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Abstract
Purpose: Tracking of tools and surgical activity is becoming more and more important in the context of computer assisted
surgery. In this work, we present a data generation framework, dataset and baseline methods to facilitate further research in
the direction of markerless hand and instrument pose estimation in realistic surgical scenarios.
Methods: We developed a rendering pipeline to create inexpensive and realistic synthetic data for model pretraining. Sub-
sequently, we propose a pipeline to capture and label real data with hand and object pose ground truth in an experimental
setup to gather high-quality real data. We furthermore present three state-of-the-art RGB-based pose estimation baselines.
Results: We evaluate three baseline models on the proposed datasets. The best performing baseline achieves an average tool
3D vertex error of 16.7 mm on synthetic data as well as 13.8 mm on real data which is comparable to the state-of-the art in
RGB-based hand/object pose estimation.
Conclusion: To the best of our knowledge, we propose the first synthetic and real data generation pipelines to generate
hand and object pose labels for open surgery. We present three baseline models for RGB based object and object/hand
pose estimation based on RGB frames. Our realistic synthetic data generation pipeline may contribute to overcome the data
bottleneck in the surgical domain and can easily be transferred to other medical applications.

Keywords Object pose · Hand pose · Single-shot pose estimation · Synthetic data generation · Deep learning

Jonas Hein and Matthias Seibold contributed equally to this work and
are listed as co-first authors in alphabetical order. Philipp Fürnstahl
and Nassir Navab are listed as co-last authors in alphabetical order.

B Jonas Hein
heinj@student.ethz.ch

B Matthias Seibold
matthias.seibold@tum.de

1 Research in Orthopedic Computer Science, University
Hospital Balgrist, University of Zurich, Balgrist CAMPUS,
Zurich, Switzerland

2 Computer Vision and Geometry Group, ETH Zurich, Zurich,
Switzerland

3 Computer Aided Medical Procedures, Technical University
Munich, Garching, Germany

4 Mixed Reality & AI Zurich Lab, Microsoft, Zurich,
Switzerland

5 Balgrist University Hospital, University of Zurich, Zurich,
Switzerland

Introduction

Visual 3D pose recognition of surgical tools [1], the patient
anatomy [3], but also of the surgical staff [25] in video data is
becoming increasingly important in clinical research. How-
ever, regulations and the risk of patient compromise make
it challenging to collect sufficient amounts of training data
to develop robust and generalizable methods [8]. As a con-
sequence, there are no publicly available clinical datasets
yet. Monocular RGB video is still the most common opti-
cal system used in today’s operating rooms and is employed
for surgical education, performance enhancement, and error
analysis [32].

Instrument pose estimation is an essential part of computer
aided surgery and is deployed in state-of-the-art surgical nav-
igation systems [7,12], as well as augmented reality systems
[20,24,27], through optical tracking to localize a surgical
instrument in the 3D space of the operating theatre. The spa-
tial localization of the tool combined with a co-registration
of a preoperative plan or intra-operative medical imaging to
the patient anatomy enables surgical guidance to improve the
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outcome of the intervention and reduce the radiation expo-
sure for both the patient and the surgical staff [22,39]. As the
tool is always partly occluded by the hand, when in use, tak-
ing hand tracking into account could be beneficial to estimate
the tool pose. In addition, more than 70% of intraoperative
complications (iatrogenic injuries) are related to the surgical
treatment itself [9,10]. 3D pose estimation of surgical tools
in regard to the patient anatomy enables the prevention of
surgical errors and potentially reduces the risk for iatrogenic
injuries by detecting proximity to risk structures, e.g., during
drill task execution. Furthermore, joint hand and tool track-
ing opens up possibilities for tracking surgical activity which
can be used for workflow recognition [25] or skill assessment
and training of surgeons [11].

In this work, we introduce a novel clinical dataset, con-
sisting of a synthetic and a real subset of RGB frames and
corresponding hand and object pose labels to enable the
development of tool pose and hand pose estimation solutions
for the medical domain. Since there are no publicly avail-
able datasets for this novel domain, we propose a pipeline to
generate inexpensive but realistic synthetic data. Pretraining
using synthetic data has been shown to achieve good results
when the availability of annotated real data is limited [36].
Furthermore, we present a semi-automatic labeling method
which allowed us to create a second dataset based on real
recordings captured in a mock operating room.

