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Abstract—In this paper, the output feedback based direct model
reference adaptive control of piecewise affine systems and its parameter
convergence are investigated. Under the slow switching assumption, it
is shown that all the closed-loop signals are bounded and the output
tracking error is small in the mean square sense. Built upon this result,
the estimation error of controller parameters is proved to converge to a
residual set if the input signal is sufficiently rich. The relationship between
the size of this residual set and the switching frequency is established.
Moreover, the convergence of the estimated controller parameters to their
nominal values can be achieved for a certain subsystem given that this
subsystem is activated for infinitely long time. Simulation results validate
the effectiveness of the proposed approach.

Index Terms—adaptive control, piecewise affine system, output feed-
back

I. INTRODUCTION

THE Systems in the real world are mostly hybrid and highly
nonlinear. The mixture of the continuous states and discrete

modes as well as the system nonlinearity complicates the analysis
and control design. Piecewise affine (PWA) system is a powerful tool
to model the hybrid systems and approximate nonlinearity. The state-
input space of a PWA system is partitioned into convex polytopes,
in which the subsystem dynamics are linear. The hyperplanes, which
determine how the state-input space is partitioned, characterize the
switching mechanism of the hybrid systems.

Since proposed, PWA systems have attracted significant interest.
Numerous applications in various areas have been explored like [1, 2].
Meanwhile, exploration in theory has also made great progress such
as analysis of controllability and observability[3] and model predic-
tive control[4], etc. Recent works introduce the adaptation mechanism
in PWA systems to counter uncertainties and disturbances. One
aspect is the adaptive identification. Due to the hybrid nature of
PWA systems, both the switching hyperplane estimation and the
subsystem parameter identification have been explored in [5] and
[6], respectively. Another aspect lies in adaptive control.

Various adaptive control approaches of switched systems are
proposed in the literature. Sang and Tao develop model reference
adaptive control (MRAC) of piecewise linear (PWL) systems for
state tracking [7] and output tracking [8], respectively. Compared
with PWL systems, PWA systems are preferable because they require
less prior knowledge about the systems. MRAC approaches of PWA
systems for state tracking are studied by di Bernardo et al in [9]
and Kersting and Buss in [10]. The state or output tracking errors
reported in the given references are either asymptotic convergent or
small in the mean square sense.

Apart from the tracking performance of the MRAC, studying
the parameter convergence is also a topic of major interest[11]. Its
importance is depicted in [12, 13] by showing that large parameter
estimation error may result in bad transient behavior. In light of this,
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much effort has been devoted to the study of parameter convergence
in MRAC of PWL/PWA systems, In [7, 14], the controller parameter
convergence of MRAC for PWL systems is proved under persistently
exciting (PE) condition. For the MRAC of PWA systems shown in
[10], the controller and system parameters are proved to converge
to the nominal values for direct and indirect cases with PE inputs,
respectively.

Note that the referenced previous works require full state feedback.
For the output feedback case, the MRAC of PWL systems for
output tracking is studied in [15]. Nevertheless, the convergence of
the controller parameters remains unexplored. To fill this gap, we
investigate the output feedback MRAC for PWA counterparts with
special focuses on the analysis of controller parameter convergence.

It is a challenge to analyze the effect of the special controller struc-
ture for PWA systems on the excitation of the estimated parameters.
Besides, the influence of the tracking error, as well as the switching
behavior on the parameter convergence needs to be evaluated.

Our main contribution lies in the analysis of parameter convergence
in direct MRAC for PWA systems with output feedback. To achieve
this, we first extend the controller proposed in [15] to the context of
PWA systems and prove that the tracking error is small in the mean
square sense under slow switching. Based on this result, we prove
that the controller parameter estimation error converges to a bounded
set given a PE reference signal. We establish the relationship between
the size of the set and the switching frequency. Finally, we show that
the convergence of the controller parameters to the nominal values
can be achieved in a special case where the trajectory is kept staying
in one subsystem for infinitely long.

The rest of the paper is structured as follows. The preliminaries
and the problem formulation is presented in section II. In section III,
our proposed control law is depicted. The tracking error as well as
parameter convergence are investigated. The approach is validated by
a numerical example presented in section IV, which is followed by
the conclusion in section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section gives the defintion of the PWA systems. It is also
revisited how to derive a PWA system based on the linearization of a
nonlinear system at different operating points. The MRAC problem
of PWA with output feedback is also formulated.

Consider the piecewise affine system with s ∈ N subsystems

ẋ = Aix+Biu+ fi, i = 1, . . . , s

y = CTx,
(1)

where x ∈ Rn and u ∈ Rp represent the state of the PWA system
and control input, Ai ∈ Rn×n, Bi ∈ Rn×p and fi ∈ Rn denote
the unknown system parameters of i-th subsystem. In PWA systems,
the state-input space [xTuT ]T ∈ Rn+p is partitioned into s convex
regions. We use a set of inequalities to define each convex region Ωi

Ωi =

{[
x
u

]
∈ Rn+p|Hi

xu
1

 � 0

}
(2)
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where each element of � represents an operators < or ≤. The
hyperplane is determined by each row of Hi. The set of hyperplanes
Hi determines the polyhedral region Ωi.

The indicator function can be utilized to indicate which subsystem
is activated.

