
Inverse reinforcement learning for dexterous hand manipulation

Jedrzej Orbik1, Alejandro Agostini1,2 and Dongheui Lee1,3

1 Department of Electrical and Computer Engineering
Technical University of Munich, 80333 Munich, Germany

2 Department of Computer Science
University of Innsbruck, 6020 Innsbruck, Austria

3 Institute of Robotics and Mechatronics
German Aerospace Center (DLR), 82234 Wessling, Germany

Abstract—The success of deep reinforcement learning ap-
proaches to learn dexterous manipulation skills strongly hinges
on the rewards assigned to actions during task execution. The
usual approach is to handcraft the reward function but due to the
high complexity of dexterous manipulations the reward definition
demands large engineering effort for each particular task. To
avoid this burden, we use an inverse reinforcement learning
(IRL) approach to automatically learn the reward function using
samples obtained from demonstrations of desired behaviours.
We have identified that the learned rewards using existing IRL
approaches are strongly biased towards demonstrated actions
due to the scarcity of samples in the vast state-action space of
dexterous manipulation applications. This significantly hinders
performance due to unreliable reward estimations in regions
unexplored during demonstration. We use statistical tools for
random sample generation and reward normalization to reduce
this bias. We show that this approach improves learning stability
and transferability of IRL for dexterous manipulation tasks.
Project page: https://sites.google.com/view/irl-for-dexterous-hand

Index Terms—inverse reinforcement learning, learning from
demonstrations, robot skills prototyping, dexterous robotic hand

I. INTRODUCTION

Many robotic applications for manipulation tasks comprise
simple end-effectors with a single degree of freedom [1].
This is sufficient for many repetitive industrial tasks such as
painting, welding, or assembling, but it limits its applicability
in human scenarios where more dexterous manipulation skills
are required. Dexterous robotic hands are specially suitable
for such scenarios since they permit blending robots into
human-centric environments created with ergonomics in mind.
Dexterous manipulation does not come without a cost. Because
of the high number of degrees of freedom, the control is a
demanding task that limits its robotics use. State-of-the-art
(SoA) deep reinforcement learning (DRL) algorithms hold
promise of autonomous learning with minimal human inter-
action in high-dimensional domains. However, they require
many training samples which may not be feasible to collect
only from the hardware. Such data can be also obtained from
physically realistic simulators to learn control policies that are
lately transferred to real scenarios with additional engineer-
ing effort [2]. Because of the complexity of the dexterous
hands, the specification of an adequate reward function is
another challenge faced by these approaches. Rewards should
be carefully crafted for each particular task to achieve a

reasonable learning performance but at the expense of limited
transferability to new tasks. To overcome this limitation,
we use an inverse reinforcement learning (IRL) approach to
automatically learn the reward function from demonstrated
behaviours for each particular task. We have identified that the
sample efficiency of current IRL approaches is not sufficient
to deal with the scarcity of demonstrated samples in the exten-
sive state-action space of dexterous manipulation applications.
As a consequence, the learned rewards are strongly biased
towards demonstrated actions, which deteriorates the overall
performance of the system. We borrow tools from statistics
and computer vision to mitigate this bias with a three-fold
contribution. First, we introduce a random sample generation
that improves the robustness of the reward function, exploring
regions different from the visited ones during demonstration.
Second, we propose a reward normalization that limits the
variance of the reward, producing faster and more stable con-
vergence. Third, we propose a reward function dimensionality
reduction based on feature selection that improves the sample
efficiency. Comparing to the state-of-the-art IRL approach by
Fu et al. [3] these improvements are vital for prototyping of
human skills on the real-world robots.

