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Abstract— This paper proposes an efficient, fully convolu-
tional neural network to generate robotic grasps by using
300×300 depth images as input. Specifically, a residual squeeze-
and-excitation network (RSEN) is introduced for deep feature
extraction. Following the RSEN block, a multi-scale spatial
pyramid module (MSSPM) is developed to obtain multi-scale
contextual information. The outputs of each RSEN block and
MSSPM are combined as inputs for hierarchical feature fusion.
Then, the fused global features are upsampled to perform pixel-
wise learning for grasping pose estimation. The experimental
results on Cornell and Jacquard grasping datasets indicate that
the proposed method has a fast inference speed of 5ms while
achieving high grasp detection accuracy of 96.4% and 94.8%

on Cornell and Jacquard, respectively, which strikes a balance
between accuracy and running speed. Our method also gets a
90% physical grasp success rate with a UR5 robot arm.

I. INTRODUCTION

The goal of grasping detection is to find the appropriate

grasp pose for the robot through the grasping object’s visual

information to provide reliable perception information for

subsequent planning and control process and achieve a

successful grasp. Grasp is a widely studied topic in the

field of robotics, and the approaches used can be sum-

marized as analytic methods and empirical methods. The

analytical methods use mathematical and physical models in

geometry, motion, and dynamics to carry out the calculation

for grasping [1]. Its theoretical foundation is solid, but

the deficiency lies in that the model between the robot

manipulator and the grasping object in the real 3-dimensional

world is complex. It is difficult to realize the model with high

precision. In contrast, empirical methods do not strictly rely

on real-world modeling methods, and some works utilize data

information from known objects to build models to predict

the grasping pose of new objects [2], [3], [4]. A new grasp

representation is proposed in [5], where a simplified five-

dimensional oriented rectangle grasp representation is used

to replace the seven-dimensional grasp pose consisting of

3D location, 3D orientation, and the opening and closing

distance of the plate gripper. Based on the oriented rectangles

grasp configuration, the deep learning approaches can be

successfully applied to the grasping detection task, which

mainly includes classification-based methods, regression-

based methods, and detection-based methods [6]. The com-
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parison of the two grasp representations is presented in

Fig. 1. Someone or two-stage deep learning methods [7],

[8], [9] that have achieved great success in object detection

have been modified to perform grasping detection tasks. For

example, [10] refers to some key ideas of Faster RCNN [9]

in the field of object detection to carry out robotic grasping

from the input RGB-D images. In addition, other works, such

as [11], [12], implemented high-precision grasp detection on

Cornell grasping dataset [5] based on the one stage object

detection method [7], [8]. Although these object detection-

based methods achieve better accuracy in robotic grasping

detection, their design based on the horizontal rectangular

box is not suitable for the angular grasp detection task. Most

of them have complex network structures, so it is difficult to

achieve a good balance in detection accuracy and speed. This

paper develops a lightweight residual squeeze-and-excitation

network with a multi-scale spatial pyramid module for fast

robotic grasping detection. Squeeze-and-excitation network

(RSEN) is constructed by combining residual learning and

channel attention mechanisms. Multiple dilated convolution

with different rate parameters forms a multi-scale spatial

pyramid module (MSSPM). After the input depth data is

down-sampled, the hierarchical features are generated from

RSEN and MSSPM. All these diverse features will be

adaptively fused to obtain meaningful features to improve

the network model’s accuracy. The experimental results on

two public datasets, Cornell and Jacquard, show that the

proposed method can achieve fast running speed and high

detection accuracy. Using a UR5 robot arm, we also obtain

a 90% grasp success rate under the real environment.

II. RELATED WORK

For 2D planar robotic grasping where the grasp is con-

strained in one direction, the methods can be divided into

oriented rectangle-based grasp representation methods and

contact point-based grasp representation methods. We will

review the relevant works below.

A. Methods of oriented rectangle-based grasp representation

Classification-based methods: A first deep learning-

based robotic grasping detection method is presented in [13].