χi(t) =

{
1, if(x(t), u(t)) ∈ Ωi

0, otherwise
(3)

PWA system can be obtained by linearizing a nonlinear system at
multiple operating points. To compare the properties of PWL and
PWA systems, we revisit the derivation as follows. Consider the
nonlinear system

ẋ(t) = g(x(t), u(t)), (4)

where x ∈ Rn and u ∈ Rp represent the state and control input of
the nonlinear system, g : Rn+p → Rn denote a smooth nonlinear
function. Given a set of operating points (x∗i , u

∗
i ), the linearization

of g around the operating points is

ẋ ≈ g(x∗i , u
∗
i ) +Ai(x− x∗i ) +Bi(u− u∗i ), (5)

where Ai = ∂g
∂x
|(x∗i ,u∗i ) and Bi = ∂g

∂u
|(x∗i ,u∗i ). The following PWL

system can be obtained by assuming zero equilibrium operating
points g(x∗i , u

∗
i ) = 0 and prior knowledge of the operating points

(x∗i , u
∗
i )

ẋ ≈ Ai∆xi +Bi∆ui (6)

with ∆xi = x− xi and ∆ui = u− ui denoting the local state and
input vector around the operating points. The PWA model can be
derived by

ẋ = Aix+Biu+ fi (7)

with fi = g(x∗i , u
∗
i )− Aix∗i −Biu∗i . Both PWL and PWA systems

can approximate the nonlinear systems given the same operating
points and partitioning of the state-input space. Comparing with PWL
systems, PWA systems utilize global state and input by introducing
the affine term fi. They allow nonzero g(x∗i , u

∗
i ) and do not require

that the operating points are known.
The input-output mapping of the PWA system when system i is

activated is given by

y(t) = Gpi(s)[u](t) +Gfi(s)[1](t), (8)

where

Gpi(s) = kpi
Zpi(s)

Rpi(s)
= CT (sI −Ai)−1Bi,

Gfi(s) = kfi
Zfi(s)

Rpi(s)
= CT (sI −Ai)−1fi.

(9)

The notation y(t) = G(s)[u](t) represents the output in time-domain
at time t of a system, which is characterized by transfer function G(s)
and input u(t) [16]. Given a reference system

ym(t) = Wm(s)[r](t), Wm(s) = km
Zm(s)

Rm(s)
, (10)

where ym is the reference output trajectory, Wm(s) denotes the
transfer function of the reference system and r(t) represents reference
input signal.

The problem we would like to solve is formulated as follows:
given a PWA system (1) with known subsystem partition Ωi, design
a feedback control law based on output feedback, such that the plant
output y(t) tracks the reference trajectory ym(t).

Assumption. The assumptions are summarized as follows, which
apply to the entire work.
• Zpi(s) is a monic strict Hurwitz polynomial of degree m

• The sign of kpi, i ∈ {1, 2, · · · , s} is assumed to be known
• Zm(s),Rm(s) are monic strict Hurwitz polynomials
• Zpi(s) and Rpi(s), i ∈ {1, 2, · · · , s} are coprime
• Zfi(s)/Zpi(s), i ∈ {1, 2, · · · , s} is proper
• The relative degree of the plant is equal to that of the reference

model
• The number of switches N(T ) within time interval [t, t + T )

satisfies N(T ) ≤ C+µT,∀t, T ≥ 0 for some positive constants
C, µ

• Each polyhedral region Ωi only depends on y and u and is
assumed to be known

Assuming Zpi(s) and Zm(s) to be strict Hurwitz requires the
reference model and each subsystem of the PWA to be minimum
phase. The reference model is also stable since Rm(s) is assumed
to be strict Hurwitz. The term strict Hurwitz polynomial implies that
the real parts of the roots are strictly negative.

The assumption on the number of the switches N(T ) over a time
interval with the length of T constraints the average frequency of the
switches among subsystems, which is characterized by µ. A small µ
reveals slow switching. Limiting the frequency of switches is essential
to ensure closed-loop stability and is widely adopted in the area of
adaptive control for switched systems[7, 8, 15].

Definition (small in the mean square sense[17]). Let x : [0,∞) 7→
Rn with x ∈ L2e, and consider the set

S(µ) =
{
x|
∫ t+T

t

xT (t)x(t)dτ ≤ c0µT + c1, ∀t, T ≥ 0
}

for a given positive constant µ, where c0, c1 ≥ 0 are some finite
constants, and c0 is independent of µ. x is said to be µ-small in the
mean square sense, if x ∈ S(µ).

III. CONTROLLER DESIGN

In this section, the plant parameters are firstly assumed to be known
in order to derive the nominal controller. The nominal controller
parameters are determined by solving algebraic matching equations.
Then the adaptive controller is discussed in case where the plant
parameters are unknown.

A. Nominal Control Design

Consider the feedback control law for i-th subsystem

u(t) = θ∗1i
T α(s)

Λ(s)
[u](t) + θ∗2i

T α(s)

Λ(s)
[y](t) + θ∗3iy(t) + c∗0ir(t) + d∗0i,

(11)
where c∗0i, d

∗
0i, θ

∗
3i ∈ R1, θ∗1i, θ

∗
2i ∈ Rn−1 represent the nominal

controller parameters to be designed, α(s) = [sn−2, sn−3, ..., s, 1]T ,
Λ(s) is an arbitrary monic Hurwitz polynomial of degree n−1, which
can be designed by user, e.g., Λ(s) = sn−1 + λn−2s

n−2 + · · · +
λ1s+λ0. Inserting the control law into eqn.(8) yields the closed-loop
behavior of i-th subsystem

y(t) = Gci(s)[r](t) + Fci(s)[1](t) (12)

with

Gci(s) =
kpiZpic

∗
0iΛ

Rpi(Λ− θ∗1i
Tα)− kpiZpi(θ∗2i

Tα+ θ∗3iΛ)
(13)

representing the transfer function which relates the input and output
signals and

Fci(s) =
kpiZpiΛd

∗
0i + kfiZfi(Λ− θ∗1iTα)

Rpi(Λ− θ∗1i
Tα)− kpiZpi(θ∗2i

Tα+ θ∗3iΛ)
(14)

denoting the behavior caused by the affine term. The control goal
is that the output of the closed-loop system tracks the output of the
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reference model. So we let the transfer function of the closed-loop
system equal to the one of the reference model and use the final value
theorem to enforce the affine term to decay to zero

Gci(s) = km
Zm(s)

Rm(s)

lim
s→0

Fci(s) = 0,
(15)

which leads to the matching equation

Rpi(Λ− θ∗1i
T
α)− kpiZpi(θ∗2i

T
α+ θ∗3iΛ) = ZpiΛ0Rm

kpiZpiΛd
∗
0i + kfiZfi(Λ− θ∗1i

T
α)|s→0 = 0.

