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RELIABILITY OF PARALLEL SYSTEMS
UNDER IMPOSED UNIFORM STRAIN

By M. Hohenbichler’ and K. Rackwitz!

ABSTRACT: An imposed strain a

pproach is used for the reliability analysis of
brittle paralle] systems with arbi

trary stress-strain behavior of its components,
It leads to a formal description of the failure event as a parallel system. The
failure probability of the strongest component overestimates the system failure
probability, so that the consideration of the other components can be recom-
mended for which first-order reliability techniques supply an efficient tool. Nu-
merical comparisons with certain special exact results show that the correlation
structure is taken fairly well into account by this first-order method. Essential
E%qua._m_.;m result from better estimates of the component reliability. This
induces the definition of so called equivalent components, which might also be
useful for the evaluation of more general systems. The accuracy of the method
appears sufficient for many engineering applications.

INTRODUCTION

Very few analytical or numerical results are available for the reliability
of redundant structural systems, although the majority of structural (sub)
systems belong to this type of system. Moreover, the well-known bounds
on system reliability respectively failure probability (2 or 4), i.e., the min-
imum of componential failure probabilities as an upper bound and their
product as a lower bound, become too wide to be of any practical use.
In addition, any, even very moderate, dependence between cotnponen-
tial failures can have significant influence on the result (19). Only re-
cently, certain numerical techniques based on so-called first-order reli-
ability concepts have been proposed for the treatment of general systems
(M. Hohenbichler, “Approximate Evaluation of the Multivariate Normal
Distribution Function,” (submitted for publication) and Hohenbichler,
M., and Rackwitz, R., “First-Order Concepts in System Reliability,” (to
be published in “‘Structural Safety”’)) which are the result of a sequence
of various earlier investigations (11,14,20,21). In this paper, a new method
is developed and applied to an elementary structural system for which
an exact result is available under certain idealizing assumptions,

In fact, apart from the well-known solutions for redundant systems
whose components behave perfectly ductile and, thus, the determina-
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ion of system strength results in summing up (or integrating) compo-
”M”mm_ mw.mbmz.. <m_:mw_4€§._ predetermined weights (which is a standard
operation in probability theory with nice asymptotic properties), the only
known alternative solution is for systems with perfectly brittle, equi-de-
formable components with an equal sharing of the applied load among
unbroken components. As early as 1945 this second result was derived
by Daniels (6), under the additional assumption that componential
strengths are independent and identically distributed. Unfortunately, his
formula is less feasible numerically for larger systems, but a better al-
gorithm has been proposed by McCartney and Smith (16). Perhaps Eo_..m
importantly, Daniels found an asymptotic result which states that i
lim,.e x[1 — F(x)] = 0, in which F(x) = the left continuous n._mga:cos
function of elemental strength, X, then the &macﬁson— function of sys-
tem strength, R, = R(X;, ..., X,), tends, SE; .ﬂrm.bngw.ﬁb n, of com-
ponents approaching infinity, to the normal distribution with mean nxo([1
—~ F(xp)] and variance x3nF{x)[1 — F(x)], in which x, = the unique
i x[1 — F(x)] = max. )

moﬁﬂ.ﬂﬂ” Nmn H_H.mi wmnmw% Daniels’ relatively restrictive assumptions have
been relaxed by various authors, all of them aiming at similar asymp-
totes. For example, Sen (23) and the writers va. assumed different qmm
of stochastic dependencies between componential strength values, w M
Phoenix and Taylor (18) kept the independence assumption but adopte
relatively general stress-strain behavior [see also Kersken-Bradley (15)).
Harlow and Phoenix introduced local _omn_-mw.:_u:m laws Govmm:m Phoe-
nix found an asymptotic distribution for the time of system failure under
fatigue loading (17). Nevertheless, convergence of these asymptotic re-
sults is extremely slow. Better asymptotes have only been found for the
original ideal assumptions by Daniels (5) and Barbour (). 2

