
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SNAP:Successor Entropy based Incremental Subgoal
Discovery for Adaptive Navigation

Rohit K. Dubey
Technical University of Munich

Germany
rohit.dubey@tum.de

Samuel S. Sohn
Rutgers University

USA
samuel.sohn@rutgers.edu

Jimmy Abualdenien
Technical University of Munich

Germany
jimmy.abualdenien@tum.de

Tyler Thrash
Saint Louis University

USA
tyler.thrash@slu.edu

Christoph Hölscher
ETH Zurich
Switzerland

choelsch@ethz.ch

André Borrmann
Technical University of Munich

Germany
andre.borrmann@tum.de

Mubbasir Kapadia
Rutgers University

USA
mubbasir.kapadia@rutgers.edu

Figure 1: Visualization of trajectories generated by optimal agent and human participants for five wayfinding tasks. Agent’s trajecto-
ries are visualized in blue and human participants trajectories in red.

ABSTRACT
Reinforcement learning (RL) has demonstrated great success in
solving navigation tasks but often fails when learning complex envi-
ronmental structures. One open challenge is to incorporate low-level
generalizable skills with human-like adaptive path-planning in an RL
framework. Motivated by neural findings in animal navigation, we
propose a Successor eNtropy-based Adaptive Path-planning (SNAP)
that combines a low-level goal-conditioned policy with the flexibility
of a classical high-level planner. SNAP decomposes distant goal-
reaching tasks into multiple nearby goal-reaching sub-tasks using
a topological graph. To construct this graph, we propose an incre-
mental subgoal discovery method that leverages the highest-entropy
states in the learned Successor Representation. The Successor Rep-
resentation encodes the likelihood of being in a future state given the
current state and capture the relational structure of states based on a
policy. Our main contributions lie in discovering subgoal states that
efficiently abstract the state-space and proposing a low-level goal-
conditioned controller for local navigation. Since the basic low-level
skill is learned independent of state representation, our model easily
generalizes to novel environments without intensive relearning. We
provide empirical evidence that the proposed method enables agents
to perform long-horizon sparse reward tasks quickly, take detours
during barrier tasks, and exploit shortcuts that did not exist during
training. Our experiments further show that the proposed method

outperforms the existing goal-conditioned RL algorithms in success-
fully reaching distant-goal tasks and policy learning. To evaluate
human-like adaptive path-planning, we also compare our optimal
agent with human data and found that, on average, the agent was
able to find a shorter path than the human participants.

CCS CONCEPTS
• Computing methodologies → Planning with abstraction and
generalization.

KEYWORDS
Goal-conditioned RL, Robot navigation, Option discovery, Adaptive
path-planning, Hippocampus

1 INTRODUCTION
Humans and other animals can quickly navigate unfamiliar and com-
plex environments while adapting to environmental changes. This
process of navigation can be conceptually divided into locomotion
(i.e., low-level control) and wayfinding (i.e., high-level planning).
Locomotion and wayfinding are driven by a neural circuit in hu-
man and animal brains that facilitates vector-based navigation and
flexible path-planning. Vector-based navigation [Bush et al. 2015;
Edvardsen 2015] is the low-level strategy by which a navigator ob-
serves their final goal and moves directly towards it in the absence

1

Dubey, et al.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

of obstacles. In the presence of obstacles, humans and other animals
have been found to switch to an adaptive path-planning strategy by
which the navigator moves between subgoals using a topological
graph employing vector navigation between subgoals [Bush et al.
2014; Edvardsen et al. 2020].

To mimic these adaptive navigation behaviors with intelligent
agents, classical path-planning algorithms such as A*, Dijkstra’s,
D*, and its variant requires prior information of the environment in
the form of a dense navigational graph. A more extensive and compli-
cated environment will result in higher complexity, memory utiliza-
tion, and computation time. Moreover, the above-mentioned foun-
dational path-planning algorithms consistently produce the shortest
path, which animals or humans do not observe in an under-explored
environment. Recent works in RL attempts to model adaptive path-
planning by employing both goal-conditioned planning [Eysenbach
et al. 2019; Huang et al. 2019; Pong et al. 2018; Schaul et al. 2015;
Zhang et al. 2020] and hierarchical RL algorithms [Kulkarni et al.
2016; Nachum et al. 2018; Ramesh et al. 2019]. A goal-conditioned
RL agent learns policies to reach a final goal state by subdividing the
distant navigation task into smaller sub-tasks towards different sub-
goals. These subgoals are typically elected from a topological graph
using a shortest path heuristic but can be based on other common
heuristics (e.g., the path with least turning). To improve efficiency,
hierarchical RL abstracts the path-planning task into multiple levels.
This abstraction is especially useful for planning in complex envi-
ronments or with sparse rewards. While both goal-conditioned and
hierarchical RL models learn a local policy to reach nearby states,
they often fail to navigate successfully during barrier and shortcut
tasks when environment structure changes.

For long-distance goals, the likelihood of transitioning to any
other future state from the current state can be formulated using
Successor Representations (SR) [Dayan 1993]. SR encodes the rela-
tional structure of states based on a chosen policy. Previous research
has demonstrated that SR is one way in which action states are en-
coded by the human brain [Russek et al. 2017; Stachenfeld et al.
2017]. Recently, in [Ramesh et al. 2019], SR has also been shown
to abstract the environment by identifying subgoals that are well-
distributed throughout the environment and unique. However, SR is
unable to re-evaluate changes to the state space that may result from
environmental changes such as paths being blocked by obstacles
[Gershman 2018; Momennejad et al. 2017].

To overcome these challenges, we propose Successor eNtropy-
based Adaptive Path-planning (SNAP) that combines a low-level
goal-conditioned policy with the flexibility of a classical high-level
planner that decomposes distant goal-reaching tasks into multiple
nearby goal-reaching sub-tasks. Similar to [Eysenbach et al. 2019;
Huang et al. 2019], our method combines classical path-planning
and deep RL with the aim of tackling long-distance, sparse reward
navigation tasks. We train the low-level goal-conditioned policy
using a direction vector computed with nested grid cells. In parallel
with learning this low-level policy, the agent also learns a high-level
planner that leverages a topological graph. This topological graph
abstracts the environment state space by the incremental discovery
of subgoals that gradually identify states representing bottleneck
locations (i.e., door/opening in a corridor). Over several iterations,
the agent learns the SR of the visited states and distinct clusters are
learned from these states. Subgoals are chosen as the states with

the highest entropy within each identified cluster. We also propose
an Approximate Reward Representation (ARR) that is learned in
parallel with SR and encodes the state-to-state transition reward
matrix. Specifically, ARR maintains the minimum distance between
pairs of states using a replay buffer that helps transform the sparse
reward tasks to dense-reward tasks and that formulates the edges
of the topological graph in terms of estimated distances between
subgoals. Our approach makes the following contributions:

• We formulate a novel Approximate Reward Representation
in conjunction with a new interpretation of SR for identifying
subgoals that aid in efficient learning for a low-level goal-
conditioned RL controller.
• We propose a human-like path-planner that switches between

two modes of navigation depending on obstructions in the
environment.
• In a behavioral study, we provide empirical evidence of the

similarity between the subgoals of the new SR method and
the subgoals chosen by human participants on a variety of
fundamental navigation tasks.