The authors achieve excellent results by using a two-step

cascaded structure with two deep networks. In [14], grasping

proposals is estimated by sampling grasping locations and

adjacent image patches. The grasp orientation is predicted by

dividing the angle into 18 discrete angles. Since the grasping

dataset is scant, a large simulation database called Dex-Net

2.0 is built in [15]. Based on Dex-Net 2.0, a Grasp-Quality
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Fig. 1: A comparison between the methods of oriented

rectangle-based grasp representation and the methods of

contact point-based grasp representation.

Convolutional Neural Network (GQ-CNN) is developed to

classify the potential grasps. Although the network is trained

on synthetic data, the proposed method still works well

in the real world. Moreover, a classification-based robotic

grasping detection method with spatial transformer network

(STN) is proposed in [16]. The results of evaluating on

Cornell grasping dataset indicate that their multi-stage STN

algorithm performs well. The grasping detection method

based on classification is more direct and reasonable.

Regression-based methods: Regression-based methods

are to directly predict grasp parameters of location and ori-

entation by training a model. A first regression-based single

shot grasping detection approach is proposed in [17], in

which the authors use AlexNet to extract features and achieve

real-time performance by removing the process of searching

potential grasps. Combing RGB and depth data, a multi-

modal fusion method is introduced in [18]. With fusing RGB

and depth features, the proposed method directly regresses

the grasp parameters and improves the grasping detection

accuracy on the Cornell grasping dataset. Similar to [18], the

authors of [19] use ResNet as a backbone to integrate RGB

and depth information and further improves the performance

of grasping detection. Besides, a grasping detection method

based on Region of Interest (ROI) is proposed in [4], which

regressed grasp pose on ROI features and achieve better

performance in object overlapping challenge scene. The

regression-based method is effective, but its disadvantage is

that it is more inclined to learn the ground truth grasps’ mean

value.

Detection-based methods: Many detection-based meth-

ods refer to some key ideas from object detection, such as

anchor box. Based on the prior knowledge of these anchor

boxes, the regression problem of grasping parameters is

simplified. In [20], vision and tactile sensing are fused to

build a hybrid architecture for robotic grasping. The authors

use the anchor box to do axis-aligned, and grasp orientation

is predicted by considering grasp angle estimation as a

classification problem. The grasp angle estimation method

used in [20] is extended by [10]. By transforming the

angle estimation into a classification problem, the method

of [10] achieves high grasping detection accuracy on the

Cornell dataset based on FasterRCNN [9]. Different from the

horizontal anchor box used in object detection, the authors

of [21] specially design an oriented anchor box mechanism

for grasping tasks and improve the performance of the model

by combing end-to-end fully convolutional neural network.

Moreover, [22] further extends the method of [21] and

proposes a deep neural network architecture that performs

better on the Jacquard dataset.

B. Methods of contact point-based grasp representation

The grasping representation based on the oriented rect-

angle is widely used in a robotic grasping detection task.

Regarding the real plate grasping task, the gripper does not

need so much information to perform the grasping action.

A new simplified contact point-based grasping representa-

tion is introduced in [23], which consists of grasp quality,

center point, oriented angle, and grasp width. Based on

this grasping representation, GGCNN and GGCNN2 are

developed to predict the grasping pose, and their methods

achieve excellent performance in both detection accuracy

and inference speed. Refer to [23], a fully convolutional

neural network improves the grasping detection performance

with pixel-wise way in [24]. Both [23] and [24] take depth

data as input, and a generative residual convolutional neural

network is proposed in [25] generate grasps, which take n-

channel images as input. Recently, the authors of [26] take

some ideas from image segmentation to perform three-finger

robotic grasping detection. Similar to [26], an orientation

attentive grasp synthesis (ORANGE) framework is developed

in [27], which achieves better results on the Jacquard dataset

based on the GGCNN and Unet model.

III. METHOD

A. Grasp representation

The grasping detection system should learn how to obtain

the optimal grasp configuration for subsequent tasks for

given RGB images or depth information of different objects.

