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Abstract

With the rise of autonomous systems acting in human environments, such as au-

tonomous vehicles, robots collaborating with humans, and robotic surgeries, we

continually face the question of how to ensure safety. In this thesis, we tackle

this problem by combining control theory, formal verification, and optimization to

develop novel control algorithms which provide safety guarantees for constrained

nonlinear systems despite the presence of disturbances and sensor noise. We use

these techniques to solve reach-avoid problems, where we ensure that any trajectory

starting from a set of possible initial states reaches a desired final set at a given

time while avoiding unsafe sets, both in the state and input spaces. By including

the computations of reachable sets into the optimization, we are able to optimize

over a whole set of possible trajectories at once, thereby formally ensuring safety

and constraint satisfaction for all of them.

We explore this idea in various directions, which leads to a number of different

algorithms. Some interpolate between finitely many trajectories, either for extreme

states or for zonotope representations. Other algorithms use continuous feedback

and directly optimize over the resulting reachable set of the closed-loop dynamics in

a nonlinear optimization problem. We extend these ideas to both hybrid dynamics

through the example of piecewise affine systems and to backward reachable set

computation. The majority of the presented algorithms precompute controllers and

reachable sets for short motion primitives offline and store them in an automaton.

The resulting maneuver automaton can be used for safe and fast online planning, as

no optimization or verification problems have to be solved online. We also show how

our formally correct controllers can be used as safety nets to safeguard unverified,

classical controllers. In addition to the offline algorithms, we present a robust model

predictive control approach which computes reachable sets online to verify safety.

The presented algorithms have a number of advantages: we obtain simple online

control laws which allow easy implementation and fast application. The inclusion

of formal verification in the controller synthesis allows us to directly optimize over

the reachable sets, using this information to improve performance while still for-

mally guaranteeing safety and constraint satisfaction. The resulting algorithms are

push-button approaches, which enable controller synthesis without requiring deep

control knowledge or finding Lyapunov functions. The applicability of the presented

approaches is shown through an implementation on a robotic manipulator and sim-

ulations based on real data of an autonomous vehicle, as well as through several

numerical examples.



Zusammenfassung

Mit dem Aufkommen autonomer Systeme, die in der unmittelbaren Umgebung von

Menschen agieren, stellt sich die Frage, wie man für diese Systeme Sicherheit garan-

tieren kann. Beispiele für solche Systeme sind autonome Fahrzeuge, Roboter, die mit

Menschen kollaborieren, oder Operationsroboter. In der vorliegenden Dissertation

werden zu diesem Zweck neuartige Regelungsverfahren vorgestellt, die Methoden aus

der Regelungstheorie, formaler Verifikation und Optimierung miteinander kombinie-

ren. Das Ziel dieser Verfahren ist es, formale Sicherheitsgarantien für beschränkte,

nichtlineare Systeme bereitzustellen die durch externe Störungen und Messrauschen

beeinflusst werden. Die Methoden werden genutzt um Reach-Avoid-Probleme zu

lösen, bei denen sichergestellt werden muss, dass alle Trajektorien, die aus einer gege-

benen Anfangsmenge starten, nach einer festen Zeit in einer gewünschten Endmenge

enden. Währenddessen müssen sie unsichere Zustandsmengen vermeiden sowie Ein-

gangsbeschränkungen einhalten. Durch die Berechnung von erreichbaren Mengen

innerhalb der Regleroptimierung ist es möglich, eine Menge von Trajektorien auf

einmal zu optimieren und dadurch das Einhalten von Zustands- und Eingangsbe-

schränkungen für alle formal zu garantieren.

Diese Grundidee wird in verschiedene Richtungen weiterentwickelt und führt zu

einer Reihe von Regelansätzen. Einige interpolieren zwischen endlich-vielen Trajek-

torien und nutzen dafür entweder Extrempunkte oder Zonotopdarstellungen. An-

dere verwenden eine kontinuierliche Rückführung und optimieren direkt über die

dazugehörige erreichbare Menge des geschlossenen Regelkreises in einem nichtli-

nearen Optimierungsproblem. Im Laufe der Arbeit werden diese Ideen erweitert,

um sowohl hybride Systeme am Beispiel von stückweise affinen Systemen als auch

rückwärts erreichbare Mengen zu berücksichtigen. Die meisten der vorgestellten Al-

gorithmen eignen sich zur Offline-Berechnung von kurzen Bewegungsprimitiven, die

in einem Automaten gespeichert werden können. Der resultierende Manöverautomat

kann dann zur Laufzeit genutzt werden, um schnell und sicher Trajektorien zu pla-

nen, ohne dass Regleroptimierungs- oder Verifikationsprobleme in Echtzeit gelöst

werden müssen. Neben der direkten Anwendung der neu entwickelten Regelungs-

verfahren, können diese auch als Sicherheitsnetz für klassische, unverifizierte Regler

genutzt werden und deren Einsatz absichern. Zusätzlich zu den Offline-Ansätzen,

wird auch die direkte Online-Optimierung von Reglern in Form einer robusten mo-

dellprädiktiven Regelung auf Basis erreichbarer Mengen vorgestellt.

Die entwickelten Ansätze bieten eine Reihe von Vorteilen: Die resultierende Regel-

gesetze haben eine einfache Form, was die Implementierung erleichtert und schnelle



Taktzeiten ermöglicht. Durch die Einbindung von formaler Verifikation in die Reg-

lersynthese kann direkt über erreichbare Mengen optimiert werden. Die resultieren-

den Informationen können zur Verbesserung des Reglerverhaltens genutzt werden,

während gleichzeitig die Sicherheit und die Einhaltung der Beschränkungen for-

mal garantiert werden. Darüber hinaus werden die Regler durch die entwickelten

Algorithmen automatisch berechnet, so dass für ihre Anwendung kein tiefes Rege-

lungstechnikverständnis oder die Suche nach einer Ljapunow-Funktion notwendig

ist.

Die praktische Anwendbarkeit der vorgestellten Ansätze wird durch die Implemen-

tierung auf einem Roboterarm und durch Simulationen auf Basis echter Fahrdaten

eines autonomen Fahrzeugs sowie in einer Reihe von numerischen Beispielen de-

monstriert.
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Chapter 1

Introduction

1.1 Motivation

Autonomous systems working closely with humans have a huge potential to improve all of

our lives. Recent progress in technology and computing capabilities is finally enabling their

large-scale application. Autonomous vehicles, robots working in collaboration with or assisting

humans, and robotic surgeries are just some of the many examples. All of these applications

are key technologies, as they promise to make our life, work, and medical treatment easier and

safer. Self-driving cars could change the entire traffic situation in cities, making driving safer,

less stressful, and more efficient, as well as reducing the number of overall vehicles, thereby

solving parking problems. Robots collaborating with humans on the same tasks can combine

the strength and precision of robotic manipulators with the agility and flexibility of humans.

Furthermore, medical robots might be able to perform surgeries more precisely than is possible

for any human.

At the same time, all these systems are challenging to control: They exhibit complex, non-

linear dynamics and are limited in their actuation capabilities, e.g., limited steering angles

or acceleration and braking forces for the self-driving vehicle or limited torques for robotic

manipulators. And as all real-world systems, they are affected by external disturbances and

uncertain measurements. While being hard to control, their correct operation and the satis-

faction of safety constraints is absolutely crucial for their application in tight interaction with

humans, as any failure could have severe and even fatal consequences. It must be ensured that

a self-driving vehicle never causes any accidents, the robotic manipulator never accidentally

hits a human worker, and the robotic surgeon does not damage surrounding tissue or organs.

Thus, finding novel solutions to guarantee the safety of autonomous systems is crucial. The

new control algorithms developed in this thesis aim at providing these solutions by directly

incorporating formal verification.

Until now, there have been no techniques to obtain efficient controllers with formal guar-

antees for complex systems affected by uncertainties. In the vast majority of industries, the

current procedure is to design a controller for a system and then extensively test it. For a set
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Figure 1.1: (a) Testing alone is never sufficient, as one cannot be sure that no unsafe trajectories

were missed. (b) Formal verification can provide formal guarantees but does not use the full

potential of the controller. (c) The full potential can be obtained by combining control and

verification in one approach, which leads to formal guarantees and better control performance.

of possible initial states and a set of possible disturbances affecting the system, one chooses

finitely many combinations and checks, for example, through simulation if the system’s behav-

ior is safe. If this is not the case for some combinations, one has to go back, design a new

controller and test it again. This might lead to many design iterations, where the results from

the failed tests do not necessarily help to find a better controller in the next iteration. A bigger

problem, however, is that testing can never completely ensure the absence of errors, as one
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cannot be certain whether one of the infinitely many non-tested scenarios might lead to an

unsafe situation, see Fig. 1.1(a). This can only be guaranteed by using formal methods, which

check all possible combinations.

For continuous systems, one of the most promising formal methods is reachability analysis

[1, 2]. Here, formal guarantees are obtained by computing the (over-approximative) reachable

set, i.e., the set which contains all possible solutions of a system for a whole set of initial

states and all possible inputs and disturbances, see Fig. 1.1(b). While reachability analysis

ensures that no combination is missed, this approach still has the drawback that every time

the verification indicates unsafe behavior, a new controller has to be computed and reverified

without being able to use much information from the previous verification steps.

The main idea of this work is to overcome these problems by directly incorporating the

formal verification in the controller synthesis process. By applying numerical optimization

methods, which have proven their efficiency in many classical applications, we are able to use

the knowledge gained from reachability analysis in the controller design to obtain the optimal

controller. While classical approaches often keep certain safety margins to the actual limits

of the system to decrease the chance of violating safety constraints due to insufficient testing,

our new method is able to safely operate the controller close to the limits of the system. This

enables the controller to optimally react to difficult and dangerous situations, while ensuring

that the constraints are satisfied at all times, see Fig. 1.1(c).

By integrating the optimization over reachable sets in the controller synthesis problem, the

whole approach can be implemented as a simple “push-button” approach, where the user does

not need a deep understanding of control methods, but can simply start the optimization.

Similarly, through the use of reachable set computations, we do not require the user to know

Lyapunov functions, for example, or perform other stability checks. This, together with the

rather simple control structures used in this thesis, makes the presented approaches useful for

practical application.

From a control theory point of view, most considered problems can be viewed as reach-avoid

problems, where the system must be controlled close to a given final state at a fixed final time

while avoiding unsafe regions, both in the state and input spaces. Examples include autonomous

vehicles that should reach a desired position while avoiding other traffic participants and staying

on the road, or robot manipulators whose end-effector must reach a desired position without

colliding with surrounding persons or objects.

For a single initial state and undisturbed systems, these reach-avoid problems can be solved

efficiently using numerical optimization tools such as multiple shooting [3]. However, if the

exact initial state is not known beforehand or cannot be measured exactly due to noisy sensors,

one has to consider a whole set of initial states, which leads to a similar problem as with testing:

the optimal control problem has to be solved for each initial state. Since this cannot be done as

there are uncountably many states, the optimization has to be performed online, often without

guarantees that a solution exists for every possible state or if the optimization can be performed

in time.

Our set-based approaches consider this problem while taking advantage of existing efficient

optimal control and optimization approaches developed for single states. In different algorithms

3
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presented in this thesis, we use the optimal control approaches to solve the problem for all

possible states in the initial set. We do so by either iteratively solving optimal control problems

for finitely many states and interpolating between them or by directly optimizing the reachable

sets of the closed-loop dynamics. This allows us to obtain good control performance, while the

included reachability analysis formally verifies the resulting controller.

In fact, this combination of heuristics with formal verification provides a significant advan-

tage to our approaches: As we deal with complex nonlinear systems, many useful properties like

convexity or the superposition principle no longer hold, and any exact and formal calculation

might become prohibitively hard or conservative. Since we aim for efficient methods which

can be actually applied in practice, we take advantage of the fact that efficient solutions often

exist for simplified problems, e.g., by linearizing or time-discretizing the system dynamics or

neglecting disturbances. By using solutions of the simplified dynamics to obtain controllers for

the real dynamics, we find efficient heuristics to solve the problem. Due to the integrated reach-

ability analysis, however, we are still able to obtain formal guarantees1 for the actual nonlinear

dynamics with disturbances and uncertain measurements.

1.2 Integration in Autonomous Systems

It is crucial for autonomous systems acting in human environments to be able to react to

unexpected situations. Since there are infinitely many such situations, it is impossible to design

and verify controllers offline for all possible scenarios. On the other hand, for fast and complex

systems, it is also impossible to do the complete verification online, since it might take too long

and we might end up in an unsafe situation.

Developing safe maneuver automata is a useful way to overcome this problem [4]. We

present the idea for the example of autonomous driving as illustrated in Figs. 1.2 – 1.42; how-

ever, maneuver automata can be used for many other systems as well. To obtain a maneuver

automaton, we begin by computing controllers for a number of short trajectory pieces and

verify them offline in advance (see Fig. 1.2(a)). Two of these so-called motion primitives can

be concatenated if the initial set of a motion primitive is completely contained in the final set

of the previous one (Fig. 1.2(b)). We store the motion primitives in a maneuver automaton,

which contains the motion primitives as states and has transitions from one state to another,

if the corresponding motion primitives can be connected (Fig. 1.2(c)).

After precomputing all of the motion primitives and constructing the maneuver automaton

offline in advance, the online planning and control problem simplifies to a discrete search using

those motion primitives according to the specific situation (Fig. 1.3(a) and Fig. 1.4(a)). Based

on the current situation and prediction of other traffic participants, which can be done using

tools such as SPOT [5], we can either use the motion primitives for a sampling-based search

(Fig. 1.3(b)) or we can use a reference trajectory to guide the search (Fig. 1.4(b)). In the

1The approaches in this thesis are formally correct under the assumption of finite precision arithmetic; for

our implementation, we neglect rounding errors, but the presented theory results in a formally correct approach.

Interval arithmetic can be used to consider rounding errors.
2Figs. 1.2 and 1.3 will also be published in [214] c© 2022 IEEE.
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Figure 1.2: Overview of the offline computation of maneuver automata for autonomous driving:

(a) First, a variety of motion primitives for different maneuvers is computed. By using reachability

analysis, we obtain the uncertainty set (light gray) of the car around the reference trajectory (black

line), as well as the resulting uncertain occupancy sets (dark gray). (b) It is checked which motion

primitive can be concatenated. (c) The resulting motion primitives are stored as states in the

maneuver automaton and transitions show which ones can be connected.

first case, we can use search trees and similar approaches [6] to find a good combination of

motion primitives. In the second case, we compute a reference trajectory with existing tools for

simplified dynamics and match it with our motion primitives [215]. In either case, we use the

precomputed reachable sets of our motion primitives to check for a collision with the predicted

possible reachable sets of other traffic participants and select the best choice (Fig. 1.3(c) and

Fig. 1.4(c)) which is safe and follow it (Fig. 1.3(d) and Fig. 1.4(d)). The planning can then

be performed in an iterative fashion with a moving horizon, where fail-safe trajectories can be

used to ensure that a safe fallback solution exists, if we cannot find a new, feasible solution in

time (see [7]). This ensures that a safe control strategy exists for any situation.

The quality of the outcome of the online planning directly depends on the size of the ma-

neuver automaton and the number of transitions, which provide flexibility during the online

planning. In order to have a maneuver automaton with as many transitions as possible, we need

controllers which are able to steer all states from a large initial set into a small final set. So far,

there is no efficient way to obtain controllers for disturbed nonlinear systems which guarantee
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(a) Occupancy prediction of other traffic participants

(b) Discrete trajectory planning using motion primitives

(c) Check for collisions using precomputed reachable sets

(d) Drive safe trajectory using precomputed controllers

c© IEEE 2022

Figure 1.3: Overview of the online planning with maneuver automata for autonomous driving

using sampling: (a) During online application, we know the actual situation and can predict the

possible behaviors of other traffic participants. (b) We use the precomputed motion primitives

from the maneuver automaton to sample different possible trajectories for the controlled vehicle.

(c) We check for possible collisions using the precomputed reachable sets of our motion primitives

and the predicted reachable sets of other traffic participants and choose the best solution (reachable

sets are only depicted for the optimal solution). (d) We use the controllers corresponding to the

chosen motion primitives to drive along the trajectory.
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(a) Occupancy prediction of other traffic participants

(b) Compute reference trajectory with simplified dynamics

(c) Match reference trajectory with motion primitives

(d) Drive safe trajectory using precomputed controllers

Figure 1.4: Overview of the online planning with maneuver automata for autonomous driving

using a reference trajectory: (a) During online application, we know the actual situation and can

predict the possible behaviors of other traffic participants. (b) We compute a possible reference

trajectory using existing planning approaches and simplified dynamics. (c) We match this reference

trajectory without motion primitives, thereby ensuring the driveability and collision-freeness of the

planned motion using the precomputed reachable sets of our motion primitives and the predicted

reachable sets of other traffic participants. (d) We use the controllers corresponding to the chosen

motion primitives to drive along the trajectory.
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that all states from an initial set are inside a small final set after a fixed time while taking state

and input constraints into account. The offline controller synthesis approaches developed in

this thesis aim at solving this problem in order to obtain highly connected maneuver automata

which enable efficient planning.

1.3 Related Work

There exist many methods in the literature which aim to control constrained nonlinear sys-

tems despite disturbances. However, providing guarantees without becoming too conservative

or resulting in overly complex computations is still an open challenge. A direct way to obtain

optimal control inputs, which satisfy state and input constraints, is by explicitly solving the cor-

responding Hamilton-Jacobi-Bellman (HJB) equation or by using dynamic programming [8–11].

While these approaches work well for single states and undisturbed systems, when considering

disturbances or sets of states, they become prohibitively difficult for high-dimensional systems

and their use is therefore limited to low-dimensional systems.

Another well-known method is to use model predictive control (MPC) [12,13], which allows

one to take state and input constraints into account. There are two different types: In the

classical, implicit case, an open-loop optimal control problem is solved iteratively for a finite

prediction horizon online. After each step, only the input for the first time interval is applied

to the system and a new optimal control problem with a shifted prediction horizon is solved.

Since all computations have to be performed online, solving the optimization problem in real

time becomes challenging for complex and fast systems and is often infeasible when formal

guarantees are required. An alternative to solving the optimization problem online is provided

by explicit MPC, where the state space is divided into different regions, and for each region, an

(sub-)optimal control law is computed offline which satisfies the constraints [14,15]. This works

for linear [16–18] and for nonlinear systems [19, 20], even with disturbances [21]. While this

reduces the online computational effort, due to the division of the state space, this approach

becomes easily computationally infeasible for higher-dimensional systems.

An established form of robust MPC is tube-based MPC, where an auxiliary controller is

used to keep the system in a tube around the optimized trajectory [22–24]. For linear systems,

this works well due to the superposition principle [22,25]. For nonlinear systems, this is harder

and more conservative due to the often fixed auxiliary controller and over-approximation of the

invariant sets for the tubes. Different auxiliary controllers have been proposed, e.g., sliding mode

controllers [26], dynamic games [27], or even a second MPC controller [28]. Recent approaches

suggest the application of contraction theory to obtain a controller [29]. Other developments are

parametrized [23] and homothetic MPC [24], which can adapt the tube size. Some approaches

combine MPC with online reachability analysis using interval arithmetic [30] and reachable sets

based on zonotopes [31]; however, they only consider fixed feedback controllers and discrete-time

systems and use conservative approximations of the reachable sets.

Another method which controls all states around a single trajectory is presented in [32].

This method exploits so-called trajectory robustness, which is, however, restricted to feedback-

linearizable and differentially flat systems, and it does not take disturbances into account. An
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extended version using feedback control is shown in [33].

Controlling all states in so-called funnels, similar to the tubes in tube-based MPC, to a final

set for disturbed nonlinear systems can be done using linear quadratic regulator (LQR) trees

[34–36]. In these works, the authors use sums-of-squares programming to find LQR tracking

controllers [37], which satisfy specified constraints. This method is also successfully applied to

safe maneuver automata [38]; however, they are often restricted to polynomial dynamics. In

addition, the computational effort of sums-of-squares techniques can grow very fast with the

system dimension and considered polynomial degree. Similar approaches which can be used

for motion planning are shown in [39], where the positive invariant sets of different controllers

are concatenated in trees to obtain maneuver automata. More approaches using maneuver

automata for safe motion planning can also be found in [40,41], and using reachability analysis

for verifying the safety of maneuvers in [42,43].

Another way for obtaining controllers with safety guarantees for nonlinear systems is the

combination of control barrier functions with control Lyapunov functions [44–49]. They use

quadratic programs to online connect safety constraints and desired performance. Since the

computation of the control barrier and control Lyapunov functions is often done by solving sums-

of-squares programs, they face the same problem of a fast growing number of parameters with

the systems dimension and considered polynomial degree as the LQR-trees methods mentioned

before.

A large class of controllers which provide formal guarantees are abstraction-based con-

trollers [50–66]. Most of them obtain a finite state abstraction of the real system and use

approaches from automata theory and computer science to compute controllers which can even

take complex specifications into account. However, as they often do this by discretizing the

state and input spaces, they suffer from the curse of dimensionality, i.e., the exponential growth

in computational complexity with the number of states and inputs. Some methods try to avoid

computing abstractions of the whole state space but mainly focus on the satisfaction of more

complex requirements and only consider undisturbed systems [67–71]. Other approaches for

controller synthesis with formal specification (again, only for undisturbed systems) combine

genetic programming algorithms with Lyapunov functions [72].

1.4 Organization of the Thesis and Contributions

In this thesis, we present a number of approaches on how to compute safe controllers for dis-

turbed, nonlinear systems by combining control theory, reachability analysis, and optimization.

Chapter 2: Background

We begin by providing some mathematical notations and useful definitions in Chapter 2. This

chapter also contains some background on different set representations, on how some basic

algorithms for reachability analysis work, on motion primitives and maneuver automata, and

on how conformance checking can be used to obtain models which safely contain the behavior

of real systems.

9
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Chapter 3: Offline Controller Synthesis

One of the main chapters is Chapter 3, which covers the offline computation of safe controllers

for disturbed nonlinear systems. We present four different algorithms, which all solve the

problem of controlling all states from some initial set close to a desired final state in finite

time, while guaranteeing the satisfaction of state and input constraints for all times. These

algorithms are particularly suitable for computing motion primitives offline, which can be used

for online control with maneuver automata:

• The first algorithm interpolates open-loop solutions computed for the extreme states of

the initial set and thereby obtains a control law for each state in the initial set. By

applying this approach iteratively and combining it with reachability analysis, we are

able to extend the theory developed for linear systems to nonlinear systems.

• The second approach also interpolates open-loop solutions; however, it uses a different

set-representation to obtain the interpolated control law, which leads to a much better

scaling of the overall computational complexity.

• In the third approach, instead of interpolating optimal open-loop solutions, we use a

continuous feedback controller, whose parameters we obtain by directly optimizing over

the reachable sets of the closed-loop dynamics.

• Finally, we present a fourth approach which combines the ideas of the interpolation-based

controllers and the continuous feedback controller, thereby keeping the advantages of

the respective controllers while overcoming their disadvantages. The resulting controller

utilizes a state-dependent feedforward controller, which allows us to obtain an individual

reference trajectory for each state of the initial set by solving a single linear program.

This individual reference trajectory is then tracked by a continuous feedback controller

which is again obtained by optimizing over reachable sets.

Contribution: The main contribution of this chapter are four algorithms which allow us to

efficiently compute controllers with formal guarantees for constraint satisfaction for nonlinear

systems subject to external disturbances and sensor noise. All optimizations and reachable set

computations are performed offline, and the resulting controllers have a simple structure, which

makes them suitable for fast systems. The algorithms are easy to apply, and due to the included

reachability analysis, there is no need for additional invariant set computations, stability proofs,

or finding a Lyapunov function. The results have been published at the International Conference

on Hybrid Systems: Computation and Control [216], the IFAC World Congress [217], the

American Control Conference [218], and IEEE Transaction on Automatic Control [219]. We

applied the control algorithms from this chapter in various works which have been published, for

example, at the American Control Conference [220,221], the Intelligent Transportation Systems

Conference [215], and the International Symposium on Automated Technology for Verification

and Analysis [222].

Based on the algorithms from this chapter, as well as from other chapters, we developed the
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MATLAB Toolbox AROC1, which was introduced at the International Conference on Hybrid

Systems: Computation and Control [223]. For the efficient online application of the control law

based on interpolating extreme states, we also developed new ways for computing analytical

closed-form expressions of convex combinations, which are shown in Appendix A. They were

published at the American Control Conference [224] and applied to the robust control of power

systems, which we published at the IEEE Power and Energy Society General Meeting [225].

We also developed new methods for the order-reduction of zonotopes and published the results

at the International Conference on Decision and Control [226].

Chapter 4: Offline Controller Synthesis for Piecewise Affine Systems

In Chapter 4, we extend the offline controller synthesis from Chapter 3 to hybrid dynamics

through the example of piecewise affine systems. Hybrid dynamics combine both continuous

and discrete dynamics, which makes computing reachable sets and corresponding controllers

challenging. The piecewise affine systems which we consider have different affine dynamics in

different parts of the state space. Therefore, every time the system enters a new region, the

dynamics change, so that the reachable sets have to be split and computed for each dynamics

individually. Since this drastically increases the computational burden, we present a novel way

of computing a reference trajectory and then tracking it with a controller based on one of the

interpolation-based controllers from Chapter 3. By including the distance to the boundaries of

each region into the optimization problems of the reference trajectory and feedback controllers,

we are able to reduce the number of splits, thereby significantly reducing the computational

effort and improving the control performance.

Contribution: The main contribution of this chapter is the ability to efficiently compute a

formally correct controller for disturbed piecewise affine systems, which keeps the states inside

the same mode sequence as the reference trajectory, whenever possible. This allows for faster

computations, controller synthesis for higher dimensions, as well as simpler control laws than

existing solutions. In addition, in contrast to many existing approaches, we do not need to

tighten constraints or compute invariant sets. Since all mixed-integer problems are solved

offline, the online computation becomes very simple. We also directly consider the case that it

might not be possible to avoid splitting the reachable set and, if so, provide countermeasures

during the controller synthesis. The results of this chapter are published in the journal Nonlinear

Analysis: Hybrid Systems [227].

Chapter 5: Offline Controller Synthesis Using Backward Reachable

Sets

All approaches in Chapter 3 optimize over forward reachable sets to obtain the smallest reach-

able set for a given initial set. In Chapter 5, we are instead interested in the largest initial set

for which we can find a controller such that all trajectories starting from this initial set end in a

1Available online at https://aroc.in.tum.de.
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given final set. Thus, we start from the final set and go backwards in time, thereby optimizing

over backward reachable sets. Since safely computing backward reachable sets is much harder

than computing forward reachable sets when doing controller synthesis, we present a novel

way of optimizing backward reachable sets by combining linear approximations of backward

reachable sets with optimization over forward reachable sets.

The controllers based on backward reachable sets are particularly suitable as safety-net

controllers which safeguard a classical, unverified controller. There exists a wide variety of

controllers which work well in practice and are tuned to optimize certain performances such

as reduced wear, reduced energy consumption, or improved comfort. While many of these

controllers cannot be formally verified, they are safe most of the time. Therefore, we present

an approach where we monitor the behavior of the unverified controller and apply it while it

is safe, i.e., most of the time. However, when the behavior would become unsafe, the safety

controller steps in and ensures safety at all times.

Contribution: The contribution of this chapter is threefold:

(i) We develop a novel backward reachability algorithm, which is not only suitable for efficient

optimization of the controller parameters, but is in fact the first algorithm which com-

putes under-approximative backward reachable sets for general nonlinear systems with

inputs and disturbances. In addition, this reachable set algorithm allows for an efficient

optimization of controller parameters without having to perform the reachable set com-

putation in every iteration.

(ii) We use this new way of computing backward reachable sets to generate a novel set-based

controller which maximizes the set of initial states which are guaranteed to be steered

into a given final set despite the presence of disturbances. The controller has the same ad-

vantages of the controllers in Chapter 3, i.e., it provides formal safety guarantees without

the need for computing invariant sets or knowing a Lyapunov function, the optimization

is performed offline, and the online controller has a simple structure. In addition to these

advantages, our new control approach is especially suitable for the application as a safety

net controller.

(iii) We provide a novel way of applying optimal, however, not formally verified, controllers

in a safety-critical setting and safeguarding them by our formal, set-based controller. By

including efficient reachable set computations for predicting the future behavior of the

system controlled by the unverified controller, we ensure that the safety controller takes

over if it is necessary to prevent unsafe behavior. We are even able to explicitly consider

the computation time for our controller and reachable set computations during online

verification.

The results of this chapter are going to be published in the journal IEEE Transaction on

Automatic Control [214]. The ideas for efficiently obtaining subsets of reachable sets without

having to recompute the whole reachable set, which we use for the reachable set optimization

in this chapter, are useful for many other applications as well. We show this in [228], which has

been published at the International Conference on Hybrid Systems: Computation and Control.

12



1.4 Organization of the Thesis and Contributions

Chapter 6: Online Controller Synthesis

As an alternative to precomputing everything offline, we discuss safe online control in Chapter 6.

We present a robust model predictive control algorithm where we use reachable sets instead of

fixed tubes to ensure safety despite disturbances. As typically done in MPC, we only optimize

over the reference trajectory and not over the feedback controller in order to reduce the online

computation time. By checking the safety using reachability analysis and ensuring that we

always have a safe fallback solution if we cannot find a new feasible solution, we are able to

guarantee safety while reducing the conservatism caused by a fixed tube size.

Contribution: The main contribution of this chapter is the first robust model predictive

control algorithm based on reachable sets that provides formal guarantees for the satisfaction

of constraints for nonlinear systems with external disturbances and sensor noise, while both

taking computation time into account and not being restricted to a fixed tube-size. The results

of this chapter were published at the International Conference on Decision and Control [229].

Chapter 7: Practical Application

We apply the theory from the previous chapter to two applications in Chapter 7: First we

obtain a model based on real driving data for an autonomous vehicle and compute a maneuver

automaton with over 30,000 different motion primitives. We use this maneuver automaton

to compute fail-safe trajectories and ensure their driveability for a number of different traffic

scenarios generated from real-world data. In the second half of this chapter, we apply our set-

based controller synthesis approaches to a lightweight robotic manipulator, where we compute

a safe tracking controller and show its applicability for collision-free planning.

Contribution: The main contribution of this chapter is the demonstration that the algo-

rithms from the previous chapters are applicable to real systems in different domains, despite

real-world effects. It also shows the feasibility of generating a large maneuver automaton for

fast online application for the autonomous vehicle, as well as the possibility and advantages of

combining our controller with classical approaches, like feedback linearization for efficient online

control. The results for the autonomous vehicle expand on the methods and results published

at the Intelligent Transportation Systems Conference [215]. The results for the robot have been

submitted to the journal IEEE Transactions on Robotics [230].

Chapter 8: Conclusion and Future Directions

We finish with Chapter 8, where we give an summary of the findings of this thesis, discuss the

obtained solutions, and provide an outlook of possible future research directions.
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Chapter 2

Background

In this chapter, we give an overview of the notation used, provide some necessary definitions,

describe how to compute reachable sets, how to efficiently represent those sets, and how to

check conformance of complex systems.

2.1 Notation

We denote by R the set of real numbers, with R+
0 being the set of nonnegative real numbers,

and R+ the set of positive real numbers. The set of positive integers is denoted by N, the set

of nonnegative integers by N0, and the empty set by ∅. For two real numbers a, b ∈ R, with

a ≤ b, we denote by [a, b] and (a, b) the closed and open sets between a and b, respectively. We

use [a, b]n to denote an n-dimensional interval (or hypercube) with size [a, b] in each dimension.

For a vector x ∈ Rn, we denote its transpose by xT , and we refer to its elements with xi ∈ R.

Likewise, for a matrix A ∈ Rn×m, we denote its transpose by AT , and we refer to its elements

with Ai,j ∈ R. For a scalar x, we denote the absolute value of x by |x|. For a vector x =

[x1, . . . , xn]T , we denote by |x| the vector containing the absolute values of the entries of x, i.e.,

|x| = [|x1|, . . . , |xn|]T . We denote the identity matrix by I ∈ Rn×n and the unit vectors by e(i),

i.e., e(i) is the i-th column of I. We use diag(x), where x ∈ Rn, to denote a diagonal matrix

with the entries of x on its diagonal and zeros everywhere else. The vector containing all ones

is denoted by 1, and the vector containing only zeros is referred to as 0. The boundary of a set

S ⊂ Rn is denoted by B(S), and we write I(S) for the interior of S, such that S = B(S) ∪ I(S).

2.2 Convexity

Let us recall some basics about convex combinations and convex sets. For more details, see

e.g. [73].

Definition 1 (Convex Combination). A vector x ∈ Rn is called a convex combination of q
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2. BACKGROUND

given vectors x̆(1), . . . , x̆(q) ∈ Rn, if and only if x can be written as

x =

q∑

i=1

λi(x)x̆(i),

with λi(x) ≥ 0, and
∑q
i=1 λi(x) = 1.

Convex combinations can be used to define a convex set as follows:

Definition 2 (Convex Set). A set S ⊂ Rn is convex if and only if any convex combination of

any two points x(1), x(2) ∈ S lies inside the set, i.e.,

∀λ ∈ [0, 1] : λx(1) + (1− λ)x(2) ∈ S.

Definition 3 (Extreme Point). Let S ⊂ Rn be a compact1 convex set. A point x̆(0) ∈ S is called

an extreme point of S if it cannot be represented by a convex combination of any two points

x̆(1), x̆(2) ∈ S, x̆(1) 6= x̆(0), x̆(2) 6= x̆(0), i.e.,

@λ ∈ (0, 1) such that λx̆(1) + (1− λ)x̆(2) = x̆(0).

Definition 4 (Convex Hull). The convex hull of a set S ⊂ Rn, denoted by conv(S), is the set

of all convex combinations of points in S, i.e.,

conv(S) =

{
q∑

i=1

λix̆
(i)

∣∣∣∣ x̆(i) ∈ S, λi ≥ 0,

q∑

i=1

λi = 1, q ∈ N

}
.

From the two previous definitions, it follows that any compact convex set is the convex hull

of its extreme points.

2.3 Set Operations

Let us now define the set-based operations for addition, subtraction, and multiplication. We

begin with set-based addition.

Definition 5 (Minkowski Sum). Given sets A,B ⊆ Rn, the addition of these two sets, also

known as the Minkowski sum, is defined as

A⊕B = {a+ b | a ∈ A, b ∈ B}.

We use
⊕

as the set-based summation symbol, analogous to the standard
∑

notation.

The counterpart to the set-based addition, the set-based subtraction, also known as Minkowski

difference is defined as follows:

Definition 6 (Minkowski Difference). Given sets A,B ⊂ Rn, the subtraction of these two sets,

also known as the Minkowski difference, is defined as the complement of the Minkowski sum,

i.e.,

A	B = {c ∈ Rn | c⊕B ⊆ A}.
1A set is compact if it is closed and bounded.
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2.4 Set Representations

Note that X	 Y⊕ Y ⊆ X. Finally, let us define the multiplication of a set with a matrix:

Definition 7 (Linear Map). Given a set A ⊆ Rn and a matrix B ∈ Rm×n, the product of the

matrix and the set is defined as

BA = {Ba ∈ Rm | a ∈ A}.

This matrix set multiplication is also referred to as a linear map.

2.4 Set Representations

Definition 8 (Polyhedron). A polyhedron is a set defined by the intersection of p half-spaces

H1 ∩ · · · ∩Hp, Hi = {x ∈ Rn | Cix ≤ di}, i ∈ {1, . . . , p}, i.e.,

P = {x ∈ Rn | Cx ≤ d},

with C ∈ Rp×n consisting of Ci as its rows and d ∈ Rp denoting the vector of entries di.

We use the shorthand notation 〈C, d〉H to refer to a polyhedron in half-space representation.

Definition 9 (Polytope). A polytope is a closed and bounded polyhedron. Instead of represent-

ing a polytope as the intersection of half-spaces, it can also be expressed as the convex hull of q

extreme points x̆(1), . . . , x̆(q) ∈ Rn, also known as vertices:

P = conv({x̆(1), . . . , x̆(q)}) ⊂ Rn.

Hi

H1 ∩ · · · ∩ Hp

(a) Half-space representation

x̆(i)

conv({x̆(1),

. . . , x̆(q)})

(b) Extreme point representation

Figure 2.1: Two representations of a polytope: (a) As the intersection of p half-spaces H1∩· · ·∩
Hp or (b) as the convex hull of q extreme points x̆(1), . . . , x̆(q).

A visualization of a polytope represented by half-spaces and extreme points is shown in

Fig. 2.1. We call a polytope P ⊂ Rn with n + 1 extreme points a simplex, if n of those

extreme points are linearly independent. Zonotopes, a special type of polytopes, are illustrated

in Fig. 2.2 and defined as follows:
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Definition 10 (Zonotope). A set is called a zonotope if it can be written as

Z =
{
x ∈ Rn

∣∣∣ x = c+

p∑

i=1

αig
(i), αi ∈ [−1, 1]

}
.

Therein, c ∈ Rn defines the center of the zonotope, and g(i) ∈ Rn, i ∈ {1, . . . , p}, are p genera-

tors. The generators can also be combined in the generator matrix G ∈ Rn×p, which contains

the generators as its columns. We use 〈c, g(1), . . . , g(p)〉 and 〈c,G〉, respectively, as a more

concise notation of Z. The order o of a zonotope is defined as the quotient o =
p

n
.

c

g(1)

c
g(1)

g(2)

c

g(3)g(2)

g(1)

Figure 2.2: Illustration of the construction of a zonotope in R2. It is defined by its center c and

the superposition of the generators g(1), g(2), and g(3) scaled between −1 and 1. The generators

are shown as solid black arrows, and the dashed arrows show different combinations of generators,

which correspond to the extreme points of the zonotope.

A zonotope with n linearly independent generators is called a parallelotope. Zonotopes are

point-symmetric to their center and have a number of beneficial properties: While a zonotope,

as a special type of polytope, can be expressed by its vertices or half-spaces, the generator

representation allows a very concise set representation. For example, to represent a parallelotope

in Rn, we need 2n extreme points, but only n generators. In addition, they are closed under

Minkowski sum and linear maps, two main operations during the reachability analysis found

in [74]. Both operations can be performed very easily: the Minkowski-sum of two zonotopes

Z1 = 〈cZ1
, g

(1)
Z1
, . . . , g

(p)
Z1
〉 ⊂ Rn,Z2 = 〈cZ2

, g
(1)
Z2
, . . . , g

(q)
Z2
〉 ⊂ Rn is obtained as

Z1 ⊕ Z2 = 〈cZ1
+ cZ2

, g
(1)
Z1
, . . . , g

(p)
Z1
, g

(1)
Z2
, . . . , g

(q)
Z2
〉,

and the linear map of Z1 under L ∈ Rn×n is

LZ1 = 〈LcZ1 , Lg
(1)
Z1
, . . . , Lg

(p)
Z1
〉.

A more general class of zonotopes are polynomial zonotopes [76], which can describe non-

convex sets. In this thesis, we use a sparse representation of polynomial zonotopes, which are

defined as follows [75]:
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2.4 Set Representations

(a) (b)

(c) (d)

Figure 2.3: Illustration based on that of [75, Ex. 1] showing the construction of the polynomial

zonotope (2.2): (a) Set which is spanned by the first two dependent generators [2, 0]T and [1, 2]T

around the starting point [4, 4]T . (b) Addition of the third dependent generator [2, 2]T . (c) Due

to its multiplication by the higher-order, mixed term δ3
1δ2, this leads to a non-convex set. This

set is enlarged by the independent generator [1, 0]T , which leads to the final set shown in (d).

Definition 11 (Polynomial Zonotope). A set is called a polynomial zonotope if it can be written

as

PZ =

{
x ∈ Rn

∣∣∣ x = c+

v∑

i=1

(
y∏

k=1

δ
Ek,i
k

)
g(i) +

vI∑

j=1

µjg
(j)
I , δk, µj ∈ [−1, 1]

}
. (2.1)

Here, c ∈ Rn is the starting point, g(i) ∈ Rn, i ∈ {1, . . . , v}, are the dependent generators,

g
(j)
I ∈ Rn, j ∈ {1, . . . , vI}, are the independent generators, and E ∈ Ny×v0 is the matrix that

stores the polynomial exponents.

Polynomial zonotopes are closed under quadratic and higher-order maps, which makes them

useful for the reachable set computation of nonlinear systems. Zonotopes are a special class

of polynomial zonotopes with only independent generators. Zonotopes offer a simpler set rep-
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resentation compared to polynomial zonotopes, and especially for linear systems, polynomial

zonotopes do not have any advantages over zonotopes. For a simpler representation (and faster

algorithms), we mainly describe the algorithms in this thesis for normal zonotopes. Most

algorithms can be generalized to polynomial zonotopes as well. Even without any changes,

polynomial zonotopes can be directly used for a more accurate reachable set computation in

the presented algorithms. We illustrate the construction of the polynomial zonotope

PZ =

{[
4
4

]
+

[
2
0

]
δ1 +

[
1
2

]
δ2 +

[
2
2

]
δ3
1δ2 +

[
1
0

]
µ1

∣∣∣ δ1, δ2, µ1 ∈ [−1, 1]

}
(2.2)

in Fig. 2.3.

2.5 Nonlinear Systems and their Analysis

For most of this thesis, we consider disturbed, nonlinear, continuous-time systems of the form

ẋ(t) = f(x(t), u(t), w(t)), (2.3)

with states x(t) ∈ Rn, inputs u(t) ∈ Rm, disturbances w(t) ∈ W ⊂ Rω, and time t ∈ R+
0 . We

do not require any stochastic properties for w( · ); we only assume that any possible disturbance

trajectory is bounded at any point in time in the compact set W. We denote this by w( · ) ∈W,

which is shorthand for w(t) ∈ W, ∀t ∈ [0, tf ], where tf ∈ R+
0 is the final time. The same

shorthand is also used for state and input trajectories throughout the thesis.

Definition 12 (Solution). The solution of (2.3), with initial state x(0), input u( · ), and distur-

bance w( · ) at time t, is denoted by ξ(x(0), u( · ), w( · ), t) and satisfies the following two proper-

ties:

ξ(x(0), u( · ), w( · ), 0) = x(0),

ξ̇(x(0), u( · ), w( · ), t) = f
(
ξ
(
x(0), u( · ), w( · ), t

)
, u(t), w(t)

)
, ∀t ∈ R+

0 .

If we consider an undisturbed system, we use ξ(x(0), u( · ), 0, t) to denote the solution without

disturbances, i.e., W = {0}.
In most parts of this thesis, we do not explicitly consider measurement errors to avoid

further complicating the notation and description. However, measurement errors can be easily

included in all approaches presented in this thesis. We model the measurement of system (2.3)

by a function h, returning the measured state x̂(t) based on the actual state x(t) and some

measurement error ν(t) from a compact set of possible measurement errors V ⊂ Ro:

x̂(t) = h(x(t), ν(t)), ν(t) ∈ V. (2.4)

The set of possible actual states based on a measurement x̂(t) is given by

X̂(t) = {x(t) ∈ Rn | ∃ν(t) ∈ V : h(x(t), ν(t)) = x̂(t)}. (2.5)

If not all states are measurable, X̂(t) can also be obtained by a set-based observer [77–79]. In

this case, we also include possible observer errors in the uncertain measurement. We assume
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2.6 Reachability Analysis

that all relevant states can be obtained from such an observer. Therefore, to simplify the

notation, we do not distinguish between measured outputs and measured states.

If we use the measured state x̂(t) to compute the control input uctrl(x̂(t), t), we can express

the closed-loop dynamics as

ẋ(t) = f(x(t), uctrl(x̂(t), t), w(t)).

We see that the measurement errors are a special case of disturbance which only affects the

input to the feedback controller. This can be directly included in the reachable set computation,

which is introduced next.

2.6 Reachability Analysis

Let us first formally define reachable sets and afterwards explain the basic idea of computing

over-approximations of reachable sets.

Definition 13 (Reachable Set). For system (2.3), the reachable set Rt,U,W(X0) ⊂ Rn for a

time t, inputs u( · ) ∈ U ⊂ Rm, disturbances w( · ) ∈W ⊂ Rω, and a set of initial states X0 ⊂ Rn

at time t0 is the set of end states of trajectories starting in X0 after time t, i.e.,

Rt,U,W(X0) = {x ∈ Rn |∃x(0) ∈ X0,∃u( · ) ∈ U,∃w( · ) ∈W :

ξ(x(0), u( · ), w( · ), t0 + t) = x}.

The reachable set over a time interval [t1, t2] is the union of all reachable sets for these time

points, i.e.,

R[t1,t2],U,W(X0) =
⋃

t∈[t1,t2]

Rt,U,W(X0).

If we consider the reachable set for a system with feedback ufb(x(t), t), then we denote by

Rt,ufb,W(X0) the reachable set obtained for the closed-loop dynamics

ẋ(t) = f(x(t), ufb(x(t), t), w(t)).

If we consider systems without disturbances, we use Rt,U,0(X0) to show that W = {0}. Note

that for the sake of simplicity, this reachable-set notation does not explicitly contain the starting

time t0. If the dynamics are time invariant, the actual starting time does not make a difference,

as only the duration t matters. If the dynamics are time varying, it should be clear from the

context at what time t0 the reachable set computation starts.

For most systems, it is not possible to compute exact reachable sets [80]. To still be safe,

we therefore compute over-approximations instead, which can be computed with any desired

accuracy [81]. In the remainder of the thesis, most of the time, we do not distinguish between

exact reachable sets and over-approximated reachable sets. Therefore, if we refer to a reachable

set, we usually mean an over-approximated reachable set. All guarantees obtained from over-

approximated reachable sets still hold for the real system; we might simply be too conservative

at times.
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We incorporate reachable sets in all control methods presented in this thesis. However, we

do not require a specific algorithm for computing these sets. As there exist many different

algorithms already and it is to be expected that more and better algorithms are developed

in the future, we make our algorithms as general as possible, such that they benefit from

future developments in reachability-analysis tools. We have two basic assumptions for the

reachable set algorithms: First, we assume that they compute the reachable sets for single time

points as well as for time intervals. As we are fine with over-approximations for both types

of reachable sets, this assumption is not very restrictive. Our second requirement is that the

reachability algorithms are able to work with zonotopes as set representation. This is due to

the beneficial properties that zonotopes have, not only for reachability analysis, but also for

set-based controller synthesis. It also results from the fact that, currently, several of the most

efficient reachability algorithms for nonlinear systems utilize zonotopes [2]. If this ever changes,

our algorithms can be adapted to work with other set representations as well.

Let us now give a brief overview of two example algorithms for computing over-approximative

reachable sets. We present the basic idea of the techniques from [74], which are implemented in

the MATLAB toolbox CORA [82] and which are used throughout this thesis in all numerical

and practical examples. Let us start by considering a disturbed, linear, time-invariant system

of the form

ẋ(t) = Ax(t) + w(t), (2.6)

with x( · ) ∈ Rn denoting the state of the system and w( · ) ∈W ⊂ Rn denoting an uncontrollable

disturbance, which is bounded by the compact set W. For a simpler notation, we assume that

the disturbances are centered around the origin (see [74] for the general case). Usually in

reachability analysis, one is interested in the set of all possible trajectories resulting from all

possible inputs. If we have control over the inputs, they usually depend on the state or time,

and we can treat them differently than uncontrollable disturbances. Therefore, we only consider

disturbances as inputs in (2.6). If there is a state-dependent feedback controller, we choose A

such that it contains the closed-loop dynamic. In later chapters, we describe how to treat other

kinds of inputs. The reachability algorithm divides the time into short intervals and uses the

superposition principle to separate the reachable set into two parts: one with the autonomous

dynamics and one resulting from the disturbance W.

To compute the reachable set of a time interval [0, tf ], starting from a given initial set X0,

the interval is first divided into N time steps of length ∆t. For an easier notation the shorthand

notation ti := i∆t is introduced. The reachable set R[0,tf ],0,W(X0) is then computed via the

following four steps (see Fig. 2.4 for the first three steps).

(i) The homogeneous part, i.e., the part without disturbance effects, of the reachable set after

the first time step ∆t is computed (see Fig. 2.4(a)). This is done by simply multiplying

the initial set with the matrix exponential function based on the system dynamics A:

Rht1 = eA∆tX0.

(ii) The convex hull conv(X0,R
h
t1) of the initial set and the homogeneous part of the reachable
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X0

Rh
t1

(a)

conv(X0,R
h
t1
)

(b)

R[0,t1]

enlargement

by RW

∆t ⊕ C

(c)

Figure 2.4: Computation of the reachable set for the first time interval [0, t1]: (a) We first

compute the homogeneous solution Rh
t1 at time t1, neglecting the disturbances. (b) Then we

compute the convex hull of X0 and Rh
t1 to approximate the reachable set between these two time

points. (c) Finally, we enlarge the set to take disturbances and curvature of trajectories into

account.

set after one time step is computed (Fig. 2.4(b)). This approximates the reachable set

within the time interval [0, t1] under the assumption that all trajectories are straight lines.

(iii) The set conv(X0,R
h
t1) is enlarged by the sets RW

∆t = R∆t,0,W(∅) to account for the dis-

turbances and by C for the curvature of the trajectories, since they are not straight lines,

thereby making the result over-approximative (see Fig. 2.4(c)):

R[0,t1] = conv(X0,R
h
t1)⊕ RW

∆t ⊕ C.

(iv) Steps (i)–(iii) only have to performed a single time. For all following time intervals

[tk, tk+1], it is sufficient to propagate the reachable set from the last step forward by

multiplying it by the exponential matrix and adding the disturbance set

R[tk,tk+1] = eA∆tR[tk−1,tk] ⊕ RW
∆t.

Details on how to compute the sets RW
∆t and C can be found in [74]. Linear, time-invariant

systems have the advantage that the superposition principle holds. It can be used to indepen-

dently compute the homogeneous dynamics and the effects from the disturbances. In addition,

it allows us to forward-propagate the solution from the previous steps in Step (iv), thereby

drastically simplifying the computations.

This algorithm can be extended to systems with uncertain or time-varying parameters and

nonlinear as well as hybrid dynamics, see [74]. Let us now briefly describe the main idea for

the nonlinear case, as this is used for many of our applications. It works in the following five

steps:
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(i) For nonlinear systems, the superposition principle does not hold anymore. To still be

able to efficiently compute the reachable sets, at each time step, the system dynamics

are locally linearized to obtain f(x, u, w) ∈ flin(x, u, w)⊕ L, with flin(x, u, w) describing

the linearized dynamics without any linearization errors and L denoting the set of pos-

sible linearization errors. Note that this abstraction by a linear system has to be newly

computed for each time interval.

(ii) Considering only the linearized dynamics flin(x, u, w), Steps (i)–(iii) from before are per-

formed to obtain Rlin[tk,tk+1] without yet considering any linearization errors.

(iii) The linearized system can be seen as the first part of an infinite Taylor series. Therefore,

the linearization error can be computed by bounding the remaining terms of this series,

which can be done in an over-approximative fashion as described in [74]. Its effects result

in the reachable set Rerr.

(iv) Due to the linearized dynamics, the reachable set can be obtained as the superposition of

the linearized dynamics without linearization error and the reachable set due to lineariza-

tion errors as

R[tk,tk+1] = Rlin[tk,tk+1] ⊕ Rerr.

(v) Steps (i)–(iv) are repeated for each time interval [tk, tk+1].

The linearization error L becomes larger the further away a state is from the linearization

point; therefore, it depends on the size of the reachable set. At the same time, the size of the

actual reachable set depends on the size of the linearization error. As a result, the linearization

error cannot simply be computed in a single step. Instead, in [74], it is computed in an

iterative fashion which leads to longer computation times compared to the linear systems. If

the linearization error ever becomes too large, one has to either start with a smaller initial set

size or split the set during the reachable set computation to reduce the linearization errors.

Bounding the linearization error is also a way to limit the conservativeness of this approach.

There exists a number of improvements, extensions, and new algorithms to make reacha-

bility analysis less conservative. For example, [76] reduces the effects of abstraction errors by

using polynomialization instead of linearization. However, in general, larger initial sets and

system dynamics with higher nonlinearities lead to larger abstraction errors in the reachable

set computation. To consider disturbance effects and abstraction errors new generators are

added to the reachable set in each iteration. Therefore, the order of the zonotope increases

over time. In the following chapters, we take this into account in our notation of reachable sets

by indicating that the number of generators pk is dependent on the iteration k. To limit the

computational effort, one can use order-reduction methods [74, 83], [226] to over-approximate

the reachable set by a zonotope with lower order when the number of generators becomes too

high.
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2.7 Maneuver Automata

As described in Sec. 1.2, maneuver automata allow fast planning by combining discrete motion

primitives to complex maneuvers.