(16)

Here c0i is chosen as c0i = km
kpi

and Λ(s) = Λ0(s)Zm(s). The
nominal control parameters are obtained by solving the algebraic
matching equations.

Remark 1. Since the relative degree of the plant is equal to that of
the reference model and Zpi(s) and Rpi(s) are coprime, the left and
right sides of the first equation in (16) have the same degree 2n− 1
without cancellation. This ensures the uniqueness of its solution.

Remark 2. Note that the final value theorem is utilized to eliminate
the biasing effect of the affine term. The conditions of final value
theorem are that the non-zero roots of the denominator of Fci must
have negative real parts and it must not have more than one zero-pole,
which requires that Zpi, Λ0 and Rm are strictly Hurwitz polynomials.

Remark 3. The second equation of (15) can be expanded as

lim
s→0

kpiZm
Rm

(d∗0i +
kfiZfi(Λ− θ∗1iTα)

kpiZpiΛ0Zm
) = 0. (17)

Since Zfi/Zpi is proper, the second summand in the brackets is also
proper. To ensure the existence of the solution of d∗0i, it requires
that Zm|s→0 6= 0, Rm|s→0 6= 0 and kpiZpiΛ0Zm|s→0 6= 0.
These are achieved by applying the assumptions Zpi, Rm, Zm being
strict Hurwitz polynomials and designing Λ0 to be strict Hurwitz.
Simplifying (17) further gives the second equation of (16).

B. Error Model

We rewrite the nominal control law for the PWA system as

u(t) =

s∑
i=1

χiθ
∗
i
T
ω(t), (18)

where θ∗i = [θ∗1i
T , θ∗2i

T , θ∗3i, c
∗
0i, d

∗
0i]
T is the control parameter vector

and ω = [ω1
T , ω2

T , y, r, 1]T with

ω1 =
α(s)

Λ(s)
[u](t), ω2 =

α(s)

Λ(s)
[y](t) (19)

Applying the nominal controller, the closed loop system can be
written in state-space form

ẋc = Acixc +Bcir + fci

y = CTc xc,
(20)

where xc = [xT , ωT1 , ω
T
2 ]T , CTc = [CT , 0T ].

Lemma 1. For the closed-loop system (20), the equation
CTc A

−1
ci fci = 0 holds for ∀i ∈ {1, 2, · · · , s}.

Proof. The effect of the i-th closed-loop affine term can be expressed
by Fci(s)

1
s

= CTc (sI − Aci)
−1fci

1
s

. Recalling eqn.(15) yields
lims→0 C

T
c (sI−Aci)−1fci = 0 and it follows CTc A

−1
ci fci = 0.

We study the tracking error behavior when the nominal controller
is applied. The following theorem states the smallness property of
the tracking error.

Theorem 1. Let the PWA system (1) with known subsystem parti-
tioning Ωi be controlled by output feedback nominal controller (11).
There exists µ0 ∈ R+ such that ∀µ ∈ (0, µ0), the output tracking
error e = y − ym ∈ S(µ). Furthermore, limt→∞ supτ>t |e(τ)| ≤
cr̄ + d for |r(t)| ≤ r̄ and some constants c, d ∈ R+.

Theorem 1 reveals that the tracking error exists even if the
nominal control parameters are utilized and the matching equations
for every subsystem hold. Once the system switches, the output
deviates from the reference one, the deviation decays to zero provided
that the trajectory stays in the subsystem for sufficiently long time
(characterized by µ) until the next switch occurs.

C. Adaptive Control Design

Now consider the case where the plant parameters are unknown.
In this case, the nominal control parameters can not be determined
by solving matching equations. The estimation of the controller
parameters is utilized to implement the adaptive controller

u(t) =

l∑
i=1

χiθi
Tω(t), (21)

where θi = [θ1i
T , θ2i

T , θ3i, c0i, d0i]
T denotes the estimated param-

eter vector for i-th subsystem. The output of the system can then
be expressed by the output of the reference system perturbed by the
error of control parameters θ̃i = θi − θ∗i and the transient terms η,
∆ (see Appendix A for the detailed derivation) caused by switching.

y(t) =Wm[r](t) +

s∑
i=1

χiρ
∗
iWm[

s∑
i=1

χiθ̃
T
i ω](t) + η(t) + ∆(t)

=Wm[r +

s∑
i=1

χiρ
∗
i θ̃
T
i ω](t) + η(t) + ∆(t)

(22)

with ρ∗i = 1
c∗0i

. Define the estimation error for i-th subsystem as

εi(t) = e(t) + ρi(t)ξi(t) (23)

where

ξi(t) = θTi (t)ζ(t)−Wm(s)[θTi ω](t),

ζ(t) = Wm(s)[ω](t),
(24)

with e(t) = y − ym the tracking error. The following update law is
proposed

θ̇i(t) = −χiPr[
sign[kpi]Γiεi(t)ζ(t)

m2(t)
],

ρ̇i(t) = −χiPr[
γiεi(t)ξi(t)

m2(t)
],

(25)

where Pr[·] is the projection operator to constraint the parameters
within a bounded convex set, which is known as prior information.
Γi = ΓTi > 0 and γi > 0 are adaptation gains, m(t) is a dynamic
normalizing signal defined by m2 = 1 +ms with

ṁs(t) = −δ0ms + u2 + y2, ms(0) = 0, (26)

where δ0 is a nonnegative constant. The following theorem describes
the property of tracking error in adaptive case.