Our method SNAP supports adaptive and global navigation in
complicated environments. We showcase via multiple simulations
and compare with human data that an efficient selection of state rep-
resentations for iterative subgoal discovery can finesse the expensive
sequential state-state navigation, identify novel shortcuts, and adapt
behavior during goal/reward revaluations.

2 RELATED WORK
This section begins by briefly highlighting the evidence found in
neuroscience that supports human navigation and developing a men-
tal representation of the environment. Then we discuss relevant
RL methods proposed earlier in the literature to solve long-horizon
navigational tasks similar to our proposed approach.

2.1 Neural Basis of Navigation
Recent studies in neuroscience have provided compelling evidence
for the theoretical notion of a cognitive map and its neural instan-
tiation in the hippocampus and Medial Entorhinal Cortex [Breath-
nach 1980; McNaughton et al. 2006]. Multiple neuron population
types such as place cells [O’Keefe and Dostrovsky 1971], grid cells
[Hafting et al. 2005], head-direction cells [Taube et al. 1990], and
border/boundary-vector cells (BVC) [Barry et al. 2006; Lever et al.
2009; Solstad et al. 2008] have been discovered and considered to
collectively form a dynamic neural circuit for animals that aid in
self-localization, dynamic path-planning, and vector-based naviga-
tion (see Section 1 of the Supplementary Material for more details).
In 2005, Grid cells were identified that fire periodically at regular
intervals as an animal moves around in a space [Hafting et al. 2005].
Such periodic firing is thought to provide a multi-scale representa-
tion of the local environment, which assists in the localization of its
position [Fiete et al. 2008; Hafting et al. 2005] and in vector-based
navigation [Fiete et al. 2008]. Successor Representation (SR) ex-
hibits the properties of place and grid cells observed in rodents and
can perform reward revaluation as observed in humans. However,
SR is insensitive to changes in the transition structure (i.e., transition
revaluation). [Gershman 2018; Momennejad et al. 2017]. Boundary
Vector Cells (BVC), also known as boundary cells or border cells,

2

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Successor Entropy based Subgoal Discovery for Adaptive Navigation

are neurons found in the hippocampus that activates in the presence
of an environment boundary or obstacle at a particular distance or
direction from the animal [Barry et al. 2006; Lever et al. 2009].
BVC can signal the presence of a nearby barrier and thus facilitate
path adjustments before actual contact with the obstacle. In this
paper, we consider the role of replays during path-planning when
BVCs are activated in proximity to an environment boundaries or
the agent’s sensory input signifies a change in the environment such
as the addition of a barrier.

2.2 Options Discovery in Reinforcement Learning
The options framework proposed by Sutton and colleagues [Sutton
et al. 1999] models temporally extended actions for mitigating the
difficulty of solving difficult Markov-Decision Processes (MDPs) in
RL. The careful design of options is crucial to exploiting the benefits
of the options framework and can be used to speed-up the policy
learning process. The discovery of options largely revolves around
identifying either a bottleneck state [McGovern and Barto 2001;
Menache et al. 2002; Şimşek and Barto 2004; Stolle and Precup
2002] or a landmark state [Harutyunyan et al. 2019; Machado et al.
2017a,b; Ramesh et al. 2019]. The key difference between bottleneck
and landmark states is that the former represents states corresponding
to bottlenecks such as doors or small gaps that have a high visitation
count and high centrality. In contrast, landmark states represent
regions that are well-connected and evenly distributed. Within built
environments, bottleneck and landmark states are duals of each
other, i.e. two bottleneck states (e.g., doors) are connected by a
landmark state (e.g., a room) and two landmark states are connected
by a bottleneck state. Our approach is closer to bottleneck states
because human paths are often near-optimal [Buecher et al. 2009]
and shortest-paths are guaranteed to pass through bottleneck states,
but not landmark states.

2.3 Hierarchical & Planning based Navigation
Similar to options frameworks, hierarchical RL (HRL) techniques
are motivated by learning a set of primitive skills to solve complex
tasks. Most HRL approaches combine a low-level controller with a
high-level planner. The task of the high-level planner is to learn a
global layout of the environment and produce a sequence of land-
marks or subgoals for the low-level controller to reach one at a time
[Eysenbach et al. 2019; Kulkarni et al. 2016; Nasiriany et al. 2019].
For example, SoRB [Eysenbach et al. 2019]) employs HRL to bridge
the gap between planning and deep RL to solve long horizon tasks.
SoRB decomposes the task of reaching a distant goal into a sequence
of easier tasks by employing graph search with a goal-conditioned
policy. Similarly, in [Xu et al. 2021], the authors propose to use an
approximate 2D map of novel environments during navigation that
does not require any learning. They train a deep generative model
to generate intermediate subgoals in the observation space that low-
level goal-conditioned RL can then use to achieve distant navigation
tasks. Our approach is similar to the HRL approach because it uses
graph-based path-planning as proposed in SoRB [Eysenbach et al.
2019] and MAP-UGR [Huang et al. 2019]. However, our approach
differs from these two methods in two significant ways. First, our
approach aims to produce a human-like path-planner and thus only
utilizes a small number of subgoals instead of a large number of

subgoals compared to other works. Second, unlike SoRB, wherein
the main insight is to use RL in constructing the graph, our approach
learns a vector navigation skill to reach each subgoal using RL.
Moreover, our approach does not depend on learning a reliable dis-
tance function (i.e., estimating the distance to a goal) and is thus less
prone to local navigation errors. Finally, we extend the long horizon
sparse reward navigation task to accommodate dynamic changes in
an environment, which was not addressed in the above approaches.

2.4 Goal-conditioned Reinforcement Learning
Several variants of goal-conditioned RL methods have been pro-
posed in the literature [Andrychowicz et al. 2017; Eysenbach et al.
2019; Huang et al. 2019; Kaelbling 1993; Mirowski et al. 2016; Pong
et al. 2018; Schaul et al. 2015]. For example, Hindsight Experience
Replay (HER) [Andrychowicz et al. 2017] combines off-policy RL
with goal-relabeling to enhance the sample complexity and robust-
ness of goal-conditioned policies. HER was improved by explicitly
implementing a connection between model-based, and model-free
learning [Pong et al. 2018] and by randomly sampling goals from the
learned latent space to use as replay goals for off-policy Q-learning
rather than limiting only to states observed along the sampled trajec-
tory, facilitating efficient learning [Nair et al. 2018]. Another pop-
ular goal-conditioned model-free RL algorithm is Universal Value
Function Approximators (UVFA). While HER and UVFA both use a
single neural network to represent value and successfully solve short-
horizon tasks, they both fail to model long-range tasks. To tackle
such problems, algorithms such as [Huang et al. 2019; Mirowski
et al. 2016; Zhu et al. 2017] have been proposed to combine a locally
robust controller with a high-level planner.

Our proposed framework SNAP follows a similar approach as
UVFA [Andrychowicz et al. 2017], and SoRB [Eysenbach et al.
2019] by building a low-level controller using goal-conditioned RL.
Our method differs from the above methods in the following ways.
(1) The goal-conditioned policy in our method does not depend on
distance estimates and has improved sample efficiency over UVFA.
(2) It does not depend on an approximate external 2D map. (3) It
learns the policy simultaneously while discovering subgoals and
thus reduces training time.