The target object used in our dataset is a surgical drill,
as bone drilling is conducted in about 95% of orthopedic
interventions [2] and is a highly relevant clinical procedure.
We propose three baseline models for object and com-
bined object–hand pose estimation based on RGB frames
for seamless integration into current surgical workflows. The
presented work introduces the problem and facilitates further
research toward markerless tool and hand pose estimation in
a surgical scenario.

Related work

In this section, we present the related work in the context of
3Dpose estimation of tools and hands, covering both separate
and combined approaches, as well as previous work in the
field of synthetic pretraining in supervised deep learning.

Object pose estimation in RGB images is nowadays
mostly accomplished by using convolutional neural net-
works (CNNs) and has been shown to yield promising results
[6,18,38]. Instead of directly regressing the object pose,mod-
els are often trained to regress 2D keypoints. The keypoints
are used to recover the 6D object pose by applying the
perspective-n-point (PnP) algorithm.Oneof the current state-
of-the-art object tracking models, PVNet [26], utilizes this
technique and performs well even under occlusions.

Several approaches have been proposed to estimate the
hand pose and hand configuration based on single-frame
RGB inputs [14,34]. A hand model, e.g., the parametric
MANO model [29], enforces the biomechanical plausibility
of the estimated hand configuration and is commonly used
in many hand tracking approaches. The MANO hand model
deforms a 3D hand mesh template according to a set of pose
and shape parameters. The pose and shape parameters cor-
respond to the principle components of the pose and shape
space, respectively, which were computed from a dataset of
high-resolution hand scans.

Joint tracking of a hand and object in interaction is still
a very recent field of research. Compared to object-only
or hand-only pose estimation, the close proximity of hand
and object makes the task particularly challenging due to
mutual occlusions. Tekin et al. [35] proposed a model for
hand–object pose estimation as well as action recognition.
Hasson et al. estimate the pose of hand and object simul-
taneously and reconstruct a mesh representation for both
[15]. In their follow-up work, they proposed a joint hand–
object pose estimation model, which directly regresses the
object pose as well as the MANO pose and shape param-
eters with sparse supervision [14]. None of the approaches
mentioned in this section have been applied in the medical
domain, which is also due to the lack of publicly available
datasets in this domain. Compared to the previous work, the
surgical scenario introduces additional challenges, such as
lighting conditions and strong hand–object occlusions when
holding a surgical instrument, e.g., a medical drill.

In scenarios where it is practically unfeasible or very
expensive to collect large amounts of labeled real data,
synthetic pretraining approaches have been shown to yield
promising results for supervised learning-based pose estima-
tion [15,33]. The performance of the model can be increased
when the network is refined with a small amount of real data
[36]. Also in the medical domain, synthetic pretraining has
been shown to have beneficial results on the model accuracy
[31].

Methodology

In the following paragraphs, we present our synthetic data
generation pipeline, the setup and methods used for cap-
turing a real-world dataset in a mock operating room, as
well as three baseline models for RGB-based tool and hand
pose estimation. However, the current state-of-the-art in
computer-assisted surgery lacks rendering pipelines capable
of generating realistic images that can be successfully used
for pretraining. All checkpoints, code and datasets have been
made public for further research and reproducibility1.

1 http://medicalaugmentedreality.org/handobject.html
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Synthetic data generation

There are several requirements for the synthetic data gener-
ation. In order to keep the domain gap as small as possible,
the synthetically generated data have to follow the underlying
statistics of real data as closely as possible. For image data,
this requirement implies that the generated images have to
look realistic and visualize a variety that is similar to real-
world situations.