II. RELATED WORKS

Autonomous learning of dexterous manipulation has been
a subject to a variety of work. Deep reinforcement learning
(DRL) approaches based on policy gradients have received
a special attention thanks to their capability of dealing with
high-dimensional problems using well-established algorithms.
Popov et al. [5] have proposed an extension to Deep Deter-
ministic Policy Gradient algorithm to learn the dexterous ma-
nipulation from multiple simple dexterous hands performing
the task in parallel and, thus, improving the learning speed.
Rajeswaran et al. [4] proposed the Demo Augmented Policy
Gradients (DAPG), which is a model-free deep reinforcement
learning approach that uses human demonstrations to cope
with the exploration difficulties in high dimensional state-
action spaces. To assess the performance, they use the MuJuCo
simulator [6], which provide physically realistic simulations
of dexterous hand in a variety of configurable tasks. Open AI
[2] has also used the MuJuCo simulator for learning dexterous
object manipulation with Proximal Policy Optimization (PPO)
algorithm. This approach has been extended in a later work

https://sites.google.com/view/irl-for-dexterous-hand


Fig. 1. Dexterous hand manipulation evaluation tasks: object relocation (blue sphere has to be relocated to target green position), tool usage (the hammer
is used to place the nail in the board), in-hand manipulation (the pen (blue) is to be rotated to the target orientation presented with the green pen) and door
opening [4].

[7], where the automatic domain randomization has been
introduced. Other works have focused on learning approaches
that provide an alternative to the computationally intensive
policy gradient algorithms. Kumar et al. [8] train a set of
policies in data-driven manner using the nearest neighbor
method for policy selection during evaluation. The work by
Falco et al. [9], on the other hand, combines reactive control on
the tactile sensor and RL with vision input to learn dexterous
hand manipulation. Gupta et al. [10] propose a method that
exploits the benefit of human demonstrations to guide the
search of optimal policy, avoiding the need of an exhaustive
exploration of possibly task-irrelevant regions of the state-
action space.

The work on DRL application for dexterous hand manip-
ulation [4] allows the efficient learning, but the real world
application is limited by the necessity of the reward function
engineering. This may lead to unwanted actor behavior [11]
and the manipulation of the environment may even result
in highly undesirable reward tampering [12]. This limitation
can be tackled by automatically learning the reward function
with an inverse reinforcement learning (IRL) approach. A
generative adversarial networks (GAN) setting [13] has been
proposed by Finn et al. [14] in trajectory-centric approach. An
extension to their work was adversarial inverse reinforcement
learning (AIRL) by Fu et al. [3], with specific form of
discriminator, which disentangles the reward function from the
task dynamics. Ho et al. [15] have proposed the generative
adversarial imitation learning (GAIL), which directly uses
binary classifier as the discriminator for the imitation learning
algorithm. This form does not have explicit reward function
representation, so it does not give any insight into the task,
but the approach can be used to learn the target policy from
the demonstrations.

We show that the high variability of the reward values
during learning combined with the high dimensionality of
the state-action space hinder performance and transferabil-
ity of current IRL approaches. The learned reward values
are only reliable in regions of the state space close to the
visited ones during demonstration. In regions far away from
samples, the performance greatly deteriorates due to the bias
of the reward towards demonstrated actions. This is expected
since learning dexterous manipulation requires several high-

complexity samples to properly cover the vast state-action
space, a requirement difficult to fulfill using only samples
obtained from demonstrations. To attack this problem, we
borrow tools from computer vision and statistics. The statis-
tical bias is reduced by adding random samples drawn from
the probabilistic policy. This strategy is complemented with a
reward normalization that diminishes its variance, increasing
learning stability. Finally, task-irrelevant variables are masked
to reduce the size of the state space. In spite of their simplicity,
these tools have never been used to tackle the low sample
efficiency of IRL methods for dexterous hand manipulation.
As demonstrated by the results, our approach not only permits
a significant improvement in the performance but also a better
transferability across different challenging tasks.

In the next sections we present the theoretical background
of IRL (Sec. III) and of our contributions to IRL for dexterous
hand manipulation (Sec. IV). The experimental validation of
these contributions is done in Sec. V. The paper ends with
some discussions (Sec. VI) and conclusions (Sec. VII).