Definition 14 (Maneuver Automaton). A maneuver automaton MA = {M,D} is a tuple of a

set of motion primitives M and a set of discrete transitions D ⊂M×M defining which motion

primitives can be followed by each other.

The motion primitives are precomputed and therefore allow us to perform computationally

expensive tasks like reachability analysis offline in advance. In this thesis, we only consider safe

motion primitives, which contain a safe controller and its corresponding reachable set. They

are defined as follows:

Definition 15 (Motion Primitive). A motion primitive

MP = {xref ( · ), uref ( · ), tf ,X0,Xf , uctrl( · ),R[0,tf ],uctrl,W(X0)}

is again a tuple, containing a reference trajectory xref ( · ), the corresponding input trajectory

uref ( · ), a duration tf , initial and final sets X0 and Xf , respectively, a safe controller uctrl( · ),

and the reachable set of the safe controller R[0,tf ],uctrl,W(X0).

There exists a transition from one motion primitive MPi with final set X
(i)
f to another

motion primitive MPj with initial set X
(j)
0 , i.e., (MPi,MPj) ∈ D if and only if X

(i)
f ⊆ T (X

(j)
0 ),

where T (X
(j)
0 ) is a valid transformation depending on the system dynamics. For example, if

the system dynamics are independent of the initial state, it is admissible to translate the initial

state of the second motion primitive into the final set of the first motion primitive. In this case,

it is only important that the final set is completely contained in the shifted initial set. We give

an example for such a transformation in the numerical example in Sec. 3.3.7.

2.8 Conformance Checking

All results from formal verification are based on underlying assumptions. The guarantees only

hold as long as the assumptions are also satisfied. In our case, one of the most important

assumptions is the model of our system. Choosing the correct model is a fundamental problem,

as it is never possible to include all details of the real world in an exact, mathematical model.

Therefore, we do not assume that a single model captures the exact real-world behavior, but

rather that it models the main parts and that the remaining effects are over-approximated by

uncertainties in the form of disturbances and measurement errors. Still, the question remains of

how we can be sure that the model with uncertainties represents the real world well enough. A

solution to this problem is provided by conformance checking [84], also known as conformance

testing. In conformance checking, one uses the measurements from a real system or simulations

from a high-fidelity model to check if the real behavior can be explained with the uncertain

model used in synthesis. If this is the case for all tests, the model is said to conform to the real
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system. If one or more measurements do not match the model, we have to change the model

and/or increase the uncertainty sets. This is done until conformance is shown for all tests.

By systematically testing the system and afterwards increasing the uncertainties by a safety

margin, this approach allows us to increase the confidence in the model used. A major advantage

over the classical testing of the closed-loop system with the final controller is that we can test the

system independently of a specific controller, either open-loop or with an auxiliary controller,

before we start with the actual controller synthesis. We are then able to provide guarantees for

any closed-loop system.

We do not explicitly consider conformance checking in our controller synthesis algorithms.

We simply assume that we are given an uncertain model which captures the real world. This

model can be obtained by conformance checking or by any other reliable technique. Our algo-

rithms are therefore independent of the exact modeling process. In Ch. 7, when we apply our

algorithms to real systems, we use conformance checking to obtain the model which we use for

the controller synthesis. There are two major approaches for conformance checking, and we

briefly introduce both of them.

2.8.1 Trace Conformance

The idea of trace conformance [84, 85] is that we try to reproduce measured trajectories with

the uncertain model. This is done by finding disturbance and measurement error trajectories

which explain the obtained measurements. We thereby ensure that the obtained model is able

to reproduce the observed real-world behavior.

To test trace conformance, one records a number of input traces Ui = [u(t1), ..., u(tK)] ∈
Rm×K , i ∈ {1, . . . , I}, which are applied to the system and the corresponding measurement

traces X̂i = [x̂(t1), ..., x̂(tK)] ∈ Rn×K which are measured from the system, both at discrete

points in time Ti = [t1, ..., tK ] ∈ RK . These test traces are used to check conformance as defined

as follows [215]:

Definition 16 (Trace Conformance). A model, consisting of the differential equation (2.3),

the measurement function (2.4), as well as disturbance and measurement noise sets W and

V is said to be trace conformant, if for every test case (Ui, X̂i, Ti) a model trace (Xi, Vi,Wi)

with Xi = [x(t1), ..., x(tK)] ∈ Rn×K , Vi = [ν(t1), ..., ν(tK)] ∈ Ro×K , Wi = [w(t1), ..., w(tK)] ∈
Rω×K , exists, for which the following holds:

∀tk ∈ {t1, . . . , tK} : x(tk+1) = x(tk) +

∫ tk+1

tk

f (x(τ), u(tk), w(tk)) dτ (2.7)

∧ x̂(tk) = h(x(tk), ν(tk)) (2.8)

∧ ν(tk) ∈ V ∧ w(tk) ∈W. (2.9)

Checking if a valid model trace exists for a given test case is done by solving a constraint

satisfaction problem for equations (2.7)–(2.9). This problem is similar to a constrained optimal

control problem, where the disturbances and measurement noise are used as the system inputs.

Therefore, efficient numerical solvers from optimal control can be used to find feasible model

traces.
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2.8.2 Reachset Conformance

In trace conformance, we try to reproduce each measured behavior with an disturbance and

measurement error trajectory. This is a strong property which is sometimes hard to ensure.

An alternative notion of conformance is reachset conformance [86]. Instead of checking if we

can find a single trajectory which matches the measurement, in reachset conformance, the

measurement only has to lie inside the reachable set of the uncertain model. While this is a

weaker notation, it is also easier to verify and sufficient to ensure safety [86]. As this is the main

focus of this work, reachset conformance is a viable alternative for obtaining reliable models.

To test reachset conformance, we simply compute the reachable set of our model and check

whether the measurements are contained there:

x̂(tk) ∈ h
(
Rtk,u( · ),W(X0),V

)
, ∀tk ∈ Ti, ∀x(tk) ∈ Xi, ∀i ∈ {1, . . . , I},

where we use the shorthand notation

h
(
Rtk,u( · ),W(X0),V

)
:=
{
h(x(tk), ν(tk)) | x(tk) ∈ Rtk,u( · ),W(X0), ν(tk) ∈ V

}
.
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Chapter 3

Offline Controller Synthesis

3.1 Introduction

In this chapter, we present several algorithms for solving reach-avoid problems by combining

optimal control techniques with reachability analysis. Because they involve computations of

reachable sets, these algorithms might not be performed in real time; however, they are espe-

cially applicable for computing motion primitives for safe maneuver automata. Thus, we want

to find controllers which steer all states from an initial set into the smallest possible final set

after a fixed time despite disturbances. This lets us concatenate each motion primitive with as

many others as possible, making the maneuver automaton more connected and thereby allow-

ing more flexibility during online planning. We begin with a formal problem statement before

presenting four different control approaches which can be used to solve this problem.

3.2 Problem Statement

The task is to find a control law uctrl(x, t) for system (2.3) which guarantees that all states in

an initial set X0 ⊂ Rn are steered into a final set Rtf ,uctrl,W(X0) ⊂ Rn around a desired final

state x(f) after time tf despite the disturbance set W. Depending on the application, it might

also be beneficial to minimize the applied inputs. We minimize the size of the final set while

considering input costs by solving

min
uctrl
‖(Rtf ,uctrl,W(X0)− x(f))‖1 + γ

∫ tf

0

‖uctrl(Rt,uctrl,W(X0), t)‖1dt, (3.1)

where γ ∈ R+
0 is a factor used to weight the input costs in relation to the state costs. We use

the short form ‖R−x(f)‖1 := maxx∈R ‖x−x(f)‖1 to denote the maximum 1-norm between the

desired final state x(f) and any state in the set R ⊂ Rn. Similarly, we use uctrl(R, t) := {u ∈
Rm | ∃x ∈ R : uctrl(x, t) = u} to denote the set of possible inputs of our controller for set R

and ‖uctrl(R, t)‖1 := maxx∈R ‖uctrl(x, t)‖1 the input with maximum 1-norm. If desired, we can

also weight each state and input individually by multiplying the states and inputs by weight

matrices. For a simpler presentation, we omit these weight matrices and only use γ.

29



3. OFFLINE CONTROLLER SYNTHESIS

In addition to its numerical advantages, the reason for using the 1-norm for our cost function

is that many target sets are axis-aligned boxes. Therefore, we prefer a set whose bounding axis-

aligned box is as small as possible. When using the 1-norm, we minimize the sum of the side

lengths of this bounding box. If we used, for example, the 2-norm instead, we would minimize

the sum of the squared sides, therefore not appropriately considering smaller dimensions. The

extreme case would be using the infinity norm, as illustrated with the following example: Let us

consider a two-dimensional set whose maximum expanse in the first dimension is denoted by s1

and in the second dimension by s2, with s1 ≥ s2. In the case that there exist constraints which

prevent us from reducing the size of s1, there is no change in the infinity norm if we reduce the

size of s2, while any cost function using the 1-norm would actually benefit from reducing s2.

We assume that the initial set X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉 and the disturbance set W =

〈c1, g(1)
w , . . . , g

(r)
w 〉 are zonotopes or can be over-approximated by zonotopes. Note that no extra

conservatism is added in the most common case when they are boxes. Furthermore, we consider

constraints on the states and inputs of the form

ξ(x(0), u( · ), w( · ), t) ∈ S, ∀t ∈ [0, tf ], (3.2)

u(t) ∈ U, ∀t ∈ [0, tf ], (3.3)

where S and U are both polyhedral sets of the form

S = {x ∈ Rn | CSx ≤ dS},
U = {u ∈ Rm | CUx ≤ dU},

with CS ∈ R%×n, dS ∈ R%, CU ∈ Rς×m, and dU ∈ Rς . Note that for most practical applications,

the inputs are bounded, which leads to polytopic input constraints.

During offline computation, the locations of most non-convex constraints, such as other

traffic participants in automated driving, are not known. Therefore, we use this approach to

compute motion primitives offline in advance, where we take convex input constraints, e.g.,

maximum acceleration or steering, and convex state constraints, e.g., maximum velocity, into

account. The non-convex dynamic constraints are handled during online planning using a

maneuver automaton containing these motion primitives (see Fig. 3.11 and Sec. 1.2).

For most of this chapter, we want to find a final set Xf which is as small as possible. If

instead the task is to steer all states into a given final set, then we would have to adapt our

algorithms by adding this as an additional constraint. In this case, however, it might be possible

that no solution exists, depending on the choice of constraints, final time, and final set.

1Fig. 3.1 has been previously published in [219] c© 2021 IEEE.
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Figure 3.1: Motion primitives (gray) are used to steer all states from X0 to x(f) while avoiding

non-convex obstacles (red). The final set (blue box) of one motion primitive is always contained

inside the initial set (black box) of the following motion primitive.

3.3 Convex Control

In this section1, we present the first algorithm for solving the previously-stated problem. For

single states and no disturbances, such a constrained optimal control problem can be solved very

fast and efficiently. As discussed in the introduction of this thesis, the difficulty arises when we

want to obtain a solution for every state in the initial set. As we cannot solve an optimization

problem for each state, we have to find a way to generalize the finitely many solutions which

we are able to obtain to all other states of the initial set. The idea of the convex interpolation

controller is to solve the optimization problem only for the extreme states of the initial set and

to use convex combinations to interpolate the solutions of the extreme states to obtain control

inputs for all interior states. This concept works directly for linear systems, and we show that

we can extend it to disturbed and nonlinear systems by iteratively applying the controller in

combination with reachability analysis.

For linear systems without disturbances, it is well known that for a convex initial set of

states and a convex set of constant inputs, the reachable set after a fixed time is again a convex

set. This follows directly from the superposition principle of linear systems [87]. Moreover,

the extreme points of the reachable set are the end points of trajectories starting from the

extreme points of the initial set, see Fig. 3.2 (a). This means that by computing only the

trajectories for the extreme points of the initial set, we can obtain the whole reachable set

by calculating the convex hull of the end points of these trajectories. This correlation is also

used for reachability analysis of linear systems, where the reachable set can be obtained by

computing convex combinations of the extreme states of a set of inputs, see, e.g., [88]. It is also

used in parametrized tube-based MPC [23], where control inputs are also computed as convex

combinations of extreme input values.

1This section and most of its figures are based on [216].
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In our case, we are not interested in the reachable set for all possible inputs or the scenario

in which we use the same input for all extreme states. Rather, we want to steer each extreme

state as close as possible to the desired final state x(f). If we consider the initial set X0 to be

given by a polytope defined by its q extreme states x̆(i), i ∈ {1, . . . , q}, we are looking for each

of the extreme states x̆(i) for a piecewise-continuous control input ŭ(i)( · ), i ∈ {1, . . . , q}, which

steers this state close the desired final state x(f). It follows that the convex hull of these states

is small and close to the desired final state. In order for all trajectories starting inside the initial

set to also end in the convex hull of these extreme trajectories, we cannot use the same input

trajectory for all states, but have to choose them carefully. For our convex controller, we obtain

this control input by using a convex combination of the input trajectories of the extreme states.

For an arbitrary state x(0) ∈ X0, we first express it as a convex combination of the extreme

states x̆(i) by choosing λi(x
(0)) such that

x(0) =

q∑

i=1

λi(x
(0))x̆(i), (3.4)

λi(x
(0)) ≥ 0, ∀i ∈ {1, . . . , q},

q∑

i=1

λi(x
(0)) = 1.

We then use the same parameters λi(x
(0)) to compute the corresponding control input uconv(x

(0),

· ) for the state x(0) as a convex combination of the control inputs ŭ(i)( · ) of the extreme states

x̆(i), i.e.,

uconv(x
(0), · ) =

q∑

i=1

λi(x
(0))ŭ(i)( · ). (3.5)

This is illustrated in Fig. 3.2. Note that the controller uconv(x
(0), · ) provides an open-loop

control input. Feedback is achieved by iteratively applying (3.5), as discussed later. As we see

in Sec. 3.3.3, it is even possible to obtain closed-form expressions of the convex combinations,

so that the system of inequalities in (3.4) does not have to be solved online.

3.3.1 Linear Systems

Before we consider disturbed, nonlinear systems, we illustrate first how our approach works for

undisturbed, linear systems of the form

ẋ(t) = Ax(t) +Bu(t), (3.6)

with x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m. In order to solve the control problem,

we perform the following two steps:

Step 1: For each of the extreme states x̆(i), i ∈ {1, . . . , q}, of the initial set, we solve a
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Figure 3.2: Basic idea of the convex control approach: (a) Compute input trajectories which

control the extreme states x̆(i) of the initial set X0 close to the desired final state x(f). (b)

Express state x(0) ∈ X0 as a convex combination of extreme states x̆(i). (c) Use the same convex

combination to compute the corresponding control input uconv(x(0), · ) using the control inputs

ŭ(i)( · ) of the extreme states.

constrained optimization problem of the form

ŭ(i)( · ) = arg min
ŭ(i)( · )

‖(ξ(x̆(i), ŭ(i)( · ), 0, tf )− x(f))‖1 + γ

∫ tf

0

‖ŭ(i)(t)‖1dt (3.7)

s.t. ∀t ∈ [0, t] : ξ(x̆(i), ŭ(i)( · ), 0, t) ∈ S,

ŭ(i)(t) ∈ U,

to find an input sequence which returns a solution that ends as close as possible to x(f) while

satisfying the state and input constraints (3.2)–(3.3). Note that for this control approach,

the exact form of the cost function or used norm in (3.7) does not make a difference for the

theory and can therefore be freely chosen depending on the specific problem. For other control

algorithms which we present in later sections, the use of the 1-norm in the cost function is

beneficial.

Step 2: For a given state in the initial set, we express it as a convex combination of the
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extreme states by solving (3.4) and use the same convex combination of the corresponding input

sequences (3.5) to control it to the final set.

By applying these two steps, we obtain for each extreme state x̆(i) an input sequence ŭ(i)( · ),
such that the corresponding state trajectory ends close to the desired final state x(f) after a fixed

time tf . If all input sequences ŭ(i)( · ) and corresponding state trajectories ξ(x̆(i), ŭ(i)( · ), 0, · )
satisfy the input and state constraints, respectively, then all trajectories starting in the initial

set X0 under the convex control law (3.5) end in the a priori known compact set

Xf = conv(ξ(x̆(1), ŭ(1)( · ), 0, tf ), . . . , ξ(x̆(q), ŭ(q)( · ), 0, tf )).

Moreover, all trajectories satisfy the state constraints (3.2) and input constraints (3.3) for all

times.

This directly results from the way we compute the control law and from the convexity of

linear systems. Using (3.4) and (3.5), it follows from the superposition principle that ∀t ∈
[0, tf ] :

ξ(x(0), uconv(x
(0), · ), 0, t)

= ξ

(
q∑

i=1

λi(x
(0))x̆(i),

q∑

i=1

λi(x
(0))ŭ(i)( · ), 0, t

)

=

q∑

i=1

λi(x
(0))ξ(x̆(i), ŭ(i)( · ), 0, t),

i.e., any trajectory starting in the initial set lies inside the convex set of the extreme trajectories.

Since the extreme trajectories satisfy the polyhedral state constraints, any inner trajectory

satisfies the state constraints as well. The control inputs are convex combinations of the extreme

inputs, which are contained in the polyhedral input set U. Therefore, it follows from convexity

that the control inputs are in the set U as well.

The important part of this new control approach is the second step. While the first step

is performed offline and stores the results, the second step applies the online control algorithm

without having to solve any optimal control problems online. This is in contrast to model

predictive control, for example.

Although the presented approach has favorable properties, it is an open-loop control. Be-

cause of the missing feedback, it is not robust against any disturbances or model-mismatches.

Intermediate steps which take disturbances into account are necessary for feedback control.

In the case of nonlinear systems, these steps are always necessary, even without disturbances.

Therefore, we consider the robust case directly for nonlinear systems in the next subsection.

3.3.2 Nonlinear Systems with Disturbances

Since nonlinear dynamics in general do not preserve convexity [89], convex control cannot be

applied in the same way as in the linear case. Instead, we divide the control problem into

intermediate steps and iteratively apply the convex control law to steer the system along a

reference trajectory. For each time step, we compute the reachable set (see Sec. 2.6), thereby
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ensuring that the constraints are always satisfied despite disturbances and nonlinear dynamics.

By recomputing the convex control inputs in each time step, we realize feedback and counteract

the effects from disturbances. Through the use of reachability analysis, we have a separation

of concerns: the optimization provides performance, while the reachability analysis provides

guarantees for the satisfaction of all constraints. Therefore, the guarantees still hold if we

cannot find optimal solutions for the optimal control problems as long as we find solutions

which satisfy the constraints. The new control approach is presented in Alg. 1 and is illustrated

in Fig. 3.3. It consists of three major steps:

Algorithm 1 Offline Part of the Convex Control Algorithm for Nonlinear Systems with Dis-

turbances

Input: system dynamics f(x, u, w), initial set X0, desired final state x(f), total time tf , number

of iterations N , constraint sets S,U, Sref ,Uref , S̄, disturbance set W, weighting factors γ, γref

Output: motion primitive MP

1: (xref ( · ), uref ( · ))← solution of optimization problem (3.8) for the reference trajectory

2: Initialize: Xreach,0 ← X0

3: for k = 0, . . . , N − 1 do

4: Pk ← parallelotope over-approximation of Xreach,k

5: (x̆(1,k), . . . , x̆(2n,k))← extreme states of Pk using (3.9)

6: for i = 1, . . . , 2n do

7: ŭ(i,k)( · )← solution of optimization problem (3.10) for each extreme states x̆(i,k)

8: end for

9: uconv(x, tk)← convex control law (3.5) using ŭ(i,k) and x̆(i,k), i ∈ {1, . . . , 2n}
10: R[tk,tk+1],uconv,W(X0)← R[0,∆t],uconv,W(Xreach,k)

11: Xreach,k+1 ← R∆t,uconv,W(Xreach,k)

12: end for

13: MP← {xref ( · ), uref ( · ), tf ,X0,Xreach,N , uconv( · ),R[0,tf ],uconv,W(X0)}

Step 1: We first compute a reference trajectory which steers the center cx,0 of the initial

set X0 as close as possible to the final state x(f) (see Fig. 3.3(a) and Alg. 1, line 1) by solving

the following nonlinear optimization problem for the nominal system:

uref ( · ) = arg min
uref ( · )

‖(ξ(cx,0, uref ( · ), 0, tf )− x(f))‖1 + γref

∫ tf

0

‖uref (t)‖1dt (3.8)

s.t. ∀t ∈ [0, tf ] : ξ(cx,0, uref ( · ), 0, t) ∈ Sref ,

uref (t) ∈ Uref ,

where Sref ⊆ S and Uref ⊆ U are tightened state and input constraints, respectively. Since

we solve the optimization problem for the undisturbed dynamics and only for the center of the

initial set, we have to tighten the nominal state and input constraints such that all states of the

disturbed system still satisfy the original constraints and such that we have input capacities left

to counteract the initial offset from the center. Similarly, the input weight γref ∈ R+
0 can be

chosen higher than γ to ensure that enough input capacities are left to find control inputs for the
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(c) Reachable set of single time step
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Xreach,3
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Figure 3.3: Convex control for nonlinear systems: (a) Compute a reference trajectory xref ( · )
from the center of the initial set X0 to the final state x(f). (b) Over-approximate the initial set

by a parallelotope P0 and compute optimal trajectories for the extreme states. (c) Compute the

reachable set Xreach,1 for one time step under the convex control law while taking all possible

disturbance effects into account. (d) Repeat the procedure.

extreme states. By restricting the inputs to be piecewise constant, this control problem can be

efficiently solved using numerical optimization algorithms such as direct multiple-shooting [3].

We denote the resulting reference trajectory by

xref ( · ) = ξ(xref (0), uref ( · ), 0, · ).

For the subsequent steps, we divide the trajectory into N steps of length ∆t =
tf
N and we use

again the shorthand notation ti := i∆t.

Step 2: While Step 1 is performed only once, we perform Steps 2 and 3 for each time step

k, k ∈ {0, . . . , N − 1} (see Alg. 1, line 3). At time step k, we over-approximate the reachable

set Xreach,k of the previous time step by a parallelotope Pk, i.e., Xreach,k ⊆ Pk (Alg. 1, line 4).

At the first time step k = 0, we over-approximate the initial set X0 (Alg. 1, line 2). There exist

efficient algorithms to formally compute parallelotope over-approximations for zonotopes, see

e.g., [226]. We use parallelotopes, since they offer a good combination of a small number of

extreme states and enclosed volume, and since analytical, closed-form expressions for convex

combinations in parallelotopes exist (see Sec. 3.3.3).

For the parallelotope Pk, we compute the 2n extreme states x̆(1,k), . . . , x̆(2n,k) (Alg. 1, line 5).

Computing the extreme states of a parallelotope P = 〈cP, g(1)
P , . . . , g

(n)
P 〉 can be done in a
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numerically stable way by adding all 2n combinations of the generators, i.e.,

{x̆(1), . . . , x̆(2n)} = cP ± g(1)
P ± · · · ± g

(n)
P , (3.9)

where we use ± to indicate that each generator can be added either with a plus or minus sign.

This is an advantage over general polytopes in half-space representation, for which it is much

harder and numerically less reliable to compute the extreme states. For each extreme state

x̆(i,k) we then solve a nonlinear optimal control problem with the nominal system dynamics for

one time step (Alg. 1, line 7):

ŭ(i,k)( · ) = arg min
ŭ(i,k)( · )

‖(ξ(x̆(i,k), ŭ(i,k)( · ), 0,∆t)− xref (tk+1)‖1 + γ

∫ tk+1

tk

‖ŭ(i,k)(t)‖1dt (3.10)

s.t. ∀t ∈ [0,∆t] : ξ(x̆(i,k), ŭ(i,k)( · ), 0, t) ∈ S̄,

ŭ(i,k)(t) ∈ U,

where S̄, with Sref ⊆ S̄ ⊆ S, denotes some tightened state constraints. We use these as a heuris-

tic to have a buffer for effects from the superposition of nonlinear dynamics and disturbances.

We discuss later how they can be obtained. Note that we do not need to tighten the input

constraints, as the inputs are unaffected by these effects. By solving the optimization problem

(3.10), we steer all extreme states as close as possible to the optimal reference trajectory while

still considering the input costs.

Step 3: In the third step, we use the control inputs of the extreme states of the parallelotope

Pk to obtain the convex control law in (3.5) for each state inside the reachable set of the last

step Xreach,k. After computing the convex control law uconv(x, · ) (Alg. 1, line 9), we compute

the reachable set R[0,∆t],uconv,W(Xreach,k) (Alg. 1, line 10).

The over-approximation of the reachable set at the end of the current time step is the initial

set for the next step k + 1 (Alg. 1, line 11), i.e.,

Xreach,k+1 = R∆t,uconv,W(Xreach,k),

and we use this to continue with Step 2. By iterating Steps 2 and 3 for all N time steps,

we obtain with Xf := Xreach,N the over-approximation of the final reachable set of all states

starting in the initial set X0 despite disturbances.

To ensure the satisfaction of the state constraints for all time points with finitely many

operations, we simply check for the reachable sets of different time intervals. For the reachability

analysis as described in Sec. 2.6, each reachable set R[0,∆t],uconv,W(Xreach,k) is represented by

one or more zonotopes, depending on the time step size of the reachable set computation

algorithm. To check that each of these zonotopes satisfies polyhedral state constraints of the

form S = {x ∈ Rn|CSx ≤ dS}, we use the following lemma.

Lemma 1. A zonotope Z = 〈c, g(1), . . . , g(p)〉 satisfies polyhedral constraints of the form C =

{x ∈ Rn | Cx ≤ d} if

Cc+

p∑

i=1

|Cg(i)| ≤ d, (3.11)

where the absolute value and less or equal operators are both performed element-wise.
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Proof. Using the zonotope representation results in

Cx ≤ d, ∀x ∈ Z

⇔ Cc+

p∑

i=1

αiCg
(i) ≤ d, ∀αi ∈ [−1, 1].

The left side of the above inequality can be further bounded by

Cc+

p∑

i=1

αiCg
(i) ≤ Cc+

p∑

i=1

|αiCg(i)| ≤ Cc+

p∑

i=1

|αi|︸︷︷︸
≤1

|Cg(i)| ≤ Cc+

p∑

i=1

|Cg(i)|.

In fact, there exists an α with αi = ±1, such that the computed bound is touched.

After the controller is computed offline using Alg. 1, we save the computed extreme states

x̆(i,k) together with the corresponding input trajectories ŭ(i,k)( · ) in a look-up table. In each

time step during the online application of the convex controller, the current state x(tk) is

expressed as a convex combination of the corresponding extreme states x̆(i,k). The control

input uconv(x(tk), · ) is obtained from the convex combination of the extreme inputs ŭ(i,k)( · )
using the same parameters λi,k(x(tk)) as described at the beginning of this section in (3.4) and

(3.5). We can use the resulting controller and corresponding reachable set as a motion primitive

for a maneuver automaton (Alg. 1, line 13).

The results of the convex control approach for nonlinear systems are summarized in the

following theorem:

Theorem 1. We consider a nonlinear system with disturbances (2.3) and with state and input

constraints (3.2)–(3.3). We assume that we have found a convex controller for this system using

Algorithm 1. If

R[0,tf ],uconv,W(X0) ⊆ S, (3.12)

then any trajectory ξ(x(0), uconv(x(tk), · ), w( · ), · ) which starts in the initial set will end after

time tf in Xf := Xreach,N , i.e.,

ξ(x(0), uconv(x(tk), · ), w( · ), tf ) ∈ Xf , ∀x(0) ∈ X0, ∀w( · ) ∈W.

Moreover, every trajectory satisfies the state constraints, and the applied inputs satisfy the input

constraints despite the presence of disturbances, i.e., ∀x(0) ∈ X0, ∀w( · ) ∈W, ∀t ∈ [0, tf ] :

ξ(x(0), uconv(x(tk), · ), w( · ), t) ∈ S ∧ uconv(x(tk), t) ∈ U.

Proof. From the definition of the reachable set and the way we compute Xf as the over-

approximation of the final reachable set, it follows that ∀x(0) ∈ X0, ∀w( · ) ∈W :

ξ(x(0), uconv(x(tk), · ), w( · ), tf ) ∈ Rtf ,uconv,W(X0) = Xf .

In the same way, it follows from assumption (3.12) that ∀x(0) ∈ X0, ∀w( · ) ∈W, ∀t ∈ [0, tf ] :

ξ(x(0), uconv(x(tk), · ), w( · ), t) ∈ R[0,tf ],uconv,W(X0) ⊆ S,
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and therefore, the state constraints are satisfied for any trajectory starting in the initial set.

When computing the control inputs ŭ(i,k)( · ) of the extreme states x̆(i,k) in (3.10), we restrict

them to lie in the input set U at all times. Since the input set is a polyhedron, and since any

convex combination of points in a polyhedral set lies again in the polyhedral set [73], it follows

that any convex combination of these inputs, and therefore any control input from our convex

controller, satisfies the input constraints.

Tightened State Constraints

In general, it is hard to know in advance how much tighter the new state constraints have to be,

and there exists no general solution for this problem in the literature for disturbed, nonlinear

systems. Since we combine controller synthesis with reachable set computation, we can check

offline if the controller satisfies the real state constraints, and if not, adapt the tightened state

constraints for the violated dimensions. By iteratively tightening the nominal state constraints

offline in advance until the actual state constraints are satisfied by the real system, we obtain

a formally correct controller for the online application. The reachability analysis in [74] relies

on linearizing the dynamics and over-approximating the linearization errors and disturbance.

Therefore, we are able to use these over-approximations to obtain a good initial estimate of

how much we have to tighten the state constraints.

3.3.3 Closed-Form Expression of Convex Combinations

When applying the proposed convex control law (3.5), we have to find the parameters λi(x)

to express a state x as a convex combination of the extreme states x̆(i) at each time step.

Utilizing solvers for this problem is computationally expensive, especially for high-dimensional

systems, and they would only provide an implicit solution. The computation time would restrict

the sampling times of our controller, and the implicit solutions would prohibit the application

of reachability analysis, which relies on an explicit, closed-form expression of the closed-loop

dynamics.

To overcome these problems, closed-form expressions of convex combinations of simplices,

parallelotopes, and general polytopes are presented in Appendix A. As mentioned before, par-

allelotopes offer a good combination of enclosed volume and a small number of extreme states.

While simplices, for example, have the advantage that they have only n+ 1 extreme states, the

enclosed volume is smaller and has an “impractical” shape for our application purposes. On

the other hand, objects like higher-order zonotopes or general polytopes may better describe

certain shapes, but when applied, the number of vertices increases significantly. Therefore we

use parallelotopes to over-approximate the reachable set for the convex control computation

in Step 2 in Sec. 3.3.2. We use these parallelotope over-approximations only to obtain the

input combination and use the actual high-order zonotope for reachability analysis. In doing

so, we avoid the error due to this over-approximation so that it has no significant impact on

the reachability analysis.

The following theorem shows how to obtain closed-form expressions of convex combinations

for parallelotopes:
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Theorem 2. We consider a parallelotope P ⊂ Rn given by

P = {x ∈ Rn | x = cP +GPα, αi ∈ [−1, 1]},

with cP ∈ Rn and GP ∈ Rn×n, and which has 2n extreme states x̆(1), . . . , x̆(2n), see (3.9). Given

a state x ∈ P, this state can be expressed as a convex combination of the extreme states as

x =

2n∑

i=1

λi(x)x̆(i),

where the parameters λi(x), i ∈ {1, . . . , 2n}, are given by the following closed-form expression

λi(x) =

n∏

j=1

µi,j , (3.13)

where

µi,j =




x′j , if αj(x̆

(i)) = 1

1− x′j , if αj(x̆
(i)) = −1.

(3.14)

Here, x′ is the transformed state of x under the affine transformation

x′ =
1

2
G−1

P (x− cP) +
1

2
1 (3.15)

and x′j denotes its j-th entry.

The proof, as well as results for sets other than parallelotopes, can be found in Appendix A.

Note that for a point x̆(i) ∈ P to be an extreme point, the entries in the corresponding parameter

vector α(x̆(i)) must all be ±1; therefore, one of the cases in (3.14) is always satisfied. Also, G−1
P

always exists since GP is quadratic and has full rank by the definition of a parallelotope.

With this theorem, we are able to precompute the convex combinations for the parallelotopes

at different points in time. Since we know the parallelotopes in advance, we can compute all

matrices and matrix inverses of Thm. 2 offline. During the online computation, we simply plug in

the current state in (3.15) and use the result to compute the parameters λi(x). The computation

of all λi(x) for a ten-dimensional parallelotope can be performed in around 0.1ms, which is over

200 times faster than using linear programming solvers, see Table A.1 in Appendix A.

3.3.4 Linear Approximation of the Convex Control Approach

The convex controller is a nonlinear controller, as can be seen by looking at the closed-form

expressions of λi(x) in (3.13), where the different entries x′j are multiplied with each other.

Although a convex combination is a linear combination of the extreme states, the parameters

λi(x) have a nonlinear dependency on the initial state for systems with dimensions greater than

one (see (3.13) and (3.14)). This increases the nonlinearity of the whole closed-loop system,

which leads to larger computation errors during the reachability computation, as well as to a

higher computational complexity of the reachability computation itself [74].
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In order to overcome these problems, we present an alternative approach where we use

a linear approximation of the convex control approach. To do so, we take advantage of the

fact that efficient techniques for reachability analysis use zonotopes as set representation [1,2].

We use the zonotope representation of the state set to compute a corresponding zonotope

representation for the inputs. We modify only the third step in Sec. 3.3.2 by adding the input

approximation, as shown in Alg. 2. For simpler computations, we restrict our considerations to

piecewise-constant inputs, which are constant during each time interval [tk, tk+1).

Algorithm 2 Convex Control Algorithm for Nonlinear Systems with Disturbances Using Linear

Input Combinations

Input: system dynamics f(x, u, w), initial set X0, desired final state x(f), total time tf , number

of iterations N , constraint sets S,U, Sref ,Uref , S̄, disturbance set W, weighting factors γ, γref

Output: motion primitive MP
... (Lines 1 to 8 as in Alg. 1)

9: ZU,k ← optimal zonotope approximation by solving (3.19)

10: uzono(x, tk)← linear approximated convex control law (3.18) using ZU,k

11: R[tk,tk+1],uzono,W(X0)← R[0,∆t],uzono,W(Xreach,k)

12: Xreach,k+1 ← R∆t,uzono,W(Xreach,k)

13: end for (from line 12 of Alg. 1)

14: MP← {xref ( · ), uref ( · ), tf ,X0,Xreach,N , uzono( · ),R[0,tf ],uzono,W(X0)}

Any state x in a parallelotope P is uniquely defined by the parameters α(x), i.e., x =

cP +GPα(x), and therefore α(x) can be obtained by

α(x) = G−1
P (x− cP), (3.16)

where G−1
P exists since P is a parallelotope.

In every time step k ∈ {0, . . . , N − 1}, we want to find an input zonotope ZU,k with center

cZU,k and generator matrix GZU,k such that we obtain the corresponding control input for any

state x(tk) ∈ Pk just by using α(x(tk)) in

uzono(x(tk), t) = cZU,k +GZU,kα(x(tk)), ∀t ∈ [tk, tk+1). (3.17)

By plugging (3.16) into (3.17), we obtain

uzono(x(tk), t) = cZU,k +GZU,kG
−1
Pk

(x(tk)− cPk), ∀t ∈ [tk, tk+1), (3.18)

which is linear in x(tk) as desired.

We now have to choose the center cZU,k and generator matrix GZU,k of ZU,k, which best

match the desired inputs. Clearly, as this is a linear approximation of the nonlinear convex

input combinations, we cannot match the input for every state in Pk exactly. We choose cZU,k
and GZU,k by solving an optimization problem such that the sum of the differences between the

optimal inputs for the extreme states ŭ(i,k) and the inputs from the input zonotope ZU,k for
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the corresponding α(x̆(i,k)) is minimized (Alg. 2, line 9):

min
cZU,k ,GZU,k

2n∑

i=1

∥∥∥ŭ(i,k) − (cZU,k +GZU,kα(x̆(i,k)))
∥∥∥ (3.19)

s.t. ∀i ∈ {1, . . . , 2n} : cZU,k +GZU,kα(x̆(i,k)) ∈ U, (3.20)

where we are free to choose which norm to use in (3.19). Now, we have the desired linear

control law uzono( · ) for any state in Pk with (3.18). Using Alg. 2 and therefore replacing uconv

by uzono in Thm. 1 ensures that the results of Thm. 1 also hold in the case of the new control

law. We do not change anything about the reachability computation, with the exception of

considering the new control law uzono. Therefore, our algorithm is still sound, and we have

guarantees for satisfaction of the state constraints. Due to both (3.20) and the fact that U is

convex, it holds that ∀k,

ZU,k = conv
(
uzono(x̆

(1,k), tk), . . . , uzono(x̆
(2n,k), tk)

)
⊆ U,

and therefore the input constraints are satisfied as well.

3.3.5 Possible Extensions

We briefly discuss three possible extensions which can be used to improve the control per-

formance in practice. To keep the presentation of the control approach easy to follow, we

previously focused on the simplest case and now show how to improve the presented concepts.

Changing Control Inputs

For the convex control approach, we need to solve many open-loop optimal control problems in

order to obtain the inputs for the extreme states. There exists a variety of efficient numerical

tools. To bound the computational complexity, many of these tools restrict the inputs to be

piecewise constant. However, if we restrict the inputs to be piecewise constant, we cannot

expect to find a good solution if we only optimize over too short a horizon. If we consider, for

example, a simple double integrator

x(tk+1) =

[
1 1
0 1

]
x(tk) +

[
0
1

]
u(tk),

where we start at x(t0) = [0, 0]
T

and want to end after a single time step at x(d) = [10, 0]
T

, then

the best input which minimizes ‖ξ(x(t0), u(t0), 0,∆t)−x(d)‖1 is u(t0) = 0. Even if we repeatedly

optimize over this short horizon of 1 step while keeping the desired state x(d) = [10, 0]
T

, the

optimal solution for this limited horizon is always zero. However, if we extend the horizon,

this problem can be overcome. For our example, we can optimally solve it with a horizon

of 2 steps with u(t0) = 10 and u(t1) = −10. Therefore, if we want to take advantage of the

numerical solvers for our optimal control problems, it might be beneficial if we allow multiple

input changes during each time interval.

We can consider multiple piecewise-constant control inputs during each time interval [tk, tk+1]

by simply switching the values of the inputs for the extreme states and thereby changing the
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inputs for the interior states as well. For the convex control law, which is defined with general

input trajectories, this works as described before. For the linear approximation, we simply com-

pute a zonotope for each piecewise-constant input interval. Each zonotope best approximates

the inputs during its respective interval and we then switch between these zonotopes.

Longer Optimization Horizon

Analogously to the problem discussed before, it might be beneficial to consider a longer time

horizon for the optimization in general. We can do this by simply increasing the duration of each

time interval [tk, tk+1]. However, since we only obtain measurements at times tk, this would lead

to fewer measurements and therefore possibly worse control performance due to longer open-

loop periods. Instead, we can optimize over a longer time horizon spanning multiple time

intervals and only apply the inputs for the first time interval. Then, after the reachability

analysis for a single time interval, we again start a new optimization for a long time horizon,

similar to the moving horizon of MPC [12]. To do so, we simply increase the length of the

optimization horizon in (3.10) and also include states further in the future to the cost function.

The reachable set computation remains unchanged, as we still only compute the reachable set

for a single time interval. As we get closer to the final time tf , we shrink the optimization

horizon to not optimize for states after tf .

Weighting of Individual States and Inputs

Depending on the actual system, certain states or inputs might be harder to control, more

critical, or simply have a different scale than others and therefore must be weighted differently.

To do this, we can simply include a weight matrix in which we multiply the states and inputs in

addition to the simple weight γ. If we consider a longer optimization horizon, it is also possible

to have these weights be time varying, e.g., to value the distance to the final state more than

those to intermediate states.

3.3.6 Implementation

In this subsection, we give an overview of how the system controlled by our convex interpolation

controller can be expressed in a form such that standard techniques as described in Sec. 2.6

can be applied to compute the reachable sets. To this end, we need to express the closed-loop

dynamics in the form ẋ(t) = f(x(t), u(x, t), w(t)). While the convex control law and its linear

approximation define a control law for each state, they depend on the states from the last

measurement at time tk, i.e., the control law at time t ∈ [tk, tk+1) has the form u(x(tk), t).

Since the state is continuously evolving due to the continuous-time dynamics, we need to store

the information about the initial state of this time interval x(tk). We do this by introducing an

extended state space of the form xe(t) :=

[
x(t)
x(tk)

]
with dynamics

ẋe(t) =

[
ẋ(t)
ẋ(tk)

]
=

[
f (x(t), uctrl(x(tk), t), w(t))

0

]
. (3.21)
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The control law uctrl(x(tk), t) refers either to the convex control law uconv(x(tk), t), which we

evaluate by plugging x(tk) into the closed-form description of λ(x(tk)) from Thm. 2, or to the

zonotope approximation uzono(x(tk), t) from (3.18).

Starting with Xreach,k = 〈cx,k, Gx,k〉, we express the extended reachable set simply by

stacking the two sets

Xe,k =

〈[
cx,k
cx,k

]
,

[
Gx,k
Gx,k

]〉
.

Starting from Xe,k, we can use standard tools for reachability analysis as described in Sec. 2.6

to compute the reachable set based on the dynamics (3.21) for the desired time interval. This

representation can also be used for the case that the inputs might change during the time

interval [tk, tk+1]. In this case, we simply compute the reachable set for one time interval with

fixed inputs and use the reachable set as the initial set for the next time interval, where the

closed-loop system dynamics are changed based on the new ŭ(i)( · ) and ZU,k+1, respectively.

Because we only adjust the input values based on the changes in the input trajectories of the

extreme states, but do not have new measurements, we keep the x(tk) values constant. After

we obtain a new measurement, i.e., after each iteration of our overall algorithm, we start a new

reachable set computation based on the new measurements.

3.3.7 Numerical Example

In this section, we provide a numerical example to show the applicability of the proposed control

approach for a constrained, nonlinear system. We choose a kinematic model of a vehicle, which

is broadly used to model the most important dynamics of a car [90]:

v̇ = a+ w1,

Ψ̇ = b+ w2,

ṗx = v cos(Ψ),

ṗy = v sin(Ψ),

(3.22)

where the states v,Ψ, px, and py are the velocity, orientation, and positions in the x and in

y directions, respectively. The acceleration a and the normalized steering angle b are the

inputs, and w1 and w2 are additive disturbances. They are constrained to lie in the intervals

a ∈ [−9.81, 9.81] ms2 , b ∈ [−0.4, 0.4] rads , w1 ∈ [−0.5, 0.5] ms2 , and w2 ∈ [−0.02, 0.02] rads .

We use our convex control approach to compute a maneuver automaton for this model.

For a compact illustration, we present the maneuver automaton only for the three motion

primitives drive straight, turn left, and turn right, at velocities around 20 m
s . However, we can

add additional motion primitives simply by repeating the procedure for other final states.

Following the techniques introduced in Sec. 1.2 and Sec. 2.7, a motion primitive MPj can be

concatenated to another motion primitive MPi if the reachable set X
(i)
f of MPi lies completely

in the initial set X
(j)
0 of MPj , see Fig. 1.2(b). Since the car dynamics are independent of the

absolute position and orientation, we can transform the initial set X
(j)
0 of MPj by translating

its position and orientation, and by rotating it to be aligned with the final set X
(i)
f . We do this
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using the following transformation:

T (X
(j)
0 ) = rot(Ψ

(i)
f )X

(j)
0 ⊕ [0,Ψ

(i)
f , p

(i)
x,f , p

(i)
y,f ]T ,

where Ψ
(i)
f , p

(i)
x,f , py,f refers to the end states of the reference trajectory of MPi and where

rot(Ψ
(i)
f ) =




0 0 0 0
0 0 0 0

0 0 cos(Ψ
(i)
f ) − sin(Ψ

(i)
f )

0 0 sin(Ψ
(i)
f ) cos(Ψ

(i)
f )




is a rotation matrix which rotates the px and py states by Ψ
(i)
f . Therefore, for building a

maneuver automaton, it suffices if all motion primitives start at the origin for Ψ, x, and y

dimensions and only the velocity has to be discretized.

We choose for all motion primitives the initial set as the box [19.8, 20.2] ms ×[−0.02, 0.02] rad×
[−0.2, 0.2]m× [−0.2, 0.2]m. We apply our convex control approach three times for different fi-

nal states, corresponding to the three motion primitives. The final states are given for the

drive straight motion primitive by
[
20 m

s , 0 rad, 20m, 0m
]T

and for the turn left and turn right

motion primitives by
[
20 m

s ,±0.2 rad, 19.87m,±1.99m
]T
. Each final state must be reached in

one second. We divide the main trajectory into 10 sections and apply four different piecewise-

constant control values for each section of the reference trajectory. For the local controllers, we

choose the cost function

Jcorner = (x̆(i,k+1) − xref (tk+1))TQ(x̆(i,k+1) − xref (tk+1)),

with x̆(i,k+1) = ξ(x̆(i,k), ŭ(i,k)( · ), 0,∆t) and Q = diag([2, 5, 1, 1]). For this example, we choose

a quadratic cost function, as there exist efficient solvers for optimal control problems with this

kind of cost function.

Results

We implement our approach in MATLAB and use the ACADO toolbox [91] to solve the optimal

control problems with a multiple shooting algorithm. For the reachability computation, we use

the CORA toolbox [82], where the disturbances are handled as an uncontrollable input. As the

CORA toolbox works with zonotopes, we use the techniques presented in Sec. 3.3.4 to obtain

a parallelotope approximating the inputs.

The computation of each motion primitive takes around 10 seconds, which can be performed

offline. Of these 10 seconds, 42% is required for computing the reachable sets and around 38%

for computing the control laws for the extreme states. The computations are performed on a

computer with a 3.1 GHz dual-core Intel i7 processor and 16 GB memory and without using

parallel computations. The online computation of the input values can be performed in around

0.01ms, making it applicable to fast systems.

The whole reachable set is shown for the turn left motion primitive in Fig. 3.4. The initial

sets (black) and final sets for all motion primitives are plotted in Fig. 3.5, where we shift

the final sets by the desired final states x(f) to have a better comparison. For the convex
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Figure 3.4: Reachable sets for the turn left motion primitive with the convex controller, projected

onto the (v,Ψ) and the (px, py) planes. The initial set is plotted in black, the final set in blue,

and the reachable set for all times between in gray. The black line shows the reference trajectory

xref ( · ).

controller, all shifted final sets (blue) are completely contained in the initial set. Therefore, we

are able to connect all motion primitives with each other and obtain a fully connected maneuver

automaton, as illustrated in Fig. 3.6. The controller satisfies the input constraints at all times

due to the way we computed it.

Comparison with LQR Controller

For comparison, we have also implemented an LQR tracking controller [37] (red, solid in

Fig. 3.5). It uses the same reference trajectory. In each step, we linearize the system around the

corresponding state on the reference trajectory and compute an LQR controller. We use the

same Q matrix as for the corner trajectories. To weight the inputs, we choose the R matrix for

the Ricatti equation to be the identity matrix. As we see in Fig. 3.5, the shifted reachable sets

exceed the initial sets, making it impossible to combine the motion primitive with other motion

primitives. Moreover, since the LQR controller does not take input constraints into account, it

uses inputs for b in (3.22) up to 0.54 rad
s , which is more than the maximally allowed value.

By decreasing the weights of the inputs, we can move the final sets inside the initial sets;

however, the input constraint violation increases even more in this case. If we increase the

weights on the inputs to R = 4I, we obtain a maximal b = 0.40 rad
s , which barely satisfies the

constraint. However, the reachable sets (red, dashed in Fig. 3.5) are very large and not suitable

for a maneuver automaton at all. Therefore, we cannot achieve both a good final set and input

satisfaction with LQR controllers. This shows the advantage of the convex control approach,

which optimizes the reachable set while ensuring the satisfaction of the constraints.
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Figure 3.5: Initial (black) and shifted final sets (blue) of the convex controller, projected onto

the (v,Ψ) and the (px, py) planes, for the turn left (top), drive straight (center), and turn right

(bottom) motion primitives. For comparison the final sets of two LQR controllers (red).
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Drive Straight Turn RightTurn Left

Figure 3.6: Resulting maneuver automaton for the car model. Since the automaton is fully

connected, any combination of motion primitives is possible.
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3.4 Generator Interpolation Controller

In the last section, we presented the convex control approach, where we use the convex combi-

nation of the inputs for the extreme state to obtain an interpolated control input for all states

of the initial set. Although we can solve each single optimization problem very quickly and the

numerical results demonstrate good performance, the number of extreme states scales poorly

with the dimension of the state space, even for parallelotopes with 2n. It therefore gets too

large for higher dimensions.

Instead of interpolating the extreme states, we present in this section1 another approach

which works similarly to the convex control approach; however, we are using the generators of

a zonotope to obtain the control inputs. As mentioned in Sec. 2.4, for zonotopes, the number of

generators scales much better than the number of extreme states; for example, a parallelotope

in Rn only has n generators. This is visualized for a box as a special case of parallelotope, in

Fig. 3.7.

(a) Extreme point representation (b) Generator representation

Figure 3.7: Representation of a box in R3: (a) with 2n = 8 extreme points (depicted as red dots)

or (b) with a center and n = 3 generators (depicted as red arrows which start from the center of

the box).

Similarly to the previous section, we first present the idea for linear systems before we extend

the approach to disturbed and nonlinear systems.

3.4.1 Linear Systems

As we discussed for the convex control approach, solving (3.1) for disturbed nonlinear systems

for every possible state of the initial set is not feasible, as there are uncountably many. We

therefore restrict our consideration at first to linearized dynamics: there we can apply the

superposition principle to overcome this problem by interpolating finitely many solutions.

1This section and most of its figures are based on [218] c© 2016 IFAC.
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3. OFFLINE CONTROLLER SYNTHESIS

Let us consider the following discrete-time, linear, time-varying system

x(tk+1) = Akx(tk) +Bku(tk), (3.23)

with Ak ∈ Rn and Bk ∈ Rm denoting the time-varying state and input matrices at time tk.

We examine the more general case of time-varying linear systems, since we obtain them when

linearizing the nonlinear dynamics in the later part. The restriction to discrete-time dynamics

allows us to simplify the optimization problem and to have finitely many optimization variables.

Let us start by expressing the evolution of a single state x(0) ∈ X0 as a function of the

control input for the linear dynamics (3.23):

ξ(x(0), u( · ), 0, tN ) = Āx(0) +

N−1∑

k=0

B̄ku(x(0), tk), (3.24)

where we use the shorthand notations:

Ā := AN−1 . . . A0,

B̄k := AN−1 . . . Ak+1Bk, ∀k ∈ {0, · · · , N − 2},

with B̄N−1 := BN−1. Since the initial set is given by the zonotope X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉

or can be over-approximated by one, we can express (3.24) as

ξ(x(0), u( · ), 0, tN ) = Ā

(
cx,0 +

p0∑

i=1

αi(x
(0))g

(i)
x,0

)
+

N−1∑

k=0

B̄ku(x(0), tk), (3.25)

where α(x(0)) is such that

x(0) = cx,0 +

p0∑

i=1

αi(x
(0))g

(i)
x,0. (3.26)

The structure of zonotopes as a superposition of generators allows us to express the evolution

of any state as a weighted combination of the center and generator vectors. Therefore, if we

choose a similar structure for the control input, we are able to control every trajectory starting

from X0 by simply finding input trajectories for the center and generators and interpolating

between them using the same α(x(0)) from (3.26):

ugen(x(0), t) = u(cx,0, t) +

p0∑

i=1

αi(x
(0))u(g

(i)
x,0, t). (3.27)

In the following lemma, we show how an upper bound for the distance of any state in the

reachable set to the final state x(f) under this control law can be obtained:

Lemma 2. Let Rtf ,ugen,0(X0) denote the reachable set for system (3.23) starting from X0 =
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3.4 Generator Interpolation Controller

〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉, then the following inequality holds

‖(Rtf ,ugen,0(X0)− x(f))‖1 + γ

∫ tf

0

‖ugen(Rt,ugen,0(X0), t)‖1dt

≤
∥∥∥Ācx,0 +

N−1∑

k=0

B̄ku(cx,0, tk)− x(f)
∥∥∥

1
+

p0∑

i=1

∥∥∥Āg(i)
x,0 +

N−1∑

k=0

B̄ku(g
(i)
x,0, tk)

∥∥∥
1

+ γ̂

N−1∑

k=0

(
‖u(cx,0, tk)‖1 +

p0∑

i=1

∥∥∥u(g(i)
x , tk)

∥∥∥
1

)
,

with γ̂ =
tf
N γ.

