norm in the adaptive
distance formulation by a weighted L1 norm, yielding a distance metric both robust to outliers
and adaptive to the problem structure. In the following, we shortly motivate why this change of
norm renders the analysis more robust to outliers.

Consider the distribution of a single model output, or summary statistic, given via a random
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variable Y ∈ R, with variance E[Y 2] = σ2 < ∞, and observed value yobs. We are interested
in the variability of the corresponding distance component in (5.1) around its average value, as
similar levels of variability of different model outputs impact the acceptance decision similarly.
For the variance of an unweighted L1 distance component |Y − yobs| holds

0 ≤ Var[|Y − yobs|] = E[(Y − yobs)
2]− E[|Y − yobs|]2

= Var[Y ] + E[Y − yobs]
2 − E[|Y − yobs|]2 ≤ Var[Y ] = σ2.

Moreover, Var[|Y −yobs|]→ σ2 in the limit |yobs| → ∞ of extreme outliers, with smaller variance
for observed values closer to E[Y ]. Thus, for simplicity assuming that in (5.1) normalization is by
the distribution standard deviation σ, it follows for the variance of the corresponding component
of a weighted L1 distance 0 ≤ Var[|Y −yobs|/σ] ≤ 1. Note that the absolute value of the distance
component will be large for large outliers, however it only acts as an offset inconsequential
to adaptive acceptance threshold schemes, resulting in an offset to automatically determined
acceptance thresholds ε, whilst the variance is constrained.

For L2 distances, a similar boundedness does not apply. For example, if Y ∼ N (0, σ2), it
is Var[(Y − yobs)

2] = 2σ4(1 + 2y2
obs/σ

2), and therefore for the weighted distance component
Var[((Y −yobs)/σ)2] = 2(1+2y2

obs/σ
2), diverging for |yobs| → ∞, as one easily sees from properties

of non-central χ2 distributions.

5.3.2 Online outlier detection and down-weighting via bias correction

Even when using an outlier-insensitive distance such as L1, large outliers still influence the
analysis, rendering it desirable to detect and down-weight them. Here, we propose an online
simulation-based approach to do so in ABC-SMC by complementing MAD (5.3), as a measure
of sample variability, by a measure of deviation from the observed value, such as the median
absolute deviation to observation (MADO) for model output iy,

MADOiy := median({|yi,iy − yobs,i,iy |}i≥1).

To account for both in-sample variability and deviation to observed value, we propose to then
define the weight in (5.1) via the combined median absolute deviation (CMAD) as

riy = 1/CMADiy := 1/(MADiy + MADOiy). (5.4)

If the model describes a data point well, one would expect the simulations to be close to the
observed data, roughly on the same order as the in-sample variation of simulations, such that the
additional term does not substantially hinder the purpose of variance normalization. Conversely,
outliers with large deviations from commonly sampled values are down-weighted. Note that here
we only down-weight data points while not removing them entirely as long as rj 6= 0, which
conceptually permits the recovery from badly assigned weights at least in the approximate limit
as t→∞, i.e. no information is lost.

Especially in early iterations and for uninformative priors, common model simulations may devi-
ate from observed data substantially, as may the relative variability of different model simulations,
compared to later generations. In order to not “punish” model outputs that happen to deviate
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more from the observed data initially than others, we propose to apply the deviation correc-
tion only if no more than a small fraction of the data points exhibit a substantial deviation.
Concretely, here we only used CMAD for weighting in a generation if

#{iy : MADOiy > 2 ·MADiy}/ny ≤ 1/3,

resorting to MAD otherwise. These hyperparameters are clearly heuristics and may require tun-
ing on some problems, however e.g. more than one outlier in three data points should in practice
hardly occur, while only counting as outliers points with sufficiently high deviation compared to
the in-sample variability focuses on large deviations that could otherwise considerably impact
the analysis, while small outliers are less problematic (see also Section 5.3.1). We denote this
weighting scheme, which perhaps uses CMAD and otherwise only MAD, as PCMAD.

As outliers usually get apparent only in later generations, where simulations resemble the ob-
served data more and fluctuate less, the application of such outlier correction methods only
makes sense in an adaptive framework, as done here.

Instead of the robust measures MAD and MADO employed here, in principle also other measures
of variability and deviation can be used, such as the common standard deviation and bias. We
can then statistically interpret the above introduce weighting scheme as, informally, replacing
the in-sample standard deviation by the root mean square error E[(y − yobs)

2]1/2 = (Var[y] +

Bias[y, yobs]
2)1/2, or robust alternatives thereof, regarding the simulations as predictors of the

observed value.

5.3.3 Convergence

Under certain assumptions on the adaptive distance weights in the ABC-SMC formulation above,
convergence of the approximate posterior to the true one, πABC,εt(θ|yobs) → π(θ|yobs) in an
appropriate sense for t→∞ and εt → 0, holds, as for fixed-distance ABC in general under mild
assumptions, as made explicit by the following

Theorem 5.1. Consider prior π(θ) and likelihood π(y|θ) densities, with posterior π(θ|yobs) ∝
π(yobs|θ)π(θ), and measurable distance metrics dt. Assume that for the acceptance regions At =

{y : dt(y, yobs) ≤ εt} holds limt→∞ |At| = 0, where |·| denotes the Lebesgue measure, and that the
At have bounded eccentricity at yobs (also referred to as shrinking regularly to yobs), i.e. there is a
constant c > 0 such that for every At there is a ball Bt with yobs ∈ Bt, At ⊂ Bt, and |At| ≥ c |Bt|.
Then, for functions ξ : Rnθ → R with Eπ(θ)[|ξ|] <∞ holds

EπABC,εt(θ|yobs)
[ξ]

t→∞−−−→ Eπ(θ|yobs)[ξ] for almost-all yobs. (5.5)

Recall that in this chapter, unlike in Section 2.4, we assume for notational simplification that y =

ȳ incorporates measurement noise, and thus accurately describes the underlying data generation
process yobs ∼ π(y|θ), and potentially incorporates summary statistics s.

Proof. Adapted from Barber et al. [2015] to adaptive distances, and from Prangle [2017] to a
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more rigorous formulation. Define

φξ(y) =

∫
ξ(θ)π(y|θ)π(θ) dθ and φtξ(yobs) =

1

|At|

∫
At

φξ(y) dy . (5.6)

Note that φξ is integrable, as Eπ(θ)[ξ] = Eπ(θ,y)[ξ], where π(θ, y) = π(y|θ)π(θ) denotes the joint
distribution of θ and y, and using Fubini’s Theorem. Thus, we have, with the same notation for
ξ ≡ 1,

Eπ(θ|yobs)[ξ] =
φξ(yobs)

φ1(yobs)
and EπABC,εt (θ|yobs)[ξ] =

φtξ(yobs)

φt1(yobs)
.

Given integrability of φ1(y) = π(y) and φξ(y), |At| → 0, and bounded eccentricity of the At,
the Lebesgue Differentiation Theorem [Stein and Shakarchi, 2005, Corollaries 1.6 and 1.7] gives
φt1(yobs) → φ1(yobs) and φtξ(yobs) → φξ(yobs) for t → ∞, for almost-all yobs, such that (5.5)
follows.

Note that the assumption that Eπ(θ)[|ξ|] < ∞, i.e. ξ is integrable under the prior, is not overly
restrictive, as we are interested in integrability under the posterior, but could be relaxed to local
integrability of φξ in an environment of yobs for (5.6). If all functions all continuous, convergence
in (5.5) holds point-wise, as one easily sees, see e.g. the proof of Stein and Shakarchi [2005,
Theorem 1.3]. As yobs is in practice an observed sample, the statement “for almost-all yobs“ is no
restriction. See e.g. Barber et al. [2015] for further discussion, in particular of convergence speed.
While we have here assumed a Lebesgue density π(y, θ), a similar argumentation also holds for
discrete parameters θ, which only affects the form of φξ. For discrete data y, the assumptions on
the At imply simulations y = yobs eventually, in which case the statement (5.5) directly follows.

In our case, convergence of the acceptance regions to yobs, |At| → 0, does not necessarily hold in
common ABC-SMC implementations, e.g. when ε is quantile-based. Bounded eccentricity holds
if, as on easily sees, rtj 6= 0 for all weights, and the maximum weights ratio

sup
t

maxiy≤ny r
t
iy

miniy≤ny r
t
iy

<∞

is bounded. Practically, this can be achieved by constraining the relative weight range to a
compact interval in (0,∞), or e.g. by updating the distance metric only a finite number of times.
In the results presented here, we did not employ any such restrictions, as we focused on the ability
of the methods to retrieve information under a limited simulation budget. Yet, reliable strategies
to set such constraints may be practically of relevance and may require further investigation.

5.3.4 Implementation

We implemented all methods presented in this chapter in pyABC, putting emphasis on a modular
and easy-to-use, well-documented implementation. The code underlying the study in this chapter
can be found on GitHub at https://github.com/yannikschaelte/study_abc_rad, a snapshot
of code and data is on Zenodo at http://doi.org/10.5281/zenodo.5136475. The implemented
methods further e.g. allow to impose restrictions on how and when to update weights, and
allow the combination with automatic and adaptive summary statistic calculation schemes as

https://github.com/yannikschaelte/study_abc_rad
http://doi.org/10.5281/zenodo.5136475
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Table 5.1: Properties of test models used in Chapter 5: Identifier, short description, number of parameters
nθ and data points ny, population size N and maximum number of model simulation after which an
analysis was terminated.

ID Description nθ ny N Max. sim.
M1 Informative and uninformative Gaussian variables 1 11 1000 100000
M2 Independent Gaussian replicates 1 10 1000 100000
M3 Conversion reaction ODE model 2 10 1000 100000
M4 g-and-k distribution order statistics 4 7 1000 100000
M5 Lotka-Volterra Markov jump process model 3 32 200 50000
M6 Tumor spheroid growth agent-based model 7 150 500 150000

in Fearnhead and Prangle [2012], see also Chapter 6. All simulations were performed on the
GCS Supercomputer JUWELS at Jülich Supercomputing Center (JSC), using up to 384 cores
in parallel.

If not stated otherwise, we defined the acceptance criterion in generation t as dt′(s, sobs) ≤ εt′

for all t′ ≤ t, including previous acceptance criteria, to ensure nested acceptance regions. The
distance weights were calculated based on all samples generated in the previous generation, in-
cluding accepted and rejected ones. As transition kernel, we used a multivariate normal distribu-
tion with covariance kernel proportional to the previous generation’s weighted sample covariance
matrix by Silverman’s rule of thumb [Klinger et al., 2018]. Acceptance thresholds were automat-
ically selected as the median of the updated distance values {dt(yt−1

i , yobs)}i≤N of the previous
generation’s accepted particles.

5.4 Application to test problems

We evaluated the proposed methods on five test problems M1-5 covering different problem fea-
tures, model types, and outlier scenarios, and a more realistic application problem M6, on both
outlier-free and outlier-corrupted data, and compared them to established calibrated and adap-
tive distance metrics as introduced in Prangle [2017].

5.4.1 Test problems

An overview of the core problem features is given in Table 5.1. Details on all test problems can
be found in the supplementary information of Schälte et al. [2021a, Chapter 1].