An essential prerequisite to a numerically feasible method for gener
structural system reliability will be the imposed deformation approach
already used in Refs. 15 and 18 and generalized further by B. Peintinger
and R. Rackwitz (“Structural System Reliability—An ngwmw Defor-
mation Approach,” (to be published in “Structural Kmnrmz_nm ww

In the following, the reliability problem of a :Um.Em_w system” is for-
mulated under slightly more general conditions. It is then solved by the
aforementioned first-order reliability technique. The approximate results
will be compared with exact ones. Also, a general formulation for Dan-
iels’ systems with rather arbitrary mechanical and stochastic assump-
tions will be derived. o

The primary purpose of this paper is to demonstrate the feasibility and
the accuracy of the first-order approach to parallel structural systems in
connection with the concept of imposed deformations rather than to
analyze in detail the special Daniels system, although some new results

resented. . .

mnwnﬂucmmn Strain Approach for Brittle Material. —A “Daniels system
consists of n components of unit area in a parallel arrangement such that
all components suffer the same value of “imposed strain,” e (Fig. 1).
The applied load is denoted by L, and, without loss of generality, it is
assumed constant throughout the paper. Assume further the compo-
nential stress-strain behavior is perfectly elastic-brittle (compare Fig. 2)
so that the stress, S;, in the ith component becomes
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FIG. 1.~Danlels’ Parallel System
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in which X; = the random strength of the ith component; and Y; = the
noqmmvwﬁn_.s.m random ultimate strain. This is slightly more general than
Daniels’ original assumption of a constant ratio, e = X,/Y;, for all com-

; ponents and which is recovered as a special case in Eq. 1, implying fuil
m.”om_ammun dependence between X; and Y;. Obviously, the system ca-
pacity at any given deformation € is the sum

Ru€e) =ZSi(e) o oovveivnnnnannenn.n ey crrenaen. (2)

over all ?.u.&norm:v components, and system strength is the maximum
of R, (¢} with respect to the deformation parameter, e:

R, = max {Z5;(e)} .........
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FIG. 2—Elastic-Brittle Stress-Straln Diagrams for Components and for System
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The failure probability of the system under load L simply is

el el

P=PR,sL)= P{max [ES;(e)] =L} = _u—y N{Z5(e) - L= 2._

Mﬁwiﬂwmn?vlhmsw ......... TP OUPPPUPPPPIN ()
L
in which the last inequality simply derives from the well-known prob-
ability inequality for the intersection of events, i.e., P{N.A,) = min, {P (At
From Fig. 2 it is clear that one needs to investigate the system only
at deformations at which one component attains its maximum strain.
Ordering the Y;'s in ascending order yields their order statistics Y1 £ Y,
< ... =Y,. Therefore, £q. 2 can be rewritten as

w_;mu,,ﬂnMw_.EnM&n.m. ......... TP )

i=k i=k
with the X/s and /s corresponding to the Y/s. Equation 3 becomes

v (& K
?u?@Mﬁ&:. ................... e ()

k=1 L=k i

and specializes under Daniels’ original assumptions with a constante =
uﬁ_.\w\_. = %u.\.ﬁh. to |

wauaamxﬁ %L = B__mx ”M M@h nnwamﬂxzzl._n+ 1) ). €% S . |
i=k .

k=1 k=1 ink

Since for any fixed kitis R, = (n — k + 1) X, we have similar to Eq. 4.
ﬂnw? {n—-k+ DX~ rmi ,m.B.“.iE? —k+ DX -L=0}} @)}
it

Note that a lower bound P(N;Ai) = M. P(A,) can also be given which, |
however, is of little interest. Equation 8 allows some interesting inter- °
pretations. Obviously, the second term defines the probability of failure
of a parallel system with a finite number, n, of components. By defi-
nition, a paraliel system fails if all of its “components” fail, whose failure
events are described by the conditions in the { }-brackets. Note here that
the notion of a component is used in an abstract mathematical sense.
The last term is nothing else than the failure probability of the “strongest
component” and, thus, represents the weli-known upper probability
bound for redundant systems.