Our synthetic data generation pipeline is based on the
implementation by Hasson et al. [15] but adapted to our
specific scenario in the surgical domain. First, a set of 7
bio-mechanically plausible, tool-specific random grasps is
generated using the MANO model [29] and the GraspIt!
Simulator [23]. An accurate 3D model of a Colibri II bat-
tery powered drill (DePuy Synthes, Raynham, MA, USA)
was reverse-engineered from a CT scan by manual segmen-
tation inSlicer3D and texturing inBlender (StichtingBlender
Foundation, Amsterdam, Netherlands). Similar to Hasson
et al. [15], we utilize the SMPL+H [29] model, which is
a combination of the SMPL [21] human body model and
the MANO hand model. The hand pose parameters of the
SMPL+H model are set to the generated grasp values, while
the remaining body pose parameters as well as body tex-
tures are randomly sampled from theSURREAL[37] dataset.
Using the SMPL+H model, we can increase the realism of
the rendered scene by connecting the hand to a body and by
placing the camera at the approximate position of the head.
The hand texture is set to a constant blue color that resembles
surgical gloves. In addition, the scene lighting is adjusted for
the extreme lighting conditions in an operating room, with
bright and focused spotlights and a comparably low general
illumination without natural sunlight. We render the scene
in Blender using the physically based Cycles renderer. Cus-
tom background images are added from a real spine surgery
video that was recorded with a head-mounted camera. The
outline of the synthetic data generation pipeline is illustrated
in Fig. 1.

Additionally, we assume that the rough location of the
hand or object has already been estimated, e.g., via a hand or
object detection model [28]. Thus, we generate patches that
are roughly centered on the hand.We constrain the viewpoint
to an egocentric perspective and randomize the exact posi-
tion and orientation slightly by adding uniform noise from
the intervals [−0.1, 0.1] and [−0.02, 0.02] to the head and
hand position, respectively, before placing the virtual camera
on the augmented head position and pointing it toward the
augmented hand position. The distance between camera and
drill is uniformly sampled from 30 cm to 50 cm.

Besides the RGB image, a segmentation mask is rendered
for each sample (Fig. 2). To ensure that the hand and object
are at least partly visible, we evaluate the hand and object
segmentation masks and discard all renderings where less

than 100 pixels belong to hand or object, respectively. Addi-
tionally, we exclude invalid configurations (e.g., when the
camera is positioned inside the body model) by filtering out
renderings where less than 40% of the object is visible. We
manually define 7 grasps templates in theGraspIt! Simulator
to account for slight differences in the user’s grasp of the drill,
such as the number of fingers placed on the buttons. We gen-
erate a set of 210 augmented grasps by repeatedly sampling a
randomgrasp template and addingGaussian noise to the hand
pose (σ = 0.01) and shape (σ = 0.05) parameters in order
to increase the diversity of the dataset. The augmented grasps
are verified to be physically and biomechanically plausible.

We render a total of 10500 samples based on the aug-
mented grasps. The rendered frames have a resolution of
256 × 256 pixels.

Real data generation

Even though synthetic data are inexpensive to generate in
large amounts, it is only an approximation of the true data
domain. Therefore, using synthetic data for pretraining opens
up a domain gap between the synthetic and real data domain.
We generated a real dataset in a mock operating room and
refine the synthetically pretrained models, and evaluate them
on a real test set.

A human cadaveric specimen with an open incision was
placed on the operating table and covered in surgical drapes
to make the scenario as realistic as possible. Two users
were asked to perform handling of the drill in the surgi-
cal workspace. The scene was captured with a setup of two
stereo-calibrated and hardware-synchronized Azure Kinect
DK cameras (Microsoft Corporation, Redmond, WA, USA).
To simplify the generation of ground truth annotations as
well as to increase their accuracy, the cameras captured the
scene from orthogonal viewpoints. We acquired RGB and
depth frames and reconstruct the colorized overlapping point
clouds for ground truth labeling while handling a real Col-
ibri II drill. We choose this marker-less tracking approach
over marker-based approaches to recover the ground truth
hand and tool poses, since any markers attached to the tool
or hand would be visible in the captured images and can
introduce a bias for learning based methods [13].

The ground truth object labels are generated as follows.
For each recording, we ensure that the drill is only picked
up once at the beginning and the grasp is not altered during
recording the sequence.