3 APPROACH
In principle, model-free goal-conditioned RL agents can solve long-
horizon tasks, but in practice, they struggle to reach goals that are
distant [Nasiriany et al. 2019]. To overcome this challenge, we
combine goal-conditioned policies (i.e., a low-level controller) with
a high-level planner that decomposes a distant goal-reaching task
into 𝑘 shorter subtasks to subgoals. The overview of the proposed
method SNAP is summarized in Figure 2 and Algorithm 1. Our
approach consists of four main components.

• Nested Grid Cells for Egocentric Direction (i.e., compu-
tation of allocentric vector direction between agent and the
goal. Section 3.2).
• Low-level Controller (i.e., learning goal-conditioned pol-

icy to execute vector-based navigation between two nearby
subgoals. Section 3.3).

3

Dubey, et al.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Figure 2: Overview of steps involved in SNAP.

• Incremental Subgoal Discovery (i.e., discovery of landmark
states that guides humans and animals path towards a goal
using high-level planner. Section 3.4).
• Adaptive path-planner (i.e., high-level planner that can pro-

duce human-like optimal and flexible navigation behavior to
discover detours and novel shortcuts. Section 3.5).

3.1 Preliminaries
The overview of the proposed method SNAP is presented in Algo-
rithm 1. To model a low-level controller, we consider a goal-reaching
agent interacting with an environment. The environment can be for-
mulated as a Markov Decision Process (MDP) described by the tuple
(𝑆 , 𝐴, T, R, 𝛾) where 𝑆 is a set of agent-environment states, 𝐴 is a set
of available actions to the agent, T is a state transition function, R is
a reward function R(𝑠 ′ |𝑠,𝑎) that indicates the reward in transitioning
to state 𝑠 ′ from state 𝑠 by taking action 𝑎, and 𝛾 ∈ [0, 1] is a discount
factor that reduces the weight of rewards obtained further in the
future (lines 1 - 5). The agent’s state space is a discretized 2D grid
of the entire space comprising of 1×1 cells. At each time step 𝑡 ,
the agent performs an action guided by its policy and receives an
intrinsic reward (lines 6 - 11). The agent moves at a constant speed
|v| in any direction. The set of available actions, 𝐴 = [|v|0◦, |v|360◦].
The agent receives a reward of -1/𝑀𝐴𝑋𝑠𝑡𝑒𝑝𝑠 for taking each step and
a reward of +1 for reaching a subgoal or goal state. We convert the
sparse-reward problem into a dense reward by leveraging ARR. The
agent receives an intrinsic reward along with a negative reward of
-0.01 if it enters a state which is close to obstacles (i.e., computed
using BVC input) (lines 12 - 19).

Learning a goal-conditioned policy is a key component of our
method. In this work, we employ a policy gradient-based RL method.
Instead of learning Q-Values or Value functions such as in stan-
dard RL methods, policy gradient methods learn a policy function
directly. Our implementation uses Proximal Policy Optimization

(PPO), which performs similar to or better than state-of-the-art ap-
proaches and is easy to tune [Schulman et al. 2017]. We refer readers
to [Schulman et al. 2017] for PPO’s implementation details. The
sections below describe the formulation of the approximate reward
representation that maintains the minimum distance between pairs of
states using a replay buffer and successor representation that support
the discovery of subgoals.

3.1.1 Approximate Reward Representation. To compute the
reward (R), we propose to simulate how the human brain maps
discounted rewards to states while learning an environment. We
assume that an approximate reward for experienced trajectories be-
tween every pair of visited states in the environment is encoded. To
maintain such mapping, we propose the Approximate Reward Rep-
resentation (ARR). ARR (D) encodes a pairwise distance between
two locations during the agent’s exploration. This distance is em-
ployed as an intrinsic dense reward for an agent to efficiently learn a
goal-conditioned low-level controller. The agent receives a reward
𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 = (D[𝑠, 𝑠𝑔𝑜𝑎𝑙] −D[𝑠 ′, 𝑠𝑔𝑜𝑎𝑙]) where 𝑠 is the agent’s current
state, 𝑠 ′ is the agent’s next state, and 𝑠𝑔𝑜𝑎𝑙 is the agent’s target goal
state. In our model, the ARR is a 𝑛 ×𝑛 matrix where 𝑛 is the number
of states. D(𝑠, 𝑠 ′) encodes the approximate best reward as a function
of time-steps/distance from the goal (Equation 1), where a smaller
distance yields an exponentially higher reward. 𝜆 is a constant (𝜆 =
0.1) and D(𝑠 ′) is the number of time-steps/distance between a state
𝑠 ′ and the goal/subgoal. We assume the ARR matrix D is initialized
to the identity matrix I, meaning D(𝑠, 𝑠 ′) = 1 if 𝑠 = 𝑠

′
, and D(𝑠, 𝑠 ′)

= 0 if 𝑠 ≠ s
′
. This is because we assign the reward of transitioning

from the same state to itself as 1.

R(𝑠 ′) = 𝑒−𝜆∗D(𝑠
′) (1)

D
′
(𝑠, 𝑠 ′) =

{
R(𝑠 ′), if R(𝑠 ′) ≥ D(𝑠, 𝑠 ′)
D(𝑠, 𝑠 ′), otherwise

(2)

4

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Successor Entropy based Subgoal Discovery for Adaptive Navigation

Algorithm 1 Incremental Subgoal Discovery and Policy Learning

Inputs: 𝑁 (Number of Episodes)
Inputs: 𝑘 (Total number of Subgoals)
Inputs: 𝛾 (Discount factor)
Inputs: Π (Goal Conditioned RL Policy)
Inputs: 𝑅𝐵 (Replay Buffer)
Inputs: 𝜖 (Max. steps per episode)
Inputs: 𝑠𝑠 , 𝑠𝑔 (start state, goal state)

1: A← {} //𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑀𝑎𝑡𝑟𝑖𝑥

2: T← {} //𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥

3: D← {} //𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

4: M← {} //𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥

5: 𝑅𝐵 ← {} //𝑅𝑒𝑝𝑙𝑎𝑦 𝐵𝑢𝑓 𝑓 𝑒𝑟

6: 𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0
7: for 𝑛 ← 0 to 𝑁 − 1 do
8: for 𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ← 1 to 𝜖 do
9: if (𝑛 > 0) then

10: if (Path(𝑠𝑠 , 𝑠𝑔)) then
11: 𝑅𝐵 ← Navigate(𝑂,Π,D,N)
12: else
13: 𝑅𝐵 ← RandomAction(Π)
14: for 𝑖 ∈ |𝑅𝐵 | do
15: for 𝑗 ∈ |𝑅𝐵 | do
16: if 𝑅𝐵(𝑠𝑖 ← 𝑠 𝑗 = 1) then
17: A(𝑖, 𝑗) = 1
18: for 𝑖, 𝑗 to |𝑆 | do
19: T[𝑠𝑖 , 𝑠 𝑗] ←

A[𝑠𝑖 ,𝑠 𝑗]∑|𝑆 |
𝑗=0 D[𝑠𝑖 ,𝑠 𝑗]

20: M← (I − 𝛾T)−1
21: D←ComputeARR(𝑅𝐵,D) Eq. (8)
22: SE←ComputeSR-Entropy(M)
23: 𝑂 ←ClusterSR(M, 𝑘, SE)
24: N ← BuildGraph(𝑂)
25: 𝑅𝐵 ← {}
26: SE←ComputeSR-Entropy(M)
27: 𝑂 ←ClusterSR(M, 𝑘, SE)
28: N ← BuildGraph(𝑂)
29: return 𝑂,N

In our proposal, the SR and ARR Matrices are learned indepen-
dently and in parallel.