Theorem 2. Let the PWA system (1) with known subsystem parti-
tioning Ωi be controlled by output feedback controller (21) with the
adaptation law (25). There exists µ0 ∈ R+ such that ∀µ ∈ (0, µ0),
the output tracking error e ∈ S(µ).

Remark 4. Compared with the counterpart for PWL systems[15],
the controller (21) introduces a constant term in ω to cancel out the
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biasing effect caused by the affine term. Since the affine term can
also be viewed as input disturbance[18], non-equilibrium offset[19],
actuator failure[20] and system damage[21], the controller for each
subsystem has the common structure as the output feedback based
controllers proposed in [18, sec.4] and [20, ch.4]. Note that these two
cases exhibit either no switching or switching only once and thus the
disturbance or actuator failure compensation error decays to zero as
t→∞. This further gives asymptotic output tracking. Different from
this result, the tracking error e in the PWA context is small in the
mean square sense due to the switch-dependent property of η as well
as ∆, as discussed in Theorem 1.

D. Control Parameter Convergence

Now we study the convergence of the control parameters. We
extend the analysis method for linear systems in [17, p.757] to the
PWA systems. In particular, the proposed controller (21) contains
a constant term, which is reflected in ω or equivalently ζ. The
effect of this controller structure on the PE property of ω, ζ needs
to be specifically analyzed. Furthermore, the tracking error e is
small in the mean square sense, whose influence on the parameter
convergence needs to be discussed. In addition, how the switching
frequency affects the parameter convergence remains to be explored.
The following theorem shows our result.

Theorem 3. Let the PWA system (1) with known subsystem parti-
tioning Ωi be controlled by output feedback controller (21) with the
adaptation law (25). If the reference signal r is sufficiently rich of
order 2n with distinct frequencies and activates all the subsystems
repeatedly, i.e., ∀i ∈ {1, · · · , s} and ∀ts ∈ R+, there exists td > ts
and δt ∈ R+ such that χi(t) = 1 for t ∈ [td, td + δt) and if the
projection in (25) is not activated, then |e| and |θ̃i| converge to a
residual set

Sθi =
{
e ∈ R, θ̃i ∈ R2n+1

∣∣|e|+ |θ̃i| ≤ c0(ν0 +
√
µ)
}

for some positive constants c0, ν0 ∈ R+ and µ ∈ (0, µ0).

In our proof, we first decompose ζ into ζm and ζe. ζm can
be further decomposed into one component depending on input
frequencies and one constant term representing zero frequency. These
constitute the excitation source. ζe contains all the error terms and
is proved to be S(µ). We show that its effect on the excitation
can be eliminated by carefully balancing the switching frequency µ
and excitation level α0 of ζm. Finally, we establish the relationship
between the switching frequency µ and the size of the bounded set
Sθi by expressing |θi| in terms of an inequality of µ.

Theorem 3 indicates that the bound of the residual set relates to the
switching frequency. Fast switching results in large residual set. The
convergence to the nominal value is, however, possible and discussed
as follows:

Corollary 1. Let the PWA system (1) with known subsystem
partitioning Ωi be controlled by output feedback controller (21) with
the adaptation law (25) without projection. The reference signal r is
sufficiently rich of order 2n. If for a certain i ∈ {1, · · · , s} and a
certain time instant t0 ≥ 0, we have χi(t) = 1 for ∀t ∈ [t0,∞),
then e(t)→ 0, θ̃i(t)→ 0 as t→∞.

As Corollary 1 shows, if the output trajectory is kept staying in
a certain subsystem, the periodic deviations caused by switching are
avoided and this further results in both the convergence of the tracking
error and control parameter estimation error.

Corollary 1 depicts a special case of the PWA system, which can be
interpreted as the system with a sudden change in the dynamics such
as aircraft suffering from damage[21]. The controller parameters for

the new system can converge to the nominal values by superposing
proper PE probing signals to the reference signal. The convergence
can improve the transient behavior and thus the results of Corollary
1 are of great importance for the real applications.

IV. NUMERICAL VALIDATION

A numerical example taken from [22] is utilized to validate the
proposed control algorithm. The plant parameters of the PWA system
are given by

A1 =

[
0 1
−2 −1

]
, A2 =

[
0 1
−2.5 −1

]
, A3 =

[
0 1
−1.5 −1

]
,

f1 =

[
0

0.4

]
, f2 =

[
0

0.2

]
, f3 =

[
0
−0.3

]
,

with the common input matrix B = [0, 1.5]T . The sign of each
subsystem is 1 and known as prior. The switching hyperplanes depend
on the system output and are given by

Ω1 = {y ∈ R| − 2 ≤ y ≤ 2},
Ω2 = {y ∈ R|y > 2},
Ω3 = {y ∈ R|y < −2}.