M1 consists of 10 observables yj ∼ N (θ, 1), j = 1, . . . , 10, for a parameter θ with prior θ ∼
U [0, 10] and true value θ = 5, and one uninformative variable of low variance y11 ∼ N (5, 0.12).
As outlier, we set y11 = 7.

M2 consists of 10 observables yj ∼ N (θ, 0.22), j = 1, . . . , 10, with prior θ ∼ U [0, 10] and true
value θ = 6. While all observables are informative of the parameters, we set two to yj = 0 to
simulate conflicting information in the data due to outliers.

M3 is an ODE model of a conversion reaction A θ1→ B, B θ2→ A, assuming species B to be observed
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at 10 evenly spaced time-points. We assumed additive N (0, 0.022) distributed noise. True
parameters are (log θ1, log θ2) = (−1.5,−1.5), estimated on log-scale, with prior U [−3.5, 1]⊗2.
Initial conditions (A0, B0) = (1, 0) were assumed known. As outlier, we randomly set one data
point to zero, which could in practice e.g. occur as a wrongly assigned missing value. This model
is similar to a test model used in Chapter 4 and identical to the first test model in Maier et al.
[2017].

M4 and M5 are common ABC test problems, adopted directly from the application examples in
Prangle [2017]. M4 is based on the g-and-k distribution, which is defined via its quantile function

q(x) = A+B

(
1 + c

1− exp(−gz(x))

1 + exp(−gz(x))

)
(1 + z(x)2)kz(x),

where z(x) is the quantile function of a standard normal distribution. It does not have a closed-
form likelihood function, but can be sampled from via z ∼ N (0, 1). As commonly done, we
fixed c = 0.8 and estimated the remaining parameters. We used as summary statistics seven
order statistics at indices (1250, 2500, ..., 8750) out of 10, 000 independent samples. We used
independent U [0, 10] priors on the model’s four parameters A,B, g, k, and ground truth values
(A,B, g, k) = (3, 1, 1.5, 0.5). As outlier, we considered randomly setting one observable to zero.
M5 is a Markov jump process model of a Lotka-Volterra predator-prey population model. The
underlying simplified population dynamics of prey x1 and predators x2 are given via

(x1, x2)
θ1→ (x1 + 1, x2) (prey growth),

(x1, x2)
θ2→ (x1 − 1, x2 + 1) (predation),

(x1, x2)
θ3→ (x1, x2 − 1) (predator death).

Simulations were performed via Gillespie’s direct algorithm [Gillespie, 1977], using the author’s
Python package ssa (https://pypi.org/project/ssa). We assumed both species to be ob-
served under additive N (0, exp(2.3)) distributed noise, at 16 evenly spaced time-points over a
span of roughly four periods. The model has three conversion rate parameters, which were esti-
mated on log-scale, with wide independent U [−6, 2] priors and ground-truth values (θ1, θ2, θ3) =

(1, 0.005, 0.6). As outliers, we considered multiplying 6 observables at 3 random time-points by a
factor of 10, which can in practice occur e.g. due to a wrong exponent. M5 exhibits highly vari-
able dynamics, with different average behavior under the wide prior compared to the posterior,
and may thus be regarded as a more challenging inference problem.

M6, a more realistic application example, is the agent-based model of tumor spheroid growth
as described in Chapter 4. For the three data types, here considering with finer resolution in
total ny = 150 data points, we again assumed independent additive normal noise of different
variances. As outliers, we considered interchanging in total 20 data points in the observables’
dynamic regimes.

5.4.2 Experimental setup

To systematically assess the performance of the presented distance metrics, we ran M1-5 for each
distance metric 20 times on outlier-free data, each for a separate data set randomly sampled from
the model under ground truth parameters θGT, and additionally 20 times on outlier-corrupted

https://pypi.org/project/ssa
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Figure 5.2: Mean RMSE for the parameters of models M1-5 (columns) obtained for 8 distance metrics
(rows), using L2 or L1 norms, calibrated only in the first (“Cal.”) or every (“Ada.”) generation, and using
MAD, CMAD, and PCMAD for distance weight calculation. Each RMSE is averaged over 20 data sets,
grey lines indicate standard deviations. For each distance, the upper, lighter bar is based on outlier-free
data, while the lower, darker bar is based on outlier-corrupted data. Distances of interest are colored,
alternative distance combinations are shown in grey for reference. This figure is taken from the author’s
publication Schälte et al. [2021a].

data sets derived from the outlier-free ones. Each run was performed with a fixed population size
N and given a budget of model evaluations, evaluated after each generation (see Table 5.1). The
evaluation budgets were chosen rather low, in order to assess the ability of the distance metrics
to extract information under a limited budget.

The performance of a distance metric was evaluated by its ability to yield accurate point estimates
with low uncertainties. Therefore, we used, as a metric combining both aims, the root mean
square error (RMSE) of the weighted posterior samples from the last ABC-SMC generation
with respect to the ground truth parameters, i.e. the square root of E[(θ − θGT)2] = Var[θ] +

Bias[θ, θGT]2 under the obtained posterior approximation. While the actual posterior mean may
not be unbiased for a given data set, one may expect it to be on average.

As distance metrics, we considered L2 and L1 distances (“L2” or “L1”), only pre-calibrated in the
first generation or adapted in each generation (“Cal.” or “Ada.”), and using MAD, CMAD, or
PCMAD for distance weight calculation. In the following, e.g. L2+Ada.+MAD denotes an L2
distance with adaptive MAD-based weights. While we also explore other combinations to assess
the contribution of the various hyperparameters separately, we focus the analysis on the estab-
lished pre-calibrated L2+Cal.+MAD, the established adaptive L2+Ada.+MAD introduced by
Prangle [2017], and the here newly introduced robust L1+Ada.+MAD and L1+Ada.+PCMAD.
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5.4.3 Results

L1 more robust than L2

Comparing L2- and L1-based distances (Figure 5.2, upper half vs. lower half) on outlier-free
data (Figure 5.2, light bars), e.g. for L2+Ada.+MAD vs. L1+Ada.+MAD, shows no substantial
differences for most models and parameters, indicating that L1 works similarly well on outlier-free
data.

On outlier-corrupted data (Figure 5.2, dark bars), using an L2 distance (L2+Ada.+MAD)
yielded substantially higher RMSE values compared to outlier-free data. Using an L1 distance
(L1+Ada.+MAD) drastically reduced the RMSE in all cases by up to orders of magnitude, in
many cases to only slightly higher levels than for outlier-free data.

Comparing pre-calibrated L2+Cal.+MAD and adaptive L2+Ada.+MAD (as well as the L1 vari-
ants) on outlier-free data confirms the finding in Prangle [2017] that the adaptive weighting
scheme outperforms pre-calibrated weighting. However, e.g. the comparison of L2+Cal.+MAD
and L2+Ada.+MAD on outlier-corrupted data shows that there, in some cases, an adaptive
weighting scheme with L2 distances can give worse results than pre-calibrated weights, arguably
due to decreasing in-sample variability with large impact on the distance metric, as outlined in
Section 5.3.1. For the corresponding L1 distances, in the majority of cases, an adaptive distance
metric did improve results over pre-calibration.

Outlier correction further improves estimates

Applying active outlier detection and down-weighting by PCMAD on top of using an L1 distance
(L1+Ada.+PCMAD) further reduced RMSE values over MAD (L1+Ada.+MAD) on M1-4, and
substantially so e.g. for the A and g parameters of M4, giving a total reduction of up to nearly
50 times compared to the established L2+Ada.+MAD. On M1-4, the use of CMAD through-
out (L1+Ada.+CMAD) and not only if outliers were detected in less than one in three data
points (PCMAD), yielded low RMSE values too. However, this was not the case for M5, where
L1+Ada.+CMAD gave large RMSE values on both outlier-free and outlier-corrupted data. This
is likely due to the fact that M5 exhibits highly flexible dynamics. In that case, blindly applying
bias correction may wrongly down-weight data points that just happen to not have converged
yet, while PCMAD reliably only did so in case of strong indication of few outliers.

Overall, in many cases L1+Ada.+MAD already gave substantially better results than the ref-
erence method L2+Ada.+MAD, with further improvements by active outlier detection, such as
here L1+Ada.+PCMAD, which consistently yielded small RMSE values for all parameters of all
test problems.

Nested acceptance regions improve performance slightly

We also assessed the effect on robustness of nested acceptance regions via checking previous
acceptance criteria, dt′(s, sobs) ≤ εt′ , t′ ≤ t, which was employed in Prangle [2017] without
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Figure 5.3: Fits and weights for models M1-5 on outlier-corrupted data, for three distances. Top: Ob-
served data (black) and, for each distance, 30 accepted simulated data sets (lighter lines) as well as the
sample means (darker lines) from the last ABC-SMC generation. Note that these are accepted simula-
tions, not predictions; for ε→ 0, the accepted simulations should exactly match the observed (non-outlier)
data. Bottom: The corresponding weights rj assigned to each model output or summary statistic by the
three shown distance metrics in the last generation, normalized to sum 1. For each problem, one exem-
plary run out of the 20 runs on outlier-corrupted data is shown. This figure is taken from the author’s
publication Schälte et al. [2021a].

comparison. Thus, we repeated the same ABC analyses as shown above, but only taking into
account the current generation’s acceptance criterion, i.e. accepting if dt(s, sobs) ≤ εt (for details
see the supplementary information of Schälte et al. [2021a, Section 2]). Overall, we found no
major or structural differences between using or discarding previous acceptance criteria, especially
for L1 distances, on both outlier-free and outlier-corrupted data, with slightly better results when
using them. An exception, where the use of previous acceptance criteria performed substantially
better, was M5, which especially for L2 showed a larger RMSE for the adaptive distance compared
to the pre-calibrated distance when only checking the current criterion. A reason for this may be,
again, the highly flexible model dynamics, for which a more conservative acceptance criterion
may be more robust. Both using and discarding previous acceptance criteria may have their
advantages – using them may be more conservative and thus preferable on highly variable models,
but may be unnecessary for L1 distances, further not using them gives more flexibility and may
allow to escape from bad initial choices.

Robust distances yield better fits of the data

The advantage of the robust adaptive distances L1+Ada.+MAD and L1+Ada.+PCMAD over
L2+Ada.+MAD became apparent not only in terms of parameter estimates, but also of fits of
simulated data to the observed data (shown in Figure 5.3 exemplarily for selected data sets).
For M1, the variability of simulated data for L2+Ada.+MAD was considerably higher than for
the L1 distances. For M2, L2+Ada.+MAD balanced simulations visually between the eight
accurate measurements and the two outliers, fitting no point well, while L1+Ada.+MAD was
considerably less biased, only slightly more than L1+Ada.+PCMAD. This held similarly for M3
and M4, where the analysis for L2+Ada.+MAD converged to curves visibly different from the
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Figure 5.4: Impact of scale of deviation on the analysis. Top: Problem M1. Bottom: Problem M2. Left
to right: Adaptive L2 norm with MAD weights, adaptive L1 norm with MAD weights, and adaptive L1
norm with PCMAD weights. Shown are five outlier scales with perfect data at the distribution means,
except for the outlier data points which were given deviations of 0, 1, 5, 25, 125 times the standard
deviation of the respective model outputs. True parameters (θ = 5 for M1, θ = 6 for M2) are indicated
by grey dotted lines. This figure is taken from the supplementary information of the author’s publication
Schälte et al. [2021a].

observed data, corresponding to different optimal parameter vectors. For M5, extremes were less
well captured. Overall, L1+Ada.+PCMAD provided the best fits in all these cases.