3.1.2 Successor Representation. As proposed in [Stachenfeld
et al. 2017], any value function can be represented as a linear combi-
nation of the reward function R and the SR M (Eq. 3).

𝑉 (𝑠) =
∑
𝑠
′
M(𝑠, 𝑠 ′)R(𝑠 ′) (3)

M is initialized to the identity matrix 𝐼 , meaning M(𝑠, 𝑠′) = 1 if
𝑠 = 𝑠

′
, and M(𝑠, 𝑠′) = 0 if 𝑠 ≠ s

′
. When the transition probability

matrix is known, we can compute the SR as a discounted sum over
transition matrices raised to the exponent 𝑡 (Eq. 4). The matrix 𝑇 𝑡

is the 𝑡-step transition matrix, where 𝑇 𝑡 (𝑠, 𝑠 ′) is the probability of
transitioning from 𝑠 to 𝑠 ′ in 𝑡 steps.

M =

∞∑
𝑡=0

𝛾𝑡𝑇 𝑡 (4)

This sum is a geometric matrix series, and for 𝛾 < 1, it converges
to the following finite analytical solution:

M =

∞∑
𝑡=0

𝛾𝑡𝑇 𝑡 = (𝐼 − 𝛾𝑇)−1 (5)

where 𝐼 is the identity matrix. In all of our simulations, SR was
computed analytically from the transition matrix using Equation 5
(lines 12 - 18 in Algorithm 1).

3.2 Nested Grid Cells for Egocentric Direction
Grid cells are believed to represent an animal’s coordinates system
in 2D and 3D space [Edvardsen 2018; Stella and Treves 2015].
The unique repetitive hexagonal pattern formed by grid cells can
be used for geometric computations (i.e., direction and distance to
a goal from the current location). In this paper, the grid cell was
generated by employing the model suggested by [Solstad et al. 2006].
Equation 6 computes the hexagonal grid cell pattern at any given
location (𝑥,𝑦) by intersecting three waves at 𝜋/3° apart.

𝐺𝐶 (𝑥,𝑦) =𝑚𝑎𝑥 [0,−0.2 +
2∏

𝑑=0

(
1 + 𝑐𝑜𝑠

(
(𝑥 − 𝑜𝑥) .

2𝜋
𝑆
.𝑐𝑜𝑠 (𝑟 + 𝑑. 𝜋

3
). 2√
(3)
+ (𝑦 − 𝑜𝑦) .

2𝜋
𝑆
.𝑠𝑖𝑛(𝑟 + 𝑑. 𝜋

3
) . 2√
(3)

))] (6)

Three parameters, 𝑠, 𝑟 , and 𝑜, characterize grid cells here. 𝑠 de-
notes the scale of the pattern (i.e., the distance between two hexag-
onal peaks), 𝑟 is its orientation, and 𝑜 is the 2D offset parameters
from some reference point. Figure 3 visualizes a top-down view of
a grid cell formation at various scales of 10,15,23, and 34 meters
in a square box of 102 square meters. Orientation 𝑟 is fixed to 𝜋/2
and a 2D offset 𝑜(x,y) is set to (0, 0). Vector navigation using one
grid-scale formulation poses multiple restrictions. If the grid-scale is
small, for example, 10 meters, the direction to any location outside
the range of this scale will be error-prone (Figure 1 (D) in [Edvard-
sen 2018]). At a larger scale, vector navigation will be jittery and
less accurate. The input vector direction (𝜃) for an agent to a subgoal
is calculated by measuring the vector between the two respective lo-
cations represented by two separate grid cell populations. One of the
grid cell populations encodes the agent’s current location, whereas
the other population encodes the subgoal’s location (Equation 7).

𝜃 = 𝐺𝐶 (𝑥𝑎𝑔𝑒𝑛𝑡 , 𝑦𝑎𝑔𝑒𝑛𝑡) −𝐺𝐶 (𝑥𝑠𝑢𝑏𝑔𝑜𝑎𝑙 , 𝑦𝑠𝑢𝑏𝑔𝑜𝑎𝑙) (7)

3.3 Low-level Controller using Goal-Conditioned
Policy

Navigation between the distant start and goal states is facilitated by
a low-level goal-conditioned controller and a high-level planner. The
controller operates during each training episode, and the planner
operates between episodes. We first describe the initial episode.
For the low-level controller, the agent begins at the start state and
randomly moves between states for 𝜖 = 3000 steps while being

5

Dubey, et al.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Figure 3: We employ nested grid cells that form a repetitive
hexagonal pattern to compute vector direction between agent
and a subgoal. Grid cells are generally observed to formulate at
scales that are in a ratio of 1.5.

guided by its rewards (Section 3.1). During this movement, the agent
maintains a replay buffer of its visited states. This replay buffer
is used to compute the SR and ARR. At the end of each episode,
the learned SR is used to discover 𝑘 temporary subgoals (Section
3.4). The identified subgoals are treated as nodes, and a topological
graph (N) is formulated (Section 3.5). The agent’s start position is
kept constant at the bottom leftmost corner of an environment with
a random state for a destination during learning. An optimal path
between a given pair (𝑜 ,𝑑) is computed using a Dijkstra’s Algorithm.
If a path exists, the goal-conditioned agent is given a subgoal target
closest to the agent in the identified path. At the start of training,
the ARR matrix is under-developed, and hence most of the time, no
edge exists between nodes and does not result in an optimal path
between a pair (𝑜 ,𝑑). In such a scenario, the set of subgoals is sorted
by the descending order of ARR sums (i.e., ARR Sum of subgoal
𝑠𝑖 is

∑ |𝑆 |
𝑗=0 D[𝑠𝑖 , 𝑠 𝑗]). If no path exists, the goal-conditioned agent is

given a target, the first subgoal in the ordered subgoal list. Once the
agent reaches a subgoal, the target is moved to the next subgoal in
the list (see Supplementary Video).

To learn a policy, we employ PPO proposed in [Schulman et al.
2017], but one could also use any other off-the-shelf algorithm.
PPO uses a convolutional neural network (CNN) to approximate the
ideal function that maps an agent’s observations to the best action
an agent can take in a given state (see Supplementary Material
for hyperparameter details). In our approach, the agent receives
two observations: the egocentric vector angle (𝜃) computed using
Equation 7 towards the target subgoal and its current location. Aside
from assisting in identifying subgoal states with high centrality
for policy learning, another benefit of ARR is in affording a dense
reward in the context of sparse reward navigational tasks. The reward
function is formalized in Equation 8 (𝜑𝑠 is the ARR of state s).

𝑟𝜑𝑠
(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝜑𝑠 (𝑠𝑡+1) − 𝜑𝑠 (𝑠𝑡) (8)

The agent is rewarded positively if it takes a step closer to the tar-
get subgoal. The agent is penalized for taking each step. The episode
terminates after 𝜖 timesteps or if the agent successfully reaches
the final goal, whichever occurs first. The proposed incremental
goal-conditioned RL learning-based approach enables learning with-
out extrinsic reward and explores distant states, which may not be
feasible using only primitive actions.

