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Abstract—A method is proposed, called channel polarization,
to construct code sequences that achieve the symmetric capacity

of any given binary-input discrete memoryless channel
(B-DMC) . The symmetric capacity is the highest rate achiev-
able subject to using the input letters of the channel with equal
probability. Channel polarization refers to the fact that it is pos-
sible to synthesize, out of independent copies of a given B-DMC

, a second set of binary-input channels
such that, as becomes large, the fraction of indices for which

is near approaches and the fraction for which
is near approaches . The polarized channels
are well-conditioned for channel coding: one need only

send data at rate through those with capacity near and at rate
through the remaining. Codes constructed on the basis of this idea
are called polar codes. The paper proves that, given any B-DMC

with and any target rate , there exists a
sequence of polar codes such that has block-length

, rate , and probability of block error under suc-
cessive cancellation decoding bounded as
independently of the code rate. This performance is achievable by
encoders and decoders with complexity for each.

Index Terms—Capacity-achieving codes, channel capacity,
channel polarization, Plotkin construction, polar codes, Reed–
Muller (RM) codes, successive cancellation decoding.

I. INTRODUCTION AND OVERVIEW

A FASCINATING aspect of Shannon’s proof of the noisy
channel coding theorem is the random-coding method

that he used to show the existence of capacity-achieving code
sequences without exhibiting any specific such sequence [1].
Explicit construction of provably capacity-achieving code
sequences with low encoding and decoding complexities has
since then been an elusive goal. This paper is an attempt to
meet this goal for the class of binary-input discrete memoryless
channels (B-DMCs).

We will give a description of the main ideas and results of the
paper in this section. First, we give some definitions and state
some basic facts that are used throughout the paper.
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A. Preliminaries

We write to denote a generic B-DMC with
input alphabet , output alphabet , and transition probabilities

. The input alphabet will always be
, the output alphabet and the transition probabilities may

be arbitrary. We write to denote the channel corresponding
to uses of ; thus, with

.
Given a B-DMC , there are two channel parameters of pri-

mary interest in this paper: the symmetric capacity

and the Bhattacharyya parameter

These parameters are used as measures of rate and reliability,
respectively. is the highest rate at which reliable commu-
nication is possible across using the inputs of with equal
frequency. is an upper bound on the probability of max-
imum-likelihood (ML) decision error when is used only once
to transmit a or .

It is easy to see that takes values in . Throughout,
we will use base- logarithms; hence, will also take
values in . The unit for code rates and channel capacities
will be bits.

Intuitively, one would expect that iff ,
and iff . The following bounds, proved in
the Appendix, make this precise.

Proposition 1: For any B-DMC , we have

(1)

(2)

The symmetric capacity equals the Shannon capacity
when is a symmetric channel, i.e., a channel for which there
exists a permutation of the output alphabet such that i)

and ii) for all . The bi-
nary symmetric channel (BSC) and the binary erasure channel
(BEC) are examples of symmetric channels. A BSC is a B-DMC

with and
. A B-DMC is called a BEC if for each , either

or . In the latter case,
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They are capacity-achieving on binary memoryless symmetric (BMS) channels with low
encoding/decoding complexity [Arı09].

But successive cancellation (SC) decoding performs poorly for small blocks.

M. C. Coşkun Polar Code Design for SCL Decoding:An Information Theoretic Perspective May 27, 2021 2 / 29



Polar Codes

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009 3051

Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric

Binary-Input Memoryless Channels
Erdal Arıkan, Senior Member, IEEE

Abstract—A method is proposed, called channel polarization,
to construct code sequences that achieve the symmetric capacity

of any given binary-input discrete memoryless channel
(B-DMC) . The symmetric capacity is the highest rate achiev-
able subject to using the input letters of the channel with equal
probability. Channel polarization refers to the fact that it is pos-
sible to synthesize, out of independent copies of a given B-DMC

, a second set of binary-input channels
such that, as becomes large, the fraction of indices for which

is near approaches and the fraction for which
is near approaches . The polarized channels
are well-conditioned for channel coding: one need only

send data at rate through those with capacity near and at rate
through the remaining. Codes constructed on the basis of this idea
are called polar codes. The paper proves that, given any B-DMC

with and any target rate , there exists a
sequence of polar codes such that has block-length

, rate , and probability of block error under suc-
cessive cancellation decoding bounded as
independently of the code rate. This performance is achievable by
encoders and decoders with complexity for each.