Application of First-Order Reliability Techniques.—Using Egs. 6 yields,
in analogy with Egs. 4 ,

yu_u_ﬁ..ms.nAiMﬁm._.uhmé.................._.‘.;..:_ @
v et Y , :

which with obvious abbreviations can be written as

ﬁuw@ﬁ;«uémsv.........:.. ..... s e (10)

in which X = (%,..,%)and ¥ = (Y1,..., Ya) .= the vectors collecting
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. the uncertain variables; and 8($.%) = 0 the failure surface for the kth

component separating the failure domain (g, = 0} from the safe domain
{8 > O}. Let a probability distribution transformation, T, exist such that

X% =TW) = [T:(U),..., T2 ....... R § )}

in which U = an independent standard normal vector (12). Then, ac-
cording to the first-order reliability method, it is

Py = %ﬁoﬁ.ﬁ,nﬁ»u = oL..

..... LI IR R,

=P Tu {8[T1(U),..., Tu(U)] = i = w_“o {$U) = oL,.

lw—y_.wiis s cL = wﬁﬂ.?:c s SY =¢.(~B:R)......... (12)
in which li(u) = 0 is the linearization of &c(u) = 0 at the most likely
failure point with distance (safety index), B;, to the coordinate origin
and vector of direction cosines, a;; g = B1,...,B)" = the vector or safety
indices for the components; R = {py} with p; = afe, is the correlation
matrix describing the dependence between the components; and ¢,(-)
= the n-dimensional normal integral [see Hohenbichler and Rackwitz
(“First-Order Concepts in System Reliability”’) for further details and the
first-order technique to evaluate ®,(*)]. Thus, evaluation of Eq. 9 has
been reduced to a standard case in first-order reliability. It will be shown
later that this can be done under far more general mechanical and sto-
chastic assumptions. While the determination of B and the correspond-
ing matrix of o’s is a standard procedure in first-order reliability, the
transformation T in Eq. 11 requires some thoughts.

Following the lines suggested in Ref. 12, an appropriate set of (con-
itional) cumulative distribution functions for the Y,’s must be deter-

mined. For the first breaking element, the distribution function of ¥, =
BE#*T.......K_H_.MM .

5.:&72&@%7 0 2 177 ) (13)
Here, Fy = the distribution function of the Y/'s (prior to their ordering).

Given Y, = %, all the other Y/s are greater or equal than #;. The dis- -

ﬂvzngommsnrmﬂ. wudmﬁw_n.m?gmummonm.mmmﬁ original distribution

truncated from below at ), : ]

Ey(y) — Fe(i)
1= Fe($h)

Thus, given ¥, = ¢, ¥, = the minimum of 5 ~ 1 variables with distri-

_u:mozmmmmmmbnnmbmﬂ_.z\wznmﬁ analogy to Eq. 13, its conditional
distribution function is (for 9, = ¢,) .

PYi<ylv,zg) =

M R T T T

ceens (18)

) _ -1
Hoa(fa9) = P(, < g%y = g1y =1 T - 28 ww_%_; .. 15

In general, given (Y, = ey Yig = $i~1), the variable Y, is the mini-
mum of # — i + 1 variables truncated at Bin1:

800
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I?Q__%u R ..%T_v = Huﬁvh < %__.m.\_ = P Y %\T_ = %T_w._..i
E_ o 16)
1~ Fy(fi-1)
From Egs. 13 and 16 the transformation of the Y/s is easily derived by
setting . .
HeVi¥, . Y =®U) (=1 .cmereirinieiiinnnnnnnna.. (17)

in which ®{u) = the standard normal distribution function. Solving these
equations recursively yields

Y, = E_T -11 E.u:;_:,.._.:w ....................... e (18)

=1

=P(Y,<plYis =) =1~ T -

which is the required representation of the Y; by independent standard
=oﬂnﬁm~mﬂﬂwwmﬂmmw_mm much easier. Since different components are
statistically independent, the conditional distribution of X; m:_w:
(Yi,....Ys, %10.. ..N_...L depends only on Y; and :oﬁ.n.:._ any .oﬁmu ele-
ment, Consequently, with Fx(-|y) denoting the conditional nm..mﬁwcﬂww
function of X; given Y; = y, the required transformation of the X/'s resuits

from solving the equations .