3.4 Incremental Subgoal Discovery
During navigation, humans and animals discover and employ land-
marks to guide their path towards a destination [Dubey et al. 2019;
Epstein and Vass 2014]. In an unfamiliar environment, this process

of landmark discovery is incremental and continuous. A landmark
identified earlier with limited exploration can also be replaced if a
more informative landmark is identified later for the same space. We
propose an incremental discovery of subgoals (i.e., bottleneck states)
to model landmark discovery heuristics similar to those observed
in humans. A similar approach is proposed in [Ramesh et al. 2019].
An essential difference between our method and the approach taken
in [Ramesh et al. 2019] is the definition of a subgoal. We consider
landmarks to have high centrality in order to facilitate human-like
path planning [McGovern and Barto 2001; Moradi et al. 2010], and
accordingly, we ensure that the corresponding states are frequented
by agents along successful paths. Identifying effective landmark
states will enable faster exploration and faster convergence to the op-
timal policy. In Figure 5 we showcase that the proposed SR-Entropy
based method outperforms SR-Options based method in coverage
of state-space with respect to mean square error difference from
optimal ARR.

Figure 4: (left) Computation of subgoals using SR-Options vs.
SR-Entropy (Ours) on two different environments. (right) Vi-
sualization of optimal SR-Entropy and Approximate Reward
Representation of states.

Figure 5: Mean Square Error (MSE) difference between in-
cremental ARR and optimal ARR with subgoal-directed agent
exploration using SR-Options and SR-Entropy-based subgoal
identification on two different environments.

The first step required to discover subgoals is to learn SR. To learn
the successor representation, we maintain a replay buffer of visited
states per episode. The replay buffer is reset to an empty sequence
at the beginning of each episode. The SR matrix (M) is computed

6

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Successor Entropy based Subgoal Discovery for Adaptive Navigation

by updating adjacency (A) and transition matrices (T) based on the
replay buffer using Equation 5. At the end of each episode, all vis-
ited states are clustered using the farthest point sampling algorithm
(K-means++). K-means++ eliminates the shortcoming of K-means
that it is dependent on the initialization of centroids [Arthur and
Vassilvitskii 2006]. Clustering over SR produces clusters of states
spread across the visited state-space, with each cluster comprising
densely connected states. Ideally, identifying the cluster centers as
subgoals will facilitate exploration of the region in a state-space with
vastly different successor states. Employing them as nodes for path-
planning will primarily produce longer paths that are generally not
observed in human navigation. Instead, we compute 𝑘 subgoals as
states in each cluster that have maximum entropy. The high entropy
states also resemble states with high betweenness centrality that is
crucial to learn new skills in RL [Moradi et al. 2010]. In Figure 4, we
present the subgoals using SR-Options (i.e., cluster’s centroid) and
SR-Entropy (i.e., our) approaches. The process of exploring states
and clustering operates in an iterative fashion by which each episode
results in visits to unexplored states followed by SR updates, SR
clustering, and SR-Entropy computations, respectively. To perform
K-means++ clustering, we need to provide the value for 𝑘 . We con-
sider 𝑘 as a parameter that is specified manually beforehand. Ideally,
with optimal state-space knowledge, 𝑘 should directly correspond to
the number of bottleneck states (i.e., doors and gaps in a cluttered
environment) for every distinct cluster. However, in our simulations,
we notice that having a larger value of 𝑘 (2 * 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙) supports
quicker policy learning. Moreover, due to the basic nature of the
proposed RL agent that lacks human-like vision, larger values of 𝑘
support vector navigation more efficiently.

3.5 Adaptive Navigation
During a goal-oriented navigation task in a cluttered environment,
humans most often aim to reach a nearby landmark state to circum-
vent obstacles and to continue towards the goal [Shamash et al. 2020;
Verma and Mettler 2017]. In the absence of any obstacles, humans
identify their final goal and move directly towards it. Therefore,
we propose a combined vector-based navigation and topological
navigation strategy to incorporate similar switching behavior. In the
absence of a nearby boundary or obstacle, the distinct process of
goal-vector navigation guides the movement direction based on the
learned goal-conditioned policy towards a goal. In the presence of
a barrier or obstacle identified using BVCs, the navigation strategy
switches to topological navigation, and a subgoal state is selected
from the optimal path using Graph N . The BVC model proposed by
[Barry et al. 2006] is employed in our work. A detailed description
of the computation of BVCs is provided in the Supplementary Ma-
terials (Section 1.3). Given a set of subgoals (𝑆𝑔), the ARR matrix
(D), and start and goal positions (𝑜 , 𝑑), our next step is to formulate
a topological graph (N). ARR is used for estimating the distance
between two states (i.e., 𝑑 (𝑠𝑖 , 𝑠 𝑗) = D[𝑠𝑖 , 𝑠 𝑗]). If 𝑑 (𝑠𝑖 , 𝑠 𝑗) ≤ 𝜏 , an
undirected weighted (𝑤 = 𝑑 (𝑠𝑖 , 𝑠 𝑗)) edge is connected between node
𝑠𝑖 and 𝑠 𝑗 . The threshold 𝜏 ensures that subgoals are connected locally,
such that the low-level controller is likely tractable. Otherwise, there
is a risk that a obstacle exists between subgoals, with which the con-
troller would likely struggle. We begin by finding the shortest path
using Dijkstra’s algorithm between 𝑜 and 𝑑. This process outputs a

list of subgoal nodes in N . The first subgoal in this list is the target
subgoal given to the low-level RL agent. If the subgoal is reached,
a new high-level path is planned, and the process repeats until the
agent reaches 𝑑. Sometimes, a path towards the next subgoal may
be blocked, which is sent to the agent as a Reward Prediction Error
(RPE) via BVCs. If the cumulative RPE reaches a certain predefined
threshold, the edge towards the current subgoal is removed from N ,
and a new path is computed. This allows an agent to circumvent
getting stuck at obstacles and to avoid following the last edge for
any future paths since the deleted edge no longer exists in N .

4 EXPERIMENT & RESULTS
4.1 Environments, Baselines, and Evaluation

Metrics
4.1.1 Environment. We compare our method with two approaches
that tackle a goal-reaching task in sparse-reward settings on the three
most commonly used environments (i.e., Ant Maze, Four Room,
and DeepMind layouts) [Andrychowicz et al. 2017; Eysenbach et al.
2019; Huang et al. 2019].

4.1.2 Baseline 1. Hindsight Experience Replay (HER) [Andrychow-
icz et al. 2017] proposes a goal-relabeling that reuses previous expe-
rience to train a Universal Value Function Approximator (UVFA) in
a sparse reward setting.

4.1.3 Baseline 2. MAPping state space using landmarks for Uni-
versal Goal Reaching (MAP-UGR) [Huang et al. 2019] proposes
a sample-based method to dynamically map the visited state space
and to solve long-range goal-reaching problems. Their approach
to forming a map for path-planning using subgoals/landmarks is
similar to our approach but differs in terms of training a low-level
goal-conditioned RL policy.

4.1.4 Evaluation Metrics. (1) Success Rate: The ratio of success-
ful goal-reaching attempts over total attempts: 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑛𝑡𝑜𝑡𝑎𝑙
. The total

number of steps is counted by summing numbers of steps during
training and testing. (2) Cumulative Reward: The average sum of
all rewards over training. (3) Episode length: The length of the
simulation at the end of which the agent reaches a terminal state.

Figure 6: Simulating multiple goal-reaching tasks of increasing
difficulty on a large (50 × 50) Ant maze environment.