Proof. For piecewise-constant inputs as obtained from the discrete dynamics, the input cost

term can be written as

γ

∫ tf

0

‖ugen(x(0), t)‖1dt = γ̂

N−1∑

k=0

‖ugen(x(0), tk)‖1. (3.28)

Therefore, the cost function can be bounded as follows:

‖(Rtf ,ugen,0(X0)− x(f))‖1 + γ

∫ tf

0

‖ugen(Rt,ugen,0(X0), t)‖1dt

= max
x(0)∈X0

∥∥∥ξ(x(0), ugen(x(0), · ), 0, tN )− x(f)
∥∥∥

1
+ γ

∫ tf

0

‖ugen(x(0), t)‖1dt

(3.24),
(3.28)

= max
x(0)∈X0

∥∥∥∥∥Āx
(0) +

N−1∑

k=0

B̄kugen(x(0), tk)− x(f)

∥∥∥∥∥
1

+ γ̂

N−1∑

k=0

∥∥∥ugen(x(0), tk)
∥∥∥

1

(3.26),
(3.27)

= max
α∈[−1,1]p0

∥∥∥∥∥Ācx,0 +

p0∑

i=1

Āg
(i)
x,0αi +

N−1∑

k=0

B̄ku(cx,0, tk) +

p0∑

i=1

N−1∑

k=0

B̄ku(g
(i)
x,0, tk)αi − x(f)

∥∥∥∥∥
1

+ γ̂

N−1∑

k=0

∥∥∥∥∥u(cx,0, tk) +

p0∑

i=1

u(g(i)
x , tk)αi

∥∥∥∥∥
1

triangle
inequal.

≤ max
α∈[−1,1]p0

∥∥∥∥∥Ācx,0 +

N−1∑

k=0

B̄ku(cx,0, tk)− x(f)

∥∥∥∥∥
1

+

p0∑

i=1

∥∥∥∥∥

(
Āg

(i)
x,0 +

N−1∑

k=0

B̄ku(g
(i)
x,0, tk)

)
αi

∥∥∥∥∥
1

+ γ̂

N−1∑

k=0

(
‖u(cx,0, tk)‖1 +

p0∑

i=1

∥∥∥u(g(i)
x , tk)αi

∥∥∥
1

)

≤ max
α∈[−1,1]p0

∥∥∥∥∥Ācx,0 +

N−1∑

k=0

B̄ku(cx,0, tk)− x(f)

∥∥∥∥∥
1

+

p0∑

i=1

∥∥∥∥∥

(
Āg

(i)
x,0 +

N−1∑

k=0

B̄ku(g
(i)
x,0, tk)

)∥∥∥∥∥
1

‖αi‖1︸ ︷︷ ︸
≤1

+ γ̂

N−1∑

k=0


‖u(cx,0, tk)‖1 +

p0∑

i=1

∥∥∥u(g(i)
x , tk)

∥∥∥
1
‖αi‖1︸ ︷︷ ︸
≤1



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=

∥∥∥∥∥Ācx,0 +

N−1∑

k=0

B̄ku(cx,0, tk)− x(f)

∥∥∥∥∥
1

+

p0∑

i=1

∥∥∥∥∥Āg
(i)
x,0 +

N−1∑

k=0

B̄ku(g
(i)
x,0, tk)

∥∥∥∥∥
1

+ γ̂

N−1∑

k=0

(
‖u(cx,0, tk)‖1 +

p0∑

i=1

∥∥∥u(g(i)
x , tk)

∥∥∥
1

)
.

For the first inequality, we use the triangle inequality ‖a + b‖1 ≤ ‖a‖1 + ‖b‖1, for any vectors

a, b ∈ Rn. The last equality in the proof holds due to the fact that we choose the αi such that

they maximize the 1-norm and since |αi| ≤ 1,∀i ∈ {1, ..., p0}, they can be neglected.

Lemma 2 allows us to obtain a new optimization problem, which minimizes an upper bound

for the size of the reachable set. While the original optimization problem containing any possible

combination of αi becomes hard to compute, the new formulation decouples the influences of the

individual generators. This result can also be interpreted graphically as illustrated in Fig. 3.8:

The center of the initial set is steered to the reference state, while the generators are steered to

the origin. Since a zonotope is just the superposition of the center and generators, this brings

all states close to x(f).

Āg
(1)
x,0

Āg
(2)
x,0

cx,0

g
(2)
x,0g

(1)
x,0

X0

ĀX0

input
solution
for cx,0

input solutions

for g
(1)
x,0 and g

(2)
x,0

x(f)

Ācx,0

Figure 3.8: Illustration of the control interpolation of the generators: All states of the resulting

set should be close to x(f). This is achieved by steering the center cx,0 to x(f) and making the

generators g
(1)
x,0, g

(2)
x,0 as small as possible, i.e., steer them to the origin.

The optimization problem is still coupled through the constraints, as the state and overall

input must satisfy the state constraints S and input constraints U, respectively. Since we

consider discrete dynamics for now, we only have to check the reachable sets at finitely many

time points. We use Lemma 1 from Sec. 3.3 to check the state constraints the same way as

before. We must also ensure that the sum of all possible inputs for the center and generators

does not exceed the input bounds:

Corollary 1. The generator interpolation control law (3.27) satisfies the input constraints
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3.4 Generator Interpolation Controller

U = {u ∈ Rm | CUu ≤ dU} ∀x(0) ∈ X0, if

CUu(cx,0, tk) +

p0∑

i=1

|CUu(g
(i)
x,0, tk)| ≤ dU,∀k ∈ {0, . . . , N − 1}.

Proof. Using the same proof concept as in Lemma 1 results in

u(cx,0, tk) +

p0∑

i=1

αiu(g
(i)
x,0, tk) ∈ U, ∀α ∈ [−1, 1]p0 ,∀k ∈ {0, . . . N − 1}

⇔ CUu(cx,0, tk) +

p0∑

i=1

|CUu(g
(i)
x,0, tk)| ≤ dU, ∀k ∈ {0, . . . , N − 1}.

This simplification is possible by exploiting the symmetry of zonotopes. Let us combine the

results from Lemma 2, Lemma 1, and Corollary 1 into a single optimization problem, which is

presented in the following theorem.

Theorem 3. For system (3.23), the following optimization problem minimizes an upper-bound

for the cost function in (3.1) while taking the state and input constraints into account:

min
u(cx,0),u(g

(1)
x,0),

...,u(g
(p0)
x,0 )

∥∥∥∥∥∥∥∥∥∥




Ācx,0 + B̄u(cx,0)

Āg
(1)
x,0 + B̄u(g

(1)
x,0)

...

Āg
(p0)
x,0 + B̄u(g

(p0)
x,0 )




∥∥∥∥∥∥∥∥∥∥
1

+ γ̂

∥∥∥∥∥∥∥∥∥∥




u(cx,0)

u(g
(1)
x,0)
...

u(g
(p0)
x,0 )




∥∥∥∥∥∥∥∥∥∥
1

(3.29)

s.t. ∀k ∈ {0, . . . , N − 1} :

CS ξ(cx,0, u(cx,0, · ), 0, tk+1) +

p0∑

i=1

|CS ξ(g
(i)
x,0, u(g(i)

x , · ), 0, tk+1)| ≤ dS, (3.30)

CUu(cx,0, tk) +

p0∑

i=1

|CUu(g
(i)
x,0, tk)| ≤ dU, (3.31)

with the shorthands γ̂ :=
tf
N γ, B̄ :=

[
B̄0, · · · , B̄N−1

]
, u(g

(i)
x,0) := [u(g

(i)
x,0, t0)T , . . . , u(g

(i)
x,0, tN−1)T ]T ,

and equivalently for u(cx,0).

Proof. It follows from Lemma 2, together with the fact that

‖a‖1 + ‖b‖1 =

∥∥∥∥∥

[
a

b

]∥∥∥∥∥
1

,

that we can obtain the cost function in the form of (3.29). The state constraints (3.30) follow

directly from Lemma 1 and the input constraints (3.31) from Corollary 1.

It is shown in [92, Ch. 6] and [93] that the 1-norm and absolute value can be transformed

to linear constraints and cost functions. Therefore, this problem can be solved efficiently in a

single linear program.
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Depending on the physical meaning of the states, the size of the resulting reachable set

in certain dimensions might be more critical than others. Similar to the convex interpolation

controller, we can consider this by using a weighting matrix Q, by which we multiply the state

costs of the center and each generator, e.g., ‖Q
(
Ācx,0 + B̄u(cx,0)

)
‖. The same can be done for

the inputs as well.

3.4.2 Nonlinear Dynamics and Disturbances

Let us now extend the approach to nonlinear systems with disturbances (2.3). We use a similar

approach as we do for the convex interpolation controller: We first compute a reference tra-

jectory and linearize the system along this trajectory in order to be able to apply the theory

developed for linear systems. To fully consider the disturbances and the linearization errors, we

apply the control law iteratively for short time horizons and compute the reachable set for the

times in between. This way, we obtain feedback and guarantee that it satisfies the constraints at

all points in time. The approach for nonlinear systems is summarized in Alg. 3 and illustrated

in Fig. 3.9. It consists of the following three steps:

Algorithm 3 Offline Part of the Generator Interpolation Control Algorithm for Nonlinear

Systems with Disturbances

Input: system dynamics f(x, u, w), initial set X0, desired final state x(f), total time tf , number

of iterationsN,M , constraint sets S,U, Sref ,Uref , S̄, disturbance set W, weighting factors γ, γref

Output: motion primitive MP

1: (xref ( · ), uref ( · ))← solution of optimization problem (3.8) for reference trajectory

2: (Ak, Bk)← linearization and time-discretization of f(x, u, 0) along xref ( · ), uref ( · ) using

(3.32) and (3.33)

3: Initialize: Xreach,0 ← X0

4: for l = 0, . . . ,M − 1 do

5: Pl ← parallelotope over-approximation of Xreach,l

6: (u(g
(1)
x,l ), . . . , u(g

(n)
x,l ))← solution of optimization problem (3.34) to obtain feedforward

control input for generators of Pl

7: ugen(x, tlh)← control law (3.37) using uref ( · ) and u(g
(1)
x,l ), . . . , u(g

(n)
x,l )

8: R[tlh,t(l+1)h],ugen,W(X0)← R[0,th],ugen,W(Xreach,k)

9: Xreach,l+1 ← Rth,ugen,W(Xreach,l)

10: end for

11: MP← {xref ( · ), uref ( · ), tf ,X0,Xreach,N , ugen( · ),R[0,tf ],ugen,W(X0)}

Step 1: As done for the convex interpolation controller in Sec. 3.3, we begin by computing

a reference trajectory xref ( · ), which steers the center cx,0 of the initial set X0 as close as

possible to the desired final state x(f) (see Fig. 3.9(a) and Alg. 3, line 1) by solving (3.8). In

contrast to the convex interpolation controller, we need to explicitly apply the superposition

principle for the generator interpolation controller. Therefore, as an intermediate step, we

linearize the system along the reference trajectory (Alg. 3, line 2). To obtain the linearization
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X0

x(f)
xref ( · )

(a) Reference trajectory

P0

(b) Solutions of generators

Xreach,1

(c) Reachable set of single time step

Xreach,2 Xreach,3

(d) Reachable set of all time steps

Figure 3.9: Applying the generator interpolation control approach to nonlinear systems is similar

as done for the convex interpolation controller: (a) Compute a reference trajectory xref ( · ) from

the center of the initial set X0 to the final state x(f) and linearize the system along that trajectory.

(b) Over-approximate the initial set by a parallelotope P0 and compute optimal control inputs for

its generators. (c) Compute the reachable set Xreach,1 for one iteration steps under the optimal

control law while taking all possible disturbance effects into account. (d) Repeat the procedure.

points t′k, we first divide the reference trajectory into N parts of duration ∆t =
tf
N , N ∈ N,

and then choose the middle of the time intervals [tk, tk+1] with tk = k∆t, k ∈ {0, . . . , N}, i.e.,

t′k = 1
2 (tk+1 − tk), k ∈ {0, . . . , N − 1}. The system matrices of the linear dynamics are then

given by

Ac,k =
∂f(x, u, 0)

∂x

∣∣∣∣x=xref (t′k)

u=uref (t′k)

, Bc,k =
∂f(x, u, 0)

∂u

∣∣∣∣x=xref (t′k)

u=uref (t′k)

. (3.32)

By restricting the inputs, including those for the reference trajectory, to be constant in each

time interval, we can treat the system as a discrete-time, linear system of the form (3.23) with

Ak = eAc,k∆t, Bk =

∫ ∆t

0

eAc,kτdτ Bc,k. (3.33)

We do not consider any affine term, as we are only interested in the system dynamics relative

to the reference trajectory. In the next step, we use them to control the generators relative to

the center which follows the reference trajectory.

Step 2: As discussed in Sec. 3.3.5, when dealing with piecewise-constant inputs, it is often

beneficial to consider several steps. Therefore, we present the approach directly for a time

horizon of h time steps, with N = Mh and M,h ∈ N. At each iteration step l ∈ {0, . . . ,M−1},
we apply the set-based optimal control approach using the linearized dynamics. We use the
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reachable set Xreach,l from the last time step as the initial set and over-approximate it by a

parallelotope Pl, i.e., Xreach,l ⊆ Pl (Alg. 3, line 5). We initialize our approach with Xreach,0 :=

X0 (Alg. 3, line 3). As done for the convex interpolation controller in Sec. 3.3, we over-

approximate the initial set by a parallelotope to reduce the number of generators which are

considered in the optimization problem and to have unique control inputs when applying the

controller online, as discussed later. Since we compute over-approximations, our approach is

still sound, and we ensure the satisfaction of the input constraints for all states.

At each step, we use the previously described generator interpolation control approach for

linear dynamics to control the trajectories starting from Pl as close as possible to xref (t(l+1)h)

(see Fig. 3.9(b)) by solving (3.29) for the limited time horizon and with the fixed input trajectory

for the center u(cx,l, tk) := uref (tk), ∀k ∈ {lh, . . . , (l + 1)h− 1} (Alg. 3, line 6):

min
u(g

(1)
x,l),

...,u(g
(n)
x,l )

∥∥∥∥∥∥∥∥




Āg
(1)
x,l + B̄u(g

(1)
x,l )

...

Āg
(n)
x,l + B̄u(g

(n)
x,l )




∥∥∥∥∥∥∥∥
1

+ γ̂

∥∥∥∥∥∥∥∥




u(g
(1)
x,l )
...

u(g
(n)
x,l )




∥∥∥∥∥∥∥∥
1

(3.34)

s.t. ∀k ∈ {lh, . . . , (l + 1)h− 1} :

CS̄xref (tk+1) +

n∑

i=1

|CS̄ ξ(g
(i)
x,l, u(g

(i)
x,l, · ), 0, tk+1)| ≤ dS̄, (3.35)

CUuref (tk) +

n∑

i=1

|CUu(g
(i)
x,l, tk)| ≤ dU, (3.36)

with the shorthands γ̂ :=
tf
N γ, u(g

(i)
x,l) := [u(g

(i)
x,l, tlh)T , . . . , u(g

(i)
x,l, t(l+1)h−1)T ]T , and where

g
(1)
x,l , . . . , g

(n)
x,l denote the generators of Pl. This can be solved equivalently to (3.29) efficiently

in a single linear program. We use the fixed inputs for the center trajectory to simplify the

optimization, ensure that we actually end close to the desired final state, and to stay close to

the trajectory for which we linearize the system. However, the approach would also work if we

optimize the input trajectory for the center as done in (3.29). As for the linear case, we could

also weight different dimensions or inputs individually by using weight matrices.

We use tightened state constraints S̄ = 〈CS̄, dS̄〉H ⊆ S in (3.35), since we only check it at

discrete time instances during the optimization and since the optimization is done for linearized

and discretized dynamics. As described for the convex controller, we check in the next step

if the real state constraints are actually satisfied at all points in time for the real disturbed,

nonlinear dynamics. If not, we tighten the state constraints more and compute the reachable

set again. As for the convex controller, we do not have to tighten the input constraints, since

the inputs which we compute in (3.34) are directly applied to the actual nonlinear system and

are unaffected by disturbances.

Step 3: We then compute the reachable set R[0,th],ugen,W(Xreach,l) (Alg. 3, line 8) for

the original nonlinear system with disturbances if controlled with the previously computed

control law ugen( · ) (see Fig. 3.9(c) and Alg. 3, line 7). This reachable set is used to check

the satisfaction of the real state constraints according to Lemma 1 for all times. We use the

reachable set at the end of the time interval as the initial set of the next iteration step (Alg. 3,
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3.4 Generator Interpolation Controller

line 9)

Xreach,l+1 := Rth,ugen,W(Xreach,l),

and continue with Step 2.

By iterating Steps 2 and 3 for allM time steps, we obtain with Xf = Xreach,M the final reach-

able set of all states starting in the initial set X0 despite disturbances (see Fig. 3.9(d)). For the

online use of our control law, we store the generators of the parallelotope over-approximations

Pl and the input zonotopes at sampling times in a look-up table. We can then use the controller

with the corresponding reachable set as a motion primitive in a maneuver automaton (Alg. 3,

line 11).

Online Use of the Controller In order to apply the controller online, we have to compute

the corresponding control input for a given state. If the initial set is a parallelotope, then

the control input is unique and we can use the same technique as in Sec. 3.3.4: Given a state

x(t(lh) ∈ Pl = 〈cx,l, Gx,l〉, any state can be uniquely expressed by the parameter vector α(x(tlh))

as

x(tlh) = cx,l +Gx,lα(x(tlh))

⇒ α(x(tlh)) = G−1
x,l (x(tlh)− cx,l).

Therefore, the corresponding input for the time interval [tlh, t(l+1)h) can be computed as

ugen(x, tk) = u(cx,l, tk) +

n∑

i=1

αi(x(tlh))u(g
(i)
x,l, tk) (3.37)

for all k ∈ {lh, . . . , (l + 1)h − 1}. Since our controller is open-loop during each iteration step

[tlh, t(l+1)h), we compute h piecewise-constant control inputs with one measurement x(tlh), as

can be seen in (3.37). Note that all the matrices and their inverses can be computed offline, as

they do not depend on the current state x(tlh). The inverse G−1
x,l always exists since Gx,l has

full rank, as Pl is a parallelotope.

The implementation of the reachable set computation can be done the same way as for

the convex interpolation controller as described in Sec. 3.3.6 by introducing extra states which

store the values of the states at the beginning of the time interval. It is also possible to directly

compute the αi(x(tlh)) and store them as the additional states, which simplifies computation.

We omit the theorem for the nonlinear case, as it follows from the same arguments as for

the convex controller. The use of the reachable set computation during the controller synthesis

ensures that if the over-approximation of the reachable set satisfies the actual state constraints,

then every possible trajectory satisfies the state constraints as well. In addition, since the

applied inputs only depend on the parallelotopes Pl at the beginning of each iteration, by

including the input constraints (3.36) in the optimization problem, a feasible solution ensures

input constraint satisfaction even for the disturbed, nonlinear dynamics. Note that the same

extensions as in Sec. 3.3.5 are also possible and useful for the generator interpolation controller.
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3.4.3 Numerical Example

Let us now demonstrate the generator interpolation controller for an autonomous vehicle ex-

ample. We revisit the same example as in Sec. 3.3.7 for the convex interpolation controller. We

use the same model, with the same constraints, and the same motion primitives turn left, drive

straight, and turn right. We divide the one second time horizon of each motion primitive into

N = 40 time steps and consider M = 10 time intervals with a horizon of h = 4 time steps each.

We weight the states with a matrix Q = diag([13.5, 15, 17.25, 27]).

Results

We implement the generator interpolation controller again in MATLAB, where we use CVX [94]

with the solver SDPT3 to specify and solve the linear program. We use the ACADO toolbox

again to compute the reference trajectory and the CORA toolbox for the reachability analysis.

The computations are performed on the same computer as in Sec. 3.3.7. The offline computation

of the controller for each motion primitive again takes around ten seconds without using parallel

computations. The same computation time as that of the convex interpolation controller is

reflected in the similar ratio of reachable set computation and optimization: with 43% for

the reachable set computation and around 37% for the computation of the generator inputs.

Since the online controller has the same form as the linear-approximated convex interpolation

controller from Sec. 3.3.4, the online computation consists only of multiplying precomputed

matrices with vectors, which can be performed very fast in around 0.01ms.
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Figure 3.10: Resulting reachable set for the turn left motion primitive with the generator in-

terpolation controller, projected onto the (v,Ψ) and the (px, py) planes. The initial set is plotted

in black, the final set in blue, and the reachable set for all times between in gray. The black line

shows the reference trajectory xref ( · ).

We show the resulting reachable sets in Fig. 3.10. In addition, we show the initial set (black)
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3.4 Generator Interpolation Controller

and the final reachable set (blue) in Fig. 3.11, where we shift the final sets by the desired final

states x(f) to have a better comparison. We see that the (shifted) reachable sets are completely

contained inside the initial set for all motion primitives. Therefore, we are again able to connect

all motion primitives with each other and obtain a fully connected maneuver automaton, see

Fig. 3.6.

Comparison with LQR Tracking Controller

For comparison, we use again an LQR tracking controller as described in Sec. 3.3.7. First, we

simply use the same state weights as for our generator interpolation controller and weight the

inputs with the identity matrix. The resulting reachable set is plotted in Fig. 3.11 (red, solid),

and it is not completely inside the initial set. Moreover, it uses inputs of b = 1.53 rad
s , which

is more than 3.8 times the allowed inputs. If we increase the input weights until the input

constraints are satisfied, we obtain the reachable set which is plotted with a red, dashed line

in Fig. 3.11, and which is much larger than the initial set. As seen before, we cannot achieve

both a small final set and input satisfaction with LQR controllers. By minimizing the reachable

set while ensuring the constraint satisfaction, our generator interpolation controller is able to

provide better solutions which satisfy the constraints.
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Figure 3.11: Initial (black) and shifted final sets (blue) of the generator interpolation controller,

projected onto the (v,Ψ) and the (px, py) planes, for the turn left (top), drive straight (center),

and turn right (bottom) motion primitives. For comparison, the final sets of two LQR controllers

(red).
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3.5 Continuous Feedback Controller

In the previous two sections, we presented two control approaches in which we interpolate

optimal open-loop input trajectories to obtain control laws for a set of possible initial states. For

both algorithms, we take advantage of the fact that there exist efficient tools to compute open-

loop input trajectories for single initial states which can take state and input constraints into

account. By iteratively applying the interpolating control law and adapting the interpolation

based on the most recent measurement, we obtain a feedback loop. However, since the feedback

happens only at discrete times, the controller is open-loop in between these times and therefore

cannot counteract disturbances as quickly as a continuous feedback can.

An alternative way to solve reach-avoid problems that is often used in practice is by combin-

ing an optimized open-loop reference trajectory with tracking control, which should drive the

error between the actual state and the desired state along the reference trajectory to zero [95].

A common controller type is LQR, which we also use for comparison in the numerical examples

of the interpolation controllers. The LQR algorithm computes a feedback matrix K, which

minimizes a quadratic cost function on states and inputs for an undisturbed linear system.

While the feedback controllers are able to control all states starting in an initial set and can

also react to disturbances, as seen in the numerical examples in Sec. 3.3.7 and Sec. 3.4.3, they

are not able to take state or input constraints into account.

In this section1, we present a way to overcome the previously described problems by com-

puting a continuous feedback controller through direct optimization over reachable sets. Our

method optimizes the reference trajectory and feedback matrices such that they take state and

input constraints into account, despite disturbances, and directly minimize the reachable set at

the final time. Due to the continuous feedback, the controller can react to disturbances at any

time.

3.5.1 Closed-Loop Controller Optimization

We now illustrate the main idea of our closed-loop controller optimization in comparison to clas-

sical open-loop optimal control in Fig. 3.12: In Fig. 3.12(a), we show a classic optimal control

approach, in which an optimal input trajectory u( · ) for a single initial state x(0) is com-

puted. This input trajectory minimizes the difference between the final state of the trajectory

ξ(x(0), u( · ), 0, tf ) and the desired final state x(f). Our new approach is shown in Fig. 3.12(b),

where we consider a whole set of initial states for which we compute the tracking controller

uctrl(x(t), t) = uref (t) +K(t)(x(t)− xref (t)), (3.38)

with

xref (t) = ξ(xref (0), uref ( · ), 0, t). (3.39)

We choose a linear control structure consisting of an open-loop reference input uref (t) and a

time-varying feedback matrix K(t) to simplify the reachability analysis as well as to obtain a

1This section and most of its figures are based on [217] c© 2017 IEEE.
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fast-to-evaluate control law. By solving the optimal control problem for the entire reachable

set, we optimize the inputs for all initial states. As discussed later, the idea is also applicable

for other controller types.
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Figure 3.12: Comparison trajectory vs. set-based optimization: (a) While classical optimal

open-loop control optimizes a single input trajectory for a single initial state, (b) our continuous

feedback approach optimizes a reference input and a feedback matrix to minimize the set of

solutions for a whole set of initial states. For a better visualization of the approach, the plots do

not show the same optimization problem.

For a simpler demonstration and notation, we restrict our consideration to piecewise-constant

control inputs and feedback matrices. This also makes the computations easier, similar to the

numerical solution of direct multiple shooting. We choose them such that we minimize the

reachable set while satisfying state and input constraints. At the beginning, we have a rather

large initial set, so we cannot choose the controller to be too aggressive, as this would lead to

inputs that are too large. After the reachable set becomes smaller, however, we can make the
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controller more aggressive such that we obtain a faster convergence to the reference trajectory.

Therefore, we divide the time horizon in N parts, where we compute a new controller in each

part. Since the computational effort depends on the number of optimization variables, we do

not optimize all entries of K(t). Instead, we optimize the weighting matrices of LQR controllers,

where we restrict the matrices Qk and Rk to be diagonal matrices for computational efficiency.

Since we can further normalize the matrices by choosing the first entry of each Qk to be equal to

1, we only have to consider N(n+m−1) optimization variables for the feedback matrices, where

N denotes the number of different weighting matrices, n the number of states, andm the number

of inputs. In addition, we also have Nm optimization variables for the reference trajectory. If

desired, we can split the computation of the reference trajectory and the computation of the

feedback controller in two problems, similar to the previous approaches. We thereby reduce the

overall computational complexity. Clearly, we could also choose a different number of reference

inputs or feedback matrices by simply keeping, for example, K(t) constant over a fixed number

of reference input values. This can be useful if more reference inputs allow to better reach the

desired final state without increasing the optimization variables for the feedback matrices.

To compute the LQR controllers, we linearize the system along the reference trajectory and

compute the LQR controller based on the Qk and Rk matrices. If desired, we can also compute

multiple K(t) matrices during each step with the same Qk and Rk. This can be done by dividing

each of the N steps into smaller steps and computing a new LQR controller after each smaller

step using the new linearized dynamics at this point. This does not increase the number of

optimization variables, and by extension, the complexity of the optimization problem. However,

by recomputing the feedback matrices based on the changing linearized dynamics, we adapt

the controller to the actual nonlinear dynamics directly while still preserving the simple control

structure of a piecewise-linear control law.

The nonlinear optimization problem for the controller uctrl( · ) (see (3.38)), which depends

on the reference trajectory uref ( · ), and the Qk, Rk matrices, is given by

min
uref ( · ),Qk,Rk

‖Rtf ,uctrl,W(X0)− x(f)‖1 + γ

∫ tf

0

‖uctrl(Rt,uctrl,W(X0), t)‖1dt (3.40)

s.t. ∀t ∈ [0, tf ] : Rt,uctrl,W(X0) ⊆ S,

uctrl(Rt,uctrl,W(X0), t) ⊆ U.

By incorporating reachability analysis inside the optimization problem, we are able to directly

optimize over all possible trajectories in a single nonlinear optimization problem. Therefore,

the cost function and the constraint function directly depend on the reachable sets, meaning

that we compute the reachable set in every iteration of the optimization algorithm. This is

illustrated in Fig. 3.13.

To use efficient nonlinear programming algorithms, we have to express our optimization in

the standard form of a cost function which returns a scalar value subject to minimization and

a constraint function which returns a vector of values which are all negative if the constraints

are satisfied. Let us describe in the following, how we can implement the various parts of the

optimization problem and further improve them for repeated evaluation.
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initial guess for uref ( · ), Qk, Rk

Nonlinear Programming Algorithm

cost function

constraint function

optimal uref ( · ), Qk, Rk

reachability analysis

reachability analysis

Figure 3.13: Illustration of the approach: reachability analysis is included in the cost and

constraint functions of the nonlinear program. By optimizing over the reachable sets in a nonlinear

program, we obtain the optimal reference trajectory uref ( · ) and controller parameters Qk, Rk.

3.5.2 Implementation

Similar to the explanations in Sec. 3.3.6, we need to express the closed-loop dynamics in closed-

form to allow the use of standard reachable set computation algorithms (see Sec. 2.6). In

contrast to the interpolation-based controllers, we do not have to store the last measurement,

as we have a continuous feedback based on the current state. To evaluate K(t)(xref (t)− x(t)),

we need to know the value of xref (t) at each point in time. Therefore, we include it in the

extended state xe(t) :=

[
x(t)
xref (t)

]
which has the dynamics

ẋe(t) =

[
ẋ(t)
ẋref (t)

]
=

[
f (x(t), uref (t) +K(t) (x(t)− xref (t)) , w(t))

f(xref (t), uref (t), 0)

]
, (3.41)

where the reference trajectory has the same dynamics as the actual system, however, without

disturbances.

We compute the reachable set starting from X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉 by initializing the

extended dynamics with x(0) ∈ X0 and xref (0) = cx,0, as there is no uncertainty for the initial

state of the reference trajectory. This leads to an initial zonotope for the extended dynamics

which looks like

Xe,0 =

〈[
cx,0
cx,0

]
,

[
g

(1)
x,0

0

]
, . . . ,

[
g

(p0)
x,0

0

]〉
.
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From the reachable set computation based on the dynamics (3.41), we then obtain an extended

reachable set Re[0,tf ],uctrl,W
(Xe,0). We compute the reachable set over small time intervals

[τl, τl+1] ⊂ [tk, tk+1], i.e., the reachability time step size ∆τ is a fraction of the time step size

∆t for which we have constant reference inputs and feedback matrices (see Fig. 3.14). The

extended reachable set for each time interval is then described by a zonotope of the form

Re[τl,τl+1],uctrl,W
(Xe,0) =

〈[
cx,l
cref,l

]
,

[
g

(1)
x,l

g
(1)
ref,l

]
, . . . ,

[
g

(pl)
x,l

g
(pl)
ref,l

]〉
,

where the number of generators are time dependent due to the addition of new generators to

consider disturbance effects and linearization errors, as discussed at the end of Sec. 2.6.

t0 tNtk tk+1

τl τl+1

∆t

∆τ

. . .

. . .. . .

. . .

c© IEEE 2017

Figure 3.14: Illustration of the two time scales: ∆t for the control inputs and ∆τ for the

reachability analysis.

From the coupled dynamics of the extended system, we know that if we choose an α ∈
[−1, 1]pl , we obtain a combination of

[
x(t)
xref (t)

]
=

[
cx,l
cref,l

]
+

pl∑

i=1

αi

[
g

(i)
x,l

g
(i)
ref,l

]
,

with t ∈ [τl, τl+1]. While we do not have the information for which exact t this combination

holds, we have the coupling of the actual state and the state of the reference trajectory preserved.

This allows us to compute the input of this state as

uctrl(x(t), t) = uref (t) +K(t)(x(t)− xref (t))

= uref (t) +K(t)

(
(cx,l − cref,l) +

pl∑

i=1

αi(g
(i)
x,l − g

(i)
ref,l)

)
.

We choose the interval [τl, τl+1] such that uref (t) and K(t) are constant ∀t ∈ [τl, τl+1], so we

do not have to know the exact t for uref (t) and K(t) either. The zonotopic set representation

in combination with the linear control laws allows us to express the set of possible inputs in

[τl, τl+1] as a zonotope of the following form

uctrl(R[τl,τl+1],uctrl,W(X0), t) =
〈
uref (t) +K(t)(cx,l − cref,l),K(t)(g

(1)
x,l − g

(1)
ref,l),

. . . ,K(t)(g
(pl)
x,l − g

(pl)
ref,l)

〉
. (3.42)

This zonotope is then used in the cost and constraint function as explained in the following.
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3.5.3 Cost Function

To evaluate the first part of the cost function (3.40), ‖Rtf ,uctrl,W(X0)− x(f)‖1, we need to find

the x ∈ Rtf ,uctrl,W(X0) which maximizes the 1-norm. We can do this by simply solving a single

linear program. If this is not desired, as the repeated evaluation of linear programs in the cost

function takes time and might make the problem numerically harder, we can instead compute

an upper bound analogous to Lemma 2 as

‖Rtf ,uctrl,W(X0)− x(f)‖1 ≤ ‖cx,f − x(f)‖1 +

pf∑

i=1

‖g(i)
x,f‖1,

with cx,f and g
(1)
x,f , . . . , g

(pf )
x,f denoting the center and the generators of Rtf ,uctrl,W(X0).

As described in the previous subsection, obtaining the maximum applied input at each point

in time is not feasible. Instead, we use (3.42) to obtain the set of applied inputs for each time

interval. Since uctrl(R[τl,τl+1],uctrl,W(X0), t) is a zonotope, we obtain the maximum 1-norm of

its states through the same methods used for the state costs, i.e., by either solving a linear

program for each interval or by obtaining an upper bound by using Lemma 2. Using the latter,

we obtain

γ

∫ tf

0

‖uctrl(Rt,uctrl,W(X0), t)‖1dt ≤ γ∆τ

M−1∑

l=0

‖uctrl(R[τl,τl+1],uctrl,W(X0), τl)‖1dt

= γ∆τ

M−1∑

l=0

(
‖uref (tl) +K(tl)(cx,l − cref,l)‖1 +

pl∑

i=1

‖K(tl)(g
(i)
x,l − g

(i)
ref,l)‖1

)
,

with M =
tf
∆τ denoting the number of intervals for the reachability analysis. The inequality

results from the fact that we consider the maximum input value for the whole interval.

3.5.4 Constraint Function

Checking the state constraints (3.2) for all times can be done easily, as shown in Lemma 1.

The reachability analysis algorithm returns over-approximations for the reachable sets of time

intervals R[τl,τl+1],uctrl,W(X0). By checking if R[τl,τl+1],uctrl,W(X0) ∈ S, ∀l ∈ {0,M − 1}, using

the formula from Lemma 1, we ensure the satisfaction of the state constraints at all times.

Because we obtain zonotope over-approximations for the inputs of time intervals with (3.42),

we can use the same technique for inputs as well.

Since we already include reachability analysis and therefore the formal check of constraints

during the optimization, we know that if a feasible solution is found, then all constraints are

satisfied. As a result, we do not need an additional verification step afterwards. If the reachable

set has to end in a given terminal set, we can also directly include this as a terminal set

constraint. In contrast to the iterative optimization of shorter time horizons for the convex and

generator interpolation controllers, we optimize over the whole time horizon for the continuous

feedback controller and can therefore directly consider such constraints during the optimization.
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3.5.5 Extension to Other Control Laws

So far, we have considered linear feedback control laws in this section, as they are easy to

implement, have proven their applicability to a wide variety of nonlinear systems in practice, and

have favorable properties for the reachable set computation, as they lead to smaller linearization

errors compared to nonlinear control laws. The optimization of LQR tracking controllers is just

an example of how controller synthesis can be done by optimizing over reachable sets. If different

types of control laws are desired, including nonlinear ones, the presented methods can be used

very similarly, and we can still benefit from many of the presented simplifications. Since the

applied input set (3.42) is not exactly a zonotope for nonlinear control laws, it would have to

be computed in an over-approximative fashion, though it would still work.

The basic idea is the same for different control laws: We compute the reachable set in the

optimization problem while using the parameters of the control law as optimization variables.

By checking the (over-approximated) state and input constraints, we ensure safety at all times.

This approach works as long as (i) the closed-loop system can be expressed in a (piecewise)

closed-form for which we can compute reachable sets, and (ii) the control laws depend on some

parameters which we can optimize.

3.5.6 Numerical Example

Since we have to perform a reachability computation in every iteration of the optimization

algorithm, the reachability algorithm accounts for the majority of the overall computation

time. Therefore, we present a linear example in this section, as reachability analysis for linear

systems can be performed much faster than for nonlinear systems, see Sec 2.6. We choose a

platooning example, where vehicles on a highway are supposed to drive in a platoon behind each

other. By driving close to the vehicle in front of them, they can save fuel and reduce driving

time for human drivers. However, in this scenario there are important safety constraints which

must be satisfied at all times, despite the effects of external disturbances. We consider vehicle-

to-vehicle communication which allows a central controller design. This example is inspired by

the benchmark example proposed in [96].

We consider a platoon with four vehicles, where the dynamics of each vehicle i ∈ {1, 2, 3, 4}
is given by

ṗ(i) = v(i),

v̇(i) = a(i) + w(i),

where p(i) denotes the position of the i-th vehicle, v(i) its velocity, and a(i) its acceleration as its

input. The disturbances are denoted by w(i). To model the whole platoon, we use the absolute

states of the first vehicle and the relative states of the second, third, and fourth vehicles, i.e.,

67



3. OFFLINE CONTROLLER SYNTHESIS

we consider the eight-dimensional state vector

x =




p(1)

v(1)

p(1) − p(2) − cs
v(1) − v(2)

p(2) − p(3) − cs
v(2) − v(3)

p(3) − p(4) − cs
v(3) − v(4)




,

the input vector u = [a(1), a(2), a(3), a(4)]T , and disturbance vector w = [w(1), w(2), w(3), w(4)]T .

Therein cs ∈ R+
0 denotes a safety constant, defining a minimal safe distance. The resulting

dynamics are given by

ẋ1 = x2, ẋ2 = u1 + w1,

ẋ3 = x4, ẋ4 = u1 − u2 + w1 − w2,

ẋ5 = x6, ẋ6 = u2 − u3 + w2 − w3,

ẋ7 = x8, ẋ8 = u3 − u4 + w3 − w4.

We assume that all inputs are constrained between ui ∈ [−10, 10] ms , ∀i ∈ {1, 2, 3, 4}, and all

disturbances vary freely in the interval wi ∈ [−1, 1] ms , ∀i ∈ {1, 2, 3, 4}. Moreover, we have the

state constraints that the vehicles must keep the minimal safety distances, i.e., x3, x5, x7 ≥ 0.

We consider the following scenario, which can be used as a motion primitive in a platooning

maneuver automaton: The vehicles start with initial states ranging freely in the box X0 =

[−0.2, 0.2]m×[19.8, 20.2] ms ×[0.8, 1.2]m×[−0.2, 0.2] ms ×[0.8, 1.2]m×[−0.2, 0.2] ms ×[0.8, 1.2]m×
[−0.2, 0.2] ms , i.e., the vehicles drive with different velocities around 20 m

s behind each other. We

consider a final state x(f) = [21m, 22 m
s , 1m, 0

m
s , 1m, 0

m
s , 1m, 0

m
s ]T which should be reached

after 1 s, i.e., the whole platoon should speed up to 22 m
s and align in a safe distance of cs+1m

between each vehicle.

The reference trajectory is split in five time steps, and since the system dynamics are

linear, five constant control matrices are computed. We implement the controller in MATLAB

and again use the CORA toolbox for the reachability computation. For the optimization,

we use MATLAB’s fmincon function with the active-set algorithm. The computations are

performed on the same computer as in Sec. 3.3.7. The computation of the optimized controller

takes around five minutes, where the reachable set computations taking the majority of the

time at 78%. The optimization algorithm terminates after it reaches the maximum number of

iterations and finds a feasible solution.

We show the reachable sets at different times during the algorithm in Fig. 3.15. The reach-

able set changes between different iterations, as it is directly optimized on, and the size of the

final set is minimized. In Fig. 3.16, we show the optimized final set in comparison to the initial

set for the different dimensions. For the x1 and x2 coordinates, we shifted the final reachable

set by the final states x(f) for a better comparison. We see that the shifted reachable set of our

controller (blue) lies completely in the initial set (black).
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(a) Initial guess (b) During optimization (c) After optimization

c© IEEE 2017

Figure 3.15: Illustration of the reachable sets projected onto the (x1, x2) plane at different

times during the optimization algorithm: (a) the reachable set for the initial guess, (b) during the

optimization, and (c) the final reachable set after the optimization. The initial sets are shown in

black, the final sets in blue, and the reachable set for all times between in gray.

For comparison, we also compute three LQR tracking controllers using the traditional ap-

proach of a reference trajectory in combination with an LQR feedback controller as done in

Sec. 3.3.7 and Sec. 3.4.3. For a fair comparison, we use the same reference trajectory as for our

controller. Since we value all dimensions the same, we choose the state weighting matrix as the

identity Q = I. We obtain the first LQR controller with an input weighting matrix R = I. We

use this controller as an initial guess for our optimization problem; therefore the reachable set

can be seen in Fig. 3.15 on the left. The final set is very large and while it satisfies the input

constraints, it violates the state constraints. To get an idea of how well a LQR controller can

solve the problem, we increase the state weighting matrices manually until any further increase

would start to violate the input constraints. We see the resulting final set for Q = 90I and

R = I in red, dashed in Fig. 3.16. It is much larger than with our controller and lies outside

the initial set.

We can keep increasing the state weighting matrices until Q = 700I, for which the final

reachable sets (red, solid in Fig. 3.16) lie just inside the initial set; however, this controller uses

more than two times of the allowed inputs. Even if we weight the positions and velocities in the

state weighting matrix differently, any resulting controller which controls all final states inside

the initial set uses inputs which are much larger than allowed.

In conclusion, we are not able to find an LQR controller with constant Q and R matrices

which both satisfies the constraints and lies in the final set. This example shows how us-

ing the reachability analysis inside the optimization problem leads to controllers with better

performance and guaranteed constraint satisfaction, which is not possible with classical LQR

controllers, even for this linear example.
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Figure 3.16: Initial (black) and shifted final sets (blue) of our optimized controller uctrl, projected

onto the (x1, x2), the (x3, x4), the (x5, x6), and the (x7, x8) planes. For comparison the final sets

of two LQR controllers are shown (red).
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3.6 Combined Control

3.6.1 Overview

As discussed in the previous section, many classical control schemes tackle the reach-avoid

problem in Sec. 3.2 with a feedforward reference trajectory and a feedback controller which

tracks this reference trajectory:

uclassic(x(t), t) = uff (t) + ufb(x(t), t).

While this works well if the actual trajectory starts close to the reference trajectory or if there

are no input constraints, this approach struggles with satisfying the input constraints and

providing a good performance for states further away from the reference trajectory. If one uses

a controller with a high gain to counteract disturbances as fast as possible, it generates large

inputs for states far away from the reference trajectory. On the other hand, if the control

gain is chosen lower, then it satisfies the input constraints but degrades the ability to quickly

counteract disturbances.

To deal with this problem, we used multiple weight matrices Qk, Rk in the last section.

This offers the possibility of increasing the aggressiveness of the controllers over time when

the set of possible states becomes smaller. The disadvantage, on the other hand, is that we

have to solve a large optimization problem with many optimization variables, as each new set

of weighting matrices adds new optimization variables. This leads to many iterations of the

optimization algorithm, which becomes computationally expensive as the whole reachable set

has to be computed in each iteration.

In the approaches from Sec. 3.3 and Sec. 3.4, we only have to compute the reachable set

a single time for the whole time horizon, and therefore the computations are much faster.

However, these methods do not provide continuous feedback and therefore cannot counteract

disturbances as well as the approach with continuous feedback from Sec. 3.5.

In this section1, we combine the ideas of the generator interpolation approach with the

optimized continuous feedback controller to benefit from the advantages of both approaches

while reducing their disadvantages. We thus propose the following idea, which is illustrated

in Fig. 3.17: Instead of the single feedforward trajectory, we introduce a state-dependent feed-

forward controller uff (x(0), t), based on the generator interpolation controller, together with a

feedback controller ufb(x(t), t), based on the continuous feedback controller from last section:

uctrl(x(t), t) = uff (x(0), t) + ufb(x(t), t). (3.43)

This allows the feedforward controller for the undisturbed system to steer all states from the

initial set into a small final set. We thereby obtain a unique reference trajectory for each of the

infinitely many initial states. As a result, the feedback controller only has to counteract the

disturbances, allowing it to be much more aggressive without violating input constraints.

We compute the different parts — reference trajectory, feedforward controller for the gen-

erators of the initial set, and feedback controller — after each other. We still have to ensure

1This section, including the figures, is based on [219] c© 2021 IEEE.
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Figure 3.17: In contrast to the interpolation-based approaches, the combined control approach

optimizes over the whole time horizon and the closed-loop dynamics: (a) Computing a refer-

ence trajectory from the center of the initial set to the desired final state. (b) Computing the

feedforward controller for each generator of the initial set, which steers them to the origin. (c)

Counteracting disturbances with the feedback controller; minimizing the reachable set by optimiz-

ing the controller parameters. (d) Obtaining state-dependent feedforward and feedback controllers

with reachable sets of minimal size.

that there are enough remaining input capacities and that the states are far enough from their

boundaries to appropriately consider disturbance effects, similar to previous sections. There-

fore, we have to tighten the constraints for the reference trajectory and for the feedforward

controller, respectively. Let us introduce the new constraint sets Sref , Sff and Uref ,Uff such

that

Sref ⊆ Sff ⊆ S, (3.44)

Uref ⊆ Uff ⊆ U. (3.45)

In many approaches from literature, such as [22], the above sets are exclusively reserved, re-

sulting in the distribution of input utilization illustrated in Fig. 3.18. In contrast to this static

allocation of state and input sets, we introduce a flexible and therefore less conservative distri-

bution, which is shown in Fig. 3.19. We minimize the applied inputs in an optimization problem

and are able to use the unused capacities of previous steps in contrast to the previous example.
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Figure 3.18: Illustration of a classical trajectory tracking approach where the reference trajectory

and the feedback controller are designed independently. The controller cannot benefit from the

fact that the reference trajectory does not use the full input capacities.
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Figure 3.19: Illustration of the three different input constraints which are used in our optimiza-

tion problem. While we restrict the inputs for initial optimizations, we allow the later optimizations

to apply the unused parts of the input constraints of previous optimizations.

The choice of Sref , Sff ,Uref , and Uff are design variables. As the computations for the

reference trajectory and the feedforward controller can be done very fast, especially compared

to the optimization of the feedback controller, we could also minimize over the allowed states

and inputs to find the smallest sets such that all states are controlled close enough to the desired

73



3. OFFLINE CONTROLLER SYNTHESIS

final state for the undisturbed system.

Let us now explain the controller parts in more detail. The resulting synthesis procedure is

summarized in Alg. 4 and is explained subsequently.

Algorithm 4 Combined Controller Synthesis Algorithm

Input: system dynamics f(x, u, w), initial set X0, desired final state x(f), total time tf , number

of iterations N , constraint sets S,U, Sref ,Uref , Sff ,Uff , disturbance set W, weighting factors

γ, γref , γff

Output: motion primitive MP

1: (xref , uref )← solution of optimization problem (3.8) for the reference trajectory

2: (Ak, Bk)← linearization and time-discretization of f(x, u, 0) along xref ( · ), uref ( · ) using

(3.32) and (3.33)

3: (u(g
(1)
x,0), . . . , u(g

(p0)
x,0 ))← solution of optimization problem (3.47) for feedforward control of

the generators of the initial set

4: (Q,R)← solution of optimization problem (3.50) for the optimal controller parameters

5: uctrl(x, t)← combined control law (3.43) using u(g
(1)
x,0), . . . , u(g

(p0)
x,0 ) and Q,R

6: R[0,tf ],uctrl,W(X0)← reachable set computed in optimization problem (3.50)

7: MP← {xref ( · ), uref ( · ), tf ,X0,Xreach,N , uctrl( · ),R[0,tf ],uctrl,W(X0)}

3.6.2 State-Dependent Feedforward Control

We want to find an individual feedforward control law for each state of the initial set, such that

it is steered as close as possible to x(f), i.e.,

uff ( · ) = arg min
uff ( · )

‖(Rtf ,uff ,0(X0)− x(f))‖1 + γff

∫ tf

0

‖uff (Rt,uff ,0(X0), t)‖1dt (3.46)

s.t. ∀t ∈ [0, tf ] : Rt,uff ,0(X0) ⊆ Sff ,

uff (Rt,uff ,0(X0), t) ⊆ Uff ,

where we minimize the difference between each state to the desired final state as well as the

applied inputs weighted by γff ∈ R+
0 .

As discussed before, for a general, nonlinear system with a nonlinear control law, it is not

feasible to solve (3.46) for every possible state of the initial set as there are uncountably many.

We overcome this problem analogously to the nonlinear approach of the generator interpolation

controller in Sec. 3.4.2 by restricting the feedforward control to linearized dynamics with linear

control laws, which allows us to interpolate finitely many solutions using the superposition

principle of linear systems. We therefore choose the state-dependent feedforward controller

similar to the controller from Sec. 3.4 as

uff (x(0), t) = uref (t) +

p0∑

i=1

αi(x
(0))u(g

(i)
x,0, t),

where αi(x
(0)) describes x(0) in X0, see (3.26).
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To obtain the required input trajectories, we begin by computing the reference trajectory

xref ( · ) for the center cx,0 of the initial set X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉 by solving (3.8) (Alg. 4,

line 1). We then linearize and time-discretize the system along the reference trajectory using

(3.32) and (3.33) (Alg. 4, line 2) and finally compute the input trajectories for the generator-

interpolating feedforward controller (Alg. 4, line 3) by solving

min
u(g

(1)
x,0),

...,u(g
(p0)
x,0 )

∥∥∥∥∥∥∥∥




Āg
(1)
x,0 + B̄u(g

(1)
x,0)

...

Āg
(p0)
x,0 + B̄u(g

(p0)
x,0 )




∥∥∥∥∥∥∥∥
1

+ γ̂ff

∥∥∥∥∥∥∥∥




u(g
(1)
x,0)
...

u(g
(p0)
x,0 )




∥∥∥∥∥∥∥∥
1

(3.47)

s.t. ∀k ∈ {0, . . . , N − 1} :

CSffxref (tk+1) +

p0∑

i=1

|CSff g
(i)(tk+1)| ≤ dSff , (3.48)

CUffuref (tk) +

p0∑

i=1

|CUffu(g
(i)
x,0, tk)| ≤ dUff , (3.49)

with the shorthands γ̂ff =
tf
N γff , B̄ =

[
B̄0, · · · , B̄N−1

]
, and u(g

(i)
x,0) =

[
u(g

(i)
x,0, t0)T , . . . ,

u(g
(i)
x,0, tN−1)T

]T
. Here, (3.48) and (3.49) ensure the satisfaction of the state and input con-

straints Sff = {x ∈ Rn | CSffx ≤ dSff } and Uff = {u ∈ Rm | CUffu ≤ dUff }, respectively.

This is all equivalent to the nonlinear case in Sec. 3.4, the sole exception that it is performed

only once for the entire time horizon. In Sec. 3.4, we have to iteratively solve optimization

problem (3.34) for short time horizons and compute the reachable set to obtain a feedback

which counteracts disturbances and linearization errors. With the combined control approach,

we use the feedback controller presented next to compensate disturbances and linearization

errors. This allows us to only consider undisturbed dynamics for computing the feedforward

controller here and therefore to directly optimize the inputs for the entire time horizon.