Many works, such as [20], [10], [21], are based on five-

dimensional grasping representation to generate grasp pose,

g = (x, y, θ, w, h) (1)

where, (x, y) are the coordinates of the center point, θ rep-

resents the grasping rectangle’s orientation, and the weight

and height of the grasping rectangle are denoted by (w, h). A

rectangular box is frequently used in object detection, but it

is not suitable for grasping detection tasks. As the gripper’s

size is usually a known variable, a simplified representation

is introduced in [23] for high-precision, real-time robotic

grasping. The new grasping representation for the 3-D pose

is defined as:

g = (p, ϕ, w, q) (2)

where the center point location in Cartesian coordinates is

p = (x, y, z), ϕ and w are the gripper’s rotation angle

around the z axis and the opening and closing distance of

the gripper, respectively. Since the five-dimensional grasping

13446

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:52:00 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: The overall structure of the proposed lightweight fully convolutional neural network.

representation lacks the scale factor to evaluate the grasping

quality, q is added to the new representation as a scale

to measure the probability of grasp success. Besides, the

definition of the new grasping representation in 2-D space

can be described as:

ĝ = (p̂, ϕ̂, ŵ, q̂) (3)

where p̂ = (u, v) represents the center point in the image

coordinates, ϕ̂ denotes the orientation in the camera frame,

ŵ and q̂ still represent the opening and closing distance of the

gripper and the grasp quality, respectively. When we know

the calibration result of the grasping system, the grasp pose

ĝ can be converted to the world coordinates g by matrix

operation,

g = TRC(TCI(ĝ)) (4)

where TRC and TCI represent the transform matrices of the

camera frame to the world frame and 2-D image space to

the camera frame respectively. Moreover, the grasp map in

the image space is denoted as:

G = (Φ,W,Q) ∈ R
3×W×H (5)

where, each pixel in the grasp maps, Φ,W,Q, is filled with

the corresponding ϕ̂, ŵ, q̂ values. In this way, it can be

ensured that the center point coordinates in the subsequent

inference process can be found by searching for the pixel

value of the maximum grasp quality, ĝ∗ = max
Q̂
Ĝ.

B. Network architecture

A lightweight fully convolutional neural network for

robotic grasping detection is introduced, shown in Fig. 2. The

input depth image passes through the downsampling block

to extract features. A downsampling block is composed of

3x3 covolutional layer and 2x2 maxpooling layer with the

formulation:

xd = fmaxpool

(

fk
conv

(

fk−1
conv(. . . f

0
conv(I) . . .)

)

)

(6)

where I represent the input depth image, fconv and fmaxpool

denote the convolution filter and max-pooling filter, respec-

tively. Two downsampling blocks are used to obtain the

Fig. 3: Multi-scale spatial pyramid module: dilated convolu-

tion with kernel size of 3x3 and different rates.

image features xd. The first downsampling block consists

of 4 convolutional layers (k=3) with the kernel size of 3x3

and 1 max-pooling layer with the kernel size of 2x2. The

last downsampling block consists of 2 convolutional layers

(k=1) with the kernel size of 3x3 and the same max-pooling

layer.

To get more meaningful semantic features, we introduce a

residual squeeze-and-excitation network (RSEN) to produce

hierarchical features based on local skip connection, which

include 2 convolution layers followed by a squeeze-and-

excitation block [28] for enhancing hierarchical features at a

channel-wise level. The computation of RSEN, fRSEN, can

be represented as follows:

M0 = f0
RSEN(xd)

...

Mn = fn
RSEN(Mn−1)

(7)

where M represents the feature map and n denotes the

number of extracted feature maps. 7 RSEN blocks (n=6) are

applied to acquire enough relevant hierarchical feature maps

in this work. The output M6 of the RSEN block is fed into

a multi-scale spatial pyramid module (MSSPM) for dilated

convolution filter to extract multi-scale context information.