Also in the weights the respective distances assigned to data points in the last ABC-SMC gener-
ation (Figure 5.3 bottom) was this reflected. For M1-4, PCMAD reliably detected outliers and
assigned them low weights, reducing their impact on the analysis. Typically, bias correction was
applied only after a few generations, due to overall high initial variability, reliably converging to
the actual outliers in the later generations in most cases. For M5, PCMAD did often not identify
all or any outliers. Likely, the flexibility of the model does not allow to reliably detect outliers,
as too many data points exhibit deviations from observed values. Thus, in this case PCMAD
does not give an advantage over MAD alone, resulting in similar RMSE values, while blindly
applying CMAD is detrimental, as observed before.

Robust to outliers at large scale

In order to analyze the impact of the scale of outliers on the presented methods, we considered
problems M1+2 with outliers at different multiples of the corresponding model outputs’ stan-
dard deviations (Figure 5.4). This revealed that the performance of L2+Ada.+MAD worsened
substantially with increasing outlier scale, while the L1-based distances were considerably less
affected, with slight improvements for PCMAD over MAD. This is in line with the discussion in
Section 5.3.1.
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Figure 5.5: Posterior marginals for the 5 out of the 7 model parameters of model M6 showing interesting
dynamics. Top: Without outliers. Bottom: With outliers. The x-axis boundaries are the uniform prior
boundaries. The parameter values used to simulate the observed data are indicated by grey dotted lines.
This figure is taken from the author’s publication Schälte et al. [2021a].

Applicable to complex application example

Due to its computational complexity with model simulation times on the order of seconds, for the
tumor spheroid growth application problem M6 we only considered single outlier-free and outlier-
corrupted data sets. Here, we compared the pre-calibrated distance L2+Cal.+MAD, the adaptive
L2 distance L2+Ada.+MAD, and the newly introduced adaptive L1 distances L1+Ada.+MAD
and L1+Ada.+PCMAD.

Remarkably, the L1 distances performed superior to L2 on M6 also on outlier-free data, as the
parameter estimates show (Figure 5.5 top). In particular L2+Ada.+MAD yielded substantially
wider uncertainty estimates, also compared to L2+Cal.+MAD. This is also reflected by more
scattered model simulations (Figure 5.6 top). Arguably, this is because for high-dimensional data
the chance of deviant data points is high, even if the model perfectly describes the underlying
data generation process. In that case, L2+Ada.+MAD may increasingly focus the analysis on
points with large deviations, even if there are no systematic outliers in the data.

On outlier-corrupted data, both L2+Cal.+MAD and L2+Ada.+MAD performed badly, with
highly uncertain or unreasonable parameter estimates (Figure 5.5 bottom), and simulations that
visually do not match the observed data (Figure 5.6 bottom). In contrast, L1+Ada.+MAD
and L1+Ada.+PCMAD performed considerably better, with parameter estimates closer to those
obtained on outlier-free data, although generally with higher uncertainties, as expected given the
high fraction of outliers. Overall, L1+Ada.+PCMAD yielded the lowest parameter uncertainties.
Further, the outlier detection reliably corrected for virtually all outliers.
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Figure 5.6: Fits and weights for four distance metrics on problem M6 on outlier-free (top) and outlier-
corrupted (bottom) data. The respective upper rows show the observed data (black), and, for each
distance, 30 accepted simulated data sets (light lines) as well as the sample means (darker lines) from
the last ABC-SMC generation. Note that these are accepted simulations, not predictions; for ε→ 0, the
accepted simulations should exactly match the observed (non-outlier) data. The respective lower rows
show the corresponding weights assigned to each summary statistic by the four distance metrics in the
last generation, normalized to sum 1. This figure is taken from the author’s publication Schälte et al.
[2021a].

5.5 Discussion

In this chapter, we demonstrated how established ABC distance metrics may be sensitive to
outliers in the data, resulting in erroneous parameter estimates. As an extension of a popular dis-
tance metric with iteratively updated weights correcting for different data scales, we introduced
a widely applicable robust adaptive distance metric based on an L1 norm, and further intro-
duced a weighting scheme that allows for online simulation-based detection and down-weighting
of outliers.

We evaluated and compared the novel methods on six test problems. Firstly, this demonstrated
that the use of an outlier-robust distance metric such as L1 considerably improves performance in
the presence of outliers, while performing similarly well on outlier-free data. Secondly, the outlier
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detection and correction generally further improved results, as outliers were correctly identified
and sufficiently down-weighted, allowing the analysis to extract information from the relevant
data more efficiently. This indicates that actively identifying outliers, whether by this method or
other ones as outlined in the introduction, may be of advantage. Also against extreme outliers,
which severely affected reference methods, did the presented methods prove robust. As especially
in high-dimensional complex data sets, e.g. based on imaging techniques commonly used in ABC
applications, outliers or highly deviant data points may exist, we recommend, given our results,
the consistent use of robust distance metrics in practical applications, unless there are reasons
to not do so, e.g. if sensitivity to large deviations is desirable. Further, also the here introduced
outlier correction method appears generally applicable, if only for detection, in order to inform
early-on about potential problems in data or model.

One possible path of future research would be distances that combine the sensitivity of L2
to small deviations with the robustness of L1 to large outliers, such as a Huber distance, which
however relies on the choice of hyperparameters. Also a comparison to alternative robust distance
metrics as mentioned in the introduction would be of interest, wherever multiple approaches are
applicable, however is beyond the scope of this chapter. Model selection could be employed to
determine the most appropriate distance metric.

A limitation of our study is that we only considered relatively obvious synthetic outliers, which
could easily be removed by manual inspection. This was for testing purposes, and as small
outliers are less consequential and hard to detect by any method. A study in that regard and
e.g. using real high-dimensional, e.g. imaging, data would be of interest.

As already stated in Prangle [2017], Mahalanobis type distances, i.e. the use of coordinate trans-
formations, may be profitable especially for correlated data, however are numerically less robust
and harder to interpret. Further, as in Prangle [2017], here we used median absolute deviations
for weight calculation. Especially for discrete data, these may however yield zero weights. The
handling of such deteriorated weights may in general be of relevance.

To ensure convergence, theoretically distance weights need to be either frozen after a number
of generations, or their eccentricity bounded. It may be practically relevant to devise reliable
strategies of doing so while allowing for sufficient weight adaptation.

A further promising research path becomes apparent in the last application example (Figure 5.6):
One data type, the fraction of proliferating cells, is constant over most of the observed data
points. While it is not clear whether this holds for all parameters, this raises the suspicion that
these summary statistics are hardly informative of the parameters. Yet, they are assigned high
weights due to their low variability. Thus, measuring the “informativeness” of summary statistics
in combination with scale adaptation and outlier correction might considerably improve the
analysis in such cases. This problem we address in the subsequent chapter.

In conclusion, we presented a novel robust adaptive distance metric with outlier down-weighting,
and demonstrated its broad applicability. The methods are easy to adopt and have been imple-
mented in pyABC, facilitating the straightforward use in application projects.
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Chapter 6

Informative and adaptive distances and
summary statistics in ABC

The practical performance of approximate Bayesian computation (ABC) relies on its ability to
efficiently compare relevant features in simulated and observed data via summary statistics and
distance metrics. Separately, semi-automatic schemes have been devised to firstly define low-
dimensional, informative summary statistics by regression of parameters on simulated data, and
to secondly adapt distance metrics to the data by scale normalization. In this chapter, which
may be regarded as an extension of Chapter 5, we combine both ideas in two ways. Firstly, we
demonstrate synergies of both approaches, by scale normalization for regression-based summary
statistics. Secondly, we employ regression models not to transform data, but to inform additional
sensitivity weights accounting for the information content of data on parameters. Moreover, we
discuss problems arising for regression models under non-identifiability, and present a solution
using regression target augmentation. On a dedicated test problem as well as on a realistic
systems-biological application problem, we demonstrate substantially superior performance of in
particular the sensitivity-weighted approach, as well as robustness and wide applicability on a
collection of further test problems. Further, we demonstrate the applicability of the sensitivity-
weighted distances to outlier-corrupted data.

This chapter is based on and partly identical to the following publication, in which all methods
were developed and all analyses performed by the thesis author:

• Schälte, Y. and Hasenauer, J. (2021). Informative and adaptive distances and summary
statistics in approximate Bayesian computation. In preparation.

6.1 Introduction

Accuracy and efficiency of ABC rely on its ability to extract information from simulated and
observed data, via distance metrics and summary statistics. The adaptive distance formulation
from the previous chapter, based on Prangle [2017], normalizes model outputs, or summary
statistic representations thereof, by the respective scales they vary on, thus ensuring similar
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contributions to the acceptance decision. However, an implicit assumption is that all model
outputs are similarly informative of the parameters. If some model outputs are less or not
informative, scale normalization can still be a reasonable, as widely applicable to heterogeneous
data, compromise, but it would be desirable to either only consider informative statistics, or
account for informativeness in the weighting scheme. For example, consider the tumor growth
model from the previous section, where a substantial proportion of the data profiles appear to
be essentially flat, raising the suspicion that the corresponding data points are uncorrelated with
parameters and thus uninformative. Yet, due to their low variability, these data points were
assigned large scale-normalizing weights (Figure 5.6).

Informative, low-dimensional summary statistics can improve performance of ABC in particular
for high-dimensional, noisy data, due to the curse of dimensionality [Blum et al., 2013]. Various
methods to robustly and semi-automatically construct such statistics have been developed, e.g.
based on subset selection [Joyce and Marjoram, 2008, Nunes and Balding, 2010], or indirect
inference [Drovandi et al., 2011, Gleim and Pigorsch, 2013], or regression [Borowska et al., 2021,
Fearnhead and Prangle, 2012, Jiang et al., 2017], see Section 2.4.3. A particular approach, called
“semi-automatic ABC” [Fearnhead and Prangle, 2012], uses as summary statistics the outputs
of a linear regression (LR) model of parameters on data, over an adequate domain, thus an
inverse model to the forward mechanistic process model. While such regression models can
be heuristically motivated as summarizing the information content in the data on parameters
in a single value per parameter, Fearnhead and Prangle [2012] further argue that using the
posterior mean as summary statistic, of which the regression model serves as an approximation,
conserves the true posterior mean in the approximate limit of vanishing acceptance threshold.
To capture non-linear relationships, more sophisticated regression models have been employed,
such as Gaussian processes (GP) as in Borowska et al. [2021], or neural networks (NN) as in
Jiang et al. [2017].

To evaluate proximity of regression-based summary statistics, e.g. Euclidean distances have been
used, or weighted Euclidean distances using weights based on calibration samples [Fearnhead
and Prangle, 2012]. However, here essentially the same problems apply that motivated the use
of adaptively weighted distances, shifted from the level of data to the level of parameters, or
regression approximations thereof, used as summary statistics. In fact, as outlined above, to
regression-based summary statistics the approach by Prangle [2017] is particularly applicable, as
all statistics may be assumed to be informative. Another problem with regression-based statistics
is that an inverse mapping may not always exist, for example when multiple parameters describe
the observed data similarly well, corresponding to global parameter non-identifiability. In that
case, an inverse model cannot reconcile all data.