4.2 Simulation Results
To evaluate the goal-reaching capability of all approaches, we sample
random goal locations from a fixed start location situated at the

7

Dubey, et al.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Figure 7: Simulation results showcasing average success rate on three different layouts using HER [Andrychowicz et al. 2017] and
MAP-UGR [Huang et al. 2019] approaches and the proposed approach.

bottom left corner in each environment. Goal-conditioned RL is
used to learn a policy by training an agent for 2000 steps and testing
the learned policy for ten episodes. Each episode ends if an agent
reaches the goal or runs out of maximum allowed timesteps (200
steps for HER and MAP-UGR and 3000 steps for our approach).
An average success rate of ten tests is computed after every 2000
steps. In Figure 7, we showcase the average success rate (in %) for
all three environments. The number of subgoals was predetermined
based on a simulation conducted by varying the number of subgoals
in each environment (see Figure 1 in Supplementary Material). The
subgoal numbers for Four Room, Ant Maze, and DeepMind layouts
were 10, 10, and 16. In all environments, our approach achieves a
high success rate earlier in training compared to recent methods.
Moreover, the policy learned in our approach is stable. Our approach
produces a relatively consistent 100% success rate after learning the
policy because it is not dependant on distance estimates between two
nearby landmarks as in the other two approaches. We further test
our method and the above two approaches in reaching distant goals
of increasing difficulty in an Ant Maze environment. We manually
assign a task’s difficulty as the distance (in steps) between start and
goal locations (20, 40, 60, 80) as shown in Figure 6. The agent
start location is at the bottom-left of the layout, and goal states are
chosen randomly for each distance. In Figure 6, We plot the average
success rate to reach different difficulty levels of goals. Unlike the
HER and MAP-UGR, we observe that our method takes significantly
fewer steps to reach a high average success rate in all distant goal-
reaching tasks. In addition, the other two approaches take a long
time to reach a high success rate, and the number of steps taken
is proportional to the goal difficulty level. Moreover, the success
rate for these two approaches becomes unstable for distant goals
(i.e., 60 and 80 meters), which is not observed in our method. In
Table 1 we present the mean success rate for distant reaching goal in
comparison to MAP-UGR. We can notice that the proposed method
significantly outperforms MAP-UGR. Our method quickly learns
a goal-conditioned policy and is not sensitive to the goal distance.
Please refer to the supplementary video that showcases the important
functionality of the proposed agent with an example of distant goal-
reaching tasks in a complicated environment.

Table 1: Mean success rate for a distant goal-reaching tasks at
a distance of 20,40,60, and 80 steps using a policy trained for 1
million timesteps using MAP-UGR [Huang et al. 2019] and our
approach.

20 40 60 80
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Ours 1 0 1 0 0.835 0.163 0.307 0.305
MAP-UGR 0.985 0.034 0.907 0.138 0 0 0 0

Figure 8: Impact of two different clustering approaches on over-
all cumulative reward and episode length during training.

4.3 Ablation Study
We investigate important factors that influence our proposed ap-
proach. (1) Subgoal sampling strategies. (2) Goal-conditioned policy
with and without a high-level planner (3) Baseline (PPO) Vs. Base-
line + Grid Cells Vs. Baseline + Grid Cells + BVCs. We report
the finding for ablation study 3 in the Supplementary Material (see
Figure 2 in Supplementary Section 2 respectively).

4.3.1 Subgoal Sampling Strategies. We employ two different
subgoal sampling strategies. Specifically, we use the incremental
SR-Options method proposed in [Ramesh et al. 2019] and the in-
cremental SR-Entropy-based approach presented here. In Figure 8,
we demonstrate the merit of both approaches over three layouts. For
all three layouts, we notice a lower episode length for SR-Entropy-
based incremental learning. We also see a higher cumulative reward

8

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Successor Entropy based Subgoal Discovery for Adaptive Navigation

for two of three layouts using SR-Entropy. One probable reason why
SR-Entropy-based subgoals consistently resulted in lower episode
lengths is the location of identified subgoals (i.e., mostly at the
bottleneck states), which enabled an agent to reach a goal along a
relatively shorter path than SR-options-based subgoals.

Figure 9: Impact of the graph-based planner with and without
goal-conditioned RL agent on overall cumulative reward and
episode length during training.

4.3.2 With and Without Planner. In Figure 9, we showcase the
impact of using a high-level path-planner on the success of adaptive
path-planning via cumulative reward and episode length over training
steps. The goal-conditioned RL agent reaches higher cumulative
reward with lower episode length more quickly than using the goal-
conditioned policy alone. This is because goal-conditioned policy
can reach nearby goals but often fails and needs assistance from a
higher-level planning stage for distant goals.

5 USER STUDY
We conducted a small-scale online behavioral study to validate two
human-like adaptive path-planning properties (i.e., identifying short-
cuts and performing a detour) of the proposed model. Thirty-three
participants (29 men, 4 women, and 0 others) were recruited from
a local university (details withheld for anonymity). These partici-
pants were between 20 and 36 years of age (mean age = 26.6 and
standard deviation = 4.84). Six participants data were not uploaded
correctly and hence discarded. In total, we analyzed 27 participant’s
data for both layouts. For a detailed description of the conducted
user study, please refer to Section 4 of the Supplementary Material.
On their own computers, participants controlled a 3D virtual agent
by applying an egocentric 3D walkthrough motion using a mouse-
and-keyboard interface. After a brief training on how to navigate
with the mouse and keyboard, participants performed ten training
tasks to build a mental representation of the layouts. For each task,
participants were asked to find a stationary red balloon hidden in an
unknown location in the environment. This location was fixed across
all training and testing trials. During the testing phase, participants
were then asked to perform five additional navigation tasks. For each
of two tasks (i.e., Task 1 and Task 2), participants started from a
predefined random location and were asked to locate the hidden
balloon using the shortest path. For two other tasks (i.e., Task 3
and Task 4), one of the doors leading to the room containing the
red balloon was purposely blocked to simulate a dynamic change
to the environment. For the fifth task (i.e., Task 5), a door that had

Table 2: Comparison of average path-distances (in meters) be-
tween trajectories generated using simulated agents and human
participants on two environments (i.e., Far East Plaza (FEP)
and DeepMind layout).

FEP DeepMind
Agent Human Agent Human

Task 1 35.87 ± 15.50 30.55 ± 9.24 18.12 ± 5.63 22.49 ± 13.60
Task 2 40.53 ± 6.07 37.94 ± 12.22 31.92 ± 6.33 30.38 ± 4.79
Task 3 34.19 ± 6.05 52.16 ± 23.04 45.30 ± 19.10 39.15 ± 8.35
Task 4 30.48 ± 8.94 48.17 ± 19.27 31.37 ± 9.95 36.05 ± 24.07
Task 5 20.52 ± 11.38 30.17 ± 8.84 17.15 ± 2.93 23.55 ± 4.65

Average 32.33 ± 6.72 39.8 ± 8.99 28.79 ± 10.37 30.32 ± 6.60

Table 3: We showcase the similarity between humans and
agents of their paths that overlapped with the shortest possi-
ble paths determined by A* on two environments (i.e., Far East
Plaza (FEP) and DeepMind layout).

FEP DeepMind
Agent Human Agent Human

Task 1 41% 77% 88% 64%
Task 2 48% 38% 34% 57%
Task 3 69% 54% 84% 64%
Task 4 46% 77% 89% 50%
Task 5 89% 38% 98% 64%

Average 59% 57% 79% 60%

been blocked for the other training and testing trials was opened to
provide a novel shortcut. The order of these five testing tasks was
randomized for each participant.