These feature maps will be sent to a hierarchical feature

fusion block to reduce the loss of information as the network

deepens. The details will be described in subsection III-C

and III-D. Furthermore, the pixelshuffle [29], fpixelshuffle, is

adopted to perform upsampling for the fused features. The
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output can be expressed as:

xu = fpixelshuffle(xfuse) (8)

where, xu and xfuse denote the upsampled features and fused

features, respectively. Final network layer is composed of 4

task-specific convolutional filters (f0
conv, f

1
conv, f

2
conv, f

3
conv)

with kernel size of 3x3. The output is given as Eq. 9,

gq = max
q

f0
conv(xu),

gcos(2θ) = max
q

f1
conv(xu),

gsin(2θ) = max
q

f2
conv(xu),

gw = max
q

f3
conv(xu),

(9)

where the position of the center point is the pixel coordinates

of the largest grasp quality gq , the opening and closing

distance of the gripper is gw, and the grasp angle can be

computed by gangle = arctan(
gsin(2θ)
gcos(2θ)

)/2.

C. Multi-scale spatial pyramid module

Due to max-pooling and the deepening of the network,

the spatial information of the input data is lost gradually. To

overcome this problem, a dilated convolution is introduced

in [30] to enhance the receptive field of convolution oper-

ation without adding any training parameters. Considering

one-dimensional data as input, dilated convolution can be

formulated as:

y[i] =
k

∑

j=1

w[j]x[i+ r · j] (10)

where x is input signal, w[j] is a kernel filter with size of

j, and r represents the rate parameter. In Fig. 3, the concept

of dilated convolution in two dimensional is presented. We

use a combination of 4 different dilated convolutions with

rate parameter from [1,3,5,7] to obtain more discriminative

features. The multi-scale spatial pyramid module can effec-

tively control the receptive field of view by applying this

mechanism.

D. Hierarchical feature fusion

The deepening of the network decrease the ability of

spatial expression to extract the features, which can be

remedied by a semantic information [31]. Therefore, we

proposed a simple hierarchical feature fusion architecture

to fully utilization of the feature produced from RSEN and

MSSPM with:

xfuse = w × [M0,M1, ...,Mn, xmsspm] + b (11)

where w and b are the weight parameters of the convo-

lution filter with kernel size of 1x1. xmsspm denotes the

output of multi-scale spatial pyramid module (MSSPM), and

[M0,M1, ...,Mn, xmsspm] represents the concatenation oper-

ation. Using this fusion method, we can extract the useful

information by adaptive learning and suppress the redundant

information. Therefore the number of feature channels can

be reduced effectively.

E. Loss function

For a dataset including grasping objects O = {O1...On},

input images I = {I1...In}, and corresponding grasp labels

L = {L1...Ln}, We propose a lightweight fully convolu-

tional neural network to approximate the complex function

F : I 7−→ Ĝ, where F represents a neural network

model with weighted parameters, I is input image data, and

Ĝ denotes grasp prediction. We train our model to learn

the mapping function F by optimizing the minimum error

between grasp prediction Ĝ and the corresponding label L.

In this work, we consider the grasp pose estimation as a

regression problem. Therefore the Smooth L1 loss is used

as our regression loss function. The loss function Loss is

defined as :

Loss(Ĝ, L) =
N
∑

i

∑

m∈{q,θ,w}

SmoothL1(Ĝ
m
i − Lm

i ) (12)

with SmoothL1:

SmoothL1(x) =

{

(σx)2/2, if |x|<1;

|x| − 0.5/σ2, otherwise.

where N is the number of grasp candidates, q, w represents

the grasp quality and the opening and closing distance of

the gripper, respectively, and (cos(2θ), sin(2θ)) is the form

of orientation angle θ. In the SmoothL1 function, σ is the

hyperparameter that controls the smooth area, and it is set

to 1 in this work.

IV. EXPERIMENTS

Following the previous works [4], [10], [25], [32], we use

the rectangle metric as an accuracy metric to evaluate our

robotic grasping detection method. Specifically, the proposed

model is validated on two public grasping datasets, Cor-

nell [5] and Jacquard [33]. The experimental results show

that the proposed algorithm can achieve high prediction

accuracy and fast inference speed with only the depth data

as input.

A. Dataset

In Tab. I, it presents a summary of these grasping datasets.