In this chapter, we present two approaches that combine the concepts of adaptive distances
and regression of parameters on data. Firstly, we discuss integrating statistics learning in an
ABC-SMC framework with adaptive distances, and demonstrate performance improvements by
scale-normalizing the derived statistics. Secondly, the focus of this chapter, we employ regression
models not to transform data, but in order to inform additional sensitivity weights accounting
for the information content of data on parameters. This approach may be regarded as an exten-
sion of the approaches of Prangle [2017] and the previous section, and as an alternative to an
approach presented in Harrison and Baker [2020], who employ weights maximizing the difference
of prior and posterior approximation, using a slightly different ABC-SMC formulation and no-
tion of informativeness than used here (see discussion). Furthermore, we discuss the problem of
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non-existence of an inverse mapping for regression models due to non-identifiability, and present
a solution using augmented regression targets. On a dedicated test problem exhibiting multiple
problematic features such as partly uninformative data, heterogeneous data and parameter scales,
and parameter multi-modalities, we demonstrate how both scale-normalizing adaptive distances
based on Prangle [2017] and Chapter 5, and regression-based summary statistics similar to Fearn-
head and Prangle [2012] fail to efficiently approximate the true posterior distribution well, and
demonstrate substantially improved performance of the newly introduced approaches. Similarly,
on a more realistic and complex application example, we demonstrate their good performance,
and demonstrate the applicability of sensitivity-weighted distance functions to outlier-corrupted
data. On various common ABC test problems, we evaluate robustness.

6.2 Background: Regression-based summary statistics

In this chapter, we employ the notation of general parameter inference problem from Sec-
tion 2.1, and of ABC-SMC methods from Section 2.4. For simplicity of notation and as we
require no such distinction here, we assume that measurement noise is already incorporated
in y, i.e. π(ȳ|θ) = π(y|θ). In particular, let θ denote the parameters, yobs the observed data,
π(θ|yobs) ∝ π(yobs|θ)π(θ) the posterior distribution of interest, d or dt the ABC distance metric,
ε the acceptance threshold, and Pt = {(θti , yti , wti)}i≤N the population of accepted particles in
generation t.

As raw data generated by, especially spatial, models are often high-dimensional and noisy, in
ABC deriving low-dimensional informative summary statistics is often an essential task. The
“semi-automatic ABC” approach by Fearnhead and Prangle [2012] uses as summary statistics
the outputs of a linear regression (LR) model s : Rny → Rnθ , predicting parameters from
simulated data. While leaving room for customization, the method works roughly as follows:

1. In an ABC pilot run, determine a posterior high-density region H.

2. Generate a population P = {(θi, yi)}i≤Ñ ∼ π(y|θ)I[θ ∈ H], for some Ñ ∈ N.

3. Train a regressor model s : Rny → Rnθ , y 7→ θ, on P .

4. Run the actual ABC analysis using s as summary statistics.

Step 1 uses no or manually derived summary statistics and has the purpose of defining a good
training region for the regression model and can be skipped if the prior is informative [Fearnhead
and Prangle, 2012]. In Borowska et al. [2021], H = [0.5θ̃, 2θ̃] around a literature value θ̃, based
on manual prior experimentation, is used, which is generally not applicable as reliable literature
values are usually not available. In Jiang et al. [2017], the prior is used, in one case constrained
to an identifiable region, whereby step 1 is omitted. In step 4, the distance is then not in terms of
the full data or model outputs y, but their summary statistics representation, acceptance defined
as d(s(y), s(yobs)) ≤ ε.

In step 3, Fearnhead and Prangle [2012] employed a simple LR model on potentially augmented
data (specifically, on some problems taking also higher-order moments y1, . . . , y4 into account as
regressors), which they found to work sufficiently well. Jiang et al. [2017] and Borowska et al.
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[2021] respectively used neural networks (NN) and Gaussian processes (GP) instead, aiming at a
more accurate description of non-linear relationships, and further automating the generation of
summary statistics. Arguably, the observed sufficiency of the linear model in the “semi-automatic”
approach may be due to the substantial time spent in the pilot run, identifying a high-density
region, in which a linear model may be sufficient, while e.g. Jiang et al. [2017] observed a clearly
better posterior approximation using NN compared to LR. Also Borowska et al. [2021] reported
better model predictions of GP compared to LR and LASSO.

A theoretical justification of regression-based summary statistics is that the regression model
serves as an approximation to the posterior mean, e.g. for a linear model

s(y) = A · y + b ≈ Eπ(θ|y)[θ],

using which as summary statistic ensures that the ABC posterior approximation recovers the
actual posterior mean as ε → 0, the optimal Bayes estimator of θ under mean square error, see
Blum et al. [2013], Fearnhead and Prangle [2012], Jiang et al. [2017], or Theorem 6.1 in this
chapter, for details.

6.3 Adaptive and informative regression-based distances and sum-
mary statistics

In this section, we describe the novel methods presented in this chapter. Firstly, we describe a
framework for integrated regression model training with adaptive distance functions, secondly
we introduce sensitivity-weighted distance functions, and thirdly provide underlying theory on
the use of expectations of parameters or transformations thereof as summary statistics.

6.3.1 Integrating summary statistics learning and adaptive distances

In previous applications, the regression approach of Section 6.2 has been used together with uni-
form or on a previous run pre-calibrated distance weights [Borowska et al., 2021, Fearnhead and
Prangle, 2012, Jiang et al., 2017]. However, to the regression model outputs, as approximations
of parameter means, the same problems apply that motivated the scale-normalized adaptive dis-
tance approach in Prangle [2017] and Section 5.2, as parameters varying on larger scales can
dominate the analysis without scale adjustment, with potentially changing levels of variability
over ABC-SMC generations. In fact, all summary statistics being similarly informative, the
scale-normalized adaptive distance approach is particularly applicable.

Therefore, we propose to combine the regression-based summary statistics approach from Section
6.2 with the distance adaptation approach from Section 5.2, or its robust formulation from
Section 5.3. In principle, the regression model can be pre-trained as previously done. Here, we
however suggest to increase the level of automation and avoid the necessity of a pilot run by
integrating the regression model training into the actual ABC-SMC run (see Algorithm 6.1):
We begin by using the full model outputs as summary statistics (or some alternatively derived
summary statistics representation thereof), with an adaptively scale-normalized distance. Then,
in a generation ttrain ≥ 1, the regression model s : Rny → Rnθ is trained based on all particles
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{(θttrain−1
i , yttrain−1

i , wttrain−1
i )}i≤Ñ , Ñ ≥ N , generated in the previous generation. From t ≥ ttrain

onward, then the regression model outputs s(y) are used as summary statistics, further using
an adaptively scale-normalized distance metric with weights adjusted in each generation. The
training samples include, as for adaptive distance weight calculation, also rejected samples. While
this firstly increases the sample size used to train the regression model to typically a multiple of
the population size N depending on the acceptance rate, giving a more robust model, it secondly
gives a representative sample from the joint distribution of data and parameters, with parameters
restricted to a high-density region, but not confined to y ≈ yobs, as for the distribution of accepted
particles. As regression model, any model can be used, particularly including previously employed
LR, NN, or GP. ttrain may be pre-defined, or e.g. depend on the number of simulations performed,
or other criteria.

The delay of regression model training until after a few generations serves to focus on a high-
density region, similar to Fearnhead and Prangle [2012], such that simpler models suffice to
describe the relationship of data and parameters sufficiently well. Potentially, the model could
be retrained in later generations, or even in each generation. While Fearnhead and Prangle [2012]
update the prior in step 4 based on the range of values obtained in the pilot run, we consider
the prior as part of the problem formulation and thus do not update it. However, in generations
t ≥ ttrain the proposal distributions gt will suggest most of the values within the range of values
covered by Pttrain − 1, on which the model was trained, such that an explicit prior range update
should not be necessary.

While this approach gives a high level of automation, it should be noted that model training
may not always be possible to automatize, especially for more complex models such as NNs
depending on hyperparameters, in which case it may also be regarded as two workflows with
manual intervention at time ttrain.

6.3.2 Regression-based sensitivity weights

The scale normalization of the adaptive distance methods from Prangle [2017] may be, operating
on the full data, not ideal if data are not similarly informative. For example, there may be
uninformative data points that hardly correlate with parameter values, or there may be many
data points informative of one parameter, but only few informative of another parameter, such
that the analysis constrains the first parameter more, if all data points are weighted equally. The
adaptive distance method can even give worse performed than uniformly weighted distances, e.g.
when uninformative data points underlying only background noise of small variance, which would
usually hardly impact the analysis, are inflated. The regression model approach from Section
6.2 is one solution to obtain informative summary statistics, however it performs a complex
transformation of the model outputs, which may hinder interpretability, and perform badly if
the regression model is not accurate enough. In this section, we present an alternative approach,
namely to, instead of replacing the summary statistics by the regression model outputs, only use
the regression model outputs and inferred relationships to inform additional weights.

The idea is that we want to weight each data point by how “informative” it is of the underlying pa-
rameters. Informativeness we quantify via the sensitivity of how much the posterior expectations
of parameters, or transformations thereof, given observed data, would vary under perturbations
of the observed data yobs. As in Section 6.2, we use a regression model to describe the inverse
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Algorithm 6.1 ABC-SMC algorithm with regression-based summary statistics or sensitivity-
weighted distances
for t = 1, . . . , ttrain − 1 do
while less than N acceptances do

sample parameter θ ∼ gt(θ)
simulate data ȳ ∼ p(ȳ|θ)
accept θ if dt(ȳ, ȳobs) ≤ εt, where dt denotes a distance with adaptive scale weights r

end while
compute weights wti =

π(θti)

gt(θti)
, for accepted parameters {θti}i≤N

normalize weights W t
i = wti/

∑
j w

t
j

define gt+1 and εt+1 based on {(θti , ȳti ,W t
i )}i≤N , as well as dt+1 based on all generated

particles, if adaptive
end for
learn regression model s based on all generated particles {(θttrain−1

i , ȳttrain−1
i , wttrain−1

i )}i≥1

if using s to weight model outputs, define sensitivity weights q1, . . . , qny
for t = ttrain, . . . , nt do
while less than N acceptances do

sample parameter θ ∼ gt(θ)
simulate data ȳ ∼ p(ȳ|θ)
accept θ if dt(s(ȳ), s(ȳobs)) ≤ εt if using the regression model to construct summary
statistics, or dt(ȳ, ȳobs) ≤ εt if using s only to define additional weights for dt, in which
case dt denotes a distance using both scale weights r and sensitivity weights q

end while
compute weights wti =

π(θti)

gt(θti)
, for accepted parameters {θti}i≤N

normalize weights W t
i = wti/

∑
j w

t
j

define gt+1 and εt+1 based on {(θti , ȳti ,W t
i )}i≤N , as well as dt+1 based on all generated

particles, if adaptive
end for
output: weighted samples {(θnti ,W

nt
i )}i≤N

mapping from data or model outputs to parameters.