The reference model is chosen as

Wm =
1

(s+ 1)2
(27)

The relative degree of the reference system is 2, which is equal to the
one of all the subsystems of the PWA system. Selecting Λ(s) = 1

s+1

and α = 1, the nominal control parameters are obtained by matching
equations (15)

θ∗1 = [−1, 1.33,−0.67, 0.67,−0.53]T ,

θ∗2 = [−1, 1.67, 1, 0.67,−0.27]T ,

θ∗3 = [−1, 1, 0.33, 0.67, 0.4]T ,

Given an input signal r = 4sin(0.05t), the output tracking
performance of the closed-loop system by applying the nominal
controller is displayed in Fig.1. It shows that the output tracking error
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Fig. 1: Output tracking performance with input signal r =
4sin(0.05t), the nominal controller is applied

exists even when the nominal control parameters are employed. When
the system switches, the output of the closed-loop system deviates
from the output of the reference system, as depicted in equation
(34). This deviation vanishes given a sufficiently slow switching. The
overall output tracking error over the whole time interval is thus small
in the mean square sense.

Given the adaptation gains Γi = γi = 10, the output tracking
performance of the adaptive system is displayed in Fig.2. It can be
seen that the desired performance is achieved by applying adaptive
controller. The deviation from reference output occurs due to the
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switches among subsystems. The smallness of the tracking error in
the mean square sense validates the theory derivation. Compared with
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Fig. 2: Output tracking performance with input signal r =
4sin(0.05t), the proposed adaptive controller is applied

adaptive controller, the nominal controller exhibits better transient
performance. This motivates us to study the convergence property of
the controller parameters. To validate the control parameter conver-
gence, the input signal is required to be sufficiently rich of order 4.
Define the input signal r = sin(0.9t)+ sin(0.1t)+r, with a periodic
offset signal

r(t) =


4, 1000 + kT ≤ t < 3000 + kT s
−4, 4000 + kT ≤ t < 6000 + kT s
0, otherwise

(28)

where k ∈ N, T = 6000s. r drives the trajectory into all subsystems
periodically. In Fig.3, the dashed lines represent the nominal control

Fig. 3: Control parameters converge to a residual set around the
nominal values with slow switching

parameters and the solid lines the adaptive control parameters. It
reveals that the adaptive control parameters converge to a set around
the nominal values under slow switching. Since the convergence of
θ̃i is similar, so only θ̃1 is displayed for clarity.

To show the parameter convergence stated in Corollary 1, the
trajectory of the closed-loop system must be kept within a certain
subsystem of the PWA system from a certain time instant t0 on.
Here we remove r from r at t0 = 40000s, which leads to
χ1 = 1, χ2 = χ3 = 0, ∀t ∈ [t0,∞), the adaptive control parameters
θ1 converge to the nominal control values θ∗1 , as shown in Fig.4. The
simulation validates the theory derivation.

V. CONCLUSION

In this paper, we have developed the output feedback based direct
MRAC for PWA systems for output tracking and explored the

Fig. 4: Control parameters converge to the nominal values for χ1 = 1
after 40000s

controller parameter convergence. With the proposed approach, all the
signals in the closed-loop are bounded and the output tracking error
is small in the mean square sense with sufficiently slow switching. If
the input signal is sufficiently rich, the control parameters converge
to a residual set around the nominal values for slow switches. The
approach is based on input/output information and is limited to be
applied to single-input-single output PWA systems. To overcome this
limitation, future work can be an extension to the general case, where
partial state feedback is available. It is also an interesting topic to
study the problem, where the region partitions depend on the system
state and thus are unknown. How to avoid frequent switching and
sliding mode will also be studied in future work.

APPENDIX A
PROOF OF THEOREM 1

Proof. Let (Cc, Acik , Bcik , fcik ) denote the active system over time
interval [tk, tk+1), k ∈ Z+, ik ∈ {1, 2, · · · , s}. The trajectory of y
over time interval [tk, tk+1) is given by

y(t) =

∫ t

tk

CTc Φc(t, τ)Bcikr(τ)dτ + CTc Φc(t, tk)xc(tk)

+

∫ t

tk

CTc Φc(t, τ)fcikdτ,

(29)

where Φc(t, τ) denotes the associated closed-loop state transition
matrix. The matching equation (15) ensures∫ t

tk

CTc Φc(t, τ)Bcikr(τ)dτ =

∫ t

tk

CTmΦm(t, τ)Bmr(τ)dτ, (30)

which yields the tracking error at time t ∈ [tk, tk+1)

e(t) =y(t)− ym(t)

=CTc Φc(t, tk)xc(tk)− CTmΦm(t, tk)xm(tk)

+

∫ t

tk

CTc Φc(t, τ)fcikdτ

(31)

The eigenvalues of Aci depend on Λ, Zpi, Rm, so Aci is stable and

ηik (t) , CTc Φc(t, tk)xc(tk)− CTmΦm(t, tk)xm(tk) (32)

is exponentially decaying. Furthermore, because of the matching
equation, we have

∆ik (t) ,
∫ t

tk

CTc Φc(t, τ)fcikdτ, (33)

which is the deviation caused by the affine term, decays to zero
exponentially. The general expression of tracking error e over an
arbitrary time interval [t, t+ T ) is

e(t) = η(t) + ∆(t) (34)
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with η(t) = ηik (t) and ∆(t) = ∆ik (t) when t ∈ [tk, tk+1). It
is proved in [15] that there exists µ1 > 0 such that ∀µ ∈ [0, µ1),
η ∈ S(µ). This indicates that if the switching is sufficiently slow, the
error term η is small in the mean square sense. Following the same
concept, there exists µ2 > 0, such that ∀µ ∈ [0, µ2), ∆ ∈ S(µ),
which together with (34) leads to e ∈ S(µ) for ∀µ ∈ [0, µ0) with
µ0 = min{µ1, µ2}.