3.6.3 Feedback Control

We use the same controller for feedback control that we did in Sec. 3.5:

ufb(x(t), t) = K(t)(x(t)− xff (t)),

with xff (t) = ξ
(
x(0), uff (x(0), · ), 0, t

)
. In contrast to Sec. 3.5, however, here the controller

does not have to shrink the size of the reachable set; it merely counteracts the effects from

linearization errors and disturbances (see Fig. 3.17(c)–(d)). As a result, we do not need to

compute several different weighting matrices Qk and Rk, only a single pair Q and R. This

drastically reduces the number of optimization variables from N(n + m − 1) to n + m − 1

for the same assumptions as in Sec. 3.5, and therefore the computation load for solving the

corresponding optimization problem. Note that while we only have a single pair of weight

matrices, we again obtain time-dependent feedback matrices K(t), as we still linearize the

system along the reference trajectory xref ( · ) to capture the changing linearized dynamics of

the nonlinear system. The reachability analysis is also still performed on the actual nonlinear

dynamics.
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The nonlinear optimization problem (Alg. 4, line 4) for the Q and R matrices is therefore

given by

min
Q,R
‖Rtf ,uctrl,W(X0)− x(f)‖1 + γ

∫ tf

0

‖uctrl(Rt,uctrl,W(X0), t)‖1dt (3.50)

s.t. ∀t ∈ [0, tf ] : Rt,uctrl,W(X0) ⊆ S,

uff (Rt,uctrl,W(X0), t) ⊆ U.

Analogous to problem (3.40), we can use Lemma 2 to compute an upper bound for the cost

function and use Lemma 1 and Corollary 1 to check the constraints. Therefore, we can solve

this optimization problem with the same tools as in Sec. 3.5, though with fewer optimization

variables. Note that the computations of the combined control law (Alg. 4, line 5) and reachable

set (Alg. 4, line 6) are actually already performed during the reachable set computation as part

of the optimization problem (3.50). Therefore, this is no extra effort. Analogous to the previous

sections, we can store the control law with its corresponding reachable set as a motion primitive

to be used in a maneuver automaton (Alg. 4, line 7).

Next, we present the implementation of reachability analysis with an extended state space

to obtain the set of applied inputs. Analogous to the discussion in Sec. 3.5.5, the presented

approach can also be extended for general control laws. Due to the previously mentioned

advantages of linear control laws, we again present the approach for this case.

3.6.4 Implementation

As done in Sec. 3.5.2, we begin by expressing our closed-loop dynamics in closed-form. Like in

(3.41), we again use additional states to keep track of the reference trajectory of the center, the

state-dependent feedforward trajectories, and the inputs from the state-dependent feedforward

controllers. Since we linearize dynamics for the feedforward controller, we are able to use the

superposition principle and the zonotope notation to store this information efficiently. We

therefore define the extended state as

xe(t) :=




x(t)
xref (t)
x̃ff (t)
α(x(0))


 ,

where the state x̃ff (t) denotes the deviation of the feedforward trajectory with respect to the

reference trajectory, i.e.,

x̃ff (t) := xff (t)− xref (t).

Equivalently, we define

ũff (α(x(0)), t) := uff (α(x(0)), t)− uref (t),
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where αi(x
(0)) is such that (3.26) holds. Using the combined control law

uctrl(x(t), t) = uff (α(x(0)), t) + ufb(x(t), t)

= uref (t) +

p0∑

i=1

αi(x
(0))u(g

(i)
x,0, t) +K(t)(x(t)− xff (t)︸ ︷︷ ︸

=xref (t)+x̃ff (t)

),

the extended state has the dynamics

ẋe(t) =




ẋ(t)
ẋref (t)
˙̃xff (t)
α̇(x(0))


 =




f
(
x(t), uref (t) + ũff (α(x(0)), t) +K(t) (x(t)− xref (t)− x̃ff (t)) , w(t)

)

f(xref (t), uref (t), 0)
Akx̃ff (t) +Bkũff (α(x(0)), t)

0


 ,

where

ũff (α(x(0)), t) =
[
u(g

(1)
x,0, t), . . . , u(g

(p0)
x,0 , t)

]
α(x(0)).

The extra state for the reference trajectory xref (t) evolves based on the actual nonlinear

dynamics, though without disturbances. The state x̃ff (t) considers the deviation of the state-

dependent feedforward trajectory xff (t) from the center reference trajectory xref (t) and evolves

based on the linearized dynamics. This ensures that both the center following the reference

trajectory, which has been computed based on the nonlinear dynamics, as well as the generators

driven by the feedforward control law based on the linearized dynamics, end in the desired

states. Since the feedback controller tracks the state-dependent feedforward controller while

considering the actual disturbed, nonlinear dynamics, its feedback compensates any errors due

to the linearized dynamics and the real system is controlled to the desired states as well. We

use the parameter α(x(0)) to compute the feedforward inputs based on the initial deviation

of x(0) from cx,0, similar to the approach we used for the convex interpolation controller and

generator interpolation controller, see Sec. 3.3.6.

For an initial set X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉, we define the initial zonotope for the extended

dynamics as

Xe,0 =

〈



cx,0
cx,0
0
0


 ,




g
(1)
x,0

0

g
(1)
x,0

e(1)


 , . . . ,




g
(p0)
x,0

0

g
(p0)
x,0

e(p0)




〉
,

with e(i) denoting the i-th p0-dimensional unit vector.

This means the actual state starts from x(0) ∈ X0 and the reference trajectory from the center

of the initial set, i.e., xref (0) = cx,0. The generators g
(i)
ff of the state-dependent feedforward

trajectories are initialized by the set of possible deviations of the initial state x(0) from cx,0, i.e.,

the generators of the initial set: g
(i)
ff,0 = g

(i)
x,0,∀i ∈ {1, . . . , p0}. The parameters α(x(0)) store the

information of this initial deviation of the initial state x(0) from cx,0 and are used to express

the feedforward state x̃ff (t) as a weighted sum of the generators g
(i)
ff,t, i.e.,

x̃ff (t) =

pt∑

i=1

αi(x
(0))g

(i)
ff,t.
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Therefore, we initialize them with unit vectors, i.e., g
(i)
α,0 = e(i), where the i-th unit vector

corresponds to the i-th generator of the initial set.

Computing the reachable set starting from Xe,0, we obtain an extended reachable set

Re[0,tf ],uctrl,W
(Xe,0). For a single time interval [τl, τl+1], the extended reachable set is given

by a zonotope of the form

Re[τl,τl+1],uctrl,W
(Xe,0) =

〈



cx
cref
0
0


 ,




g
(1)
x

g
(1)
ref

g
(1)
ff

g
(1)
α


 , . . . ,




g
(p)
x

g
(p)
ref

g
(p)
ff

g
(p)
α




〉
,

where we omit the subscript denoting the time interval for the center, the generators, and the

time-dependent number of generators p, to not further complicate the notation. We can directly

use this reachable set to check if states with the actual nonlinear dynamics satisfies the state

constraints, i.e., if 〈cx, g(1)
x , . . . , g

(p)
x 〉 ⊆ S, and to compute the state dependent part of the cost

function.

To check the input constraints and to compute the input-dependent part of the cost function,

we have to compute the set of possible inputs based on the extended reachable set during each

time interval [τl, τl+1]. For the sake of simplicity, we choose the time interval [τl, τl+1] such that

the feedforward inputs are constant. Note that since additional generators are added during the

reachable set computation, the generators g
(i)
α are not necessarily only unit vectors anymore.

These new generators, resulting, e.g., from disturbance effects, are not considered during the

feedforward control, and consequently only contain zeros in the g
(i)
α entries. For a given state

x(t) = cx +

p∑

i=1

βi(x(t))g(i)
x ,

with β(x(t)) ∈ [−1, 1]p, the corresponding input is given by

uctrl(x(t), t) = uff (α(x(0)), t)︸ ︷︷ ︸
=uref (t)+ũff (α(x(0)),t)

+K(t)(x(t)− xff (t)︸ ︷︷ ︸
=xref (t)+x̃ff (t)

)

= uref (t) +

p∑

i=1

βi(x(t))
[
u
(
g

(1)
x,0, t

)
, . . . , u

(
g

(p0)
x,0 , t

)]
g(i)
α

+K(t)

(
(cx − cref ) +

p∑

i=1

βi(x(t))K(t)
(
g(i)
x − g(i)

ref − g
(i)
ff

))
.

Therefore, using the same arguments as in Sec. 3.5.2, the set of inputs during the time interval

[τl, τl+1] is given by the following zonotope:

uctrl
(
R[τl,τl+1],uctrl,W(X0), t

)
=

〈
uref (t) +K(t)(cx − cref ),

[
u(g

(1)
x,0, t), . . . , u(g

(p0)
x,0 , t)

]
g(1)
α +K(t)

(
g(1)
x − g(1)

ref − g
(1)
ff

)
,

...
[
u(g

(1)
x,0, t), . . . , u(g

(p0)
x,0 , t)

]
g(p)
α +K(t)

(
g(p)
x − g(p)

ref − g
(p)
ff

)〉
.
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This zonotope is then used in the cost and constraint function as described in Sec. 3.5.

3.6.5 Numerical Example

To illustrate the applicability of the combined control approach and its improved performance

compared to the approaches we presented in previous sections, we revisit the previous exam-

ples as well as a nonlinear tube-based MPC example from [97]. We implement our approach

again in MATLAB, using the same toolboxes and optimization functions as before. For a

fair comparison, all computations are performed on the same computer as used for the earlier

examples.

Linear Example: Vehicle Platoon
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Figure 3.20: Linear platooning example: Initial (black) and shifted final sets (green) of our

combined controller, projected onto the (x1, x2), the (x3, x4), the (x5, x6), and the (x7, x8) planes.

For comparison, the final sets of the continuous feedback controller from Sec. 3.5 (blue) and an

LQR controller (red) are shown.
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3. OFFLINE CONTROLLER SYNTHESIS

Let us first revisit the linear example from Sec. 3.5.6, where we compute a controller for

a platoon with four vehicles. In Fig. 3.20, we show the resulting final reachable sets for the

continuous feedback controller from Sec. 3.5.6 in blue and with the new combined approach

in green. We see that the new approach is able to obtain much smaller reachable sets and

its computation time of around one minute is around five times faster than the old approach.

This is quite impressive, as even the old approach performs much better than a constant LQR

tracking controller (red).

Nonlinear Example: Kinematic Vehicle

Let us now consider the autonomous vehicle example from Sec. 3.4.3, which we solved with

the generator interpolation controller. We use the same input bounds as before; however, to

demonstrate the improved performance, we increase the disturbance sets to make the control

task harder. To do so, we enlarge each disturbance interval by a factor of four compared to the

example in Sec. 3.4.3, resulting in w1 ∈ [−2, 2] ms2 and w2 ∈ [−0.08, 0.08] rads .
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Figure 3.21: Nonlinear car example: Reachable sets for the turn left motion primitive with the

combined controller, projected onto the (v,Ψ) and the (px, py) planes. The initial set is plotted

in black, the final set in green, and the reachable set for all times between in gray. The black line

shows the reference trajectory.

We show the reachable set for the turn left motion primitive in Fig. 3.21. For a better

illustration, we show again the initial set with the shifted final set in Fig. 3.22. The reachable

set of the generator interpolation controller with the new disturbance set is shown in blue and

the reachable set of the combined controller in green. We see that the additional feedback

controller allows us to end completely inside the shifted initial set, while the old controller,

which applies only the feedforward controller in an iterative fashion, results in a large reachable

set. The reachable sets of the LQR tracking controllers which we use as a comparison in
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Figure 3.22: Nonlinear car example: Initial (black) and shifted final sets (green) of the combined

controller, projected onto the (v,Ψ) and the (px, py) planes, for the turn left motion primitive.

For comparison, the final set of the generator interpolation controller from Sec. 3.4 (blue).
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Figure 3.23: Nonlinear car example: Fig. 3.21 with 200 simulations of the combined controller

for random initial states and random disturbances, shown in blue.

Sec. 3.4.3 would become much larger with the increased disturbances than the sets in Fig. 3.22,

therefore we omit them for clarity.

We compute 200 simulations with random disturbances for this scenario with our new con-

troller and show them in Fig. 3.23. We see that the simulations cover almost the whole reachable

set for the (px, py) plane and a large part of the (v,Ψ) plane. This demonstrates that our ap-

proach is not overly conservative, but that the reachable sets are justified by actual disturbance
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3. OFFLINE CONTROLLER SYNTHESIS

effects. In the same fashion as for the turn left motion primitive, we can compute other motion

primitives such as drive straight or turn right, as done in the previous sections. Since the shifted

final sets for the combined controller always fit in the initial set, we can concatenate all of them

with each other and obtain the fully connected maneuver automaton from Fig. 3.6 even for the

enlarged disturbances. The computation of the new controller takes around two minutes, where

70% of the time is spend for computing the reachable sets during the feedback optimization and

less than 2% for the optimization of the reference trajectory and state-dependent feedforward

controller.

Nonlinear Example: Comparison with Tube-Based MPC

In our last example, we apply our approach to the example from [97]. The system dynamics

are given by

ẋ1 = −x1 + 2x2 + 0.5u,

ẋ2 = −3x1 + 4x2 − 0.25x3
2 − 2u+ w,

with the constrained control input u ∈ [−2, 2] and the bounded disturbance w ∈ [−0.1, 0.1].

The authors from [97] solve the control problem of stabilizing the origin for this unstable system

using a nonlinear tube-based MPC controller, which is applicable for continuous-time nonlinear

systems. The resulting tube for a single example is shown in Fig. 3.24(a). We solve the same

problem with our approach, where we start from an initial set which contains their control

invariant set. The results are shown in Fig. 3.24(b) and take less than 30 s to compute. We see

that the system with our controller converges to a small set around the origin. Our reachable

sets are thus much smaller than the control invariant set from [97], which determines the size of

the tube. This shows the advantage of our controller based on the actual reachable sets, rather

than a fixed-size tube based on control invariant regions.
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(a) Tube-based MPC solution; taken from [97]
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Figure 3.24: Comparison of tube-based MPC with our combined control approach: (a) Reference

trajectory and control invariant sets of the tube-based MPC solution. (b) Reachable set (gray) of

our controller for the same example with initial set in black and final set in green. The initial set

of (a) is contained in the initial set of (b).
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3.7 Discussion

In this section, we discuss different aspects of the presented control algorithms and compare

them.

3.7.1 Formal Guarantees

One of the advantages of all of our approaches is that they do not require proofs for stability

or for constraint satisfaction. Verifying the stability or safety of complex, nonlinear dynamics

that are affected by disturbances, restricted by state and input constraints, and controlled by

switching control laws is a very hard task when using classical approaches. Finding a Lyapunov

function for such a system easily becomes infeasible in practice.

Instead, safety and constraint satisfaction is guaranteed by the included reachability analysis

for all initial states and all possible disturbances. By computing all optimization problems and

reachable sets offline in advance, we are able to only consider motion primitives in our maneuver

automaton for which a feasible solution has been found. Thus, even if we cannot find a feasible

controller for a certain motion primitive, we know this offline in advance and can recompute

this motion primitive.

3.7.2 Complexity

When we discuss the complexity of our algorithm, we have to distinguish between online and

offline complexity. Most critical is the online complexity, as this restricts the sampling times of

the controlled system and therefore its performance.

Online Complexity

We perform all optimizations and reachable set computations offline in advance and store the

different controller matrices in a look-up table. Online, we only need to apply the controller

corresponding to the current motion primitive. Since we use piecewise-linear controllers for all

approaches, the online complexity is very low in all cases:

Convex Interpolation Controller The online complexity of the convex interpolation con-

troller consists only of matrix vector multiplications, and in the case of closed-form expression

of the convex combinations, plugging the current state into a closed-form formula. Clearly,

since we have 2n extreme points, we have to compute 2n weights, but each computation can

be done very fast (around 0.1ms for all weights of a ten-dimensional system, see Table A.1

in Appendix A). If we use the linear approximation of the inputs as presented in Sec. 3.3.4,

the computation simplifies to a matrix vector multiplication with a complexity of only O(nm).

Therefore, we can apply the controller with high sampling times. The efficiency of this approach

can also be seen in the fast computation times of around 10 s for the offline part and around

0.01ms for the online part, see Sec. 3.3.7.
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Generator Interpolation Controller The resulting generator interpolation controller has

the same structure and therefore the same online complexity as the linear approximation of the

convex interpolation controller.

Continuous Feedback Controller The online complexity of the continuous feedback con-

troller is equivalent to other linear feedback controllers. Compared to the previous two control

methods, the only difference is the continuous nature of the controller, which requires knowing

the reference trajectory at every time step. One way is to store the reference trajectory exactly

enough and interpolate between the sampling points. By considering this interpolation during

both the controller synthesis and the reachable set computations, the approach is still formal.

In this case, the computational burden at each time instance is equivalent to the convex and

generator interpolation controllers. Alternatively, the reference trajectory can be integrated

online, which requires some numerical integration techniques, e.g., the Runge-Kutta method.

Combined Controller The combined controller is similar to the continuous feedback con-

troller with the difference that the reference trajectory is based on the initial state. Since we

have to compute the input as a combination of the center and the generators, this results in

a small additional computational effort; however, it does not change the complexity class nor

does it significantly change the computation times. It also requires either the integration of a

(extended) system or interpolating precomputed reference trajectories for the center and the

generators. From the way we computed the generator feedforward, we are able to superpose

the precomputed reference trajectories.

Offline Complexity

While the online computation times of all four approaches are very similar, the offline com-

putation times differ much more. All approaches rely on solving some nonlinear programs, at

least for the computation of the reference trajectory. Since this is a nonlinear and non-convex

optimization problem, one cannot give bounds on its computational complexity, and therefore

not on the overall complexity of any approach which uses it. Let us still discuss the various

parts which are used in the different algorithms and what that means for actual computation

times.

Reference Trajectory: For each approach we have to compute a reference trajectory. While

this is done using nonlinear programming, there exist very efficient implementations using direct

optimization which solve the problem fast and converge for many initial states [98]. Therefore,

for practical examples, the computation of the reference trajectory can be done very fast, and

as many applications in MPC show, even in real time. In particular, since we have to compute

the reference trajectory only once and we are not dependent on an optimal solution, we can

neglect the complexity of the reference trajectory for the overall approach. We can argue that

if the optimal control problem is hardly solvable for undisturbed open-loop trajectories, then

we cannot expect it to be solved more easily for a set of initial states and disturbances.

Reachability Analysis: The second part which is used in all approaches is the computation

of reachable sets. The algorithm from [74] which we use in our numerical examples has a

85



3. OFFLINE CONTROLLER SYNTHESIS

complexity of O(n3), where n denotes the number of states. Since we combine reachability

analysis with controller synthesis, we eliminate the need for an additional verification step

afterward. For the convex interpolation controller and the generator interpolation controller,

we only compute the reachable set for the whole time horizon once. This means that we do

not add any computation time compared to synthesizing and verifying a controller separately.

Optimizing over the reachable sets leads to longer computation times, though as seen before,

to better results as well.

Convex Interpolation Controller Besides the reference trajectory, we have to solve a

nonlinear optimal control problem for each extreme state at each iteration step. By using

the same efficient algorithms as for the reference trajectory and by considering shorter time

horizons, we can solve each optimization problem very fast. Since the number of extreme points

of a parallelotope grows with 2n, the number of optimization problems increases exponentially

as well. Though exponential, it is still much better than other comparable algorithms, which

rely on discretizing the state space (like explicit MPC or abstraction-based control) and have

exponential complexity with a larger base: dn, where d denotes the number of discretized

states in each dimension. The value of d can easily be 30 or 100. The cubic complexity of the

reachability analysis is therefore negligible for the overall complexity.

Generator Interpolation Controller The main optimization for the generator interpola-

tion controller is done by solving linear programs. The complexity of solving linear programs

depends on the exact implementation and the number and type of constraints. There exist

algorithms with polynomial time complexity in the number of optimization variables and con-

straints [99]. If we consider zonotopes of a fixed order, the number of optimization variables

and number of constraints grows polynomially as well (with O(n2), if n > m, where m denotes

the number of inputs). In practice, the computation time for solving linear programs even with

many constraints is also very low and does not add much to the overall computation time. If

we neglect the reference trajectory, then the remaining algorithm of the generator interpolation

controller scales polynomially — as we only solve linear programs and compute reachable sets

— and thus much better than the convex interpolation controller.

Continuous Feedback Controller The complexity of the continuous feedback controller is

governed by the number of iterations of the nonlinear programming algorithm. At each iteration,

we have to compute the reachable set for the whole time horizon with complexity of O(n3). The

number of required iteration steps depends on the number of optimization variables which are

N(n + m − 1) with N denoting the number of different feedback weights Qk and Rk. Due to

the many reachable set computations, this algorithm needs much longer than the previous two.

Combined Controller As seen in the numerical examples, the combined controller needs

much less time than the continuous feedback controller, as the number of optimization variables

for the overall optimization problem is reduced to n + m − 1 and the single additional linear
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Table 3.1: Comparison of the four algorithms

Property Convex

Interpolation

Controller

Generator

Interpolation

Controller

Continuous

Feedback

Controller

Combined

Controller

Offline computation time

(low/medium dimensions)

low low high medium

Increase of offline computation

time for high dimensions

very high low high medium

Online computation time very low very low very low very low

Capability to consider nonlin-

earities

good medium good good

Robustness against distur-

bances

medium medium high high

program for computing the state-dependent feedforward controller can be neglected. Since it

still computes many reachable sets, it takes longer than the two interpolation-based controllers.

3.7.3 Optimality

As we rely on superposing different solutions for nonlinear systems, nonlinear programming

algorithms that do not guarantee convergence to a global optimal solution, or a combination

of both, we can only expect to obtain a local optimum. In fact, there is no efficient method

able to obtain globally optimal controllers for disturbed, nonlinear systems [8, 100]. Most

optimal control approaches only consider open-loop dynamics or only undisturbed feedback

controllers [101, 102]. Our synthesis approaches optimize over the whole reachable set, i.e.,

all possible trajectories resulting from any possible disturbance realization, and chooses the

controller which minimizes those trajectories. This is not done in any comparable method, as

most other formal methods consider fixed controllers (e.g., tube-based MPC) or fixed control

inputs for the whole set (e.g., abstraction-based methods).

3.7.4 Comparison of the Four Algorithms

All four algorithms have their own advantages and disadvantages. We provide a high-level

comparison of the algorithms in Table 3.1. Which of them might be the most suitable depends

on the application area. If short offline computation times are needed, then the convex inter-

polation controller and the generator interpolation controller are the first choice, as they only

require a single computation of the whole reachable set.

If the dynamics are quite nonlinear and the state dimension is not too large, the convex

interpolation controller has the advantage that it computes the input trajectories for the actual
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nonlinear dynamics and for each extreme point. The generator interpolation controller, on the

other hand, requires computing linearized dynamics and uses the superposition of the control

inputs for the center and the generators, which might not be as accurate for very nonlinear

dynamics as the results of the convex interpolation controllers. For larger systems, i.e., with a

higher number of state variables, the generator interpolation controller has the big advantage

that the number of generators scales linearly compared to the exponential scaling of the number

of extreme states for the convex interpolation controller.

In contrast, the continuous feedback controller and the combined controller repeatedly op-

timize over the reachable sets of the closed-loop system. The optimization over reachable sets

ensures the minimization of the actual final set while taking all effects into account and the

continuous feedback allows us to counteract disturbances better and faster. This is not the case

for the two interpolation algorithms, as the control inputs are computed open-loop while only

considering the reachable set of the previous time step. The repeated computation of reach-

able sets in the optimization algorithm for the continuous feedback controller leads to longer

offline computation times, which is usually worth it when considering the better online control

performance.

The combined control approach uses a combination of the generator interpolation controller

and the continuous feedback controller. Thus, it is not surprising that it has better control re-

sults than both and that it is faster than the continuous feedback controller. Therefore, in most

cases, the combined control approach is the best choice, especially compared to the continuous

feedback controller. All four approaches provide formal guarantees, optimize over solutions, and

formally ensure the satisfaction of state and input constraints of disturbed systems. Not many

control approaches are able to do this, especially not efficiently. As we see in the examples, all

of these approaches are much better than a simple LQR tracking control approach.

3.7.5 Extension to Include Measurement Noise

So far, we did not discuss measurement noise in this chapter in order to have a simpler notation

and presentation. To apply the presented approaches to systems with uncertain measurements,

only few changes have to be done, which we present now.

For the convex interpolation controller and the generator interpolation controller, we define

the parallelotopes Pk during Step 2 of the nonlinear controller synthesis algorithm as Pk ⊇
{h(x, ν) | x ∈ Xreach,k, ν ∈ V} and compute the open-loop parts based on this set. This ensures

that the resulting control law is feasible for any possibly measured state. For the reachable set

computation, we start again from the actual reachable set from the previous time step, i.e.,

Xreach,k, and include the measurement noise as a disturbance which only affects the controller

functions by using the measured state x̂(tk) = h(x(tk), ν(tk)) instead of x(tk) in uconv(x̂(tk), t)

and ugen(x̂(tk), t), respectively. We thereby ensure that the reachable set includes all possible

trajectories which result from our control law with disturbed measurements.

For the continuous feedback controller, we directly optimize over the closed-loop dynamics

and therefore simply include the uncertain measurements in the control law uctrl(x̂(t), t) for the

reachable set computation as well.

Finally, for the combined controller, we compute the state-dependent feedforward controller
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analogous to the generator interpolation controller by starting from an initial zonotope X̂0 which

satisfies X̂0 ⊇ {h(x, ν) | x ∈ X0, ν ∈ V}. For the feedback controller we include the measurement

noise in the feedback control law uctrl(x̂(t), t) = uff (x̂(0), t) + ufb(x̂(t), t) for the reachable set

computation. An explicit description of the combined controller with measurement noise can

also be found in [219].

These ideas also work analogously for the approaches from the next two chapters, which we

again present without disturbances to simplify notation.

3.8 Summary

In this chapter, we present four novel control approaches which solve reach-avoid problems

offline and can be used to generate robust maneuver automata. All approaches allow us to

compute controllers which steer all states from an initial set to a set around a desired final state

while satisfying state and input constraints. The approaches work for linear and nonlinear

systems even in the presence of external disturbances and sensor noise. The use of reachable

set computation allows us to achieve provable safety and formal guarantees for the satisfaction

of constraints. All controllers have a linear, time-varying controller structure, which allows

very fast online computation times and easy implementation, as most computation tasks can

be performed offline in advance.

The first approach allows us to steer all states from an initial set to a final set by com-

puting optimal input trajectories for the extreme states only. By interpolating between these

extreme state inputs using convex combinations, we obtain control laws for every state inside

the reachable set. The presented control approach is a novel way of viewing closed-loop control

by combining the optimized solutions from open-loop control with the stability and robustness

of feedback control. By using closed-form expressions for the convex combinations and linear

approximations for the control inputs, we provide two ways to make the convex controllers even

more efficient and faster.

In the second approach, we exploit the zonotope representation of sets to obtain even more

efficient control laws. This is done by computing optimal open-loop input trajectories for

the center and generators of the set and interpolate them by superposing the solutions. By

linearizing the system and again iteratively applying the optimized controller to the system

in combination with reachable set computation, we are once more able to apply the approach

to disturbed nonlinear systems. In each step, only a single linear program has to be solved

to optimize the inputs for each state in the set. This significantly reduces the computational

complexity compared to the convex interpolation controller, so that the generator interpolation

control approach scales polynomially with the number of dimensions.

In a third approach, we optimize a continuous feedback controller by directly optimizing

over reachable sets. To the best of our knowledge, we use, for the first time, reachability analysis

inside the optimization problem to obtain optimal control inputs, not only for a single state, but

for a whole continuous set of initial states. This new technique allows us to take constraints and

the effects of disturbances into account. The resulting controller is robust against disturbances,

and we obtain formal guarantees for the satisfaction of constraints and the resulting reachable
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set. By computing the reachable set inside the optimization problem, we are able to directly

optimize the size of the reachable set at a final time point.

Finally, we combine the ideas of the second and the third approaches to join their advantages

while overcoming their disadvantages. We use the generator interpolation controller to obtain a

state-dependent feedforward controller based on zonotopes, which steers all states of the initial

set to the desired final set. We combine it with a continuous feedback controller, which we

compute by optimizing again over reachable sets. Since it only has to counteract disturbances

and linearization errors, not initial deviation, it can be much more aggressive than for classical

approaches. In addition, the optimization problem becomes significantly simpler, as the number

of optimization variables is drastically reduced.

We show the applicability of each of the approaches in numerical examples, where we com-

pare them to classical approaches such as LQR tracking controllers. All of our controllers

demonstrate that they can provide much smaller reachable sets while guaranteeing the satis-

faction of state and input constraints despite disturbances.

Compared to existing approaches, our algorithms have a number of advantages: They are

able to provide formal guarantees without knowing a Lyapunov function, which can be hard

to get for practical application but are required for many classical control approaches (see,

e.g., [103]). Compared to approaches using sum-of-squares programming [34–36, 44–49] or ab-

straction based control [50–71], our new approaches scale much better and thus are applica-

ble for larger systems. Due to the offline computation, the online application is much faster

than implicit MPC [12, 22–30] and in many cases requires far less data storage than explicit

MPC [14–21]. In contrast to many classical approaches, the consideration of sensor noise is

straightforward in our algorithms. To the best of our knowledge, our control approaches are

therefore the first which are able to efficiently provide formal guarantees for solving reach-avoid

problems for constrained systems even in the presence of external disturbances and sensor noise.

This is possible due to the novel close combination of reachability analysis and control theory.
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Chapter 4

Offline Controller Synthesis for

Piecewise Affine Systems

4.1 Introduction

So far, we considered the control problem for constrained and disturbed nonlinear systems with

purely continuous dynamics. There also exists a large interest in the control of hybrid systems,

i.e., systems with continuous and discrete dynamics. They are becoming a commonly adopted

modeling framework, as there are more and more applications where discrete computation

tasks closely interact with the continuous, physical world. Since a number of safety-critical

applications are also developed using hybrid models, their control design methods require robust

safety guarantees that account for uncertainties. Therefore, we extend the idea for computing

safe controllers to hybrid systems in this chapter1.

While the field of hybrid systems is very wide, we focus on the class of discrete-time piecewise

affine (PWA) systems that evolve according to a different affine dynamics based on the value

taken by the state in a polyhedral partition of the state space defining the so-called modes.

PWA systems therefore offer the required hybrid aspects with changing dynamics in different

modes; at the same time, their simplicity allows us to focus on the main differences which arise

from the non-continuity in the dynamics without making the discussion too complex. It is

possible to further extend the ideas to more general classes of hybrid systems, but many more

special cases would have to be considered. This lies outside the scope of the current chapter

and would complicate the discussion unnecessarily.

PWA systems are quite common since they naturally arise as models in various application

contexts. In addition to their capability in modeling non-smooth dynamics, they can also be

used as a model for nonlinear (smooth) systems by using hybridization methods such as those

in [85, 104–106]. Various analysis and control problems, such as model reduction [107, 108],

controllability and observability [109], identification [110–112], fault detection and estimation,

1This chapter, including the figures, is based on [227] c© 2019 Elsevier Ltd. Sec. 4.4 as well as the imple-

mentation of the optimization for the reference trajectory are mainly the work of Riccardo Vignali.
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as well as tracking, stabilization, and control [113–118], have been studied for the class of

PWA systems. The vast literature on PWA systems is primarily motivated by their significant

modeling capabilities, but also by the fact that their description via affine equations and con-

straints can simplify analysis and design. They are also equivalent to the class of mixed logical

dynamical systems [119].

Challenges for Reachability Analysis

Many reachability algorithms also work for hybrid systems [1, 2] including the one from [74].

One problem in the case of hybrid systems, however, is that zonotopes are not closed under

intersection. This makes it difficult to adopt them for the formal verification of PWA systems,

since reachable sets can intersect with multiple modes. Different solutions have been proposed

for this possibility in the literature, though all with some drawback.

One way is to split the reachable sets, which requires over-approximating the intersection

of the reachable set within each mode and starting a new reachable set computation for each

new set. In addition to the conservatism resulting from a possible over-approximation of the

intersections by simpler geometric sets, the computational complexity increases with each new

split [120,121].

Alternatively, instead of splitting the set, one can apply the combined dynamics of the

intersected modes in an over-approximative way. This strategy is used in [122], which deals

with continuous-time systems, and leads to computations with interval matrices, which can be

rather conservative.

Another solution is proposed in [123], where instead of computing geometric intersections

explicitly, these intersections are over-approximated by nonlinear maps which consider the

reachable set during a possible intersection time. While this approach has several advantages,

its over-approximations are rather conservative if the potential intersection duration is too long.

Related Contributions on PWA System Control Design

Combinatorial problems often appear in control design for PWA systems [124], even if there is

no uncertainty affecting its evolution, see for example, [125–132]. To limit the complexity of

solving these problems, some approaches exist which use branch-and-bound methods to reduce

the number of combinations [133].

Robust control for PWA systems is also addressed in [134] by imposing some robust mode

control restriction (see [135]) to ensure that the mode sequence of the controlled system is

independent of the disturbance realization. This restriction may limit the possibility of finding

a solution. Other optimal control approaches for hybrid systems, such as [10], require solving

a Hamilton-Jacobi partial differential equation, which is often prohibitively hard in practice.

More recent techniques, on the other hand, use hybrid control Lyapunov functions to stabilize

hybrid systems [136]. Reachability and controller synthesis for PWA systems using simplices

can be found in [137], and an extension to output feedback for general polytopes is given in [138].

There is a large interest in model predictive control of PWA systems [17, 139, 140], includ-

ing those with bounded disturbances [141–143]; however, many approaches rely on min-max
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optimizations which can be very costly. Tightening constraints is one method for reducing com-

putational costs [144]. A generalization of tube-based MPC [22] to PWA systems is proposed

in [145] under the rather restrictive assumption that a common Lyapunov function for the affine

dynamics exists. The approach requires the tightening of constraints and the online solution

of a mixed integer program, where binary variables account for mode switching. A variant of

the standard extension of [22] to PWA systems is proposed in [146], where the actual mode

of the real system is used when defining the nominal trajectory. Alternatively explicit MPC

solutions are possible, such as in [147], which computes feedback control policy by resorting

to set invariance and multiparametric programming for constrained PWA systems affected by

a bounded disturbance. The resulting PWA state feedback control law is optimal, but quite

complex to represent and apply online; for example, a polyhedral partition of 417 regions is

required for the PWA controller for the two-dimensional example with two modes in [147].

Proposed Set-Based Control Approach

By extending the generator interpolation controller to PWA systems, we are able to provide

formal guarantees while scaling better than existing approaches. Our control approach for PWA

systems consists of two parts: a smart choice of the reference trajectory, which directly takes

the distances to mode boundaries into account and thereby aims at reducing the number of

splits, as demonstrated in Fig. 4.1 and the generator interpolation controller from Sec. 3.4 for

tracking this reference trajectory. The extension is not trivial due to the hybrid dynamics of

the system and the possible occurrence of mode splitting as discussed before.

In contrast to verification, however, the control input can be chosen to avoid splitting

completely, or at least reduce the number of splits. Without splits, the PWA system becomes

a time-varying affine system which drastically simplifies the set-based feedback control design.

4.2 Problem Formulation

We consider a discrete-time PWA system whose state x ∈ Rn evolves according to the following

equation:

x(k + 1) =





A(1)x(k) +B
(1)
u u(k) +B

(1)
w w(k) + f (1), x(k) ∈M(1)

...

A(s)x(k) +B
(s)
u u(k) +B

(s)
w w(k) + f (s), x(k) ∈M(s)

(4.1)

with inputs u(k) ∈ Rm and disturbances w(k) ∈ W ⊂ Rω. As in the previous chapter, we

consider a set of initial states X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉 and a set of possible disturbances

W = 〈cw, Gw〉, and assume that they are given as zonotopes (or can be over-approximated

by them). Without loss of generality, we assume for a simpler notation that this disturbance

zonotope is centered around the origin, i.e., cw = 0. If this was not the case, it would mean that

there is a constant disturbance effect acting on the system and we can simply add the B
(i)
w cw

effect to the affine part f (i). Since we only consider discrete-time systems in this chapter, we

use a discrete k ∈ N0 instead of t as a time variable to simplify notation.
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initial
set

final
set

intersection

x

y

Figure 4.1: Example of two reference trajectories (blue and green lines) and reachable set

propagation according to the dynamics associated with the reference mode sequence: tracking

the green trajectory is much easier because reachable sets continue to evolve within the reference

mode sequence. While the reachable sets of the blue trajectory have a similar size, they often

intersect with the mode boundaries shown in gray.

The system dynamics in each set M(i) representing mode i is defined by the matrices

A(i), B
(i)
u , B

(i)
w and vector f (i). We therefore distinguish between the continuous values of

state x(k), which evolves in discrete time, and the discrete mode i. We assume that each set

M(i) ⊂ Rn is a polyhedron with half-space representation 〈C(i)
M , d

(i)
M 〉H , where C

(i)
M ∈ Rvi×n and

d
(i)
M ∈ Rvi . We refer to the hyperplanes defining the boundary of M(i) as the mode boundary.

System (4.1) is said to be well posed if the collection of modes {M(1), . . . ,M(s)} forms a

polyhedral subdivision of the state space, that is if ∪si=1M
(i) = Rn, each M(i) is of dimension

n, and the intersection M(i) ∩M(j), i 6= j, is either empty or a common proper face of both

polyhedra. We assume that the PWA system we are dealing with is well posed. Without loss

of generality, we also assume that the initial set X0 is a subset of a single mode, i.e., X0 ⊆M(i),

for some i ∈ {1, . . . , s}. If this was not the case, we can simply divide the initial set into several

subsets, such that each subset satisfies this requirement, and compute a controller for each

subset.

We address finite-horizon control of system (4.1) over [0, N ] and aim again for the minimum

reachable set around a desired state x(f) for all trajectories starting in X0 while minimizing the
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weighted input costs. Therefore, we want to minimize the following cost function:

min
uctrl( · )

‖RN,uctrl,W(X0)− x(f)‖1 + γ

N−1∑

k=0

‖uctrl(Rk,uctrl,W(X0), k)‖1, (4.2)

which is the discrete-time version of (3.1). Like in the previous chapter, we assume that the

system is subject to input and time-varying state constraints:

ξ(x(0), u( · ), w( · ), k) ∈ Sk, ∀k ∈ {1, . . . , N}, (4.3)

u(k) ∈ U, ∀k ∈ {0, . . . , N − 1}, (4.4)

and we assume again that they are all polyhedral sets with half-space representations Sk =

〈CSk , dSk〉H and U = 〈CU , dU 〉H , where CSk ∈ R%×n, dSk ∈ R%, CU ∈ Rς×m, and dU ∈ Rς .
In this chapter, we explicitly discuss time-varying state constraints. We can also consider

such constraints for all other approaches in this thesis; however, as they would significantly

complicate the notation, we omit time-varying state constraints in the other chapters. The

discrete-time system in this chapter allows us to show the approach directly for the time-

varying case without much notational overhead. In the next section, we present an overview

of our approach to solve (4.2), which is an extension of the ideas from Sec. 3.4 with differences

due to the hybrid dynamics.

4.3 Overview of the Approach

Let us introduce our approach shown in Fig. 4.2, which illustrates the following steps:

Step 1. Compute reference trajectory (Fig. 4.2(a)). We start by computing a

reference trajectory for the nominal PWA system (i.e., without uncertainties, see Sec. 4.4),

which at time N should be close to the desired final state x(f) while both satisfying the state

and input constraints and considering the distance to the mode boundaries to avoid splitting

reachable sets. The sequence of modes M0, . . . ,MN followed by the reference trajectory is

called the main mode sequence. Each Mk takes values in the set of the PWA system modes

{M(1), . . . ,M(s)}.
Step 2. Compute reachable sets along mode sequence (Fig. 4.2(b)). At each

iteration k, we design a control law uctrl,k( · ) for a prediction horizon of M steps ahead, which

steers all the states of the reachable sets starting from the initial set of this iteration X∗(k)

close to the corresponding reference trajectory. We minimize the applied inputs and the size

of reachable sets, and weight their distance to the boundaries of the main mode sequence so

that, where possible, splits are avoided. At the same time, the controller ensures that the

state and input constraints are satisfied despite the presence of disturbances. The result of

this optimization is a sequence of predicted reachable sets X(k + 1|k), . . . ,X(k + M |k), with

X(k + l|k) := Rl,uctrl,k,W(X∗(k)), together with the corresponding time-varying control law

uctrl,k( · ).
Step 3. Apply the first input (Fig. 4.2(c)). At each iteration, we only retain the

control law at time k and the reachable set X(k + 1) := R1,uctrl,k,W(X∗(k)). We only use the
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(a) x1

x2

initial 
set

final 
state

state constraints

mode 
boundaries

(b) x1

x2

predicted sets

(c) x1

x2

reachable set predicted sets

(d) x1

x2

reachable 
sets

predicted sets
for the main set

split

(e) x1

x2

reachable 
sets

reachable sets
for the main set

split predicted sets 
for split set

(f) x1

x2

reachable sets
for the main set

split predicted sets 
for split set

Figure 4.2: Overview of the overall approach with prediction horizon M = 2 and horizon after

splits Msplit = 2. (a) Computation of the reference trajectory and main switching sequence

M0, . . . ,MN . (b) Computation of the first M predicted reachable sets X(1|0), . . . ,X(M |0) starting

from the initial set. (c) Application of the first control law and fixation of the set X∗(1) (orange

solid line). Computation of a new collection of M sets X(2|1), . . . ,X(M+1|1), starting from X∗(1).

(d) Application of the first control law. There is now a split with a mode boundary; therefore,

computation of M new sets X(3|2), . . . ,X(M + 2|2) starting from the main set X∗(2) = X(2)∩M2.

This is continued until the main set reaches the final set. For each split there are two possibilities:

(e) Case I: The split set is steered back inside the main reachable set in Msplit steps. No branching

is needed. (f) Case II: The split set is not steered back inside the main reachable set in Msplit

steps: it will be used as a new initial set.

portion of the reachable set that lies inside the main mode as an initial set for each iteration,

i.e., X∗(k) = Rk ∩Mk. We repeat the procedure of Steps 2 and 3 for all k’s until we reach the

final time step. A sequence of sets X∗(1), . . . ,X∗(N), called the main reachable set sequence, is

determined.

Step 4. Check for splitting (Fig. 4.2(d)). If the main reachable set is completely inside

the modes of the reference trajectory (no split occurred) and the state and input constraints

have been satisfied, the problem is solved. If not, we start from the first time step k0 where a

split has been detected (k0 = 2 in Fig. 4.2(d)).
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Step 5a. Easy recovery possible (Fig. 4.2(e)). If we can steer the sets X(k0)∩M(i) 6= ∅
with M(i) 6= Mk0

(i.e., those parts of the main reachable set outside of the main mode sequence)

back to the main reachable set in Msplit time steps, we only have to consider the main reachable

set from time k0 +Msplit onward, as it contains the split sets.

Step 5b. Easy recovery not possible (Fig. 4.2(f)). If Step 5a is not possible for

some of the split sets, we branch each of them and treat them as new initial sets for which we

compute a new reference trajectory each (computed as in Step 1) for the residual time horizon

[k0, N ]. It is also necessary to recompute the reachable sets along the mode sequence at Step 2

starting from X(k0) ∩M(i) 6= ∅, with M(i) 6= Mk0
, at time k0.

Next, we explain the algorithms for the reference trajectory computation and the set-based

control design.

4.4 Reference Trajectory Computation

We now explain how to generate the main reference trajectory (Fig. 4.2(a)) over the time horizon

[0, N ]; the computation for [k0, N ] when splitting occurs (Fig. 4.2(f)) is done analogously.

We consider the PWA system operating in nominal conditions and choose the initial state as

xref (0) = cx,0, with cx,0 denoting the centers of the initial set X0.

We design a trajectory that satisfies the state and input constraints (4.3)–(4.4), while getting

as close as possible to the desired final state x(f), minimizing the applied inputs, and keeping

the state evolution as distant as possible from the mode and state constraints boundaries for

each time step. As done in the previous chapter, we can also use a tightened version of the

state and input constraints for the computation of the reference trajectory, if required. Here,

it is not as crucial, as we include the distance from the boundaries of the state constraints as

well as the applied inputs in the optimization problem.

The computation of the reference trajectory is formulated as a mixed integer linear program

(MILP) and makes use of the following equivalent mixed logical dynamical (MLD) form of the

(nominal) PWA system (4.1):

xref (k + 1) = Ax(k) +Buuref (k) +Bδδ(k) +Bzz(k), (4.5)

Exxref (k) + Euuref (k) + Eδδ(k) + Ezz(k) ≤ Eaff ,

where δ(k) ∈ {0, 1}κ is a binary vector that determines which of the s modes is active at time

k and z(k) ∈ Rι is an auxiliary real-valued variable (see [119] for details). Each mode M(i)

in (4.1) is encoded via a binary vector δ(i), so that δ(k) = δ(i) if and only if x(k) ∈ M(i).

Linear input constraints are encoded in the MLD representation via Eu and Eaff . The MLD

reformulation (4.5) simplifies the computations as it allows us to express all different dynamics

of the original PWA system (4.1) corresponding to the different modes in a single compact

form. Via the big-M technique [109, 119], it can be structured so that when δ(k) = δ(i), they

collapse to the dynamics of the current mode xref (k+1) = A(i)xref (k)+B
(i)
u uref (k)+f (i) and

C
(i)
M xref (k) ≤ d(i)

M .

We start by considering a single time step k and a single mode i. The intersection between

the state constraint set Sk and mode M(i) is a polydron which we denote by P(i)(k) and which
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has the half-space representation 〈C(i)
P (k), d

(i)
P (k)〉H , with C

(i)
P (k) ∈ RJ

(i)
k ×n and d

(i)
P (k) ∈ RJ

(i)
k .

Let dist(xref (k),P
(i)
j (k)) denote the signed Euclidean distance of point xref (k) from the

j-th hyperplane C
(i)
P,j(k)xref (k) = d

(i)
P,j , j ∈ {1, . . . , J

(i)
k }, given by

dist
(
xref (k),P

(i)
j (k)

)
=
−C(i)

P,j(k)xref (k) + d
(i)
P,j(k)

‖C(i)
P,j(k)‖2

, (4.6)

which is positive if and only if xref (k) lies inside P(i)(k). Then we can introduce the auxiliary

variable d(i)(k):

d(i)(k) =





min
j∈{1,...,J(i)

k }
dist

(
xref (k),P

(i)
j (k)

)
, x(k) ∈M(i)

0, otherwise,
(4.7)

and rephrase the condition xref (k) ∈ P(i)(k) as d(i)(k) > 0.

Using (4.6), definition (4.7) can be translated via the big-M technique (see [109], [119]) to

the following mixed integer inequalities (in the following we drop the dependence on time k to

simplify the notation):

‖C(i)
P,1‖2d(i) ≤ −Γ(2δ(i) − 1)T δ − C(i)

P,1xref + d
(i)
P,1 + Γ‖δ(i)‖1

...
...

‖C(i)

P,J(i)‖2d(i) ≤ −Γ(2δ(i) − 1)T δ − C(i)

P,J(i)xref + d
(i)

P,J(i) + Γ‖δ(i)‖1
(4.8)

d(i) ≤ Γ(2δ
(i)
1 − 1)δ1 − Γδ

(i)
1 + Γ

d(i) ≥ −Γ(2δ
(i)
1 − 1)δ1 + Γδ

(i)
1 − Γ

...
...

d(i) ≤ Γ(2δ
(i)
κ − 1)δκ − Γδ

(i)
κ + Γ

d(i) ≥ −Γ(2δ
(i)
κ − 1)δκ + Γδ

(i)
κ − Γ,

(4.9)

where Γ is a large enough constant that can be computed exactly (see [109]). It is easy to verify

that the first (second) set of inequalities becomes tight if and only if the state xref belongs (does

not belong) to mode M(i), i.e., when the binary variable δ is (not) equal to δ(i). For example, let

us take the right hand side of equation (4.8): the term −Γ(2δ(i)−1)T δ = −Γ
∑κ
j=1(2δ

(i)
j −1)δj

is always equal to or greater than −Γ‖δ(i)‖1, and, in particular, is equal to −Γ‖δ(i)‖1 if and

only if δ = δ(i). This makes the sum −Γ(2δ(i)−1)T δ+Γ‖δ(i)‖1 equal to 0 if and only if δ = δ(i)

(tight constraint), and in all other cases greater than Γ (loose constraint).

A similar reasoning can be applied to (4.9): for them to become tight, and therefore enforce

d(i) = 0, it suffices that only one element of the vector δ differs from the corresponding element

in the vector δ(i). Therefore, if we consider the set of constraints (4.8) and (4.9) for all modes

i ∈ {1, . . . , s}, we obtain the condition that all the scalars d(i) are equal to 0, except the one

corresponding to the mode containing the state xref , which assumes the value of the minimum

distance of xref from the closest boundary.

We determine the reference input uref (0), . . . , uref (N − 1) by maximizing the sum of all

d(i)(k), i ∈ {1, . . . , s}, at all time steps k ∈ {1, . . . , N −1} to stay far from mode and constraint
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set boundaries, while imposing that xref (N) gets close to the desired final state x(f) according

to the 1-norm and minimizing the inputs:

min
uref (0),...,uref (N−1)

‖xref (N)− x(f)‖1 + γ

N−1∑

k=0

‖uref (i)‖1 − γd
N−1∑

k=0

s∑

i=1

d(i)(k) (4.10)

s.t. V (k)




xref (k)
d(1)(k)

...
d(s)(k)
δ(k)



≤ R(k), ∀k ∈ {1, . . . , N},

MLD dynamics (4.5), ∀k ∈ {0, . . . , N − 1}, with xref (0) = cx,0,

xref (k) ∈ Sk,

uref (k) ∈ U,

with weight γd ∈ R+
0 and with V (k) and R(k) as

V =




[
P

(1)
A

02κ,n

]
H(1) 0 D(1)

...
. . .

...[
P

(s)
A

02κ,n

]
0 H(s) D(s)



, R =




R(1)

R(2)

...
R(s)


 ,

where 02κ,n denotes a 2κ× n matrix containing only zeros and with

H(i) =




‖C(i)
P,1‖2

‖C(i)
P,2‖2
...

‖C(i)

P,J(i)‖2
1
−1
1
−1
...
1
−1




, R(i) =




d
(i)
P,1 + Γ‖δ(i)‖
d

(i)
P,2 + Γ‖δ(i)‖

...

d
(i)

P,J(i) + Γ‖δ(i)‖
Γ− Γδ

(i)
1

Γ− Γδ
(i)
1

Γ− Γδ
(i)
2

Γ− Γδ
(i)
2

...

Γ− Γδ
(i)
κ

Γ− Γδ
(i)
κ




,
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and

D(i) =




Γ(2δ(i) − 1)T

Γ(2δ(i) − 1)T

...
Γ(2δ(i) − 1)T

Γ(1− 2δ
(i)
1 1) 0 . . . 0

Γ(1− 2δ
(i)
1 ) 0 . . . 0

0 Γ(1− 2δ
(i)
2 ) . . . 0

0 Γ(1− 2δ
(i)
2 ) . . . 0

...
...

. . .
...

0 0 . . . Γ(1− 2δ
(i)
κ )

0 0 . . . Γ(1− 2δ
(i)
κ )




.

Since the 1-norm can be rewritten as a linear term by introducing auxiliary variables and linear

constraints [92,93], problem (4.10) is an MILP. Note that to compute the reference trajectory,

we are not adding extra binary variables other than the δ variables that are already embedded

in the MLD formulation to represent the modes structure.

4.5 Set-Based Control Design

In this section, we address the synthesis of the state feedback control law uctrl(x, k) (Fig. 4.2(b)–

(d)). We discussed in Sec. 3.3.5, how optimizing over a longer horizon and only using the

control law for the first (few) time interval(s) can be beneficial. Here, we explicitly consider

this case by operating according to a receding horizon strategy, i.e., we design the control inputs

uctrl,h(x,w( · ), k) that make the system robustly track the reference trajectory along the look-

ahead time horizon k ∈ {h + 1, · · · , h + M}, starting from x ∈ X∗(h) at time h, and then use

the first part for the time-dependent overall control strategy uctrl( · ) at time h, i.e.,

uctrl(x, h) := uctrl,h(x,w( · ), h), ∀x ∈ X∗(h). (4.11)

As we see later, by assigning only the first input of uctrl,h(x,w( · ), h), the control law uctrl(x, h)

remains independent of the actual disturbance realization, i.e., our assumption that the distur-

bance cannot be measured still holds.