More specifically, before generation ttrain, as in Section 6.3.1, we learn a regression model
s : Rny → Rnθ on the samples {(θttrain−1

i , yttrain−1
i , wttrain−1

i )}i≤Ñ generated in the previous gener-
ation. As regression model inputs, we use normalized simulations y/σttrain , with σ the measure of
scale used in the adaptive distance formulation, e.g. based on the MAD (5.3). Further, we z-score
normalize regression model targets θ, in order to make the model independent of parameter scale.
Then, we calculate the sensitivity matrix

S = ∇ys(yobs) ∈ Rny×nθ (6.1)

at the observed data. To robustly approximate derivatives, we employ finite differences (Sec-
tion 2.3.2) with automatic step size control, by testing multiple step sizes and picking the one
minimizing the difference to adjacent ones. Then, we define the sensitivity weight of model
output coordinate iy as

qiy =

nθ∑
iθ=1

∣∣Siyiθ ∣∣∑ny
jy=1

∣∣Sjyiθ ∣∣ , (6.2)
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i.e. as the sum over the absolute sensitivities of all parameters with respect to model output
coordinate iy, normalized to one per parameter to level the impact of each parameter. This
normalization can be omitted, but may yield more conservative and robust weights, accounting
for the fact that the regression model may describe underlying relationships imperfectly, by
assigning more evenly distributed weights when all sensitivities of some parameters are small.

The final weight used in the distance function (5.1) is then given as the product of scale weight
(5.2) and sensitivity weight (6.2) as

riy = qiy/σiy , (6.3)

with here σiy e.g. given via the MAD (5.3), or, also taking into account bias via PCMAD, via the
CMAD (5.4). This separate treatment of scale and sensitivity weights allows to e.g. include the
error correction via CMAD (5.4) of Section 5.3 in the scale correction, but not in the normalized
data used for regression model inputs, which would lead to an inverse rescaling of sensitivities,
and thus simultaneously account for information content, and correct for outliers. Both scale and
sensitivity weights can be updated independently of each other. Here, we update the sensitivity
weights only once in generation ttrain (see Algorithm 6.1), as training especially of complex
regression models may be relatively expensive compared to parallelized model simulations, while
the scale weights are updated in each generation. Conceptually, the regression model could
however be updated in each generation as well, in particular when using computationally simple
regression models such as LR, or computationally expensive mechanistic process models.

An advantage of this approach compared to employing the regression models to define summary
statistics is that the data are not transformed themselves but only re-weighted. Thus, it is
less intrusive, and may be expected to be more robust against regression model misspecification.
Further, the obtained weights can be easily interpreted. Indeed, as long as all weights riy are non-
zero, the original posterior π(θ|yobs) can be conceptually recovered for ε → 0 by Theorem 5.1,
i.e. no information is lost, while practically convergence will clearly depend on the assigned
weights. Contrarily, information may be lost when insufficient summary statistics are employed.
Additionally, the weights ratio could be easily bounded to limit the impact of the regression
model, and ensure convergence in Theorem 5.1. Here, we did not apply a ratio bound, however
we set weights numerically close to zero to a tenth of the minimum non-zero weight, to ensure
that all coordinates contribute to the distance value.

6.3.3 Optimal summary statistics to recover distribution features

A problem with regression models of parameters on model simulations is that such a function
need not exist. For example, consider a model with y ∼ N (θ2, 0.12), with prior θ ∼ U [−1, 1], and
observed data yobs = 0.7. The problem is symmetric in θ, such that the posterior mean is given as
Eπ(θ|y)[θ] = 0. Using the posterior mean as summary statistic as in Blum et al. [2013], Fearnhead
and Prangle [2012] would clearly recover the correct mean of the true posterior, however fail to
adequately describe the, for yobs 6= 0 bimodal, posterior shape, such as its variance or higher-order
moments, which is usually of interest in Bayesian inference. Similarly, as the inverse mapping
y 7→ θ does not exist globally, given representative samples {θi, yi}i≤N ∼ π(y|θ)π(θ), a regression
model s : y 7→ θ cannot extract a meaningful relationship.

One approach of addressing the problem of lack of invertibility is to localize the regression



98 CHAPTER 6. INFORMATIVE ABC DISTANCES AND SUMMARY STATISTICS

model to a domain on which it is invertible, e.g. to θ > 0 in the above example. However,
data features learned on a subset of samples need not be informative elsewhere. Further, we
empirically found approaches to identify clusters in parameter-space, conceptually allowing to
identify multi-modalities if the data are sufficiently informative, e.g. based on Gaussian mixture
models with model selection over the number of components via AIC [Schwarz, 1978], to be not
robust enough, thus did not pursue this approach further.

An alternative is to, instead of only learning a mapping s : y 7→ θ which may not exist, also
consider transformations λ(θ) of the parameters, e.g. higher-order moments s : y 7→ λ(θ) =

(θ1, . . . , θk), which may be better described as functions of the data, or identifiable in the first
place. For the above example, it suffices to consider θ2 as regression target, giving a linear map-
ping and breaking the symmetry. While the use of parameter transformations as regression model
targets is heuristically reasonable, their use can be justified by considerations of the correspond-
ing posterior approximations. As pointed out by Jiang et al. [2017], employing as ABC summary
statistics posterior expectations of transformations of the parameters, s(y) = Eπ(θ|y)[λ(θ)], al-
lows to recover the corresponding posterior expectations for ε→ 0 in the population of accepted
particles. This is made explicit by the following

Theorem 6.1. Denote the joint distribution of parameters and data Θ, Y ∼ π(θ, y), with prior
marginal π(θ) =

∫
π(θ, y) dy, likelihood π(y|θ) = π(θ, y)/π(θ), and resulting posterior π(θ|y) =

π(θ, y)/π(y) = π(y|θ)π(θ)/π(y). Given a parameter transformation λ : Rnθ → Rnλ such that
Eπ(θ)[|λ(θ)|] <∞, define summary statistics as the conditional expectation

s(y) := E[λ(Θ)|Y = y] =

∫
λ(θ)π(θ|y) dθ .

Given observed data yobs, acceptance threshold ε, and assuming the distance metric d(s(y), s(yobs)) =

‖s(y)− s(yobs)‖ is norm-induced as in (6.2), denote the ABC posterior distribution

πABC,ε(θ|s(yobs)) ∝
∫
I[‖s(y)− s(yobs)‖ ≤ ε]π(y|θ) dy ·π(θ).

Then, it holds ∥∥EπABC,ε [λ(Θ)|s(yobs)]− s(yobs)
∥∥ ≤ ε, (6.4)

and therefore
lim
ε→0

EπABC,ε [λ(Θ)|s(yobs)] = E[λ(Θ)|Y = yobs]. (6.5)

Proof. Based on Fearnhead and Prangle [2012] and Jiang et al. [2017], a simple extension of the
argumentation in the latter. Note that s(y) is almost surely finite due to E[|λ(θ)|] < ∞ and
Fubini’s Theorem. As for the induced σ-algebras holds σ(s(Y )) ⊂ σ(Y ), s(Y ) is also a version
of the conditional expectation E[λ(Θ)|s(Y )], since

s(Y ) = E[s(Y )|s(Y )] = E[E[λ(Θ)|Y ]|s(Y )] = E[Θ|s(Y )]

by, respectively, measurability, definition, and tower property. Thus, denoting the acceptance
region

A = {‖s(Y )− s(yobs)‖ ≤ ε} ∈ σ(s(Y )),
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with E[λ(Θ)|A] = E[λ(Θ)1A]/E[1A], we have

EABC,ε[λ(Θ)|s(yobs)] = E[λ(Θ)|A] = E[s(Y )|A],

such that by Jensen’s inequality, given convexity of the norm,∥∥EπABC,ε [λ(Θ)|yobs]− s(yobs)
∥∥ = ‖E[s(Y )− s(yobs)|A]‖ ≤ E[‖s(Y )− s(yobs)‖ |A] ≤ ε.

(6.5) then follows directly from (6.4) by definition of s(yobs).

Therefore, e.g. for λ(θ) = (θ1, . . . , θk), the corresponding first k moments of the true posterior
distribution are recovered by an ABC analysis in the approximate limit ε→ 0, when taking the
posterior expectation s(y) = E[λ(Θ)|Y = y] as summary statistic. In the limit k →∞ for ε→ 0

and e.g. assuming the moment-generating functions exist, the approximate posterior would thus
converge to the true posterior.

Obviously, the conditional posterior expectations E[λ(Θ)|Y ] are hardly available for summary
statistics definition. However, we may interpret the above regression models as approximations
thereof. Using higher-order moments λ(θ) = (θ1, . . . , θk) as regression targets and given a suffi-
ciently accurate description of the underlying expectation by the regression model, we may thus
expect to approximately recover the corresponding posterior moments, or more heuristically, to
break symmetry and obtain a meaningful regression model y 7→ λ(θ). Thus, we propose to use
λ(θ) as regression model targets, both for summary statistics construction (Section 6.3.1), and
to define sensitivity weights (Section 6.3.2).

6.3.4 Implementation

We implemented all methods presented in this chapter in pyABC, in an extensible, modular
manner. In particular, we interfaced scikit-learn [Pedregosa et al., 2011], providing regression
models including in particular LR, LASSO, NN, and GP. The code underlying the study in this
chapter can be found on GitHub at https://github.com/yannikschaelte/study_abc_slad,
a snapshot of code and data is on Zenodo at http://doi.org/10.5281/zenodo.5522919. All
simulations were performed on the GCS Supercomputer JUWELS at Jülich Supercomputing
Center (JSC), using up to 384 cores in parallel.

6.4 Application to test problems

6.4.1 Considered distances and summary statistics

As ABC distance metric to compare model outputs or summary statistics, we considered, given
its robust performance in Chapter 5, an L1 norm, with MAD (5.3) based weights when employing
scale-normalization (“Ada.”, using the same notation as in Chapter 5), as well as occasionally
outlier-correcting PDMAD (5.4). As acceptance criterion in generation t, we only considered
dt, but not previous distances. This was for ease of implementation and as for an L1 norm

https://github.com/yannikschaelte/study_abc_slad
http://doi.org/10.5281/zenodo.5522919
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no substantial differences were observed in Chapter 5, however note that considering previous
acceptance criteria, giving nested acceptance regions, may improve performance further on some
problems.

As regressor models, we considered linear regression (LR), and, as a slightly more complex model,
a neural network (NN), using implementations in scikit-learn [Pedregosa et al., 2011]. Unless
stated otherwise, we trained the regression model as soon as 40% of the total simulation budget
had been reached. For comparison, we also considered training the regression model before
the initial generation, ttrain = 1, based on samples from the prior (“Init”). NN models were
considered with a single hidden layer of dimension [(ny + nθ)/2] with ReLU activation function
[Nair and Hinton, 2010], using ADAM stochastic gradient descent for optimization [Kingma and
Ba, 2015], and early stopping to avoid overfitting, using a validation set of 10% of the training
data. Both regression models used here were computationally comparably efficient compared to
the full ABC-SMC analysis, with run-times on the order of milliseconds (LR) and seconds (NN).

When employing parameter augmentation (Section 6.3.3), we used the first four moments, λ(θ) =

(θ1, . . . , θ4) (“P4”). We considered both regression for summary statistics construction (“Stat”,
Section 6.3.1) and sensitivity weight construction (“Sensi”, Section 6.3.2).