Fx(X{Y) = ®(U,+) S RITTTIIPRIS e (19)
with respect to X;:
X =FR U, )Y ...... S e .. (20)

- . . inction of ...
Further, by substituting Eq. 18 into Eq. 20, X, is a function oj
U, Ued)s w_._ more generally, of U = (U, ..., ). Now, all of the un-

certain variables Y;, X; are represented as functions of the standard nor-

mal independent vector U = (U,,..., W)
Yi=TiU), Ri=Tpi(U)evvrvevrinnn... A oo 21)

to be used in Eq. 10. o
For example, let (X, Y) be jointly normally distributed:

- p .
?@uﬂsmSneAqqﬂv.:.... ........................ .. (224)
Rl_rxln.clt.w .
Fy(xly) = @§ —=X LA e (22b)

V1-p?

Equations 18 and 20 read in this case
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M_mxm further that the upper bound corresponding to the last part of Eq.
s , .

SM _n AOAIP&.:.:.. ...
Ifp= R.N:SH =1 and pux = py., ox = oy, Daniels’ original assumptions
are regained. Therefore, in Fig. 3 we shall first compare the first-order
solution as given earlier with the exact solution according to Daniels. (X;
=Y, are modelled as normal variables withp = 1, p = 1, and ¢ = 0.2),
In addition, the improved asymptotes of Daniels and Barbour are drawn
in. .
It is recognized that the improvement achieved by considering more
Em.ﬁ only the strongest component is substantial, but the first-order so-
lution for the strongest component is conservatively in error by a non-
negligible amount and, presumably, the same argument applies for all
other components. One might conclude that the first-order method is
already inadequate for the componential probabilities and, of course, even
more 50 for parallel systems since errors in the componential probabil-
ities somehow multiply and, therefore, system probability estimates are
in error by an amount which grows rapidly with system size. A more
detailed analysis (not presented herein) shows that the failure surfaces,
{$:(u) = 0)}, obtained after transforming the original variables into stan-
dard normal variables, deviate significantly, in fact, from plane surfaces
required for the first-order method to be exact. .
However, various techniques exist to improve componential failure
probabilities (3, 8, and 9). Such improved estimates can be used with
advantage in the framework of the concept of equivalent components,
apparently put forward first in Ref. 22, and which is related to the “gen-
mn%m&: safety index as defined by Ditlevsen (7). In particular, an
equivalent component in the context of first-order reliability is defined

B < -#R]

—— DANIELS' ASYMPTOTE
—— EXACT RESULT

~meme UPPER BOUND EQ. 24

~——— APPROX, EQ. 12

...... UPPER BOUND EQS. 8 AND 9
—— IMPROVED ASYMPTOTES

FG. 3.~Comparison of Varlous Approximations and Asymptotes
902

as a component having a linear failure surface which cuts off the same
failure probability as the original, generally non-linear failure surface and
carries over as many stochastic characteristics of the original problem as
possible, Beyond the same failure probability, the equivalent plane should
at least have the same sensitivity against changes in one of the basic
uncertainty variables, i.e., should have the same vector of direction cos-
ines. In other words, the equivalent hyperplane is defined by the
“equivalent” safety index

Bes = — 0 P@GUISO)] -..... VTR e .. (25)

in which a(u) = 0 is the original failure surface, gi(u) = 0, or an ap-
proximation to it; and P(-) = the corresponding “failure probability”
and, by the vector of direction cosines, &, of the original failure point.
The system failure probability now becomes in accordance with Eq. 12