In this chapter, we explicitly consider possible future disturbances during the optimization

of the control inputs, as mode switches can strongly depend on the disturbance effects. For

an easier presentation in the previous chapter, we considered the nominal dynamics during the

optimization of the control inputs and only considered the disturbances during the reachable set

computation. The same ideas presented here can also be used for the controllers for continuous

dynamics from the previous chapter. In the case of nonlinear dynamics, it might be more

challenging to get a good estimate for the disturbance effects due to linearization. However,

due to the following verification through reachability analysis, it suffices to get approximations

of the linearization errors, similar to the idea that the linearized dynamics only approximate

the actual nonlinear dynamics.
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Let us now consider the computation of the control law for one time instance. For a simpler

notation and without loss of generality, we consider the computation at time h = 0. Therefore,

we start from X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉. At later times, we start from X∗(h). By construction,

X0 as well as X∗(h) always belongs to a single mode.

Let ρ : Rn → {1, . . . , s} be the map that associates the number of the corresponding active

mode to x ∈ Rn, i.e., ρ(x) = i ⇔ x ∈ M(i). With this map, we express the evolution of

a single state x(0) ∈ X0 as a function of the control input, based on our assumption that

x(k) ∈ Mρ(xref (k)), ∀k ∈ {0, . . . ,M}, i.e., it stays in the main mode sequence. For ease of

notation, we denote by Aj , Bu,j , Bw,j , fj matrices and vectors active in the mode ρ(xref (j)).

This allows us to obtain a similar notation to the one from Sec. 3.4, and we can write the

trajectory at time k starting from x(0) ∈ X0 similar to (3.24) as:

ξ(x(0), uctrl,0( · ), w( · ), k) = Āx(0) +

k−1∑

j=0

(
B̄u,juctrl,0(x(0), w( · ), j) + B̄w,jw(j) + Āf,jfj

)

(4.12)

for k ∈ {1, . . . ,M}, where we use the shorthand notations:

Ā := Ak−1 . . . A0,

Āf,j := Ak−1 . . . Aj+1, j ∈ {0, · · · , k − 2},

with Āf,k−1 := I, i.e., the identity matrix,

B̄u,j := Ak−1 . . . Aj+1Bu,j , j ∈ {0, · · · , k − 2},

with B̄u,k−1 := Bu,k−1, and B̄w,j being defined analogously to B̄u,j . Using the zonotope

representation of the initial set X0 = 〈cx,0, g(1)
x,0, . . . , g

(p0)
x,0 〉 and of the disturbance set W =

〈0, g(1)
w , . . . , g

(r)
w 〉, we can express (4.12) analogous to (3.25) as

ξ(x(0), uctrl,0( · ), w( · ), k) = Ā

(
cx,0 +

p0∑

i=1

αi(x
(0))g

(i)
x,0

)

+

k−1∑

j=0

(
B̄u,juctrl,0(x(0), w( · ), j) + B̄w,j

r∑

i=1

βi(w(j))g(i)
w + Āf,jfj

)
, (4.13)

where αi(x
(0)) is such that

x(0) = cx,0 +

p0∑

i=1

αi(x
(0))g

(i)
x,0

and βi(w(j)) is such that

w(j) =

r∑

i=1

βi(w(j))g(i)
w .
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We obtain the same structure as in Sec. 3.4, with the difference that we explicitly consider the

disturbance effects here. Therefore, we can use a similar structure for the controller as in (3.27),

which enables us to control every trajectory starting from X0 for any disturbance trajectory:

uctrl,0(x(0), w( · ), j) = u(cx,0, j) +

p0∑

i=1

αi(x
(0))u

(
g

(i)
x,0, j

)
+

j−1∑

l=0

r∑

i=1

βi(w(l))u
(
g(i)
w , l, j

)
. (4.14)

where

−1∑

l=0

r∑

i=1

βi(w(l))u
(
g(i)
w , l, 0

)
:= 0, (4.15)

i.e., we can only react to disturbances which happened in the past. New disturbances are added

at each time point. Since they are always from the same set of disturbances, we use u
(
g

(i)
w , l, j

)

to denote the control input at time j for the i-th generator of the disturbances which affected

the system at time l. As we do not know the exact disturbance trajectories in advance, (4.14)

only considers inputs for disturbances of previous time steps l < j, which are known at time

j. When we use the first time step of this control law (4.14) as an auxiliary controller for our

receding horizon implementation (4.11), it therefore depends solely on the initial state and

involves only u(cx,0, 0) and u
(
g

(1)
x,0, 0

)
, . . . , u

(
g

(p0)
x,0 , 0

)
. The actual disturbances of previous time

steps are contained in the measured initial state, and we consider the set of possible future

disturbances to obtain trajectories which satisfy the constraints and avoid splits despite any

future disturbances.

We find the input trajectories u(cx,0, · ), u
(
g

(1)
x,0, ·

)
, . . . , u

(
g

(p0)
x,0 , ·

)
, and u

(
g

(1)
w , · , ·

)
, . . . ,

u
(
g

(r)
w , · , ·

)
along the finite horizon [0,M −1] by solving a linear program analogous to (3.29)–

(3.31) in Sec. 3.4. In the linear program, we minimize the reachable sets around the reference

trajectory, minimize the applied inputs, and maximize the distance of the reachable sets to the

mode boundaries. The upper bound of the costs for the distance from the reference trajectory

and the applied inputs in each time step can be obtained similar to Lemma 2:

Corollary 2. Let Rk,uctrl,0,W(X0) denote the reachable set resulting from control law (4.14) at

time k, then the following inequality holds:

∥∥Rk,uctrl,0,W(X0)− xref (k)
∥∥

1
+ γ

∥∥uctrl,0
(
Rk−1,uctrl,0,W(X0),W, k − 1

)∥∥
1

≤
∥∥∥∥∥Ācx,0 − xref (k) +

k−1∑

j=0

(
Āf,jfj + B̄u,ju(cx,0, j)

)
∥∥∥∥∥

1

+

p0∑

i=1

∥∥∥∥∥Āg
(i)
x,0 +

k−1∑

j=0

B̄u,ju
(
g

(i)
x,0, j

)
∥∥∥∥∥

1

+

k−2∑

j=0

r∑

i=1

∥∥∥∥∥B̄w,jg
(i)
w +

k−1∑

l=j+1

B̄u,lu
(
g(i)
w , j, l

)
∥∥∥∥∥

1

+

r∑

i=1

∥∥∥∥∥B̄w,k−1g
(i)
w

∥∥∥∥∥
1

+ γ


‖u(cx,0, k − 1)‖1 +

p0∑

i=1

∥∥∥u
(
g

(i)
x,0, k − 1

)∥∥∥
1

+

k−2∑

j=0

r∑

i=1

∥∥∥u
(
g(i)
w , j, k − 1

)∥∥∥
1


 . (4.16)

Proof. Let us introduce the shorthand notations αi for αi(x0) and βi,j for βi(w(j)). The fol-
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lowing holds:

∥∥Rk,uctrl,0,W(X0)− xref (k)
∥∥

1
+ γ

∥∥uctrl,0
(
Rk−1,uctrl,0,W(X0),W, k − 1

)∥∥
1

(4.12)
= max

x(0)∈X0,w( · )∈W

∥∥∥∥∥∥
Āx(0) +

k−1∑

j=0

(
B̄u,juctrl,0(x(0), w( · ), j) + B̄w,jw(j) + Āf,jfj

)
− xref (k)

∥∥∥∥∥∥
1

+ γ
∥∥∥uctrl,0(x(0), w( · ), k − 1)

∥∥∥
1

(4.13),
(4.14)

= max
αi,βi,j∈[−1,1]

∥∥∥∥∥Ā
(
cx,0 +

p0∑

i=1

αig
(i)
x,0

)

+

k−1∑

j=0

B̄u,j

(
u(cx,0, j) +

p0∑

i=1

αi(x
(0))u

(
g

(i)
x,0, j

)
+

j−1∑

l=0

r∑

i=1

βi,lu
(
g(i)
w , l, j

)
)

+

k−1∑

j=0

(
B̄w,j

r∑

i=1

βi,jg
(i)
w + Āf,jfj

)
− xref (k)

∥∥∥∥∥
1

+ γ

∥∥∥∥∥∥
u(cx,0, k − 1) +

p0∑

i=1

αiu
(
g

(i)
x,0, k − 1

)
+

k−2∑

j=0

r∑

i=1

βi,ju
(
g(i)
w , j, k − 1

)
∥∥∥∥∥∥

1

see
below= max

αi,βi,j∈[−1,1]

∥∥∥∥∥Ācx,0 +

k−1∑

j=0

B̄u,ju(cx,0, j) +

p0∑

i=1


Āαig(i)

x,0 +

k−1∑

j=0

B̄u,jαiu
(
g

(i)
x,0, j

)



+

k−1∑

j=0

r∑

i=1

B̄w,jβi,jg
(i)
w +

k−2∑

j=0

r∑

i=1

k−1∑

l=j+1

B̄u,lβi,ju
(
g(i)
w , j, l

)
+

k−1∑

j=0

Āf,jfj − xref (k)

∥∥∥∥∥
1

+ γ

∥∥∥∥∥∥
u(cx,0, k − 1) +

p0∑

i=1

αiu
(
g

(i)
x,0, k − 1

)
+

k−2∑

j=0

r∑

i=1

βi,ju
(
g(i)
w , j, k − 1

)
∥∥∥∥∥∥

1

triangle
inequal.

≤ max
αi,βi,j∈[−1,1]

∥∥∥∥∥Ācx,0 − xref (k) +

k−1∑

j=0

(
Āf,jfj + B̄u,ju(cx,0, j)

)
∥∥∥∥∥

1

+

p0∑

i=1

∥∥∥∥∥αi


Āg(i)

x,0 +

k−1∑

j=0

B̄u,ju
(
g

(i)
x,0, j

)


∥∥∥∥∥

1

+

k−2∑

j=0

r∑

i=1

∥∥∥∥∥βi,j


B̄w,jg(i)

w +

k−1∑

l=j+1

B̄u,lu
(
g(i)
w , j, l

)


∥∥∥∥∥

1

+

r∑

i=1

∥∥∥∥∥βi,k−1B̄w,k−1g
(i)
w

∥∥∥∥∥
1

+ γ


‖u(cx,0, k − 1)‖1 +

p0∑

i=1

∥∥∥αiu
(
g

(i)
x,0, k − 1

)∥∥∥
1

+

k−2∑

j=0

r∑

i=1

∥∥∥βi,ju
(
g(i)
w , j, k − 1

)∥∥∥
1



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= max
αi,βi,j∈[−1,1]

∥∥∥∥∥Ācx,0 − xref (k) +

k−1∑

j=0

(
Āf,jfj + B̄u,ju(cx,0, j)

)
∥∥∥∥∥

1

+

p0∑

i=1

‖αi‖1︸ ︷︷ ︸
≤1

∥∥∥∥∥Āg
(i)
x,0 +

k−1∑

j=0

B̄u,ju
(
g

(i)
x,0, j

)
∥∥∥∥∥

1

+

k−2∑

j=0

r∑

i=1

‖βi,j‖1︸ ︷︷ ︸
≤1

∥∥∥∥∥B̄w,jg
(i)
w +

k−1∑

l=j+1

B̄u,lu
(
g(i)
w , j, l

)
∥∥∥∥∥

1

+

r∑

i=1

‖βi,k−1‖1︸ ︷︷ ︸
≤1

∥∥∥∥∥B̄w,k−1g
(i)
w

∥∥∥∥∥
1

+ γ


‖u(cx,0, k − 1)‖1 +

p0∑

i=1

‖αi‖1︸ ︷︷ ︸
≤1

∥∥∥u
(
g

(i)
x,0, k − 1

)∥∥∥
1

+

k−2∑

j=0

r∑

i=1

‖βi,j‖1︸ ︷︷ ︸
≤1

∥∥∥u
(
g(i)
w , j, k − 1

)∥∥∥
1




=

∥∥∥∥∥Ācx,0 − xref (k) +

k−1∑

j=0

(
Āf,jfj + B̄u,ju(cx,0, j)

)
∥∥∥∥∥

1

+

p0∑

i=1

∥∥∥∥∥Āg
(i)
x,0 +

k−1∑

j=0

B̄u,ju
(
g

(i)
x,0, j

)
∥∥∥∥∥

1

+

k−2∑

j=0

r∑

i=1

∥∥∥∥∥B̄w,jg
(i)
w +

k−1∑

l=j+1

B̄u,lu
(
g(i)
w , j, l

)
∥∥∥∥∥

1

+

r∑

i=1

∥∥∥∥∥B̄w,k−1g
(i)
w

∥∥∥∥∥
1

+ γ


‖u(cx,0, k − 1)‖1 +

p0∑

i=1

∥∥∥u
(
g

(i)
x,0, k − 1

)∥∥∥
1

+

k−2∑

j=0

r∑

i=1

∥∥∥u
(
g(i)
w , j, k − 1

)∥∥∥
1


 .

Note that at one point, we switched the indices of u
(
g

(i)
w , l, j

)
to u

(
g

(i)
w , j, l

)
for a better

presentation. In the control law (4.14), we express which inputs are used at each time step j to

counteract the disturbance effects of previous time steps j < l. In order to show which inputs

are used to counteract each disturbance generator, we rewrite the sums after the third equality

sign. There, we used the fact that the following changes hold for any function f(j, l) which

depends on the parameters j and l :

k−1∑

j=1

j−1∑

l=0

f(j, l)

=

0∑

l=0

f(1, l) +

1∑

l=0

f(2, l) · · ·+
k−2∑

l=0

f(k − 1, l)

=
(
f(1, 0)

)
+
(
f(2, 0) + f(2, 1)

)
+ · · ·+

(
f(k − 1, 0) + f(k − 1, 1) + · · ·+ f(k − 1, k − 2)

)

=
(
f(1, 0) + f(2, 0) + · · ·+ f(k − 1, 0)

)
+
(
f(2, 1) + · · ·+ f(k − 1, 1)

)
+ · · ·+

(
f(k − 1, k − 2)

)

=

k−1∑

j=1

f(j, 0) +

k−1∑

j=2

f(j, 1) + · · ·+
k−1∑

j=k−1

f(j, k − 2)

=

k−2∑

l=0

k−1∑

j=l+1

f(j, l)

Note that we start the sum with j = 1, as u
(
g

(i)
w , l, 0

)
= 0, ∀l ∈ N0, see (4.15).
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We use cost(Rk,uctrl,0,W(X0)) to refer to the upper bound of the cost function (4.16). In

contrast to the minimization in Sec. 3.4, where we optimized the final set after the whole time

horizon in the linear case and the reachable set after a single iteration step in the nonlinear

case, we use a receding horizon in this chapter. As common for receding horizon optimization

such as MPC, we therefore consider the sizes of the reachable sets at each time step. Thus, we

state the cost function for a single time step and later minimize the sum of the cost terms over

the whole time horizon.

The result of Corollary 2 can be interpreted graphically: as shown in Fig. 4.3, we exploit the

available control capabilities and steer the center of the initial set towards the reference state

and the generators towards the origin, thereby aiming at bringing all states close to xref (k).

In contrast to the approach from Sec. 3.4 and its illustration in Fig. 3.8, we consider additional

generators for the disturbances. Since we can only counteract disturbances which happened in

previous time steps, the disturbances at the last time step k − 1 appear unaffected in (4.16).

input solutions for center

Ācx,0

Āg
(2)
x,0

B̄w,1gw

Āg
(1)
x,0

B̄w,0gw

xref

g
(2)
x,0

g
(1)
x,0

cx,0

input solutions
for generators

Figure 4.3: Illustration of the set-based control approach similar to Fig. 3.8, but with explicit

consideration of disturbances: We obtain a small reachable set close to xref (k) by steering the

center of the initial set to xref (k), and the generators of the initial set as well as those resulting

from disturbances to the origin (here for the disturbance set 〈0, gw〉 and a horizon of two). The

last disturbance generator B̄w,1gw is not affected, as we cannot directly measure the disturbances.

In addition to the costs from the size of the final set and the applied inputs, we also wish

to stay away from the mode boundaries to minimize the number of splits. To achieve this, we

weight the minimal distance of the reachable sets to the mode boundaries, similarly to what we

do in the optimization of the reference trajectory in (4.8):

cost(d) := −
M∑

k=1

d(k) (4.17)

s.t. ∀k ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , v(k)} :

‖CM,j(k)‖2d(k) ≤ CM,j(k)cx,k +

pk∑

i=1

|CM,j(k)g
(i)
x,k| − dM,j(k), (4.18)
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where CM,j(k) and dM,j(k) represent the j-th row (of v(k) rows total) of the matrix and

vector defining the half-space representation of Mk, i.e., the mode in the main switching se-

quence at time k, and cx,k, g
(1)
x,k, . . . , g

(pk)
x,k denote the center and generators of the reachable sets

Rk,uctrl,0,W(X0). Since additional generators from the disturbance effects are added in every

time step, the number of generators pk of the reachable sets increases over time.

We use Lemma 1 to check the state constraints Sk = 〈CSk , dSk〉H with

CSkcx,k +

pk∑

i=1

|CSkg
(i)
x,k| ≤ dSk . (4.19)

To satisfy the input constraints, we have to ensure that the sum of all possible inputs for the

center and generators does not exceed the input bounds. This can be checked analogously to

Corollary 1:

Corollary 3. The control law uctrl,0(x(0), w( · ), j) from (4.14) satisfies the input constraints

U = {u ∈ Rm | CUu ≤ dU} if ∀j ∈ {0, . . . ,M − 1} :

CUu(cx,0, j) +

p0∑

i=1

|CUu
(
g

(i)
x,0, j

)
|+

j−1∑

l=0

r∑

i=1

|CUu
(
g(i)
w , l, j

)
| ≤ dU. (4.20)

Proof. Using the same proof concept as in Corollary 1, it follows that

u(cx,0, j) +

p0∑

i=1

αiu
(
g

(i)
x,0, j

)
+

j−1∑

l=0

r∑

i=1

βi,lu
(
g(i)
w , l, j

)
∈ U,

∀α ∈ [−1, 1]p0 , β ∈ [−1, 1]r×j , ∀j ∈ {0, . . .M − 1}

⇔ CUu(cx,0, j) +

p0∑

i=1

|CUu
(
g

(i)
x,0, j

)
|+

j−1∑

l=0

r∑

i=1

|CUu
(
g(i)
w , l, j

)
| ≤ dU, ∀j ∈ {0, . . . ,M − 1}.

Using (4.17) together with the results from Corollary 2, Lemma 1, and Corollary 3, allows us

to express everything in a single optimization problem similar to optimization problem (3.29)–

(3.30):

min
u(cx,0, · ),u(g

(i)
x,0, · ),u(g

(i)
w , · )

M∑

k=1

cost(Rk,uctrl,0,W(X0)) + γd cost(d) (4.21)

s.t. ∀k ∈ {1, . . . ,M} : (4.18), (4.19), (4.20),

where γd ∈ R+
0 is a weight used to adjust the importance of being far away from the mode

boundaries. Our new optimization problem has a similar structure as the optimization problem

(3.29)–(3.30). Since the only additional cost term and constraint are both linear, we obtain

again a single linear program.

Problem (4.21) provides the inputs u(cx,0, · ) and u(g
(i)
x,0, · ), which can be used to compute
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i) the feedback law uctrl(x, 0) at time 0 via (4.11):

uctrl(x, 0) = u(cx,0, 0) +

p0∑

i=1

αi(x)u(g
(i)
x,0, 0), (4.22)

where αi(x), i ∈ {1, . . . , p0}, are such that

x = cx,0 +

p0∑

i=1

αi(x)g
(i)
x,0; (4.23)

ii) the reachable set X∗(1) = R1,uctrl,W(X∗(0))∩M1, where M1 is the mode to which xref (1)

belongs (see Step 2 in Section 4.3).

Splits and Recovery

The procedure described above is iteratively repeated for N time steps (with a shrinking horizon

of N − k for the last M iterations). Afterwards, we check for each split with any mode that

has occurred (Fig. 4.2(d)) whether the split set can be steered back into the main sequence

or not (Figs. 4.2(e) and (f), respectively). We do this by solving optimization problem (4.21)

for a time horizon of Msplit, starting at the time step k0 when the split occurred and with the

additional constraints

d(k) ≥ 0,∀k ∈ {k0 + 1, . . . , k0 +Msplit}

and

Xsplit(k0 +Msplit) ⊆ X∗(k0 +Msplit),

where we denote by Xsplit(k0 + Msplit) the reachable set starting from the split with a single

mode.

These additional constraints ensure that the reachable set of the split set is steered back into

the main switching sequence after one time step and completely stays inside this mode sequence

until it is a subset of the main reachable set X∗(k0 +Msplit). Therefore, we only need to solve

a single linear program inside the main switching sequence. Without these constraints, we

would have to consider the combinatorial problem of all possible modes the set could enter and

therefore the different dynamics which could be applied. This would lead to an MILP similar

to the reference trajectory. The second constraint Xsplit(k0 +Msplit) ⊆ X∗(k0 +Msplit) can be

easily checked using the half-space representation of X∗(k0 + Msplit) together with Lemma 1.

Note that if k0 +Msplit < N, we use the horizon N − k0 instead.

If the optimization problem is not feasible, we cannot steer the reachable set back in Msplit

steps along the main switching sequence. In this case, we start a new optimization problem

with a new reference trajectory and with a reduced time horizon of N − k0 steps.

Obtaining the Online Control Law

The outcome of the overall control design procedure described in this section is a collection

of zonotopes per time step representing the reachable set (possibly split over different modes
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and over-approximated) and the associated set-based controllers. Both of them are finitely

parameterized and have a low space complexity (which scales linearly with the number of states,

time steps, and splits). Analogous to the previous chapter, the controller and corresponding

reachable set can be stored as a motion primitive for a maneuver automaton.

Once the value x of the state at time k is available during online application, it is possible

to determine the input uctrl(x, k) using (4.22). Several possibilities exist for obtaining the

parameters αi(x) in (4.22): the easiest way is by solving the system of inequalities (4.23). Since

this is a linear feasibility program, it can be solved fast online.

If faster computation times are required, then we can use the closed-form expressions of

convex combinations from Appendix A: by interpolating the α values of the extreme points

of our zonotope, we can use this technique to obtain them through a closed-form expression.

It is also possible to over-approximate the reachable set in each time step by a parallelotope,

analogously to the nonlinear case of the generator interpolation controller in Sec. 3.4. In the

case of a parallelotope, we can obtain the α values by simply inverting the generator matrix.

This allows us to obtain linear controllers, which work analogously to the disturbance feedback

controllers discussed in [148].

4.6 Numerical Example

We demonstrate the effectiveness of our approach on the quadruple tank benchmark described

in [149]. The system is nonlinear with 4 states h1, . . . , h4 and 2 control inputs v1, v2, that

denote the tank levels and the voltage inputs to the two pumps, respectively. The equations of

the system are

ḣ1 = − a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1k1

A1
v1,

ḣ2 = − a2

A2

√
2gh2 +

a4

A2

√
2gh4 +

γ2k2

A2
v2,

ḣ3 = − a3

A3

√
2gh3 +

(1− γ2)k2

A3
v2,

ḣ4 = − a4

A4

√
2gh4 +

(1− γ1)k1

A4
v1,

where the values of the various parameters can be found in [149]. The states are constrained

between 0 cm and 20 cm, and the inputs are bounded between 0V and 12V . To obtain a PWA

system, we linearize the dynamics around different points and consider the approximation

error as an additive disturbance that we want to counteract (one disturbance for each dynamics

equation). The state space is therefore partitioned into 16 modes obtained by splitting each axis

into the two intervals [0, 3] cm and (3, 20] cm. For each mode, a linear approximation is obtained

by Taylor expansion around the centers of the intervals. We bound the resulting linearization

errors and include them with the external disturbances in a disturbance set W = [−1, 2]4 V .

We model the disturbances acting on the system through the same input matrix as the inputs,

i.e., B
(s)
w = B

(s)
u , ∀s ∈ {1, . . . , 16}.
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We choose a sampling time of 1 second, N = 20 for the time horizon, M = 3 for the predic-

tion horizon, and Msplit = 7 for the horizon after a split. The time-varying state constraints

are

0.55k cm ≤ hi(k) ≤ 5 + 0.55k cm, i = 1

0.15k cm ≤ hi(k) ≤ 2 +
k2

16
cm, i = 2

4 cm ≤ hi(k) ≤ 13 cm, i = 3
4 cm ≤ hi(k) ≤ 11 cm, i = 4




∀k ∈ {1, . . . , 10},

3 cm ≤ hi(k) ≤ 10 cm, ∀i ∈ {1, . . . , 4}
}
∀k ∈ {11, . . . , 20}.

The initial set X0 is given as a box with edges of lengths [0.6 cm, 0.6 cm, 0.2 cm, 0.2 cm] around its

center cx,0 = [1 cm, 1 cm, 12 cm, 7 cm]T and the terminal state x(f) is set to [9 cm, 6.5 cm, 6.5 cm,

6.5 cm]T .

Results

Figure 4.4: Results from numerical example: Reference trajectory (black), initial set (green),

main reachable sets (blue), and state constraints (gray) at all time steps, projected onto the

(h1, h2) plane (left) and (h3, h4) plane (right). The mode boundaries are plotted in magenta. At

time k = 5, a split set originates from an intersection with the boundary h2 = 3 cm (in red). The

corresponding reachable sets (in red) merge back with the main reachable set after Msplit = 7

steps.

We run our algorithm on the same computer as in the previous chapter, see Sec. 3.3.7;

the MILP for the reference trajectory computation is solved via CPLEX, whereas the linear

programming problems for the set-based controller computation are solved as in Sec. 3.4.3 with

CVX using the solver SDPT3. As in the previous chapter, we again use the CORA toolbox for

the zonotope computations. The overall computations take 2.5 minutes.
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Figure 4.5: 5,000 simulation runs of the resulting controller with random initial states and

random disturbances. Top: Resulting state trajectories and reachable sets from Fig. 4.4. Bottom:

Corresponding input trajectories with inputs bounds plotted in red.

The results are presented in Fig. 4.4, where we project the resulting sets on the (h1, h2) and

(h3, h4) planes. We see that the initial set is steered along the reference trajectory and always

stays inside the state constraints. It can also be seen that both the reference trajectory and

the sets stay away from the mode edges, if possible. In particular, this can be seen in Fig. 4.4

(left) where the reachable set at the second time step is entirely maintained below the mode

boundary h1 = 3 cm (magenta) and is entirely steered above the boundary at the third time

step to prevent splitting. This is not possible at k = 5, as can be seen in Fig. 4.4 (left) when

h2 crosses the line h2 = 3 cm, so that a split occurs. However, the split set is rather small

(shown in red). Due to the different dynamics and disturbances, the evolution of the split set
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over time is different from the evolution of the main set (red sets propagating); nonetheless,

we are able to steer the split set inside the main reachable set in Msplit = 7 time steps, thus

avoiding branching. As a result, we can compute the controller via one MILP for the reference

trajectory, 20 linear programs for the main reachable set, and a single linear program to steer

the split set back to the main reachable set.

In addition, we also present the results for 5,000 simulations of the controller with random

initial states and random disturbances from their respective sets in Fig. 4.5. We see that

all state trajectories are indeed inside the reachable sets and therefore also satisfy the state

constraints. The same is true for the input trajectories, which all satisfy the input constraints

despite disturbances.

Comparison with Modified Approaches

For comparison, we also solve the problem with a modified version of our approach, where we

do not weight the distance to the boundaries of modes or state constraints in the cost function

when computing the reference trajectory. As a consequence, the new reference trajectory stays

close to the lower boundaries of the time-varying state constraints, while just barely satisfying

them. The set-based controller tries to stay close to this trajectory while still satisfying the state

constraints. This works for a few steps; however, after that, the receding horizon optimization

problem becomes infeasible. It is impossible to find a set-based controller which steers the

whole reachable set inside the state constraints of the next time step because the lower bound

of the state constraints increases faster than the controller can steer all states from the current

reachable set.

We also consider another variant of our algorithm, where we weight the distances to the

state constraint boundaries for the reference trajectory, but we do not weight the distances

to the mode boundaries for the reference trajectory or the set-based controller. In this case,

we obtain a feasible solution for the main reachable set; however, we have to split two times.

Moreover, it is not possible to steer any of these split sets into the main reachable set sequence

after Msplit = 7 time steps. This therefore leads to two additional MILP and 27 additional

linear programs and more than twice the computation time. Even if we consider the distance

to the mode boundaries during the computation of the reference trajectory, we end up with

two splits, one of which cannot be steered back into the main sequence if we do not consider

the distance to the mode boundaries during the computation of the set-based controller. While

decreasing the computation time and the number of control laws which need to be stored, our

approach increases the costs for the size of the reachable set cost(Rk,uctrl,0,W(X0)) by only 10%,

compared to the approach where we ignore the costs for the distance to the mode boundaries.

This shows how directly considering the distance to the boundaries of the mode sets and the

state constraints is beneficial for obtaining good controller results and how we are able to

minimize the overall computational effort and time by carefully choosing the cost functions.
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Comparison with Existing Tools

For an additional comparison, we try to solve the problem at hand with Pessoa [150], a tool to

compute abstraction-based controllers. The advantage of this correct-by-construction method

is that one obtains a finite state machine and can use tools which are able to handle linear

temporal logic specifications. As discussed before, the general bottleneck of these approaches is

the requirement to compute an abstraction, which scales exponentially in the state and input

dimensions. To reduce the size of the abstraction, we confine the considered state space to the

set S = [0, 10] cm× [0, 10] cm× [3, 15] cm× [3, 11] cm. We discretize the states with a resolution

of 0.5 cm and the inputs with a resolution of 3V , thereby obtaining a discrete abstraction with

187,425 states and 25 inputs. For simplicity’s sake, we do not include any time dependence in

the problem, i.e., we do not consider the time-varying state constraints nor do we specify at

what time the final set has to be reached. We could include this time dependency by adding

the time as an additional state, which would increase the number of states and therefore the

computation time by a factor of 20. Since Pessoa synthesizes controllers of the form “stay in

set A” or “reach set A while staying in set B”, we change the task to “reach set G while staying

in set S”.

Even if we choose the goal set to be the whole final state constraint, i.e., G = [3, 10] cm ×
[3, 10] cm×[3, 10] cm×[3, 10] cm, we are not able to find a controller which works for all states of

the initial set, not even if we ignore disturbances. We have also tried it with a state resolution of

1 cm and an input resolution of 1V , which also leads to the same result that no controller exists

which satisfies the specifications for all initial states with the abstracted model. With a finer

resolution of the abstraction, e.g., a state resolution of 0.5 cm and an input resolution of 1V ,

it might be possible to find a controller. However, with a resolution of 1 cm for states and 1V

for inputs, for which we could not find a controller, the computation of the abstraction already

takes around 8 hours. If we use a state resolution of 0.5 cm, we need 13.2 times as many discrete

states compared to the state resolution of 1 cm, which would lead to a computation time of over

105 hours. If we also include the time dependencies, we would even have a computation time

of almost 3 months. This shows that for this example our approach scales much better. Please

note that if one obtains a controller with Pessoa, one can reuse it for different initial states in

the abstracted state space, while for our approach, we need to compute a new controller for an

initial state outside of our original initial set.

We also compare our approach with the one proposed in [151]. There, the authors refor-

mulate the robust control as an MILP problem that simultaneously takes into account all the

possible (unknown) switching sequences that the system may follow while satisfying the specifi-

cation. We tested the approach from [151] on our problem and were not able to find a solution

after several hours of computation. This is not unexpected since the number of binary variables

appearing in the MILP used in [151] scales exponentially with the number of time instants. The

computational burden of a time horizon of 20 steps is therefore already too high. The approach

proposed in this chapter also resorts to MILP, but the number of binary variables required in

our case only scales linearly with the time horizon — thus, our approach is able to cope with

larger instances of the problem.
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4.7 Discussion

Online Computational Complexity

As discussed at the end of Sec. 4.5, there are multiple ways to obtain the online control law.

None of them is computationally hard. If we simply want to find a vector α which describes the

measured state inside the reachable set of the current time step, this can be done by solving a

linear feasibility problem. As this can be done using linear programming, where we can even

optimize the used input, and linear programs scale polynomially [99], this can be done fast

online. By restricting the maximum order of the zonotope representation, we can further limit

the computational effort to our needs. If we restrict it to a parallelotope at the beginning of

each step, we can simply invert the generator matrix as done for the generator interpolation

controller in Sec. 3.4. In this case, we do not have to solve any linear program, only perform a

simple matrix vector multiplication.

Offline Computational Complexity

The offline algorithm described in Section 4.3 solves an MILP every time we compute a reference

trajectory for which efficient solvers exist (see, e.g., CPLEX); nonetheless, the complexity of

an MILP is, in the worst case, exponential in the number of binary variables. In our case,

the binary variables are represented by the vector δ(k) for each time step, and therefore their

number increases linearly with the problem horizon and also linearly with the number of modes.

We benefit from the fact that in our approach, the extra requirement of staying far from mode

boundaries does not require the addition of extra binary variables. To reduce the computational

effort, since the state constraints have to be satisfied at each time step, it is possible to prune the

exploration tree by removing any switching sequence that contains modes that do not intersect

the state constraint sets at some time step.

For the set-based controller design, if all reachable sets stay within the main mode sequence,

we have to solve N linear programs which scale polynomially in the size of the optimization

variables and constraints [99]. In our case, these variables scale linearly in the prediction horizon

M and linearly in the state and input dimensions, if we fix the zonotope order. This can be

done by applying zonotope reduction methods [226] which reduce the number of generators in

the considered zonotopes to lower the computational effort. Therefore, the controller synthesis

problem can be solved very efficiently.

Note that we cannot give a fixed bound on the number of splits; however, we expect that

splits do not occur too frequently in practical examples, especially because we try to avoid them

by maximizing the distance to the mode boundaries. If the split set can be steered back in the

main mode after Msplit time steps, this adds only a single linear program to the computational

effort. If we cannot steer it back in Msplit time steps, a new reference trajectory has to be

computed, which requires solving a new MILP.

Due to the exponential scaling of the computational effort for solving an MILP compared

to the polynomial scaling for linear problems, the complexity of the MILP for computing the

reference trajectory governs the overall complexity of the proposed algorithm. Therefore, if we
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denote the number of splits which cannot be steered back by S, the overall complexity of our

algorithm is (S + 1)O(MILP).

Optimality

For linear problems and mixed-integer linear problems, it is possible to find the global optimal

solution [152, 153]. Therefore, we are able to find the optimal solution to our optimal con-

trol problems according to our cost and constraint functions. Since we consider the additional

requirements of staying away from mode boundaries to avoid splits of the reachable sets, the

resulting solutions are in general not the optimal solutions of the unmodified problem. Comput-

ing those solutions, however, would require either performing the complex MILP optimization

online for the current state, or solving and storing the solution for all states under all distur-

bances with all possible mode sequences, which easily becomes far too complex to compute or

store. Therefore, by considering the costs for avoiding the splits, we obtain a solution, which

might be non-optimal, but which avoids the split over too many mode sequences and which

allows us to efficiently compute and store the controllers for a whole set of solutions despite

disturbance effects. Note that limiting the optimization horizon M of our set-based controller

to M < N can also lead to non-optimal solutions. However, this can be overcome by always

optimizing over the whole prediction horizon N , and therefore results in a trade-off between

computation time and quality of the solutions.

4.8 Summary

In this chapter, we extend the ideas from the previous chapter to the hybrid dynamics of

piecewise affine systems. In our new approach, we account for the possible increase of the

(offline) computational effort of the state feedback controller by explicitly aiming to prevent

the disturbance from activating too many modes.

This is achieved by a two-step approach where, in the first step, we compute a nominal

reference trajectory which stays far from the mode boundaries, and, in the second step, we track

this reference trajectory using a set-based feedback controller which minimizes the reachable

sets along the reference trajectory while avoiding splitting of the reachable sets over modes. If

we are able to avoid splitting, our synthesis method reduces to a single MILP for the reference

trajectory computation and N linear problems, where N is the horizon length. Otherwise, a

mode recovery procedure (linear problem) and, possibly, a branching of the reference trajectory

(MILP on the residual time horizon) are activated.

Like the approaches in Ch. 3, most computations and in particular all MILPs are performed

offline. The resulting control law is very simple to store and apply online. This provides sig-

nificant advantages over approaches from the literature, which face the difficulty that many

modes lead to many possible mode sequences, which leads to challenging combinatorial prob-

lems [124, 151]. This effect becomes even worse when considering a set of initial states or

disturbances, as the number of possible mode sequences rapidly increases in this case, which

limits the applicability of approaches like [125–132]. By computing the reference trajectory for a
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single state without uncertainty, we benefit from the efficient optimization tools which exist for

this simpler case. By optimizing the reachable sets to avoid splitting over multiple modes, we

actively avoid the branching of mode sequences, which allows us to use the efficient approaches

from the previous chapter and benefit from their advantages and guarantees. Therefore, our

new algorithm is not only more efficient than many existing ones, but we are also able to provide

formal guarantees.

In contrast to many MPC approaches [17,139–143], we do not need to solve a complex opti-

mization problem online, nor do we require finding a Lyapunov function or have the restriction

that a common Lyapunov function has to exist for all modes [145]. We also do not need to

tighten constraints or compute invariant sets. In contrast to existing approaches, we take the

possibility that the reachable set may be split explicitly into account and provide countermea-

sures when designing the reference trajectory and the feedback controller. We also do not face

the same problems as approaches using abstraction-based control [150] or multiparametric pro-

gramming [147], whose computational effort becomes too high for most practical applications

or whose explicit forms are complex to store and apply online. We demonstrated this for a

quadruple tank benchmark example. While our new approach was able to solve this problem,

it was not possible with existing approaches [150] and [151].
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Chapter 5

Offline Controller Synthesis

Using Backward Reachable Sets

5.1 Introduction

So far, we presented a number of control approaches which minimize reachable sets and ensure

safety at all times, despite disturbances and sensor noise. However, even though safety is

undeniably the most important feature for a successful application of autonomous systems,

there are also other important aspects which determine success in practice, e.g., comfort, energy

consumption, and long-term wear. There exists a wide variety of classical controllers which

focus on these performance goals and are often used in practice, e.g., standard MPC [12].

However, due to the way they are designed, they cannot be formally verified to prove safety in

all situations. Formal control algorithms, including those from previous chapters, on the other

hand, focus on ensuring safety under all possible situations, thereby possibly requiring large

input values and fast input changes opposing comfort, energy consumption, and long-term wear

goals.

To benefit from the advantages of optimal and safe control, we pursue the following idea in

this chapter1: We combine a formal controller serving as a safety net with an optimal, unverified

controller which minimizes some cost function. While worst-case behavior has to be considered

for safety, in most situations, such behavior does not occur and an optimal controller can

achieve better performance. To ensure safety, the formal safety controller monitors the optimal

controller by computing its reachable set for the near future. As long as this set is safe, the

optimal controller is applied. Otherwise, the safety controller takes over to keep the system

safe. Thus, we combine the optimality of classical control with the safety of formal controller

synthesis.

In principle, we can use any of the synthesis approaches from the previous chapters to

compute a safety controller. However, there, we focus on minimizing the reachable set as

quickly as possible. Therefore, the sets in which the controller can guarantee finding a safe

1This chapter and most of its figures are based on [214] c© 2022 IEEE.
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solution would be small so that the safety controller would take over most of the time. In the

second part of this chapter, we address this problem by optimizing over backward reachable

sets instead. By fixing the final reachable set, we compute backwards in time the maximum

set for which we can find a safety controller, thereby maximizing the set in which the optimal

controller can safely operate and thus minimizing interventions from the safety controller.

Related Work on Under-Approximative Reachable Sets

When using approximations of reachable sets to ensure safety, one has to compute over-

approximations for forward reachable sets, as used in the previous chapters, and under-approxi-

mations for backward reachable sets [154]. While the idea is simple, the computation of under-

approximative backward reachable sets is not straightforward. There exist fewer methods than

for forward reachable set computation like [1,2] and they are often more conservative than the

forward algorithms. They exist for linear systems [155–157], piecewise affine systems [158], and

polynomial systems [159–161]. Only a few consider general nonlinear systems, e.g., [162–167],

of which most consider systems without inputs [162–166]. The combination of backward reach-

able sets and controller design is done in [168], however only for discrete-time, linear systems

without disturbances.

Since we consider nonlinear systems, let us review the approaches for these systems in more

detail. Several approaches, mostly for polynomial systems, use the Hamilton-Jacobi framework

to find under-approximations of reachable sets [159, 161, 162]. While they obtain quite good

results for low-dimensional polynomial systems, they do not scale well with higher dimensions

or polynomial degrees. Recent approaches use decomposition to deal with the unfavorable

computational complexity of their methods [169], at least for suitable classes of nonlinear sys-

tems, where the dynamics are loosely coupled. Other approaches use Taylor models in com-

bination with polytopic level sets to under-approximate the reachable set [165]. They have

the disadvantage that they might result in unconnected sets, where only one is the actual

under-approximation, which then requires computationally expensive checks to find the proper

set. Computational challenges also arise when trying to solve practical problems with the

approach in [163], which uses so-called polynomial level-set functions to represent the under-

approximative reachable sets and is too hard to compute for larger state spaces. Another

method is proposed in [166], which has been extended for systems with inputs in [167]. Their

results are promising, however, they only compute under-approximations of projections on the

coordinate axes. To the best of our knowledge, there exists no approach which computes actual

under-approximative reachable sets for nonlinear systems with inputs. Therefore, and since we

need a special preservation of input effects for our controller synthesis, which is not provided by

any of the existing techniques, we develop a new approach. This new approach uses optimiza-

tion to maximize the size of backward reachable sets and uses a forward reachability algorithm

based on [76] to verify the results.
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Related Work on Safety Nets

The idea of a controller safeguarding other controllers has been previously proposed, e.g., by

[170, 171]. There, stability is proven for certain regions with a simple controller, which takes

over if a more complex controller fails to satisfy certain safety constraints. This framework

is extended in [172, 173] by including the online computation of reachable sets to identify the

regions from which the verified controller can recover the system to a stable region. Computing a

safe invariant region for a safety controller and ensuring that a second controller cannot leave this

region is done in invariance control [174, 175]. Combining the satisfaction of safety constraints

with performance controllers can also be achieved using control barrier functions and has been

applied to different types of systems, such as autonomous cars and robotic applications [44–48].

A related method is that of reference governors [176–178], which monitor the system and modify

the inputs when constraints would be violated. The idea of using reachability analysis together

with a safety controller is also used for motion planning in [43] and for safe reinforcement

learning in [179]. Another type of safety net controller named shielding is presented in [180],

which can also be used for safe reinforcement learning [181].

While there exist already different approaches for safety nets, they often only consider sys-

tems without disturbances [171–175, 177] and some only discrete automata [180, 181]. The

approaches [43, 179] can deal with disturbances; however, they rely on Hamilton-Jacobi reach-

ability analysis and even though there have been advancements for special types of systems,

in general their computational effort scales exponentially with the number of states and is

therefore restricted to low-dimensional systems [182]. Similar restrictions hold for approaches

using control barrier functions such as [44–49]: While it has been shown that one can consider

disturbances in the controller design based on control barrier functions, see [49], as they use

sums-of-squares programming to obtain the control barrier and control Lyapunov functions,

they face a fast growth of computational effort with the system dimension and considered

polynomial degree as well.

5.2 Problem Formulation

As in Ch. 3, we consider a disturbed, nonlinear, continuous-time system (2.3) with polyhedral

constraints on the states and inputs, (3.2) and (3.3), respectively. Rather than looking for the

smallest final set for a given initial set, the task in this chapter is to find for a given final set

Xf ⊂ Rn the largest initial set X(t0) ⊂ Rn. More specifically, we are looking for the initial set

with maximum volume around a desired state x(0) and the corresponding verified control law

uver(x, t) such that for system (2.3), all solutions starting at t0 = 0 in X(t0) end in the final set

Xf at time tf despite disturbances and while satisfying the constraints.

5.3 Online Control with Safety Net

For the online control, we assume that we have found a safe sequence of motion primitives,

which connect the initial state with the goal state. We obtain this sequence by using discrete
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planning techniques as described in Sec. 1.2. We discuss how to compute the motion primitives

offline using backward reachable sets in Sec. 5.4 and Sec. 5.5.

Let us start by describing how our online controller works, which is summarized in Alg. 5

and illustrated in Fig. 5.1. We explain this for a single motion primitive to simplify the notation.

At the end of each motion primitive, we simply switch to the following one. During the online

application, we repeatedly need to decide when to use the unverified, optimal controller or the

verified, safety controller. To this end, we use a safety net controller which acts in discrete-

time and allows switching to and from the optimal controller at discrete switching times tk :=

k∆t, k ∈ N0, where ∆t =
tf
M , M ∈ N. Similarly, we only start a new optimization for the

optimal controller once in each time step, so that the control behavior remains predictable.

Besides this restriction, we are flexible with the form of the unverified controller and also allow

continuous-time controllers.

reachable set of the
safety controller

initial
state

reachable set of the
optimal controller

optimal controller might
be unsafe, safety

controller takes over

c© IEEE 2022

Figure 5.1: Overview of the online control: Based on the measurement of the current state, we

compute the reachable set for the optimal controller. If it ends inside the reachable set of the

safety controller and if it satisfies all constraints, we apply the optimal controller (see first time

step). If this is not the case, we switch to the safety controller (see second time step). After

the intervention of the safety controller, we check if the optimal controller is safe once again, and

switch back to it if safety can be ensured (see third step).

For each switching time tk, we have to decide which controller we want to apply in the

next time interval. Let us assume that we are applying a feasible controller uappl( · ) for the

previous time interval [tk−1, tk]: either the unverified, optimal controller uunv( · ) or the verified,

safety controller uver( · ). Since the computation of the reachable set takes some time, we need

to measure the state x(tk − tc) and start the computations at time tk − tc, to know at tk

which controller to apply during time period [tk, tk+1]. Here, tc ≤ ∆t denotes an allocated

computation time consisting of (i) the computation time of the optimal controller, (ii) the

computation time of the verifier, and (iii) a buffer time. It can be chosen by testing how long

these computations take on the used machine. If the actual computation time takes longer, we

simply apply the safety controller for the next time step to ensure safety.
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5.3 Online Control with Safety Net

Algorithm 5 Online Safety Net Control Algorithm

Input: system dynamics f(x, u, w), disturbance set W, time step size ∆t, maximum computa-

tion time tc, motion primitive MP, unverified controller uunv( · ), state measurements x( · )
Output: control inputs uappl( · )

1: while t < tf do

2: x(tk − tc)← measured state at t = tk − tc
3: X̂(tk|tk − tc)← Rtc,uappl,W(x(tk − tc))
4: X̂(tk+1|tk − tc)← R∆t,uunv,W(X̂(tk|tk − tc))
5: if computation finished before tk and satisfaction of (5.1)–(5.3) then

6: uappl( · )← uunv( · ), ∀t ∈ [tk, tk+1)

7: else

8: uappl( · )← uver( · ), ∀t ∈ [tk, tk+1)

9: end if

10: end while

We begin by measuring the state x(tk − tc) (Alg. 5, line 2), where we do not explicitly

consider measurement errors for a simpler notation. Note that the presented ideas would also

work in the presence of measurement errors and we would simply obtain sets of possible initial

states, as we show in detail in Ch. 6. Based on the measurement of x(tk− tc), we first compute

the reachable set at time tk for the currently applied controller uappl( · ) (Alg. 5, line 3):

X̂(tk|tk − tc) := Rtc,uappl,W(x(tk − tc)),

where we use the notation X̂(t2|t1) to refer to the reachable set at time t2 which is computed

based on the information at time t1. Starting from X̂(tk|tk−tc), we then compute the reachable

set at tk+1 (Alg. 5, line 4) using the unverified, optimal controller uunv( · ):

X̂(tk+1|tk − tc) := R∆t,uunv,W(X̂(tk|tk − tc)).

Next, we check if the controller would satisfy the state constraints

R[0,∆t],uunv,W(X̂(tk|tk − tc)) ⊆ S (5.1)

and the input constraints

uunv(x, tk + τ) ∈ U, ∀x ∈ Rτ,uunv,W(X̂(tk|tk − tc)), ∀τ ∈ [0,∆t), (5.2)

during the whole time interval [tk, tk+1] and if it would end completely inside the reachable set

of the safety controller at time tk+1 (Alg. 5, line 5):

X̂(tk+1|tk − tc) ⊆ Rtk+1,uver,W(X(t0)). (5.3)

This means that the solution of the optimal controller can leave the reachable set of the safety

controller as long as it satisfies the state and input constraints and returns to the reachable set

of the safety controller at tk+1. This ensures that we can switch at tk+1 to the safety controller,

if no safe solution of the optimal controller exists for [tk+1, tk+2].
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If all three constraints are satisfied and the computations are finished before time tk, we can

safely apply the optimal controller during the time interval [tk, tk+1) (Alg. 5, line 6); otherwise,

we switch to the safety controller (Alg. 5, line 8).

Theorem 4. Given a motion primitive MP from Alg. 6 connecting the initial state x(0) with

the desired final set Xf ⊆ S and satisfying the state constraints (3.2), Alg. 5 returns the input

trajectory uappl( · ). This input trajectory satisfies the input constraints (3.3) and results in a

state trajectory ξ(x(0), uappl( · ), w( · ), · ), which satisfies the state constraints (3.2) and reaches

the final set, i.e., ξ(x(0), uappl( · ), w( · ), tf ) ∈ Xf .

Proof. The proof follows by construction of the algorithm and is shown by induction:

Base Case: At time t0, we know a safe solution from the safety controller for the time interval

[t0, t1] which satisfies the state constraints by assumption and the input constraints by con-

struction (as described later in Sec. 5.5).

Induction Hypothesis: If we know a safe controller for the time interval [tk−1, tk], we can always

get a safe solution for the following time interval [tk, tk+1].

Induction Step: When we measure the state x(tk − tc), we know that we are inside the reach-

able set of the currently applied controller. By the definition of reachable sets, applying the

same controller ensures that the reachable set Rtc,uappl,W(x(tk − tc)) ends inside the previously

computed reachable set, i.e.,

Rtc,uappl,W(x(tk − tc)) ⊆ R∆t,uappl,W(X̂(tk−1|tk−1 − tc))
(5.3)

⊆ Rtk,uver,W(X(t0)).

Since Rtk,uver,W(X(t0)) is the reachable set of the safety controller at a switching time tk, we can

always safely switch at tk to the safety controller. Therefore, we always check the constraints

with the optimal controller for the time interval [tk, tk+1] at time tk−tc: If this is safe, we apply

the optimal controller for the next time interval; otherwise, we switch to the safety controller

at time tk to obtain a safe solution for the next time interval [tk, tk+1].

In the next two sections, we discuss how to construct the safety controller and motion

primitives by using backward reachability analysis.

5.4 Backward Controller Synthesis for Linear, Discrete-

Time Systems

Before we consider nonlinear systems for synthesizing safe controllers, we discuss the case

of discrete-time, linear, time-varying systems without disturbances of the form (3.23). We

assume that the matrices Ak have full rank, i.e., they are invertible. If we obtain them as

time-discretized versions of continuous-time systems, this assumption is satisfied, as the matrix

exponential eA∆t is always invertible [183, Ch. 7.2, Thm. 2]. In this case, the backward reachable

set can be computed exactly. Afterwards, we extend the idea presented in this section to

continuous-time, nonlinear systems with disturbances in Sec. 5.5.
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5.4.1 Backward Reachable Set

To obtain the backward reachable set of (3.23), we express the evolution of a single state x(tk)

after h steps analogously to (3.24) as

ξ(x(tk), u( · ), 0, th) = Āx(tk) +

k+h−1∑

i=k

B̄iu(ti), (5.4)

where we use the shorthand notations

Ā := Ak+h−1 . . . Ak,

B̄i := Ak+h−1 . . . Ai+1Bi, ∀i ∈ {k, · · · , k + h− 2},

and B̄k+h−1 := Bk+h−1. Solving (5.4) for x(tk) leads to

x(tk) = Ā−1

(
x(tk+h) +

k+h−1∑

i=k

(−1)B̄iu(ti)

)
. (5.5)

After replacing concrete values with sets, we obtain the backward reachable set

X(tk) = Ā−1

(
X(tk+h)⊕

k+h−1⊕

i=k

(−1)B̄iU

)
. (5.6)

For zonotopic sets X(tk+h) = 〈ck+h, g
(1)
k+h, . . . , g

(pk+h)
k+h 〉 and U = 〈cu, g(1)

u , . . . , g
(q)
u 〉, the back-

ward reachable set is

X(tk) = Ā−1

(
X(tk+h)⊕

k+h−1⊕

i=k

(−1)B̄iU

)

=
{
x ∈ Rn

∣∣∣x = Ā−1ck+h −
k+h−1∑

i=k

Ā−1B̄icu +

pk+h∑

i=1

αiĀ
−1g

(i)
k+h −

k+h−1∑

i=k

q∑

j=1

βi,jĀ
−1B̄ig

(j)
u ,

αi, βi,j ∈ [−1, 1]
}

=:
{
x ∈ Rn

∣∣∣x = ĉ+

p̂∑

i=1

α̂iĝ
(i), α̂i ∈ [−1, 1]

}
, (5.7)

where

ĉ := Ā−1ck+h −
k+h−1∑

i=k

Ā−1B̄icu,

ĝ(i) := Ā−1g
(i)
k+h, ∀i ∈ {1, . . . , pk+h},

ĝ(pk+h+i q+j) := −Ā−1B̄k+ig
(j)
u , ∀i ∈ {0, . . . , h− 1}, ∀j ∈ {1, . . . , q}.