III. INVERSE REINFORCEMENT LEARNING

Inverse reinforcement learning, called also Inverse Optimal
Control or Apprenticeship Learning, holds the promise of
inferring the reward function r(st, at) from the expert demon-
strations given the samples of the expected optimal or near
optimal policy πE (expert policy). The problem to solve is
defined as a finite Markov Decision Process (MDP), which
is specified by a set S of Markov states s and a set A of
actions a in time step t, the reward function r(st, at), transition
probability p(st+1|st, at) and discount factor γ ∈ (0, 1) [16].
The objective of reinforcement learning is the optimization
of the policy πθ ∼ p(at|st) defined by the parameters θ to
find the optimal one π∗θ, which maximizes the value function
Vπθ

(st) for all the states:

π∗θ = argmax
θ

Vπθ
(st) ∀st ∈ S, (1)

Vπθ
(st) = Eπθ

[
r(st) +

T∑
n=t

γn−tr(sn, an)

]
. (2)

State-action value function is denoted as Q(st, at) =

r(st, at)+Eπθ

[∑T
n=t γ

n−tr(sn, an)
]

and advantage function
is A(st, at) = Q(st, at)− V (st).



State-of-the-art IRL is implemented in the form of Genera-
tive Adversarial Networks (GAN) [13], which consists of two
models: generator G and discriminator D competing against
each other. The discriminator’s aim is to distinguish between
the samples from the target distribution (expert demonstrations
samples) and the samples from generator (samples generated
by the learned policy). The generator is trying to maximize the
probability of discriminator to make a mistake, which would
take place when the discriminator cannot distinguish between
samples generated by the policy and the expert. This two-
player contest seeks the saddle point of the expression:

min
D

max
G

Ex∼πE
[log(D(x))] + Ex∼πθ

[log(1−D(x)]. (3)

Finn et al. [14] have proposed a special form of the discrimi-
nator:

Dψ(τ) =
exp (fψ(τ))

exp(fψ(τ)) + πθ(a|s)
, (4)

in the trajectory τ centric formulation to learn the reward
function in inverse reinforcement learning setup. The later
work on IRL by Fu et al. [3] proposes a state- and action-
centric formulation fψ(st, at) that is better suited for practical
deep reinforcement learning application. However, despite this
latter improvements, all the aforementioned IRL contributions
still suffer from a low sample efficiency and lack of robustness
of the reward function in high-dimensional domains. That
is particularly visible in the complex dexterous manipulation
tasks. In this work, we extend the IRL framework by Fu
et al. [3] to address these problems. We propose the nor-
malization of the reward function r(st, at), the addition of
random samples in the learning process, as samples from
generator’s distribution πθ to allow better generalization, and a
dimensionality reduction of the input space based on relevant
feature selections.

IV. IRL FOR DEXTEROUS HAND MANIPULATION

This section presents the theoretical background of our con-
tributions to tackle the limitations of current IRL applications
in dexterous manipulation application. As a baseline DRL
algorithm, we use the augmented policy gradient introduced
by Rajeswaran et al. [4].

A. Reward normalization

Classically in reinforcement learning, the rewards are as-
sumed to be stationary. This is especially important in the
actor-critic setup, where the variance of the gradient is min-
imized with fitted advantage function A(st, at) used as a
critic [17]. In IRL, however, the non-stationarity of the reward
function influences the accuracy of the advantage function
estimates and increases the gradient variance. Therefore, in
order to limit the magnitude of the advantage function and
to control the gradient variance during training, we apply a
reward normalization. This normalization stabilizes the learn-
ing of the reward function by reducing the variability of the
mean and standard deviation of the reward. The importance
of normalization of target functions has been studied in the
past for Temporal Difference methods [18]. It has lead to

simplification of the hyperparameters search and has improved
the learning stability. We follow the work by van Hasselt et
al. [18] and apply their proposed value target normalization to
normalize the rewards according to the formula:

rnorm(s, a) =
r(s, a)− µt

σt
, (5)

where

µt =
1

N

N∑
i

r(s, a)(i),

σ2
t =

1

N

N∑
i

(
r(s, a)(i) − µt

)2
,

(6)

at iteration step t for N observations. These formulas can be
adapted to the incremental case by the introduction of the step
size β ∈ [0, 1]:

µt = (1− β)µt−1 + βr(s, a),

νt = (1− β)νt−1 + βr(s, a)2,
(7)

with νt being the second moment. The estimated standard
deviation equals σ2

t = νt − µ2
t . This yields an exponential

moving average that puts more weight on the recent data points
as β step size is constant. The initial values of µ0 and σ0 are
arbitrarily set to 0 and 1 respectively.

B. Feature subspace selection

The generative adversarial networks introduced before seek
to solve the problem by mining the generated examples of
actor states. But, because of large input space, it is still
vulnerable to exploitation if the query from previously unseen
input space is provided after training. The lack of robustness
of the neural network models due to large input space has been
described in previous works, e.g. in computer vision. There,
classification models were evaluated as vulnerable both to
the synthesized adversarial examples [19] and to the physical
world examples after seemingly negligible input variations
[20], [21]. The vulnerability of the learned policies in multi-
agent environments in reinforcement learning has been de-
scribed by Gleave et al. [22]. They show how the masking
of the observation to the agent-specific features mitigates
this effect. After our initial experiments, we have recognized
the relevance of the masking also in IRL. The problem of
lack of coverage of the input space of the reward function
approximator can be seen as an example of adversarial attack
on the artificial neural network representing the policy. Here,
we follow the view of adversarial examples in work by
Goodfellow et al. [23] as ”inputs to machine learning models
that an attacker has intentionally designed to cause the model
to make a mistake”. In our case, the mistake provides high
rewards in state and action pairs r(s, a), which does not
comply with the expected behavior. This may easily happen
if a policy produces the observations in regions that were
not explored during reward function training. We propose a
simple solution to this problem by masking the input space
of the reward function model to the dimensions relevant for



the task. As introduced in the Sec. III we can see the IRL in
the GAN setup as the two player contest. By application of
the masking, similarly as in work in the multi-agent direct
RL setup described by Gleave et al. [22], we impede the
manipulation of the observations of the other player by the
agent and hinder the exploitation of its deficiencies. The agent,
in turn, has to keep the access to the whole observation because
it is not conditioned on the previous experience in the episode
it would not be able to retrieve its state. This enables the agent
to retain the optimal policy in the IRL setup.

Using a subspace of task-specific features as the input for
the discriminator is enough to produce a meaningful learning
signal, resulting in a more robust reward function obtained
with fewer training samples. Reduction of spurious state
features also reduces amount of the idiosyncrasies of the task,
which could be used by discriminator to easily distinguish
between the generated samples and the demonstrations that
has inferior effect on the training signal. We evaluate different
choices of the reward function input masking and its influence
on the training performance in Sec. V-C.

C. Generation of Random Samples

We have recognized that the problem of lack of robustness
of the neural network model leads to the reward function
biased towards demonstrated actions observed during training.
To avoid this bias, we propose to provide additional adversarial
samples in inverse reinforcement learning as coming from
the generator distribution πθ during learning of the reward
function. To this end, we have evaluated the Fast Gradient Sign
Method (FGSM) method [19], [24] to produce the adversarial
samples. However, the random noise samples from the normal
distribution estimated on the previously seen samples has per-
formed better. We hypothesize, that this way we produce more
plausible samples, which are helpful in the bias reduction.
The reward fitting is then implemented as optimization of the
following function:

ψ = argmax
ψ

Ex∼πE
[log(D(x))] + Ex∼πθ

[log(1−D(x)]+

ω Ex∼N (µ,σ)[log(1−D(x)],
(8)

where ω is the ratio of the random samples from the normal
distribution N (µ, σ) in all generated samples. The parameters
of random noise sample distribution µ (mean) and σ (standard
deviation) are fitted based on the expert demonstration samples
and on samples observed in the previous policy rollouts. The
random noise is introduced only for the generated samples
to avoid the bias of the obtained policy. We are currently
adding the noise to the samples from the policy based on
sample variance. These samples are still plausible and help us
to generalize better in our MDP representation.