From (32)-(34) we have |e| ≤ |η| + |∆| with |η| ≤
‖Cc‖‖Φc‖maxk |xc(tk)| + ‖Cm‖‖Φm‖maxk |xm(tk)| and |∆| ≤
maxk

∫ tk+1

tk
‖Cc‖‖Φc‖‖fci‖dτ . Based on the slow switching as-

sumption and Theorem 2 in [23], we have ‖Φc(t)‖ ≤ λce
−αct for

some λc, αc > 0. For the reference system we have ‖Φm(t)‖ ≤
λme−αmt for some λm, αm > 0. These lead to |xm(t)| ≤ cmr̄+εm
and |xc(t)| ≤ ccr̄+dc+εc for some cm, cc, dc > 0 and exponentially
decaying terms εm, εc, which in turn gives limt→∞ supτ>t |e(τ)| ≤
cr̄ + d for some c, d > 0.

APPENDIX B
PROOF OF THEOREM 2

Proof. From (23) and (24), it can be derived that

εi = ρ∗i θ̃
T
i ζ + ρ̃iξi + ηi + ∆i (35)

Consider the Lyapunov function

V (θ̃, ρ̃) =

s∑
i=1

χi(|ρ∗i |θ̃Ti Γ−1
i θ̃i + γ−1

i ρ̃2
i ) (36)

Taking the piecewise derivative of V along the trajectories of (25)
yields

V̇ = −
s∑
i=1

χi
2εi
m2

(ρ∗i θ̃
T
i ζ + ρ̃iξi) (37)

Inserting (35) into (37) yields

V̇ = −2

s∑
i=1

χiε
2
i

m2
+ 2

s∑
i=1

χiεi
m2

(ηi + ∆i) (38)

Integrating over an arbitrary interval [t, t + T ), in which multiple
switching may occur, yields∫ t+T

t

(
ε

m
)2dt ≤ (V (t)− V (t+ T )) +

1

m2

∫ t+T

t

(η + ∆)2, (39)

with ε =
∑s
i=1 χiεi. Because η + ∆ ∈ S(µ), it follows ε

m
∈ S(µ).

The rest of the proof can be divided into several steps as follows:
step 1: Express the input, output signals in terms of θ̃Tikω. Based

on (22), y over the time interval [tk, tk+1) is expressed as

y(t) = Wm[r + ρ∗ik θ̃
T
ikω](t) + ηik (t) + ∆ik (t) (40)

Ignoring the effect of the exponentially decaying terms ηik ,∆ik , the
control signal u can be expressed by

u(t) = G−1
pik
Wm[r + ρ∗ik θ̃

T
ikω](t)−G−1

pik
[Gfik [1]](t) (41)

G−1
pik
Gfik and G−1

pik
Wm are stable and proper. Define a fictitious

normalizing signal m2
f = e−δ(t−tk)m(tk) + ‖u‖2 + ‖y‖2, it follows

from (40), (41) and Lemma 3.3.2 in [17] that

m2
f ≤ c+ ce−δ(t−tk)m2(tk) + c‖θ̃Tikω‖

2 (42)

where ‖ · ‖ denotes, for the purpose of clarity, the L2δ-norm over
[tk, t), δ ∈ (0, δ0], c ≥ 0 denotes any finite constant.

step 2: Use the swapping lemma to establish the boundedness of
‖θ̃Tikω‖. The following inequality is obtained by applying swapping
lemma[17]

‖θ̃Tikω‖ ≤ ce
−δ(t−tk)m2(tk) +

c

α0
(mf + ‖θ̇ikmf‖)

+ cαn
∗

0 (‖εik‖+ ‖θ̇ikmf‖+ ‖ηik‖+ ‖∆ik‖),
(43)

for some α0 > 0. Since δ ∈ (0, δ0] we have m ≤ mf , thus

‖θ̃Tikω‖ ≤ ce
−δ(t−tk)m2(tk) +

c

α0
(mf + ‖θ̇ikmf‖)

+ cαn
∗

0 (‖ εik
m
mf‖+ ‖θ̇ikmf‖+ ‖ηikmf‖+ ‖∆ikmf‖)

(44)

step 3: Prove the boundedness of closed-loop signals. From (42)
and (44) it follows

m2
f ≤ c+ ce−δ(t−tk)m2(tk) + cα2n∗

0 ‖g̃ikmf‖2 (45)

for large α0 with g̃2
ik

= (
εik
m

)2 + θ̇2
ik

+ η2
ik

+ ∆2
ik

. Now consider
an arbitrary time interval [t, t+ T ), within which switches occur at
time instants t ≤ tk1 , tk2 , · · · , tkN ≤ t+ T . The normalizing signal
mf over this interval is then expressed by

m2
f ≤ c+ ce−δTm2

q + c

∫ t+T

t

e−δ(t−τ)g̃2(τ)m2
f (τ)dτ (46)

where mq = max{m(tk1), · · · ,m(tkN )} and g̃2 = ( ε
m

)2 +∑s
i=1 χiθ̇

2
i + η2 + ∆2, g̃ ∈ S(µ).

Applying Bellman-Gronwall Lemma yields

m2
f ≤ ce−δT (1 +m2

q)e
c
∫ t+T
t g̃2(τ)dτ

+ cδ

∫ t+T

t

e−δ(t−s)ec
∫ t
s g̃

2(τ)dτds
(47)

To obtain the boundness of mf , cµ < δ should be hold for some
positive constant c. This condition can be achieved by letting µ
sufficiently small, which implies slow switching. Since mf ∈ L∞,
following from Lemma 6.8.1 in [17], it can be concluded that
u, y, ω,m ∈ L∞.

step 4: Study the property of the tracking error. It follows from
(24) and the boundedness of ω that ξi, ζ,∈ L∞. ε

m
∈ S(µ) together

with m ∈ L∞ yields ε ∈ S(µ). From (23) we write the general
expression for e

e =

s∑
i=1

χi(εi − ρiξi) = ε−
s∑
i=1

χiρiξi (48)

With the boundedness of ρi, ξi and ε ∈ S(µ) we can conclude that
e ∈ S(µ).

