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Abstract

Grid cells (GCs) in the rat entorhinal cortex display strikingly regular firing responses to the
animal’s position in 2-D space and have been hypothesized to form the neural substrate for
dead-reckoning. There is strong evidence that GCs are a part of biological path integration
system. In this thesis, we present a brand new accurate GC model based on a path integration
mechanism, a cyclically connected artificial neuronal network, and a continuous attractor
neuron network architecture. Our results show that GC model has high accuracy using
continuous attractor models and a cyclically connected artificial neuronal network, which
can be represented by a twisted torus, and allows the generation of regular triangular grids
sheet across the environment based on inputs, which is only according to agent’s velocity and
heading direction. These tessellations share same spacing and orientation, as neighboring
GC in the medial entorhinal cortex. A simple gain and bias mechanism allows to control the
spacing and the orientation of grids sheet, which suggests that these different characteristics
can be generated by a unique algorithm in the brain as inputs of place cells. A place cell is
a kind of pyramidal neuron within the hippocampus that becomes active when an animal
enters a particular place in its environment, which is known as the place field. Place cells
are thought, collectively, to act as a cognitive representation of a specific location in space,
known as a cognitive map. The difference between place cell and the grid cell is that, a grid
cell will periodically fire in different places in the environment. Anatomical connectivity
and recent neurophysiological results imply that GCs are the principal cortical inputs to
place cells in the hippocampus. In this article a model is proposed, in which place fields of
hippocampal pyramidal cells are formed by linear summation of appropriately weighted
inputs from entorhinal GC and the connection between them is determined by the method of
Hebbian learning.
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Kurzfassung

Gitterzellen im entorhinalen Kortex der Ratte zeigen auffallend regelmäßige Feuerreaktionen
auf die Position des Tieres im 2-D-Raum und es wurde angenommen, dass sie das neuronale
Substrat für die Dead-Reckoning bilden. Es gibt starke Hinweise darauf, dass diese Zellen
Teil des Integrationssystems für biologische Pfade sind. In diesem Artikel stellen wir ein
zyklisch verbundenes künstliches neuronales Netzwerk vor, das auf einem Pfadintegrations-
mechanismus und kontinuierlichen Attraktormodellen basiert und Gitterzellen auf einem
simulierten mobilen Agenten implementiert. Unsere Ergebnisse zeigen, dass die synaptische
Konnektivität eines Netzwerks basierend auf kontinuierlichen Attraktormodellen, die durch
einen verdrehten Torus dargestellt werden kann, die Erzeugung regelmäßiger dreieckiger
Gitter in der Umgebung basierend auf die Eingaben ermöglicht. Die Eingaben codieren
nur die Geschwindigkeit und die Richtung des Agenten. Diese Tessellationen haben den
gleichen Abstand und die gleiche Ausrichtung wie benachbarte Gitterzellen im medialen
entorhinalen Kortex. Ein einfacher Verstärkungs- und Vorspannungsmechanismus ermöglicht
die Steuerung des Abstands und der Ausrichtung von Gittern, was darauf deutet, dass diese
unterschiedlichen Eigenschaften durch einen einzigartigen Algorithmus im Gehirn als Ein-
gabe von Ortszellen erzeugt werden können. Eine Ortszelle ist eine Art pyramidenförmiges
Neuron im Hippocampus, das aktiv wird, wenn ein Tier einen bestimmten Ort in seiner
Umgebung betritt, der als Ortsfeld bezeichnet wird. Es wird angenommen, dass Ortszellen
gemeinsam als kognitive Repräsentation eines bestimmten Ortes im Raum fungieren, der
als kognitive Karte bezeichnet wird. Der Unterschied zwischen der Ortszelle und der Gitter-
zelle besteht darin, dass eine Ortszelle nur in einem bestimmten Bereich ausgelöst in einer
Szene wird. Anatomische Konnektivität und neuere neurophysiologische Ergebnisse deuten
darauf hin, dass Gitterzellen im medialen entorhinalen Kortex die wichtigsten kortikalen
Eingaben sind. In diesem Artikel wird ein Modell vorgeschlagen, bei dem Ortsfelder von
Hippocampus-Pyramidenzellen durch lineare Summierung entsprechend gewichteter Ein-
gaben von entorhinalen Gitterzellen gebildet werden und die Verbindung zwischen ihnen
durch die Methode des ’Hebbian Learning’ bestimmt wird.

iv



Abbreviations

HDCs Head Direction Cells
GCs Grid Cells
PCs Place Cells
EC Entorhinal Cortex
HC Hippocampus
MEC Medial Entorhinal Cortex
CANN Continuous Attractor Neuron Network
AHV Angular Head Velocity
LEA Lateral Entorhinal Area
PER Perirhinal Cortex
POR Postrhinal Cortex
LTP Longterm Potentiation
LTD Longterm Depression
STDP Spike-Timing-Dependent Plasticity
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1. Introduction

Fast and accurate navigation to a predetermined target location (such as homing and foraging)
is an important ability for animals to survive. And this ability is innate to most animals. Some
previous biological experiments have shown that animals that have damaged hippocampus,
enterorhinal cortex, and postsubiculum have lost the ability to navigate [1]. The ability to
determine and update one’s own position based on one’s own motion information in a space
environment is an important ability in biological navigation. It is in the medial entorhinal
cortex (MEC) that the researchers discovered cells related to self-localization, such as the
place cells (PCs) [2], grid cells (GCs) [3], head direction cells (HDCs) [4], border cells(BCs)
[5] and speed cells (SCs) [6]. These cells in the MEC may determine how we perceive and
remember where we are in the environment and the events we experience in that environment.
GCs and PCs respond to the animal’s location in the environment, BCs express the animal’s
proximity to geometric borders, SCs reflect the running speed of the animal, HDCs indicate
the orientation of the animal relative to the angle speed and landmarks in the environment.

As the foundation of a biological navigation system, GCs are found to Periodically fire in
relation to the animal’s position in the environment and the firing map present a regular
hexagon structure corresponding to the environment position [3]. It is the activities of these
cells that animals can perceive their own position in the environment. After we gradually
study the specific responses of these cell activities to the environment, it is important to
utilize those biological-inspired PC models [7] and GC models [8] to realize the activities of
these cells and fits the working methods of neurons. Among them, the realization of the GC
model is particularly important. One of the most used neuron model of GC is the continuous
attractor neuron network (CANN) [9]. Compared with other neuron models such as Leaky
Integrate-and-Fire Neuron [10], this model focuses more on the activities of cell populations
rather than on the activities of individual cells. This makes the model have better stability and
anti-noise performance. And for CANN, we have the corresponding hardware to calculate
[11]. This makes the entire neural model run efficiently, and the real-time performance of the
calculation can be fully guaranteed.

Although there are many CANN-based GC models [8] [12], which use velocity of ainimals
as the input to drive the GC model, they each have some their own problems, such as
unreasonable structure, large size, low accuracy, difficult to run on corresponding hardware
[11] and so on. For example, the driving method of GC model in [12] is unreasonable. Because
in this model, the input speed information will directly and accurately changes the synaptic
weights between neurons to achieve the purpose of driving the entire model. This method
does not conform to the existing neural network models, such as neuron model in [9] [10],
and it also violates the known real working mechanism of neurons in the brain. At the same
time, because of this method this GC model cannot run on CANN-based hardware [11].

1



1. Introduction

Therefore, there will be some obstacles in the future application of this GC model. In another
model [8], although its structure and driving method are very reasonable. However, due to
the lack of reasonable connections between the cells at the edges, it leads to great burden (128
×128) for calculation, resulting in the lack of efficiency of the entire model. There are a very
large number of different GCs in the navigation system, so that the animals can achieve the
purpose of positioning in the environment. If only a GC model requires a lot of neurons to
implement, then in future applications, this will be a problem that requires a lot of resource
to drive the GC model. At the same time, under such a huge structure, the accuracy of this
model is not good. As for accuracy, we can record the firing rate of GC to achieve the purpose
of path integration. The difference between the estimated trajectory and the real trajectory
indicates the accuracy of GC model. Under this GC model, the agent traveled 260 meters in
1800 seconds, resulting in an error of 15cm. This is not a very good result.

In this thesis, we are committed to proposing a more reasonable, more efficient and more
accurate model. The high-performance GC model can be used in many fields with the support
of corresponding hardware [11]. First of all, GC is an indispensable part of mammalian
navigation system. Creating accurate and efficient models of it is significance to the research
on biological navigation mechanisms. Second, The firing rate of GC is the input of many other
models such as PC model. Only when there are enough GC models and these GC models
are accurate enough, the PC model can be implemented. In the thesis, we also implement
the PC model using traditional methods [13]. However, limited to the existing computing
power of the computer, we used the ideal GCs outputs as the input of the PC model. This
PC model has very good performance, which proves that the PC model can run well with
a large amount of accurate GC input. In addition, the neuron network currently used in
automatic driving and navigation requires a large amount of calculation, which results in high
hardware requirements for the algorithm and a large energy consumption. At the same time,
the real-time performance of the algorithm cannot be guaranteed due to the huge amount
of calculation, however the real-time performance is very important for automatic driving
and navigation. Some neuromorphic hardware [14] [11] is more in line with the real working
mode of the biological brain. At the same time, it can solve the above problems well [15]. If
we implement a CANN on hardware [11], it can complete very complex real-time calculations
with less energy consumption. Therefore, the realizsation of efficient and precise GC and PC
models based on CANN network will play a very important role in applying the CANN to
automatic driving and navigation in the future.

Our main contributions of this thesis is that we have proposed a more reasonable, smaller,
more efficient, and more accurate GC model.

• Our new GC model is completely based on CANN and combined with a 3-dimensional
twisted ring structure. Different from the previous model [12], we newly added the shift
layers structure, and the speed information as input directly stimulates the shift layer,
thereby driving the entire GC model. And there is no need to change any structure of
model, such as synaptic weight. Because our GC model strictly conforms to the CANN,
it also can run on the corresponding hardware [11].

• Compared with another model [8], our model has smaller size yet higher accuracy. Only

2



1. Introduction

5× 18× 20 cells are needed in our GC model. In our GC model, agent traveled 2246.44
meters in 8000 seconds, and only produced an about 3.41cm error in the end. So we
only need to take up less hardware resources to achieve better results. This allows our
GC model to have better performance in future applications. Therefore our GC model
is a more reasonable and better model in future applications.

• In addition to our GC has a very good performance in the simulation environment, we
applied this GC to a real robot. We use the data collected by the sensors on the robot
as the input of the GC model, and the GC model also shows very good performance
on the robot. This laid the foundation for our future application of GC to the field of
robotics.

3



2. Biological Background

2.1. Spatial Cognition in Brain

Spatial cognition relates to cognitive processes in the brain required to support spatial
localization and navigation in animals and humans. It is believed that the brain builds an
internal cognitive map made up primarily of PC,GC and HDC as shown in Figure 2.1. Tolman
[16] proposed the idea of rats having an internal cognitive map. These studies were followed
by O’Keefe [17][18][2][19] who identified PC in the HC as the location of such a cognitive
map. Later studies put forward the concept of integrating the external information in the
environment and internal information into the rat as a part of the path integration system
[20] [21][22][23][24][25]. More recently, Moser and Moser [26][3][27] identified the existence
of GC located in the EC as part of a “neural odometry” system for rat navigation. Ranck [28]
discovered the existence of HDCs in the brain. Together, place, grid and HDC are believed to
provide for the underlying neural mechanisms required by the brain to build the cognitive
map.

Figure 2.1.: HC,Entorhinal Cortices (LEA – Lateral Entorhinal Area, and MEA – Medial
Entorhinal Area), Perirhinal Cortex (PER), and Postrhinal Cortex (POR) [25]

2.2. Place Cell

The experimental study of spatial representations in the brain began with the discovery of PC.
More than 35 years ago, O’Keefe Dostrovsky [2] reported spatial receptive fields in complex-
spiking neurons in the rat’s HC, which are likely to be pyramidal cells [29]. Whenever the rat
is in a certain location in the local environment (the place field of the cell), the cells in these
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2. Biological Background

locations will fire like in Figure 2.2. Neighboring cells fire at different locations, so in the entire
HC, the entire environment was represented in the activity of the local cell population.That is
to say, in a scene, which cell of PC fire represents a position of the agent in the environment
corresponding to this cell. This position is an allocentric position in the environment [30][31].
The same participated in the representation for different environments, but the relationship of
the firing field is different between one setting and another [17]. Inspired by Tolman [16], who
suggested that local navigation is guided by internal “cognitive maps” that flexibly represent
the overall spatial relationships between landmarks in the environment, and O’Keefe Nadel
[17] proposed that PC is the basic elements of a distributed allocentric map representation.
PC is suggested to provide the animal with a dynamic, continuously updated representation
of allocentric space and the animal’s own position in that space. We now have abundant
evidence from a number of mammalian species demonstrating that the HC plays a key role
in spatial representation and spatial memory [32][33][34].

Figure 2.2.: GC and PC. (Left) A GC from the EC of the rat brain. The black trace shows the
trajectory of a foraging rat in part of a 1.5-m-diameter-wide square enclosure.
Spike locations of the GC are superimposed in red on the trajectory. Each red
dot corresponds to one spike. Blue equilateral triangles have been drawn on
top of the spike distribution to illustrate the regular hexagonal structure of the
grid pattern. (Right) GC and PC. (Top) Trajectory with spike locations, as in
the left part. (Bottom) Colorcoded rate map with red showing high activity and
blue showing low activity. GC are thought to provide much, but not all, of the
entorhinal spatial input to PC [35].

