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Abstract

Biologically plausible spatial navigation (NeuralSLAM) tries to solve spatial navigation
tasks by modelling and implementing our brain’s spatial navigation system [1]. In 1971
O’Keefe and Dostrovsky discovered the Place Cell, a spatially selective cell that reacts to
certain locations in an environment, helping the animal to locate itself [21]. Since then
many additional spatially selective cell types have been discovered in rodents. These
are neurons whose receptive fields reference some aspect of an organism’s location,
state of motion, pose or relationship to environmental features (such as boundaries,
landmarks and other objects) [6]. The interaction of these neurons create the brain’s
spatial navigation system. The neuron populations coding for extended boundaries in
the environmental surrounding include egocentric boundary cells (eBC), which code
for boundaries in peri-personal space (i.e. left, right, ahead), border cells (BC) and
boundary vector cells (BVC), the latter two coding in allocentric coordinates (independet
from facing direction, world-centered).

None of the models that incorporate boundary coding cells are simulated in environ-
ments unknown to the agent. Here a network based on the BB-model by Bicanski and
Burgess [5], is provided that encodes egocentric boundary information and transforms
it into an allocentric reference frame via a head direction modulated transformation
circuit. The network incorporates a biologically plausible head direction network, which
decodes current heading direction based on angular velocity in real-time. Together
with simulated perception of environmental surroundings, the model is applicable
to produce eBC and BVC during simulation in unknown environments. Since there
are many models which simulate BVC firing as input to PC firing this model could
be extended to a bigger network, in which the output of this model - BVC’s neuronal
firing profiles - drive PC firing. In addition the sensory inputs (which are yet to be fully
understood [6]), could be modelled in a more biologically plausible way.
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1. Introduction

Simultaneous localization and mapping (SLAM), as an artificial approach to solve spa-
tial navigation tasks, has been greatly investigated and implemented in the domain of
robotics and autonomous driving, with the rapid developments of sensors, algorithms,
and the enhanced computing capability of deep neural networks [1]. But no system
solves spatial navigation tasks as good as our brain does, the approach that is trying to
model our brain’s areas responsible for spatial navigation is called biologically plausible
spatial navigation (NeuralSLAM), and differs greatly from artificial SLAM approaches.

In 1971 O’Keefe and Dostrovsky discovered the first neuron population, which is
involved in spatial navigation, the place cells (PC). The PC is a spatially selective cell
that reacts to certain locations in an environment, helping the animal to locate itself [21].
Since then many additional spatially selective cell types have been discovered in rodents:
that is, neurons whose receptive fields reference some aspect of an organism’s location,
state of motion, pose or relationship to environmental features (such as boundaries,
landmarks and other objects)[6]. The cells which have been subject to the most research
are:

• Place Cells: neurons that fire when the animal occupies certain locations in an
environment [21].

• Grid Cells (GC): neurons that fire whenever the animal’s position is alligned with
any vertex of a hexagonal grid spanning the surface of the environment [13] (see
Figure 3.2).

• Head Direction cells: neurons that are tuned to a specific allocentric heading
direction, and show the highest activity when the agent is facing in that particular
direction [29].

• Boundary coding cells: neurons which fire when any kind of movement prevent-
ing boundary is encountered [18].

The focus of this thesis are boundary coding cells. There are egocentric boundary
cells (eBC) [16] [2] which code in an egocentric reference frame and can be found in
retrosplenial cortex (RSC), parietal cortex (PCX), striatum (STM), postrhinal cortex
(POR) and lateral entorhinal cortex (LEC), border cells (BC) [26] [27] found in medial

1



1. Introduction

entorhinal cortex (MEC) and boundary vector cells (BVCs) [18] which code in an
allocentric reference frame and are found in subiculum [6]. Allocentric means world-
centered (independent from the animals heading direction (north, east, south, west)).
Egocentric boundary cells are coded relative to the facing direction of the agent, i.e. their
receptive fields are in their peri-personal space (left, right, ahead) and rotate together
with the agents heading direction [6]. Transforming the head-centered (egocentric)
perceptual information into an allocentric reference frame is achieved by using the
current heading direction which is provided by the head direction cell (HDC). This
transformation is predicted to take place in the RSC [5], [9], and recent recordings from
RSC further support that prognosis [2].

BVCs are essential for, and have been shown to drive PC firing [14], [12], [3], [4]. Most
models only model BVCs as input to drive PC firing, and no model, which incorporates
boundary coding cells, is simulated in environments unknown to the agent. Here
I provide a network that encodes egocentric boundary information and transforms
it into an allocentric reference frame via a head direction modulated transformation
circuit, based on the BB-Model by Bicanski and Burgess [5]. The network incorporates a
biologically plausible head direction network, which decodes current heading direction
based on angular velocity in real-time. The model is tested in a simulation in which a
robot navigates through an unknown environment, and evaluated based on the results.
Together with simulated perception of the surroundings, the model is applicable to
produce real-time eBC and BVC firing during simulation in unknown environments.