While data augmentation, e.g. including higher-order moments y2, . . . , y4, as regression model
inputs, can further improve performance, and was employed on selected problems in e.g. Blum
et al. [2013], Fearnhead and Prangle [2012], here we did not do so but rather considered the re-
gression model inputs as pre-defined, as their necessity is problem specific, and complex methods
such as NN may be assumed capable of inferring the corresponding transformations themselves
(unlike for regression target transformations).

For example, L1+Ada.+MAD+StatNN denotes an analysis using consistently, i.e. both before
and after regression model training, an adaptive distance with MAD scale-normalizing weights,
and using a neural network to construct summary statistics as soon as 40% of the total simulation
budget are reached, using λ(θ) = θ as regression targets, L1+Ada.+MAD+SensiLR+P4 uses an
adaptive distance function with MAD scale-normalizing weights, and uses an LR model to define
further sensitivity weights, using λ(θ) = (θ1, . . . , θ4) as regression targets, and L1+LR uses an
LR model for summary statistics construction, but does not normalize distance weights.

6.4.2 Performance on dedicated demonstration problem

To illustrate the different problems discussed and addressed in this chapter, we constructed a
comparably simple test problem combining different features that can be problematic for estab-
lished methods. The model possesses four parameters, θ = (θ1, . . . , θ4), with both informative
and uninformative model outputs:

• y1 ∼ N (θ1, 0.1
2) is informative of θ1, with a relatively wide corresponding prior θ1 ∼

U [−7, 7],

• y2 ∼ N (θ2, 1002) is informative of θ2, with corresponding prior θ2 ∼ U [−700, 700],

• y3 ∼ N (θ3, 4 · 1002)⊗4 is a four-dimensional vector informative of θ3, with corresponding
prior θ3 ∼ U [−700, 700],
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• y4 ∼ N (θ2
4, 0.1

2) is informative of θ4, with corresponding symmetric prior θ4 ∼ U [−1, 1],
however is quadratic in the parameter, resulting in a bimodal posterior distribution for
yobs,4 6= 0,

• y5 ∼ N (0, 10)⊗10 is an uninformative 10-dimensional vector.

The model dynamics are purposely simple, such that the inverse mapping can be captured com-
parably easily by regression models. The problem possesses the following potentially problematic
features:

• A substantial part of the data, y5, is uninformative, such that approaches not accounting
for informativeness of data may converge slower.

• Both data and parameters are on different scales, such that approaches comparing data, or,
via regression-based summary statistics, parameters, without normalization may be biased
towards large-scale variables. Further, e.g. the prior of θ1 is relatively wide, such that
pre-calibrated weighting is sub-optimal, as discussed in Prangle [2017].

• y4 is quadratic in θ4 and symmetric over the prior, such that the inverse first-order regres-
sion approaches as in Fearnhead and Prangle [2012] cannot capture a meaningful relation-
ship.

• While the distributions of y3 and y4 are such that the posterior distributions of θ3, θ4 are
identical, in solely scale-normalized approaches such as Prangle [2017] the impact of y4 on
the distance value is roughly four times as high as that of y3, leading to potentially uneven
convergence.

We studied the demonstration problem with synthetic data yobs,1, yobs,2, yobs,3, yobs,5 ≡ 0, yobs,4 =

0.7, using a population size of N = 4e3 with a total budget per run of 1e6 simulations. Obtained
posterior approximations using selected distance functions and summary statistics are shown in
Figure 6.1.

Solely scale-normalized distances on the full model outputs without informativeness
assessment converge slowly

The MAD scale-normalized adaptive distance L1+Ada.+MAD captured all posterior modes and
shapes, in particular the bimodality of θ4, correctly, however with large variances, because the
uninformative model outputs y5 were considered on the same scale as the informative model
outputs y1, . . . , y4, leading to an overall slower convergence (Figure 6.1 bottom). Further, while
the true marginal posteriors of θ2 and θ3 coincide, L1+Ada.+MAD assigned a substantially wider
variance to θ2, as only a single model output, y2, is informative of it, while four are of θ3, all on
the same normalized scale.

Non-scale-normalized distances converge unevenly

The analyses L1+StatLR and L1+StatNN not employing scale normalization described the
marginal posterior distributions of θ2 and θ3, which are on the same scale, well, however had a
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Figure 6.1: ABC marginal posterior approximations obtained for analyses using regression-based sum-
mary statistics (top, “Stat”) and sensitivity weights (bottom, “Sensi”) on the demonstration problem, using
an underlying L1 norm, uniformly weighted, and MAD scale-normalized distance weights (“Ada.+MAD”),
using a linear regression model (“LR”) or a neural network model (“NN”), and optionally transformed pa-
rameters θ1, . . . , θ4 as regression targets (“P4”).

substantially wider variance for θ1 (Figure 6.1 top). This is because in these analyses, regression-
based parameter estimates were used as summary statistics, but θ1 varies on a smaller scale.
In comparison, all analyses employing scale normalization of model outputs or regression-based
summary statistics described θ1, θ2, and θ3 roughly or almost similarly well, with the exception
of L1+Ada.+MAD, as outlined above.

Regression models not accounting for non-identifiability cannot approximate full
posterior

All analyses that employed regression models to either construct summary statistics or define
sensitivity weights, but only used the non-augmented parameters λ(θ) = θ as regression targets,
failed to describe the bimodal posterior distribution of θ4 well. This is because a global mapping
y4 7→ θ4 does not exist, such that regression models cannot detect a meaningful relationship,
corresponding to Eπ(θ4|y4)[θ4] = 0 for all y4. While this posterior mean is clearly captured, no
further distribution information is. In comparison, analyses considering higher-order moments
λ(θ) = (θ1, . . . , θ4) as regression targets (“P4”) captured the bimodality, as for this problem a
linear mapping θ2

4 ∼ y4 exists, or a quadratic one θ4
4 ∼ y2

4.

Novel approaches fit all parameters well

The analyses L1+Ada.+MAD+{Stat{LR/NN}/Sensi{LR/NN}}+P4 combining all methods in-
troduced in this chapter, i.e. scale normalization, regression models for summary statistics con-
struction or sensitivity weight definition, and regression target augmentation, provided the overall
best description of all posterior marginals, with roughly homogeneously small variances. For this
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Figure 6.2: Exemplary illustration of normalized absolute data-parameter sensitivities calculated for
the demonstration problem, using a linear regression model (left) and a neural network model (right),
for all regression targets θ1, . . . , θ4 with θ = (θ1, . . . , θ4) (respectively on the right), with respect to all
data coordinates y (respectively on the left). The absolute sensitivity matrix |S| (6.1) was normalized per
parameter, as in (6.2). The widths of lines connecting data and parameters, and corresponding endpoints,
are proportional to their respective absolute values. In particular, the heights of the respective left end-
points are proportional to the sensitivity weights qiy (6.2). Data types, e.g. y5,1, . . . , y5,10, and parameters
with their exponents, e.g. θ11, . . . , θ41, are grouped by colors.

model and considered inference scenario, no advantages of NN could be observed over LR, which
already provided good posterior approximations.

For L1+Ada.+MAD+Sensi{LR/NN}, parameter θ3 was slightly less well inferred compared to
L1+Ada.+MAD+Stat{LR/NN}, inverting the situation for L1+Ada.MAD, to a smaller extent.
This can be attributed to the fact that the latter approaches employ a one-dimensional interpola-
tion of the four-dimensional vector y3, and thus e.g. an approximation of the statistic 1

4

∑4
i=1 y3,i

which is sufficient of θ3, while approaches as the former ones, not employing a lower-dimensional
transformation, but only assigning (roughly equal) weights, are more subject to random noise
in the single simulations. This illustrates that when low-dimensional sufficient statistics firstly
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Table 6.1: Properties of test models used in Chapter 6: Identifier, short description, number of parameters
nθ and data points ny, population size N and maximum number of model simulation after which an
analysis was terminated.

ID Description nθ ny N Max. sim.
T1 Conversion reaction ODE model 2 10 1000 250000
T2 One informative and one uninformative variable 1 2 1000 25000
T3 g-and-k distribution order statistics, small 4 7 1000 250000
T4 Lotka-Volterra Markov jump process model, small 3 32 500 125000
T5 g-and-k distribution order statistics, large 4 100 1000 250000
T6 Lotka-Volterra Markov jump process model, large 3 200 500 125000

exist and can secondly be easily and accurately captured by regression models, employing explicit
dimension reduction can be superior to mere re-weighting.

Sensitivity weights permit further insights

The normalized absolute sensitivities (6.2) of parameters, or transformations thereof, with respect
to model outputs obtained using LR and NN models are visualized for the demonstration problem
for exemplary analyses in Figure 6.2. Overall, both regression models captured correlations of
model outputs and parameters well, and assigned large, albeit not completely homogeneous,
sensitivity weights to y1, . . . , y4 and lower ones to y5, with e.g. the weights for y1 and y2 roughly
equal, or at least comparable, to the sum of the weights for y3,1, . . . , y3,4. The description provided
by the NN model was overall slightly better, assigning lower weights to y5, and capturing e.g. the
mappings θ2

1 ∼ y1 and θ4
1 ∼ y1 slightly better, which the linear model cannot accurately emulate

without data augmentation (e.g. using also y2
1, . . . as regression model inputs). As seen above,

nonetheless the linear model sufficed for this problem to provide a good posterior approximation.
Sensitivities of θ1

4 and θ3
4 were, as expected, comparably small with respect to all variables.

The weight assigned to y4 was only roughly half the ones assigned to y1, y2 and y3, because θ1
4

and θ3
4 could not be accurately described. Correspondingly, θ4 had a comparably wider variance

under sensitivity-weighted analyses. This could be improved by not employing parameter-wise
normalization in (6.2), which however makes the analyses less robust to regression model mis-
specification (not shown here).

An analysis as performed here may in general serve to evaluate the plausibility of the used
regression model, and allow to obtain insights into underlying relationships of parameters and
model outputs, or elicit e.g. uninformative model outputs.

6.4.3 Evaluation on established test problems

To evaluate robustness and general performance of the proposed methods, we next considered
six test problems T1-6, not tailored to the challenges discussed in Section 6.4.2. Core model
properties as well as employed ABC-SMC population sizes N and total budgets of numbers of
simulations are given in Table 6.1.
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T1, T3, and T4 are problems M3, M4, and M5 from Chapter 5, respectively an ODE model of a
conversion reaction, and, based on application examples in Prangle [2017], g-and-k distribution
samples, and a Markov jump process model of a Lotka-Volterra model. T2 consists of two
observables, thereof y1 ∼ N (θ, 0.12) informative and y2 ∼ N (0, 12) uninformative, with wide
prior θ ∼ N (0, 1002), also taken from Prangle [2017]. T5 and T6 are variations of T3 and T4
with higher-dimensional data, based on application examples in Fearnhead and Prangle [2012].
T5 employs 100 order statistics out of 10,000 samples from a g-and-k distribution, with same
U [0, 10] priors on the four parameters A,B, g, k, considering ground truth values (A,B, g, k) =

(3, 1, 2, 0.5). T6 employs noise-free observations of predators and prey at 200 evenly spaced
time-points over the time interval [0, 20], estimating the three model parameters on linear scale,
considering narrower independent priors θ1 ∼ U [0, 2], θ2 ∼ U [0, 0.1], θ3 ∼ U [0, 1], and ground
truth values (θ1, θ2, θ3) = (0.5, 0.0025, 0.3).