2.3. Head Direction Cells

The activity of HDC found in the brains of freely moving rats have remarkable properties.
Regardless of the animal’s position in the environment, they will signal the instantaneous
head direction of the animal on the horizontal plane. [28][36] in Figure 2.3. The amazing thing
about this system is that its frame of reference is completely centered on the world, so it can
actually be used as a neural compass or gyroscope. In other words, we can obtain the specific
world direction of the agent in the environment through HDC activities. Even in a completely
dark environment, the internal representation of the head orientation maintained by these

5



2. Biological Background

cells is constantly updated according to the animal’s head movement [37][38]. The cell’s
functionality can be maintained without visual cues, only using self-movement information.
This process is called path integration. Angular Head Velocity (AHV) cells which respond to
the animal’s angular velocity were also found and could play a role in driving the HDC’s
behavior [39].Usually they are used as input of HDC. In the updated research, we found that
HDC can use familiar landmarks to reset or calibrate the internal direction [36] [40] [41] [42].
But there are some restrictions. McNaughton [43] hypothesized that visual cues exert control
over the direction sense only after the rat has learned a stable mapping between the visual
information and the head direction information.

Figure 2.3.: Color-coded direction-specific firing rate maps for one head-direction cells. The
maps set at the vertices of an octagon represent the spatial firing pattern that
was observed while the animal’s head pointed in the 45◦ range centered on
the arrows pointing toward each map. The map is for 0◦, it is centered at
the 3 o’clock position, with increasing degrees (and map numbers) proceeding
counterclockwise around the octagon. The map in the middle is a composite
firing rate map (i.e., direction-independent) that shows the overall average spatial
firing pattern. The regions of low firing in the composite maps are the result of
the animal’s inability to put its head into that region while the head points in the
preferred direction. Median firing rates for color-coded rate categories are given
in the order orange, red, green, blue, purple. The firing rate for yellow-coded
pixels was zero. All firing rates are in spikes/sec. A, Direction-specific maps: 1.9,
15.0, 51.4, 85.0, 111.0. Composite map: 3.5, 10.0, 16.9, 25.7, 42.0. [36]

6



2. Biological Background

2.4. Grid Cells

All subfields of the hippocampal region contain place-modulated neurons, but the most
distinct firing fields are found in the CA areas [44], which is shown in Figure 2.1, on the
basis of the apparent amplification of spatial signals from the EC to the CA fields [45]. Until
recently, many researchers believed that place signals mainly depended on calculations in
the HC network. This view was challenged by the observation that spatial firing persisted
in CA1 neurons after removal of intrahippocampal inputs from the dentate gyrus [46] and
CA3 [47]. This raised the possibility that spatial signals were conveyed to CA1 by the direct
perforant-path projections from layer III of the EC. Projection neurons in layers II and III
of the medial entorhinal cortex (MEC) were subsequently shown to exhibit sharply tuned
spatial firing, much like PC in the HC, except that each cell had multiple firing fields [26].
The many fields of each neuron formed a periodic triangular array, or grid, that tiled the
entire environment explored by the animal [3] in Figure 2.2. Such GC collectively signal the
rat’s changing position with a precision similar to that of PC in the HC [26]. The graphics
paper–like shape of the grid immediately indicated GC as possible elements of a metric system
for spatial navigation [3], with properties similar to that of the allocentric map proposed for
the HC more than 25 years earlier [17].

Each grid is characterized by spacing (distance between fields), orientation (tilt relative to
an external reference axis), and phase ( displacement relative to an external reference point).
Although cells in the same part of the MEC have similar grid spacing and grid orientation,
the phase of the grid is nontopographic, i.e., the firing vertices of colocalized GC appear to
be shifted randomly, just like the fields of neighboring PC in the HC. The spacing increases
monotonically from dorsomedial to ventrolateral locations in MEC [3], mirroring the increase
in size of place fields along the dorsoventral axis of the HC. Cells in different parts of the
MEC may also have different grid orientations [3], but the underlying topography, if there
is one, has not been established. Thus, we do not know whether the EC map has discrete
subdivisions. The EC has several architectonic features suggestive of a modular arrangement,
such as periodic bundling of pyramidal cell dendrites and axons and cyclic variations in
the density of immunocytochemical markers [48], but whether the anatomical cell clusters
correspond to functionally segregated grid maps, each with their own spacing and orientation,
remains to be determined.
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3. Related Work

Below I will introduce the main implementation methods of PC, HDC and GC. And a neural
model on which these methods are based.

3.1. Continuous Attractor Neural Network

Continuous attractor neural network (CANN) is an important method for us to realize
GC, HDC and PC. ’Attractor’ refers to the active stationary state that a dynamic system
can maintain by its own dynamics without receiving external input. It is widely regarded
as the way the nervous system expresses information. Of course, the real neuron system
does not require a stable state in the strict sense, and the attractor network is just an
idealized mathematical model used for research convenience. Interestingly, unlike the usual
experimental findings promoting theoretical research, the development of CANN’s theory is
ahead of the experiment. As early as the 1970s, several pioneers of computational neuroscience
Wilson, Cowan, and Amari proposed the CANN model from a purely theoretical point of
view and studied its mathematical properties [49] [50]. In the 1980s, more mathematics and
physicists joined in, which further promoted the study of the dynamic properties of CANN
[51][52]. However, the wide application of CANN in neural information processing modeling
began after the 1990s. Classic successful examples include the mental rotation phenomenon
of motion direction coding [53], visual orientation tuning [54], and head orientation coding
[55] etc. These modeling work proves the importance of CANN in neural information. The
most direct experimental evidence for CANN has appeared in recent years [56][57][58] [59].

3.1.1. Mathematical Model of Continuous Attractor Neural Network

To form an attractor network, two basic conditions are required: First, there are excitatory
recurrent connections between neurons. Without external input, it depends only on the
positive feedback between neurons, the network can maintain stable activities. At the same
time, we also require the excitatory connection to be local, so as to form meaningful spatial
local activities. second, the network must have an inhibitory effect, so as to prevent the
system activity from exploding due to repeated positive feedback. After adjusting the ratio
of excitement and inhibition, an attractor network is formed. The Amari-Hopfield model
uses the idea of attractors to explain the associative memory mechanism of the brain under
the condition of receiving partial or fuzzy information [60]. However, the classic Hopfield
model does not consider the symmetrical structure of the connections between neurons, so
the attractors are isolated from each other in space. On the basis of the attractor network, if
we further require that the connections between neurons have a symmetrical structure with
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spatial translation invariance, then the network will have a cluster of continuous attractors
instead of isolated. Considering the real The number of nerves in a biological system is large
enough. For convenience, the following discussion assumes that the number of neurons is
infinite, these attractors are closely arranged in the parameter space to form a continuous state
subspace. This is where the name "continuous attractor" comes from [52]. Mathematically, it is
easy to construct a high-dimensional CANN, but due to the limitation of the two-dimensional
cerebral cortex on the distribution of neurons, usually we only use one-dimensional or two-
dimensional CANN. Birds due to the need of flight, their spatial positioning system may
use 3D CANN. There are several neural models of CANN, which will be introduced in the
following chapters.

3.1.2. The Dynamic Properties of Continuous Attractor Neural Network

The special structure of CANN determines its special dynamic properties, which in turn
determines the calculation functions it can achieve. We can intuitively understand CANN’s
unique dynamic properties. We consider HDC. An HDC has a cluster of Gaussian wave
packets in the steady state (Figure 3.1 A), which form a one-dimensional energy-smooth
subspace in the system state space (Figure 3.1B). In this subspace, because the energy function
is smooth, the system state is in neutral stability, which means that the system can easily
change its state under the drive of a small external input[61] [62]. Note that this property is
not possessed by other discontinuous attractor networks such as Hopfield networks. This
neutral stability is the key to CANN dynamics. It enables the network state to smoothly track
the external motion input, thus realizing multiple calculation functions.

So we sum up two characteristics of cann: First, it is stable when there is no additional
output, and this is its stability. Second, his stable state is very easily changed by external
input. This is its sensitivity. These two characteristics make it very suitable for the realization
of PC, HDC and GC.

3.1.3. Calculation Function of Continuous Attractor Neural Network

The reasonable biological structure and dynamic properties of CANN make it a commonly
used model to simulate the process of neural information processing. There is a lot of neural
modeling work related to CANN. I will give some examples to illustrate.

3.1.3.1. Neuron Group Coding

Experiments have found that for many types of stimuli, especially continuous variables, such
as angle, spatial position, etc., the coding strategy of the neuron system is: a large group of
neurons work together to code the stimulus value, and the response of each neuron covers a
certain range of stimulus value and it has the maximum response to a specific value (shown
as a Gaussian tuning function) in Figure 3.1. the tuning function of the neuron group covers
the entire parameter space. When an external stimulus is presented, a group of neurons
react to average out the ubiquitous noise. CANN just provides a very natural network
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implementation mechanism for this group coding strategy: the neuron group involved in
coding is connected to form a CANN. when there is external input, the network enters an
attractor, that is, a Gaussian wave packet is generated. Because it is an attractor, the noise
is removed, and the vertex position of the wave packet gives the result of neural network
decoding [63][64]. Theoretical analysis shows that the decoding algorithm implemented by
CANN is "template matching", which can also be regarded as "unfaithful decoding" while
ignoring neuron-related activities [65][66]. This is also the main method we used in HDC, GC
and PC.

3.1.3.2. Multimodal information integration

The brain uses a variety of sensory organs such as eyes, ears, nose, touch and balance
to perceive the external world. These sensory organs extract information from external
stimuli through different physical, chemical, mechanical and other signals. This information
should be integrated in the brain to help us understand the external world more reliably and
comprehensively. A large number of behavioral experiments have shown that the brain does
integrate and optimize multi-modal information. From a computational point of view, when
integrating these signals with different attributes or characteristics, the brain needs a common
information expression mode to exchange information with each other. CANN, in which
information is uniformly expressed as neural group activity wave peaks, provides a possibility
for multi-modal information integration. Wu studied the neural network model that integrates
vision and balance information are inputs of the heading direction model [67]. Based on
the experimental data, a decentralized computing model is proposed, in which CANN on
first CANN mainly accepts visual signals, while another CANN mainly accepts balanced
signals, and the two CANN exchange information through a long-distance connection. Recent
research shows that two coupled CANNs can achieve Bayesian optimization of information
integration and statistical optimization of information separation[68][69]. CANN can be used
for information expression, storage, calculation, and communication in the brain Unified
network framework.

This provides the possibility for us to use vision, balance and other information to Calibrate
GC and HDC in the future.

3.1.3.3. Hardware Implementation of Continuous Attractor Network

Since CANN has a biologically reasonable structure and powerful computing functions, it is
not difficult to imagine that scientists will try to implement it on hardware. Indeed, as early
as 2000, MIT’s Seung and his colleague had implemented CANN with simple circuits, but
due to the limitations of the technology at that time, only a dozen neurons were used, and no
truly valuable functions were realized[11]. In recent projects, brain-like computers already
have tens of millions of neurons and synapse[70]. It is precisely because of the gradual power
of brain-like computers that our calculations can be negligible fast. This is also the biggest
advantage of the third-generation neural network (spike neural network).
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Figure 3.1.: A continuous attractor neural network (CANN) model.(A) An illustration of a
one-dimensional CANN, which encodes a continuous variable (e.g. orientation
or direction) x in the region of (−π, π] with the periodic condition. Neurons
are aligned in the network according to their preferred stimuli. The neuronal
connection pattern J(x, x′) is translation-invariant in the space. The network can
hold a continuous family of bump-shaped stationary states (B). The stationary
states of the CANN form a subspace in which the network states are neutrally
stable. The subspace is illustrated as a canyon in the state space of the network.
The movement of the network state along the canyon corresponds to the position
shift of a bump.
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3.2. Spatial Cognition Modeling

Various spatial cognition models have been developed in the past 30 years. Most of these
models are based exclusively on PC models, while some provide some level of integration with
GC and HDC. These models are further discussed in [71] [72] [73][74][75][76][77][78][79][80].
These models evaluate different aspects of spatial cognition including in some cases using
both simulation and robotics experimentation. The rest of this section describes a spatial
cognition model as a example, which is summarized in Figure 3.2. In the latest research,

Figure 3.2.: The diagram describes an extension to the original Barrera and Weitzenfeld [72]
spatial cognition model.

An important aspect of spatial cognition model is that it relates spatial cognition processes
including learning and memory by:

• Interaction of different brain structures to demonstrate skills associated with global and
local localization in space. Such as the activity of GC are inputs of PC.

• Path integration by GC.

• the use of kinesthetic and visual cues during orientation.

• generation of topological-metric spatial representation.

• adaptation using Hebbian learning[81], for example in PC.

• Management of rewards by use of reinforcement learning using an Actor-Critic architec-
ture[82].The learning architecture is complemented by applying backward reinforcement
to successful routes followed by the agent during training thus enabling learning of
explored routes. After exploration, the model exploits maximum reward expectations to
guide the agent towards the goal from any given departure location. Additionally, the
model implements an on-line learning process to adapt the cognitive map to changes in
the physical configuration of the environment.
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Here are a few models that are frequently mentioned and applied in this article

• HDC module receives kinesthetic information in the form of agent’s angular speed.
Additionally, a reset mechanism provides recalibration feedback from the World Graph
to the HDC module to prevent HDC activity from drifting over time. HDC provides
GC with the direction of the agent in the environment.