Py~ @y (—Be; R) S min @(—Bea) +oovoeveo e e veeens (26)

In Daniels’ special case (X/Y = e = constant), P{a,(U) = 0) can be
given exactly by applying Eq. 9. If this concept is used together with
the foregoing results, excellent agreement is reached with the exact re-
sults as indicated in Fig. 4. For system sizes n = 20 and n = 50, the exact
system failure probability, Py [respectively its safety index B = ~®7" (P;)]
under load L is compared with the just proposed approximation, Eq. 26,
with Daniels’ asymptote and the upper bound Eq. 26 (which equals here
the bound Egs. 8 plus 9).

Daniels’ System with Arbitrary Brittle Material.—While the exact so-
lution and the improved asymptote are restricted to Daniels’ original
assumptions, the same first-order concept also applies, if the parallel
elements are no longer perfectly elastic brittle. Let, in general, the stress-
strain relationship, S;(e) = S(¢, ©)), of the ith component depend on an
uncertain parameter vector, 8; = (Y:,...), containing the ultimate ele-
ment strain, Y;, and other parameters like yield stress and arbitrary shape
parameters. Brittleness implies

A= -IR)

a.65 107

—— DANIELS' ASYMPTOTE
—— EXACT RESULT

FiG. 4 —Example of Eq. 27 for Perfoctly Elastic-Brittle Material
903
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Furthermore, let S(¢, 0,) be nondecreasing for 0 = € = ¥,. Then, in anal-
ogy with Eqs. 3 and 7, system strength is 4
) .

?umﬁme?oaua&MmQro..v.: ......... ereereeeees (28)

(=1 lakan 1y

and after reordering the elements with respect to their ultimate strains,
Y =... =2 Y,, one obtains (compare Eq. 6)

w,nﬁﬂ_*m mR.o..vaﬁ WM ms?mi ......... crrennes. (29)
and P;=P(R, <L) umq_,._ ﬁM 5(Y:,6) - L's QZ

- =k
M_ws_w.TﬁmerS;nMc: ......... e )

Some details are shown in the next example.

Example: “Imperfect Loading.”—In addition to the assumptions un-
derlying Eq. 1, let the elements exhibit uncertain slack caused by im-
perfect anchorage (threads in a bundle) or by unavoidable tolerances
(screwed joints). Denoting O} = (Y?,X?) as the intrinsic material pa-
rameters, and 5* (e, 0*) the “material” stress-strain law, the effective stress-
strain law, including slack I';, becomes

0 for 0=e<T;
m sa_.ula ! it rasaesass ...,..... .......
(.6 ﬁm;? -1;,0f) for =T, 1)

In particular, the effective ultimate element strain is Y=Y+ T;, and
with ©; = (Y;,X},T) and the material law, Eq. 1, one obtains

0 for 0=e<T,

Xt .
mﬁmxa_.v = Am - H..U Y - T for ”—J_. <E< .Km .......... tasaereanan ﬁwwv
0 for e¢> H\h.

which is an extremely nonlinear, brittle stress-strain law. Assume fur-
ther that the material parameters (Y}, X?¥) are binormally distributed with
mean values, p}, pk, standard deviations, ¥, 0%, and correlation coef-
ficient, p*. The slack variable, I}, is independent of (Y}, X?) and nor-
mally distributed (uy, o). Consequently, O, = (Y;, X7, ﬂ@ follows a tri-
normal distribution with py = 4 + pr, 0} = (0})? + of, and correla-
tions p2 = p[Y;,X?] = p*o¥/oy, pn = p[Y:. T}] = or/oy, P = pl X7 .1}
= 0. The distribution function of Y and the conditional distribution func-
tion of X* given Y, therefore equal Egs. 22 (with p=ppand py =
wk ox = o%, but py, oy as defined earlier), while the conditional distribution
function of T given Y = y and X* = x is