Index Terms—Capacity-achieving codes, channel capacity,
channel polarization, Plotkin construction, polar codes, Reed–
Muller (RM) codes, successive cancellation decoding.

I. INTRODUCTION AND OVERVIEW

A FASCINATING aspect of Shannon’s proof of the noisy
channel coding theorem is the random-coding method

that he used to show the existence of capacity-achieving code
sequences without exhibiting any specific such sequence [1].
Explicit construction of provably capacity-achieving code
sequences with low encoding and decoding complexities has
since then been an elusive goal. This paper is an attempt to
meet this goal for the class of binary-input discrete memoryless
channels (B-DMCs).

We will give a description of the main ideas and results of the
paper in this section. First, we give some definitions and state
some basic facts that are used throughout the paper.

Manuscript received October 14, 2007; revised August 13, 2008. Current ver-
sion published June 24, 2009. This work was supported in part by The Scien-
tific and Technological Research Council of Turkey (TÜBİTAK) under Project
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Abstract— We describe a successive-cancellation list decoder
for polar codes, which is a generalization of the classic successive-
cancellation decoder of Arıkan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the
list, the results are comparable with the performance of current
state-of-the-art LDPC codes. We show that such a genie can be
easily implemented using simple CRC precoding. The specific
list-decoding algorithm that achieves this performance doubles
the number of decoding paths for each information bit, and
then uses a pruning procedure to discard all but the L most
likely paths. However, straightforward implementation of this
algorithm requires !(Ln2) time, which is in stark contrast with
the O(n log n) complexity of the original successive-cancellation
decoder. In this paper, we utilize the structure of polar codes
along with certain algorithmic transformations in order to
overcome this problem: we devise an efficient, numerically stable,
implementation of the proposed list decoder that takes only
O(Ln log n) time and O(Ln) space.

Index Terms— List decoding, polar codes, successive cancella-
tion decoding.

I. INTRODUCTION

THE discovery of channel polarization and polar codes by
Arıkan [1] is universally recognized as a major break-

through in coding theory. Polar codes provably achieve
the capacity of memoryless symmetric channels, with low
encoding and decoding complexity. Moreover, polar codes
have an explicit construction (there is no random ensem-
ble to choose from) and a beautiful recursive structure that
makes them inherently suitable for efficient implementation in
hardware [7], [12].

These remarkable properties of polar codes have gen-
erated an enormous interest, see [2], [3], [6], [8], [14],
[15] and references therein. Nevertheless, the impact of polar
coding in practice has been, so far, negligible. Although
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Fig. 1. List-decoding performance for a polar code of length n = 2048
and rate R = 0.5 on the BPSK-modulated Gaussian channel. The code was
constructed using the methods of [15], with optimization for Eb/N0 = 2 dB.

polar codes achieve capacity asymptotically, empirical stud-
ies indicate that for short and moderate block lengths,
successive-cancellation decoding of polar codes does not
perform as well as turbo codes or low density parity-
check (LDPC) codes. As we ponder why, we identify
two possible causes: either the codes themselves are weak at
these lengths, or there is a significant performance gap between
successive-cancellation and maximum-likelihood decoding.
In fact, the two causes are complementary and, as we shall
see, both contribute to the problem.