The 3D vertices of the tool modelVtool ∈ R
N×3 are regis-

tered to an initial point cloud frame P0. Then, we manually
select all hand points P0

hand ⊂ P
0 from the point cloud and

merge them with the tool vertices to create a joint hand-tool
point cloudPjoint = Vtool∪P

0
hand. Due to the fact that the tool

surface in the point cloud is often incomplete, which is likely
due to the drill’s matt plastic material, taking the hand point
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Fig. 1 Schematic overview of
the synthetic data generation
pipeline

MANO
hand model

GraspIt!
augmentation
+ verification
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body + pose

Blender
grasp rendering Custom dataset

Custom
background
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3D drill model
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Fig. 2 One example of a RGB
image (left), the respective
ground truth and segmentation
mask (right), taken from the
synthetic dataset (top row) and
the real dataset (bottom row)

cloud into account by registering the joint hand-tool model
Pjoint greatly improves the stability of the ICP-based pose
registration process. Next, the combined model Pjoint is reg-
istered to the remaining point cloud frames P1, ...PT of the
recording, using the trimmed ICP variant by Chetverikov et
al. [5]. To recover the tool pose Ht

tool ∈ R
4×4 from the point

cloud P
t , we initialize the ICP algorithm with the previous

frame’s pose Ht−1
tool . Additionally, we re-initialized registra-

tion in case ICP diverges from the true tool pose and rerun
the registration from that frame. Last, we manually sight the
results and discard frames with inaccurate labels.

The ground truth hand labels are recovered based on the
joint hand-tool model. We define a set of 16 vertices on the
MANO hand mesh and manually label corresponding points
on the hand-tool model Pjoint. Then, we recover the hand

pose H0
hand ∈ R

4×4 as well as the PCA pose parameters θ

of the MANO model by minimizing the pairwise distance
between the labeled points and vertices. We do not optimize
the hand shape parameters, but assume the average hand
shape (β = 0). To ensure biomechanical plausibility, we
�2-regularize the pose parameters. Last, the per-frame hand
labels (in the camera coordinate frame) are recovered via
Ht
hand = Ht

toolH
0
hand.

Since our model takes image patches instead of full-HD
images as an input, the main camera’s RGB image is cropped
around the 2D center of the drill. We define the 2D center of
the drill as the center of its 2D bounding box. The true 2D
center is augmented by randomly shifting it up to 64 pixels in
a random direction. Prior to cropping the image, we compen-
sate for any difference in the focal lengths of the Kinect and
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the simulated camera by scaling the image accordingly. We
discard all patches which show less than 40% of the tool’s
projected 2D vertices, effectively removing cases of extreme
truncation. Last, we reduce the sampling rate to 5 frames per
second to increase the difference of consecutive frames.

Our final dataset consists of 3746 frames which are
extracted from a total of 11 individual recordings. To increase
the diversity of the recordings, the drill is operated by two
different users wearing one of two differently colored pairs
of rubber gloves. The cropped image patches have a size of
256 × 256 pixels. Each frame is annotated with the 6D tool
pose, as well as the 3D hand joints in camera coordinates.

Baselinemodels

PVNet

We choose PVNet [26] as the first baseline since it is a state-
of-the-art model for object-only pose estimation on single-
shot RGB images. Furthermore, themodel has been shown to
be robust against occlusions, which is particularly important
in our use-case due to the expected occlusions caused by the
surgeon’s hand.

Instead of directly regressing translation and rotation
parameters of the 6D object pose, PVNet indirectly estimates
the object pose via a set of K = 8 + 1 2D keypoints, which
correspond to predefined 3D locations on the object’s surface
as well as the object’s bounding box center. The 3D locations
are sampled using farthest point sampling in order to increase
the stability of the PnP algorithm which is used to recover
the 6D object pose. PVNet employs a U-Net [30] like model
architecture that is used to estimate a 2D vector field for each
keypoint, as well as a segmentation mask.

The predicted 2D keypoints are recovered from their
vector field representation using a RANSAC-based voting
scheme. Keypoint hypotheses are repeatedly computed by
triangulating two random vectors from the vector field which
belong to the same object instance according to the estimated
segmentation mask. The quality of the triangulated keypoint
hypothesis is estimated by counting the number of inliers
in the vector field. Additionally, the mean and covariance of
the generated keypoint hypotheses are computed, where each
keypoint hypothesis is weighted by its inlier count.

The final 6D tool pose R̂, t̂ is recovered via an uncertainty-
driven PnP approach that minimizes the Mahalanobis dis-
tance

R̂, t̂ = min
R,t

K∑

k=1

(x̂k − µk)
TΣ−1

k (x̂k − µk), (1)

between the estimated keypoint distributions (µk,Σk) and
the ground truth 2D keypoints x̂k . The initial guesses for the

rotation R and translation t are computed viaEPnP [19] based
on the four keypoints with the lowest uncertainty. Additional
details on the RANSAC voting scheme and the uncertainty-
driven PnP approach are provided in [26].