V. EXPERIMENTS

To assess the validity of our approach, we use the well-
established MuJoCo physics engine [6]. This simulator has
been widely used in previous approaches [2], [4] and would

help to better contrast our results with reference methods.
In the experiments, we provide 25 human demonstrations
originating from the work by [4] and 25 demonstrations from
learned policy delivered with the same paper. The demonstra-
tions represent the behavior that should be exhibited by the
actor in each environment setting. As in the conventional learn-
ing from demonstration setup, we provide only the successful
demonstrations for the imitation, and we do not require any
additional samples from the failed trials.

We evaluate the validity of the proposed improvements with
respect to SoA IRL algorithms and the quality of the learning
in new tasks without additional hyperparameter tuning with
exception for in-hand manipulation task, where 1 epoch has
been used for behavior cloning. Behavior cloning: epochs: 5,
learning rate: 1e-3. Policy (actor): number of FC layers: 2,
units per layer: 32, activation function: Tanh, step size: 0.1,
gamma: 0.995, GAE, lambda: 0.97, trajectories per update:
200. Value function (critic): epochs: 2, batch size: 64, learning
rate: 1e-3. Discriminator: number of FC layers: 2, units
per layer: 63, activation function ReLU, learning rate: 1e-3,
batch size: 256, trajectories per update: 200, max updates of
generator per discriminator update: 4, steps till max update
no. for generator: 150, minimal loss threshold: 0.01. Random
samples: percentage in all generated samples: 20%.

To provide a reference performance, we contrast the results
with those we obtained with the approaches AIRL [3] and
GAIL [15]. Finally, for the experimental evaluation, we use
four tasks for dexterous hand manipulation: object grasping
and relocation, object in-hand manipulation, tool usage and
door opening with a dexterous as introduced in the work by
Rajeswaran et al. [4]. Fig. 1 depicts snapshots of these tasks.

A. Performance evaluation

We assess the performance obtained by introduction of
random samples (Sec. IV-C) and by using the reward nor-
malization (Sec. IV-A). In both cases, we use the masking
of the training samples described in Sec. IV-B. The perfor-
mance evaluation is done for the task of object grasping and
relocation. The transferability of the method to other tasks is
assessed separately (see Sec. V-B).

1) Generation of Random Samples: The results obtained by
addition of generated random samples are shown in Fig. 2. The
performance evaluation shows the superiority of our method
over the state-of-the-art IRL and comparable results to forward
reinforcement learning with engineered reward functions [4].
The addition of random samples generated by the RL system
in the training process mitigates the bias towards demonstrated
actions and significantly improves the performance. To shed
more light on the results of our IRL approach using random
samples, we present in Fig. 3 a learned reward function
at the end of IRL process. Our method is able to learn a
reward function that better discriminates between positive and
negative rewards than the vanilla IRL counterparts. This is
reflected, for example, in the more defined high reward around
the target (black star). We use the fixed learned reward function
obtained at the end of the learning process of the example in



Fig. 2. Comparison of our method to SoA IRL algorithms and forward
learning with manually specified reward function, provided for the reference.

Fig. 3 to teach a new policy from scratch using the forward
reinforcement learning method DAPG [4]. The results of the
evaluation in the tasks are presented in Table I. The results
represent the mean of maximum returns from the original
reward function calculated over 10 runs. These results show
that our method is more robust, exhibits lower overfitting and
thus can be used more effectively for learning.

Fig. 3. Learned reward function in object relocation task. The figure presents
the sampled values of the learned reward depending on the distance between
object and target given in meters. Target position is marked with a star. Our
method provides highest reward in the goal position as expected, while the
baseline method has high reward regions outside the target area.