In this paper, we propose an improvement to the successive-
cancellation decoder of [1], namely, a successive-cancellation
list decoder. Our decoder is governed by a single integer
parameter L, which denotes the list size. As in [1], we decode
the input bits successively one-by-one. However, in the pro-
posed decoder, L decoding paths are considered concurrently
at each decoding stage. Specifically, our decoder doubles the
number of decoding paths for each information bit ui to be
decoded, thus pursuing both ui = 0 and ui = 1 options, and
then uses a pruning procedure to discard all but the L most
likely paths. At the end of the decoding process, the most
likely among the L decoding paths is selected as the decoder
output (thus, in contrast to most list-decoding algorithms in the
literature, the output of our decoder is not a list but a single
codeword).

The performance of the list-decoding algorithm outlined
above is encouraging. For example, Figure 1 shows our
simulation results for a polar code of rate half and length
2048 on a binary-input AWGN channel, under successive-
cancellation decoding and under list decoding. We also include
in Figure 1 a lower bound on the probability of word error
under maximum-likelihood decoding (such a bound can be
readily evaluated in list-decoding simulations). As can be
seen from Figure 1, the performance of our list-decoding algo-
rithm is very close to that of maximum-likelihood decoding,
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SC list (SCL) decoding with CRC and large list-size performs very well and matches
maximum-likelihood (ML) [TV15].

It can also be used to decode other codes (e.g., Reed–Muller codes).
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Polar Codes with Dynamic Frozen Bits

Later, polar codes were extended with the concept of dynamic frozen bits, which enabled
state-of-art designs.

It is also shown that any code can be decoded using SCL decoding, but some require very large
complexity for a good performance.
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Motivating Question
What list size is sufficient to approach ML decoding performance for a given polar code and
channel?

To avoid losing true codeword, its rank must not be larger than list size.

The expected log-rank of correct codeword is upper bounded by an entropy.

For the BEC,

This entropy equals the dimension of an affine subspace.
The average dimension can be well modeled by a simple Markov chain (only numerical results
shown here!).

Based on joint works with Henry D. Pfister [CP20, CP21]
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Polar Codes and Density Evolution
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Dynamic Frozen Bits

The value of a frozen bit can also be set to a linear combination of previous information bits
(rather than a fixed 0 or 1 value) [TM16].

A frozen bit whose value depends on past inputs is called dynamic.

SC/SCL decoding easily modified for polar codes with dynamic frozen bits.

Any binary linear block code can be represented as a polar code with dynamic frozen bits!
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M. C. Coşkun Polar Code Design for SCL Decoding:An Information Theoretic Perspective May 27, 2021 9 / 29



Successive Cancellation List Decoding

Idea of SCL decoding of yN
1 is to recursively (i = 1, 2, . . .) compute

Qi(ũi
1) ∝ P

(
U i

1 = ũi
1,Y

N
1 = yN

1

)

If Qi−1(ũi−1
1 ) known for all ũi−1

1 ∈ Ui−1 ⊆ {0, 1}i−1, then for ũi ∈ {0, 1}
Qi(ũi

1) ∝ P
(
U i

1 = ũi
1,Y

N
1 = yN

1

)

∝ Qi−1(ũi−1
1 ) P

(
Ui = ũi

∣∣Y N
1 = yN

1 ,U
i−1
1 = ũi−1

1

)
,

blue term is computed efficiently by the standard SC decoder
gives Qi(ũi

1) values for 2|Ui−1| partial input sequences
let Ui be set of paths after pruning to subset of most likely paths

After N-th stage, estimate ûN
1 ∈ UN chosen to maximize QN(ũN

1 ).
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Qi(ũi
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An Information-Theoretic Perspective (1)

Basic Idea: After m steps, consider the conditional entropy H
(
Um

1 |Y N
1

)
.