• GC module, corresponding to the EC. It receives kinesthetic information in the form of
agent speed and orientation. Additionally, a reset mechanism provides recalibration
feedback from the World Graph to the GC module to prevent GC activity from drifting
over time. Compared with the existing industrial navigation system, GC is equivalent to
being used as an odometer. And it can use visual and other information for calibration.

• PC module, corresponding to the HC. it receives input from GC. Connections between
different PC layers are strengthened by Hebbian learning[81]. It also represents the
world coordinate position of the agent in the local environment.

3.3. Head Direction Cells Modeling

Among the HDC models I know, the one-dimensional CANN model is used more. In this
model, each cell represents a preferred direction. HDC are cells sensitive to a preferred head
direction, they spike maximally at their preferred orientation. The CANN model was first
described in [83] to explain directional tuning in HDC. Although there are many models of
HDC, many of them have similar structures in Figure 3.3. Among them, we can see that the
activity of HDC presents a peak. The preferred direction corresponding to this peak is the
direction of the agent in the environment. The connection strength between HDC neurons is
very clearly explained in [55]. It is also the basis of many HDC models.

Figure 3.3.: Head direction network with one group of transition neurons[84]
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3.4. Grid Cells

GC are located in the MEC and have arbitrary field sizes and spacing. Mapping GC activity
onto the respective trajectory creates a hexagonal pattern. An essential characteristic of this
hexagonal pattern is the independence of its speed and head direction, ie. the distance
between fields remains constant even across environments. Given input from speed cells and
HDC, GC encode the relative position, ie. the distance and direction between two reference
positions. Both speed cells and HDC are among other locations situated in the MEC as well
and are functionally constant across the environment. Speed cells adjust the frequency of
firing based on the speed of movement. The input of the GC model is the linear velocity of
the agent and the direction of the HDC Figure 3.4. In this way, we can get the linear velocity
of the agent in the world coordinate system. Below I will introduce several common models
for implementing GC.

Figure 3.4.: The input of GC

• Attractor Network Models The earliest and the basis of many HDC is from these two
articles[86][55]. In these models, the cells are arranged in a ring structure. Each cell has
a corresponding direction. Its neighbors generally give it a positive connection, and the
strength of this connection gradually decreases with the increase of the distance between
them, and eventually becomes a negative strength connection. At this time, the shape of
the HDC activity is shown in Figure 3.3. When we design an additional input to HDC
to offset the connection between HDC, then the entire peak will also move, and so the
network is able to effectively track the orientation of the head. With the subsequent
discovery of GC, the 1-D ring attractors were extended to two dimensions[21]. The
CANN structure of GC will be explained in detail in later chapters.
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Figure 3.5.: Adaptation model for GC. The figure shows changes in the synaptic weights as an
animal navigates a linear track according to the adaptation model. In each panel,
the circles represent spatially selective cells (e.g., PC in the HC), and the square
represents a GC. Red indicates high firing rates, yellow indicates moderate firing
rates, and gray indicates little or no activity. (a)As the animal starts on the left
side of the track, the second cell from left, which is most selective to the current
position of the animal, is maximally active, whereas its two neighboring cells
are less active, and those more to the right of the track are inactive. If the initial
connections are all the same, this leads to firing of the GC and strengthening of the
couplings between the active spatially selective cell and the GC, as indicated by
the plus signs next to the connections. (b) As the animal moves to the right of the
track, a different set of cells become active, but their activity does not lead to GC
activity, as the GC is now adapted after being active in panel a.This consequently
leads to suppression of the synaptic weights from the active spatially selective
cells to the GC, as indicated by minus signs near the connections. (c) The GC
has now recovered from adaptation, and the same scenario as in panel a is now
repeated for the cells to the rightmost part of the track. (d) Repeated traversals
along the track lead to a mature system, with strong and weak connections
represented by the thicknesses of the lines. A similar mechanism of adaptation
will make neurons selective for regularly distanced positions in two dimensions:
Periodic bouts of activation and fatigue cause some spatial cell–to–GC connections
to strengthen and others to weaken, which in turn creates circular fields with
minimal interfield spacing (i.e., a hexagon). In the real world, the alternating
periods of activation and fatigue will not occur in precisely the same place every
time because of behavioral variability, but this is averaged out over multiple runs
through the environment. Consistently faster running in a given direction when
the grid network is formed in developing animals might lead to architectures that
support elongated grid[85]
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• Adaptation Models In its simplest form, this type of model relies on the idea that
a single cell can generate a grid pattern. In the simplest version of the model[5],
a single GC receives convergent input from PC inputs that follow simple Hebbian
learning rulesFigure 3.5. The key part of the model is GC adapt to spike frequency,
creating the required competition suggested by Turing. As a result of this simple
arrangement, the model MEC cells gradually acquired a hexagonal emission pattern,
The spacing of the grid pattern depends on the peak frequency adaptation. During
training an adaptation mechanism ensures that the connections from sets of place fields
are alternately strengthened and weakened. The GC first adapts to a set of place fields
While traversing the next set of place fields the adaptation to the previous set inhibits
the adaptation mechanism while gradually decreasing itself . But I personally think this
method is far-fetched. Because if there is no GC input, how can there be PC activity.

• Oscillatory-Interference Model According to [87] basic single cell model consists of two
or more oscillators: a baseline oscillator oscillating at a constant frequency and others
varying its frequency of oscillation based on speed. Then compare the interference
modes of the two oscillators with the threshold, and the unit will fire if the threshold is
exceeded. This in turn means that when some oscillators are in-phase the cell spikes.
this model can be extended by using dendritic oscillators at 60 degree angles to create
the hexagonal firing pattern. A major problem with this more complex model is phase
lock, which can be solved by using neuron populations instead of compartments[88].
Another shortcoming of this model is the lack of interdependence between GC[88].

3.5. Place Cells

according to [7] We can know that the input of PC is GC. We can determine the agent’s
position in the entire environment by GC with different spacing, orientation and phase in
[89] in Figure 3.6. The connection strength between GC and PC, PC and PC can be obtained
by Hebbian learning.

3.5.1. Hebbian Learning

Hebbian theory is a neuroscience theory that explains the changes in neurons in the brain
during the learning process. This theory [90] describes the basic principle of synaptic plasticity,
that is, the continuous and repeated stimulation of presynaptic neurons to postsynaptic
neurons can lead to an increase in the efficiency of synaptic transmission. That is to say, the
continuation and repetition of the fire of neurons will lead to the lasting improvement of
neuron stability. When the axon of neuron A is very close to neuron B and participates in the
repeated and continuous excitement of B, these two neurons or one of them will undergo
certain growth processes or metabolic changes, causing A to be one of the cells that can excite
B, and at the same time the connection between them becomes more strong.

This theory also serves as the basis of the Spike Neural Networks and is the basic learning
theory of Spike Neural Networks. According to the different neural models, we mainly have
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Figure 3.6.: Nested interval scheme. Example with three clearly different spatial periods and
three discrete phases each. The first module gives coarse spatial information that
is further refined by the other two modules. By themselves, the other modules
provide ambiguous spatial information on the range; together, they effectively
subdivide the unit interval.

two Hebbian learning rules. The first is that the entire neuron system is completely based on
impulse signals and use integrate-and-fire neurons[91]. The other is a neuron system based
on the firing rate of cells[92].This model pays more attention to the activities of neuronal
population.

3.5.1.1. Spike-Timing-Dependent Plasticity

Longterm Potentiation (LTP) describes the longterm strengthening of a synapse based on
co-activity of pre- and postsynaptic neurons within a certain time window and with the
contribution dependent on the temporal proximity of co-activity. While Longterm Depression
(LTD) describes the longterm weakening of synaptic strength [10]. Spike-Timing-Dependent
Plasticity (STDP) makes use of LTP and LTD dependent on the relative spike times of pre-
and postsynaptic neurons.

According to [93], in STDP strenghtening and weakening is modelled by a scalar weight
parameter in Figure 3.7.

∆w(∆t) =

 A+ exp
[

∆t
τ+

]
∆t < 0

−A− exp
[
−∆t
τ+

]
∆t > 0

(3.1)

Where ∆t = tpre − tpost is the interval between pre- and postsynaptic spike times, with tpre is
the last spike time of presynaptic and tpost is the last spike time of postsynaptic. A+, A− are
the scaling factors and τ+, τ− are the time constants for LTP and LTD window. That is to say
when ∆t < 0, ∆w > 0 the synapse is strengthened. On the contrary, when ∆t > 0, ∆w < 0 the
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synapse is weakened. In summary, when the last spike time of presynaptic is before the last
spike time of postsynaptic, the synapse is strengthened, Means that the spike of presynaptic
cause the spike of postsynaptic.

100 75 50 25 0 25 50 75 100
t(ms)

0.004

0.002

0.000

0.002

0.004
w

Figure 3.7.: Weight modifications based on STDP. A+ = A=0.005, τ+ = τ=20ms. ∆t < 0 shows
weight modifications based on LTP. ∆t >= 0 shows weight modifications based
on LTD.

3.5.1.2. Hebbian Synaptic Rule Based on Firing Rate Model

Another network that uses firing rate as the basis of neuron model in section 4.1 will have
another learning rule. There are a lot of learning rules based on the firing rate, I just introduce
two of them in this section. These rules do not emphasize the determination of causality
between cells through learning. As mentioned above,like A can make B fire. Because they
don’t consider spike time at all, only the firing rate of the cell. When their firing rates are
both large at the same time, we will strengthen the strength of the connection between them.
If the opposite is the case, it will reduce the strength of the connection between them.

• Spike product rule: A learning rule according to [13]:

wij(t + 1) = wij(t) + cxi(t)xj(t) (3.2)

where xi(t) and xj(t) are the mean firing rates of the post- and presynaptic neurons
like in section 4.1 and c is a proportionality constant that determines the learning
rate. The three key assumptions in Equation 3.2 are that the contributions of pre-
posttsynaptic activity can be separated into two corresponding activity terms, that the
proper measurement of activity is firing rate, and that the nature of the interaction
between pre- and postsynaptic firing rate is a simple product.
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• Presynaptically Gated Rule: A learning rule according to [89]:

dwgp
ij

dt
= k(xj − θp)xi (3.3)

Where wgp
ij is the weight, xi(t) and xj(t) are the mean firing rates of the post- and

presynaptic neurons, k is the learning rate factor and θp is a threshold on the presynaptic
firing rate. Equation 4.29 is theoretically more reasonable than the previous rule
Equation 3.2. Because in this rule, the weight is easier to reach a stable state and
postsynaptic activity is required to trigger synaptic modification. The direction of
change is determined by the presynaptic firing rate: if presynaptic firing rate is greater
than θp, the synapse is potentiated; otherwise, the synapse is depressed.
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In this chapter, we will introduce our specific GC and PC implementation methods. Including
their neuron model, the structure of the model and the operating method of these models.

4.1. Neuron Model

Biological neuron models, also known as spiking neuron models [10], are mathematical
descriptions of the properties of certain cells in the nervous system that generate sharp
electrical potentials across their cell membrane, roughly one millisecond in duration, called
action potentials or spikes. Since spikes are transmitted along the axon and synapses from
the sending neuron to many other neurons, spiking neurons are considered to be a major
information processing unit of the nervous system. Spiking neuron models can be divided
into different categories: the most detailed mathematical models are biophysical neuron
models (also called Hodgkin-Huxley models [94] [10] [95]) that describe the membrane voltage
as a function of the input current and the activation of ion channels. Mathematically simpler
are integrate-and-fire models [96][97] that describe the membrane voltage as a function
of the input current and predict the spike times without a description of the biophysical
processes that shape the time course of an action potential. Even more abstract models only
predict output spikes (but not membrane voltage) as a function of the stimulation where
the stimulation can occur through sensory input or pharmacologically. At the same time,
Some neuron models as mentioned in subsubsection 3.1.3.1, the CANN section 3.1 focuses on
neuron group coding and is based on rate-based neuron model, and the rate-based neuron
model has better performance against noise [64]. GC and PC need better accuracy and noise
immunity, therefore we do not use spike-based neuron model [94][10][95] but rate-based
neuron model [63][61][8][12]. In this thesis we use the rate-based neuron model of the attractor
network in [12]. In a real biological system, we generally count the number of cell fires within
a period to obtain the firing rate of the cell. The exact spike timing was not shown to be
relevant for the information represented by GC and is ignored [63][61][8][12]. The rate-based
neuron model in [12] we used is defined as: The activity of a cell i at time t + 1,i.e. Ai(t + 1)
is defined using a linear transfer function Bi(t + 1) given by:

Bi(t + 1) =
N

∑
j=1

Aj(t)wij + Ii (4.1)

, where Ai(t) is the firing rate of neuron i at time t, Bi(t + 1) is the net inputs or "synaptic
currents" of neuron i at time t + 1, N is the number of cells connected with the neuron i, wij
is the synaptic weight connecting neuron j to cell i, with i, j ∈ {1, 2, . . . , N}. Ii is a external
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input to receive special inputs,which will mention in section 4.4, or stimulus. A normalization
mechanism from the synaptic currents to neuron’s firing rate can ensure the stability of the
network. Thus:

Ai(t + 1) = Bi(t + 1) + τ

 Bi(t + 1)√
∑N

j=1 Bj(t)
− Bi(t + 1)

 (4.2)

, where constant parameter τ determines the stabilization strength. To implement this
mechanism locally, we use an additional cell (cell N + 1which is not a GC), that computes the
sum of all synaptic currents of the neurons. Normalized by that, the sum of synaptic currents

of these external neurons
√

∑N
j=1 Bj(t) is transferred back to the neurons of the network. In

order to prevent negative, we set:

Ai(t + 1) =
{

Ai(t + 1) Ai(t + 1) > 0
0 others

(4.3)

In our entire model, all cells follow this neuron model.