2) Reward normalization: The results of the reward nor-
malization are depicted in Table II. They represent mean over
multiple runs of the accumulated rewards from the original
reward function. The increased stability of learning contributes
to higher returns in each of the evaluated dexterous hand
manipulation task. Tuning of the reward normalization step
size β additionally improves the learning performance. As
we can see in the table, the normalization leads to better
performance after correct hyperparameter adjustment. The
results show that the values of 0.005 or 0.001 are a reasonable
choice.

B. Transferability of the method

In order to demonstrate the transferability, the performance
of our IRL approach has been evaluated in the four different
tasks proposed by Rajeswaran et al. [4]: object relocation, door
opening, object in-hand manipulation, and tool usage. The

performance evaluation is carried out using the same method
from Sec. V-A1, using noise samples and feature masking. In
the evaluation, the demonstrations of successful task execution
have been provided for our method and the state-of-the-art
IRL method [3]. As presented in the provided results in Fig.
4, our method allows the transfer without additional labor
while the forward reinforcement learning method would fail in
the new tasks without sufficient reward function engineering.
Masking of the state space and addition of the noise samples
considerably improved the learning performance. With AIRL
[3], however, performance deteriorates at the end of the
learning process. The reward deficiencies are exploited by
the policy by visiting previously non-sampled regions, where
overfitted, non-robust reward function is maximized without
exhibiting expected behavior. It occurs in the very same way as
the human-specified reward can be exploited during learning.
Our method provides robust reward function, which prevents
such issue from arising throughout the learning process.

C. Ablation study - feature subspace selection

During our experiments, we are using the four dexterous
hand manipulation tasks proposed by Rajeswaran et al. [4]
together with the state space they defined. For the feature
subspace selection we follow a simple rule. We use the features
specific to the tasks as the input of the reward function and
ignore the dimensions corresponding to the robotic hand.
Based on our evaluation, we maintain that the masked reward
function still produces the signal necessary for the policy
training but significantly reduces sample complexity in most
of the tasks. The original, complete state space of object
relocation MDP is defined as:
• position and orientation of hand base (6 dimensions)1

• hand joint angles (24 dimensions)2

• −−−→pOpH - vector between object and hand (3 dims.) 3

• −−−→pT pO - vector between target and object (3 dims.) 3

• −−−→pT pH - vector between target and hand (3 dims.) 3

The dimensions denoted with superscript 3 are task-specific
and are provided as the observations to the reward function.In
case of the tool usage task, the original state space consists of
the following elements:
• 2 DOF position of the hand base (2 dimensions)1

• hand joint angles (24 dimensions)2

• palm position (3 dimensions)3

• nail’s head distance from the board (1 dimension)3

• nail position (3 dimensions)3

• force exert on the nail (1 dimension)3

• tool velocity (6 dimension)3

• tool position (6 dimensions)3

Here, we use the feature subspace describing the palm, tool
and nail, since these are particular to the task. Similarly, in
the remaining tasks we mask the features, which describe the
hand pose and retain only the dimensions specific to the task

1hand base features
2hand joint angle features
3task specific features



Object relocation Tool usage In-hand manipulation Door opening
AIRL [3] -2.86 -208.43 32.19 -54.64
Our method w/o random samples -1.43 -218.42 56.00 -53.36
Our method with random samples 15.37 -110.36 63.84 -52.15

TABLE I
RESULTS OF LEARNING FROM SCRATCH ON THE FIXED REWARD FUNCTION AT THE END OF IRL PROCESS.

Norm. step size β Object relocation Tool usage In-hand manipulation Door opening
0.005 3,103.48 7,498.09 59.87 3,178.89
0.001 3,209.82 4,256.21 72.24 3,129.72
0.0005 3,108.84 5,688.66 71.01 2,860.37
0.0001 2,924.39 6,741.54 71.67 2,753.86
W/o normalization 2,597.16 4,485.93 71.60 2,729.51

TABLE II
RESULTS OF THE EVALUATION OF DIFFERENT NORMALIZATION STEP SIZES.