During training, we set the hyperparameters to the opti-
mal values as reported in [26]. The PVNet model is trained
with a batch size of 8, a learning rate of 1 × 10−3, and the
ADAMoptimizer with amomentum of 0.9. The learning rate
is halved every 20 epochs.

HandObjectNet

Weadditionally evaluate the single-framehand–object recon-
struction network (HandObjectNet) by Hasson et al. [14]
as a second baseline. In contrast to PVNet, HandObjectNet
jointly estimates the poses for hand and object, which can
potentially improve its accuracy if the model learns implicit
grasp characteristics, such as the relative pose of the tool
with respect to the hand. Such grasp characteristics enable
the model to also indirectly estimate the tool pose, which
becomes important when large parts of the tool are occluded
by the hand.

HandObjectNet consists of a shared ResNet-18 [16]
encoder and two decoders for the hand and object, respec-
tively.Thehanddecoder uses twobranches of fully connected
layers with ReLU activations to estimate the hand pose and
shape parameters. The first branch estimates 18 pose param-
eters θ and 10 shape parameters β of the MANOmodel. The
pose parameters consist of 15 principle component coeffi-
cients which define the hand configuration and 3 parameters
that encode the global hand rotation in an axis-angle format.

The second branch regresses a 2D translation vector t̂′ ∈
R
2 of the hand in the image, and a focal-normalized depth

offset

d f = t|z − z0
f

∈ R, (2)

where t|z is the depth component of the 3D translation
between the hand and the camera, f is the (known) focal
length, and z0 is a depth offset set to 0.4 meters, as proposed
in [14], in order to roughly normalize the depth estimates. To
simplify the recovery of the 3D hand translation, we assume
that the principle point of the camera is located in the image
center. This assumption holds for both of our datasets. Then,
the estimated 3D translation of the hand is

t̂ =
(
t̂′|x t̂|z

f

t̂′|y t̂|z
f

t̂|z
)T

∈ R
3, t̂|z = f d̂ f + z0. (3)

During training, we set the hyperparameters to the same
values as reported in [14]. We train HandObjectNet with a
batch size of 8, a learning rate of 5 × 10−5, and the ADAM
optimizer with a momentum of 0.9.
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Combinedmodel

We furthermore propose a third baseline which is a combi-
nation of HandObjectNet [14] and PVNet [26]. We motivate
this combinationwith the robustness of this indirect pose esti-
mation via keypoints, which can potentially further improve
the accuracy of HandObjectNet. Instead of directly regress-
ing the 3D object pose via fully connected layers, such as
employed in HandObjectNet, we propose to adopt the pose
estimation method by using vector field encoded keypoints,
similar to the method introduced for PVNet [26]. Hereby,
we replace the HandObjectNet’s object decoder branch with
PVNet’s object decoder branch, including the RANSAC vot-
ing scheme and the uncertainty-driven PnP.We also adopt the
skip connections between the layers of the encoder and the
object decoder to keep the U-Net like architecture intact. A
detailed visualization of the proposedmodel architecture can
be found in the supplementary materials.

We train all models using the PyTorch framework. The
brightness, contrast, hue and saturation of the training sam-
ples are randomly augmented to prevent overfitting. We
further apply early stopping by evaluating the model on the
validation set. During training, we optimize the combined
model using the ADAM optimizer with a learning rate of
5 × 10−5, a momentum of 0.9 and a batch size of 64 which
are empirically determined hyperparameters.

Results and evaluation

We evaluate all baselines after pretraining with synthetic
data as well as after refinement on real data. We use fivefold
cross-validation to measure the variance between different
splits and ensure the statistical significance of the reported
results. The synthetic and real datasets are split on the level
of augmented grasps and recordings, respectively.