APPENDIX C
PROOF OF THEOREM 3

Proof. First, remove the subscript i for simplicity and we show that
ζ is PE.

ζ(t) = Wm(s)


[ω1](t)
[ω2](t)
[y](t)
[r](t)
[1](t)

 = Wm(s)


α(s)
Λ(s)

[u](t)
α(s)
Λ(s)

[y](t)

[y](t)
[r](t)
[1](t)

 (49)

Inserting (8) into (49) and substituting u yields

ζ(t) = ζm + ζe (50)
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where

ζm =Wm(s)(


α(s)
Λ(s)

G−1
p Wm(s)

α(s)
Λ(s)

Wm(s)

Wm(s)
1
0


︸ ︷︷ ︸

H(s)

[r](t) +


0
0
0
0
1


︸︷︷︸
Hf (s)

[1](t)

︸ ︷︷ ︸
z

)

ζe =Wm(s)(


α(s)
Λ(s)

G−1
p

α(s)
Λ(s)

1
0
0


︸ ︷︷ ︸

He(s)

[e](t) +


α(s)
Λ(s)

G−1
p Gf

0
0
0
0


︸ ︷︷ ︸

Hfe(s)

[1](t))

(51)

To prove the PE property of ζ, we start by showing that z is PE.
The auto-covariance of z is given by

Rz(0) =
1

2π
Hf (0)Hf (0)T︸ ︷︷ ︸
Rz1(0)

+
1

2π

2n∑
l=1

Fr(Ωl)H(−jΩl)H(jΩl)
T

︸ ︷︷ ︸
Rz2(0)

(52)
where Fr(Ωl) denotes the spectral peak associated with frequency
Ωl, l ∈ {1, · · · , 2n}. Note that the constant input 1 in ω leads
to an unit spectral peak at zero frequency (see Rz1(0)) while the
frequencies contained in r build 2n distinct peaks Fr(Ωl) (see
Rz2(0)). We rewrite H(s) as

H(s) =

[
H−(s)

0

]
(53)

with

H−(s) =


α(s)
Λ(s)

G−1
p Wm(s)

α(s)
Λ(s)

Wm(s)

Wm(s)
1

 (54)

It is proved in [17] that [H−(jΩ1), H−(jΩ2), . . . H−(jΩ2n)] are
linearly independent.

If Rz(0) is positive definite, then equation

X TRz(0)X = 0 (55)

only has solution X = 0,X ∈ R2n+1. Because Rz1(0) and Rz2(0)
are positive semi definite, we have

X TRz1(0)X ≥ 0, X TRz2(0)X ≥ 0, (56)

which together with (55) implies that

X TRz1(0)X = 0, X TRz2(0)X = 0 (57)

only if X = 0. Suppose X = [CT , d]T with C ∈ R2n, d ∈ R. From
X TRz2(0)X = 0 follows

LTC = 0 (58)

with L = [H−(jΩ1), H−(jΩ2), . . . H−(jΩ2n). Because L has full
rank, C must be 0. From X TRz1(0)X = 0 follows d must be 0,
which implies the positive definiteness of Rz(0), thus z is PE, which
together with ζm = Wm[z](t) yields ζm being PE. Hence, there
exists T0 > 0, α0 > 0 such that

1

T0

∫ t+T0

t

ζm(τ)ζTm(τ)dτ ≥ α0I, ∀t ≥ 0 (59)

Next, we would like to prove that ζ is also PE. Note that

1

nT0

∫ t+nT0

t

ζ(τ)ζT (τ)dτ

≥ 1

2nT0

∫ t+nT0

t

ζm(τ)ζTm(τ)dτ − 1

nT0

∫ t+nT0

t

ζe(τ)ζTe (τ)dτ

(60)

where n is an arbitrary positive integer. Because Gp(s) and Wm(s)
have the same relative degree, Wm(s)He(s) is strictly proper. Gf (s)
is also proper, which implies Wm(s)Hfe(s) is strictly proper. Be-
cause it is established that e ∈ S(µ), we have Wm(s)He(s)[e](t) ∈
S(µ). Considering Wm(s)Hfe(s)[1](t) ∈ L∞, we have ζe ∈ S(µ),
which together with the PE property of ζm yields

1

nT0

∫ t+nT0

t

ζ(τ)ζT (τ)dτ ≥ α0

2
I − (K0µ+

C0

nT0
)I (61)

for some C0,K0 ≥ 0. If n is chosen such that C0 <
α0
8
nT0, then

for K0µ <
α0
8

, we have

1

nT0

∫ t+nT0

t

ζ(τ)ζT (τ)dτ ≥ α0

4
I (62)

So ζ is PE.
Insert (35) into (25) yields

˙̃
θi(t) = −χisign[kpi]Γi(

ρ∗i ζζ
T

m2
θ̃i +

ρ̃iξiζ

m2
+

(ηi + ∆i)ζ

m2
) (63)