2



2. Biological Properties of Boundary
Coding and Head Direction Cells

2.1. Biological Properties of Boundary Coding Cells

Each boundary coding cell responds to any kind of elongated boundary, which is
located at a specific distance and direction from the agent with a different firing rate.
That area for which a given BC fires is called its receptive field. The further away the
receptive field the bigger it gets (see Figure 2.1). The existence of neurons, responsible
for boundary detection was first predicted by [14], and later [4] strengthened that
prediction. [4] proposed that a neuron, called the Boundary Vector Cell (BVC) is what
mainly drives the firing of the previously mentioned place cell. In later work, border
cells (BC) [26] [27], boundary vector cells [18] and egocentric boundary cells (eBC) [16]
[2] have been discovered in the rat brain, delivering proof that those predictions were
right. A boundary can be a wall, a drop-off edge, or any kind of elongated obstacle [18].
Different to the other boundary coding cells, border cells only respond to proximate
boundaries (whisking range of rats), and only fire for boundaries which block the
path of the animal [17]. The spatial receptive fields of these neurons correspond to
vectors, which indicate distance and direction (direction either independent of heading
direction (BVC, BC) or relative to heading direction (eBC)) in space, for which the
presence of a boundary will drive the neuron to fire (see Figures 2.2, 2.3). So in contrast
to place and grid cells which have a receptive field centered on the agents current
position (see Figure 2.4, 3.2), boundary coding cells have their receptive fields covering
locations around the agent [6]. The boundary vector cell and the border cell express
these vectorial codes in allocentric coordinates. The egocentric boundary cells are coded
relative to the facing direction of the agent. All the boundary coding cells get their
input from sensory perception, i.e. from their whiskers, and the visual system. In
addition some cells showed sensitivity to boundaries behind the animal implying that
a mnemonic component is also incorporated [6].
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2. Biological Properties of Boundary Coding and Head Direction Cells

Figure 2.1.: Two receptive fields. The further away the boundary the bigger the receptive
field [6].

Figure 2.2.: (Top) Firing rate map of a boundary vector cell. (Middle) Illustration of the
receptive field of this cell, which is located at a fixed distance and direction
from the agent. (Bottom) Vector pointing from the agent’s location to the
receptive field. When the receptive field is occupied by a boundary, the
neuron fires. [6]
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2. Biological Properties of Boundary Coding and Head Direction Cells

Figure 2.3.: Similar to 2.2 an illustration of a receptive field in allocentric coordinates.
Dark red indicates the cell’s tuning location. When a boundary is at the
centre of the cell’s receptive field the cell reaches it’s peak firing rate. The
cell’s firing gradually increases with the boundary coming closer to the
receptive field’s centre.[18]

Figure 2.4.: When the animal is at a certain location a place cell fires. (Top) Firing
rate depending on the animal’s location, and the bottom image shows the
receptive field. [6]

5



2. Biological Properties of Boundary Coding and Head Direction Cells

2.2. Biological properties of Head Direction Cells

Each Head Direction Cell is tuned to a specific allocentric heading direction, and reaches
its peak firing rate when the agent is facing in that particular direction. The specific
direction where the cell’s response is at it’s peak is referred to as the cell’s preferred
firing direction. This characterization is described by the cell’s tuning curve, which is
Gaussian in shape. There are two ways for HDCs to get their information: Landmark
navigation and path integration. When using landmark navigation the animal derives
it’s current orientation relative to surrounding landmarks. In path integration the
animal uses self-movement information to maintain the cell’s functioning. Most of the
time both processes are used and integrated simultaneously [30]. For example when its
completely dark the animal has to rely solely on path integration. In an experiment a
rat was put in an environment with a card as the only cue for navigation. After putting
the cue card in a different place the HDC’s preferred directions changed by the same
amount [29]. This experiment shows that the HDC’s orientation is also anchored to
external hints.
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3. Related Work

Bicanski and Burgess model of spatial memory and imagery is the only neural-network-
based model that incorporates egocentric and allocentric representations as well as
transformation between them, in the neuroscientific landscape [19]. Thus, their model
serves as the guideline for the model proposed here.

3.1. BB-Model of spatial memory and imagery

The neural level model of spatial memory and imagery by Bicanski and Burgess
(BB-Model) is a theoretical model that tries to explain how neural representations of
egocentric spatial experiences in parietal cortex interface with viewpoint-independent
representations in medial temporal areas, via retrosplenial cortex, to enable many key
aspects of spatial cognition [5].

The BB-Model builds upon the work of Byrne, Becker and Burgess [8], [9]. The essence
of the model is transforming egocentric representations of the local environmental
surroundings (objects and boundaries) into allocentric representations for long-term
storage, supporting imagery and recollection. For that multiple neuronal populations
found in Papez’ circuit, parietal, retrosplenial and medial temporal areas are modeled.
From the Medial Temporal Lobe (MTL) that includes PCs, HDCs, GCs and BVCs.

The neurons coding for the presence of objects and boundaries in the egocentric
space reside in medial parietal cortex. In the model they refer to it as the parietal
window (PW). The PW contains two neuron populations one coding for boundaries
(PWb) and one coding for discrete objects (PWo). The transformation from egocentric
to allocentric reference frame is performed by a gain-field circuit in retrosplenial cortex.
Gain modulation is a nonlinear process of neurons combining information from two
(or more) inputs, which may be of sensory, cognitive or motor origin. When one input
(the modulatory one), has influence on the gain or sensitivity of the neuron to the other
input, without modifying its selectivity or receptive field properties, it is called gain
modulation [25].

Here the gain modulation is provided by head-direction, producing directionally
tuned BVCs and OVCs (Object Vector Cells - allocentric analogues to BVCs coding for
discrete objects) which connect egocentric and allocentric coding neurons.
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3. Related Work

BVCs and OVCs are part of the medial temporal lobe network for spatial context.
The MTL network consists of three interconnected neuron populations. BVCs (and
OVCs) and PCs code for the position of the agent relative to boundaries and objects,
and perirhinal neurons which code for the identity (color, texture, etc.) of boundaries
(PRb) and objects (PRo). OVCs and BVCs only code for location, perirhinal PRbs and
PRos for the identity of boundaries and objects.

BVCs and OVCs are reciprocally connected to the transformation circuit. Connections
within the MTL network form an attractor network (an attractor network is a network
that evolves toward a stable pattern over time), such that mutual excitatory connections
between neurons ensure pattern completion. Thus, if the network is partially stimulated
in any neuron population, previously learned representations of spatial context are
re-activated.