YThr YTy X uk

or Ty oy
.. -t ‘ n

Frivly,x) = @

904

Consequently, Eqs. 23 describe the transformation of Y; and X%. The
transformation of [, derives from

Fr(C)Y, XN = Uaes) cooneves v eeearaaeeaes cervirineeenn.. {35)
and resuits in

*

- - M—q-t »*
Y; t.%+@ X L
Oy Tx

fi=pr +op _anu..: +a

Substituting Eqgs. 23, 36, and 32 into Eq. 30, yields (with obvious abbre-
viations) the formulation

:

Snwﬁﬁiw:&vlﬁmem Ewﬂﬁuﬁw;cvlhMo:............. ..Gd
k=1 I15kdEin

which is evaluated with the proposed technique. )

A numerical example has been performed for system sizes n = 20, 50,
and for p¥=p} =1, pr = 0.5, p = p[X?.,Y!] = 0.5 and 0} = ok = or
= (.2. Firstly, the “equivalent” safety indices, Bgx, were m<m_=.m3a E.E-
first-order methods, but a special transformation technique, which avoids
first-order errors due to Eq. 18, makes explicit use of Eq. 9. However,
these transformations differ for different k’s and do not allow for the
determination of correlation-coefficients between modes. Details are not
considered here. The mode correlations were determined as proposed
earlier. Figure 5 compares, for various loads, L, the results for the safety

a= |9-4_n".\
5.96 ast
i

fe-t1R
77 | 288 BL

L i "

-1

. -1

—— ASYMPTOTE (PHOENIX/ TAYLOR)
~—— STRONGEST MODE (SIMULATION)
..... ~ STRONGEST MODE (EQ. 26)

—— SEE TEXT :
—— SYSTEM (SIMULATION)
—— SYSTEM (EQ. 26)

FIG. 5—Example ot Eq. 27 for Material with Uncertain Slack
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index B = ~&71(P)), of the strongest mode Bex; second part of Eq. 3
‘and of the system (first part of mM. 37 nmmm_mm%m” , Eq. nwv with %_m qw
sults o.m a simulation (about 100,000/150,000 runs) and the asymptote of
Phoenix and Taylor (18). It is observed that the approximation, Eq. 26,
15 more In error than in Fig. 4. For the most part, this error is due to
the stili existing first-order error in the determination of the equivalent
modal safety indices, Bg;. If in the approximation, Eq. 26, B¢ is deter-
mined via the same simulation, the results are considerably improved
{dotted line), indicating that dependencies between the modes are prop-
erly taken into account,

CoNCLUSIONS

The writers dare to draw some relatively general conclusions on the

basis of the results just obtained. They are believed to appl also to 1
idealized structural systems: y PPy 0 less

1. The failure probability of the “strongest” component in a redun-
dant system usually overestimates drastically the system failure proba-
bility. Similarly, lower bounds are of little use for structural systems.

2. Therefore, the consideration of the contribution of the other com-
ponents is mandatory. Here, an efficient tool is available in the form of
the first-order system reliability approach as expressed by Eq. 12.

_3. An exact calculation of componential failure probabilities is essen-
tial. First-order estimates may be insufficient. Higher-order estimates are
required,

- 4. Then, the use of the equivalent component concept may yield fairly
accurate probability estimates. The numerical comparisons imply that the
correlation structure of the components is taken into account fairly well
by those equivalent components.

5. The numerical accuracy of formulation Eq. 12, in conjunction with
the equivalent component technique, appears sufficient for many engi-
neering applications. _

6. The concept of imposed deformations is particularly fruitful, as
proven by the examples, but may have much wider applicability.

7. Applications of the foregoing approach which is limited to meth-
odological questions for certain practical problems, e.g., the strength of
a bundle of threads (parallel wire cables), connections with shrews, nut
or dowels, the stability of embankment slopes with “almost brittle” shear

mga%ro*gmmom.uswmnﬁznm_ buckling problems, etc., are straight-
forward.
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