We considered LR and NN regression models for both summary statistics construction and sen-
sitivity weight calculation, with and without scale normalization, and employing the regression
model either in a generation after 40% of the total simulation budget, or based on a sample
of size N from the prior before the initial generation (“Init”). As reference method, we con-
sidered scale-normalized L1+Ada.+MAD, which had performed well on problems T1+T3+T4
(Section 5).

We ran 10 repetitions of each inference setting on problems T1-6, using different model simula-
tions under ground truth parameters as observed data. As measure of quality of fit, we report
root mean square errors (RMSE) of the weighted posterior samples from the last ABC-SMC
generation, with respect to ground truth parameters (note all problem considered here are uni-
modal). The results are visualized in Figure 6.3.

Delay of regression model training advantageous on complex models

For the considered LR and NN models, regression model training on prior samples (“Init”) gave
for most problems substantially worse results than when trained after multiple generations, after
40% of the total simulation budget. One reason for this may be that only N prior samples
were used for training, compared to potentially more samples, including rejected ones, in later
generations. However, also when using only N training samples in the later-trained approach
(not shown here), results were better than in analyses training the regression model based on the
prior. Another reason may be that after multiple generations the bulk of samples is restricted to
a high-density posterior region, in which a simpler model, even a linear one, suffices to describe
the underlying relationships sufficiently well. Thus, this justifies empirically the approach by
Fearnhead and Prangle [2012] of using a pilot run to constrain parameters, and who found linear
models to be sufficient. Jiang et al. [2017], who based their regression model on the prior, used
firstly more complex NN models with three hidden layers of dimension 100, and secondly up to
a million training samples, giving training times on the order of minutes, intending to capture
the posterior mean accurately on the whole domain.

An exception was problem T2, on which an earlier use of regression models consistently improved
performance. This can be explained by the clear linear relationships of parameters and data in
this model, such that accurate regression models can be easily learned at any point in the analysis
and thereafter be beneficial. Further, by design the scale-normalized distances assign a small
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Figure 6.3: Median RMSE for the parameters of models T1-6 (columns) obtained for 15 inference methods
(rows), using an L1 distance, either uniformly weighted if unspecified, or with adaptive MAD scale
normalization (“Ada.+MAD”). As regression models we considered linear regression (“LR”) and neural
networks (“NN”), both to define summary statistics (“Stat”) and sensitivity weights (“Sensi”). Some
inference settings further used parameter transformations λ(θ) = (θ1, . . . , θ4) as regression targets (“P4”).
In some settings, the regression method was trained before the initial generation based on the prior
(“Init”), otherwise after 40% of the total simulation budget if unspecified. The first row contains solely
scale-normalized L1+Ada.+MAD as a reference method, followed by two blocks of three rows using
regression methods for summary statistics construction, using firstly LR and secondly NN, and then by
two blocks of four using sensitivity weights, using firstly LR and secondly NN. Reported values are median
RMSE values over 10 replicates, with grey lines indicating MAD values. Note that here we report median
RMSE values in order to depict typical behavior of the algorithms. However it should be noted that some
settings yielded occasionally substantially larger large RMSE values, especially for “Stat”, arguably due
to regression model misspecification (not shown).

weight to the informative statistic y1 in early generations due to the wide prior, such that the
analysis progresses slowly until the uninformativeness of y2 is recognized. This indicates that
criteria regarding at what point to learn and use a regression model for a given problem may be
of interest.

Scale-normalized distances improve performance for regression-based summary statis-
tics

As the comparison of L1+Stat{LR/NN} and L1+Ada.+MAD+Stat{LR/NN} shows, for many
problems the use of scale-normalized distances improved performance, particularly for T5 and T6,
while it was roughly similar for T1. An exception was again T2, where in fact a plain L1 distance
would be preferable over L1+Ada.+MAD at least in the first generations, for reasons outlined
above. However, the behavior in such cases is completely dependent on the relative scales of
informative and uninformative data points, such that scale normalization is generally advisable,
additionally taking into account informativeness, as shown here, unless a manual quantification
of the impact data points should have is possible and preferable.
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Sensitivity-weighted distances perform highly robustly

The analyses L1+Ada.+MAD+Sensi{LR/NN}(+P4) using regression models to define sensitivity
weights performed reliably, with RMSE values generally not far higher, but in some cases consis-
tently lower, than ones obtained by L1+Ada.+MAD. This indicates that, while the sensitivity
weighting could in those cases not improve performance, as sole scale normalization performed
efficiently enough already, the approach is highly robust. In some cases, specifically T2, which
had one clearly uninformative statistic, and arguably T5, which is a high-dimensional collection
of order statistics, did the sensitivity weighting improve performance. In other cases, specifically
T1, T3, T4, and T6, RMSE values for some parameters decreased, but slightly increased for other
parameters, indicating that the weighting scheme re-prioritized data points, but there were no
overall uninformative ones to identify.

Regression-based summary statistics can be superior but also more dependent on
regression model accuracy

In various cases, e.g. when trained in the initial generation, and consistently for T4, as well as us-
ing LR on T6, did regression-based summary statistics perform inferior to both L1+Ada.+MAD
and regression-based sensitivity weights. Arguably, in those cases the regression model was
not accurate enough to permit its outputs to serve as low-dimensional summaries, while the
sensitivity-based approach was more robust. However, in some cases, specifically for T1, and
two parameters of T6 using a NN, were RMSE values obtained using regression-based summary
statistics smaller than both with L1+Ada.+MAD and regression-based sensitivity weights. In
both cases, the data consist of repeated measurements along trajectories of species, with reaction
rates governed by the parameters. This indicates that if the lower-dimensional summary statistics
representation is accurate and informative of the parameters, then its use can be beneficial.

No clear preference for regression models or parameter augmentation on considered
problems

Overall, we found, for both regression based summary statistics and sensitivity weights, no clear
indication of preference for LR or NN, with LR performing more robustly in many cases, but
NN clearly preferable in some. A regression model selection scheme reliable in the considered
setting of relatively small sample sizes might thus be beneficial. Further, the use of augmented
parameters as regression targets did not substantially worsen, but did also not notably improve
performance for any test problem (note that none of them is multi-modal), however performed
inferior e.g. on T2, which has a clear linear mapping, such that the consideration of higher-
order moments may have complicated the inference. This indicates that the use of augmented
parameters as regression targets is robust, but if further information is available, a restriction to
e.g. first or second order may be beneficial.
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Figure 6.4: Posterior marginals for the 5 out of the 7 model parameters of the tumor problem showing
interesting dynamics. Top: Without outliers. Bottom: With outliers. The parameter values used to
simulate the observed data are indicated by grey dotted lines. With the exception of the ECM production
rate, which is zoomed in for visibility, the plot boundaries coincide with the employed uniform prior range.

6.4.4 Performance on application example

Next, we considered the agent-based model of tumor spheroid growth (model M6 from Section 5),
constituting a more realistic application example, and considering both outlier-free and outlier-
corrupted data. We employed the same simulated data as in the previous chapter, using a
population size of N = 500, with a computational budget of 150,000 simulations per analysis.

Given its computational complexity, on this problem we only considered selected approaches:
Using as reference method L1+Ada.+PCMAD from the previous chapter, we employed, given
the robust performance of linear models before, L1+Ada.+PCMAD+SensiLR(+P4) employ-
ing sensitivity weights, L1+Ada.+PCMAD+StatLR(+P4) employing summary statistics, both
with and without augmented parameters λ(θ) = (θ1, . . . , θ4) as regression targets, and fur-
ther L1+Ada.+PCMAD+StatNN and L1+Ada.+PCMAD+SensiNN+P4 using neural networks.
Note that here we used PCMAD (5.4) instead of MAD (5.3), in order to be able to identify
outliers.

Sensitivity weights improve performance and identify informative model outputs

The use of regression models for sensitivity weight definition improved performance on the tumor
model with outlier-free data over L1+Ada.+PCMAD, giving substantially lower variances for
the division rate and depth parameters while giving similar results on the remaining parameters
(Figure 6.4 top), and accepted simulations closely matching the observed data (Figure 6.5 top,
simulations). No differences could be observed between using only the parameters themselves
or higher-order moments (“P4”) as regression targets. Overall, here the analyses using linear
regression model gave slightly lower variances than the one based on a neural network.

On this problem, regression-based summary statistics worsened performance considerably com-
pared to L1+Ada.+PCMAD in the considered settings, indicating that the employed regression
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Figure 6.5: Fits as well as scale and sensitivity weights for multiple approaches on the tumor problem
on outlier-free (top) and outlier-corrupted (bottom) data. The respective upper rows show the observed
data (black), and, for each approach, 20 accepted simulated data sets (light lines) as well as the sample
means (darker lines) from the last ABC-SMC generation. Note that these are accepted simulations, not
predictions. The respective middle rows show the corresponding scale weights assigned to each data point
in the last generation, normalized to sum 1, and the bottom rows sensitivity weights, respectively only
for distances employing scale and sensitivity weights, and operating on the full dataset.

models did not provide a sufficiently informative low-dimensional representation, as obtained
posterior marginals had wide variances (L1+Ada.+PCMAD+StatLR(+P4), Figure 6.4 top), and
accepted simulations did visibly not match the observed data (Figure 6.5 top, simulations).

The overall structure of sensitivity weights assigned via linear models with and without param-
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eter augmentation, as well as a neural network model, was roughly consistent across multiple
runs (Figure 6.5 top, bottom row). Low weights were assigned to the fraction of proliferating
cells at large distances to the rim, indicating these, as suspected, as uninformative, and coun-
teracting the large weights resulting from scale normalization (Figure 6.5 top, middle row). In
contrast, high weights were assigned to the fraction of proliferating cells close to the rim, which
indeed vary considerable for other parameters, as apparent from the final simulations for e.g.
L1+Ada.+PCMAD+StatLR. Further, high weights were assigned consistently to the spheroid
radius after roughly two weeks, arguably when growth began to slow down. Moreover, as a
tendency high weights were assigned to the ECM density close to the rim, and the farthest point,
at which point, depending on the parameterization, the ECM density begins to quickly drop. In
conclusion, while the obtained sensitivity weights do exhibit some noise between adjacent points,
arguably due to the comparably low training sample size, overall patterns can be observed and
appear to be reasonable.

Robust performance on outlier-corrupted data

The use of sensitivity weights improved performance also on outlier-corrupted data, similar to the
outlier-free data (Figure 6.4 bottom). Here, we only considered L1+Ada.+PCMAD+SensiLR+P4.
Accepted simulations in the final generation matched the observed data more closely than those
for L1+Ada.+PCMAD (Figure 6.5 bottom, simulations). The PCMAD scheme correctly de-
tected and assigned low weights to outliers, independent of the sensitivity weights derived from
the regression model (Figure 6.5 bottom, weights), such that the combination of both methods
allowed to simultaneously account for outliers and informativeness of data. The overall shapes
of sensitivity weights were consistent across the outlier-free and outlier-corrupted problems.