The Model has two modes of operation: bottom-up and top-down. During bottom-up
mode, which is analogue to perception, the transformation circuit maps egocentric to
allocentric representations and thus determines MTL network activity. During top-
down mode the circuit acts in reverse. It does so to reconstruct the egocentric from the
allocentric representation, to form the groundwork for allocentric memory. For mental
navigation and planning they include a grid cell popoulation which drives sequential
place cell firing. Mental navigation meaning imagined movement through a known
environment. Figure 3.1 illustrates the BB-Model’s schematic as described above.

PWb
egocentric

frame

PWo

RSC
HD-Modulated

BVCs
allocentric

frame

OVCs

PRb
PRo

Place
cells

EC
Grid cells

Translational velocity

HD
cells

Rotation velocitySensory Inputs

Figure 3.1.: Schematic of the BB-Model as described in section 3.1. Sensory inputs,
rotation velocity and translational velocity are provided by the agent [5].
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3. Related Work

Figure 3.2.: Recording from a rat brain which shows how a grid cell is firing. (Left) The
black trace shows the trajectory of a foraging rat in a square enclosure. Red
dots are spike locations of the grid cell. Blue equilateral triangles have been
drawn on top of the spike distribution to illustrate the regular hexagonal
structure of the grid pattern. (Right) On the top is is the same as on the
left. The bottom is a color coded rate map with red showing high and blue
showing low activity. [20]
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4. Methodology

The model combines ideas from the BB-model of spatial memory and imagery by
Bicanski and Burgess [5] with Amir el Sewisy’s HDC network. In this chapter, the
neuron model is defined in section 4.1. After that the HDC and BC networks architecture
are introduced in sections 4.2 and 4.3. Then it is explained how the synaptic weights
connecting the different components are generated in section 4.4. Lastly, how perception
is performed during simulation, is specified in section 4.5.

4.1. Neuron Models

4.1.1. Boundary Coding Neurons

The Model uses rate-coded neurons. The activation function consists of two gaussians
which are multiplied with each other. One is tuned to the distance and the other to the
direction at which a specific boundary is located at in relation to the agent.

Each boundary cell i is tuned to specific coordinates (pi, ϑi) (polar coordinates). If
the coordinates of a boundaries location are (p, ϑ), then the activity of each boundary
selective cell is proportional to the distance of its receptive field from that boundary
segment. The following equation calculates the firing rate r for the i-th boundary
coding neuron:

ri =
1
p
∗ exp(−(ϑi − ϑ

σϑ
)2) ∗ exp(−( pi − p

σp
)2) (4.1)

Where σϑ and σp define spatial dispersion of the rate function r. σϑ = 0.2236 is a
constant which describes the cells angular tuning width, and σp is a variable parameter
that describes a cells sensitivity in terms of distance. This varies in a linear way with
distance. Cells with a preferred firing distance further away from the agent have wider
firing fields [18]. σp is described by the following equation:

σp(pi) = (pi + 8) ∗ 0.08 (4.2)
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4. Methodology

4.1.2. Head Direction Cells

During training, which will be described in section 4.4 each HDC’s activity fi is
calculated using a gaussian function described by Equation 4.3.

fi = exp(−( (θi − θ)

0.125
)2) (4.3)

with θ being the current heading direction and θi being neuron i’s preferred heading.
The reason to use a simple gaussian is because actual HDCs resemble a gaussian
bell curve[30], and it follows all the properties that will be defined in section 4.2.
Additionally in the HDC model a single neuron’s activity is dependent on the previous
state, i.e. it is time dependent. During training, no time dependency is needed to set
up the weights. This will be explained in the following sections.

The HDC’s neuron model for simulation is taken entirely from Amir El Sewisy’s
bachelor thesis. This neuron model is used during simulation to decode real-time
heading direction. In his network Amir uses a neuron model inspired by [22]. The
model uses firing rate for computation of neuronal activity, and was selected because it
was built using in-vivo data recently recorded. For each neuron i, there is a variable fi
describing its firing rate. All fi are initialized with 0 and their behaviour over time is
described by the differential Equation 4.4

τ
d fi

dt
= − fi + φ(Ii + ∑

j
wij f j) (4.4)

τ is the time constant, its value is re-used from [22] and defined in Table 4.1. wi j is
the synaptic strength, also referred to as synaptic weight, from neuron j to neuron i.
Excitatory synapses are modelled with positive weights and inhibitory synapses are
represented with negative weights. Ii is the external input current from outside the
network to neuron i. φ(x) is called the single-neuron transfer function and is defined
in Equation 4.5 [22]:

φ(x) =
rm

1 + exp(−βt(x− h0))
(4.5)

φ is a sigmoid function, its parameters rm, βt and h0 were inferred to fit data recorded
from in-vivo neurons by [22] and are re-used in the HDC network simulation, See Table
4.1. φ(x) is visualized in Figure 4.1. Following Equation 4.4, the firing rate of a neuron
with constant external and synaptic inputs x converges to φ(x) over time. Note that
φ(x) ≈ 8.95, which means that an isolated neuron fires with a rate of about 8.95 Hz
without any external input. The maximum firing rate is rm = 76.2 Hz, which is the
upper bound of φ(x).
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4. Methodology

Table 4.1.: Model parameters, re-used from [22]

Figure 4.1.: The single-neuron transfer function φ(x) defined in [22]

4.2. HDC Network Architecture

In this section the HDC network’s basic architecture will be explained, a more detailed
description of all the different components can be found in Amir El Sewisy’s work.
The network consists of n = 100 HDCs. The HDC’s preferred directions θi with
i ∈ {0, ..., n− 1} are equidistantly spaced over 2π radians. The neuron indexed with 0
has the preferred direction θ0 = 0◦ and the preferred directions are assigned to neurons
in counterclockwise order. Thus, neuron i has preferred direction θi =

2π
n . The activity

of each neuron in the HDC network plotted over their preferred directions is referred
to as the HDC network’s activity profile.