The homogeneous part of (63) is exponentially stable and consider
ζ
m
∈ L∞

|θ̃i| ≤ β0e
−β2(t−tk) + β1

∫ t

tk

e−β2(t−τ)(
|ρ̃iξi|
m

+
|ηi|+ |∆i|

m
)dτ

≤ β0e
−β2(t−tk) + β̄ + β1

∫ t

tk

e−β2(t−τ)(
|ηi|+ |∆i|

m
)dτ

(64)

where β0, β1, β2 ∈ R+ are some positive constants, β̄ =
β1
β2

supt
|ρ̃iξi|
m

. Because ηi,∆i ∈ S(µ), we apply [17, Corollary 3.3.3]
and have

β1

∫ t

tk

e−β2(t−τ)(
|ηi|+ |∆i|

m
)dτ ≤ β

′
(
√
C +

√
Kµ) (65)

for some constants C,K ∈ R+ with β
′

= 2
√

β2
1
β2

eβ2

1−e−β2 . This
implies that θ̃i converges to a residual set

|θ̃i| ≤ c(ν +
√
µ) + εt (66)

where | · | denotes any vector norm, µ ∈ (0, µ0), ν = β̄

β
′√
K

+√
C
K

, c = β
′√
K and εt is an exponentially decaying term. Invoking

Lemma 3.3.2 of [17] we have from e = y −Wm[r] and (22) that

|e| ≤ max
i
|ρ∗i |‖Wm(s)‖2δ‖θ̃Ti ω‖2δ + d̄ (67)

with d̄ = supt(|η|+ |∆|) and ‖Wm(s)‖2δ denoting the δ-shifted H2

norm of Wm(s) for some δ > 0. Inserting (66) into the L2δ-norm
‖θ̃Ti ω‖2δ in (67) leads to

|e| ≤ ω̄(c(ν +
√
µ)) + d̄+ ε′ (68)

for ω̄ = maxi |ρ∗i |‖Wm(s)‖2δ supt |ω|√
δ

and ε′ being a decaying to zero
term. Combining (66) and (68) we have that |e| and |θ̃i| converge to
the residual set

Sθi =
{
e ∈ R, θ̃i ∈ R2n+1

∣∣|e|+ |θ̃i| ≤ c0(ν0 +
√
µ)
}

for c0 = c(1 + ω̄), ν0 = ν + d̄
c0

.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

APPENDIX D
PROOF OF COROLLARY 1

Proof. Since the system output remains in i-th subsystem, we focus
on i-th subsystem and remove the subscript i for simplicity.

Let η = ηc + ηm with ηc = CTc Φc(t, t0)xc(t0) and ηm =
−CTmΦm(t, t0)xm(t0). ηc and ηm satisfy

ω̇c = Acωc, ωc(t0) = xc(t0)

ηc = CTc ωc
(69)

and

ω̇m = Amωm, ωm(t0) = xm(t0)

ηm = −CTmωm,
(70)

respectively. Besides, ∆ satisfies the equation

ω̇δ = Acωδ + Fc, ωδ(t0) = 0

∆ = CTc ωδ,
(71)

Define the Lyapunov-like function

V =|ρ∗|θ̃TΓ−1θ̃ + γ−1ρ̃2 + ωTc Pcωc + ωTmPmωm

+ (ωδ −A−1
c Fc)

TPc(ωδ −A−1
c Fc)

(72)

Since Am and Ac are stable, there exist positive definite matrices Pc
and Pm such that

ATc Pc + PcAc = −γcI, ATmPm + PmAm = −γmI (73)

for some constants γc, γm > 0 to be chosen. Take the derivative of
V and insert (35), (69), (70), (71) and (73), we have

V̇ =− 2ε2

m2
+

2εηc
m2
− γc|ωc|2 +

2εηm
m2

− γm|ωm|2

+
2ε∆

m2
− γc|ωδ|2

(74)

where ωδ = ωδ − A−1
c Fc. Substituting ηc, ηm,∆ with (69), (70),

(71) and invoking Lemma 1, it follows

V̇ ≤− 2ε2

m2
+

2

m2
|ε||CTc ||ωc| − γc|ωc|2 +

2

m2
|ε||CTm||ωm|

− γm|ωm|2 +
2

m2
|ε||CTc ||ωδ| − γc|ωδ|2

=− ε2

2m2
+ φ1 + φ2 + φ3

(75)

where

φ1 =
ε2

2m2
+

2

m2
|ε||CTc ||ωc| − γc|ωc|2

=− ε2 + (ε− 4|CTc ||ωc|)2

4m2
− |ωc|2(γc −

4|CTc |2

m2
)

(76)

φ2 =− ε2

2m2
+

2

m2
|ε||CTm||ωm| − γm|ωm|2

=− ε2 + (ε− 4|CTm||ωm|)2

4m2
− |ωm|2(γm −

4|CTm|2

m2
)

(77)

and

φ3 =− ε2

2m2
+

2

m2
|ε||CTc ||ωδ| − γc|ωδ|2

=− ε2 + (ε− 4|CTc ||ωδ|)2

4m2
− |ωδ|2(γc −

4|CTc |2

m2
)

(78)

We obtain φ1, φ2, φ3 ≤ 0 by choosing γc ≥ 4|CTc |2 and γm ≥
4|CTm|2, which indicates V̇ ≤ 0.

It follows that θ̃, ρ̃ ∈ L∞ and ε
m
∈ L2. Following the derivation of

Theorem 2 yields g̃ ∈ L2 and ω,m, ξ, ζ ∈ L∞, which together with
(35) and η,∆ ∈ L2 ∩ L∞ gives ε ∈ L2 ∩ L∞. From (25) we have
θ̇ ∈ L2 and thus ξ ∈ L2. It follows from (34) and ε, ξ ∈ L2, ρ ∈ L∞

that e ∈ L2, which combined with ė ∈ L∞ reveals e(t) → 0 as
t→ 0.

Since ζ is PE, the homogeneous part of (63) is exponentially stable,
which together with ξ, η, δ ∈ L2 implies θ̃(t)→ 0 as t→∞.
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