The chain rule of entropy implies:

H
(
Um

1 |Y N
1

)
=

m∑

i=1

H
(
Ui
∣∣U i−1

1 ,Y N
1

)

=
m∑

i=1

H
(
W (i)

N

)

Note: this ignores frozen bits and will be modified soon!
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An Information-Theoretic Perspective (2)

For the first m input bits, the information/frozen sets are denoted as

A(m) , A ∩ [m] and F (m) , F ∩ [m]

Key Idea: information entropy given frozen bits and difference sequence

D̄m , H
(
UA(m)

∣∣Y N
1 ,UF (m)

)
and ∆m , D̄m − D̄m−1

Experiment: assume UN
1 is uniform and Rx learns frozen bits causally.

If Um is an information bit, then

∆m = H(Um|Y N
1 ,U

m−1
1 )

If Um is a frozen bit, then

0 ≥ ∆m ≥ H
(
Um|Y N

1 ,U
m−1
1

)
−1

∑

i∈A(m)

H
(
Ui |Y N

1 ,U
i−1
1

)
−
∑

i∈F (m)

(
1− H

(
Ui |Y N

1 ,U
i−1
1

))
≤ D̄m ≤

∑

i∈A(m)

H
(
Ui |Y N

1 ,U
i−1
1

)
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Bounding the List Size

Theorem
Upon observing yN

1 when uN
1 is sent, we define the set (for α ∈ (0, 1])

S(m)
α

(
um

1 , y
N
1

)
, {ũm

1 : P
(
ũA(m)|yN

1 , ũF (m)

)
≥ αP

(
uA(m)|yN

1 , uF (m)

)
}. Then,

E
[

log2 |S(m)
α |
]
≤ D̄m + log2

1
α = H

(
UA(m)

∣∣Y N
1 ,UF (m)

)
+ log2

1
α
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Valid for all uN
1 and yN

1 ; thus, we take expectation over all um
1 and yN

1
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1 , ũF (m)

)
≥ αP

(
uA(m)|yN

1 , uF (m)

)
}. Then,

E
[

log2 |S(m)
α |
]
≤ D̄m + log2

1
α = H

(
UA(m)

∣∣Y N
1 ,UF (m)

)
+ log2

1
α

For an SCL decoder with max list size Lm during the m-th decoding step,

the decoder needs Lm ≥ |S(m)
1 | for the true um

1 to stay on the list

Choosing α < 1 (say 0.94) captures near misses and matches entropy better.
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A Few Remarks

Our approach currently has two weaknesses:

Entropy mainly characterizes typical events but we care about rare events.

The sequence D̄m is averaged over Y N
1 , i.e., D̄m =

∑
yN

1
P(yN

1 )H
(
UA(m)|Y N

1 = yN
1 ,UF (m)

)
.

But the actual decoder sees a realization dm(yN
1 ) , H

(
UA(m)|Y N

1 = yN
1 ,UF (m)

)
.

Significance for code design:

A first-order code design criterion can be seen as log2 Lm ≥ dm.

Based on this, the improved code designs will be reported.
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M. C. Coşkun Polar Code Design for SCL Decoding:An Information Theoretic Perspective May 27, 2021 15 / 29



A Few Remarks

Our approach currently has two weaknesses:

Entropy mainly characterizes typical events but we care about rare events.

The sequence D̄m is averaged over Y N
1 , i.e., D̄m =

∑
yN

1
P(yN

1 )H
(
UA(m)|Y N

1 = yN
1 ,UF (m)

)
.

But the actual decoder sees a realization dm(yN
1 ) , H

(
UA(m)|Y N

1 = yN
1 ,UF (m)

)
.

Significance for code design:

A first-order code design criterion can be seen as log2 Lm ≥ dm.

Based on this, the improved code designs will be reported.
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Dynamic Reed-Muller Codes

dRM code ensemble [CNP20, CP21]:

Let A be the information indices of an RM code.

ui is an information bit if i ∈ A.

ui =
∑

j∈A(i) Aijuj if i ∈ F where Aij iid ∼ Bernoulli(0.5).

Closely related to polarization-adjusted convolutional (PAC) codes [Arı19].