Each HDC’s activity is governed by the head direction, the mapping of head direction
to a HDC’s activity is called its tuning curve. Ωθ(α) is defined as the activity of the
HDC with preferred direction θ while the head is facing in the direction α, i.e. its tuning
curve evaluated at α. When the head is facing at direction α the network’s activity
profile resembles the tuning curve of the single HDC with preferred direction α.

The HDC network’s activity profiles have to be stable over time, i.e. the activity
profile at timestep t + 1 has to be the same as the one at timestep t, if there is no

12



4. Methodology

external stimulus that causes the activity profile to change. This stability is achieved by
an attractor topology.

To form a stable activity peak, neurons close to each other are connected by excitatory
synapses while neurons further away are connected by inhibitory synapses. Initially,
there is no activity in the network. If a single neuron or a group of close neurons
receives an outside stimulus, the stimulated neurons in turn stimulate close neurons
due to the local excitatory synapses. Neurons further away from the initial stimulus are
instead inhibited by the group of active neurons due to the global inhibitory synapses.
The synaptic weights are chosen such that the initial stimulus results in a stable activity
peak around that stimulus, i.e. the activity peak is maintained after removing the initial
stimulus.

The initial stimulus will result in a stable activity peak at 0◦. Afterwards the external
stimulus that will shift that activity peak is angular velocity.

4.3. BC Network Architecture

The architecture is derived from the BB-Model of spatial memory and imagery [5].

4.3.1. Activity Profile

The activity profile of the network is each neurons activity plotted with respect to
their specific boundary tuning. All neuron’s activities plotted together is referred to as
the BC network’s activity profile. As stated before each neuron is tuned to a specific
distance and angle at which a boundary segment can be encountered. The tuning
curve follows a 3-Dimensional bell curve. In addition with increasing distance of the
boundary, the tuning width with respect to distance of a neuron, gets bigger. This is
consistent with recordings made in rat brains where BVCs that react to boundaries
further away from the rat have broader receptive fields than those which react to closer
boundaries[18]. At each time step the activity profile is computed as follows: For each
boundary segment present in the environmental surrounding, the firing rate of each
individual neuron is calculated according to equation 4.1. Afterwards each neurons
activities with respect to all the segments are added together. Lastly, the activity of all
neurons will be normalized to one.

The activity profile is illustrated by arranging all eBC and BVC neurons, according to
the relative locations of their receptive fields (see Figure 4.4). When taking a snapshot
of the neuron population of either eBCs, transformation layers or BVCs, that snapshot
will then give a representation of the current sensory environment (see Figure 4.3). In
the human’s, or a rodents brain the neurons are probably not physically organized the
same way, but for the sake of visualization and since it does not hinder performance

13



4. Methodology

in this model this topology is used. Population snapshots are distinct from firing
rate maps (see Figure 4.2) which show, at which location in an environment a specific
neuron is firing.

The receptive fields are distributed on a polar grid, with individual receptive fields
centered on each tile. As an example, 16 receptive fields (computed by Equation 4.1)
are overlaid (bright colors) on the polar grids for illustration (see Figure 4.4). Note that
each receptive field covers multiple tiles, that is neighboring receptive fields overlap.
The polar grids of receptive fields tile the space around the agent (white circle at center
of plots), and they are anchored to the agent moving with it (for both BVCs and eBC
neurons). In addition, for eBC neurons the polar grid of receptive fields also rotates
with the agent (i.e. their tuning is egocentric).

The radial separation of distance bins (see Figure 4.4) increases linearly from 0.21
to 1.71 along the radius of length 16 distance units. The receptive fields of BVCs, eBC
neurons and retrosplenial cells (transformation layers) tile the space in polar coordinates
with a radial resolution of 1 receptive fields per arbitrary distance unit (range: 0− 16,
see above) and an angular resolution of 51 receptive fields over 2π radians, which
results in a total of 816 neurons per population.

Figure 4.2.: Rate maps recorded in-vivo. On the top the black dots along the trajectory
indicate spike locations of single neurons. Below the corresponding rate
maps are illustrated [7].
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4. Methodology

Figure 4.3.: Activity profiles of eBC (left) and BVC (right) layers at the same time during
simulation. All the neurons are arranged as described in section 4.3.1.
Bright colors indicate a higher firing rate. Environmental surroundings are
visualized by neuronal firng.

Figure 4.4.: Sixteen receptive fields along the 16 distance units. The closer to the agent
the smaller the receptive field. The receptive fields shown here are all
located on the same radian. The top left shows the receptive field closest
to the agent and in the bottom right the receptive field furthest away from
the agent is shown. Bright yellow indicates a higher firing rate (calculated
according to Equation 4.1).

4.3.2. Architecture

This thesis only differentiates between egocentric and allocentric reference frames.
Nevertheless the first reference frame of visual information is the retina. So there has

15



4. Methodology

to be another transformation taking place, which transforms the eye centered signal
into a head centered representations, and then drives the BCs to fire [6]. However this
thesis focuses on what happens after these measures are obtained.

51 sensors are used to scan the environment, to get distances and directions to all
boundary segments at a given time step. From that the egocentric activity is calculated.