Here, pk+h denotes the number of generators of X(tk+h) and p̂ := pk+h + hq. By introducing

ĉ, ĝ(1), . . . , ĝ(p̂), we obtain a simpler notation and are able to handle the generators resulting

from the states and inputs in the same way. Note that we can always obtain zonotopic sets for

X and U by under-approximating the original sets with zonotopes.
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5.4.2 Resulting Online Control Law

Let us now discuss how to obtain the control law steering the system from a state x ∈ X(tk)

to the desired set X(tk+h). Each state x ∈ X(tk) can be expressed as a superposition of the

generators ĝ(i) by finding the corresponding parameters α̂i(x) (see (5.7)). Since, in general, the

choice of α̂i(x) is not unique, we solve the following optimization problem:

min
α̂(x)

p̂∑

i=1

ρi|α̂i(x)| (5.8)

s.t. x = ĉ+

p̂∑

i=1

α̂i(x)ĝ(i), (5.9)

− 1 ≤ α̂i(x) ≤ 1, ∀i ∈ {1, . . . , p̂}, (5.10)

with weights ρi ∈ R+
0 . We then multiply Gu = [g

(1)
u , . . . , g

(q)
u ] with the factors α̂i(x) corre-

sponding to the input generators at time step k + j to obtain the following piecewise-constant

control law:

u(x, tk+j) = cu +Gu[α̂pk+h+j q+1(x), . . . , α̂pk+h+(j+1) q(x)]T , ∀j ∈ {0, . . . , h− 1}.

It follows from the superposition principle of linear systems that if we use the weighted combina-

tion of the corresponding inputs, we ensure that any state x ∈ X(tk) is steered in the desired set,

too. This is analogous to the ideas from Sec. 3.3.1 and Sec. 3.4.1. Since some generators ĝ(i) in

(5.7) result from states converging to the desired set without inputs and others from generators

which are controlled to the origin by the inputs, the choice of ρi balances the applied inputs

to the size of the final set: Higher weights for ρ1, . . . , ρpk+h
in (5.8) lead to solutions which use

higher inputs and end closer to the center of X(tk+h). Higher weights for ρpk+h+1, . . . , ρp̂, on

the other hand, punish large inputs and will lead to solutions which save input capacities on

the price of ending closer to the boundaries of X(tk+h).

Similar to the previous approaches, the optimization problem in (5.8) is a linear program

and can therefore be solved online. For instance, solving the linear problem for the numerical

example at the end of this chapter only takes around 3ms for a MATLAB implementation,

and even less when using C++. If computation time or effort is a bigger concern, one can also

simply apply the first solution which satisfies constraints (5.9)–(5.10). If even faster solutions

are required, we can again express the zonotope as a convex combination of its extreme states

and use the techniques from Appendix A to obtain weights α̂i(x) by simply plugging x into this

closed-form expression.

5.5 Backward Controller Synthesis for Nonlinear,

Continuous-Time Systems

Let us now extend the presented ideas to nonlinear, continuous-time systems, for which the

superposition principle no longer holds and where the backward reachable sets cannot be com-

puted exactly or efficiently in an under-approximative way.
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Algorithm 6 Backward Reachable Set Control Algorithm

Input: system dynamics f(x, u, w), final set Xf , desired initial state x(0), total time tf , number

of iterations N,M , constraint sets S,U, Sref ,Uref , weighting factor γref , maximum number of

generators p̄

Output: motion primitive MP

1: (xref ( · ), uref ( · ))← solution of optimization problem (3.8) for the reference trajectory

2: (Ak, Bk)← linearization and time-discretization of f(x, u, 0) along xref ( · ), uref ( · ) using

(3.32) and (3.33)

3: Initialize: X(τMh)← Xf

4: for l = M, . . . , 1 do

5: X̄(τlh)← zonotope with at most p̄ generators under-approximating the set X(τlh)

using (5.12)–(5.15)

6: X(τ(l−1)h)← backward reachable set of linearized dynamics (Ak, Bk) starting from

X̄(τlh) using (5.6)

7: uconv(x, τ(l−1)h)← control law (5.16) based on U, uref ( · ) and X(τ(l−1)h)

8: R[0,τh],uver,W(X(τ(l−1)h, s))← scalable forward reachable set from (5.18)

9: s∗ ← solution of optimization problem (5.26) to obtain optimal scaling factors

10: X∗(τ(l−1)h)← rescaled X(τ(l−1)h, s
∗) using s∗

11: R[τ(l−1)h,τlh],uver,W(X∗(t0))← forward reachable set R[0,h∆τ ],uver,W(X∗(τ(l−1)h))

12: end for

13: MP← {xref ( · ), uref ( · ), tf ,X∗(t0),Xf , uver( · ),R[0,tf ],uver,W(X∗(t0))}

5.5.1 Overview

To obtain an estimate of the backward reachable set, we linearize the dynamics without dis-

turbances for a short time horizon, so that we can use the techniques from Sec. 5.4. In the

next step, we compute the forward reachable set considering the actual disturbed, nonlinear

dynamics of the controlled system and scale it until it ends in the original final set Xf . We

iterate these steps for the whole time horizon [0, tf ], as presented in Alg. 6 and Fig. 5.2.

5.5.2 Reference Trajectory

We begin by computing an optimal reference trajectory xref ( · ) from the center of the final set

Xf to the desired initial state x(0) (see Fig. 5.2(a) and Alg. 6, line 1) by simply solving (3.8)

for the backward case. As in Sec. 3.3.2, we divide the reference trajectory in N steps of length

∆τ =
tf
N and restrict the input uref ( · ) to be piecewise constant in each time step. Afterwards,

we linearize the system along xref ( · ) using (3.32) and (3.33) (Alg. 6, line 2).

To improve computational efficiency, we group the N pieces of the reference trajectory into

M parts consisting of h time steps ∆τ each. Since N,M, and h are design parameters, we can

choose them such that N = Mh holds with M,h ∈ N. We iteratively compute the backward

reachable set for all time intervals [τ(l−1)h, τlh], l ∈ {1, . . . ,M}, with τk := k∆τ, k ∈ N0,

starting at time τMh = tf (Alg. 6, line 3). These intervals [τ(l−1)h, τlh] are exactly the time
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x(0)

Xf

xref ( · )

(a) Reference trajectory

X̄f

X(t2)

(b) Backward reachable set

R(X(t2))

(c) Forward reachable set

X∗(t2)
R(X∗(t2))

(d) Scaled forward reachable set

X∗(t0)

R(X∗(t0))

R(X∗(t1)) R(X∗(t2))

(e) Reachable set whole time horizon

c© IEEE 2022

Figure 5.2: Illustration of the backward controller synthesis for nonlinear systems: (a) We

compute a reference trajectory xref ( · ) from the center of the final set Xf to the desired initial

state x(0) and divide it into M parts (here, M = 3). (b) For computational reasons, we under-

approximate the final set by a zonotope X̄f with fewer generators. We then compute the backward

reachable set X(t2) for the linearized dynamics for a short time horizon. (c) Starting from X(t2),

we compute the forward reachable set R(X(t2)) := R∆t,uver,W(X(t2)) based on the disturbed,

nonlinear dynamics. (d) If R(X(t2)) does not end inside the under-approximated final set X̄f (see

(c)), we scale the backward reachable set X∗(t2) until R(X∗(t2)) ends inside the desired set. (e)

We iteratively repeat these steps M = 3 times until we obtain the desired initial set X∗(t0).
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intervals [tl−1, tl] after which we can switch between the safety and the optimal controller during

online control (see Sec. 5.3).

Note that we again use a reference trajectory for obtaining motion primitives; however,

in principle, our approach also works without it. Not using a reference trajectory might be

interesting for computing a region of attraction or a control invariant set.

5.5.3 Zonotope Order Reduction

Due to the addition of input generators in the backward reachable set computation, the number

of generators and therefore the order of the reachable sets increases during each iteration. To

limit the computational effort, we restrict the generator number in each iteration by under-

approximating the reachable set X(τlh) with a zonotope X̄(τlh) ⊆ X(τlh) of a maximum number

of p̄ generators, as illustrated in Fig. 5.2(b) (Alg. 6, line 5). There exists a number of methods to

compute an enclosing zonotope with fewer generators, see for example [74,83], [226]. However,

for our case, we need an under-approximative approach, which is harder to compute.

Given a zonotope X = 〈c, g(1), . . . , g(p)〉 we first sort the generators according to their length:

‖g(a1)‖2 ≥ · · · ≥ ‖g(ap)‖2, (5.11)

where a ∈ Np is a vector of indices that defines the order. To obtain a reduced-order zonotope

with p̄ ≥ n generators, we keep the η = p̄ − n best generators and under-approximate the

zonotope defined by the remaining generators with a box:

X̄ = 〈c, g(a1), . . . , g(aη), δ1e
(1), . . . , δne

(n)〉, (5.12)

where e(i) ∈ Rn is the i-th unit vector. The scaling factors δ1, . . . , δn are determined by the

following linear program:

max
δ1,...,δn

n∑

i=1

δi (5.13)

s.t. 〈0, δ1e(1), . . . , δne
(n)〉 ⊆ 〈0, g(aη+1), . . . , g(ap)〉, (5.14)

δi ≥ 0, ∀i ∈ {1, . . . , n}. (5.15)

To check in (5.14) if the reduced-order zonotope X̄ is contained in the original zonotope X,

we can use Lemma 1 after converting the zonotope X to a polytope in half-space representation

according to [74, Theorem 2.1]. For high-dimensional zonotopes X or for those with many

generators, computing a half-space representation can become computationally challenging. In

this case, the zonotope containment problem (5.14) can also be solved using the approaches

from [184] and [185].

5.5.4 Backward Reachable Set

Let us now describe how to compute an estimation of the backward reachable set based on

the linearized dynamics for each of the larger time intervals [τ(l−1)h, τlh], l ∈ {1, . . . ,M} (see

Sec. 5.5.2). For each time interval, we apply (5.6) to compute the backward reachable set as
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illustrated in Fig. 5.2(b) (Alg. 6, line 6). Since we use a reference trajectory, we cannot use the

whole inputs for the feedback controller, but have to reduce the available inputs by the inputs

already used for the reference trajectory. We do this by introducing for each input generator

g
(j)
u a scaling factor φj(τi) := 1−|θj(τi)| ∈ [0, 1], where θj(τi) ∈ [−1, 1] are chosen such that cu+∑q
j=1 θj(τi)g

(j)
u = uref (τi). By substituting the input generators by their scaled counterparts

φj(τi)g
(j)
u , the backward reachable set X(τ(l−1)h) starting from the under-approximated previous

set X̄(τlh) = 〈c̄lh, ḡ(1)
lh , . . . , ḡ

(p̄)
lh 〉 can be expressed as a zonotope analogous to (5.7):

X(τ(l−1)h) =
{
x ∈ Rn

∣∣∣ x = xref (τ(l−1)h) +

p̄∑

i=1

αiĀ
−1ḡ

(i)
lh −

lh−1∑

i=(l−1)h

q∑

j=1

βi,jĀ
−1B̄iφj(τi)g

(j)
u ,

αi, βi,j ∈ [−1, 1]
}

=:
{
x ∈ Rn

∣∣∣ x = ĉ+

p̂∑

i=1

α̂iĝ
(i), α̂i ∈ [−1, 1]

}
,

where

ĉ := xref (τ(l−1)h),

ĝ(i) := Ā−1ḡ
(i)
lh , ∀i ∈ {1, . . . , p̄},

ĝ(p̄+i q+j) := −Ā−1B̄(l−1)h+iφj(τ(l−1)h+i)g
(j)
u , ∀i ∈ {0, . . . , h− 1}, ∀j ∈ {1, . . . , q},

with p̂ = p̄+ hq.

The consequences of the used reference input on the reachable set are illustrated in Fig. 5.3:

Since the reference input reduces the available input generators for the controller (see Fig. 5.3(a)),

it leads to a smaller backward reachable set (see Fig. 5.3(b)). However, this set is centered

around the reference trajectory, so it is exactly the part of the original backward reachable set

which we are interested in. Since the over-approximation errors in reachable set computations

depend on the size of the reachable set, we obtain less conservative results this way.

We calculate the control law for the nonlinear continuous-time system (Alg. 6, line 7) anal-

ogously to the linear case in Sec. 5.4.2 by solving a linear program equivalent to (5.8) so that

∀i ∈ {0, . . . , h− 1} :

uver(x, τk+i) = uref (τk+i) +Gu(τk+i)[α̂p̄lh+i q+1(x), . . . , α̂p̄lh+(i+1) q(x)]T , (5.16)

where we again denote the matrix containing all (scaled) input generators by Gu(τk+i) :=

[φ1(τk+i)g
(1)
u , . . . , φq(τk+i)g

(q)
u ]. Due to the time-dependent weighting with φj(τk+i) which ac-

counts for the reference inputs, the matrix Gu(τk+i) becomes time dependent.

5.5.5 Reachability Analysis

After computing the backward reachable set based on the linearized, time-discretized dynamics

without disturbances, we have to check if its forward reachable set with the real, nonlinear

dynamics actually ends in the desired final set, see Fig. 5.2(c). If this is not the case, we have to

shrink the initial set obtained from the backward reachability analysis by reducing the length of
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φ2(τN−1)g
(2)
u

φ1(τN−1)g
(1)
u

uref (τN−1)

g
(2)
u

g
(1)
u

cu

(a) Comparison input zonotopes

reference
trajectory

xref (τN−1)

reduced backward
reachable set

final
set

actual backward
reachable set

(b) Comparison backward reachable sets

Figure 5.3: Illustration of the input scaling due to the reference trajectory: (a) As we use some

input for the reference input uref ( · ), we do not have the full input set (blue) available for the

feedback controller, but a reduced input zonotope (red). (b) Therefore, the backward reachable

set of the reduced input set is not as big as the original one, but it is centered around the reference

trajectory as desired.

the generators until the forward reachable set ends up inside the desired final set as illustrated

in Fig. 5.2(d).

With most existing reachability approaches, including the ones presented in Sec. 2.6, it is

not possible to see how the size of the generators of the reachable set depends on the size of

the generators of the initial set and of the applied inputs. This requires us to recompute the

whole reachable set for each optimization loop, as is the case for our control approaches using

forward reachable sets in Sec. 3.5 and Sec. 3.6. To overcome this problem, we subsequently

present a new approach, which maintains the correlation between the generators of the initial

set and the generators of the final set so that we can simply minimize an algebraic function to

optimize the backward reachable set. The details of this new approach can be found in [228].

Let us start with X0 := X(τ(l−1)h), which we obtain from the backward reachable set com-

putation, and introduce a scaling factor si ∈ [0, 1] for every zonotope factor α̂i. The initial set
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with scaling factors is defined as

X0 :=
{
x ∈ Rn

∣∣∣ x = ĉ+

p̂∑

i=1

siα̂iĝ
(i), α̂i ∈ [−1, 1]

}
. (5.17)

We use the notation X0 = X0(s) to denote that the initial set depends on the vector of scaling

factors s = [s1, . . . , sp̂]
T ∈ R+p̂. The resulting forward reachable set Rf (s) := Rh∆τ,uver,W(X0(s)),

using [76] is represented as a polynomial zonotope:

Rf (s) =

{
x ∈ Rn

∣∣∣ x = cf +

v∑

i=1

(
y∏

k=1

s
Ek,i
k

)(
y∏

k=1

δ
Ek,i
k

)
g

(i)
f +

vI∑

j=1

µjg
(j)
I,f , δk, µj ∈ [−1, 1]

}
.

(5.18)

The expression in (5.18) contains the desired analytical relation describing how changes in

the initial set X0(s) influence the final reachable set Rf (s) (Alg. 6, line 8). The independent

generators gI,f , resulting from disturbances and over-approximation errors, are the only part

which we cannot influence and which therefore always increase the final reachable set Rf (s).

Since they are usually rather small compared to the dependent generators, they do not affect

the results much. If they get too large, we can always refine the reachable set computation,

see [76]. Alternatively, if the reachable set is much smaller after scaling, one can do an extra

iteration and compute the new reachable set starting from the reduced initial set, which will

lead to smaller over-approximations due to linearization errors. For our numerical examples in

Sec. 5.6, this was never necessary. Let us demonstrate in the following numerical example how

the analytical relations between initial set and reachable set can be used to quickly find subsets

which satisfy a given constraint:

Example 1. We consider the example shown in Fig. 5.4, where the initial set is

X0(s) =

{
x ∈ Rn

∣∣∣∣ x =

[
−8

−2

]
+

[
1

−0.5

]
s1δ1 +

[
0

1

]
s2δ2, δ1, δ2 ∈ [−1, 1]

}
,

resulting in the final forward reachable set (see Fig. 5.4)

Rf (s) =

{
x ∈ Rn

∣∣∣∣ x =

[
0

0

]
+

[
2

0

]
s1δ1 +

[
0

2

]
s2δ2 +

[
1

1

]
s3

1s2δ
3
1δ2 +

[
0

0.5

]
µ1,

δ1, δ2, µ1 ∈ [−1, 1]

}
. (5.19)

Our goal is to find suitable scaling factors s∗ = [s∗1 s∗2]T , s∗1, s
∗
2 ∈ [0, 1], such that the final

reachable set Rf (s∗) starting from the scaled initial set X0(s∗) satisfies the constraint [1 1]Tx ≤ 5

that is depicted in red in Fig. 5.4. Since X0(s) and Rf (s) both depend on the same scaling factors

s, we determine s∗ such that ∀x ∈ Rf (s∗) : [1 1]Tx ≤ 5, which is identical to

max
x∈Rf (s∗)

[1 1]Tx ≤ 5. (5.20)

Since it holds that

{[1 1]Tx | x ∈ Rf (s∗)} (5.19)
= {x ∈ R | 2s∗1δ1 + 2s∗2δ2 + 2s∗1

3s∗2δ
3
1δ2 + 0.5µ1, δ1, δ2, µ1 ∈ [−1, 1]},
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the constraint in (5.20) can be equivalently formulated as

max
δ1,δ2,µ1∈[−1,1]

2s∗1δ1 + 2s∗2δ2 + 2s∗1
3s∗2δ

3
1δ2 + 0.5µ1 ≤ 5 (5.21)

An example for scaling factors satisfying (5.21) are s∗1 = 1 and s∗2 = 0.625. We show the

reachable set Rf (s∗) for the scaled initial set X0(s∗) in Fig. 5.4 and see that it in fact satisfies

the constraint.

c© IEEE 2022

Figure 5.4: Visualization of Example 1: The original initial set X0(s) and its corresponding final

reachable set Rf (s) with s = [1, 1]T are depicted in dark blue, where Rf (s) violates the constraint

shown in red. We reduce the scaling factors s∗ such that the final set with the new scaling factors

satisfies the constraint. The scaled final set Rf (s∗) and the corresponding scaled initial set X0(s∗)

are shown in light blue.

5.5.6 Optimization Problem

Using the ideas demonstrated in Example 1, we are now interested in finding scaling factors

si ∈ [0, 1] which maximize the volume of the initial set X0(s) for which the forward reachable set

Rf (s) still ends up inside the desired under-approximated final set Xg := X̄(τlh). Experiments

in Sec. 5.6 have shown that it is advantageous to only scale the generators resulting from the

states, i.e., s1, . . . , sp̄ and keep the scaling factors corresponding to the input generators equal

to one, i.e., si = 1, ∀i ∈ {p̄+ 1, . . . , p̂}. This restriction both ensures that we do not change the

resulting control law and reduces the number of optimization variables, which leads to a faster

convergence to good solutions.

Objective Function Our goal is to maximize the volume of the initial set X0(s), i.e.,

maxs Vol(X0(s)). The volume of a zonotope Z = 〈c, g(1), . . . , g(p̂)〉 can be calculated as fol-
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lows [186]:

Vol(Z) = 2n
ncomb∑

i=1

∣∣∣∣det

([
g

(
G

(i)
1

)
, . . . , g(G(i)

n )
])∣∣∣∣ ,

where det( · ) refers to the determinant of a matrix. We denote by
{
g

(
G

(i)
1

)
, . . . , g(G(i)

n )
}

the

ncomb possible n-membered subsets of the generator set
{
g(1), . . . , g(p̂)

}
. With the scaled initial

set X0(s) as defined in (5.17), this results in

max
s

Vol(X0(s)) = max
s

2n
ncomb∑

i=1

∣∣∣∣det

([
s
G

(i)
1
g

(
G

(i)
1

)
, . . . , s

G
(i)
n
g(G(i)

n )
])∣∣∣∣

= max
s

2n
ncomb∑

i=1

∣∣∣det (Gi) det
(

diag
([
s
G

(i)
1
, . . . , s

G
(i)
n

]))∣∣∣

= max
s

2n
ncomb∑

i=1

|det (Gi)|




n∏

j=1

s
G

(i)
j


 , (5.22)

where we combine each generator subset to a matrix Gi :=
[
g

(
G

(i)
1

)
, . . . , g(G(i)

n )
]
. Since for

high dimensions computing the volume using (5.22) can become hard, we can use p-radius

minimization or segment length minimization [187] as alternatives to approximate the volume

in a scalable way.

Constraints We have to consider three constraints: (i) the final forward reachable set Rf (s) :=

Rh∆τ,uver,W(X0(s)) must be located inside the desired under-approximated final set Xg :=

X̄(τlh), (ii) the reachable set for the whole time interval must be inside the state constraint set

S, and (iii) the scaling factors si for the state generators must be between 0 and 1, i.e.,

si ∈ [0, 1], ∀i ∈ {1, . . . , p̄}. (5.23)

In theory, one could also consider scaling factors which are larger than one. In this case, one

would have to recompute the reachable set to ensure that the actual reachable set still satisfies

the constraints, as the analytic relation is only over-approximative for subsets of the original set.

However, linearization errors and external disturbances all increase the size of the reachable set

for the nonlinear system compared to the backward reachable set based on the linearized and

undisturbed dynamics. Therefore, in all practical examples, we have to reduce the size of the

initial set rather than increase it. Worst case, the constraint (5.23) leads to some conservatism,

but it ensures that the formal guarantees always hold.

As we see in (5.21) of Example 1, checking if the polynomial zonotope Rf (s) is located inside

the target set results in an optimization problem which is computationally expensive to solve.

Therefore, we compute a zonotope over-approximation R̄f (s) of Rf (s) from (5.18) according

to [75, Prop. 4]:

R̄f (s) =
{
x ∈ Rn

∣∣∣ x =c̄f (s) +

v∑

i=1

δ̄iḡ
(i)
f (s) +

vI∑

j=1

µjg
(j)
I,f , δ̄i, µj ∈ [−1, 1]

}
,
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where c̄f (s) and ḡ
(i)
f (s) are polynomial functions in s. Using Lemma 1, the check if R̄f (s)

is located inside the half-space representation of Xg = 〈CXg , dXg 〉H simplifies to checking the

following inequality:

CXg c̄f (s) +

v∑

i=1

|CXg ḡ
(i)
f (s)|+

vI∑

j=1

|CXgg
(j)
I,f | ≤ dXg . (5.24)

If the computation of the half-space representation of Xg becomes too complex, we can again

use the approximations from [184] or [185].

As shown in [228], the reachable sets of intermediate time intervals

R[τk,τk+1](s) := R[τk,τk+1],uver,W(X0(s)), ∀k ∈ {0, . . . , h− 1},

can be expressed in the same way and depend on the same scaling factors s. Therefore, we can

apply the same method to also ensure that none of the reachable sets R[τk,τk+1](s) with their

over-approximations

R̄[τk,τk+1](s) =
{
x ∈ Rn

∣∣∣ x =c̄k(s) +

v∑

i=1

δ̄iḡ
(i)
k (s) +

vI∑

j=1

µjg
(j)
I,k, δ̄i, µj ∈ [−1, 1]

}
,

violate the state constraints S by checking

CSc̄k(s) +

v∑

i=1

|CSḡ
(i)
k (s)|+

vI∑

j=1

|CSg
(j)
I,k| ≤ dS, ∀k ∈ {0, . . . , h− 1}. (5.25)

Here, we assume for a simpler notation that the reachable set algorithm has the same time step

size as our control algorithm. If the reachable set algorithm has a smaller time step size, we

simply have to check the constraints for all of the smaller time intervals as done in Sec. 3.5 and

illustrated in Fig. 3.14.

Optimization Problem With the objective function (5.22) and the constraints (5.23)–(5.25)

as derived above, the optimization problem becomes a nonlinear program:

max
s1,...,sp̄

2n
ncomb∑

i=1

|det (Gi)|




n∏

j=1

s
G

(i)
j


 (5.26)

s.t. CXg c̄f (s) +

v∑

i=1

|CXg ḡ
(i)
f (s)|+

vI∑

j=1

|CXgg
(j)
I,f | ≤ dXg ,

CSc̄k(s) +

v∑

i=1

|CSḡ
(i)
k (s)|+

vI∑

j=1

|CSg
(j)
I,k| ≤ dS,∀k ∈ {0, . . . , h− 1},

si ∈ [0, 1], ∀i ∈ {1, . . . , p̄}.

Since the explicit computation of the forward reachable set is not performed during optimiza-

tion, (5.26) can be solved efficiently. Based on the optimized scaling factors s∗ which are the

solution of optimization problem (5.26) (Alg. 6, line 9), we first compute the scaled initial set

X0(s∗) (Alg. 6, line 10) and then the forward reachable set starting from it, R[0,h∆τ ],uver,W(X0(s∗)),

which results in the reachable set for the considered time interval R[τ(l−1)h,τlh],uver,W(X∗(t0))

(Alg. 6, line 11).
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5.6 Numerical Example

Safety Controller

We demonstrate our approach for the car example from Sec. 3.3.7. For the safety controller,

we construct a maneuver automaton consisting of several motion primitives, each computed

with our backward-reachable-set-based control approach from Alg. 6. For the sake of simplic-

ity, we consider the same three motion primitives as in Sec. 3.3.7: turn left, drive straight,

and turn right. For all motion primitives, we consider the final set Xf = x(f) ⊕ [−0.2, 0.2] ms ×
[−0.02, 0.02] rad×[−0.2, 0.2]m×[−0.2, 0.2]m, where x(f) =

[
20 m

s ,±0.2 rad, 19.87m,±1.99m
]T
,

for the turn left and turn right motion primitives and x(f) =
[
20 m

s , 0 rad, 20m, 0m
]T

for the

drive straight motion primitive. We are looking for a initial set X(t0) around the desired initial

state x(0) =
[
20 m

s , 0 rad, 0m, 0m
]T

, which is as large as possible and for which all trajectories

can be steered to the final set after one second. We divide the one second time horizon into

N = 40 time steps, and consider M = 10 time intervals with a horizon of h = 4 time steps

each, which results in ∆t = 0.1 s and ∆τ = 0.025 s. During the under-approximation of the

reachable sets, we reduce the number of generators to p̄ = 12.

We implement the control approach again in MATLAB with CORA for the reachable set

computations and ACADO for optimizing the reference trajectory. The computations are per-

formed on the same computer as in the previous chapters, see Sec. 3.3.7. The offline computation

of the controller for each motion primitive takes around 70 seconds without using parallel com-

putations. Around 77% of this time is used for computing reachable sets (both forward and

backward). When we solve this example without the analytical relations between initial set and

final set, the numerical optimization algorithm requires us to compute over fifty reachable sets

for each time step, compared to only one when using the analytical relations.

We show the resulting reachable set for the turn left motion primitive in Fig. 5.5. In Fig. 5.6,

we show the obtained initial sets (green) together with the final sets (blue) for all three motion

primitives, where we again shift the final sets to lie in the initial sets as done in the numerical

examples in Ch. 3. We see that the final sets are much smaller than the initial sets for all

motion primitives. Therefore, we are able to connect all motion primitives with each other and

obtain the fully connected maneuver automaton shown in Fig. 3.6.

Optimal Controllers

For comparison and a better illustration, we present two different online controllers: first, an

LQR-based tracking controller and second, a model predictive controller.

LQR Tracking Controller Instead of using just a single LQR controller, we compute L of

them with different weights Q
(i)
LQR, R

(i)
LQR, i ∈ {1, . . . , L}, and select the best one online. To

compute the LQR controllers, we use the reference trajectory xref ( · ) and the corresponding

input uref ( · ) from the current motion primitive and linearize the system along it. Based on

the linearized dynamics, we compute the LQR matrices K(i)(t), i ∈ {1, . . . , L}, by solving the

algebraic Riccati equation [37] for the weights Q
(i)
LQR, R

(i)
LQR. The LQR tracking controller is
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Figure 5.5: Reachable sets of the safety controller for a turn left motion primitive projected onto

the (v,Ψ) and the (px, py) planes. The initial set is shown in green and the final set in blue.

therefore given by

uLQR(x(t)) = uref (t) +K(i)(t)(x(t)− xref (t)).

For our example, we compute L = 2 controllers, where we keep the state weights constant

as QLQR = diag([0.2, 10, 31.2, 1]) and choose the input weights as R
(1)
LQR = diag([50, 170]) and

R
(2)
LQR = diag([60, 200]). Lower input weights lead to more aggressive controllers which apply

higher inputs to reduce any tracking errors faster and vice versa.

At any point during the online application, we compute the reachable set and check the

constraints (5.1)–(5.3) for each controller K(i)(t). Afterwards, we apply the one which satisfies

the constraints and has the smallest normalized error to the reference trajectory. This allows

us to always aim for the best performance, and the different controllers increase the chances

to find one which satisfies the state and input constraints. The usage of multi-core processors

allows us to parallelize the computations. If none of the controllers satisfies the constraints, we

switch to the safety controller, as described in Sec. 5.3.

Model Predictive Controller Our second controller is a standard MPC that tracks the

reference trajectory by optimizing over a horizon of H = 6. It has a time step size of ∆tMPC =

P∆τ which, for computational efficiency, is larger than the internal time step size ∆τ of the
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Figure 5.6: Initial (green) and shifted final sets (blue) of the safety controller, projected onto

the (v,Ψ) and the (px, py) planes, for the turn left (top), drive straight (center), and turn right

(bottom) motion primitives.
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safety controller by a factor of P = 2. Its optimization problem is given by

min
uMPC( · |τk)

xd(τk+PH |τk)TQMPCxd(τk+PH |τk)

+

H−1∑

i=0

uMPC(τk+Pi|τk)TRMPCuMPC(τk+Pi|τk), (5.27)

s.t. ∀i ∈ {0, . . . ,H − 1} :

uMPC(τk+Pi|τk) ∈ U,

ξ(x(τk), uMPC( · |τk), 0, τP (i+1)) ∈ X∗(τk+P (i+1)),

with xd(τk+PH |τk) := ξ(x(τk), uMPC( · |τk), 0, τPH) − xref (τk+PH). In contrast to the LQR

tracking approach, we only need a single MPC, as we can include constraints (5.1)–(5.3)

directly in the optimization problem of the MPC. As weight matrices we choose QMPC =

diag([24, 20, 120, 70]) and RMPC = diag([2, 3]). By restricting uMPC( · ) to be piecewise con-

stant, we are able to solve (5.27) fast with standard optimal control solvers, such as direct

multiple shooting algorithms [3]. In order to reduce conservatism, we use a standard MPC

formulation, which optimizes over the nominal dynamics, rather than a more restrictive robust

MPC formulation. Therefore, it is possible that the actual, disturbed system violates the con-

straints. However, for this case, we have the safety net, and the safe controller would take over.

It is also possible to tighten the nominal constraints a little bit to reduce the number of cases

when the safety controller has to take over.

Results for Combining the Safety and Optimal Controllers

We illustrate the combination of safety controller and online controller for the turn left motion

primitive. As described in Sec. 2.7, when concatenating two motion primitives, we know that

the trajectories for the second motion primitive start inside the final set Xf of the first motion

primitive. Therefore, we choose the set from which our simulated trajectories start to be the

final set Xf shifted around the desired initial state x(0). We compute for both optimal controllers

100 trajectories which start at random states inside this initial set and show them in Fig. 5.7

for the LQR tracking controller and the MPC. For the 100 trajectories with 10 steps each, the

safety controller takes over 2.2% of the time steps for the LQR controller and 0.6% for the

MPC. As desired, we are able to apply the optimal controller most of the time; however, there

are instances when the optimal controller becomes unsafe and the safety controller takes over.

For both controllers, we choose the same maximum computation time of tc = 0.05 s, which is

large enough that the safety controller never has to take over because the computation takes

too long.

In Fig. 5.8, we show the inputs for the safety net controller with the LQR tracking controller

and with the MPC, respectively. Aside from the normalized steering angle b for the MPC, the

inputs are not very large and do not change drastically most of the time. This is the desired

use of inputs, which of course also depends on the fact that the trajectories start in a small

set around the initial state of the reference trajectory. The spikes we see in Fig. 5.8 occur at

times when the safety controller takes over. As the safety controller aims to ensure safety for

137



5. OFFLINE CONTROLLER SYNTHESIS USING BACKWARD REACHABLE
SETS

c© IEEE 2022

Figure 5.7: Illustration of 100 simulations of the LQR controllers (top) and MPC (bottom) for

a turn left motion primitive projected onto the (v,Ψ) and the (px, py) planes. All simulations are

randomly chosen from the final set shifted to the center of the backwards computed initial set. We

show in green when the LQR controllers and MPC are active and in red when the safety controller

takes over.

the largest possible set of states, it uses rather large inputs and switches quickly between them.

Therefore, if the LQR controllers and MPC are safe, we benefit from their smoother inputs; if

they would become unsafe, the safety controller steps in and brings the system back to a safe

state.
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Figure 5.8: Plot of the inputs of the 100 simulations of the LQR controllers (top) and MPC

(bottom) with safety net. The spikes occur at times when the safety controller takes over.

Comparison with Convex Interpolation Controller

Finally, we compare the new backward controller with our convex interpolation controller from

Sec. 3.3 in Fig. 5.9. We consider the same turn left motion primitive as before, but start from

a set with the size of the previous final set around the initial state x(0) (shown in red), i.e.,

the same initial set as in Sec. 3.3.7. We use the convex interpolation controller to compute the

smallest forward reachable set (blue) around the desired final state x(f). Starting from this final

set, we use our new backward algorithm to compute the maximum initial set (green) for which

we can steer all states into the final set of the forward algorithm. We see that this backwards
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computed initial set is much larger than the original initial set. This shows the advantage of

the backward algorithm for computing a safety net controller, as the larger reachable set allows

more freedom for the optimal controller to steer the system without the safety controller having

to step in. For a fair comparison, we use the same parameters and algorithms for the reachable

set computation for both approaches.

Figure 5.9: Comparison with the convex interpolation controller: Reachable set of the convex

interpolation controller for a turn left motion primitive projected onto the (v,Ψ) and the (px, py)

planes shown in dark gray. It starts from the red set and ends in the blue. Our new backward

controller starts from the blue set and computes the backward reachable set (light gray), which

ends in the green set. Since this set is much larger than the original initial set, it provides more

flexibility for concatenating motion primitives, as well as freedom for the optimal controller.

5.7 Discussion

Online Computational Complexity

For the online complexity, we have to distinguish the three parts of our safety net framework:

the optimal controller, the safety controller, and the switching logic. The complexity of the

online controller depends on the applied control approach and is independent of the presented

approach. For example, the LQR approach results in a simple matrix vector multiplication with

computational complexity of O(nm), with n denoting the number of states and m denoting the

number of inputs. Our safety controller requires the solution of a linear program to obtain the

parameters α̂(x) and then some matrix vector multiplications to obtain the input. As shown for

example in [99], linear programs can be solved with polynomial time complexity in the number

of optimization variables and constraints.

The last part is the switching logic, which requires the computation of the reachable set for
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the current state. This is only performed for the short time horizon [tk − tc, tk+1], i.e., a single

controller time step plus the allocated computation time tc for online controller computation

and reachable set computation, and only for a single initial state. Therefore, this can be

computed fast. For this reachable set computation, we can use the reachability algorithm from

the previous chapters, which has a computational complexity of O(n3) and has been successfully

applied for the online verification of an autonomous vehicle in [188].

This is also demonstrated in our numerical example, where all online computations are

performed in the allocated time tc = 0.05 s. Note that this was done with a standard MATLAB

implementation of the reachable set algorithm and the computation time could be significantly

reduced with an optimized implementation and faster programming languages such as C++.

Offline Computational Complexity

The offline computation consists of several parts. As it involves the solution of nonlinear pro-

gramming algorithms, it is not possible to provide a fixed bound on the computational complex-

ity, as discussed for the offline algorithms in Sec. 3.7. Similar to the discussion in the previous

chapters, we discuss the computational complexity of the different parts. The computation of

the reference trajectory is done by solving a single optimal control problem. Even though it is a

nonlinear optimization problem, this can be solved fast in practice, especially when restricting

the inputs to be piecewise constant. The backward reachable set computation of the linearized

dynamics involves only matrix multiplications, whose computational complexity is less than

O(n3), if n ≥ m.

The forward reachability algorithm used in this chapter is computational more demanding

than the one used in Ch. 3 and has a computational complexity of O(n5) [76]. During the

controller optimization, we solve a nonlinear program, where we cannot bound the number of

iterations. In each iteration, however, we do not have to recompute the reachable set, only the

approximation of the reachable set based on the scaling factors as optimization variables, which

has a computational complexity of just O(n2) [228]. This is less than the computational effort to

compute the reachable set with the algorithm used in Ch. 3, which has a complexity of O(n3)

and which is computed in every iteration of the optimization algorithm for the continuous

feedback controller from Sec. 3.5 and the combined controller from Sec. 3.6. Note that the

simpler optimization of this chapter is possible for the backward controller synthesis since we

have a fixed control law and the reachable set only depends on the size of the initial set, which

is maximized. We cannot use this approach to optimize the continuous feedback controllers in

Sec. 3.5 and Sec. 3.6, as changing the controller affects the closed-loop dynamics and therefore

requires recomputing the reachable set in each iteration.

Optimality

During the application of our safety net framework, the optimality of the controlled system

mainly results from the optimal controller. Consequently, it depends on the chosen controller

type and what system effects are modeled, e.g., if constraints or disturbances are taken into

account properly. As discussed before, the safety of the system is always ensured due to the
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safety controller; however, the more effects the optimal controller takes into account, the less

the safety controller has to step in and the more we can benefit from the advantages of the

optimal controller. For a perfect optimal controller, which also never becomes unsafe, the only

loss in optimal behavior would result from overly cautious switches to the safety controller if

the reachability analysis falsely detects a potential safety risk due to over-approximation errors.

As before, this does not lead to unsafe behavior, only possible performance reduction. Since it

is not possible to compute exact reachable sets for most systems [80], this behavior cannot be

avoided if one wants to ensure safety at all times.

Regarding the optimality of our safety controller, analogously to the approaches in Ch. 3,

we cannot guarantee the convergence to a global optimal solution, as we still rely on solving

nonlinear programming algorithms, which cannot provide such guarantees. As discussed in

Sec. 3.7, this is also not possible for any existing approaches for constrained and disturbed

nonlinear systems. With our new approach, however, we maximize the size of the initial set

for which we can control all states under observance of constraints on states and inputs to

the desired final set, despite the effect of disturbances and, if considered during the forward

reachable set computation, sensor noise. This consequently maximizes the time during which

we can apply the optimal controller.

Note that depending on the application, smaller reachable sets might make it easier to find

feasible solutions during online planning. This would then lead to a trade-off between more

freedom for the optimal controller versus easier online planning. If this is the case, we can

always limit the size of the reachable sets during the backward controller synthesis of our new

approach. Alternatively, we can also use the methods from [228] to compute subsets (online)

of the reachable sets, either based on measurements of the actual states or by using the final

sets of previous motion primitives during online planning.

5.8 Summary

We present a novel safety net control approach by combining an unverified optimal controller

with a verified safety controller. Most of the time, the optimal controller is active and only if

its behavior would become unsafe does the safety controller take over. We are thereby able to

ensure safety of optimal controllers which cannot guarantee safety on their own. Since optimal

controllers have a better control performance than safety controllers, which always have to

consider the worst-case behavior, this combination leads to a better control outcome than pure

safety controllers, while still maintaining safety guarantees.

We also present a novel way for computing the motion primitives of the safety controller,

which is based on (i) backward reachable sets and (ii) circumventing the problem of computing

under-approximations of reachable sets, and (iii) using polynomial zonotopes to obtain an ana-

lytical correlation between initial sets and reachable sets. As a result, our approach is the first

that is able to formally safeguard an optimal controller for disturbed nonlinear systems under

state and input constraints with the use of a set-based safety-net controller whose underlying

reachable set computation scales polynomially. This drastically simplifies the computational

effort for the optimization compared to existing approaches and allows an efficient computation
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of large maneuver automata. Similar to our approaches from the previous chapters, since most

computations can be performed offline in advance, the online control is fast and efficient. Since

the resulting control law is simple to apply and the controller synthesis does not require a deep

understanding of control theory or finding Lyapunov functions, the control approach is appeal-

ing for practical application. We demonstrate the effectiveness of our approach in the numerical

example by safeguarding an LQR tracking controller and an MPC for an autonomous vehicle.

The results of this chapter therefore expand the state of the art in three directions:

(i) We present the first approach which is able to compute under-approximative backward

reachable sets for general nonlinear systems while considering inputs and disturbances.

While this is not possible for this general case with existing approaches like [156–167],

it is required for synthesizing set-based controllers with safety guarantees. In addition,

our novel reachability algorithm allows us to obtain analytical dependencies between the

reachable set and its initial set and inputs acting on the system. These dependencies make

it possible to substantially speed up the computation of the set-based controller, as the

reachable set does not need to be recomputed in each iteration of the optimization. As

shown in [228], this explicit dependency also simplifies many other verification problems.

(ii) We use the results from (i) to develop a new control algorithm based on backward reach-

able sets, which allows us to maximize the set of states that can be controlled to a desired

final set while having formal guarantees for constraint satisfaction even for disturbed non-

linear systems. At the same time, it benefits from the same advantages as the approaches

in Ch. 3, as it provides a control law by optimizing over all possible trajectories starting

from an initial set under all possible disturbance realizations. Since we use reachable sets,

we do not need to discretize the state space, as done in [50–71], or explicitly compute

invariant sets, in contrast to, for example, [174, 175], nor do we need to know Lyapunov

functions or rely on sums-of-squares programming, as in [44–49]. The resulting online con-

troller again has a simple structure, which is easy to store and applicable to fast systems,

and it is particularly suitable for the application as a safety net controller.

(iii) We provide a formal safety net control concept which allows us to formally safeguard an

unverified optimal controller. By using reachability analysis based on the actual state

of the real system, the safety controller predicts the behavior of the optimal controller,

thereby ensuring it will always intervene if safety is at risk. Compared to approaches such

as [171–175,177,180,181], we consider disturbed nonlinear systems. In contrast to the few

other approaches which use reachable sets, such as [43], our reachable set algorithm scales

polynomially, which allows for a much better scaling of the size of the considered system

dimensions. As a result, this algorithm can even be used for checking the safety of the

optimal controllers online. In contrast to most other approaches, we explicitly consider

the computation time for our controller and reachable set computations during the online

verification. We are even able to guarantee safety without requiring a worst-case execution

time, since we can safely switch to the safety controller if the execution time exceeds the

allocated time.
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Chapter 6

Online Controller Synthesis

6.1 Introduction

In the last decades, model predictive control [12,13] has gained a lot of interest, both in academia

as well as in industry. Advantages of this control method include its ability to provide opti-

mized control trajectories and to handle constraints for both states and inputs. This, and its

rather easy implementation, are the main reasons for its popularity in industry. With growing

interest in safety-critical applications, current techniques for model predictive control have to be

enhanced to provide formal guarantees of correct behavior despite complex dynamics, limited

actuation capabilities, external disturbances, and sensor noise.

As discussed in the introduction to this thesis, there already exists a number of different

approaches for robust MPC [22–28]. Yet, the question of how to obtain efficient and provably-

safe MPC for constrained and disturbed nonlinear systems remains open. Due to the implicit

nature of regular MPC and the limited online computation time, it is often not possible to

apply formal verification tools like reachability analysis in order to prove safety. While some

approaches compute reachable sets online [30, 31], though only for discrete-time systems, they

face the problem that their reachability analysis methods produce large over-approximations.

That is also the case for other techniques with implicit safety guarantees, e.g., the contraction-

based approach [29], which easily becomes rather conservative, since the contraction set has to

hold everywhere in the considered state space. Explicit MPC [14–21], on the other hand, does

not encounter problems from online optimization. However, due to the division of the state

space, the computation scales exponentially with the number of dimensions and constraints, so

that only small-dimensional systems can be considered.

Another problem which most MPC approaches face is that most of them (with the exception

of, e.g., [189]) do not consider computation time, therefore neglecting the fact that the time

which is needed to perform the optimizations after obtaining a new measurement leads to delays

and therefore possibly unsafe and unstable behavior. From a practical point of view, it is also

often a problem that most techniques require a Lyapunov function in order to prove stability

or to compute invariant sets. For complex, real-world systems, Lyapunov functions are often
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hard to obtain.

The goal of this chapter1 is to combine reachability analysis with regular MPC in order to

obtain provably safe controllers for disturbed nonlinear systems with constraints on states and

inputs. Our new approach aims at transferring safety guarantees from reachability analysis to

model predictive control. As a result, users are not required to know any Lyapunov functions,

nor have any other deep knowledge of control theory. This makes our approach particularly

appealing for problems in practice. We are even able to consider the delay caused by the

computation time of our approach. We also do not need to precompute a fixed tube size as

required in many previously-mentioned approaches, which reduces conservatism. In addition,

we are able to take continuous-time dynamics and measurement noise, which are neglected in

many existing approaches but are critical to providing safety guarantees, into account.

6.2 Problem Formulation

We consider a very similar problem as in Sec. 3.2, with the main difference that here, instead

of computing motion primitives offline and using them for online planning, we want to find an

MPC algorithm which solves the problem online. Therefore, we consider a single initial state

x(0) ∈ S which should be steered in finite time into a goal set Xf ⊆ S around a goal state

x(f) ∈ Xf while minimizing some cost function. We still consider the same disturbed nonlinear

system (2.3) subject to state and input constraints (3.2) and (3.3), respectively.

As mentioned in the previous chapters, we could easily extend the approaches to uncertain

measurements by including them as an additional disturbance affecting the feedback controller

in the reachability analysis. We use the online control of this chapter as an opportunity to

demonstrate how to consider them explicitly, which we do by using (2.4).

6.3 Reachset Model Predictive Control

6.3.1 Overview

The basic idea of our reachset MPC is illustrated in Fig. 6.1 and presented in more detail

in Alg. 7. Starting from the solution of the previous step t − ∆t (Fig. 6.1(a)), we obtain a

measurement x̂(t) at time t (Fig. 6.1(b)). As there might be measurement noise, we only know

that we are in some uncertain set X̂(t) (see (2.5)), which is a singleton when the state can be

precisely measured. Based on this measurement, we aim at synthesizing the optimal controller

which steers the system to the goal set Xf . Since we cannot optimize for an infinite time

horizon, we use a dual-mode MPC [190]. This means we consider a final prediction horizon of

length tN and require that the prediction ends in a terminal region Ω (defined formally later in

Def. 18) for which we know a safe and stabilizing controller.

Based on the obtained measurement, we optimize a new reference trajectory xref ( · |t),
which is tracked with a predefined feedback controller. To solve the optimization problem and

1This chapter, including the figures, is based on [229] c© 2018 IEEE. The implementation of the numerical

example was done by Niklas Kochdumper.
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Ω

(a) Old solution X̂( · |t−∆t)

X̂(t)

(b) New measurement X̂(t)

(c) Reachable set after compuations X̂(t + tc|t) (d) New reference trajectory xref ( · |t)

(e) New reachable set X̂( · |t) (f) Fallback: feasible solution X̂( · |t)

c© IEEE 2018

Figure 6.1: Illustration of our reachset MPC approach: (a) Beginning with a feasible solution

set X̂( · |t − ∆t) from the previous time step, (b) we obtain the measurement of the (possibly

uncertain) state at time t. (c) Based on this set of possible states, we compute the reachable set

X̂(t + tc|t) (blue) for the time tc which we need to solve the optimization problem. (d) Starting

with the center of this reachable set, we optimize the reference trajectory xref ( · |t) (green) for the

time horizon tN . (e) After the optimization, we compute the corresponding reachable set X̂( · |t)
(green). If all constraints are satisfied for the reachable set, we use the new reference trajectory

and continue with the next iteration at time t + ∆t. (f) If the solution is not feasible or is not

computed in time, we follow the feasible solution (red) from the previous time step, which is

extended by the auxiliary controller in the terminal region Ω.

to compute the reachable set, we need some time tc ≤ ∆t analogous to Sec. 5.3, and we apply

the controller from the previous prediction to the system during this time. Using reachability

analysis, we predict where we will end after the optimization and computation of the reachable

set and use this set X̂(t+ tc|t) as the initial set for our optimization problem (Fig. 6.1(c)). As

in the previous chapter, we use again the notation X̂(t+ tc|t) to refer to the prediction for time

t+ tc made at time t.

For efficiency reasons, we solve the optimization problem for the reference trajectory only,

but with tightened constraints (Fig. 6.1(d)). We then use reachability analysis to check if all
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Algorithm 7 Reachset MPC Algorithm

Input: system dynamics f(x, u, w), measurement function h(x, ν), cost function J( · ), initial

feasible solution ufeas,0( · ), goal state x(f), goal set Xf , terminal region Ω, terminal controller

KΩ, tracking controller K, time step size ∆t, prediction horizon length tN , maximum computa-

tion time tc, constraint sets S,U,Φ, S̄, Ū, Φ̄, disturbance and noise sets W,V, parameters α, ρ, ᾱ,

state measurements x̂(t)

Output: control inputs u( · )
1: Initialize: t← 0, uref ( · | −∆t)← ufeas,0( · )
2: while X̂(t) * Ω do

3: u(τ)← uref (τ |t−∆t) +K(x̂(τ)− xref (τ |t−∆t)), ∀τ ∈ [t, t+ tc]

4: u
(f)
ref ( · |t)← feasible solution (6.3)

5: u∗ref ( · |t)← solution of optimization problem (6.6)

6: if Optimization problem feasible & solved in time & (6.4), (6.13)–(6.15) satisfied then

7: uref ( · |t)← u∗ref ( · |t)
8: else

9: uref ( · |t)← u
(f)
ref ( · |t)

10: end if

11: u(τ)← uref (τ |t) +K
(
x̂(τ)− xref (τ |t)

)
, ∀τ ∈ [t+ tc, t+ ∆t]

12: t← t+ ∆t

13: end while

14: u(τ)← KΩ

(
x̂(τ)− x(f)

)
, ∀τ ≥ t

possible solutions X̂( · |t) are guaranteed to satisfy all constraints (Fig. 6.1(e)). Only if this is the

case, and if the computations finish in the allocated time tc, do we apply the new, guaranteed-

safe solution. If not, we use a feasible solution which consists of the solution from the previous

step, extended by the safe controller from the terminal region (Fig. 6.1(f)). Therefore, under

the common assumption that we know a feasible trajectory at the initial time, we always have a

feasible solution. This solution is used as a backup if we cannot find a better feasible solution in

the available time. We then apply the solution for time ∆t before we start the next optimization

problem based on the new measurement. The feasible solution is defined as:

Definition 17 (Feasible Solution). The feasible solution is a possible non-optimal input trajec-

tory, which leads to trajectories ξ
(
x(t), u( · ), w( · ), ·

)
satisfying the constraints (3.2)–(3.3) and

ends in the terminal region Ω after time tN : ξ
(
x(t), u( · ), w( · ), t+ tN

)
∈ Ω.