4.2. Network Architecture

We will introduce the network’s basic structure in this section. Our entire network is divided
into five layers: value space layer,shift left layer, shift right layer, shift up layer and shift
down layer,which is shown in Figure 4.2. For the value space layer, its activities represent the
activities of the entire GC. We can decode the information we need from the activities of cells
in this layer. The firing rate of cells will be formed as a peak, which is shown in Figure 4.7.
The other four layers are the shift layers, which are used to move the peak in the value space
layer. We will introduce the specific structure of these five layers of neurons in detail, their
internal connection method and the connection method between layers in following sections.

4.2.1. Value Space Layer

Value space layer is a very important layer of neurons in this GC model. It is the structure of
this layer that enables us to achieve static GC and hexagonal firing pattern. The formation of
stable spaced firing peak fields is attributed to Mexican-hat connectivity, a type of connectivity
in which cells in value space layer are assumed to receive excitatory inputs from cells with
similar spatial phases, creating a local excitatory hill, and inhibition at larger phase differences.
The competition between short-range excitation and longer-range inhibition imposes a stable
peak of activity of cells in the layer. In this thesis, we use the Gaussian weight function as the
synaptic weight function: Figure 4.2:

wij = I exp

(
−

d2
ij

σ2

)
− T (4.4)
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Figure 4.1.: GC model structure with shift layers: The top layer is value space layer. The under
four layers respectively are shift up, shift right, shift left and shift down layers.

I

T

Excitatory Inhibitory

d

σ
Figure 4.2.: Synaptic weights connecting cell to other cell wich geometric distance d. I is the

intensity parameter, σ regulates the size of the Gaussian function, T is the shift
parameter determining excitatory and inhibitory connections.
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Where dij is the geometric distance between cell i and j, wij is the synaptic weight between
cell i and j. Iis the intensity parameter, defining the overall synaptic strength, σ regulates the
size of the Gaussian function, T is the shift parameter determining excitatory and inhibitory
connections.

In order to produce a periodic hexagonal structure, we need to give a detailed definition of
the geometric distance between cells. In this thesis we use a twisted torus structure from [12]
in Figure 4.3. It can be imagined that our neurons are on the surface of this twisted torus

Figure 4.3.: 3-d twisted torus model of grid cell:The intersection of each horizontal line and
vertical line represents a cell in a value space layer. The shortest distance between
the two cells on the surface of this 3-d structure represents the distance between
the two cells. It is this ring structure that ensures the periodic firing of the GC.

structure as shown in Figure 4.3 from [12]. And the shortest distance on the surface between
cell i and cell j is the dij. Now we need to build this twisted torus model in a two-dimensional
space. First, we use the horizontal as the x-axis and the vertical as the y-axis. In order to meet
the hexagonal structure, we need the number of neurons in the y direction to be Probably

√
3

2
than the number of neurons in the x direction, which is shown in Figure 4.4. We constructed
a population of N = Nx × Ny neurons, which organize in a grid sheet matrix covering the
repetitive rectangular structure. At the same time, we need to comply with:

Ny ≈
√

3
2

Nx (4.5)

4.2.2. Synapses in Value Space Layer

Now we have determined the relationship between the synaptic weight and the distance
between two cells in Equation 4.4, and also determined the neuron model we need to use in
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Figure 4.4.: Matrix of a population of 20 × 18 GC. The arrows represent the connection
between the GC cells on the edge. For example, the cells on the lateral edge are
directly connected to the cells on the other side.

section 4.1. Next, we need to define the distance between each cell on the 2d grid sheet, so
that this distance meets the geometric distance between each cell in the 3-dimension structure
Figure 4.3.

For this grid sheet, we still use the definition in [12]. The weight between two cells in the
grid sheet like Figure 4.4 is defined by:

d2
ij =‖ ci − cj ‖2

tri (4.6)

Where ci = (cix, ciy) is the position of the cell i, defined by:

cix = (ix − 0.5)/Nx

ciy =

√
3

2
(iy − 0.5)/Ny

(4.7)

Where ix ∈ {1, 2, . . . , Nx}, iy ∈
{

1, 2, . . . , Ny
}

. ix and iy are the column and the row number of
cell i in 2-dimension matrix grid sheet. The norm ‖ · ‖tri defines the induced metric distance
of the network. To obtain the 3-dimensional twisted ring structure of the value space layer
in Figure 4.3, the border of the layer have to be the neighbors of the cell at the opposite
border, which is shown in Figure 4.4. This two-dimensional grid sheet structure in Figure 4.4
corresponds to the three-dimensional structure in Figure 4.3. In fact, induced metric distance
of the 2d matrix grid sheet network describes the shortest distance between each cell on the
surface of the three-dimensional structure Figure 4.3. The following is the specific definition
of ‖ · ‖tri from [12]:

‖ ci − cj ‖tri=
7

min
j=1
‖ ci − cj + sj ‖ (4.8)
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Where
s1 = (0, 0)

s2 =

(
−0.5,

√
3

2

)

s3 =

(
−0.5,−

√
3

2

)

s4 =

(
0.5,

√
3

2

)

s5 =

(
0.5,−

√
3

2

)
s6 = (−1, 0)

s7 = (1, 0)

(4.9)

and where ‖ · ‖ is the Euclidean norm.
The examples of synaptic weight between neurons in value space layer are shown in

Figure 4.5 Figure 4.6.
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Figure 4.5.: Synaptic weight from cell (ix, iy) to cell (9, 8) in value space layer, with parameters:
I=0.95, σ = 0.13, T = 0.02Nx = 20, Ny = 18

As shown in Figure 4.6, (10, 17), (19, 1) and (0, 0) are Neighboring. Because they have
the biggest synaptic weight strength with (0,0). This situation also verifies the structure in
Figure 4.4.

Because of the Mexican-hat connectivity Equation 4.4 and the twisted torus value space
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Figure 4.6.: Synaptic weight from cell (ix, iy) to cell (0, 0) in value space layer, with parameters:
I=0.95, σ = 0.13, T = 0.02Nx = 20, Ny = 18

layer in Figure 4.3 can generate a stationary peak with the initial condition in subsection 4.2.7
without shift layer, which is shown in Figure 4.7.

4.2.3. Shift Layers

In the previous sections, we described the specific structure of the value space layer, the
synaptic weight between neurons in it and the stable activity peak generated by synaptic
weights in Equation 4.6. In this section we will introduce the structure of the shift layer. It is
about the connecting synaptic weight from the value space layer to the shift layer, and the
connecting synaptic weight from the shift layer to the value space.

The function of the shift layer is to move the peak Generated in the value space layer and as
much as possible to keep the shape of the peak basically unchanged. Although in our model,
the shape of the peak changes very slightly during rapid movement, but the shape change
is generally symmetrical with respect to the center of the peak. So that this has almost no
effect on the performance of GC model. The structure of the shift layer has the following
characteristics:

• There are four shift layers corresponding to up, down, left, and right direction. Their
function is to move the peak in the value space layer to their corresponding four
directions.

• These four shift layers are parallel to the value space layer, and have the same size and
the same number of cells.
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Figure 4.7.: Activity peak in value space layer without shift layers generated by synaptic
weights from Equation 4.4 with parameters: I=0.95, σ = 0.13, T = 0.02, T =

0.02Nx = 20 and by the inital conditionsubsection 4.2.7
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• There is no connection between the shift layer and the shift layer. The shift layer is only
connected to the value space layer.

• There is no connection between cells in the same shift layer.

• The neuron model in our shift layer is the same as that in the value space layer.

4.2.4. Synaptic Weights from Value Space Layer to Shift Layer

From the proof and description in next section section 4.4 we will know that we need the
firing rates of the shift layer to be similar to the firing rates in value space layer. So we connect
the cells of the value space layer to the shift layer with following synaptic weight

wgl
ij = plwij

wgr
ij = prwij

wgu
ij = puwij

wgd
ij = pdwij

(4.10)

Where wgl
ij ,wgr

ij ,wgu
ij and wgd

ij are synaptic weight from cell j in value space layer to cell i in
shift left layer, shift right layer, shift up layer and shift down layer. wij is the synaptic weight
from cell j in value space layer to cell i in value space layer. Because the shift layer and the
value space layer have the same size and are parallel. Therefore the cell i in the shift layer
and the cell i in the value space layer have the same position in their own layer. pl , pr pu and
pd are constant parameters. These parameters are equal in this model pl = pr = pu = pd = p.

4.2.5. Synaptic Weights from Shift Layer to Value Space Layer

In order to move the peak in the value space layer, we need to break the symmetry of the
synaptic weights in value space layer as same as the most GC model [12][8]. But in the normal
neuron system, we cannot directly change the synaptic weight to achieve the purpose of
moving the peak. In some models, the cell itself carries the information of the direction. But
this is not in line with our normal CANN model [8]. So we need additional neurons (cells
in shift layers) to achieve the equivalent function of breaking the symmetry of the synaptic
weights.

So that we define synaptic weights from shift layer to value space layer,which are shown in
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Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11:

wrg
ij = ar

I
(

exp
( ‖ci−cj+Dx‖2

tri
σ2

)
− exp

( ‖ci−cj‖2
tri

σ2

))
dx

wlg
ij = al

I
(

exp
( ‖ci−cj−Dx‖2

tri
σ2

)
− exp

( ‖ci−cj‖2
tri

σ2

))
dx

wug
ij = au

I
(

exp
( ‖ci−cj+Dy‖2

tri
σ2

)
− exp

( ‖ci−cj‖2
tri

σ2

))
dy

wdg
ij = ad

I
(

exp
( ‖ci−cj−Dy‖2

tri
σ2

)
− exp

( ‖ci−cj‖2
tri

σ2

))
dy

(4.11)

Where wrg
ij , wlg

ij , wug
ij and wdg

ij are synaptic weight from cell j in shift right layer, shift left
layer,shift up layer and shift down layer to cell i in value space layer. Dx and Dy are constant
vectors:

Dx = (dx, 0)

Dy =
(
0, dy

) (4.12)

dx and dy is the constant parameters. ci and cj has been explained in Equation 4.7. ar, al , au

and ad are constant parameters. In this model,they are equivalent.
In fact, wrg

ij , wlg
ij , wug

ij and wdg
ij are Derivative of wij in x, −x, y and −y direction. But because

the derivative of arithmetic is difficult to calculate, we use approximate processing to get the
derivative. But the impact of the approximate on the results is very small, when dx and dy
are small enough.

It is these synaptic weights that the peak in the value space layer can move freely and
basically does not change the shape of the peak. As for why I designed these synaptic weights
from shift layer to value space layer in this way, I will explain in detail in the later part
section 4.4.

4.2.6. Input Velocity into the Model

We have now built the value space layer and shift layers, and then we need to input the speed
into the entire model to move the peak in the value space layer. From the neuron model
Equation 4.1 we know that every cell i has external input Ii to receive external stimulus. In
our model, we establish the relationship between speed and stimulus of cells in shift layers to
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Figure 4.8.: Synaptic weights from cells in shift right layer to cell (9, 8) in value space layer
with I=0.95, σ = 0.13, T = 0.02 and dx=0.1
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Figure 4.9.: Synaptic weights from cells in shift left layer to cell (9, 8) in value space layer with
I=0.95, σ = 0.13, T = 0.02 and dx=0.1
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Figure 4.10.: Synaptic weights from cells in shift up layer to cell (9, 8) in value space layer
with I=0.95, σ = 0.13, T = 0.02 and dy=0.1
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Figure 4.11.: Synaptic weights from cells in shift down layer to cell (9, 8) in value space layer
with I=0.95, σ = 0.13, T = 0.02 and dy=0.1
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achieve the purpose of the peak’s move in value space layer. It is defined as:

Ix
i (t) =

{
wvvin

x (t) vin
x (t) > 0

0 vin
x (t) 6 0

I−x
i (t) =

{
0 vin

x (t) > 0
−wvvin

x (t) vin
x (t) 6 0

Iy
i (t) =

{
wvvin

y (t) vin
y (t) > 0

0 vin
y (t) 6 0

I−y
i (t) =

{
0 vin

y (t) > 0
−wvvin

y (t) vin
y (t) 6 0

(4.13)

Where Ix
i (t), I−x

i (t), Iy
i (t) and I−y

i (t) are stimulus of cell i in shift right layer, shift left layer,
shift up layer and shift down layer. Wv is a constant parameters and Wv > 0. vin

x (t) and vin
y (t)

are input velocity in x and y direction in world coordinate system. As we found in the brain,
there are GC in many parts, and their hexagonal structures have different spacing, rotation.
So here we also need to introduce a rotation matrix to get different rotations in firing map:

vin(t) =

(
vin

x (t)
vin

y (t)

)
= Rsv(t)

=

(
cos ε − sin ε

sin ε cos ε

)(
vx(t)
vy(t)

) (4.14)

Where vin(t) is the input velocity vector of GC model and v(t) is the velocity vector of agent
in world coordinate. ε is the angle of rotation of the hexagonal firing pattern. But based on
the agent, we can only know the speed of the agent relative to its own frame. So we need
the direction of the agent in world coordinate system, which is decoded from HDC, to get
the speed of the agent in the world coordinate system. Therefore another rotation matrix is
needed:

v(t) = R(t)va(t)

=

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
va(t)

(4.15)

where v(t) is the velocity of agent in world coordinate, va(t) is the velocity vector of agent in
egocentric coordinate system, R(t) is the rotation matrix and θ(t) is the direction of the agent
in world coordinate.