6.5 Discussion

ABC relies on an efficient comparison of informative data features via summary statistics and
distance metrics. In this chapter, we discussed problems of scale-normalizing adaptive distance
metrics, as well as regression-based summary statistics. More specifically, we discussed problems
arising from partly uninformative data on adaptively scale-normalized distances, from parameters
on different scales on regression-based summary statistics, and from parameter non-identifiability
on regression model adequacy. To tackle these problems, we presented multiple solutions. Firstly,
we suggested employing scale-normalizing distance metrics on top of regression-based summary
statistics, to level the impact of different parameters. Secondly, and as an alternative to the
first solution, we presented novel sensitivity weights derived from regression models, measuring
the informativeness of data on parameters. Thirdly, we presented augmented regression targets,
using e.g. higher-order moments, as a solution to parameter non-identifiability.

On a simple test problem, we demonstrated substantial improvements of the novel methods
and their combination over established approaches. For the sensitivity-weighted distances, we
observed robust performance on various test problems, and in particular on a systems biological
application problem substantial benefits over approaches not accounting for data informativeness.
Compared to regression-based summary statistics, they were more robust to potential regression
model inaccuracy, and could thus be considered a practical alternative to dimension reduction
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methods. The latter can however be beneficial when low-dimensional informative statistics exist
and can be efficiently and accurately obtained.

Yet, there are numerous ways in which the presented methods can be improved. We would like to
stress that, while we presented multiple novel approaches and overcame limitations of established
methods, we do not claim our method to be out-of-the-box generally applicable.

A first and crucial aspect is the choice of regression model. While we observed simple linear
models to be often sufficient, especially when trained on a high-density region, in some cases
more complex models were superior, allowing to capture underlying relationships more accurately,
which are however at the same time likely more prone to overfitting. An investigation of more
complex models, or alternative model types such as multi-layer neural networks or Gaussian
processes, would be of interest. To pick among competing model candidates, a robust model
selection scheme, with out-of-sample evaluation e.g. based on cross validation, might be useful.

As more complex models usually require larger training data sets, the integrated ABC-SMC
scheme used in this chapter could be extended by an increased population size in generations
used for regression model training, to obtain more robust models. While increasing the training
set is straightforward to do in ABC, as it only requires continued sampling, there is a trade-off
of number of (expensive) forward model simulations employed for model training, and the ABC
inference itself, besides a trade-off of time spent in inverse regression model training or selection,
which can be not unsubstantial for e.g. high-dimensional neural networks or Gaussian processes
[Jiang et al., 2017], and again the ABC inference.

While in many cases we observed advantages of delaying regression model training to later gen-
erations and thus a smaller, high-density region in which simpler models may suffice to capture
underlying relationships, for simple models we observed improvements of an early use of regres-
sion methods to identify informative statistics. Thus, criteria on good time points for regression
model training would be of interest. Similar to adaptive distances, there could further be ben-
efits of repeated regression model training in multiple or all generations, especially when using
efficient, e.g. linear, models.

A further evaluation may be regarding the training sample generation. While Fearnhead and
Prangle [2012] employed a restricted prior sample, here we used unweighted samples from a
proposal distribution, itself an approximation to the posterior. It could be beneficial to account
for this discrepancy by importance weighting, which some regression models allow, or to employ
alternative methods of training sample generation.

Harrison and Baker [2020] introduced an alternative distance weighting scheme that maximizes
a distance between samples from the prior and the posterior approximation. More specifically,
given Ñ ≥ N samples, an objective function is formulated as, given distance weights, the
Hellinger distance between samples from the prior and samples corresponding to the N clos-
est model simulations, according to the weighted distance. This objective is then maximized
over the distance weights. It uses a different ABC-SMC scheme than in this chapter, generating
a fixed number of samples, out of which the closest ones according to the distance with optimized
weights are then accepted. While using a different notion of informativeness of model outputs,
as maximizing the difference from the prior, this approach is similar to the one presented in this
chapter, such that a direct comparison, in terms of robustness, information gain, and efficiency,
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would be of interest.

We employed purposely generic methods, e.g. accounting for up to fourth-order moments, al-
though in most cases a first- or second-order model would have been sufficient, and we employed
fully standardized and automated regression model training. Domain knowledge and manual
tuning may be beneficial for the definition of a more tailored and efficient analysis, similar to the
semi-automatic pipeline by Fearnhead and Prangle [2012]. Yet, robustly increasing the degree
of automation is valuable for ease of application.

In conclusion, we presented methods accounting for data scale and informativeness in the compar-
ison of observed and simulated data in ABC, and demonstrated improvements over established
approaches. All methods have been implemented in pyABC, facilitating their straightforward
application. We anticipate that methods such as the ones presented, which automatically nor-
malize and extract features of interest, can substantially improve performance of ABC methods
on a wide range of applications problems.



Chapter 7

Discussion

7.1 Summary

Mechanistic mathematical models are important tools in systems biology to describe and un-
derstand biochemical systems at a systems level and unravel underlying mechanisms [Kitano,
2002a]. Commonly, such models depend on unknown parameters that need to be estimated
by comparison of model simulations with experimentally observed data [Fröhlich et al., 2019,
Tarantola, 2005]. While complex and large-scale models have the potential to enable a more
holistic understanding of biochemical processes, their parameterization is challenging, requiring
the development of novel methods. In this thesis, we have developed multiple such methods for
specific challenges as posed in Section 1.2, in the context of ordinary differential equation (ODE)
models, and approximate Bayesian computation (ABC).

In Chapter 3, we combined the concept of hierarchical optimization with adjoint sensitivity
analysis, to efficiently identify optimal observable transformations and noise parameters, and
calculate objective function gradients for high-dimensional ODE models. Further, we derived
analytical formulas for optimal scaling factors, offsets and normal noise parameters, and provided
a more general perspective on hierarchical optimization. On an ODE model with thousands of
states and parameters, this approach showed orders of magnitude superior performance compared
to established approaches, facilitating parameter optimization and integration of heterogeneous
data sets.

In Chapter 4, turning to ABC, we demonstrated the pitfalls of not properly accounting for mea-
surement noise, and developed a broadly applicable, efficient, adaptive approach to perform exact
inference with ABC methods in the presence of measurement noise. On various test problems,
we observed up to orders of magnitude speed-up compared to established approaches, facilitating
exact inference for complex and high-dimensional problems for which this was formerly impos-
sible, for a broad spectrum of model types and noise models, and estimating noise parameters
alongside.

In Chapter 5, we tackled the problem of data outliers in ABC, demonstrating how established
approaches can give erroneous results. We developed a broadly applicable distance metric that
adapts to the problem structure by scale normalization, and is robust to outliers, or even allows
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for active online detection. On various test problems, we demonstrated robust and efficient
performance for outlier-free and outlier-corrupted data.

In Chapter 6, we developed a robust approach to weight data points by informativeness using
inverse regression models, and demonstrated advantages of accounting for both scale and informa-
tiveness using summary statistics or weighting schemes, yielding highly efficient ABC inference
approaches.

Taking a more general perspective, our contributions, and underlying motivations, can be sum-
marized as providing accurate inference methods efficiently and robustly applicable to a wide
range of problems: We firstly developed methods scaling to higher-dimensional or more complex
models, accurately accounting for measurement noise, and considered more generic situations,
thus allowing for the application to a wider range of problems. Secondly, we translated these
methods to efficiently and robustly applicable algorithms, in particular with automatic choice of
hyperparameters and robust performance on a wide range of problems types, thus avoiding the
need of manual problem-specific tuning, and enabling integrated workflows. Thirdly, we provided
open-source, documented and tested implementations of our algorithms in computational soft-
ware packages, thus enabling their translation to practice, and use by practitioners not familiar
with the specific details.

7.2 Outlook

We discussed specific results, implications and possible extensions of the single contributions
presented in this thesis already in Sections 3.4, 4.5, 5.5, and 6.5, see there for details. Taking a
more general perspective, ideas for further research included e.g. generalizations, e.g. of hierar-
chical optimization to constraints and more general problems, allowing to cover a wider field of
application problems. Algorithm improvements could enhance scalability, robustness and degree
of automation, e.g. of exact ABC inference by improved hyperparameter selection avoiding man-
ual tuning, or via improved regression model training for ABC sensitivity-weighting or summary
statistics construction, to facilitate integrated workflows. Combinations of different methods
could provide further synergies, e.g. of hierarchical optimization and mini-batching. Further,
methods presented here could be applied in different contexts. For example, adjoint hierarchical
approaches as employed in Chapter 3 could similarly be used for inference on spatial partial [Li
and Petzold, 2004], stochastic [Li et al., 2020], or neural [Chen et al., 2018] differential equation
models, or a hierarchical problem decomposition could similarly be employed in likelihood-based
sampling via marginalization of observable and noise parameters yielding a reduced sampling
problem, or conceptually even in likelihood-free methods, e.g. for noise parameters as used in
Chapter 4. Machine learning methods as employed in Chapter 6 could be generally beneficial to
provide insights into informativeness or as efficient surrogate models [Baker et al., 2018, Prescott
and Baker, 2021].

There are countless farther-reaching and complementary challenges. While there have been
substantial improvements to the calibration of complex stochastic and large-scale ODE models,
there are still substantial limitations. To develop and calibrate holistic models, large datasets
(e.g. Barretina et al. [2012], Eduati et al. [2017], Li et al. [2017]) are necessary, may however
not be sufficient. Complementary, information to constrain parameters or formulate priors, as
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e.g. provided in BRENDA [Schomburg et al., 2002] or SABIO-RK [Wittig et al., 2012] can be
used. Tools to automatically retrieve, evaluate, and map information from such public databases
for a given annotated model would be beneficial. Further, while the hierarchical multi-start
approach in Chapter 3 provided substantial improvements in optimizer performance, it is far
from an efficient and comprehensive coverage of the high-dimensional search space with several
thousand parameters considered. While an exhaustive search may be, at the moment, infeasible,
coverage could be improved by the development of scalable heuristic parallelized combined global-
local scatter searches [Egea et al., 2014] tailored to a limited computational budget. Further,
low-fidelity surrogate models could be systematically trained and used, both for ODE models
and especially for expensive agent-based simulators as commonly used in ABC, e.g. via coarse
discretization, using simplified mechanistic descriptions, or based on data-analytic machine learn-
ing approaches, to replace evaluations of the full high-fidelity model and guide the search [Latz
et al., 2018, Prescott and Baker, 2021]. Tools allowing to systematically do so would be of in-
terest and could improve applicability and scalability of in particular likelihood-free approaches
substantially.

From a method-development perspective, benchmark problems are important to robustly and
fairly evaluate and compare novel and established methods [Buchka et al., 2021]. While collec-
tions have been established e.g. for ODE models [Hass et al., 2019], similar efforts would be
beneficial to enhance method development in likelihood-free inference. Further, standardization
of problems and methods aids in particular reusability of data and models and interoperability
of methods and analysis pipelines, as well as reproducibility of results [Wilkinson et al., 2016].
While there have been efforts of standardization on various levels, many methods are still being
developed in closed environments, tailored to specific applications, or with walls raised e.g. via
programming language or API, obstructing application and comparison of methods. Commu-
nity standardization efforts would thus be beneficial to method and model development, and
application in general.

In conclusion, in this thesis we developed efficient, accurate, robust parameter inference meth-
ods for specific challenges in the context of ODE models and ABC. These provide substantial
improvements over alternative approaches, in some cases realistically facilitating efficient and
accurate inference for the first time, and open up new research possibilities and perspectives.
Therefore, we anticipate that the developed methods will contribute to a more holistic mechanis-
tic understanding of processes at a systems level, in systems biology and beyond.
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