Synthetic data

We train and evaluate the three baseline models, PVNet [26],
HandObjectNet [14] and the combined model on the pro-
posed synthetic dataset. For evaluation, we use the ADD
metric [17], which is the average 3D error between corre-
sponding vertices of the tool mesh. We additionally evaluate
the 2D projection error [4] of the tool vertices. The ADD
and Proj2D metrics are evaluated on the tool vertices as well
as the hand joints (Fig. 3). As an important measure for the
drilling process, we report the position error of the drill tip
and the angular error w.r.t. the direction of the drill bit.

The results reported inTable 1 show that for the pretraining
with synthetic data, HandObjectNet outperforms the com-
bined model and PVNet and achieves the lowest average
error across all metrics with the exception of the drill tip
error.

Real data and fine tuning

We first evaluated the performance of the models which
were trained exclusively on synthetic data. We observed that
all models suffer from huge performance decreases due the
synthetic-real domain gap and are therefore not suited for the
application on real data without further refinement.

To reduce this domain gap,we refine themodels on the real
training set after pretraining them on the synthetic dataset.
We observe that both PVNet and the combinedmodel predict
few samples with extraordinary large depth errors exceeding
1 × 1012 m due to incorrect keypoint estimates. To remove
these outliers, we introduce a post-processing step that dis-
cards invalid predictionswith a distance ofmore than 1 × 103

m from the camera. For either model less than 10 samples or
0.2% of the dataset are discarded.

We report the results of all baselines after refinement with
real data in Table 2. HandObjectNet clearly outperforms the
other two baselines on all metrics, although there is signifi-
cant variance in the drill tip error. Compared to its accuracy
on the synthetic dataset after pretraining, HandObjectNet
achieves a higher accuracy on the real dataset after refine-
ment. We attribute this performance increase to a generally
lower variance of the real dataset. In contrast, PVNet and the
combined model yield less consistent results, as they fail to
reliably estimate the 2D keypoints, which introduces large
errors during the pose recovery via PnP. Additional qualita-
tive and quantitative results of all baselines can be found in
the supplementary materials.

Discussion

Since pretraining with synthetic data has been shown to be
a beneficial approach, especially for scenarios in which real-
world data collection is expensive, we propose a pipeline
to inexpensively generate realistic synthetic RGB frames of
instrument–hand interaction in surgical scenarios. We fur-
thermore developed a standardized setup to capture and label
real-world data with object and hand pose and generated a
realistic dataset in a mock operating room. This combina-
tion of synthetic and real data generation paves the path for
markerless object and hand pose estimation in surgery. To
this end, we propose three baseline models, train them on the
generated datasets and evaluate them using fivefold cross-
validation.

The best performing baseline achieves an average 3D
vertex error of 16.7 mm on synthetic data as well as 13.8
mm on real data. These results are in line with the results
from the current state-of-the-art from computer vision appli-
cations, such as reported in [15,26]. HandObjectNet yields
consistent results and clearly outperforms the other baselines,
while PVNet shows larger errors after refinement with real
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Fig. 3 Accuracy–threshold
curves of the tool and hand ADD
metrics for all baseline models.
Pretrained models are indicated
with dashed lines and evaluated
on synthetic data. Refined
models are indicated with solid
lines and evaluated on real data
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data which occurs due to high uncertainties in the keypoint
estimation. The combined model shows very similar perfor-
mance with the PVNet baseline. In contrast to PVNet and the
combined model, HandObjectNet performs more robustly
throughout the test sets, which is illustrated in qualitative
examples in the supplementary materials.

Even though the synthetic data generation pipeline pro-
posed in this work generates realistic samples, there is an
observable domain gap which manifests itself in decreasing

performance fromsynthetic to real data for all three baselines.
This is caused by different underlying distributions of the
synthetic and real dataset, for example, visual discrepancies
such as illumination, contrast or color. We used background
frames from a recording of a spinal surgery recording to
improve the realism of the synthetic samples; however, the
mock operating room, inwhich the real dataset was recorded,
provided different lighting conditions.

Table 1 Comparison of the model accuracy on the synthetic test set.