That is to say, in which direction the agent moves, a positive stimulus is given to which
shift layer. When we give a positive stimulus to which shift layer, the peak in the value space
layer will move in which direction.

4.2.7. Initializing the Grid Cells Model

After building a complete system structure, we need to initialize the entire network to generate
a peak in value space layer. The firing rate (A) of neurons in every layers are initialized with a
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random activity that is uniformly distributed between 0 and 1√
N

, where N is the total number
of neurons in neuron’s layer. The initialization of the synaptic currents B of neurons is also
involved in our model. The method is the same as the initialization of activity of neuron:
uniformly between 0 and 1√

N
. Next is our specific algorithm for initializing the network:

Algorithm 1: GC Network Initialization
Input :

tsettle: settling time
tinterval : time interval to ensure stability
ε: maximum total change during tinterval

set the initial random activity A and the synaptic currents B of cells in every five layers
between 0 and 1√

N
;

run simulation for tsettle;
δ = ∞;
while δ > ε do

δ = 0;
for t=0; t<tinterval ; t=t + dt do

save firing rates in Rold;
run simulation for time dt;
save firing rates in Rnew;
δ = δ + ∑n−1

i=0 |Rold[i]− Rnew[i]|;
end

end

After the algorithm 1 with parameters in Table 4.1, we can get a stable peak in the value
space layer, as shown in Figure 4.12. Our model show that, the whole structure is very
friendly to the initial conditions.
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Table 4.1.: Initialization Parameters
tsettle 50 ms

tinterval 50 ms
dt 0.5 ms
ε 0.001 Hz
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Figure 4.12.: Activity peak generated with synaptic weights from Equation 4.4 by I=0.95,
σ = 0.13, T = 0.02 and with shift layers
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4.3. Decoding of Value Space

The advantage of our GC model based on CANN lies in its ability to use the activity of cell
populations to resist noise. If we only use the highest point of the peak as the position of
the peak in the value space layer, not only our accuracy will be greatly reduced, but also
the anti-noise performance will also be reduced. Because the structure of the value space
layer of the GC is a 3-dimensional twisted ring structure shown in Figure 4.3, we decided
to use mean of circular quantities to calculate the peak position. First of all, each neuron
corresponds to one position in the 3-dimensional twisted ring structure:

θx
i =

2πix

Nx

θ
y
i =

2πiy

Ny

(4.16)

Where θx
i and θ

y
i is the position of cell i in x and y direction ring, ix and iy are the column and

the row number of cell i in grid sheet. A vector vi is generated for every neuron i in value
space layer:

vi(t) =
(

vx
i (t)

vy
i (t)

)
=

( Ai(t) cos θi
S(t)

Ai(t) sin θi
S(t)

)
(4.17)

Where S is the sum of firing rate of neurons in value space layer:

S(t) =
N

∑
i=1

Ai(t) (4.18)

the decoded position γ is simply obtained by using the 2-argument arctangent arctan2:

γ(t) =

(
arctan2(∑N

i=1 vx
i (t))

2π
arctan2(∑N

i=1 vy
i (t))

2π

)
(4.19)

We can calculate the movement speed of peak based on the change of the decoded peak’s
position γ(t). At the same time, path integration can be calculated according to the moving
speed of the decoded position.

4.4. Theoretical Explanation of Shift Layer

In previous research, we found that if we want to move the peak in the value space layer, we
must break the symmetry of the synaptic weights between the cells in value space layer. The
same method of moving peaks is used in most GC models: [12][8][55][98].For example, as
mentioned in [12]:

wshi f t
ij (t) = I exp

(
−
‖ ci − cj + αRβv(t) ‖2

tri
σ2

)
− T (4.20)
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, where wshi f t
ij (t) is the synaptic weights between neurons in value space layer without shift

layers, so that the peak in this layer can move in the direction to αRβv(t) with the speed
corresponding to v(t). Except for α Rβ, the other parameters are the same as in Equation 4.4.
v(t) = (vx, vy) is the speed vector, which represents the speed of the agent in environment
as same as the v(t) in Equation 4.14. α is a scale constant parameters corresponding to the
parameter wv in Equation 4.13. Rβ is the rotation matrix corresponding to the rotation matrix
Rs in Equation 4.14. This input does not depend on any information about the location of the
agent, only depend on the agent’s direction decoded from HDC and the velocity of the agent.

It is possible to increase or decrease the spacing of the hexagonal firing pattern shown in
Figure 2.2, as well as to rotate the hexagonal firing pattern, by changing only two parameters
in the model: the gain α ∈ R+ and the rotation angular ε ∈ [0, π/3]. The input of the network
is thus modulated and biased by these gain and rotation parameters.

In fact, this is just a movement of the synaptic weights in the direction of αRβv(t). So when
we use Taylor’s first-order expansion, we can get:

wshi f t
ij (t) ≈ wij(t) + γ(v(t))~n · 5wij(t) (4.21)

Where wshi f t
ij (t) is the synaptic weights in Equation 4.20, wij(t) is the static synaptic weights

in Equation 4.6, ~n · 5 is the directional derivative in the direction of an arbitrary unit vector ~n
which is the direction of velocity Rβv(t) and γ(v(t)) is a parameter depending on the norm

of velocity. if we use the new wshi f t
ij (t) in Equation 4.20 to shift the peak in value space layer,

considering the neuron model Equation 4.1 and without shift layers:

Bi(t + 1) =
N

∑
j=1

Aj(t)w
shi f t
ij

≈
N

∑
j=1

Aj(t)(wij(t) + γ(v(t))~n · 5wij(t))

=
N

∑
j=1

Aj(t)wij(t) +
N

∑
j=1

Aj(t)γ(v(t))~n · 5wij(t)︸ ︷︷ ︸
Ii

(4.22)

, the GC model in this thesis, the external input Ii in Equation 4.22 is from shift layers.
First, because of the connection from value space layer to shift layers, the firing rate of

neurons in shift layers is similar to the firing rate of neurons in value space layer and the shift
layers will also be stimulated by speed, we can infer the following conclusions:

br(vx(t))Ai(t) ≈ Ar
i (t)

bl(v−x(t))Ai(t) ≈ Al
i(t)

bu(vy(t))Ai(t) ≈ Au
i (t)

bd(v−y(t))Ai(t) ≈ Ad
i (t)

(4.23)

36



4. Methodology

Where Ai(t) is the firing rate of neuron i in value space layer, and Ar
i , Al

i , Au
i and Ad

i are
firing rate of neuron i in shift right, left, up, down layers. br, bl , bu and bd are variable only
depend on the corresponding velocity of the own shift layer. Now we bring these conditions
into Equation 4.1. The following is the expression of cell firing rate in the value space layer
with shift layers:

Bi(t + 1) =
N

∑
j=1

Aj(t)wij + Ii

=
N

∑
j=1

Aj(t)wij +
N

∑
j=1

Aj(t)rwrg
ij +

N

∑
j=1

Aj(t)lwlg
ij +

N

∑
j=1

Aj(t)uwug
ij +

N

∑
j=1

Ad
j (t)w

dg
ij

≈
N

∑
j=1

Aj(t)wij +
N

∑
j=1

br(vx(t))Aj(t)w
rg
ij +

N

∑
j=1

bl(v−x(t))Aj(t)w
lg
ij

+
N

∑
j=1

bu(vy(t))Aj(t)w
ug
ij +

N

∑
j=1

bd(v−y(t))Aj(t)w
dg
ij

(4.24)

It is not difficult for us to find that the corresponding synaptic weight wrg
ij , wlg

ij , wug
ij and

wdg
ij in Equation 4.11 are the derivative of wij in corresponding direction, so we bring these

conditions back into the neuron model Equation 4.1 and Equation 4.24:

Bi(t) =
N

∑
j=1

Aj(t)wij︸ ︷︷ ︸
stable part

+
N

∑
j=1

(br(vx(t))− bl(v−x(t)))Aj(t)~nx5 wij

+
N

∑
j=1

(bu(vy(t))− bd(v−y(t)))Aj(t)~ny5 wij

(4.25)

, where ~nx and ~ny is are unit vectors in x and y direction.
So when our agent need to be stationary in the environment, we can know that br(vx(t)) =

bl(v−x(t)) and bu(vy(t)) = bd(v−y(t)). So that the Equation 4.24 only remain the "stable
part" and the peak in the value space layer will Keep still. Equation 4.22 compared with
Equation 4.24, the have the same form and function. I will take the agent moving in the x
direction as an example. The move in Equation 4.22 is:

Bi(t + 1) =
N

∑
j=1

Aj(t)wij(t) +
N

∑
j=1

Aj(t)γ(t)~nx · 5wij (4.26)

The move in Equation 4.24 is:

Bi(t + 1) =
N

∑
j=1

Aj(t)wij(t) +
N

∑
j=1

(br(vx(t))− bl(v−x(t)))︸ ︷︷ ︸
γ(v(t))

Aj(t)~nx5 wij

=
N

∑
j=1

Aj(t)wij(t) +
N

∑
j=1

Aj(t)γ(v(t))~nx · 5wij

(4.27)
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Under our design ideas, we need to adjust the parameters to achieve the good performance of
the entire model. One of the important performance indicators is about the linear relationship
between the speed of our input and the speed of peak movement. And this performance
is related to br(vx(t)), br(v−x(t)), br(v−y(t)) and br(vy(t)). If they have a linear relationship
with the corresponding speed, then our input speed and peak movement speed will also
show a linear relationship. In chapter 5 we will evaluate the performance of our model.

4.5. Grid Cells to Place Cells

From Figure 3.2 we know that hippocampal PC are thought to build their place fields mainly
by converting the many-location responses of GC into firing that is usually restricted to
a single location. Understanding the rules and governing this transformation will be an
important step in understanding the calculation method and function of the HC. It has been
proposed that place fields can be generated from GC inputs by a simple summation and
threshold operation. That is, if a PC receives input from an arbitrary set of GC, the activation
of the PC can be prevented everywhere except in the single region where the input to the cell
is maximal [99]. We can know from previous neurological research [100] that there are GC
with different intervertex spacing, rotation angles and phase in hexagonal firing pattern in
Figure 2.2 in the brain. However, if the geometric alignment of the input grid is not restricted,
different subsets of the input will almost always produce similar levels of synaptic excitation
in multiple areas covering most of the environment [7]. A simple threshold mechanism would
not be able to single out one of these regions [7].

As shown in Figure 4.14, the structure of PC is that: the PC connects every GC with the
synaptic weight,which is trained by Hebbian learning. The neuron model of our PC model
still uses the neuron model in Equation 4.1. But this PC has only one layer and cells are not
connected to each other, only different GC are connected to every PC. For PC decoding, we
implement which PC has the largest firing rate, then it means which PC is firing:

Pindex = arg max
j

Ap
j (4.28)

Where Pindex is the index of firing PC, It also indicates which area the PC model predict
the agent is in. Ap

j is the firing rate of cell j in PC. Our model is still different from the
real neuron system. Because we have countless GC in the brain. But our model only has a
limited GC. So we need to chose suitable GC with different phase, spacing and orientation
according to the size of the environment and the shape of the environment, the number of
PC and etc. Our choice of GC determines the performance of our PC. A subset of grids with
overlapping vertices at a single location could be optimally selected from randomly aligned
grid inputs by choosing a suitable synaptic weight vector, e.g., via Fourier analysis [7], a
fitting algorithm [101], or independent component analysis [102]. It is not known, however,
how this task can be autonomously accomplished at a behaviorally relevant time scale with
physiological mechanisms. In the model in this article, we investigated a Hebbian learning
rule from subsubsection 3.5.1.2 within a minimal, rate-based network model of a layer of

38



4. Methodology

presynaptic GC and modifiable connections onto an postsynaptic place layer as mentioned in
subsection 3.5.1 and [89]:

dwgp
ij

dt
= k(xj − θp)xi (4.29)

, where wgp
ij is the synaptic weight from GC j to PC i, xi(t) and xj(t) are the firing rates of the

PC i and GC j, k is the learning rate factor and θp is a threshold on the presynaptic GC firing
rate. This model does not intend to imitate the connection of the real GC to the PC, because
the real connection is far more complicated than this model. This model just provides an idea
to solve PC problems.

The condition for terminating learning lies in the processing of the predicted position from
GC and the real position of agent. If the area corresponding to our firing PC is exactly the
same as the agent’s location in the environment, this prediction is successful. If we make 1000
consecutive predictions, then we stop updating the weight.

4.5.1. Encoding of Place Cells Firing Rate

In the training process, we need to encode the PC from the agent’s position in the environment.
We divide the environment into different areas such as Figure 4.13. Each area corresponds to
a PC. When our agent is in this area, we encode the firing rate of the PC corresponding to the
area as 1, and encode other PC as 0:

Ap
i (t) =

{
1 i = Pindex
0 others

(4.30)

, where Ap
i (t) is the firing rate of PC i at time t. For example, if our agent is in zone 1. Then

the firing rate of the PC corresponding to our 1 area is 1, and the firing rate of the other PC is
0.

4.5.2. Grid Cells Firing Rate

Our GC can change the spacing and rotation of the hexagonal firing pattern by adjusting
wv and Rs in Equation 4.14 and Equation 4.13. The phase of the hexagonal firing pattern is
achieved through our random initial firing rate of gird cells. But today’s computers are not
suitable for simulating a large number of GC, but the hardware more suitable for our model
has not been developed yet, which is shown in subsubsection 3.1.3.3. Although it can be seen
from the following results that our GC has very good performance. So we need to use the
ideal GC from [102] model to form the connection mechanism from our GC to the PC. The
rate map of GC over (~x) can be described by a sum of three 2-d sinusoids:

gj(~x) =
1

4.5

(
3

∑
γ=1

cos 2π ~uγ
j
~x−~ζ j

aj
+ 1.5

)
(4.31)

, where gj(~x) is the firing rate of gird cell j at position ~x, ~ζ j is the spatial phase or offset of
GC j, and aj is the grid spacing. The ~uγ

j are direction vectors that are orthogonal to the main
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Figure 4.13.: In a 6× 6 scene, we divide the entire scene into 36 areas. Each area corresponds
to a PC.