For comparison with the human participants, we used an agent
with optimal SR and ARR (i.e., complete knowledge of the environ-
ment) that were pre-computed and provided during training to learn
a low-level goal-conditioned policy. We generated trajectories from
100 episodes for each of the same five testing tasks using these fully
trained optimal agents. In total, 1000 trajectories were generated for
two different environments.

5.1 Results
In Figure 1 and 10, we illustrate the trajectories generated by the
human participants and optimal agent on a replica of a real-world
building (Far East Plaza, Singapore and a simulated environment
from DeepMind dataset respectively). In general, the human partici-
pants were able to identify the shortest paths in Tasks 1 and 2 and
find the goal despite needing to detour in Tasks 3 and 4. Slightly
more than half of the participants (64.28%) were able to take the
novel shortcut in Task 5. Similarly, the agent consistently found
the shortest path and was able to detour around blocked doorways.
On average, the agent was able to find shorter path than the human
participants (see Table 2).

The longer average path-distance in humans is the result of some
participants making an incorrect turn at some decision points and
taking a longer route to the goal. This behavior is observed mainly
in the FEP layout, which is larger and more complicated than the
DeepMind layout. The difference between average path-distances
for humans and agents in the DeepMind layout was only 1.53 meters.
Moreover, we see substantial similarity between routes taken by

9

Dubey, et al.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Figure 10: Visualization of trajectories generated by optimal agent and human participants for five wayfinding tasks. Agent’s trajec-
tories are visualized in blue and human participants trajectories in red.

agents during all five testing tasks. Indeed, when the agent took an
alternate route, it was similar to alternate routes taken by the partici-
pants. Our proposed agent can thus produce human-like variation in
planning a path between an origin and destination pair. In response
to detours in Tasks 3 and 4, we notice that agents took similar paths
to reach a goal as humans. In addition, apart from a few agents, the
majority of the simulated agents successfully identified shortcuts in
Task 5, which was also observed in more than half of the human
trajectories. We also generated the shortest possible paths using A*
and compared both human and agent trajectories to these shortest
possible paths. In Table 3, we note that the agent trajectories were
closer to the A* paths than the human trajectories. In summary, our
adaptive path-planning agent that combines navigation strategies
based on vector navigation and topological graphs successfully nego-
tiated the inserted barrier on 99% of trials. These agents also found
novel shortcuts on 99.5% of trials during testing on both complex en-
vironments. Finally, a primitive goal vector navigation policy helped
the agents to travel to distant goals using an unexplored state space
while exploiting novel shortcuts in the absence of any barrier.

5.2 Discussion
One of the critical challenges in the simulation of realistic pedes-
trian behavior either during evacuation or general circulation is to
mimic the decision-making process of humans, which is marred
with uncertainty and incomplete knowledge. Classical path-planning
algorithms focus on efficiency and path-optimality, which often fails
to reproduce human-like wayfinding behavior. The major drawback
of such approaches is high computational cost and failure to ac-
knowledge the environmental uncertainty. Moreover, path planning
depends entirely on a topological/navigation graph provided as input
or computed after dense exploration. The latter will fail to produce a
comprehensive navigation graph in sparsely explored environments.
One important difference between our method and the classical path-
planning approach is identifying nodes/subgoals locations for topo-
logical navigation strategy. These subgoals are often at a bottleneck
location from which neighboring regions can be efficiently accessed.
Our behavioral study provides evidence that the subgoals generated
by our method show similarity in a location with the subgoals chosen
by human participants. Another important benefit of the proposed
method is the reproduction of human-like error in path-planning that
results in varied paths between the same origin-destination pair (see
Figure 10). We believe that the above-mentioned useful features of
our method can be used to simulate realistic pedestrian simulation,
increase the navigation believability of non-playable characters in

immersive games, and aid in landmark/signage placement during a
building design process. Finally, the present work attempts to model
human-like navigation by employing the theoretical understanding
of the cognitive map supported by neurophysiological evidence in
the realm of reinforcement learning (RL).

6 CONCLUSION & FUTURE WORKS
Motivated by the flexibility of human and animal navigation systems,
we propose SNAP that learns a goal-conditioned policy based on
grid cell decoding for vector navigation as a low-level controller
in conjunction with a high-level planner over a topological graph
formulated by abstracting the state’s space. This paper proposes
an SR-Entropy-based iterative subgoal discovery and simultaneous
goal-conditioned RL policy to solve long-horizon, sparse reward nav-
igation tasks. We showcase via multiple simulations and validation
against human data that an efficient selection of state representations
for iterative subgoal discovery can finesse the expensive sequential
state-state navigation, identify novel shortcuts, perform detours, and
adapt behavior during transition revaluations. One of the main lim-
itations of our approach is the manual tuning of edge connection
between subgoals during the formulation of the topological graph.
We use a user-defined threshold that is sensitive to environment
structure. Although our approach is efficient enough to identify bot-
tleneck states quickly, it relies heavily on state sampling to learn SR
for state embedding.

ACKNOWLEDGMENTS
The research was partially supported through funding by the Leon-
hard Obermeyer Center at the Technical University of Munich. The
research was also supported in part by NSF awards: IIS-1703883, IIS-
1955404, IIS-1955365, RETTL-2119265, and EAGER-2122119.

REFERENCES
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. 2017.
Hindsight experience replay. arXiv preprint arXiv:1707.01495 (2017).

David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful
seeding. Technical Report. Stanford.

Caswell Barry, Colin Lever, Robin Hayman, Tom Hartley, Stephen Burton, John
O’Keefe, Kate Jeffery, and Neil Burgess. 2006. The boundary vector cell model of
place cell firing and spatial memory. Reviews in the Neurosciences 17, 1-2 (2006),
71.

CS Breathnach. 1980. The hippocampus as a cognitive map. Philosophical Studies 27
(1980), 263–267.

Simon J Buecher, Christoph Holscher, and Jan Wiener. 2009. Search strategies and
their success in a virtual maze. In Proceedings of the annual meeting of the cognitive
science society, Vol. 31.

10

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Successor Entropy based Subgoal Discovery for Adaptive Navigation

Daniel Bush, Caswell Barry, and Neil Burgess. 2014. What do grid cells contribute to
place cell firing? Trends in neurosciences 37, 3 (2014), 136–145.

Daniel Bush, Caswell Barry, Daniel Manson, and Neil Burgess. 2015. Using grid cells
for navigation. Neuron 87, 3 (2015), 507–520.

Peter Dayan. 1993. Improving generalization for temporal difference learning: The
successor representation. Neural Computation 5, 4 (1993), 613–624.

Rohit K Dubey, Samuel S Sohn, Tyler Thrash, Christoph Hoelscher, and Mubbasir
Kapadia. 2019. Identifying indoor navigation landmarks using a hierarchical multi-
criteria decision framework. In Motion, Interaction and Games. 1–11.

Vegard Edvardsen. 2015. A passive mechanism for goal-directed navigation using grid
cells. In Artificial Life Conference Proceedings 13. MIT Press, 191–198.

Vegard Edvardsen. 2018. Navigating with distorted grid cells. In Artificial Life Confer-
ence Proceedings. MIT Press, 260–267.

Vegard Edvardsen, Andrej Bicanski, and Neil Burgess. 2020. Navigating with grid and
place cells in cluttered environments. Hippocampus 30, 3 (2020), 220–232.