Fig. 4. Performance evaluation for four different tasks. Our IRL method is able to learn efficiently in a new task based only on the provided demonstration.
Delivers results comparable with the results of forward learning, where a manual reward function specification is necessary.

indicated with superscript 3. The in-hand manipulation task
includes following features of the state space:

• hand joint angles (24 dimensions)2

• object position and orientation (6 dimensions)3

• target orientation - randomized (3 dimensions)3

• object angular and linear velocities (6 dimensions)3

• −−−→pT pO - vector between target and object, target position
is fixed (3 dimensions) 3

• difference between target θT and object angles θO (3
dimensions) 3

The door opening task:

• orientation of the hand base (3 dimensions)1

• hand joint angles (24 dimensions)2

• latch position (1 dimension)3

• door hinge angle (1 dimension)3

• palm position (3 dimensions)3

• door handle position (3 dimension)3

• −−−→pDpH - vector between door handle and the hand (3
dimensions)3

• Indicator variable {-1,1} for closed and open door3

The results of the experiments are presented in Fig. 5. The
results of this ablation study demonstrate that the reward sub-
space selection alone is not sufficient to obtain a policy with
high success rate and other stability improvement methods
are important for the stable convergence. That is particularly
visible in the tool usage MDP where the task-specific selection
alone is not sufficient and the additional proposed methods
are necessary for to the stable convergence of the policy. In
this task all the features seem to be relevant to the task and

provide results better than using just their subspace. In turn
in the task of object relocation we are achieving significantly
better results with the task-specific features.The door opening
is the least challenging of all the tasks and we can see that the
training leads to comparable performance of both task-specific
subspace and complete input space.

VI. DISCUSSION

We were able to create the method for learning challenging
dexterous hand manipulation directly from the demonstration.
For the improvement the key addition was the masking of
the state space to task-relevant dimensions. This prevents the
inclusion of spurious information, which would deepen the
overfitting and facilitate exploitation of the learned model
[22]. One could argue that we trade the necessity of the
reward function engineering for the feature engineering in
state space masking. However, the selection of such features
for the complex tasks used in the experiments according to
the rule described in Sec. IV-B required a significantly lower
effort than the manual engineering of the rewards for such
tasks. Finally, the robustness of the reward function has been
increased comparing to the vanilla IRL method (as depicted
in Fig. 3). However, the obtained robustness is not enough
to learn a policy from scratch without the reward function
updates due to the lack of the systematized generated samples
mining. In the next section we propose some alternative future
research lines to tackle this limitation.

VII. CONCLUSIONS

We evaluated our method with respect to state-of-the-
art inverse reinforcement learning (IRL) methods [3], [15]



Fig. 5. Subspace selection evaluation for four dexterous manipulation tasks. It is visible that the selection of task specific features improves the performance
with respect to using the entire feature space.

and forward reinforcement learning method with manually
specified reward function [4] in the tasks of dexterous hand
manipulation. Our approach reduces the bias in the reward val-
ues towards demonstrated actions in large state-action spaces
produced by current IRL approaches by complementing the
samples generated from demonstration with samples generated
randomly from the learned probabilistic policy. This approach,
combined with a reward normalization to reduce the reward
variance and with a masking strategy to reduce the dimension
of the input space, significantly improves the learning stability
and the transferability of existing inverse and forward rein-
forcement learning approaches. Future research will explore
alternative DRL methods that use more informative generation
of samples [19], [25], [26] compared to the random sampling
method used in this work. Besides this, we will assess the
validity of our IRL approach in other robotic domains using
simulated and real robot platforms.

ACKNOWLEDGMENT

This work has been partially supported by Helmholtz As-
sociation and by the Austrian Science Fund (FWF) Project
M2659-N38.

REFERENCES

[1] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation, 1st ed. CRC Press, Dec. 2017.