↓ Metric, Model → HandObjectNet [14] PVNet [26] Ours

Mean SD Mean SD Mean SD

Tool ADD (mm) 16.73 16.97 20.59 52.14 32.51 72.72

Tool Proj2D (px) 13.65 15.65 15.59 250.91 16.84 202.44

Drill tip error (mm) 44.45 59.72 31.10 67.18 44.16 86.79

Drill bit direction error (deg) 6.59 10.18 7.11 21.78 8.64 22.77

2D keypoint error (px) – – 12.30 13.08 16.08 16.33

Hand ADD (mm) 17.15 10.58 – – 19.07 11.68

Hand Proj2D (px) 13.44 7.75 – – 15.15 8.94

All models were trained exclusively on synthetic data. We report the averaged mean and standard deviation of fivefold cross-validation. Bold values
indicate best performance

Table 2 Results after refinement on real data. All models were trained on synthetic data and refined using real data. We report the averaged mean
and standard deviation of fivefold cross-validation. Bold values indicate best performance

↓ Metric, Model → HandObjectNet [14] PVNet [26] Ours

Mean SD Mean SD Mean SD

Tool ADD (mm) 13.78 5.28 39.72 66.49 39.43 70.38

Tool Proj2D (px) 10.36 14.52 12.83 51.26 13.77 69.73

Drill tip error (mm) 66.11 26.91 72.80 105.66 72.91 116.70

Drill bit direction error (deg) 8.71 3.98 13.41 33.78 14.61 36.78

2D keypoint error (px) – – 11.77 10.16 12.13 16.68

Hand ADD (mm) 9.78 4.54 – – 21.68 13.96

Hand Proj2D (px) 6.14 7.69 – – 12.99 10.80
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Adding further modalities has significant potential to
improve the model’s performances, e.g., by including depth
sensors which offer additional depth information compared
to monocular video. However, there are several challenges
for the use of RGB-D data in real-world surgery, such as
the short distance to the observed target and the exposure
under challenging lighting conditions [15], which are present
in the operating room. An alternative to RGB-D cameras is
stereo RGB cameras or multi-view camera systems, which
provide additional information through a second view instead
of infrared-based depthmeasurements,which are often noisy.
However, the bulkiness ofwide-baseline stereoRGBcameras
can introduce logistical problems to the OR, while multi-
camera systems generally have to be carefully calibrated
and must not be moved afterward, which strongly limits the
placement of these cameras in close proximity to the operat-
ing table. On the other hand, motivations for utilizing RGB
video data are manifold, such as the independence from the
deployed camera technology, the resulting possibility for the
analysis of retrospective surgical video data, the availabil-
ity of medical device certification for video cameras, or the
option to use cheap single-use off-the-shelf cameras.

To improve the accuracy of our method and therefore the
applicability for surgical scenarios, in future work, we want
to investigate RGB-D-based markerless object and tool pose
estimation. Therefore, the proposed synthetic and real data
generation pipelines have to be extended to include depth
data. Even though this approach requires specialized hard-
ware in the operating room, there is potential to increase the
performance of the pose estimation algorithm. We further-
more want to increase the variety and size of the datasets,
e.g., by changing the lighting conditions.

Currently, the synthetic data generation pipeline, as well
as the proposed baseline methods are designed for single-
shot pose estimation and do not incorporate sequence data.
To overcome this current limitation, we want to extend the
data generation as well as the pose estimation methods to
work with time-varying sequence data, which could poten-
tially increase the performance. Furthermore, the synthetic
pipeline can be adapted easily for other medical scenarios
by replacing the 3D model and background images. Another
limitation of the presented work is that all data were acquired
in a known coordinate frame. For the use in real-world
surgery, head-mounted cameras require additional tracking
solutions which introduce additional errors that should be
subject to further research.

Conclusion

In this work, we present two pipelines for synthetic and real
training data generation, a novel dataset and three baseline
models for joint hand and tool pose estimation based on

RGB image data targeted for surgery. Synthetic pretraining
is a promising approach, especially for the medical domain,
where it is often expensive to generate a sufficient amount
of real training data. Pose estimation in RGB frames offers
the possibility of seamless integration into the current work-
flows of the operating room, but misses depth information
in contrast to RGB-D cameras. The obtained results of the
proposed baseline models are in line with the current state of
the art, but not yet suited for surgical tracking applications.

The datasets and baselines proposed in this work pave the
path for a single approach for tool tracking, surgical error
prevention, as well as activity and workflow recognition by
simultaneously detecting the tool pose and the surgeon’s hand
pose and shape. Future work includes adding depth informa-
tion, investigating sequence data and increasing the variety
and size of the datasets.
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