Once the egocentric activity is calculated the activity is propagated to the 20 trans-
formation layers belonging to the transformation circuit. This happens by multiplying
it with 20 weight matrices which are obtained according to the hebbian learning rule
which is explained in section Synaptic Weights. These transformation layers are then
subject to modulation by the HDC network. Depending on the current heading di-
rection provided by the HDC network, the transformation layer matching the current
heading will be propagated to the BVC layer. As long as the HDC signal is modelled
as a gaussian (which is biologically plausible) [8], [9], [5] show that 20 layers guaran-
tee enough overlap to succesfully interpolate between the maximally effective head
directions [6]. In the following the transformation circuit will be described in more
detail.

eBCs
egocentric frame

TR
HD-Modulated

BVCs
allocentric frame

HDC NetworkSensory inputs

Figure 4.5.: Model schematic as described above in section 4.3.2

4.3.3. Transformation Circuit (TR)

The TRs task is to transform head-centered (egocentric) perceptual information into an
allocentric reference frame. Our sensory information is, at the first step, of egocentric
nature (after transforming the retinal representation as previously mentioned) i.e.,
in the context of boundary detection, a boundary is either ahead, left or right. This
egocentric information is transformed into an allocentric reference frame by a gain-field
circuit in retrosplenial cortex. The gain modulation is provided by head-direction,
producing directionally tuned boundary vector cells (BVC) which connect egocentric
and allocentric boundary coding neurons.

Here the HDC being the modulatory cell is influencing the BVC firing. The same

16



4. Methodology

eBC can drive multiple different BVCs to fire depending on heading direction (HDC
input modulates effect of eBC input to BVC firing).

For example, an eBC with a receptive field (RF) to the right while moving west
connects to the BVC coding for allocentric north, an eBC with its RF to the left while
moving east is connected to the same BVC (see Figure 4.7). Likewise an eBC with a
receptive field to the right is connected to multiple BVCs depending on the heading
direction of the agent.

The TR consists of 20 identical sublayers, each tuned to a specific heading direction.
Each subpopulation encodes a rotated egocentric map, representing its heading direc-
tion chosen from 20 evenly spaced allocentric heading directions from the 360° range.
Connections between the eBC layer and any one of the transformation sub-populations
are set up in training in such a way, that a rotated version of the egocentric spatial
information contained in the eBC is projected onto that transformation sublayer (details
in section 4.4).

Weights from the HDC network to the transformation layers are set up in such a way
that all transformation layers that do not match the current heading are inhibited, and
those that do represent it remain active, and thus propagate their activity profile to the
BVC layer (Figure 4.6). This is achieved by scaling each Layers activity with respect
to angular difference between the current heading and the directional tuning of that
specific layer, i.e. the bigger the angular difference the smaller the remaining activity
of the layer. Afterwards all the layers activities are added together, and normalized
to one. The result is the transformation from a perceived egocentric environmental
surrounding into an allocentric representation.

E.g. if the agent has a wall in front of him (0° in egocentric coordinates) each of the
20 layers will have that information but rotated in such a way that it represents their
specific tuning (e.g. 90° : allocentric west , 180° : allocentric south, 270° : allocentric
east). If the agent is heading east (270°), only the layer representing that heading will
be able to project onto the BVC layer, and therefore the BVC will represent a boundary
in the allocentric east (see figure 4.6).

17



4. Methodology

Figure 4.6.: Egocentric boundary information is shown in the eBC layer. The sublayers
each encode the same egocentric map, but rotated. For simplicity only three
sublayers are shown here. With heading direction at approx. 322◦, sublayer
18, which is tuned to approximately 322◦, is the layer which represents
the current heading direction. The activity profile of sublayer 18 is then
projected to the BVC layer while the others are inhibited[18].

Figure 4.7.: Neurons with receptive fields to the right and left in the egocentric reference
frame are both connected to the same BVC in the allocentric reference frame.

18



4. Methodology

4.4. Synaptic Weights and Training

During training phase all the synaptic weights that connect the different components of
the model are set up. The training phase follows the same steps for 400.000 iterations:

A random boundary segment is generated in allocentric coordinates, and the corre-
sponding firing rates for the BVCs are calculated according to Equation 4.1 resulting in
the BVC’s activity profile.

Afterwards the boundary segment is rotated and the corresponding activity profiles
for the egocentric and transformation layers are calculated (also according to Equation
4.1). In the next section I will explain how the synaptic weights are generated from
those activity profiles.

4.4.1. Synaptic Weights

The underlying principle is the "Hebb rule":
Connections between neurons increase in efficacy in proportion to the degree of

correlation between pre and post-synaptic activity [15]. Meaning, if pre-synaptic neuron
A excites post-synaptic neuron B the connection between those two is strengthened
and firing of neuron A will most likely lead to the firing of neuron B. The more often
that happens the stronger the connection between A and B. Or with Hebb’s words
“Neurons that fire together, wire together”.

Following that principle the connection weights are calculated using the outer product
of two vectors. The reason the outer product is the fitting operator is because it
multiplies each element (representing a neurons activity in this case) of one vector with
each element of the other vector, which is fitting to Hebb’s rule.

eBC to TR : egocentric2transformation
816×816

= eBCActivity
816×1

× TRlayer′
1×816

(4.6)

The weights connecting the eBC and each of the 20 TR layers is the outer product of
the corresponding activity profiles. So in total the weight tensor that connects the eBC
layer to all 20 TR layers is 816× 816× 20 in size. This is done repeatedly for all of the
400.000 iterations, in order to account for learning all different places a boundary can
be encountered at. After each iteration the weights calculated will be added to the
previous weights, and after iterating 400.000 times the weights will be normalized to
one.

HDC to TR : heading2transformation
816×100

= HDCActivity
100×1

× TRlayer′
816×1

(4.7)
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The weights connecting the HDC network and the TR layers are calculated the same
way. 20 weight matrices resulting in a 816× 100× 20 weight tensor are calculated
with the outer product of the HDC’s activity profile and the corresponding TR layer’s
activity profile. This is only done once per Layer since the directional tuning per layer
does not change.