[2] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning dexterous in-hand manipulation,” CoRR, 2018. [Online].
Available: http://arxiv.org/abs/1808.00177

[3] J. Fu, K. Luo, and S. Levine, “Learning Robust Rewards with Adversar-
ial Inverse Reinforcement Learning,” arXiv:1710.11248 [cs], Oct. 2017.

[4] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning Complex Dexterous Ma-
nipulation with Deep Reinforcement Learning and Demonstrations,”
arXiv:1709.10087 [cs], Sep. 2017.

[5] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik,
T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient Deep
Reinforcement Learning for Dexterous Manipulation,” p. 12.

[6] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE,
Oct. 2012, pp. 5026–5033.

[7] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. Mc-
Grew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schnei-
der, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang, “Solving rubik’s cube with a robot hand,” arXiv preprint
arXiv:1910.07113, 2019.

[8] V. Kumar, A. Gupta, E. Todorov, and S. Levine, “Learning
Dexterous Manipulation Policies from Experience and Imitation,”
arXiv:1611.05095 [cs], Nov. 2016.

[9] P. Falco, A. Attawia, M. Saveriano, and D. Lee, “On Policy Learning
Robust to Irreversible Events: An Application to Robotic In-Hand
Manipulation,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 1482–1489, Jul. 2018.

[10] A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning Dexterous
Manipulation for a Soft Robotic Hand from Human Demonstration,”
arXiv:1603.06348 [cs], Mar. 2017.

[11] J. Clark and D. Amodei, “Faulty Reward Functions in the Wild,”
https://openai.com/blog/faulty-reward-functions/, Dec. 2016.

[12] T. Everitt and M. Hutter, “Reward Tampering Problems and Solutions
in Reinforcement Learning: A Causal Influence Diagram Perspective,”
arXiv:1908.04734 [cs], Aug. 2019.

[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[14] C. Finn, P. Christiano, P. Abbeel, and S. Levine, “A Connection between
Generative Adversarial Networks, Inverse Reinforcement Learning, and
Energy-Based Models,” arXiv:1611.03852 [cs], Nov. 2016.

[15] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,”
arXiv:1606.03476 [cs], Jun. 2016.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
second edition ed., ser. Adaptive Computation and Machine Learning
Series. Cambridge, Massachusetts: The MIT Press, 2018.

[17] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[18] H. P. van Hasselt, A. Guez, A. Guez, M. Hessel, V. Mnih, and D. Silver,
“Learning values across many orders of magnitude,” in Advances in
Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 4287–4295.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” arXiv:1412.6572 [cs, stat], Mar. 2015.

[20] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[21] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash,
A. Rahmati, and D. Song, “Robust physical-world attacks on machine
learning models,” arXiv preprint:1707.08945, vol. 2, no. 3, p. 4, 2017.

[22] A. Gleave, M. D. C. Wild, N. Kant, and S. L. S. Russell, “Adversarial
Policies: Attacking Deep Reinforcement Learning,” p. 11, 2019.

[23] I. J. Goodfellow, N. Papernot, S. Huang, R. Duan,
P. Abbeel, and J. Clark, “Attacking machine learning
with adversarial examples,” Feb 2017. [Online]. Available:
https://openai.com/blog/adversarial-example-research/

[24] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” arXiv preprint arXiv:2001.03994, 2020.

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards Deep Learning Models Resistant to Adversarial Attacks,”
arXiv:1706.06083 [cs, stat], Sep. 2019.

[26] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S.
Davis, G. Taylor, and T. Goldstein, “Adversarial Training for Free!”
arXiv:1904.12843 [cs, stat], Nov. 2019.

http://arxiv.org/abs/1808.00177
https://openai.com/blog/adversarial-example-research/

	Introduction
	Related works
	Inverse reinforcement learning
	IRL for dexterous hand manipulation
	Reward normalization
	Feature subspace selection
	Generation of Random Samples

	Experiments
	Performance evaluation
	Generation of Random Samples
	Reward normalization

	Transferability of the method
	Ablation study - feature subspace selection

	Discussion
	Conclusions
	References