PAC is outperformed slightly by (random instances of) dRM code under SCL decoding with the
same list sizes.
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(128, 64) dRM Code over the AWGN Channel
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(128, 64) Proposed vs dRM Code over the AWGN Channel

Proposed Code
u{30,40} dynamic frozen
bits
u{1,57} info. bits
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(128, 64) Codes over the AWGN Channel
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(512, 256) Proposed vs dRM Codes over the AWGN Channel
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(512, 256) Codes over the AWGN Channel
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1 Preliminaries
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The Uncertainty Dimension
For a fixed yN

1 , the subspace dimension is

dm(yN
1 ) = H

(
UA(m)

∣∣Y N
1 = yN

1 ,UF (m)

)

Let Dm = dm(Y N
1 ) denote corresponding random value at step m.
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(512, 256) dRM Code
A fixed-weight BEC with exactly round(512× 0.48) = 246 erasures

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

Bit index m

A
ve

ra
ge

S
u

b
sp

ac
e

D
im

en
si

on
D̄

m

D̄m Sim.
D̄m Markov
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(512, 256) dRM Code
A fixed-weight BEC with exactly round(512× 0.48) = 246 erasures
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Concentration of the Subspace Dimension

Theorem
The subspace dimension Dm for a particular random realization Y N

1 concentrates around the mean
D̄m for sufficiently large block lengths [CP21], i.e., for any β > 0, we have

P
{

1
N
|Dm − D̄m| > β

}
≤ 2 exp

(
−β

2

2
N
)
. (1)
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P
{

1
N
|Dm − D̄m| > β

}
≤ 2 exp

(
−β

2

2
N
)
. (1)

Proof.
Key observation: at any decoding stage, the subspace dimension satisfies Lipschitz−1 condition:
For all i ∈ [N] and all values yN

1 and ỹi , we have

|dm(yN
1 )− dm(y i−1

1 , ỹi , yN
i+1)| ≤ 1.

Then, use Azuma-Hoeffding inequality by forming a Doob’s Martingale.
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Concentration of the Subspace Dimension

Theorem
The subspace dimension Dm for a particular random realization Y N

1 concentrates around the mean
D̄m for sufficiently large block lengths [CP21], i.e., for any β > 0, we have

P
{

1
N
|Dm − D̄m| > β

}
≤ 2 exp

(
−β

2

2
N
)
. (1)

We may use the theorem above to give bounds on the average complexity of ML decoding of a
given code implemented via SCI decoding.

Extension to more general class of channels follows [CP21].
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(512, 256) Codes over the BEC
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(512, 256) Codes over the BEC
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Summary (1)

AWGN Channel

“What list size is sufficient to approach maximum-likelihood (ML) decoding performance under
an SCL decoder?”

Information theory provides some useful measures.

The analysis leads to improved code designs (in comparison to the existing good codes, e.g.,
the PAC code [Arı19] or 5G codes) especially in under SCL decoding with practical list sizes,
e.g., 32 or 128.

Not only for N = 128 but also for N = 512.

Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random
coding union bound for (128, 64) with moderate complexity.

Moderate-length regime, e.g., 2048 ≥ N ≥ 256, has more margin to improve.
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Summary (2)

BEC

The logarithm of the random required list size is shown to concentrate around the mean and a
simple but accurate approximation of this mean is provided for the BEC.

Holds for more general class of channels (see [CP21] for details).

Designed code performs as well as the RM code for frame error rates equal to 10−5 or higher
with much lower average list size (or, inactivations as it is BEC).

Outlook and Future Work

The concentration of the random subspace dimension makes the average analysis meaningful;
hence, we may upper bound the average complexity of SC inactivation decoding (for the BEC).

Constructive algorithm to design longer codes with good performance vs. complexity trade-off
under SCL decoding.
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hence, we may upper bound the average complexity of SC inactivation decoding (for the BEC).

Constructive algorithm to design longer codes with good performance vs. complexity trade-off
under SCL decoding.
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