In the following, we explain all steps of our approach in detail and discuss the guarantees

at the end of this section.
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6.3.2 Dual-Mode MPC

As is common in MPC, we use dual-mode MPC [190] to limit the prediction horizon. We use

the control law

uΩ(x̂(t)) = KΩ

(
x̂(t)− x(f)

)
(6.1)

to stabilize a terminal region Ω around the goal state x(f) (Alg. 7, line 14) and the control law

uMPC(x̂(t)) = uref (t) +K
(
x̂(t)− xref (t)

)
, (6.2)

which controls the system into the terminal region (Alg. 7, line 11). Here, uref ( · ) denotes

the reference inputs, which is optimized online, and xref ( · ) refers to the corresponding state

trajectory. The feedback matrices K ∈ Rm×n and KΩ ∈ Rm×n can be different from each other,

and K can even be time-varying as discussed at the end of this section. As in previous chapters,

we use linear controllers for faster computation times; however, all concepts presented also work

for nonlinear controllers. This includes the case when the goal set Xf cannot be stabilized with

a fixed feedback matrix, and we therefore need a more complex control law uΩ( · ). The terminal

region Ω is defined as a region of attraction in which the state and input constraints are satisfied

despite the influence of disturbances and measurement noise:

Definition 18 (Terminal Region). Given a dynamical system of the form (2.3) and a terminal

control law (6.1). The terminal region Ω, Xf ⊆ Ω ⊆ S, is defined as

Ω =
{
x ∈ Rn

∣∣∣ ∀t ∈ R+
0 , ∀w(t) ∈W, ∀x̂(t) ∈ {h

(
ξ(x, uΩ(x̂( · )), w( · ), t), ν(t)

)
| ν(t) ∈ V},

∃tf ∈ R+
0 :

ξ(x, uΩ(x̂( · )), w( · ), tf ) ∈ Xf ,

ξ(x, uΩ(x̂( · )), w( · ), t) ∈ S,

uΩ(x̂(t)) ∈ U
}
.

Using a terminal region is standard in many MPC approaches and is required to provide

guarantees beyond the finite prediction horizon [190]. It is computed before the controller is

applied online. There exist different ways to compute an approximation of an invariant set of

a controller; many of them use Lyapunov functions, which might be hard to find in practice.

While a region of attraction can also be computed using Lyapunov functions, there also exist

methods to compute them automatically, and in many cases, more efficiently, using reachable

sets [191]. The region of attraction is usually much larger than a positive invariant set, which

provides more flexibility to our approach. In addition, by checking the satisfaction of the

constraints during the execution of the algorithm from [191], we can automatically compute a

safe region of attraction, i.e., a region of attraction for which the state and input constraints

are satisfied despite disturbances.

As is common in dual-mode MPC, we also use this terminal region to obtain the feasible

solution (Alg. 7, line 4) as a backup plan by using the remainder of the previous solution:

u
(f)
ref (τ |t+ ∆t) := uref (τ |t), ∀τ ∈ [t+ ∆t+ tc, t+ tN ]. (6.3)
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Once we reach the terminal region at time t+ tN , we switch to the terminal controller (6.1).

During operation, we compute future reachable sets X̂(t + τ |t) = Rτ,uMPC ,W(X̂(t)), τ ∈
[0, tN ], based on the current input trajectory uref ( · |t), with X̂(t) containing the set of possible

actual states based on the measured state x̂(t) (see (2.5)). Note that even though X̂(t) might

be partly outside of the reachable set, we know from the over-approximative nature of the

reachability analysis that the real state x(t) must lie inside the reachable set from the previous

step, i.e., x(t) ∈ X̂(t|t−∆t). Therefore, we only have to consider the intersection X̂(t)∩X̂(t|t−∆t)

as the initial set for the next optimization. This is a common approach used in set-based

observers [77–79].

6.3.3 Considering the Computation Time

When starting the optimization for a new measurement, we consider its computation time tc,

as done similarly for the online application of the safety net controller in Sec. 5.3. To be safe,

we need to know the reachable set after tc due to uncertainties and disturbances:

X̂(t+ tc|t) := Rtc,uMPC ,W(X̂(t)).

By applying the reference trajectory plus feedback controller from the previous optimization

(Alg. 7, line 3), we know that the reachable set after the optimization time is inside the reachable

set from the previous optimization.

The allowed computation time tc for the optimization and reachability analysis is a user-

defined design parameter. As discussed in Sec. 5.3, tc can be estimated quite well and inap-

propriate values of tc do not impede the desired properties in (3.2)–(3.3), as we can always

go back to the feasible solution if tc is not sufficient to find a new solution. We compute the

reachable set for this allocated time (see Fig. 6.1(c)). If the optimization algorithm finishes

before t+ tc, we keep following the previous solution until t+ tc, from which point on we apply

the new solution. If we reach this point in time without a new feasible solution, we simply keep

following the previous feasible solution and start a new optimization at t+ ∆t (see Fig. 6.1(f)).

6.3.4 Contraction Constraint

An important consideration in MPC is to ensure the convergence to the goal set in a finite

amount of time. While this could be done using Lyapunov functions, we use an approach

similar to [31] which does not require a Lyapunov function. Through the construction of the

terminal region using the approach from [191], we know that after reaching the terminal region,

we converge in finite time to the desired goal set. Therefore, we only have to ensure that we

converge in finite time to the terminal region. To do so, we introduce the distance operator

from [31]:

Definition 19 (Distance Operator). Given sets X̂ and Φ = 1
1+αΩ, with α ∈ R+, ‖X̂‖Φ is
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defined as

‖X̂‖Φ = minβ,

s.t. X̂ ⊆ (1 + β)Φ,

β ≥ 0.

As mentioned in [31], ‖X̂‖Φ is equal to zero if and only if X̂ ⊆ Φ, and if x /∈ Ω, it follows

that ‖x‖Φ > α. The authors also show that if Φ = 〈CΦ, dΦ〉H , with CΦ ∈ Rq×n and dΦ ∈ Rq,
is a polyhedron that contains the origin, i.e., dΦ,i > 0, ∀i ∈ {1, . . . , q}, and if X̂ = 〈c,G〉 is a

zonotope, then ‖X̂‖Φ can be obtained from the equality

‖X̂‖Φ = max

{
0, max
i∈{1,...,q}

CΦ,ic− dΦ,i + ‖CΦ,iG‖1
dΦ,i

}
,

where CΦ,i denotes the i-th row of CΦ and ‖CΦ,iG‖1 denotes the sum of the absolute values of

vector CΦ,iG.

We use this distance function to define the contraction constraint as

N(t)−1∑

k=1

‖X̂(t+ k∆t|t)‖Φ −
N(t−∆t)−1∑

k=1

‖X̂
(
t+ (k − 1)∆t|t−∆t

)
‖Φ < −α, (6.4)

where

N(t) = min k, (6.5)

s.t. X̂(t+ k∆t|t) ⊆ Φ,

k ∈ N.

This contraction constraint requires the sum of the distances of the reachable sets to get smaller

in each time step and therefore ensures that the reachable sets converge to the terminal region

Ω. By defining the distance with respect to the tighter set Φ, we ensure a desired contraction

rate, as shown later in Thm. 5.
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6.3.5 Optimal Control Problem

The optimization problem (Alg. 7, line 5) which is solved online at time t is given by

min
uref ( · |t) J

(
X̂(t+ tc|t), uref ( · |t)

)
(6.6)

= min
uref ( · |t)

∫ t+tN

t+tc

L
(
xref (τ |t), uref (τ |t)

)
dτ + V

(
xref (t+ tN |t)

)

s.t. ∀τ ∈ [t+ tc, t+ tN ] :

xref (t+ tc|t) = center(X̂(t+ tc|t)), (6.7)

ẋref (t+ τ |t) = f(xref (t+ τ |t), uref (t+ τ |t), 0), (6.8)

uref (τ |t) ∈ Ū(τ |t), (6.9)

xref (τ |t) ∈ S̄(τ |t), (6.10)

xref (t+ tN |t) ∈ Φ̄, (6.11)

N̄(t)−1∑

k=1

‖xref (t+ k∆t|t)‖Φ −
N̄(t−∆t)−1∑

k=1

‖xref (t−∆t+ k∆t|t−∆t)‖Φ < −ᾱ, (6.12)

where center(X̂(t+ tc|t)) refers to the center of the zonotope X̂(t+ tc|t) and

N̄(t) = min k

s.t. xref (t+ k∆t|t) ∈ Φ̄,

k ∈ N.

We minimize the cost function J( · ) in (6.6), consisting of a positive definite state cost

L( · ) and a positive definite terminal cost V ( · ), with respect to the reference trajectory, which

starts from the center of the reachable set (6.7) at time t + tc. To ensure the satisfaction of

the constraints for the disturbed, closed-loop dynamics, we use tightened time-dependent input

(6.9) and state constraints (6.10), Ū( · ) and S̄( · ), respectively, as discussed in the next part.

As is common in dual-mode MPC, we have a terminal constraint (6.11), which requires that

the reference trajectory ends in a tightened terminal region Φ̄. Finally, we have a contraction

constraint (6.12) with parameter ᾱ ∈ R+ (not necessarily equal to α), which ensures convergence

to the terminal region Ω.

6.3.6 Tightened Constraints

To be able to apply our MPC approach online, we only optimize the reference trajectory without

computing the reachable sets during this optimization. While it is possible to optimize over

reachable sets as shown in Sec. 3.5 and Sec. 3.6, this is not possible in real time for fast systems.

The authors of [31] propose optimizing over the reachable sets; however, they do not discuss the

computation times and their approach is rather conservative as demonstrated later in Sec. 6.4.

Instead, we optimize only the reference trajectory and tighten the constraint sets accordingly,

such that state and input constraints are met. At the end of the optimization, we perform a
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reachability analysis to check if all constraints are actually satisfied. If this is not the case, we

always have the feasible solution as a safe fallback.

We initially guess the size of the reachable set and the resulting inputs from the controller

based on the reachable set from the feasible solution and verify the solution later. This means

that we take the size of the reachable set of the feasible solution at the corresponding time

step, scaled by a factor ρ ∈ R+
0 , and use this set to tighten the constraint sets. To do this in

a set-based fashion, we use the Minkowski difference, see Def. 6. This allows us to write the

tightened constraints as

S̄(t+ τ) = S	 ρ
(
X̂(t−∆t+ τ |t−∆t)	 xref (t−∆t+ τ |t−∆t)

)
, ∀τ ∈ [tc, tN ],

Ū(t+ τ) = U	Kρ
(
X̂(t−∆t+ τ |t−∆t)	 xref (t−∆t+ τ |t−∆t)

)
, ∀τ ∈ [tc, tN ],

Φ̄ = Φ	 ρ
(
X̂(t−∆t+ tN |t−∆t)	 xref (t−∆t+ tN |t−∆t)

)
.

As the reachable sets might change their size, the constraints become time dependent. If this

guess is too conservative, we only obtain a sub-optimal solution; if it is too optimistic, we have

to go back to the feasible solution. In any case, we have a safe solution in the end.

6.3.7 Guarantees Through Reachability Analysis

After obtaining the reference trajectory, we use the predefined feedback controller to compute

the reachable set for the closed-loop dynamics. We start from the reachable set X̂(t+ tc|t) and

compute it for the remaining prediction horizon (see Fig. 6.1(e)). Afterwards, we check if the

reachable set satisfies the state and input constraints at all times, if the final reachable set is

completely inside the terminal region, and if the contraction constraint is also satisfied for the

reachable sets. We do this by checking if ∀τ ∈ [tc, tN ] :

X̂(t+ τ |t) ⊆ S, (6.13)

uref (t+ τ |t)⊕K
(
X̂(t+ τ |t)	 xref (t+ τ |t)

)
⊆ U, (6.14)

X̂(t+ tN |t) ⊆ Φ, (6.15)

and checking (6.4). Since S, U, and Φ are all polyhedral sets and since the reachability analysis

provides us with reachable sets for time intervals in the form of zonotopes, we can use Lemma 1

to efficiently check if constraints (6.13)–(6.15) are satisfied at all times. If this is the case, we

apply the new control input to the system (Alg. 7, line 7) and start with a new iteration step.

If the solution does not satisfy all those constraints or if the computation takes longer than

the prespecified time, we apply the input from the feasible solution instead (Alg. 7, line 9) and

keep the reachable sets from the previous time step.

6.3.8 Reachset MPC Theorem

Theorem 5. If we know an initial feasible solution at t = 0, then Alg. 7 remains feasible for

all times and the system robustly converges to the goal set Xf in finite time. During the whole
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time, the system satisfies the state and input constraints (3.2)–(3.3) despite disturbances and

uncertain measurements.

Proof. We have to show three things: (i) The system remains recursively feasible, i.e., in each

step we can find a feasible solution, (ii) the system reaches the goal set Xf in finite time, and

(iii) the constraints are satisfied at all times despite disturbances and measurement noise. We

keep the proof concise, as many parts follow standard robust MPC techniques, as used in [31].

(i) Recursive feasibility can be shown by induction:

Base Case: For t=0, we know a feasible solution by assumption.

Induction Hypothesis: If we know a feasible solution at time t, then we can always get a feasible

solution at t+ ∆t.

Induction Step: For every step at time t + ∆t, we know from the over-approximative way of

computing the reachable set that we start inside the reachable set of the previous step, i.e.,

X̂(t + ∆t) ⊆ X̂(t + ∆t|t), for which we know the remainder of the solution from the previous

step, i.e., uref (t + τ |t),∀τ ∈ [∆t, tN ]. Since the solution at time t is feasible, it ends in the

terminal region, where we know by construction that the terminal controller provides a feasible

solution, see Def. 18. Therefore, the previous solution extended by the terminal controller, see

(6.3), is always feasible and can be applied if we do not find a better solution in time.

(ii) The terminal region Ω is computed so that any state inside Ω robustly converges to the

goal set Xf in finite time despite disturbances and sensor noise. Therefore, we only have to

ensure reaching the terminal region in finite time. From the contraction constraint (6.4), we

enforce reaching the terminal region in at most 1
α

∑N
k=1 ‖X̂(t+k∆t|t)‖Φ steps. If we find a new

solution, we know from (6.4) that this new solution satisfies the rate of at least −α. Let us now

show that the feasible solution is also guaranteed to have this convergence rate:

N(t)−1∑

k=1

‖X̂(t+ k∆t|t−∆t)‖Φ −
N(t−∆t)−1∑

k=1

‖X̂(t+ (k − 1)∆t|t−∆t)‖Φ

= −‖X̂(t|t−∆t)‖Φ < −α,

where we denote by X̂(t + k∆t|t − ∆t) the resulting reachable set from the feasible solution

u
(f)
ref ( · |t). Since X̂(t + (N(t −∆t) − 1)∆t|t −∆t) ⊆ Φ, we know from (6.5) that N(t −∆t) =

N(t)+1 and that ‖X̂(t+(N(t−∆t)−1)∆t|t−∆t)‖Φ = 0. Therefore, the difference is only the cost

of −‖X̂(t|t−∆t)‖Φ. Because X̂(t|t−∆t) * Ω, it follows from Def. 19 that ‖X̂(t|t−∆t)‖Φ > α,

and therefore the last inequality holds. As we can always revert to the feasible solution, the

convergence in finite time is guaranteed.

(iii) Before we apply the new solution, we check the constraints for the over-approximated

reachable set of the disturbed system in (6.4) and (6.13)–(6.15). If they are satisfied, then the

new solution is safe and can be applied. If they are violated, we apply the safe feasible solution;

see (i).
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6.3.9 Extension

As mentioned before, we cannot guarantee that the solution resulting from the reference tra-

jectory which is computed with the tightened constraints (6.9)–(6.12) will satisfy the actual

constraints (6.4) and (6.13)–(6.15). While we are always safe, this might make our approach

unnecessarily conservative. One way to overcome the problem without getting too conservative

is to compute several possible solutions in parallel. Using different estimations of reachable

sets and inputs applied by the feedback controller results in several optimization problems with

different constraints. As they are completely independent, we can utilize multi-core processors

for solving these problems and using reachability analysis in parallel and thus choose the best

feasible solution.

For a simpler notation, we did not explicitly consider a time-dependency for the feedback

matrix K of the uMPC( · ) controller. While we purposefully do not consider optimizing the

feedback controller online, as this might take too long, it is easily possible to use time-varying

controllers and controllers which depend on the reference trajectory. A simple way, which we

demonstrate in the numerical example, is the use of LQR controllers based on the linearized

dynamics along the reference trajectory. In this case, we can adapt the controller with respect

to the changing linearized dynamics, but keep the Q and R matrices constant to not have to

optimize the feedback controller online.

If the feedback controller depends on the newly optimized reference trajectory, this intro-

duces an additional uncertainty when tightening the constraints (6.9)–(6.12). In this case, we

can further tighten the constraints to also include the uncertainty of the actual feedback control

law or compute more solutions in parallel to reduce conservativeness as discussed before.

6.4 Numerical Example

To compare our reachset MPC control algorithm with the approach from [31], we use the same

nonlinear continuous stirred tank reactor system for our numerical example. The model of the

reactor for an exothermic, irreversible reaction A → B with constant liquid volume is given

by [31]:

dCA
dt

=
q

V
(CAf − CA)− k0 e

− E
RT CA + w1, (6.16)

dT

dt
=

q

V
(Tf − T )− ∆H k0

ρCp
e−

E
RT CA +

UA

V ρCp
(Tc − T ) + w2, (6.17)

where CA is the concentration of A in the reactor, T is the temperature of the reactor and Tc is

the coolant stream temperature. The system state is defined as x =
[(
CA − C0

A

)
,
(
T − T 0

)]T
,

and the system input as u = Tc − T 0
c , with the steady state C0

A = 0.5 mol
l , T 0 = 350K,

T 0
c = 300K. The model parameters can be found in [31].

The set of inputs is U = [−20, 70]K and the uncertainty w = [w1, w2]T is bounded by

w1 ∈ [−0.1, 0.1] mol
lmin and w2 ∈ [−2, 2] K

min . The example does not consider state constraints

and assumes that the state can be precisely measured.
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In order to determine a terminal region Ω, we compute an LQR controller for the system

linearized at the steady state and desired final state x(f) = [0, 0]T , which results in KΩ =

[66.65,−4.86]. We then use the approach from [191] to calculate Ω as explained before. The

time step size of ∆t = 1.8 s and a prediction horizon of tN = 19.8 s, which is equal to N = 11

time steps, are the same as in [31]. We keep the reference inputs constant in each time step.

The cost functions L(xref , uref ) = uTrefRc uref and V (xref ) = xTrefQc xref are applied, with

Rc = 10−12, and Qc = diag([100, 1]). Since no cost function is provided in [31], we use these

parameters to best approximate their trajectory. We use α = ᾱ = 0.1 for the contraction

parameter and Ū = [−18, 68]K for the tightened input constraint.

For the control law uMPC(x), we apply a time-varying feedback matrix K, where at each

time step k, we obtain a new K as an LQR controller for the system linearized at x′ =
1
2

(
xref (t+ k∆t|t) + xref (t+ (k + 1)∆t|t)

)
and u′ = uref (t+ k∆t|t) . We use the weighting

matrices R = 100 for the inputs and Q as the identity for the states. In order to reproduce the

behavior of the disturbed system during the execution of the algorithm, we simulate the model

(6.16)–(6.17) with random values for the disturbances w. For the allocated optimization time,

we use the value tc = 0.54 s.

Our algorithm is implemented again in MATLAB, and we use the ACADO toolbox to

solve the optimal control problems with a multiple shooting algorithm. For the reachable set

computation we use the CORA toolbox. All computations in this section are performed on a

2.9 GHz quad-core i7 processor with 32 GB memory and without using parallel computations.

The initial solution for the first numerical example with initial state x(0) = [−0.15 mol
l ,

−45K]T is displayed in Fig. 6.2. During Alg. 7, the maximum computation time for the

optimization and reachability analysis is 0.51 s < tc, which means that we are able to perform

all computations in real time. Of this computation time, around 48% is needed for the optimal

control algorithm and around 27% for the computation of the reachable sets. As a comparison to

our algorithm, Fig. 6.3 shows the initial solution of the robust MPC (rMPC) approach from [31]

for the same example. It is clearly visible from Fig. 6.2 and Fig. 6.3 that our reachable sets are

smaller than the ones computed with rMPC. Small reachable sets are advantageous because

they minimize the probability that the input or state constraints are violated. In addition,

there is also a better chance that the sets are located inside the terminal region — even more

so in our approach, as we obtain a larger terminal region than the rMPC approach.

Furthermore, the rMPC algorithm exhibits several major disadvantages that our approach

is able to avoid: First, it does not provide formal safety guarantees for time-continuous sys-

tems, as it only considers time-discretized systems. Second, rMPC directly optimizes over the

reachable sets, which leads to large computation times, because the reachable sets have to be

calculated for each iteration of the optimization algorithm. To avoid this, we only optimize the

reference trajectory and compute the reachable sets only once after the optimization. Third,

the technique that rMPC uses for reachability analysis results in larger over-approximations of

the real reachable set of the system, as their technique is more conservative than our approach.

In order to compare our approach with the rMPC algorithm, we use the same parameters

and same initial point as the authors in [31]. However, the example is not really suited for

a good comparison of control approaches, because to stabilize the system from this initial
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Figure 6.2: Reference trajectory (black) and reachable sets at discrete time points (blue) of the

initial solution for our approach. A resulting trajectory of the real system is shown in red, its

reachable set in gray, and the terminal region Ω in green.

Figure 6.3: Initial solution with reachable sets for the rMPC approach, taken from [31].

point, the maximal available control input has to be applied for nearly the whole time horizon.

This does not leave much room for the other objectives, like minimization of the cost function

or counteracting disturbances. Therefore, we provide a second example for the initial point

x(0) = [−0.3 mol
l ,−30K]. Compared to the case above, we changed the final prediction horizon

to tN = 9 s and the input weighting matrix to Rc = 0.9. The results are displayed in Fig. 6.4.

For this example, the maximum computation time for optimization and reachability analysis
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c© IEEE 2018

Figure 6.4: Our approach for a different initial point with terminal region Ω (green), reference

trajectory (solid black) and reachable sets at discrete time points (blue) of the initial solution,

reference trajectories for all iterations (dashed black), real system trajectory (red), and reachable

set for the real system trajectory (gray). The resulting reachable sets can be seen better in the

magnified section.

is 0.37 s ≤ tc This example nicely demonstrates that our repeated optimization enables finding

feasible trajectories that have a lower cost than the initial solution.

6.5 Discussion

The computational complexity for our optimization is the same as for regular MPC. During

operation, we solve the optimal control problem (6.7)–(6.12). Since we only solve it for a single

state, we can use the same solvers which are developed for solving nonlinear programs and

which are used for existing MPC. The only additional computational effort is the reachability

analysis [74], which has a complexity of O(n3), with n denoting the dimension of the state

space.

Because this computation only has to be performed once for the whole time horizon, we

are able to do it in real time, as shown in the numerical example. Since we do not optimize

over the reachable sets and therefore are not able to obtain a global optimal solution (which

is not feasible for nonlinear programs in general), we save a lot of computation time while still

guaranteeing safety.

An advantage of our approach is that any kind of feedback controller can be used to track

the reference trajectory and counteract disturbances. It is also not necessary to compute the

invariant set or some contraction set which has to hold everywhere in the state space. Instead,

we compute the actual reachable set based on the predicted future situation, resulting in a less

conservative solution.
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6.6 Summary

We present a novel reachset MPC algorithm which combines reachability analysis with dual-

mode MPC. This demonstrate how to use the proposed combination of reachability analysis

and controller optimization in an online fashion to ensure safety for continuous-time, nonlinear

systems with disturbances and uncertain measurements. Due to the online computation of

reachable sets, we are not restricted to fixed-size tubes as often seen in literature (e.g., [22,25,28])

and therefore are less conservative. In addition, we directly take computation times into account

and optimize the trajectory based on the set of initial states after the computation, rather than

applying inputs that are computed for states which are measured before the optimization begins.

Compared to the few existing MPC techniques which use reachability analysis [30, 31], our

approach has significant advantages, as we are able to provide guarantees for continuous-time

systems and we are able to consider measurement noise and computation times, which are

neglected by others. We illustrate the advantages of our approach compared to an existing

approach in the numerical example and also show that the computations can be performed in

real time.

The resulting controller has a simple structure, and it can be implemented using standard

reachability tools and optimal control solvers. In addition, as we do not need to know Lyapunov

functions, our approach is easy to use and therefore appealing in practice.
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Chapter 7

Practical Application

After developing various set-based control algorithms in previous chapters, we now present

their application to real systems. We focus on two examples, an autonomous car and a robotic

manipulator. We show how the algorithms are applied to these systems and how they can be

used for online planning.

7.1 Autonomous Car

Our first example1 considers an autonomous car. For technical reasons explicated in Sec. 7.1.2,

we are only able to consider scenarios without high positive acceleration. Therefore, we focus on

obtaining fail-safe trajectories with formal guarantees on safety and driveability. These fail-safe

trajectories can be used in addition to a normal trajectory planner and are applied in case this

planner is unable to find a safe solution. As this is usually the case in emergency situations,

it is crucial to have a solution which guarantees staying in certain safe sets in order to ensure

that no collision happens.

We first use conformance checking, as described in Sec. 2.8, to obtain a model that captures

the real behavior. Then, we apply the combined control approach to compute a maneuver

automaton consisting of safe motion primitives. We use these motion primitives to match

online-generated reference trajectories to ensure their safe execution. We demonstrate the

combined approach in several simulations based on real traffic data.

1The results from this section are based on the master’s thesis of Anna-Katharina Rettinger [192], which

was supervised by the author, and subsequent collaboration.
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7.1.1 Obtaining the Model

We model the car similarly to the numerical examples in previous sections as a kinematic

single-track model [193], given as

v̇ = a+ wa,

Ψ̇ = v (κ+ wκ),

ṗx = v cos(Ψ),

ṗy = v sin(Ψ).

Here, v denotes the vehicle’s velocity, Ψ its orientation, and px as well as py its positions in

the x and y directions. The inputs are the acceleration a and the vehicles curvature κ. The

disturbances wa and wκ are additive on the corresponding inputs. We model the measurement

noise as additive uncertainties for each state of the form

h(x, ν) = x+ ν,

with x = [v,Ψ, px, py]T and ν = [νv, νΨ, νpx , νpy ]T .

To be more realistic, we consider a coupled input constraint U

√
v̇2 + (vΨ̇)2 ≤ amax

⇔
√

(a+ wa)2 + (v2 (κ+ wκ))2 ≤ amax, (7.1)

with amax = 11.5 m
s2 , instead of individual input constraints as done in the previous numerical

examples. The constraint results from the friction circle and is a coupled constraint on the

acceleration and curvature based on the current velocity (see [193] for more details).

7.1.2 Obtaining Real Vehicle Data

To do the conformance checking for this model, we use a collection of real vehicle data which has

been recorded on several test drives with an automated car. The test drives cover a number of

different scenarios, at various velocities and places. The recorded data contains measured states

as well as requested inputs. Due to safety regulations for the automated vehicle, the tracking

controller of the automated car is not allowed to directly control the actuators, but rather sends

the required inputs to some underlying safety and comfort controllers, which interact with the

actuators. Therefore, we have to include the behavior of the underlying controllers in the model

of the systems which the resulting controller acts on.

During high positive acceleration, the underlying controllers shift gears, which leads to

significant delays and deviation from the requested acceleration. Since we neither have access

to nor information about the underlying controllers, it is not possible to include this behavior

into the conformant model without being overly conservative. Therefore, we restrict ourselves

to driving cases where the vehicle drives with constant velocity or decelerates. Since we focus

on fail-safe planning, this usually involves slowing down to avoid collisions, so this does not

restrict us too much in this scenario.
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7.1.3 Results from Conformance Checking

For the conformance checking, we consider over 15 minutes of driving data from various urban

traffic scenarios and evaluate those parts which satisfy the previously discussed constraints.

We divide the driving data into smaller test cases and perform the trace conformance checking

as described in Sec. 2.8.1 on them.1 We increase the disturbance and measurement noise sets

until conformance can be shown for all test cases. The resulting values of the disturbances and

measurement noises are given by

wa ∈ [−0.75, 0.75]
m

s2
, wκ ∈ [−0.005, 0.005]

1

m
,

νv ∈ [−0.06, 0.06]
m

s
, νΨ = [−0.004, 0.004] rad, νpx = [−0.02, 0.02]m, νpy = [−0.02, 0.02]m.

We show the error traces from some sample test cases from the conformance checking in Figs. 7.1

and 7.2. For better visualization, we normalized the time duration in the plot to [0, 1], as

the original test cases have different durations. We present test cases which go close to the

boundaries, but we see that no error trace exceeds the maximum error bounds indicated by the

thick red lines. This shows conformance for these test cases.
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Figure 7.1: Resulting disturbance traces for six example cases from the conformance checking.

The x-axes show the time normalized to [0, 1].

7.1.4 Computation of the Maneuver Automaton

With the uncertain model obtained from the conformance checking, we use the combined con-

trol approach from Sec. 3.6 to automatically compute the motion primitives for a maneu-

ver automaton offline. Due to positional and rotational invariance of the car dynamics, all

1We do this by using a MATLAB algorithm which was developed and implemented by Daniel Heß and which

was part of the joint work in [215]. It uses MATLAB’s quadprog function for solving the fitting problem.
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Figure 7.2: Resulting measurement error traces for six example cases from the conformance

checking. The x-axes show the time normalized to [0, 1].

reference trajectories of the motion primitives start at 0 for the position and orientation.

We only have to sample different velocity ranges. To maximize flexibility, we choose the

same size for the initial sets of all motion primitives. We choose the initial set as the box

[v0 − 0.2, v0 + 0.2] ms × [−0.02, 0.02] rad × [−0.2, 0.2]m × [−0.2, 0.2]m, where v0 refers to the

initial velocity. This allows us to include the constraint that the shifted and rotated final set

must be inside this initial set to ensure that we can concatenate any two motion primitives

with matching final/initial reference velocities (see Fig. 1.2). To limit the number of considered

velocities, we sample them in an interval [1.2, 15.2] ms with discretization of ∆v = 0.2 m
s . For

164



7.1 Autonomous Car

velocities below 1.2 m
s , we compute specific motion primitives, which are explained later.

Instead of specifying the initial and final states and computing the reference trajectory

xref ( · ) by solving an optimization problem, we fix the reference input uref ( · ) to be constant

for the whole motion primitive. We compute xref ( · ) by simply integrating the inputs. The

duration of each motion primitive is set to tf = 1 s. By computing all primitives for different

input values, we are able to systematically cover the input space. We discretize the acceleration

inputs in the interval [−4, 0] ms2 with discretization of ∆aref = 0.2 m
s2 . Since we only consider

emergency braking maneuvers in this section, we restrict ourselves to nonpositive reference

accelerations. The discretization size is chosen such that it matches up with the discretization

size of the considered velocities: all acceleration values lead to a decrease of a multiple of 0.2 m
s

after 1 s, which matches the initial velocities of other motion primitives. For the curvature, we

discretize the interval [0, 0.06] 1
m with discretization ∆κ = 0.001 1

m . For symmetry reasons, we

only need to compute motion primitives for driving straight and turning left, as the turning

right primitives can be obtained by simply changing the signs in the corresponding dimensions.

To compute the motion primitives, we divide the reference trajectory in N = 5 parts of

duration ∆t = 0.2 s for the state-dependent feedforward controller. Since the reference inputs

are determined through our input sampling, we only have to choose Uff . We do this by includ-

ing the size of Uff into the linear optimization problem for the state-dependent feedforward

controller, as noted in Sec. 3.6. Thus, we minimize the size of the reachable set of the nominal

system and the required inputs at the same time. This allows us to maximize the remaining

input capacities for the feedback controller. Since the optimization problem for the feedforward

controller is still a convex problem, this can be solved very fast.

To check the input constraint for the closed-loop dynamics, we compute the zonotope of

applied inputs Zu for each time interval of the reachable set, as described in the implementation

part of Sec. 3.6. The input constraint (7.1) is more involved than in the previous examples, as

it is quadratic and depends on one state and several inputs and disturbances. Therefore, we

compute the new set Ẑu = Zu ⊕W, i.e., we add the set of possible disturbances to each input.

Lastly, we compute the maximum velocity vmax of the reachable set for this time interval and

multiply the κ dimension of Ẑu by v2
max. If the norm of this new zonotope is smaller than or

equal to amax, then the constraint (7.1) is satisfied. Here, we benefit from the fact that the

norm of a zonotope can be computed exactly.

In addition to the regular motion primitives which have a minimal velocity of 1.2 m
s , we also

consider full stop motion primitives for velocities down to 0 m
s . We do not consider velocities

below 1.2 m
s for regular motion primitives, as for velocities close to zero, the closed-loop model

does not accurately capture the real behavior. Since we model braking as a negative accelera-

tion, small disturbances and measurement noises result in negative velocities, which would not

happen for the real vehicle. To accurately model this behavior, we use a hybrid model where

the braking force always acts against the current velocity. We do this by applying a negative

braking force to the system and over-approximate the reachable set until the velocities of all

states are nonpositive. This over-approximated reachable set is then used as our braking motion

primitive. For simpler computation and since we only want to brake, we do not use a controller

here, but perform this open-loop by applying the desired curvature and the constant braking
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Figure 7.3: Reachable sets of motion primitives A (top), B (center), and C (bottom), projected

onto the (v,Ψ) and the (px, py) planes. The initial sets are plotted in black, the final sets in blue,

the reachable sets for all times in between in gray, and the center trajectories as black lines.

force of −4 m
s for all full stop primitives.

We systematically compute the motion primitives (regular and full stop) by solving the
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Figure 7.4: Initial (black) and shifted final sets (blue) of motion primitives A (top), B (center),

and C (bottom), projected onto the (v,Ψ) and the (px, py) planes.

optimization problem for each discretized velocity and acceleration, and afterwards store the

feasible motion primitives in the maneuver automaton. We use the MATLAB implementation

with the toolboxes from Sec. 3.6.5 for the computations. In total, we compute around 16,000
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motion primitives. Since we transform all turn left motion primitives into turn right, we obtain

a maneuver automaton with over 30,000 motion primitives.

For illustration, we show three example motion primitives A, B, and C with different initial

velocities and reference inputs. Motion Primitive A starts with an initial velocity of vref (0) =

15 m
s and has a reference input of uref ( · ) =

[
−0.2 m

s2 , 0.007 1
m

]T
. Motion Primitive B starts with

an initial velocity of vref (0) = 8 m
s and has a reference input of uref ( · ) =

[
−4 m

s2 , 0.011 1
m

]T
.

Motion Primitive C starts with an initial velocity of vref (0) = 6.2 m
s and has a reference input

of uref ( · ) =
[
−3.6 m

s2 , 0
1
m

]T
. We show the reachable sets of these three motion primitives in

Fig 7.3 and a comparison of their initial and shifted final sets in Fig. 7.4. By design, the shifted

and rotated final sets are all contained inside the initial sets. As this is the case for all 30,000

motion primitives, we see that our algorithm is capable of successfully computing various types

of motion primitives, even for systems affected by real-world disturbances and measurement

noise.
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(b) Bounds of the reachable set

Figure 7.5: For a simpler representation of motion primitives, we only store the maximum

deviation of the reachable sets. (a) To be independent of the orientation, we define a coordinate

system relative to the reference trajectory. (b) For each time step, the maximum deviation of the

reachable set in these coordinates is computed.

For the online planning, we do not need to know the whole reachable set for each state.

In fact, it is sufficient to know the maximum occupancy set in the positions’ dimensions. To

reduce the amount of stored data and to speed up the online planning, we are only interested

in the maximum deviation from the reference trajectory for each motion primitive. For easier

use, we compute them in the relative coordinate system p′x and p′y based on the orientation of

the reference trajectory, see Fig. 7.5(a).

We begin by computing the maximum deviation of any state in the reachable set from the

corresponding reference trajectory in dimensions p′x, p
′
y, and Ψ for each motion primitive. We

denote these by ∆p′x, ∆p′y, and ∆Ψ. For the positions, we do this by bounding the reachable set

at each time step by an axis aligned box in the p′x and p′y coordinates (see Fig. 7.5(b)) and store

the maximum values of the box dimensions of the whole motion primitive. This is the maximum
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∆Ψ
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y

(c)

Figure 7.6: Over-approximation of the occupancy set for the car and its use for collision checking:

(a) The occupancy set due to uncertain orientations is over-approximated by a box. (b) This box

is enlarged in px, py dimensions for the maximum size of the reachable set. (c) The resulting

occupancy set is used for collision checking during online planning.

uncertainty of the reference point of the car. To obtain the maximum occupancy set, we first

over-approximate the occupancy resulting from the uncertain orientations, see Fig. 7.6(a), and

then enlarge this set by the maximum size of the reachable set in the positions’ dimensions,

see Fig. 7.6(b). For simplicity’s sake, we over-approximate both occupancy sets by boxes as

shown in the illustration. We use this over-approximated occupancy set to check online for

collisions with other traffic participants or road boundaries (Fig. 7.6(c)). For collision checking,

we therefore only have to store for each motion primitive its reference trajectory and the size

of its occupancy box in p′x and p′y dimensions.

7.1.5 Planning with Motion Primitives

In this subsection, we use the computed maneuver automaton for trajectory planning in different

emergency situations. For the online motion planning, we use the approach of matching a
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reference trajectory with our motion primitives, as illustrated in Fig. 1.4. To compute the

reference trajectory for the fail-safe scenarios, we use the planner from [194]. The planner

uses convex optimization to find a trajectory based on a simplified vehicle model without

disturbances which takes the occupancies of other vehicles into account.

In our examples, we consider different emergency situations. The scenarios considered are

all based on real-world situations which are obtained from real vehicle data from various test

drives. They cover both braking and evasive maneuvers. The matching algorithm for the

motion primitive is implemented in Python on a computer with an Intel i3 2.2 GHz processor

and 8 GB memory.

Given the reference trajectory, the planning algorithm has to select the motion primitives

from the maneuver automaton which best match the reference trajectory and do not lead to a

collision. The number of possible combinations is MH , assuming we have M motion primitives

for each initial velocity and a horizon of H. Since it grows exponentially with the prediction

horizon, it is not feasible to consider all possible combinations for real-time planning. Instead,

we need a heuristic which limits the number of checked cases.

The simplest option would be to set H = 1 and match one primitive at a time, i.e., find

the primitive which best matches the first part of the reference trajectory, then find the best

primitive which starts from the first one for the second part of the primitive, and so on. While

this limits the number of combinations to consider, the short prediction horizon would make

the planning too shortsighted, and it becomes hard to track the reference trajectory.

Therefore, we present a heuristic which limits the number of considered primitives and

therefore allows us to predict a horizon larger than one. The basic idea is to only consider motion

primitives for which at least one of their reference inputs is close to the average inputs of the fail-

safe trajectory. To do so, we divide the reference trajectory from the fail-safe-trajectory planner

into intervals of length tf = 1 s, i.e., the duration of our motion primitives. For each of these

intervals, we compute the average acceleration ā and average curvature κ̄. For the matching,

we now only consider motion primitives whose reference inputs uref ( · ) = [aref ( · ), κref ( · )]T
during the respective time interval satisfy at least one of the following conditions:

aref ∈ [ā−∆a, ā+ ∆a],

κref ∈ [κ̄−∆κ, κ̄+ ∆κ].

Since we compute the motion primitives based on the discretized inputs, we can order them such

that the potential primitives can be found very fast. We then check which of these potential

motion primitives best matches the reference trajectory. For computational efficiency, we only

check this at five discrete points for each primitive, and use a quadratic cost function for the

difference between the states of the motion primitive and the reference trajectory at each of

these time points. We weight the individual dimensions by [1, 500, 1, 10], with an additional

weighting factor of 4 for the final state of each motion primitive. These weights are manually

chosen with larger weights for the orientation, as the values are generally smaller, and for the

py dimension, as these errors are harder to counteract.

We perform the matching in a receding horizon fashion. This means, we are looking for a

concatenation of H = 2 motion primitives with the lowest costs and which are collision free.
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After having found them, we keep the first motion primitive and move the prediction horizon

by one and start again from the end of the selected primitive. We continue this until we have

found a collision free combination for the whole length of the reference trajectory and start

applying the chosen sequence of motion primitives. If we ever reach an iteration where every

combination of motion primitives leads to a collision, we use backtracking, i.e., we go back one

step and choose the next best motion primitive combination and continue from there.

Note that the presented matching heuristic serves merely as an example for a fast matching

algorithm. Since it reduces the base M of the planning complexity MH , it is possible to plan

faster than when considering all possible motion primitives, especially for longer horizons. When

comparing the heuristic with a planner which considers all motion primitives, the planning

results are quite similar, but the heuristic needs far less computation time, see [192] for a

detailed comparison. There exists a large variety of different planning algorithms and heuristics,

all with their own advantages and disadvantages. The focus of this thesis is on providing tools

to simply compute safe maneuver automata which can be used with any applicable planning

algorithm. Therefore, a general comparison of these planning algorithms is outside the scope

of this work, and we only use this one heuristic for our tests.

In the following, we consider four different situations for which an emergency plan is neces-

sary: Two with a static obstacle in front of the car and two with another car in front. For each

of the two cases, we have one where we brake to stop behind the obstacle or car and one where

we change to a different lane.

Scenario 1: Braking Maneuver with Static Obstacle
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Figure 7.7: Results of our safe motion planning for the first scenario: The ego vehicle (black box)

drives towards a static obstacle (red box) and the fail-safe planner plans for emergency braking.

The resulting reference trajectory (black line) is matched by the motion primitives. Their centers

are shown as the gray line, the occupancy of the car without uncertainty as green boxes, and the

resulting occupancies increased by the reachable sets due to uncertainties as black rectangles.

Our first scenario is a braking maneuver, where the ego vehicle, i.e., the vehicle which we

control, drives with an initial velocity of 9.6 m
s and has a static obstacle in a distance of 17.1m

in front of it. The results of the scenario are shown in Fig. 7.7. The reference trajectory of

length tr = 4 s from the planner [194] only needs to brake while staying on the same lane in

order to avoid a collision.
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Our planning algorithm is able to match this reference trajectory quite accurately, especially

considering the sampled velocities and accelerations. In the final step, there is only a small

deviation of 0.1m in px dimension and since no steering is necessary, no deviation in py or Ψ

dimensions. As we come to a full stop, clearly, the final velocity is zero, as is the final velocity

of the reference trajectory. Matching this two second scenario takes 1.19 s. These computation

times can be significantly improved by using a better implementation with a faster language

like C++, by further utilizing parallelization of computations, and by changing to a faster

computer.

We see that the occupancy sets become larger for small velocities at the end due to the

previously discussed increase of uncertainty in the model at small velocities. To be less con-

servative, one would need to do a second conformance checking to obtain another model which

better describes the dynamics and, especially, disturbances for very low velocities.

Scenario 2: Evasive Maneuver with Static Obstacle
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Figure 7.8: Results of our safe motion planning for the second scenario: The ego vehicle (black

box) drives towards a static obstacle (red box) and the fail-safe planner plans for an emergency

evading maneuver to the left lane. The resulting reference trajectory (black line) is matched by

the motion primitives. Their centers are shown as the gray line, the occupancy of the car without

uncertainty as green boxes, and the resulting occupancies increased by the reachable sets due to

uncertainties as black rectangles.

In the second scenario, we again consider the case in which our ego vehicle drives with a

static obstacle in a distance of 10.4m in front of it. This time, the ego vehicle has a higher

initial velocity of 13.4 m
s , and the obstacle is closer. Therefore, it is not possible to simply brake,

but the ego vehicle has to change the lane and then slow down. This is done with a reference

trajectory of length tr = 6.2 s, which we use again as a guidance for finding a collision-free

sequence of motion primitives. We show the results in Fig. 7.8.

We see that the motion primitives are able to avoid the obstacle and change the lane without

any overshooting to the side. It does not follow the curvature of the reference trajectory exactly,

though. The reason for this behavior is that the motion planner for the fail-safe reference

trajectory does not take the limits of the input capacities in combination with uncertainties

into account. Therefore, it is possible that the reference trajectory is not drivable when taking

disturbances into account, as the occupancy sets would leave the left lane. To avoid this, the

discrete planner chooses motion primitives which follow the direction of the reference trajectory
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while ensuring safety even in case of disturbances. Therefore, by using the reference trajectory

as a guidance for the search of our motion primitives, we obtain the best of both worlds: We do

not have to exhaustively search the whole street, but only try to follow the reference trajectory.

And on the other hand, when computing the reference trajectory, we only have to find an

approximative solution without any safety guarantees under uncertainties, as we obtain them

by the concatenated motion primitives.

At the end of the maneuver, there is an overshoot in the px direction of 2.4m. Though,

since there are no obstacles in the front, this does not matter. In the py direction, the distance

to the reference trajectory is less than 0.1m. Matching the reference trajectory over the whole

tr = 6.2 s horizon takes only 0.56 s.

Scenario 3: Braking Maneuver with Other Vehicle
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Figure 7.9: Results of our safe motion planning for the third scenario: The ego vehicle (black

box) drives with another vehicle (blue box) in front of it. The predicted occupancy sets of all

possible behaviors of the other vehicle are also shown in blue. The fail-safe planner plans for

emergency braking and the resulting reference trajectory (black line) is matched by the motion

primitives. Their centers are shown as the gray line, the occupancy of the car without uncertainty

as green boxes, and the resulting occupancies increased by the reachable sets due to uncertainties

as black rectangles.

In the third scenario, shown in Fig. 7.9, we consider another traffic participant as a moving

obstacle. The other vehicle, illustrated by a blue box, is located 30.1m ahead in the lane to

the left from the ego vehicle. The ego and the other vehicle have a similar initial velocity of

14.0 m
s and 13.9 m

s , respectively. We use SPOT [5] to over-approximately predict the possible

occupancies of the other vehicle at different time intervals (blue sets) and plan the reference

trajectory for the worst case behavior: cut into the ego vehicle’s lane and execute an emergency

stop.

To avoid colliding with the other vehicle, the trajectory planner computes a braking ma-

neuver, which is matched with motion primitives. The reference trajectory has a duration of

tr = 5 s, and our algorithm needs 1.6 s to match it. The matching algorithm is able to track the

reference trajectory very closely with the motion primitives. Similar to the braking situation

in Scenario 1, we only have a small final overshoot in px direction of 0.1m and no deviation in

the other dimensions.
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Scenario 4: Evasive Maneuver with Other Vehicle
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Figure 7.10: Results of our safe motion planning for the fourth scenario: The ego vehicle (black

box) drives with another vehicle (blue box) in front of it. The predicted occupancy sets of all

possible behaviors of the other vehicle are shown in blue as well. The fail-safe planner plans

an emergency evading maneuver to the left lane including braking to a full stop. The resulting

reference trajectory (black line) is matched by the motion primitives. Their centers are shown

as the gray line, the occupancy of the car without uncertainty as green boxes, and the resulting

occupancies increased by the reachable sets due to uncertainties as black rectangles.

In the last scenario, the ego vehicle and another vehicle are both driving in the right lane.

The scenario is shown in Fig. 7.10. Both vehicles have again similar velocities of 13.8 m
s for the

ego vehicle and 13.9 m
s for the other vehicle. The distance between both vehicles is 35.1m. We

again use SPOT to predict the possible occupancy set of the other vehicle and plan a fail-safe

trajectory which drives the ego vehicle to the left lane, where it comes to a full stop, so as

not to intersect with the possible occupancy set of the other vehicle. We match the reference

trajectory with a duration tr = 6.2 s in 9.5 s. As discussed before, this time can be further

reduced by using a different implementation and/or parallel computations.

The concatenated motion primitives successfully change the lane without leaving the street

and bring the ego vehicle to a safe stop behind the possible occupancy set of the vehicle in front.

We see that our planning algorithm chooses the motion primitives such that they do not match

the curve of the reference trajectory exactly. This is likely for similar reasons as in Scenario 2,

as the reference trajectory is not exactly centered in the left lane. Without uncertainties, this

does not matter; however, if we consider the possible effects of uncertainties, being too far left

in the left lane might lead the car out of the street. By choosing the motion primitives more

in the center of the left lane, our planning algorithm ensures that the ego vehicle stays on the

street despite disturbances. In this particular situation, having the fail-safe trajectory going

very close to the outer boundary of the street and changing curvatures in between, makes it

especially hard to better match it using motion primitives with constant inputs.

Since it is not possible to safely track the fail-safe trajectory exactly, it is unavoidable

that the center trajectories of the motion primitives have an offset of 0.45m to the reference

trajectory in py direction at the end of the scenario. The additional offset of 1.06m in px

direction likely results from the discretized motion primitives and was safely chosen, as there is

enough space before the occupancy set of the other vehicle.
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We conclude that our approach is able to find safe concatenations of motion primitives

for all four scenarios. Since we consider uncertainties when computing the motion primitives,

the results are much safer than only using the fail-safe planner from [194], which does not

consider these. Further work is needed to improve the implementation of the matching algorithm

to obtain faster computation times. In addition, the overall approach would benefit from

an improved planner for the reference trajectories which includes the estimated size of the

occupancy set of the motion primitives. This would result in closer matches which reduce

backtracking and therefore significantly speed up the matching process.

The demonstrated feasibility of ensuring safety of fail-safe trajectories is a crucial base step

for general safe motion planning. In a normal situation, a trajectory planner would plan for

the most likely behavior. Therefore, if other vehicles behave as expected, there is no need to

perform an emergency maneuver, and the fail-safe maneuver is not used. However, if there ever

is an emergency situation, we can rely on having a safe solution. With a different vehicle model

and new motion primitives, the approach can also be used for general trajectory planning, not

just for emergency situations.
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7.2 Robot Manipulator

Figure 7.11: Schunk LWA 4P robot for which we design a safe controller.

In the second application1, we test our algorithms on a robotic manipulator. For the exper-

iments, we use the Schunk LWA 4P robot shown in Fig. 7.11, a lightweight robotic manipulator

with six degrees of freedom. The robot is controlled using a centralized controller on a Speedgoat

real-time target machine which uses a CANopen fieldbus system to send currents commands

and receive positions measurements. This type of robot has high potential for flexible manufac-

turing in collaboration with human workers. To ensure safety at all times, we must guarantee

that the robot stays in a safe set around the desired trajectory, such that it cannot collide with

the human despite external disturbances, sensor noise, or model mismatch. Therefore, we aim

at computing a safe tracking controller with a corresponding reachable set, which can be used

for real-time planning.

The rigid-body dynamics of the robot manipulator has the form

τ = M(q)q̈ + c(q, q̇) + g(q),

where q, q̇, q̈ ∈ R6 are the joint positions, velocities, and accelerations, respectively, and τ ∈ R6

the motor torques at each joint. The matrix M(q) contains the masses and inertias of the robot,

1The results of this section are based on a joint work [230] with Stefan Liu who also performed the tests on

the real robot.

176



7.2 Robot Manipulator

the vector c(q, q̇) the Coriolis and centrifugal forces, and the vector g(q) the gravitational forces.

Despite this simple form, the actual dynamics are highly nonlinear and can become even more

complicated if friction and similar disturbance effects are modeled. If we want to express the

system as a differential equation with q̈ on one side, we have to invert the inertia matrix to

obtain

q̈ = M−1(q) (τ − c(q, q̇)− g(q)) . (7.2)

Computing the matrix M−1(q) analytically becomes extremely challenging for higher dimen-

sional systems, and it is no longer feasible for our robot with six degrees of freedom.

We could control the robot the same way as previously described for the car, by computing

motion primitives offline and combining them in a maneuver automaton for online application.

This would be more challenging than the previous case due to the very long expression of

(7.2) and the fact that the dynamics are not independent of the initial position. On the other

hand, there exists a number of control approaches for robotic manipulators which have proven

to work well in practice but are not formally verified. An example is feedback linearization

and dynamic decoupling control [195, Ch. 8.5], where an underlying controller counteracts the

nonlinear behavior and aims at changing the closed-loop dynamics to be close to a linear system

of the form

ẋi = xi+6, ẋi+6 = ui,

where xi := qi and xi+6 := q̇i for all i ∈ {1, . . . , 6}. From the new input to our feedback-

linearized system u, the actual input to the robot τ is then obtained by

τ = M(q)u+ c(q, q̇) + g(q).