…...

…...

Grid Cells

Place Cells

Synaptic Weight 

Figure 4.14.: The structure of PC in our model
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axes of the hexagonal firing pattern:
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(4.32)

, where φj represents the orientation of hexagonal firing pattern. An example of a GC firing
map is shown in Figure 4.15. In the model of this article, we will adjust these φj, aj and
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Figure 4.15.: Schematic of GC firing rate map with φj = 0, aj = 1 and ζ j = (0, 0). As in all
firing rate and activation maps in this article, red indicates maximum, while
blue denotes zero.

ζ j parameters according to the number of PC and the size of the environment to generate
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different GC.
The whole algorithm with GC firing rate in subsection 4.5.2 and the PC firing rate in

subsection 4.5.1 is shown in algorithm 2.

Algorithm 2: Algorithm of Hebbian Learning
Input :

p(t): position of the agent
Ag(t) ∈ Rng : encoded GC firing rate vector
ε: maximum successful steps
θp: threshold on the presynaptic GC
dt: time step for simulation
tmax: max simulation time

w = zeros(np, ng);
counter = 0;
while counter< ε do

for t=0; t<tmax; t=t + dt do
calculate the area pr(t) the agent in, according to position p(t);
encode the Ap(t) ∈ Rnp : encoded PC firing rate vector according to pr(t);
for i=0;i < np;i = i + 1 do

for j=0;j < ng;j = j + 1 do
w[i][j] = w[i][j] + dt(Ag[j]− θp)Ap[j];

end
end
calculate the predicted PC firing rate vector Ae

p(t);
decode the Ae

p(t) to get predicted area pe(t) ;
if pr(t) == pe(t) then

counter+ = 1;
end
else

counter= 0;
end

end
end
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5. Results and Discussions

In this chapter, we will run the robot (Pioneer P3DX) in a simulation environment to obtain its
position and velocity information to drive the GC model and test its performance. Following,
we will provide details on the simulation environment, physics engine, model parameters
and We will also analyze the accuracy and the biological plausibility of the GC model and
PC model. From the overall results we can come to this conclusion that the GC model has
high accuracy with small size and it can be used as a viable component of an biologically
inspired robotic navigation system. At the same time, through Hebbian learning, PC also
shows good performance that it can show the specific location of the agent in the environment
with enough GCs as input.

5.1. Simulation Environment

5.1.1. Simulation Physics Engine

We use the Pybullet [103] as the simulation physics engine. Pybullet is a Python module that
can be used for physical simulation of robots, games, visual effects and machine learning.
Using pybullet, we can load robot description files in URDF, SDF, MJCF and other file formats.
Pybullet provides forward dynamic simulation, inverse dynamic calculation, forward and
inverse kinematics, collision detection and ray intersection query. The Bullet Physics SDK also
provides many examples of Pybullet robots, such as the simulated quadruped robot Minitaur,
the simulated human running, which uses tensorflow to make decisions, and KUKA robot.
In addition to physical simulation, it also has rendering bindings, including CPU render
(TinyRenderer) and OpenGL visualization, and supports virtual reality such as HTC Vive
and Oculus Rift. Pybullet also has the ability to perform collision detection queries (nearest
points, overlapping pairs, ray intersection tests, etc.) and add debug rendering (debug lines
and text). Pybullet has a cross-platform built-in client server, supports shared memory, UDP
and TCP networks. This physics engine is not only very lightweight, but also we can obtain
enough information of the robot and also can accurately control the robot. At the same time
it is very compatible with python. Because of these advantages we chose Pybullet as the
physics engine.

5.1.2. Simulation Agent

The Pioneer P3DX robot provided by [104] is a model of a mobile robot implementing
differential drive with a multitude of sensors in Figure 5.1. For this simulation 16 ultrasonic
ray-based proximity sensors are added to the robot at about 15cm height and distributed
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around the circular body with an angular spacing of approximately 22.5◦ around the Z
axis, which is shown in Figure 5.2. The velocity of Pioneer P3DX is from the function
getBaseVelocity in Pybullet. In a real world experiment, an inertial measurement unit can be
used for sensing linear velocity. The robot is controlled by setting left and right wheel speeds.

Figure 5.1.: Pioneer P3DX robot model — The model implements differential drive and is
equipped with 16 ultrasonic, ray-based proximity sensors.

Figure 5.2.: Ultrasonic, ray-based proximity sensor configuration — The 16 sensors are spaced
at 22.5 degrees around the z axis at 20 cm height.

5.1.3. Simulation Scenes

The whole simulation scene is shown in the Figure 5.3. The initial position of the robot is in
the middle of the square area. These walls limit the robot’s range of movement.
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5. Results and Discussions

Figure 5.3.: The scenes of the simulation: the environment is a square area of 6 meters by 6
meters separated by walls. The center of the area is the origin. The horizontal
direction is the x axis and the vertical direction is the y axis. The range of the area
is x ∈ [−3, 3] and y ∈ [−3, 3].

5.1.4. Random Walk

The initial position of the robot is in the middle of the square area, which is the position of
the origin. Then we control the speed of the two wheels of the robot so that the robot can
walk randomly in the square area to get position and velocity of the robot while avoiding
obstacles. The obstacle avoidance algorithm we used is based on Braitenberg vehicle.

A Braitenberg vehicle is an agent that can autonomously move based on its sensor inputs.
It has primitive sensors that measure some stimulus at a point, and wheels (each driven by its
own motor) that function as actuators or effectors. In the simplest configuration, a sensor is
directly connected to an effector, so that a sensed signal immediately produces a movement of
the wheel. Depending on how sensors and wheels are connected, the vehicle exhibits different
behaviors (which can be goal-oriented). This means that, depending on the sensor-motor
wiring, it appears to strive to achieve certain situations and to avoid some situations [105].
For example, the connections between sensors and actuators for the simplest braitenberg
vehicles as shown in [106] Figure 5.4 (2a and 2b), they will lead to different results. For the
2a: this agent has two (left and right) symmetric sensors (e.g. light detectors) each stimulating
a wheel on the same side of the body. This car represents the animal’s escape from light. It
obeys the following rule: more light right→ right wheel turns faster→ turns towards the
left → away from the light. This is efficient as a behavior to escape from the light source,
since the vehicle can move in different directions, and tends to orient towards the direction
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from which least light comes. And for the 2b: The agent has the same two (left and right)
symmetric sensors (e.g. light detectors), but each one stimulating a wheel on the other side
of the body. It obeys the following rule: More light left→ right wheel turns faster→ turns
towards the left→ closer to the light. As a result, the vehicle follows the light and it moves to
be closer to the light.

These correspond to biological positive and negative taxes [106] present in many animals
species. For our model, we use the distance information between the obstacle and the robot
from 16 ray-based proximity sensor as shown in Figure 5.2 as the input. Our left and right
wheels both have a parameter vector, and each vector is multiplied by the distance information
vector, which consists of distance information from ultrasonic ray-based proximity sensors, to
control the speed of each wheel. Our algorithm is similar to 2a in Figure 5.4. For example,
when the robot approaches the obstacle on his right, the wheel on the right will gain a greater
speed to achieve the purpose of staying away from the obstacle.

Figure 5.4.: A simple model of Braitenberg Vehicle [106]

5.2. Performance of the GC

In this section, we will show the performance of our GC model through different indicators. At
the same time, we will show the influence of some important parameters on the performance
of our GC model. After we systematically compare the influence of parameters on model
performance, we have got the following parameters in Table 5.1 to achieve relatively good
performance. In following parts, we will show the impact of some parameters on the
performance of our GC model and the performance of our model under various indicators
with parameters in Table 5.1.

46



5. Results and Discussions

5.2.1. Stability of the Model in a Static State

First, our model needs to be stable enough when there is no external input to our GC model,it
means that the peak in value space layer of our GC model will not drift and stay stationary
when the agent is stationary. in other words, the activity of neurons in value space layer
should remain unchanged over time. This is an important indicator for performance of
GC model. We judge whether the network is stable by calculating the sum of the absolute
difference between the firing rate of the cells in the value space layer at this moment and the
firing rate at the previous moment without input:

δ(t) =
N−1

∑
i=0
|Ai(t)− Ai(t− 1)| (5.1)

, Where δ(t) is the static error, Ai is the firing rate of cell i in value space layer and N is the
number of neurons.
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Figure 5.5.: Static error Equation 5.2.1 of the neuron without input with parameters in Table 5.1

As shown in Figure 5.5, there is still a certain error of this GC model in the first few
milliseconds because of the initialized settings parameters ε in algorithm 1. But immediately
our error tends to 0. It shows that as time goes by, the network tends to become static.
Therefore the network is very stable when the model has no inputs because of reasonable
synaptic weights and structure.

5.2.2. Stability under Fixed Input

In addition to keeping the peak in the value space layer static when the agent is static, the
peak also need to move at a constant speed, when we have a constant and continuous input
to the GC model. If the peak’s moving speed fluctuates Violently asymmetrically or fluctuates
in a big range, when the input of our model is a fixed value, then the accuracy of the GC will
be greatly affected.
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Table 5.1.: Final Parameters for GC Model
ar 0.02 None
al 0.02 None
au 0.02 None
ad 0.02 None
Nx 20 None
Ny 18 None
pr 1 None
pl 1 None
pu 1 None
pd 1 None
I 0.95 None
σ 0.13 None
dx 0.1 None
dy 0.1 None
T 0.02 None
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Figure 5.6.: velocity of peak, which is decoded from Equation 4.19, with constant input
Ix
i (t) = 0.05 and Ix

i (t) = 0.02 with parameters in Table 5.1
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As shown in Figure 5.6, our peak’s moving speed symmetrically fluctuates in a very
small range around a constant. And we use the least square method to calculate the linear
relationship between time T and speed. Our time-related parameters are: 2.84× 10−9 and
−5.035× 10−8, they are very small. It means that there is no relationship between moving
speed of the peak and time. From the above results, we can draw the following conclusion:
the speed of our peak in value space layer is very stable under a fixed input. That is to say,
when we perform path integration with constant inputs, there will be no big drift.

5.2.3. Linearity between Stimulus and Peak Velocity

Except the stability of the GC model, It is very important for the performance of the GC that
the movement speed of the peak should to be linearly proportional to our input stimulus
and it will determine the accuracy of the GC model. Once the relationship between inputs
and moving speed of the peak in value space layer is nonlinear, then the hexagonal pattern
will not be formed and the path integration, which is based on GC model, will be inaccurate.
After our analysis and experiments, we found that the main parameter that affects linearity
and the range of linear space is the synaptic weights from the value space layer to the shift
layer. Therefore, we mainly change pr, pl , pu and pd to see their impact on performance. In
order to form equilateral triangles in the hexagonal pattern as much as possible, we will make
the composition of the network more symmetrical. So in our modelpr = pl = pu = pd = p.

We gradually increase the input with different parameters p, so as to observe the relation-
ship between movement speed of peak in value space layer and different parameters with
different input stimulus as shown in Figure 5.7. From Figure 5.7 we can draw the following
conclusions:

• First, as the input stimulus continues to increase, the velocity of peak in value space
layer increases more and more slowly. The main reason is normalization. Because the
model has a normalization mechanism, when the GC model have a relatively large
input stimulus, the firing rate of the neuron in shift layers will gradually rise more and
more slowly. But this does not limit the input speed of the GC model. Because we can
adjust the parameter (wv) between input speed and stimulus to compressed the input
speed to a linear space in input stimulus.

• We can also see that as the parameters p increase, the range of linear space between input
stimulus and the speed of peak also increase. In fact, this linear space is determined by
the linearity between br, bl , bu, bd in Equation 4.4 and velocity input to the GC model.
If these parameters about v(t) are linear, then relationship between moving speed of
the peak in the value space layer and the velocity inputs are also linear. The biggest
linear space occurs mainly when p approaches 1, the firing rate of cells in the shift layer
will get more and more similar to the firing rate of cells in value space layer. So when
we increase the input to neurons in shift layer, the change of it’s firing rate is small
compared to its own firing rate and the br,bl ,bu, bd in Equation 4.4 will also be more
linear corresponding to input velocity.
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Figure 5.7.: Velocity of peak, which is decoded from Equation 4.19, with p = 0.5 , p = 0.7 and
p = 1 with other parameters in Table 5.1. The red lines are the linear fitted line
between the speed and stimulus calculated by the least square method.

• Although the size of the linear space does not limit the range of input speed. But
through experiments, we found that the larger the linear space, the smaller the error.
Because when the linear space between the moving speed of peak in value space
layer and the input stimulus is smaller, the corresponding large speed space will be
compressed to a small input stimulus linear space. Then the accuracy of the information
will be lost.