Russell A Epstein and Lindsay K Vass. 2014. Neural systems for landmark-based
wayfinding in humans. Philosophical Transactions of the Royal Society B: Biological
Sciences 369, 1635 (2014), 20120533.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. 2019. Search on
the replay buffer: Bridging planning and reinforcement learning. arXiv preprint
arXiv:1906.05253 (2019).

Ila R Fiete, Yoram Burak, and Ted Brookings. 2008. What grid cells convey about rat
location. Journal of Neuroscience 28, 27 (2008), 6858–6871.

Samuel J Gershman. 2018. The successor representation: its computational logic and
neural substrates. Journal of Neuroscience 38, 33 (2018), 7193–7200.

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser.
2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 7052
(2005), 801–806.

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Remi Munos, and Doina
Precup. 2019. The Termination Critic. In The 22nd International Conference on
Artificial Intelligence and Statistics. PMLR, 2231–2240.

Zhiao Huang, Fangchen Liu, and Hao Su. 2019. Mapping state space using landmarks
for universal goal reaching. Advances in Neural Information Processing Systems 32
(2019), 1942–1952.

Leslie Pack Kaelbling. 1993. Hierarchical learning in stochastic domains: Preliminary
results. In Proceedings of the tenth international conference on machine learning,
Vol. 951. 167–173.

Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and Joshua B Tenenbaum.
2016. Hierarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. arXiv preprint arXiv:1604.06057 (2016).

Colin Lever, Stephen Burton, Ali Jeewajee, John O’Keefe, and Neil Burgess. 2009.
Boundary vector cells in the subiculum of the hippocampal formation. Journal of
Neuroscience 29, 31 (2009), 9771–9777.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. 2017a. A laplacian frame-
work for option discovery in reinforcement learning. In International Conference on
Machine Learning. PMLR, 2295–2304.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro,
and Murray Campbell. 2017b. Eigenoption discovery through the deep successor
representation. arXiv preprint arXiv:1710.11089 (2017).

Amy McGovern and Andrew G Barto. 2001. Automatic discovery of subgoals in
reinforcement learning using diverse density. (2001).

Bruce L McNaughton, Francesco P Battaglia, Ole Jensen, Edvard I Moser, and May-
Britt Moser. 2006. Path integration and the neural basis of the’cognitive map’.
Nature Reviews Neuroscience 7, 8 (2006), 663–678.

Ishai Menache, Shie Mannor, and Nahum Shimkin. 2002. Q-cut—dynamic discovery of
sub-goals in reinforcement learning. In European Conference on Machine Learning.
Springer, 295–306.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea
Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. 2016.
Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673
(2016).

Ida Momennejad, Evan M Russek, Jin H Cheong, Matthew M Botvinick, Nathaniel Dou-
glass Daw, and Samuel J Gershman. 2017. The successor representation in human
reinforcement learning. Nature Human Behaviour 1, 9 (2017), 680–692.

Parham Moradi, Mohammad Ebrahim Shiri, and Negin Entezari. 2010. Automatic skill
acquisition in reinforcement learning agents using connection bridge centrality. In
International Conference on Future Generation Communication and Networking.
Springer, 51–62.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-efficient
hierarchical reinforcement learning. arXiv preprint arXiv:1805.08296 (2018).

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey
Levine. 2018. Visual reinforcement learning with imagined goals. arXiv preprint
arXiv:1807.04742 (2018).

Soroush Nasiriany, Vitchyr H Pong, Steven Lin, and Sergey Levine. 2019. Planning
with goal-conditioned policies. arXiv preprint arXiv:1911.08453 (2019).

John O’Keefe and Jonathan Dostrovsky. 1971. The hippocampus as a spatial map:
Preliminary evidence from unit activity in the freely-moving rat. Brain research
(1971).

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. 2018. Temporal
difference models: Model-free deep rl for model-based control. arXiv preprint
arXiv:1802.09081 (2018).

Rahul Ramesh, Manan Tomar, and Balaraman Ravindran. 2019. Successor op-
tions: An option discovery framework for reinforcement learning. arXiv preprint
arXiv:1905.05731 (2019).

Evan M Russek, Ida Momennejad, Matthew M Botvinick, Samuel J Gershman, and
Nathaniel D Daw. 2017. Predictive representations can link model-based reinforce-
ment learning to model-free mechanisms. PLoS computational biology 13, 9 (2017),
e1005768.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. 2015. Universal value
function approximators. In International conference on machine learning. PMLR,
1312–1320.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Philip Shamash, Sarah F Olesen, Panagiota Iordanidou, Dario Campagner, Banerjee
Nabhojit, and Tiago Branco. 2020. Mice learn multi-step routes by memorizing
subgoal locations. BioRxiv (2020).

Özgür Şimşek and Andrew G Barto. 2004. Using relative novelty to identify useful
temporal abstractions in reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning. 95.

Trygve Solstad, Charlotte N Boccara, Emilio Kropff, May-Britt Moser, and Edvard I
Moser. 2008. Representation of geometric borders in the entorhinal cortex. Science
322, 5909 (2008), 1865–1868.

Trygve Solstad, Edvard I Moser, and Gaute T Einevoll. 2006. From grid cells to place
cells: a mathematical model. Hippocampus 16, 12 (2006), 1026–1031.

Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. 2017. The
hippocampus as a predictive map. Nature neuroscience 20, 11 (2017), 1643.

Federico Stella and Alessandro Treves. 2015. The self-organization of grid cells in 3D.
Elife 4 (2015), e05913.

Martin Stolle and Doina Precup. 2002. Learning options in reinforcement learning. In In-
ternational Symposium on abstraction, reformulation, and approximation. Springer,
212–223.

Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence 112, 1-2 (1999), 181–211.

Jeffrey S Taube, Robert U Muller, and James B Ranck. 1990. Head-direction cells
recorded from the postsubiculum in freely moving rats. I. Description and quantita-
tive analysis. Journal of Neuroscience 10, 2 (1990), 420–435.

Abhishek Verma and Bérénice Mettler. 2017. Human learning of unknown environments
in agile guidance tasks. arXiv preprint arXiv:1710.07757 (2017).

Chengguang Xu, Christopher Amato, and Lawson LS Wong. 2021. Hierarchical Ro-
bot Navigation in Novel Environments using Rough 2-D Maps. arXiv preprint
arXiv:2106.03665 (2021).

Lunjun Zhang, Ge Yang, and Bradly C Stadie. 2020. World Model as a Graph: Learning
Latent Landmarks for Planning. arXiv preprint arXiv:2011.12491 (2020).

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes using deep
reinforcement learning. In 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 3357–3364.

11

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Basis of Navigation
	2.2 Options Discovery in Reinforcement Learning
	2.3 Hierarchical & Planning based Navigation
	2.4 Goal-conditioned Reinforcement Learning

	3 Approach
	3.1 Preliminaries
	3.2 Nested Grid Cells for Egocentric Direction
	3.3 Low-level Controller using Goal-Conditioned Policy
	3.4 Incremental Subgoal Discovery
	3.5 Adaptive Navigation

	4 Experiment & Results
	4.1 Environments, Baselines, and Evaluation Metrics
	4.2 Simulation Results
	4.3 Ablation Study

	5 User Study
	5.1 Results
	5.2 Discussion

	6 Conclusion & Future works
	Acknowledgments
	References