By additionally using disturbance observers, this approach works well in practice and linear

feedback controllers can be used with this simplified dynamics to track a reference trajectory.

However, since the actual disturbed nonlinear system can never be modeled accurately, the

feedback linearization cannot achieve an exact linear behavior. Therefore, this approach alone

is not able to provide formal safety guarantees. With this example, we demonstrate how

to use our set-based control methods in combination with conformance checking to design a

formally safe controller for the linearized dynamics, which also ensures safety of the actual

nonlinear dynamics. This allows us to use the established practical approaches with our formal

approaches to combine efficiency with safety.

To account for the imperfections from the feedback linearization, we model the resulting

dynamics of the actual robot with the feedback linearization as a disturbed linear system with

sensor noise of the form

ẋi = xi+6 + wi, ẋi+6 = ui + wi+6,

with measurement function

h(x, ν) = x+ ν,
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where ν ∈ R12. To further improve the accuracy and performance, we also use a linear high-gain

observer from [196] to obtain the velocity states and include the delay caused by the discrete

communication between the sensors, the central computer, and the actuators over a bus network

to our model. Using reachset conformance checking, we want to find sets of disturbances and

measurement noises such that the actual behavior of the feedback-linearized real system is

contained inside the set of possible behavior of our uncertain linear model.

For the conformance checking, we drive a large number of different trajectories covering a

wide range of scenarios with the real robot. These scenarios include polynomial and trapezoidal

trajectories where the target positions, velocities, and accelerations are chosen randomly such

that they cover large parts of the available workspace, of the velocities, and of the accelerations.

In addition, we have a special focus for test cases on the most critical scenarios, where the model

mismatch and errors are expected to be the highest. To model the friction in the feedback

linearization, we used a model from [197] which considers Coulomb and linear viscous friction.

This simplified model has the largest errors in situations where the velocities are close to the

maximum possible values and where the velocities change their sign, see [198]. The generated

trajectories are filtered to exclude any which would lead to self-collisions or exceed the maximum

motor currents. The remaining trajectories are tracked with a manually tuned controller. By

not including this controller in the conformance model, but only recording the system’s in-

and outputs, i.e., the out- and inputs of the auxiliary controller, we can perform the standard

conformance checking from Sec. 2.8.2, which is independent of the controller used during the

test cases. We record a total of over 33 minutes of tests. To maximize the number of tests, we

consider each sampling instant as the start point of a new test case, which results in 497,880

test cases for each joint.

The resulting uncertain model from the conformance checking contains the real behavior

of the robot in combination with the observers, communication delay, and feedback lineariza-

tion. Next, we use our set-based controller synthesis to obtain a safe controller for it. Since

the dynamics of each joint are independent of the other joints due to the decoupling from the

feedback linearization, we can compute the controllers for each joint individually. Therefore, we

only have to consider a two-dimensional system with a single input for each joint, which dras-

tically simplifies the computational complexity. We consider again a linear tracking controller

of the form uctrl(tk) = uref (tk) +K(x̂(tk)− xref (tk)). As we run it on a digital controller, we

directly consider the discrete control inputs corresponding to the controller cycle of ∆t = 4ms.

Since we consider linear dynamics, we only need to compute a single time-invariant feedback

matrix K which is independent of the online-computed reference trajectories.

The inputs of the real system are limited by the maximum torques of the motors τmax =

[75.5, 75.5, 75.5, 75.5, 20, 20]TNm. They result from the fact that the robot has four larger mo-

tors and two smaller motors for the last two joints as they have to move less weight from

attached segments. The total torques requested from the motors result from the combination

of the feedback linearizing controller, the reference inputs, and the feedback controllers of the

joints. While the inputs of the feedback linearizing controllers depend on the actual position

of the robot due to gravity effects for example, the linear system is independently of the ab-

solute robot position. To be able to compute the feedback controllers independently of the
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absolute position, we solve an optimization problem which aims for the largest possible input

set U for the linear system for which the maximum torques are never exceeded for any robot

configuration. This results in a maximum input set of U2 = [−7.27, 7.27] rads2 for the second

joint and Ui = [−20, 20] rads2 , ∀i ∈ {1, 3, 4, 5, 6}, for all other joints. The reason for the dis-

crepancy here is the fact that the second joint has to mainly compensate the force of gravity

acting on the robot. Since the robot is designed with identical motors for the first four joints,

the remaining torque for the second joint is quite limited. We divide the available input ca-

pacities U into two parts, Uref and Ufb, with Uref ⊕ Ufb ⊆ U. This allows us to compute

the feedback matrix K independent of the reference input uref ( · ). We reserve input capacities

of Uref,i = [−3, 3] rads2 , ∀i ∈ {1, . . . , 6} for the reference trajectory. Therefore, the remaining

input capacities for the feedback controllers are Ufb,2 = [−4.27, 4.27] rads2 for the second joint

and Ufb,i = [−17, 17] rads2 , ∀i ∈ {1, 3, 4, 5, 6}, for the other joints.

We obtain the values of the feedback matrix K by optimizing over the reachable sets as

described in Sec. 3.5. However, we not only have the feedback matrix as optimization param-

eters, we also optimize at the same time over the size of the set of disturbances W and sensor

noise V. In [199], a conformance checking approach for robotic manipulators is presented where

the uncertainty sets for reachset conformance are obtained in an optimization problem. The

authors present a way in which approximations can be used to simplify the optimization to a

linear program. The idea behind this approach is the fact that the choice of uncertainty sets

which achieve reachset conformance are not unique. By increasing a certain dimension of the

disturbance, for example, one can reduce the size of the disturbance in a different dimension or

the size of the sensor noise set, while still establishing conformance. The approach from [199]

uses these degrees of freedom to minimize the size of the reachable set that is used to check

reachset conformance.

In our case, we use the optimization problem from Sec. 3.5 and simply add the linear

constraints from [199], which are used to ensure that conformance can be shown for the resulting

uncertainty sets W and V. By optimizing the feedback controller and uncertainty values all

together in a single optimization problem, we obtain the combination which minimizes the

volume of the reachable set of the closed-loop system and thereby leads to the best control

performance.

In contrast to the optimization problem from Sec. 3.5 where we have a fixed final time, we

are now interested in the smallest reachable set in which the tracking error remains for all times.

We obtain it by starting from a small initial set X0 around the origin and then computing the

reachable set until it converges, i.e., until time t∞ ∈ R+
0 for which it holds that

Rt∞+τ,Kx̂,W(X0) ⊆ Rt∞,Kx̂,W(X0), ∀τ ∈ R+
0 .

To deal with numerical effects which might prevent an exact convergence to happen, we use

a convergence tolerance criterion similar to [200] to terminate the computation. The resulting
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optimization problem is given by

min
K,W,V

‖R[0,t∞],Kx̂,W(X0)‖1 (7.3)

s.t. ∀tk ∈ {0, t∞} : Kh (Rtk,Kx̂,W(X0),V) ⊆ Ufb,

∀i ∈ {1, . . . , I}, ∀tk ∈ Ti, ∀x̂(tk) ∈ X̂i : x̂(tk) ∈ h (Rtk,Kx̂,W(X0),V) ,

where X̂1, . . . , X̂I denote the previously measured test cases for the included conformance check-

ing, see Sec. 2.8.2. In our optimization, we only value the size of the reachable set, i.e., the

tracking error, and we do not have any state constraints, as obstacles are considered only during

online planning. Similarly to the approaches in Ch. 3, we could easily add a cost term for the

applied inputs and consider polyhedral state constraints, if desired.

After solving optimization problem (7.3) once for each joint, we obtain the feedback matrix

K = diag([371.73, 24.18, 348.64, 434.89, 371.73, 472.95, 38.56, 9.83, 37.34, 41.71, 38.56, 43.49])

and the corresponding reachable set R[0,t∞],Kx̂,W(X0), which is shown in Fig. 7.12 in the relative

coordinates ∆xi(t) := xi(t)− xref (t), ∀i ∈ {1, . . . 12}. We see that we get rather tight bounds

for joints 1 and 3 and a small increase in the bounds for joints 4 through 6. The reason for

this increase lies already in the model from the conformance checking, where we obtained larger

uncertainties for the later joints. This is most likely due to the fact that the feedback linearizing

controller does not work as well for the last joints as for the ones closer to the base. A possible

explanation might be that there are more oscillations closer to the end of the robot. The biggest

exception is joint 2 (note the different scaling in the corresponding plot in Fig. 7.12), which is

much larger than the others. This results from the limited input capacities which we have left

after computing the linearizing controller, as it has to compensate the force of gravity, which

mainly acts on the second joint. As a consequence, the tracking controller for the second joint

cannot act as aggressively as the controllers for the other joints, as it has to compensate any

disturbances with less available input, thus ending up with a larger reachable set. Many other

robots solve this problem by using larger motors for those joints which have to compensate the

force of gravity, which is not the case in the modular setup of the used Schunk robot.

Due to the linearized dynamics, we can superpose the reference input and the feedback

controller. Therefore, we only have to compute the feedback controllers offline once, and during

the online planning, we solely optimize the reference trajectory. We restrict its inputs to the

previously chosen set Uref , and we require that
(
xref ( · )⊕ R[0,t∞],Kx̂,W(X0)

)
∩ O = ∅, where

O denotes the set of obstacles, which might be time-varying and non-convex. Therefore, this

optimization problem can be solved with the same tools as for tube-based MPC.

To demonstrate the safety of our developed controller, we test it on the real robot and

check whether the closed-loop controller actually satisfies the guaranteed constraints. The

considered scenario has a duration of 25 seconds, and we repeat it ten times. We show the

recorded trajectories in Cartesian space in a 3-D plot in Fig. 7.13. Similar to our scenarios from

conformance checking, we choose a scenario which includes a number of different accelerations

and velocities, goes through different parts of the state space, and also includes slow zero

velocity crossings to capture friction effects [198].
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Figure 7.12: Illustration of the reachable sets of our feedback controller for the six joints.

Reachable sets at different points in time are shown in blue; the final set which we use for the

collision checking is shown in red. Please note the different axes scalings in the plot of the

(∆x2,∆x8) plane.

In Fig. 7.14 and Fig. 7.15, we show the recorded trajectories for the joint positions and joint

velocities, respectively. In addition, we show the tube in which the safety controller guarantees
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Figure 7.13: 3-dimensional visualization of the ten repetitions of the test trajectory. The lines

show the movement of the robot flange for the end effector.

that the trajectories remain around the reference trajectory. We see that the trajectories in

fact always remain in this precomputed reachable set as desired. Due to higher uncertainties

when estimating the velocities, both the reachable sets as well as the uncertainties of the joint

velocities are larger compared to the tighter bounds for the joint positions. We also see again

the increased reachable set for the second joint, both in position and in velocity, where we have

less input capacity for the feedback controller. Finally, in Fig. 7.16, we plot, for each joint, the

deviations of the recorded trajectories from the reference trajectory projected on the position

and velocity planes. We do this for each time point of all ten replications of our scenario which

results in a total of around 62,500 measurements for each joint. For comparison, we also show

the bounds of the reachable sets for each joint, i.e., the tube in which the tracking controller

guarantees that the trajectories remain and see again that this guarantee holds in all cases.
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7.2 Robot Manipulator

Figure 7.14: Measurements of the joint positions of all six joints for the ten repetitions of the

test trajectory. In addition, we show in gray the tube corresponding to the precomputed reachable

set.
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Figure 7.15: Measurements of the joint velocities of all six joints for the ten repetitions of the

test trajectory. In addition, we show in gray the tube corresponding to the precomputed reachable

set.
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Figure 7.16: All measurements (blue) from the ten repetitions of the test trajectory of the

closed loop system for all six joints. The reachable set (red) of our safety controller is shown for

comparison. As desired, all measurements lie in the precomputed reachable set. Please note the

different axes scalings in the plot of the (∆x2,∆x8) plane.
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7.3 Summary

In this chapter, we apply our set-based controllers to two practical systems: a self-driving car

and a robotic manipulator suitable for human-robot interaction. For the car, we demonstrate

how the combined control approach can be used to automatically compute a large maneuver

automaton with more than 30,000 motion primitives for planning fail-safe maneuvers. We use

a conformant model based on data from test-drives and thereby include real-world disturbances

and measurement errors. We successfully test the resulting maneuver automaton for online

planning of emergency trajectories in four different scenarios from recorded traffic data. We

demonstrate that we can ensure safety and driveability of the emergency trajectories even for

the worst-case behavior of other traffic participants.

In the second application example, we combine our continuous feedback controller with an

existing feedback linearizing controller to control a robotic manipulator. The combination with

the existing controller not only demonstrates how we can use our approaches together with

established heuristics or domain specific controllers, it also allows us to decouple the robot’s

dynamics and apply the superposition principle. By using conformance checking for the closed-

loop dynamics, we ensure that our uncertain model includes all possible errors due to the

feedback linearization, in addition to normal disturbances and measurement errors.

We develop an optimization approach which includes reachset conformance as an additional

constraint, thereby optimizing not only the control parameters, but also the uncertainty sets

from the conformance checking, to obtain the smallest possible reachable sets. Due to the

superposition principle of linear systems, the resulting controllers and reachable sets only have to

be computed offline once and can be applied to track any online computed reference trajectory.

Similar to tube-based MPC, we can use the offline-computed reachable sets to avoid collisions

during online planning. We show in a test on the real robot that even for maneuvers which

challenge the feedback linearization controller, our computed bounds hold and our controller

satisfies all constraints. These two application examples demonstrate the practical applicability

and usefulness of the developed methods.
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Chapter 8

Conclusion and Future Directions

8.1 Conclusion

In this thesis, we presented various controller synthesis approaches with formal guarantees

for the constraint satisfaction of complex, safety-critical systems. The developed methods

combined elements from control theory, formal verification in the form of reachability analysis,

and optimization. The key idea was the integration of the formal verification into the controller

synthesis to obtain controllers with optimized performance and safety guarantees. For many

future applications, such as autonomous driving, human-robot collaboration, or surgical robots,

both parts are crucial for success.

In contrast to many existing formal approaches, we took advantage of established simpli-

fications and heuristics such that the computational effort for our methods scaled well, while

still being able to guarantee safety. A special focus was on the simple use and application of

these methods. All developed methods can be implemented as “push-button” approaches that

do not require a deep understanding of control theory to use. The resulting controllers all have

simple structures which can be easily and efficiently implemented on actual systems.

These novel ideas of interweaving reachability algorithms with control theory have led to a

new way of designing controllers with unique advantages over the state-of-the-art approaches.

There exists no other control approach which is able to provide formal guarantees for constrained

nonlinear systems affected by external disturbances and sensor noise while also being efficient

to compute and easy to apply online. While there exist many controllers which are simple

to use and to apply online such as LQR [37] and other classical control approaches, these

approaches do not provide any kind of formal guarantees. Formal control approaches such as

abstraction-based control [50–71] or approaches using sum-of-squares programming [34–36] are

able to provide formal guarantees, although only few approaches explicitly consider disturbances

and sensor noise. However, the main challenge for these kinds of approaches is that their

computational effort scales poorly for higher-dimensional systems and, in the case of sum-of-

squares programming, also for the considered polynomial degree. Similarly, model predictive

control approaches have the problem of either having to solve complex optimizations online
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[12,22–30], which is not feasible in real time for higher-dimensional, complex systems, or having

to store complex divisions of the state space with individual controllers [14–21].

For the offline algorithms, we took advantage of the fact that we could perform all opti-

mization and verification steps before the online application and store the results as motion

primitives in maneuver automata. These maneuver automata can be used for online planning

and make the whole process of finding and verifying a safe trajectory very efficient.

We used different ideas for the offline synthesis of controllers for nonlinear systems with

constraints and subject to disturbances and sensor noise: Since the basic problem was how to

obtain inputs for a continuous set of possible states, we first presented two approaches which

interpolate between finitely many solutions, either using extreme points or the generators of

a zonotope. By repeatedly applying these steps together with reachable set computations, we

achieved robust feedback. Another idea was the direct optimization of continuous feedback

controllers. There, we were able to express the optimization as a nonlinear program, where

we directly optimized over the resulting reachable sets and therefore included reachable set

computations into the cost and constraint functions.

We then combined the ideas of the interpolation-based controllers and the continuous feed-

back controller to benefit from the advantages of both approaches while overcoming their weak-

nesses. The resulting combined approach uses an interpolation-based controller to compute

individual reference trajectories for each of the infinitely many states of the initial set by solv-

ing a single linear program and tracks these individual reference trajectories using a feedback

controller, which is obtained by optimizing over the reachable sets.

We extended the idea of the offline algorithms to hybrid dynamics through the example

of piecewise affine systems. Here, the changing dynamics based on the region of the state

space made the controller synthesis, as well as reachable set computation, hard. We tackled

this problem by considering the distances to the boundaries of the region during the controller

computation. This reduced the times where the reachable set would cover multiple regions with

different dynamics.

A second extension was the use of backward reachable set computation. All previous ap-

proaches were computed forward and tried to minimize the final reachable set for a given initial

set. In the backward case, we maximized the initial set for which a controller could ensure that

all trajectories starting from this initial set ended in a given final set. Since formally computing

backward reachable sets is very challenging, we circumvented this problem by obtaining an

analytical correlation between initial and final sets of formal forwards reachable sets and used

them to scale an approximation of the backward reachable set until it satisfied the constraints

for the actual dynamics.

In addition to using the offline controllers on their own, we also showed that they could

be used as safety nets for unverified optimal controllers. This combination allowed us to en-

sure safety for optimal controllers which might not be able to be formally verified otherwise,

but which might have advantages by being optimized for improved performance, comfort, or

energy savings. Typically, the optimal controller is applied while predicting the immediate

future behavior using reachable sets. Only if this becomes unsafe does our formal controller

step in, thereby always ensuring safety while benefiting from the advantages of the optimal
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controller. The controllers based on backward reachable sets are particularly suitable as safety

net controllers, as their maximized reachable sets lead to an increased flexibility for the optimal

controller.

After presenting offline-computed controllers, we considered online controllers as well. We

developed a novel robust model predictive control algorithm which uses reachability analysis to

ensure safety despite disturbances and sensor noise. Including the reachable set computation

into this MPC framework allowed more flexibility than fixed tubes from tube-based MPC. In

addition, we were able to explicitly consider the computation time which our algorithm needed

and ensured that nothing unsafe happened due to these delays, an effect which is usually

neglected.

In addition to a number of different numerical examples, where our new controllers out-

performed existing approaches, we also demonstrated their applicability on real-world systems.

The first application example was autonomous driving, where we used real driving data to ob-

tain a model using conformance checking. Based on this model, we used the combined control

approach to compute a maneuver automaton with over 30,000 motion primitives covering a

wide variety of velocities and turn radii offline. We showed the applicability of the safe on-

line planner for a number of simulations based on real traffic data. By combining the discrete

planning with a reference trajectory, we were able to obtain fast results while guaranteeing the

driveability and collision-freeness of the obtained trajectory.

In a second example, we applied the developed set-based control approaches to a robotic

manipulator. Here, we used an existing feedback linearizing controller in combination with

conformance checking to obtain a reliable model for the feedback linearized system. Using

the continuous feedback approach, we computed a controller for each of the robot’s joints

which minimized the reachable set while satisfying the input constraints despite disturbances

and sensor noise. Due to the feedback linearizing controller, we could directly apply this

new controller and ensure collision-freeness, even during online planning, without having to

precompute motion primitives. The tests on the real robot demonstrated that the controlled

system actually stays in the precomputed safety bounds.

These are just two of many possible examples. The approaches developed for this thesis

are applicable to a wide variety of practically relevant systems. We have not only proven their

benefits in theory but also demonstrated their advantages both in simulation and in practice.

By combining control, formal verification, and optimization, we have laid the basis for a new

field of control theory, one which is easy to apply, scales well, and provides formal guarantees

for safety critical systems.

8.2 Future Directions

This thesis already covers a wide variety of system classes and application scenarios for the

combination of control, formal verification, and optimization. Still, there are a number of

directions where the research can be continued. New system classes are one such direction. For

example, one can use the presented ideas which we used to extend our approaches to piecewise

affine systems to further generalize the approach to other hybrid dynamics. For hybrid systems
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with nonlinear continuous dynamics, one can combine the ideas from Ch. 4 with those from

Ch. 3.

A second, straightforward extension is on the algorithmic side. Since we heavily rely on

algorithms for reachable set computation and numerical optimization, our approaches directly

benefit from any improvements in these areas. While our approaches are not restricted to

specific reachability or optimization algorithms, it could still be beneficial to adapt some of

our approaches depending on new algorithms. An example could be the use of different set

representations and therefore possibly new forms of the resulting control laws.

Another research direction is the online application of set-based control approaches. This

goes hand in hand with improvements in reachability and optimization algorithms. So far, we

demonstrated a model predictive controller based on reachable sets for slower systems. Using

better implementations, faster programming languages, and faster hardware, the computation

times could be significantly improved and be made applicable for faster systems. However,

the actual online optimization of the feedback control law (not only optimizing the reference

trajectory) for high-dimensional, complex, nonlinear systems for fast applications is not yet

feasible. With future improvements in reachable set computations, this opens an interesting

direction for further research in the future.

A large field with vast potential is the application to real systems. We demonstrated the

applicability for two example systems, but the application to a wide variety of systems has not

yet been done. Together with domain knowledge in particular, there is a lot of potential to

combine existing controllers and heuristics with our formal methods, as done with the feed-

back linearization for the robot manipulator. Using established controllers with our safety-net

approach, for example, is a straightforward way in which to benefit from the combination of

controllers tuned by year-long domain experience with the formal safety guarantees of our ap-

proaches. Alternatively, one can also use proven controller structures and improve their control

parameters by optimizing over the reachable sets of the closed-loop system, as done for the

continuous feedback controller.

Another direction which builds up on our developed algorithms is the controller synthesis

for systems with complex formal specifications, for example, in temporal logic. Many existing

approaches use tools from automata theory to obtain control laws with formal guarantees for

satisfying these specifications. However, these tools often require discrete abstractions of the

underlying dynamics, which are hard to obtain, and often struggle dealing with disturbances.

Therefore, our safe maneuver automata offer a good way to abstract the underlying dynamics,

and the corresponding controllers take care of possible disturbances and sensor noise. The

tools from automata theory then only need to consider the motion primitives as abstractions

without having to take the actual dynamics into account. We successfully demonstrated this for

formally verified traffic planning in [221] and thereby illustrated the potential of this research

direction.

Similar to the last two points, further research would be useful in the area of planning with

motion primitives. While the precomputation of motion primitives drastically reduces the online

effort, we still need algorithms and heuristics for real-time planning and checking collisions with

moving obstacles. We demonstrated for the autonomous vehicle example in Sec. 7.1 that we
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can successfully plan in real traffic scenarios, laying the foundation for further research.

Safe planning using motion primitives in combination with other tools also opens interesting

opportunities in new fields. For example in [220], we showed how planning with our motion

primitives can be used in combination with probabilistic models of human drivers to enable

interactive motion planning which takes human behavior into account. Such new concepts are

only possible with the availability of safe motion primitives which allow fast online planning

with safety guarantees. Many more of these kinds of combinations and research fields are

waiting to be explored in the future.

Our approaches offer a number of new possibilities for the safe control of complex systems.

This thesis provides the basis for the combination of controller synthesis, reachability analysis,

and optimization. The next steps are to build on this basis by improving the approaches,

applying them to different domains, and advancing algorithms which use the newly developed

controllers and motion primitives.
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Appendix A

Closed-Form Expressions of

Convex Combinations

Convex combinations are used in many different applications in which all points in a set must

be expressed as combinations of extreme points. In Sec. 3.3, we present a control approach

which uses convex combinations to interpolate the input trajectories of the extreme states of a

set in order to obtain inputs for any interior state of this set. But convex combinations are also

useful for other control approaches without formal guarantees, for example robust controllers

of linear parameter-varying systems where the uncertain parameters vary in a convex set [201].

Rather than computing a control matrix for each possible parameter, the authors compute a

control matrix for each extreme point of the parameter set. Online, they interpolate these

control matrices based on the actual, measured parameter at that time point.

Similar to our convex interpolation controller, the approach from [201] therefore requires

us to determine the λi(x) parameters describing a state x inside a polytope P as a convex

combination of the q extreme points x̆(i) of P in real time. This means one has to solve the

following system of inequalities at every sampling time:

q∑

i=1

λi(x)x̆(i) = x, (A.1)

λi(x) ≥ 0, ∀i ∈ {1, . . . , q}, (A.2)
q∑

i=1

λi(x) = 1. (A.3)

These are n+1 equalities and q inequalities for q unknowns. In particular, for high-dimensional

polytopes with many extreme points, this leads to a large system of inequalities which are hard

to solve. Moreover, with the exception of simplices, this system of inequalities might have

non-unique solutions.

In this appendix1, we present methods to compute closed-form expressions of convex com-

binations for different types of convex sets. In the literature, closed-form expressions are

1This appendix, including the figures, is based on [224] c© IEEE 2016.
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mainly considered for special cases only, for example for two-dimensional, axis-aligned boxes

in [201–205] or axis-aligned boxes of arbitrary dimension in [206, 207]. However, none of these

papers provide proofs of the formulas. All of these sources, even [206, 207], who provide a for-

mula for n-dimensional, axis-aligned boxes, discuss their theory for general polytopes but are

only able to provide formulas for special forms of boxes. Other papers, for example [208], cir-

cumvent the problem of obtaining closed-form expressions by simply assuming that the convex

combinations can be obtained in real time.

More general approaches, though mostly limited to two-dimensional sets, can be found

in [209] and the references therein. One of the few papers which considers general convex sets

in higher dimensions is [210]. However, even the proposed algorithm is numerically unstable in

dimensions higher than two. Therefore, we present algorithms which work even in high dimen-

sions and for general polytopes. Our algorithms reduce online computation times and therefore

enable the use of the previously discussed control approaches for fast dynamical systems. In

addition, our algorithms allow the use of formal verification tools, such as reachability analysis,

which require closed-form expressions of the closed-loop dynamics.

We refer to an expression which can be written as an explicit mathematical formula, i.e.,

without any loops or iterations, as analytical closed-form expressions. For general closed-form

expressions, we allow that there are finitely many case distinctions, but each case must only

consist of an analytical closed-form expression. While it is not possible to provide an analytical

closed-form expression for every type of set, we discuss how such an expression is possible

for certain classes of sets, more precisely simplices and parallelotopes. Moreover, we show how

non-analytical closed-form expressions can be obtained even for arbitrary polytopes with finitely

many extreme points. The latter case involves solving point location problems, which makes it

non-analytical.

A.1 Simplices

Simplices are polytopes with the least number of extreme points which still span a full-dimensional

subset in Rn. The convex combination of the extreme points for a given point inside a simplex

is unique. We show that any simplex can be transformed to the unit simplex, i.e., the simplex

with one extreme point equal to the origin and the others equal to the unit vectors e(i). This is

achieved using an affine transformation, i.e., a linear transformation together with a translation.

Neither operation changes any convexity properties [73].

Let us consider a simplex S ⊂ Rn described by its n+ 1 extreme points x̆(1), . . . , x̆(n+1), for

which we define the matrix

G =
[
x̆(1) − x̆(n+1), . . . , x̆(n) − x̆(n+1)

]
.

We use this matrix to transform S to the unit simplex and we denote the affine transformation

of a point x ∈ S by x′ :

x′ = G−1
(
x− x̆(n+1)

)
.
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Figure A.1: Any simplex (a) can be transformed to the unit simplex (b), for which the closed-

form decomposition problem can easily be solved.

The new coordinates x′ are known as barycentric coordinates [211]. By subtracting x̆(n+1),

we shift the simplex such that the transformed extreme point x̆′(n+1) lies in the origin. By

multiplying
(
x− x̆(n+1)

)
with G−1, we transform the other extreme points to the unit vectors,

i.e., x̆′(i) = e(i), ∀i ∈ {1, . . . , n}. Note that since x̆(i) are all extreme points, the vectors

x̆(i) − x̆(n+1), ∀i ∈ {1, . . . , n}, are all linearly independent, and therefore G−1 exists.

For this special simplex, we show how a unique, analytical closed-form expression can be

obtained. The advantage of this result is that the convex combination obtained in this way

can be used for the original, non-unit simplex. This is stated in the following theorem and is

illustrated in Fig. A.1:

Theorem 6. We consider an arbitrary simplex S ⊂ Rn, described by its n + 1 extreme points

x̆(1), . . . , x̆(n+1). Given a point x ∈ S, this point can be expressed as a convex combination of

the extreme points as

x =

n+1∑

i=1

λi(x)x̆(i), (A.4)

where the parameters λi(x) are given by the following closed-form expression:

λi(x) =
(
G−1

(
x− x̆(n+1)

))
i
, ∀i ∈ {1, . . . , n}, (A.5)

λn+1(x) = 1−
n∑

i=1

λi(x). (A.6)

Proof. We have to show that the two statements of the theorem hold: (A.4) is a convex com-

bination, and (A.4) with λi(x) resulting from (A.5)–(A.6) actually describes the point x. We
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begin by showing that λi(x
′) sum up to 1, then that they are nonnegative, and finally that

using these λi(x
′) defined for x′ also describe x in S.

Since the transformed extreme points x̆′(i) are the unit vectors e(i), any transformed x′, with

x ∈ S, can be uniquely written as

x′ =

n∑

i=1

x′ie
(i) =

n∑

i=1

x′ix̆
′(i),

see also Fig. A.1. Adding the last transformed extreme point x̆′(n+1) = 0 does not change the

result, since it is the origin. From the definition of the simplex as the convex hull of the extreme

points, it follows that for any x ∈ S, x′ is inside the unit simplex and therefore

n∑

i=1

λi(x
′) =

n∑

i=1

x′i ≤ 1.

Since
∑n
i=1 λi(x

′) ≤ 1 is not necessarily a convex combination, as the sum might be smaller

than one, we define λn+1(x′) = 1−∑n
i=1 λi(x

′). We use this weight to add x̆′(n+1) = 0, which

does not change the result of the original decomposition, i.e.,

x′ =

n+1∑

i=1

λi(x
′)x̆′(i) =

n∑

i=1

λi(x
′)x̆′(i) + λn+1(x′)0 =

n∑

i=1

λi(x
′)x̆′(i).

However, this definition of λn+1(x′) ensures that
∑n+1
i=1 λi(x

′) = 1.

Because x ∈ S and S is transformed to the unit simplex, all points are mapped to a nonneg-

ative set. Therefore, it holds that λi(x
′) = x′i ≥ 0, ∀i ∈ {1, . . . , n}. From

n∑

i=1

λi(x
′) =

n∑

i=1

x′i ≤ 1,

it follows that

λn+1(x′) = 1−
n∑

i=1

λi(x
′) ≥ 0.

Therefore, the λi(x
′) are a convex combination and define any point x′ ∈ S′ in terms of the

transformed extreme points x̆′(i).

In the last step, we show that we can use the parameters of the transformed states λi(x
′)

for the original state x as well, by transforming the point x′ back into the original coordinates.

Since x′ = G−1
(
x− x̆(n+1)

)
by definition, the following holds:

x = Gx′ + x̆(n+1) = G

(
n+1∑

i=1

λi(x
′)x̆′(i)

)
+

n+1∑

i=1

λi(x
′)

︸ ︷︷ ︸
=1

x̆(n+1)

=

n+1∑

i=1

λi(x
′)
(
Gx̆′(i) + x̆(n+1)

)
=

n+1∑

i=1

λi(x
′)x̆(i), (A.7)

which is a direct result from the fact that the convexity properties are not changed by affine

transformations. Therefore, x can be written as a convex combination of the extreme points of

S, and it has the same parameters λi(x
′) as the convex combination of x′.
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Figure A.2: Any parallelotope (a) can be transformed to the unit hypercube (b), for which the

closed-form decomposition problem can easily be solved.

A.2 Parallelotopes

In the previous section, our solution involved transforming simplices to unit simplices, for which

the analytical closed-form expression is easy to obtain. In this section, we present a similar

approach for parallelotopes. We first transform a general parallelotope P to the unit hypercube

[0, 1]× [0, 1]× . . . [0, 1] and then present a way to obtain a closed-form expression for this special

class of parallelotopes. The advantage is that, in the case of boxes whose edges are parallel to

the axes, we can consider each dimension independently. Although there are infinitely many

different combinations for choosing λi(x), except for points on the boundary, we reduce the

degrees of freedom such that we obtain a unique solution. We do this by defining for any point

x ∈ P = 〈cP, GP〉 :

x′ =
1

2
G−1

P (x− cP) +
1

2
1. (A.8)

This affine transformation maps the parallelotope P to

P′ =
1

2
G−1

P (P− cP) +
1

2
1

= {x′ ∈ Rn | x′ =
1

2
G−1

P (cP − cP) +
1

2
G−1

P GPα+
1

2
1, αi ∈ [−1, 1]}

= {x′ ∈ Rn | x′ =
1

2
1 +

1

2
Iα, αi ∈ [−1, 1]},

which is the unit hypercube. Note that G−1
P always exists since GP is quadratic and has full

rank by definition of a parallelotope. The transformation for an example in R2 is visualized in

Fig. A.2. In the following, we state Thm. 2 again and prove it.
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Theorem 2. We consider a parallelotope P ⊂ Rn given by

P = {x ∈ Rn | x = cP +GPα, αi ∈ [−1, 1]},

with cP ∈ Rn and GP ∈ Rn×n, and which has 2n extreme points x̆(1), . . . , x̆(2n). Given a point

x ∈ P, this point can be expressed as a convex combination of the extreme points as

x =

2n∑

i=1

λi(x)x̆(i), (A.9)

where the parameters λi(x), i ∈ {1, . . . , 2n}, are given by the following closed-form expression

λi(x) =

n∏

j=1

µi,j ,

where

µi,j =




x′j , if αj(x̆

(i)) = 1

1− x′j , if αj(x̆
(i)) = −1.

(A.10)

Here, x′ is the transformed point of x under the affine transformation (A.8).

Note that for a point x̆(i) ∈ P to be an extreme point, the entries in the corresponding

parameter vector α(x̆(i)) must all be ±1; therefore, one of the cases in (A.10) is always satisfied.

Proof. We first show that all λi(x) are nonnegative, then we show that they sum up to 1, and

finally that this convex combination (A.9) actually results in the point x.

Since P′ is the unit hypercube, it follows that for any x′ ∈ P′ : x′i ∈ [0, 1], ∀i ∈ {1, . . . , n}.
Because λi(x) is a product of the entries x′j or (1 − x′j), i.e., a product of n numbers between

0 and 1, its value must be between 0 and 1, too, which proves the first part.

Let us now show the second part by induction over the number of states n. We state that

2n∑

i=1

λi =

2n∑

i=1

n∏

j=1

µi,j = 1. (A.11)

Before we begin, note that it follows from the fact that the α(x̆(i)) consist of all 2n possible

combinations of ±1 entries, i.e.,

α(x̆(1)) =




−1

−1
...

−1



, α(x̆(2)) =




1

−1
...

−1



, . . . , α(x̆(2n)) =




1

1
...

1



,

that we can find for any given λi(x) and an arbitrary l ∈ {1, . . . , n} another λk(x) for which

µi,j = µk,j ,∀j 6= l and µi,l = 1− µk,l. For an easier notation, we order the extreme points such

that

µ1,n = µ2,n = · · · = µ2n−1,n
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and

µ2n−1+1,n = µ2n−1+2,n = · · · = µ2n,n = 1− µ1,n.

Let us now begin by showing that (A.11) holds for n = 1 :

21∑

i=1

1∏

j=1

µi,j = µ1,1 + µ2,1 = µ1,1 + (1− µ1,1) = 1,

which follows from (A.10) and from the fact that we have only two extreme points in the

one-dimensional case.

The induction step is done by showing that we can reduce (A.11) from n = N + 1 to n = N,

for any N ≥ 1 :

2N+1∑

i=1

N+1∏

j=1

µi,j =

2N+1∑

i=1

µi,N+1

N∏

j=1

µi,j = µ1,N+1

2N∑

i=1

N∏

j=1

µi,j + µ2N+1,N+1︸ ︷︷ ︸
=(1−µ1,N+1)

2N∑

i=1

N∏

j=1

µi,j (A.12)

=

2N∑

i=1

N∏

j=1

µi,j . (A.13)

Since we can order the λi(x) such that the same is possible for the µi,j for n = N, we can

reduce this sum down to n = 1, for which we know that
∑21

i=1

∏1
j=1 µi,j = 1. This shows that∑n

i=1 λi(x) = 1.

The only remaining part to show is that (A.9)–(A.10) actually describes x correctly. We

can do so by using the previous results from the induction proof. First note that because of the

transformation (A.8), the extreme points of P′ are the corner points of the unit hypercube, i.e.,

x̆′(1) =




0

0
...

0



, x̆′(2) =




1

0
...

0



, . . . , x̆′(2

n) =




1

1
...

1



,

and that x̆
′(i)
j = 1 if and only if αj(x̆

(i)) = 1,∀i ∈ {1, . . . , 2n},∀j ∈ {1, . . . , n}, see also Fig. A.2.

From this structure it follows that λi(x) contains the factor x′j if and only if x̆
′(i)
j = 1. Let

us now consider the k-th entry of x′ if computed by (A.9)–(A.10). For an easier notation and

without loss of generality, we assume that we ordered the extreme points such that x̆
′(1)
k = · · · =

x̆
′(2n−1)
k = 1 and x̆

′(2n−1+1)
k = · · · = x̆

′(2n)
k = 0. Then the following holds:

2n∑

i=1

λi(x)x̆
′(i)
k =

2n∑

i=1

n∏

j=1

µi,j x̆
′(i)
k =

2n∑

i=1

µi,k

k−1∏

j=1

µi,j

n∏

j=k+1

µi,j x̆
′(i)
k (A.14)

(A.10)
= x′k

2n−1∑

i=1

k−1∏

j=1

µi,j

n∏

j=k+1

µi,j

︸ ︷︷ ︸
=1 (see explanation below)

1 + (1− x′k)

2n∑

i=2n−1+1

k−1∏

j=1

µi,j

n∏

j=k+1

µi,j0 (A.15)

= x′k1 = x′k, (A.16)
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where the sum over the remaining n − 1 factors in (A.15) is equal to 1 because of the same

arguments as in the induction proof (A.12)–(A.13). Since this holds for every k ∈ {1, . . . , n},
this convex combination actually results in x′.

The affine transformation (A.8) does not change any convexity properties [73]. Therefore,

analogous to (A.7), the state x can be represented by the convex combination of the extreme

points x̆(i) by using the parameters for the transformed state λi(x
′), which concludes the proof.

For the special case of axis-aligned boxes, the presented approach can be simplified to the

closed-form expression which was stated without a proof in [206] and [207].

Note that while we describe the approaches for full-dimensional simplices and parallelotopes

only, they can be adapted for lower-dimensional simplices and parallelotopes. One simply has

to project the points on a lower-dimensional subspace in which they become full-dimensional

simplices or parallelotopes. Then our presented techniques can be applied again.

A.3 General Polytopes

In the previous two sections, we discussed how to find analytical closed-form expressions for

simplices and parallelotopes. In the case of simplices, the resulting convex combination is

unique. This is not necessarily the case with parallelotopes and general polytopes. For paral-

lelotopes, we presented an approach which always results in the same convex combination. This

is possible since we are able to uniquely transform simplices and parallelotopes to axis-aligned

simplices and axis-aligned boxes. Since the corresponding mapping matrices are square, they

are invertible. For other shapes, like general polytopes, it is not possible to find such a map.

While it is therefore not possible to provide an analytical closed-form expression for general

polytopes, we are nevertheless always able to obtain a closed-form expression which can be

solved without using any iterations. Thus, this approach can be used online in real time

without the disadvantages of using linear programming approaches.

The basic idea for the general polytope is the fact that any polytope with finitely many

extreme points can be expressed by the union of finitely many non-overlapping simplices [212].

An analytical closed-form expression can be found for each of these simplices. This process is

summarized in Algorithm 8 and visualized in Fig. A.3.

The boundary of the polytope P ⊂ Rn, denoted by B(P), defines an n − 1 dimensional

subspace of Rn. We divide this space into s simplices S
(i)
n−1, i ∈ {1, . . . , s}, each of them defined

by n extreme points of P such that
⋃s
i=1 S

(i)
n−1 = B(P), and ∀i 6= j : I(S

(i)
n−1) ∩ I(S

(j)
n−1) = ∅

(Alg. 8, line 1). We use this division of the boundary of P to divide P itself into s simplices.

We use the fact that if we choose any point x̃ ∈ I(P) in the interior of P and compute the

convex hull of this x̃ and the extreme points of a simplex S
(i)
n−1 on the boundary of P, we

obtain an n-dimensional simplex S
(i)
n ⊂ P. By doing this for every simplex on the boundary,

we obtain s simplices S
(1)
n , . . . , S

(s)
n such that

⋃s
i=1 S

(i)
n = P and ∀i 6= j : I(S

(i)
n ) ∩ I(S

(j)
n ) = ∅

(Alg. 8, line 3). For each of the simplices S
(i)
n , i ∈ {1, . . . , n}, we use Thm. 6 to obtain the

closed-form expression for the convex combination of all points inside it and store them for
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x̆(1)

x̆(2)

x̆(3)

x̆(4)

x̆(5)

x̆(6)

x̆(7)

x̆(8)

(a) Original polytope

x̆(1)

x̆(2)

x̆(3)

x̆(4)

x̆(5)

x̆(6)

x̆(7)

x̆(8)

x

x(c)

S
(4)
2

(b) Point inside divided polytope

c© IEEE 2016

Figure A.3: (a) Given is a general polytope P ⊂ R2 defined as the convex hull of its q = 8

extreme points x̆(i). (b) The boundary B(P) is divided into s = 8 simplices S
(i)
1 of dimension n−1

(here: line segments). Together with a center point x(c), the boundary simplices define s simplices

S
(i)
2 of dimension n (here: triangles). Any point x inside the polytope can be expressed by the

closed-form convex combination of the simplex in which it is contained.

Algorithm 8 Convex Decomposition Algorithm for General Polytopes – Offline Part

Input: polytope P with q extreme points x̆(1), . . . , x̆(q)

Output: simplices S1
n, . . . , S

s
n with closed form convex expressions

1: Connect each extreme point with its neighboring extreme points along the edges of the

polytope → results in s simplices S
(1)
n−1, . . . , S

(s)
n−1 in Rn−1

2: Define x(c) ←∑q
i=1

1
q x̆

(i)

3: Connect x(c) with all extreme points x̆(i) → results in s simplices S
(1)
n , . . . , S

(s)
n in Rn

4: for i = 1, . . . , s do

5: Use Theorem 6 to obtain the closed-form for the convex combination of all points inside

simplex S
(i)
n and store them

6: end for

Algorithm 9 Convex Decomposition Algorithm for General Polytopes – Online Part

Input: state x ∈ P, simplices S1
n, . . . , S

s
n with closed form convex expressions

Output: parameters λ1(x), . . . , λq(x)

1: Find i, such that x ∈ S
(i)
n

2: Use the closed-form convex expression of simplex S
(i)
n to describe x as the convex combina-

tion of its extreme points
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later online use (Alg. 8, line 5). Note that this works with any point in the interior of P.

We choose x̃ = x(c) =
∑q
i=1

1
q x̆

(i) (Alg. 8, line 2) because we then immediately know that

λi(x
(c)) = 1

q , ∀i ∈ {1, . . . , q}, are the corresponding parameters of the convex combination for

x(c). Since x(c) is in many cases around the center, the simplices will have similar sizes.

When this approach is used to obtain the convex combination for a given point x ∈ P online

as described in Alg. 9, we check which simplex contains x (Alg. 9, line 1). We then simply have

to use the offline-computed closed-form expression for the convex combinations in this simplex

in the same way as in Section A.1 (Alg. 9, line 2). Checking which simplex contains x is a point

location problem for which efficient solutions exist, e.g., [213]. As we show in the next section,

it is even feasible to check all simplices.

A.4 Numerical Example

In this section, we compare the previously presented closed-form approaches to obtain convex

combinations with existing approaches which solve (A.1)–(A.3) using linear programming. All

computations are performed using MATLAB on the same computer as in Sec. 3.3.7 and without

using parallel computations. We performed all precomputations which do not depend on the

actual point inside the polytope offline in advance.

Simplices and Parallelotopes

We randomly generate 100 simplices and 100 parallelotopes each in 2, 3, 5, 8, 10, 12, and

15 dimensions. We also generate 100 simplices in 50, 100, 200, and 1,000 dimensions. Then

we randomly generate points inside these simplices and parallelotopes and solve the convex

decomposition problem first with our approach and then by solving a linear program using the

linprog function with the default settings, the cost function set to zero, and the solution space

bounded to [0, 1]. The results are presented in Table A.1.

We see that our approach is significantly faster in any of the presented dimensions for both

simplices and parallelotopes. For simplices we are faster with factors between 1,400 and up to

almost 20,000. The computation times for parallelotopes are between 160 and 1,900 times faster

than using linear programming. We can compute the simplices for much higher dimensions

than parallelotopes, since the number of extreme points increases linearly with the dimensions

for simplices, while the number of extreme points for parallelotopes increases exponentially.

Therefore, the computation times almost do not increase for small dimensions for simplices.

For high dimensions, the closed-form expressions for parallelotopes become quite large, thus

requiring a significant time to load the functions in MATLAB before the online computations

can begin.

General Polytopes

In this subsection, we compare our closed-form approach to the linear programming approach

for general polytopes. During the implementation of our closed-form algorithm, we must decide

how to check which simplex the point is contained in. There are many ways which can reduce
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Table A.1: Average run times for simplices and parallelotopes (in ms)

Dimension Simplices Parallelotopes

Cl.-Form Lin. Progr. Cl.-Form Lin. Progr.

2 0.0052 7.3922 0.0049 8.3247

3 0.0053 7.8886 0.0052 9.7929

5 0.0053 8.4302 0.0071 10.5306

8 0.0055 8.5203 0.0438 16.9912

10 0.0057 8.5928 0.1243 30.3809

12 0.0058 8.6812 0.4810 77.1852

15 0.0058 8.9057 3.5609 666.9693

50 0.0077 11.4315 – –

100 0.0123 20.5933 – –

200 0.0254 75.5463 – –

1,000 0.5471 10,902 – –

c© IEEE 2016

the number of simplices checked, for example the techniques in [213], or by computing the

distance of the point to the center points of the s simplices S
(i)
Rn and starting the computation

with the nearest simplex. We choose the simplest strategy, which is to check all simplices.

Since it is also the worst-case scenario, it provides a lower bound for the performance of our

approach. Checking all simplices is feasible, since for each simplex only a few operations have

to be performed. We compute polytopes in 3, 4, and 5 dimensions with 20, 50, 100, and 150

vertices. For each of these combinations we randomly compute 10 polytopes, and for each

polytope we randomly choose 10 points for which we solve the convex decomposition problem.

The results are summarized in Table A.2. We see that our approach is much faster in all of

these cases, even though we used the easiest method of checking all simplices. The results

can be further improved by either using better heuristics for choosing the order in which the

simplices are checked or by using multi-core processors, as these tests can be performed in

parallel without overhead since each computation is independent.

Note that we consider only the online computation times, since these are the critical times in

control. This is, of course, only feasible if the polytopes are known in advance. For simplices and

parallelotopes, our approach is still significantly faster than the linear programming approach,

even if everything has to be computed online (i.e., mainly matrix inverses).

A.5 Summary

Convex combinations are used for many applications in control, such as for our convex interpo-

lation controller or for robust gain-scheduling control approaches for polytopic linear parameter-
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Table A.2: Average run times for general polytopes (in ms)

# Extreme Points Closed-Form Approach Linear Programming

Dimension n = 3

20 0.1585 9.5866

50 0.3234 10.1925

100 0.5317 11.9193

150 0.8613 13.2450

Dimension n = 4

20 0.2888 9.9935

50 0.6673 10.1101

100 1.3337 11.2544

150 2.1542 12.7434

Dimension n = 5

20 0.5205 10.1305

50 1.6159 10.2715

100 4.0592 11.2688

150 5.4805 12.0558

c© IEEE 2016
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varying systems. In many cases it is necessary to have closed-form expressions of convex com-

binations, for example for formal verification of safety or for faster online computation times

for fast dynamical systems. We provide analytical closed-form expressions for simplices and

polytopes and prove their validity. Furthermore, we present a technique for obtaining closed-

form expressions for general polytopes. We compare the computation times of our approaches

to linear programming algorithms and show that our approaches provide significantly faster

computation times, therefore making them suitable for the control of fast dynamical systems.
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[196] Salvatore Nicosia, A. Tornambè, and P. Valigi. State estimation in robotic

manipulators: Some experimental results. Journal of Intelligent & Robotic Systems,

7(3):321–351, 1993. 178

[197] Brian Armstrong-Hélouvry, Pierre Dupont, and Carlos Canudas De Wit.

A survey of models, analysis tools and compensation methods for the control

of machines with friction. Automatica, 30(7):1083–1138, 1994. 178

[198] Timothy D Tuttle and Warren P Seering. A nonlinear model of a harmonic

drive gear transmission. IEEE Transactions on Robotics and Automation, 12(3):368–

374, 1996. 178, 180

[199] Stefan B. Liu and Matthias Althoff. Reachset Conformance of Forward

Dynamic Models for the Formal Analysis of Robots. In Proc. of the International

Conference on Intelligent Robots and Systems, pages 370–376, 2018. 179

[200] Felix Gruber and Matthias Althoff. Computing Safe Sets of Linear Sampled-

Data Systems. IEEE Control Systems Letters, 5(2):385–390, 2021. 179

[201] Pierre Apkarian, Pascal Gahinet, and Greg Becker. Self-scheduled H-

infinity Control of Linear Parameter-varying Systems: a Design Example. Au-

tomatica, 31(9):1251–1261, 1995. 193, 194

[202] Zhongwei Yu, Huitang Chen, and Peng-yung Woo. Gain Scheduled LPV H-

infinity Control Based on LMI Approach for a Robotic Manipulator. Journal of

Robotic Systems, 19(12):585–593, 2002. 194

[203] Hakan Koc, Dominique Knittel, Michel De Mathelin, and Gabriel Abba.

Modeling and Robust Control of Winding Systems for Elastic Webs. IEEE

Transactions on Control Systems Technology, 10(2):197–208, 2002. 194

[204] Xing-Jia Yao, Chang-Chun Guo, and Yan Li. LPV H-infinity controller design

for variable-pitch variable-speed wind turbine. In International Power Electronics

and Motion Control Conference, pages 2222–2227, 2009. 194

223



REFERENCES

[205] Zhilin Liu, Qidan Zhu, and Lihui Wang. Predictive Control for Multi-joint

Manipulator with Polytopic Model. In Proc. of the International Conference on

Robotics and Biomimetics, pages 2130–2133, 2009. 194

[206] He Chaofan, Yang Lingyu, Wang Zhenchao, Sun Bin, and Zhang Jing. Linear

Parameter-Varying Attitude Controller Design for a Reusable Launch Vehicle

during Reentry. In Proc. of the Chinese Guidance, Navigation and Control Conference,

pages 2723–2728, 2014. 194, 200

[207] Dengying and Zhoujie. LPV H-infinity Controller Design for a Wind Power

Generator. In Proc. of the Conference on Robotics, Automation and Mechatronics, pages

873–878, 2008. 194, 200

[208] V F Montagner, R C L F Oliveira, Valter J S Leite, and Pedro Luis Dias

Peres. Gain scheduled state feedback control of discrete-time systems with

time-varying uncertainties: an LMI approach. In Proc. of the Conference on Deci-

sion and Control and European Control Conference, pages 4305–4310, 2005. 194

[209] Michael S. Floater. Generalized barycentric coordinates and applications.

Acta Numerica, 24:161–214, 2015. 194

[210] Joe Warren, Scott Schaefer, Anil N. Hirani, and Mathieu Desbrun.

Barycentric coordinates for convex sets. Advances in Computational Mathematics,

27(3):319–338, 2007. 194
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[229] Bastian Schürmann, Niklas Kochdumper, and Matthias Althoff. Reachset

Model Predictive Control of Disturbed Nonlinear Systems. In Proc. of the Con-

ference on Decision and Control, pages 3463–3470, 2018. 13, 146
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