5.2.4. Simulation Result

In this simulation, we use Pybullet in subsection 5.1.1 as the physics engine and simulate
the robot in subsection 5.1.2 to randomly walk in a square area, which is mentioned in
subsection 5.1.4 Figure 5.3 for 8000 seconds, the simulation frequency is 20Hz and the
update rate of our GC model is 400Hz. In the following content, we will show in detail the
performance of the GC model in the simulation.
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5.2.4.1. Input Velocity and Estimated Velocity

In this part, we will reflect the relationship between the movement speed of the peak in value
space layer and the input velocity of our GC model. We use the speed of the robot in the
environment as the input of the GC model, and estimate the speed of the robot by measuring
the moving speed of the peak. Since the speed of our peaks can be set to different scales by
wv, so that there is a scale parameter between the estimated velocity and the velocity of the
peak’s movement:

ves(t) = cvpeak(t) (5.2)

Where ves(t) is the estimated velocity of the robot, vpeak(t) is the velocity of the peak and c is
a constant parameter.
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Figure 5.8.: Estimated velocity and real input velocity throughout the process. Yellow line:
the estimated velocity with c = 1.859, blue line: real velocity of robot.

As shown in Figure 5.8 and Figure 5.9, the estimated speed during the entire simulation
process is basically the same as the real input speed (robot’s velocity). As shown in Figure 5.10,
we measure the accuracy of the model by calculating the difference between the estimated
speed and the real input speed and the distance between the real position and the estimated
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Figure 5.9.: Estimated velocity and real input velocity in last 500 seconds. Yellow line: the
estimated velocity with c = 1.859, blue line: real velocity of robot.
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Figure 5.10.: Blue line: Error between estimated velocity and real input velocity. Yellow
line:integration of error between estimated velocity and real input velocity
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position of robot, which is calculated by integrating the error between the input speed and
the estimated speed. We got the following conclusion from Figure 5.10:

• Although the real-time error(error(t)) seems to be a bit large, this error will be reduced
once it is integrated (the yellow line). This is because the movement of the peak is
delayed relative to the input speed. At time t, we consider the velocity of robot as input,
and at the next moment t + 1 or even t + 2, our peak will move corresponding to the
input at t. Since the frequency of our neuron network is very high (400Hz), the delay
has just little effect on our model.

• The integration of error (yellow line) is the distance between the actual location and
the estimated location. It is very small compared to the previous model. For example,
compare with [8], for the GC model in [8], the robot traveled 260 meters in 1800 seconds,
resulting in an error of 15 cm. But our robot traveled 2246.44 meters in 8000 seconds,
only produced an about 3.41 cm error.
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Figure 5.11.: Estimated trajectory and real trajectory throughout the simulation

From Figure 5.11 and Figure 5.12, we can see that estimated trajectory and real trajectory
are very similar, which can show that the accuracy of the gird cell model is excellent.

5.2.4.2. hexagonal firing pattern

When the moving speed of peak in value space layer and the real input have a linear
relationship, and it is combined with the twisted torus structure in Figure 4.3, a hexagonal
firing pattern will appear. Whether a hexagonal firing pattern can be formed is an important
criterion for judging the performance of the GC model. As shown in Figure 5.13, Figure 5.14
and Figure 5.15, our GC model formed hexagonal firing patterns with different spacing
and orientation during the entire simulation process according to different parameters. Our
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Figure 5.12.: Estimated trajectory and real trajectory in last 1000 seconds

hexagonal firing pattern shows a clear equilateral hexagon structure and firing points at
vertices of hexagon is very concentrated. These show that the drift of our GC model is very
small and there is a very obvious linear relationship between input and moving speed of
peak in value space layer.

We can achieve the purpose of changing the shape of the hexagonal firing pattern by
adjusting these parameters:

• The parameter wv affects the spacing of the hexagonal pattern. When this parameter is
larger, the input corresponding to the same speed is larger, then the moving speed of
the peak will become faster, which will also cause the period of firing to become smaller.
In other words, the spacing of the hexagonal firing pattern will become smaller.

• The rotation matrix Rs can change the orientation of the hexagonal firing pattern, which
is shown in Figure 5.14 and Figure 5.15. In other words, the hexagonal firing pattern
can be rotated.

• We can also specify the initialization of the activity of the value space layer of the GC to
achieve the purpose of controlling the phase of hexagonal firing pattern. But generally
in the application, we only need to randomize the initial value of the value space layer’s
activities.

Regardless of our hexagonal firing pattern, the linear relationship between the input velocity
and peak moving velocity, stability with fixed input or without inputs, our GC model has
very good performance. Its accuracy, performance and reasonable structure are fully capable
of being used as part of biologically inspired robotic navigation system.
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Figure 5.13.: firing map of neuron 88 with wv = 0.12, ε = 0. The gray line represents the
trajectory of the agent, and the red dot indicates that the cell 88 is firing (when
the firing rate of the neuron is biggest in the value space layer) at this point
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Figure 5.14.: firing map of neuron 88 with wv = 0.1, ε = π/10. The gray line represents the
trajectory of the agent, and the red dot indicates that the cell 88 is firing (when
the firing rate of the neuron is biggest in the value space layer) at this point
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Figure 5.15.: Firing map of neuron 88 with wv = 0.12, ε = π/10: The gray line represents the
trajectory of the agent, and the red dot indicates that the cell is firing (when the
firing rate of the neuron is biggest in the value space layer) at this point.

5.3. Hebbian Learning and Place Cells

In this section we will discuss the performance and feasibility of the PC model in the case
of using Hebbian learning. We use the encoded PC firing rate as the presynaptic firing rate,
which is mentioned in subsection 4.5.1, and the firing rate of the GC as the postsynaptic
firing rate, which is mentioned in subsection 4.5.2, to determine the synaptic weight of the
connection between GC and PC through hebbian learning as shown in Equation 4.29. In the
end, our learning ends after the PC can continuously predict the position successfully 1000
times.

5.3.1. Grid Cells Setting

The inputs of PC were firing rates derived from a phenomenological characterization of the
activity of GC in MEC with varying phases, orientations and scales, along the trajectory
followed by a agent in a walled square box (6m× 6m), which is shown in Figure 5.3. The
model in this article contain 1000 GC as input to 36 PC in HC. The phase, orientation, and
scale of the GC were uniformly sampled as follows. The 1000 units were first divided in 10
groups of 100 units that corresponded to 10 different scales of intervertex spacing, ranging
from 0.5 to 5.3m by constant increments. Each group was in turn split into 10 subgroups,
each of 10 units, corresponding to 10 different orientations separated by 6◦ increments. The
fist orientation value was sampled randomly in 0 ∼ 6◦ range independently for each different
scale. Finally, there are 10 GC left in each group. We need to move these GC with different ζ j,
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which is shown in subsection 4.5.2:

ζ j =

(
ζx

j
ζ

y
j

)
(5.3)

We stipulate that the phases of 10 GC are randomly in ζx
j ∈ [−3, 3] and ζ

y
j ∈ [−3, 3].

5.3.2. Result

Finally, the performance of our PC model is very good. The whole area is divided into
36 areas corresponding to 36 PC as shown in Figure 4.13. Our GC uses 1000 GC with
different directions, spacing and phases subsection 5.3.1, after hebbian learning, a very good
performance was achieved. Each PC will only have a large firing rate in the corresponding
area, while the firing rate in other places is relatively small. In Figure 5.16, the corresponding
area of this cell is x ∈ [−3,−2] and y ∈ [−3,−2]. In Figure 5.17, the corresponding area of
another cell is x ∈ [−1, 0] and y ∈ [0, 1]. These two firing maps accurately show that only in a
prescribed area, the corresponding PC will have a very high firing rate. If we need a finer
resolution, that is, the area corresponding to each PC is smaller, it means that, there will be
more PC neurons. Then we need more GC to be able to show the specific area of each PC.
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Figure 5.16.: I
Firing map of a PC neuron 1 corresponding to x ∈ [−3,−2] and y ∈ [−3,−2] area with 1000
different GC. Red indicates that the cell has a very large firing rate in this area. Blue means

that the firing rate of the cell in this area is relatively small.

Figure 5.16 and Figure 5.17 show that our PC has very good performance. If we have a
sufficiently accurate GC, we can implement the PC model through Hebbian learning.
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Figure 5.17.: Firing map of a PC neuron 21 corresponding to x ∈ [−1, 0] and y ∈ [0, 1] area
with 1000 different GC. Red indicates that the cell has a very large firing rate in
this area. Blue means that the firing rate of the cell in this area is relatively small.
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In this chapter, we will introduce how we use the information from the lidar sensor on the
Four-wheeled robot to drive the robot walk randomly in different environments. Then we
can get the velocity information from IMU sensor on the robot as the input of the GC model
and the position of the robot in the scene in real time from a camera at a fix position in the
environment. In order to reduce the velocity error of robot from IMU, we use the position
information of the robot from camera to calibrate the velocity information from IMU. In this
chapter, We also use the position of the robot and the activity of the GC model to generate
firing maps to test the performance of our GC model. In this experiment, our GC model also
shows great performance, which is driven by real data from experiment.

6.1. Experimental Scene

Our experiment conducted in an enclosed area about 2.2m by 2.2m. The initial position of
the car is in the center of the area, and the initial direction is along the x direction in the
environment. And in our environment, there are four markers on the ground and a camera
above the ground to get the position of the robot in the area, which is shown in Figure 6.1.

6.2. Robot

Our robot consists of a Raspberry Pi, an IMU sensor, a lidar sensor, a motor controller and
four motors for the wheels as shown in subsubsection 6.2.1.1, subsubsection 6.2.1.2 and
Figure 6.2. Raspberry Pi runs ROS to process sensor information from lidar to control the
speed of the robot’s four wheels and send the speed command to the motor controller. It also
subscribes and publishes sensor information, so that we can understand the specific status of
the robot. The motor controller can process the command sent by the Raspberry Pi to control
the power supply of the motor to achieve the purpose of controlling the speed of each wheel.
Below I will separately introduce the components of the robot.

6.2.1. Sensors

In our experiment we mainly used three sensors. They are IMU, lidar, and a camera. The
IMU sensor is mainly used to get the acceleration information of the robot. The lidar sensor
is used to get the distance information between robot and the obstacle, so that the robot can
walk randomly and avoid obstacles in different environment. The camera at a fixed position
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Figure 6.1.: Experimental Scene: Our experiment conducted in a closed area close to 2.2m by
2.2m. And the initial direction is on the left in the environment. There are four
markers on the ground and a camera above the ground.
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Figure 6.2.: Experimental robot: Raspberry Pi runs ROS to process sensor information to
control the speed of the robot’s four wheels. The robot has an IMU sensor, a lidar
sensor, and a motor controller that processes the speed control commend sent by
the Raspberry Pi. The four wheels of the robot are separately controlled by four
motors.

in the scene is mainly complicated to monitor the position of the robot in the environment.
Then I will introduce these three sensors separately in following sections.

6.2.1.1. Lidar Sensor

The lidar sensor used in our experiment is hokuyo UTM-30LX-EW scanning laser as shown
in Figure 6.3. The UTM-30LX-EW is a scanning laser rangefinder that provides a sensing
range to 30 meters with ethernet interface and a 25 ms scanning rate across a 270 field of
view. The UTM-30LX-EW has a protective housing with a rating of IP67, making it suitable
for outdoor use. The Hokuyo lasers are compact and light, making them ideal for mounting
on end effectors, aerial vehicles, or small mobile platforms.

But this lidar sensor returns a large amount of data and the interval between each laser is
small. Taking into account the limitations of computing power and the resulting error, we
only used the data within the 180 degrees range around the robot from left to right. And we
need to reduce the number of lasers. For each prefer laser shown in Figure 6.4, we calculate
the average value of distance, which is in 11.25 degrees on the left and right sides of each
prefer laser to get the distance between the obstacle and the robot detected by this prefer
laser, which is shown in Figure 6.4.

6.2.1.2. IMU Sensor

In order to obtain the motion information of the robot, such as the linear acceleration and
angular velocity of the robot, we use the IMU BNO055 sensor as shown in Figure 6.5 to
get these information. This smart sensor is significantly smaller than comparable solutions.
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Figure 6.3.: Lidar sensor: UTM-30LX-EW from Hokuyo

Robot Laser scan
22.5゜

Figure 6.4.: Processed Lasers: Our lasers’ range is 180 degrees from the left to the right of the
car. Each laser is 22.5 degrees apart, and the detection range of each laser is from
0 to 30 meters.
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By integrating sensors and sensor fusion in a single device, the BNO055 makes integration
easy, avoids complex multi-vendor solutions and thus simplifies innovations, e.g. novel
applications such as IoT hardware. The BNO055 is the perfect choice for AR, immersive
gaming, personal health and fitness, indoor navigation and any other application requiring
context awareness. It is ideally suited for demanding applications such as augmented reality,
navigation, gaming, robotics, or industrial applications. In this experiment, we use linear
acceleration and the measured angular velocity of the robot from the IMU to get the speed
and the angle of the robot in the environment by integrating the linear acceleration and the
angular velocity with the given the initial position and angle. So we get the velocity of robot
as the input of GC model and positions of robot to generate firing maps.