As stated previously connection weights from TR to BVC are the identity matrix
since it just conveys the TR’s outcome, so there are no computations needed for those.

Once the weights are calculated they are saved and can be used in the simulation or
any real-time application, if the environmental surroundings are put in with the right
format (Vector with 816 elements).

4.5. Perception

During simulation (or possibly any real-time application) the agent needs to get infor-
mation about the environmental surroundings, and the allocentric heading direction.
Here environmental surroundings are scanned by 51 sensors distributed around the
agent ( see Figure 5.1, and the heading direction is calculated by the HDC network
provided by Amir El Sewisy. 51 sensors are used because there are 51 receptive fields
per distance unit aligned around the agent. The information about the environmental
surroundings is fed into the eBC layer and the activity profile is generated (Equa-
tion4.1). The HDC network provides gain-modulation for the TR, and the information
propagates through the network generating BVC activity.

As explained in section 4.3.1, the model encodes distance with d = 16 distance units.
The sensors used in the simulation have a length of l = 2.5. So the distances to the
boundaries have to be rescaled to fit the model. The rescaling factor k can be computed
with following equation:

k =
d
l

(4.8)

By doing this, it is possible to use the same simulation environment, for simulating
wider or narrower spaces. This can be done by adjusting the sensor length. The longer
the length, the smaller the space appears. And vice versa, the shorter the length, the
bigger the space appears (Figure 5.14).
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In this chapter the different simulation settings will be described first, and then the
results of the simulations are discussed. Afterwards firing rates of eBC and BVC
populations are compared. Finally biological plausibility of the model is debated.

5.1. Simulation Setup

The firing of boundary coding cells is tested by getting environmental information from
a simulated pioneer P3DX robot. The environment is running in PyBullet3 [10]. The
robot is controlled by a braitenberg controller that avoids obstacles based on proximity,
and is equipped with 51 proximity sensors as shown in Figure 5.1.
Those sensors provide input to the braitenberg controller, and to the egocentric eBC layer
of boundary coding neurons. Thus, as said those sensors are simulating perception.
The robot’s angular velocity is the input for the HDC network, which encodes current
heading direction and provides gain-modulation for the transformation circuit. The
robot enters two of the maze’s versions on the bottom right see Figure 5.2 and Figure
5.3 and one at the bottom left see Figure 5.4. Afterwards the robot will navigate through
those mazes.

Figure 5.1.: Pioneer P3DX equipped with 51 proximity sensors.
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Figure 5.2.: Simulation environment: maze with round turns

Figure 5.3.: Simulation environment: maze

Figure 5.4.: Simulation environment: Maze with entry on the bottom left
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5.2. Simulation Results

During simulation the different layer’s activity profiles are plotted for visualization.
We will use the plotted activity profiles to discuss the applicability of the model and
how good it works (see Figures 5.5 - Figure 5.16). The BVC layer’s activity profile is
depending directly on the HDC network’s decoded direction. Thus if there is an error
in the decoded direction it is represented in the BVC layer. The maximum error, as
reported by Amir El Sewisy, is 1.5◦.

Figure 5.5.: The agent is facing a decoded direction of 359.6◦ which is allocentric north.
In the agent’s peri-personal space there are walls left and right. The result
is that the BVC and eBC activity profiles are approximately the same.
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Figure 5.6.: The agent is facing a decoded direction of 90.7◦ which is allocentric west.
In the agent’s peri-personal space there are walls left and right, so the same
as in figure 5.5. The transformation circuit rotates the representation by 90◦

and propagates that to the BVC layer, to produce allocentric representation
in the BVC layer.

Figure 5.7.: The agent is facing a decoded direction of 169.4◦ which is allocentric south.
In the agent’s peri-personal space there are walls left, right and behind. Due
to the sensors being distributed all around the agent, the wall behind him is
represented in the activity profile as well. This is only biologically plausible
to some extent. It is expected that there is a mnenomic component involved
that gives rise to BCs with a receptive field behind the agent. However this
firing is like the agent has a 360◦ field-of-view. Discussed more in section
5.4.

24



5. Results and Discussion

Figure 5.8.: The agent is facing a decoded direction of 100.6◦ which is allocentric west.
In the agent’s peri-personal space there are walls left, right, behind and in
front of him producing a S like turn.

Figure 5.9.: The agent is facing a decoded direction of 143.1◦ which is allocentric south-
west. In the agent’s peri-personal space there is a corner to the right, and
a curved wall to the left. This scenario shows that the model is able to
produce egocentric and allocentric firing that reflects curved surroundings.

25



5. Results and Discussion

Figure 5.10.: The agent is facing a decoded direction of 43.1◦ which is allocentric north-
west. In the agent’s peri-personal space there is a corner to the right, and
curved wall to the left. It is almost the same scenario as above in figure
5.9, but with a different heading.

Figure 5.11.: The agent is facing a decoded direction of 110.41◦ which is approx. al-
locentric west. In the agent’s peri-personal space there is a curved wall
revolving around him from behind-right to front-right. To his left is a
short wall. Different to scenarios 5.9 and 5.10 the wall is now to the right
in a left turn. Both egocentric and allocentric produce accurate activity
profiles.
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Figure 5.12.: The agent is facing a decoded direction of 262.8.0◦ which is allocentric
east. In the agent’s peri-personal space he is surrounded by walls behind,
left and in front of him, to his right there is the edge of a wall. Different
from the other scenarios the agent is now moving east. The transformation
circuit works just as good as while moving west and produces accurate
BVC firing.