Figure 6.5.: IMU Sensor: BNO055 from bosch

6.3. Random Walk

The random walk algorithm we used is the same algorithm in subsection 5.1.4. Similar to the
model in the Figure 5.42a, when the left side of our robot approaches an obstacle, we give
the two wheels on the left more speed, while reducing the speed of the wheels on the right.
When our car approaches an obstacle on the right side, we give the right wheels more speed
and reduce the speed of the left wheels. Under this setting, our robot can avoid collision
with obstacles while walking in the environment. At the same time, in order to achieve better
randomness, the initial speed we give to the wheels will randomly change within a certain
range every 25 steps. Through experimental observation, our robot can avoid obstacles and
walk randomly in different environments.
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6.4. Calibration with Camera

Because the observed velocity of robot is the integration of acceleration information from IMU
sensor, therefore the error of the acceleration from sensor will be accumulated in velocity and
it will increase continuously. Therefore, we need additional information to calibrate the speed
of the robot. In this experiment, we will use additional information from the camera, which
is shown in Figure 6.6, to get the position of the robot in world coordinate system. Then we
use the position of robot to calibrate the velocity of the robot. To this end, we need to make
a mark on the robot body and four marks at fixed positions in the environment to get the
position of the robot in this environment. In this experiment, we use different colors from
the environment to identify the position of the robot and other four fixed positions in the
environment. For example, we use green to mark fix positions on the ground and red to mark
the robot. Then we need to define the world coordinate system and measure the positions
of the four ground marks in this coordinate system. Then we use openCV [107] to identify
the positions of several marker in the image. However, due to experimental conditions, it
is difficult to keep the camera perpendicular to the ground, so the image captured by the
camera will have perspective. In order to eliminate this perspective, we need to use openCV
to calculate the perspective matrix corresponding to the image, so as to restore the position of
the robot on the ground in world coordinate system by it’s relative position to the fixed four
markers on the ground. The final result shows that the estimated position of our algorithm
has high accuracy and it can run in real time.

Figure 6.6.: Camera sensor: Xbox 360 Kinect Sensor

6.5. Result

In this experiment, we use the recorded speed of robot from IMU, and then it is calibrated by
the camera information, as the input of our GC model. Combined with the observed position
of the robot and activates of neurons in value space layer, we generated the firing map of the
GC with different orientation and spacing as shown in Figure 6.8 Figure 6.9 and Figure 6.10.
At the same time, we obtained the trajectory error of our GC model through integration of
speed error as shown in Figure 6.7. As shown in Figure 6.7, Since the real data has a certain
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Figure 6.7.: Velocity error and position drift in 1000 seconds in experiment. Blue line: Error
between estimated velocity and real input velocity(error(t) = ves(t)− v(t)). Yellow
line:integration of error between estimated velocity and real input velocity. Please
refer to subsubsection 5.2.4.1 for the specific method of calculating error
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error and the acceleration of the robot is relatively fast, the error is relatively large compared
with simulation in Figure 5.10, but it is also accurate enough. Our trajectory error fluctuates
between -0.2m and 0.2m. Due to the randomness of our speed and the normalization of our
model, errors will not superimpose in one direction, so that errors fluctuate within a certain
range and do not divergent.
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Figure 6.8.: Firing map of neuron 88 with wv = 0.08, ε = 0 in 16000 steps. The gray line
represents the trajectory of the agent, and the red dot indicates that the cell 88 is
firing (when the firing rate of the neuron is biggest in the value space layer) at
this point

In addition, firing maps also prove that our GC model has very good performance. As
shown in Figure 6.8 Figure 6.9 and Figure 6.10, the regular hexagon structure with different
spacing and orientation is very obvious. (The method of adjusting spacing and direction of
firing map is in subsubsection 5.2.4.2.) This is also the experimental result we hope to achieve.
Therefore, whether in simulation or in experiments, our GC model shows good stability and
accuracy with very small neuron network.

6.6. Supplementary Experiment

In addition, we try to use different scenarios to test our GC model. We mainly use T-maze
and Y-maze, which are shown in Figure 6.12 and Figure 6.11. We used the same method as
mentioned before to get the firing map in these two scenarios as shown in Figure 6.14 and
Figure 6.13. As we can see from the figure Figure 6.14 and Figure 6.13, although due to the
limitations of the scene, the whole hexagonal structure cannot be displayed. But the grid
structure of firing map is still very obvious. This proves that our GC still also has a very good
performance in complex environments.
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Figure 6.9.: Firing map of neuron 88 with wv = 0.15, ε = 0 in 16000 steps. The gray line
represents the trajectory of the agent, and the red dot indicates that the cell 88 is
firing (when the firing rate of the neuron is biggest in the value space layer) at
this point
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Figure 6.10.: Firing map of neuron 88 with wv = 0.15, ε = π/10 in 16000 steps. The gray line
represents the trajectory of the agent, and the red dot indicates that the cell 88 is
firing (when the firing rate of the neuron is biggest in the value space layer) at
this point
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Figure 6.11.: T-maze in experiment.

Figure 6.12.: Y-maze in experiment.
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Figure 6.13.: Firing map of neuron 66 with wv = 0.08 in Y-maze as shown in Figure 6.11,
ε = 0 in 16000 steps. The gray line represents the trajectory of the agent, and the
red dot indicates that the cell 66 is firing (when the firing rate of the neuron is
biggest in the value space layer) at this point.
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Figure 6.14.: Firing map of neuron 66 with wv = 0.08 in T-maze as shown in Figure 6.12,
ε = 0 in 16000 steps. The gray line represents the trajectory of the agent, and the
red dot indicates that the cell 66 is firing (when the firing rate of the neuron is
biggest in the value space layer) at this point.
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7.1. Conclusion

In this article, We propose a model that can explain and restore the neural activity of GC
in MEC and we have determined the PC model, as well as the connection relationship and
strength between GC and PC. We have presented a model of GC based on a twisted torus
topology and shift layers that generates regular triangular tessellations, as observed GC
in MEC. In this model, the grids share the same orientation and spacing as observed in
physiological recordings of neighboring GC in MEC. The structure of the GC model based on
the previous GC research and compared with previous models [12][74][8], the performance
of the model in this article is Outstanding. We showed that a simple gain wv and rotation
matrix Rs can control the grid spacing and orientation respectively, and there are different
phases between neighboring GC. Thus our model provides a parsimonious explanation of
how cortical circuits can give rise to GC with different spacing and orientations using a single
algorithm. In the MEC, the spacing of the grid isometrically increases along the dorsoventral
axis. Our model explains: this effect is due to an exponential increase of the velocity gain
along this axis. We can adjust different parameters in the model to generate different shapes
of hexagons. There have been many previous studies that have implemented the GC model
based on attractor network. The first research to apply these methods to GC was in [3]. It
has been implemented in [21] as a symmetric locally connected neural network. We have
shown that this synaptic architecture that can be represented by a twisted torus Figure 4.3
generates regular triangular tessellating patterns. The advantages of our model is that it
allows implementing a representation of space covering large environments using a relatively
small population of cells. Moreover, because of this particular circular synaptic connectivity,
all network cells have regular triangular tessellating subfields. It is also important: Our
mathematical model is as close to the structure of the brain as possible. Although we can see
that the model in [12] has very good results, it directly changes the synaptic weights of the
connections between neurons. We know that synaptic weights between neurons in the brain
are difficult to change very quickly and accurately with an input. Our model uses the activity
of the shift layer to move the peak in the value space layer.

Our model of GC can be used as the proprioceptive odometer of a robust, modulatory
and biologically based navigational system combining idiothetic and allothetic information.
Because we are using a bionic system instead of a traditional second-generation neuron
system. Therefore, the visual recognition rate is not very high. For instance, realistic models
of PC by HC, based on visual inputs are not able to distinguish between two visually similar
places. When using the model in this article, no visual information is needed, only some
speed information is needed to assist in judging which similar place it appears in.
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At the same time, based on the input of GC, we also completed the construction of the PC
model. However, the implementation of PC requires a large number of GCs with different
orientations,phase and spacing as a basis. Although the neurons of our GC is less enough, it
is still difficult to run thousands of GCs at the same time. After we use an ideal GC encoder,
and based on Hebbian Learning, we can determine the weight of the connection between the
GC and the PC. Using these weight connections, our PC also has very good performance.

In short, our model is not only closer to the real biological model, but also improves the
accuracy of the GC compared to some previous models [12][74][8]. and can be used as an
important component a of brain-inspired navigation system.

7.2. Future Work

7.2.1. Calibration Mechanisms for Grid cells

Now our GC and PC models are all running in the dark. That is to say, our model only uses
information from itself, and does not obtain information from the environment, that is, its
own linear velocity and its own angular velocity as input to the model.This will inevitably
lead to inaccuracy and drift of the peak position in GC and PC. First of all, in the real world,
both animals and robots have errors in their perception of their own speed when they are
moving. Once this error continues to add up, the accuracy of our GC will drop significantly.
At the same time, the accuracy of the PC will be greatly reduced. Second, there will be
certain errors in our neuron model. These errors will also be superimposed under certain
special circumstances, which will cause the peak position to drift. So we need to obtain
information from the environment to correct and eliminate these errors. From [108] we know
that: error accumulates relative to time and distance traveled since the animal last encountered
a boundary. This error reflects coherent drift in the grid pattern. Further, interactions with
boundaries yield direction-dependent error correction, suggesting that border cells serve as a
neural substrate for error correction. error accumulates relative to time and distance traveled
since the animal last encountered a boundary. This error reflects coherent drift in the grid
pattern. Further, interactions with boundaries yield direction-dependent error correction,
suggesting that border cells serve as a neural substrate for error correction from [108]. This
involves another kind of border cells that exist in the brain. Which is an entorhinal cell type
that fires when an animal is close to the borders of the proximal environment. The orientation-
specific edge-apposing activity of these “border cells” is maintained when the environment
is stretched and during testing in enclosures of different size and shape in different rooms.
Border cells are relatively sparse, making up less than 1

10 of the local cell population, but
can be found in all layers of the medial EC as well as the adjacent parasubiculum, often
intermingled with head-direction cells and GC. Border cells may be instrumental in planning
trajectories and anchoring grid fields and place fields to a geometric reference frame and has
the function of calibration [5]. From Figure 7.1 in [5] we know that: The border cell will fire
when the mouse is on the border in a specific direction. And we also found that they are
usually mixed in GC and PCs. It also proves that border cells are part of GC and PCs.
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Figure 7.1.: Examples of border cells in the MEC and adjacent parasubiculum. (A) Sagittal
Nissl-stained section showing a representative recording location in the MEC (red
dot, recording location; rat number and hemisphere (R, right) are indicated(B)
Color-coded rate maps for 12 border cells. Red is maximum, dark blue is zero.
Pixels not covered are white. Animal numbers (five digits), cell numbers (two or
three digits), and peak firing rates are indicated above each panel. Cells 287 and
677 did not pass the criterion for border cells because the fields were located at
some distance from the wall; the number of such cells was fewer than 10. [5]
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And this is also very consistent with the experimental situation. According to [109], In
reorientation and navigation, rats are not sensitive to details such as the color and material of
obstacles. They are only sensitive to the shape of their environment. Including young babies
will show the same situation.

7.2.2. A Simpler Place Cells Model Implementation

According to most of the PC research that the input of the PC we use is an ideal GC formula
like Equation 4.31. That is because it is difficult to simultaneously simulate a sufficient number
of GC on existing computers. In addition to changing existing models and algorithms. We
should also put forward certain requirements for hardware like in subsubsection 3.1.3.3.
Continuously promote the technological update of hardware suitable for CANN model
calculation.
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A. Implementation Details

Our algorithm is implemented in Python (version 3.6) and tested on Ubuntu 18.04. We use
a numpy array to store the firing rate of each neuron. And update their firing rate through
the different weight between them. But we have a large number of neurons (1800), if we
only use cpu for calculation, then our simulation speed will be very slow (1Hz). Fortunately,
many of our calculations are parallel calculations, so we can also use GPUs to accelerate our
simulations. we use pycuda as a bridge connecting python and cuda.

A.1. Pycuda

CUDA (Compute Unified Device Architecture) is a parallel computing platform and pro-
gramming model launched by graphics card manufacturer NVIDIA in 2007. It uses the
power of the GPU to achieve a significant increase in computing performance. CUDA is a
general-purpose parallel computing architecture launched by NVIDIA, which enables GPUs
to solve complex computing problems, so that the underlying hardware can be controlled by
programs to perform calculations. It includes the CUDA instruction set architecture (ISA)
and the parallel computing engine inside the GPU. Developers can use languages such as
C/C++ to write programs for the CUDA architecture. In our program, we use C++ as the
core function. CUDA provides a host-device programming model and a large number of
interface functions and scientific computing libraries to achieve parallelism by executing a
large number of threads at the same time.

The structure of the graphics card determines that it has a very powerful parallel computing
capability. Because cpu has only a few threads, although they have powerful computing
power, they are not suitable for parallel computing. Generally speaking, the amount of
calculation in each parallel calculation is very small, so the cpu will frequently retrieve data
from the memory, which will take a lot of time. But GPU has many cores. Although its core
computing power and cpu are not of the same magnitude. But its computing power can still
solve the problems in parallel computing. In this way, multiple cores can calculate at the
same time, reducing the time to read data from the memory. Pycuda acts as a bridge between
python and cuda programs, transferring the information in the numpy array to the gpu for
calculation. But we still use C++ to complete the calculation functions and thread allocation
in our GPU.

A.1.1. Skcuda

Because we have turned each layer into a numpy array, our update of the firing rate of each
neuron involves the calculation of the matrix. In order to efficiently use the GPU, we use
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skcuda to perform matrix calculations on the GPU. It can better allocate the number of CPU
threads and blocks to achieve efficient calculations.

A.2. Modular

In order to be more compatible with future work, our program has adopted a modular design.
It is mainly divided into the following modules:

• Module for grid cell network generation In this module we will build the entire network,
including initializing the fring rate of each cell and the strength of the synaptic weight
between them.

• Module for update of firing rate: In this module we use pycuda to update the firing
rate of each neuron. Experiments show that if we use gpu, the speed is 40 times faster
than when we only use cpu.

• Module for PC model: In this module, we can use Hebbian Learning to train synaptic
weights between GC and PC. And in this module, we can implement the PC model
through the trained weight.
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