Figure 5.13.: The agent is facing a decoded direction of 263.9◦ which is allocentric east.
In his peri-personal space there are walls left, right and behind. Another
scenario to show the transformation circuits functioning for heading east.
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Figure 5.14.: The agent is facing a decoded direction of 359.9◦ on the top and 0.1◦ on
the bottom which is both allocentric north. In both Simulations the agent
is in between two parallel walls. Normally the sensor length is 2.5. On the
top the sensor length is halved to be 1.25 and on the bottom it is doubled
to be 5. The result is, as described above in section 4.5, a change in how
the environment is perceived in terms of space. On the top space seems
wider, and on the bottom it seems narrower.
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Figure 5.15.: The agent is facing a decoded direction of 2.4◦ which is allocentric north.
In his peri-personal space there are walls left and right. This is the same
as in Figure 5.5, but with all 20 transformation layers plotted. It shows the
counter-clockwise rotation of the eBC’s activity profile through layers 1 to
20.
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Figure 5.16.: The agent is facing a decoded direction of 60.7◦ which is allocentric north-
west. In his peri-personal space the surrounding environment is similar to
Figure 5.11. Again all 20 transformation layers are plotted, and the figure
shows the counter-clockwise rotation of the eBC’s activity profile through
layers 1 to 20. All the 20 layers represent the curvature of the wall to the
right/allocentric north.

All those different simulation scenarios show that the BC network works as it
is supposed to. The plotting of the activity profile shows that the neuronal firing
represents the environmental surroundings. It works for corners, and for curved
walls as well. While facing in all different allocentric directions and at the same time
encountering surroundings, which are very similar in the egocentric reference frame,
the transformation circuit conducts the transformation in such a way that the encoded
environmental surroundings are represented accordingly in the allocentric reference
frame. The only difference that stands out is that, although allocentric firing properly
displays the environmental surroundings accordingly and the transformations work as
well, the difference in size of firing fields of the populations are apparent. This will be
evaluated in the next section.
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5.3. Rate Differences

Here I will compare the sum over the neuron’s firing rates from eBC and BVC popula-
tions in the regular maze environment (see figure 5.3) and the maze with curved turns
(see figure 5.2). Simulation episode for the regular maze is 240s and 180s for the maze
with curved turns.

The eBC will serve as ground truth. The reason for that is that the input (distances
and directions to environmental surroundings) to the eBC layer is scanned by sensors
and by that, is 100% accurate. The neuron model is biologically plausible and the
activity profile is computed according to neuroscientific evidence as well [5], [9].

All neurons firing rates have been normalized to one throughout the model. This
means that relative firing rates are accurate, but peak firing rates with respect to
biological evidence differ. This has no influence on performance, because any arbitrary
peak firing rate r could be simulated by multiplying all the activity with that arbitrary
rate r. But it would not change the model’s outcome. This means that if all neurons
of a population would be firing maximally the total rate would be 816, since each
population consists of 816 neurons.

Between all simulation environments the maximum firing rate difference is 125.70,
the mean rate difference is 79.08, the maximum eBC rate is 66.56 and the maximum
BVC rate is 172.27. Looking at the trajectory, differences and where the robot was
located at different time steps it shows that the difference is the biggest when there are
more boundary segments located on receptive fields of the neurons. (see figures 5.17,
5.18, 5.19).

Comparing the values with the maximum value differences between eBC and one of
the transformation layers (TR layer 6 was chosen randomly) (see figure 5.20) with mean
difference = 62, 79 and maximum firing difference = 98.73, shows that those values are
smaller than in comparisons between eBC and BVC. This implies that each propagation
step adds to the loss of accuracy. It has to be differentiated where the loss comes from:

• eBC to TR: The weights are generated using the outer products between eBC
and TR layers. Rotation from eBC to TR layers is hard coded in the training
phase, i.e. the loss of accuracy has to be caused by the weights which conduct
transformation. This would be reduced by clipping weights.

• TR to BVC: The result of the transformation circuit is propagated to the BVC layer
1:1, i.e. there are no weights which can decrease accuracy. The head direction
during training is chosen from only 20 possible directions. During simulation
the head direction is more accurate, meaning that directions in-between two
transformation layers will modulate transformation. While it has been shown by
[5], [8], [9] and the simulations presented above, that those 20 layers are enough
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to interpolate between maximally effective headings, the way the BVC profile is
calculated is by addition of 2 or more layers, if the heading is between maximally
effective headings. That means there will be some overlap resulting in the loss of
accuracy.

Figure 5.17.: (Left)Firing rate difference between eBC and BVC populations. (Right)
trajectory of the robot with points indicating the location of the robot every
20 seconds. Robot moving through the regular maze environment (see
figure 5.3). The maximum difference between firing rates was 125.70 and
the mean was 79.63.
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Figure 5.18.: (Left) Firing rate difference between eBC and BVC populations. (Right)
trajectory of the robot with points indicating the location of the robot every
20seconds. Robot moving through the maze environment with curved
turns (see figure 5.2). The maximum difference between firing rates was
125.43 and the mean was 78.53.

Figure 5.19.: Sum over firing rates of the eBC and BVC neuron populations at each
time step. (Left) The robot was moving through the regular maze envi-
ronment (see figure 5.3). (Right) The robot was moving through the maze
environment with curved turns (see figure 5.2).

The remaining question is whether that is a flaw of the model or not. Intuitively
it might even make sense that a mental transformation results in a loss of accuracy.
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Figure 5.20.: (Left) Maze, (Right) Maze with curved turns. (Top) Sum over firing rates
of the eBC and TR layer 6 neuron populations at each time step. (Bottom)
Firing rate differences between eBC and TR layer 6 neuron populations.
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That would imply that BVC receptive fields are bigger than receptive fields of eBCs. In
training the same equation (equation 4.1) was used to calculate activity for eBC and
BVC populations.

But during literature review no evidence was found, that the receptive fields are
of the same size in brains. So this poses a question that has yet to be answered by
neuroscientific research.

5.4. Biological Plausibility

The network, as discussed before consists of different parts which by themselves are
all biologically plausible. The characteristics of BVC’s [28], [18] and eBC’s [16] used in
this network are according to neuroscientific evidence. A boundary coding neuron has
receptive fields tiling space around the agent, which in increase in size with increasing
distance, and fire depending on direction and distance of the boundary from the agent.
There are only small differences to the neuroscientific data. The sensors used for the
modelling are aligned all around the agent, thus the firing for boundaries in front
and behind is the same. Although boundary coding cells have been reported to be
firing for boundaries behind the animal it is not as accurate and strong as the firing
in the animal’s field of vision. It is most likely that firing behind the animal relies
on mnemonic components [5]. Additionally BVC’s are reported to fire in response to
boundaries but drop-off edges and gaps as well [18], which is not simulated here. Since
the allocentric BC firing is not coded in the reference frame of any sensory receptor
there has to be circuitry that conducts reference frame transformation. To simulate
that, the TR is incorporated. Recent studies [11], [23] provide strong experimental
support for the predicted gain-field mechanism of egocentric–allocentric reference
frame transformations for boundary coding, which is modulated by head direction
signals [5]. Whether the seemingly bigger receptive fields, which result in wider firing
fields in the BVC population are plausible or not, is as described, yet to be determined.
The HDC network providing gain modulation, was modelled according to biological
properties recorded from in-vivo head direction cells, by Amir El Sewisy.
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6.1. Conclusion

In this thesis I provided a model that encodes information about environmental sur-
roundings and produces egocentric and allocentric boundary cell firing. Egocentric
information encoded by egocentric boundary cells is transformed into an allocentric
reference frame encoded by boundary vector cells. This transformation is conducted
by a head direction modulated transformation circuit called the retrosplenial transfor-
mation circuit. The model worked adequately in the simulations shown in chapter 5,
additionally it should work in any scenario as long as environmental information is
fed into it in the right format (see chapter 4).

6.2. Future Work

Since the first discovery of Place Cells by O’Keefe and Dostrovsky in 1971[21] it has
been shown that PCs are a very important aspect for spatial navigation. Place cells
get input from different cells such as the Grid Cells. It was reported that PCs show
adult like firing fields the first time they leave the nest at the age of 2.5 weeks, while
GCs have variable and irregular fields until the fourth week. On the other hand BVCs
express adult like firing fields as early as PCs [7]. Thus BVCs are very crucial for, and
have been shown to drive PC firing. BVC activity drives place cells to fire [14], [12],
[3], [4]. As future work this model should be incorporated into a model in which it
will drive PCs to fire. This could then be used as a quantification measure as well.
Comparing predicted place fields to in-vivo recordings from rat experiments.

The BB-model gives further theoretical foundation for such a model. It’s modules
and connections are based on neuroscientific, and psychological evidence, and are
biologically plausible. But it is only tested in simulations, and for example the HDC
network they used was not optimal. Thus using the architecture, but increasing the
individual component’s performances (such as the HDC network), and making them
applicable to real-time scenarios would be worth to follow up on. Furthermore as
mentioned before the mechanism providing input to the eBCs in this model would be
one problem that has to be tackled in future work. The underlying mechanisms are yet
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to be fully understood and neuroscientific research has to provide results first. Yet, one
example for a paper that tries to provide a model for distance and direction estimates
to boundaries and objects (based on optic flow) is [24].
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A. Computational Details

Simulations ran on an AMD Ryzen 5 3600 6-Core CPU, 16GB of RAM and a NVIDIA
GeForce GTX 1060 6GB. The code for simulation was written in Python 3. In the
simulation presented in Chapter 5, the robot is simulated in timesteps of 50ms. During
the simulation, the neuron populations were visualized using matplotlib, see figure
5.5 for a sample visualization. The following computation times were recorded during
simulation:

Regular Maze (figure 5.3):

• Total time (real): 124.65 s, Total time (simulated): 240.00 s

• Steps done BC-model simulation: 4800; Time: 53.19 s; 43.66% of total time

• Average step time HDC network: 0.45 ms

• Steps done HDC network: 24000; Time: 10.828 s; 8.81% of total time

• Average step time plotting: 65.49 ms

• Steps done plotting: 48; Time: 3.144 s; 2.56% of total time

• Average step time robot: 2.86 ms

• Steps done robot: 4800; Time: 13.71 s; 11.15% of total time

Maze with curved turns (figure 5.2):

• Total time (real): 93.37s, Total time (simulated): 180.00s

• Steps done BC-model simulation: 3600; Time: 40.71 s; 43.60% of total time

• Average step time HDC network: 0.45 ms

• Steps done HDC network: 18000; Time: 8.23 s; 8.63% of total time

• Average step time plotting: 65.55 ms

• Steps done plotting: 36; Time: 2.36 s; 2.48% of total time
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• Average step time robot: 3.32 ms

• Steps done robot: 3600; Time: 11.96 s; 12.55% of total time

In both simulation environments the simulation time was approximately 1.93 times
as fast as the simulated time. The times for different steps did not differentiate by a
considerably between the simulation environments.

When plotting all 20 TR layers the simulation time increases drastically. Simulation
time is approximately 0.17 times slower than simulated time. For a simulation run
through the maze with curved turns it takes 1029s for a simulated time of 180s.

During training phase, in which weights were generated for the BC network following
times were recorded:

• 1000 iterations: 19.80s

• 400.000 iterations: 7921.20 s / 132.02min / 2.2h
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