We choose two of them as the benchmark to evaluate our

model. The details are as follows:

Cornell grasping dataset: The Cornell dataset was col-

lected in the real world with the RGB-D camera. The dataset

is composed of 885 images with a resolution of 640×480

pixels of 240 different objects with positive grasps (5110)

and negative grasps (2909). RGB images and corresponding

point cloud data of each object with various poses are

provided. However, the Cornell dataset scale is small for

training our convolutional neural network model. We use

online data augment methods in this work, including random

cropping, zooms, and rotation, to extend the dataset to avoid

overfitting during training.

Jacquard grasping dataset: Jacquard is a large grasping

dataset created through simulation based on CAD models.
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TABLE I: Description of the public Grasping Datasets

Dataset Modality Objects Images Grasps

Dexnet Depth 1500 6.7M 6.7M
Cornell RGB-D 240 885 8019

Jacquard RGB-D 11K 54K 1.1M

TABLE II: Detection accuracy (%) on Cornell dataset

Author Input Modality Accuracy(%) Time (ms)

Jiang [5] RGB-D 60.5 5000
Lenz [13] RGB-D 73.9 1350

Karaoguz [34] RGB 88.7 200
Chu [10] RGD 96.0 120

Zhang [18] RGB-D 88.9 117
Wang [35] RGB-D 85.3 140

Redmon [17] RGB-D 88.0 76
Kumra [25] D 95.4 -

Asif [36] RGB-D 90.6 24
Morrison [23] D 73.0 -

Zhang [4] RGB 93.6 40
Song [37] RGB 96.2 -
Wang [38] D 94.4 8

Ours D 96.4 5

Fig. 4: The selected detection outputs of the propsed model

on Cornell dataset (best visualization in color).

Because no manual collection and annotation are required,

the Jacquard dataset is larger than the Cornell dataset,

containing 50k images of 11k objects and over 1 million

grasp labels. Since the Jacquard dataset is large enough, we

do not use any data augmentation methods to it.

B. Implementation Details

Each input image is scaled to the size of 300×300 before

being fed into the network. Meanwhile, the corresponding

grasp labels are encoded for training and learning. Specifi-

cally, we use the form of sin(2θ) and cos(2θ) to represent

the gripper’s angle and width to represent the opening and

closing distance of the gripper. The center coordinate of

the grasp box is obtained by searching for the position of

the maximal grasp quality, where the pixel value of the

corresponding area is set to 1, and the other pixels are set to

0. The proposed model is trained on an Nvidia RTX2080Ti

GPU with an Adam optimizer where the batch size is set to

8, and the initial learning rate is set to 0.001. Moreover, our

TABLE III: Detection accuracy (%) on Jacquard dataset

Author Input Modality Accuracy(%)

Depierre [33] RGB-D 74.2
Zhou [21] RGD 92.8
Zhang [4] RGD 93.6

Morrison [23] D 84
Song [37] RGD 93.2

Kumra [25] D 93.7

Ours D 94.8

Fig. 5: The selected detection outputs of the proposed model

on Jacquard dataset (best visualization in color).

grasping algorithm is implemented by Pytorch 1.2.0.

C. Experimental results on Cornell dataset

We train our network on the Cornell grasping dataset, and

the results are presented in Tab. II. Using only the depth

data as input, our method achieves an accuracy of 96.4%
and a fast inference speed of 5ms. Tab. II demonstrates

that the proposed grasping detection algorithm strikes a

better balance between accuracy and speed without using

color information, which makes it more suitable for real-

time applications, compared with other competitive methods.

Fig. 4 illustrates some selected grasping objects. The map

of grasp quality, angle, and width is displayed in the first

three rows. The grasp candidate with the best grasp quality

is chosen, which is visualized in the last row. The results

demonstrate that our method can effectively predict different

types of objects.

D. Experimental results on Jacquard dataset

For the Jacquard dataset, we adopt a different training

strategy. Since the Jacquard dataset’s grasp labels are very

dense, and many of them overlap each other, we maximize

the grasp quality of the center point coordinate and gradually

reduce the value farther away from the center point to

improve the robustness of network learning. In Tab. III,

the experimental results indicate that the proposed model

achieves better detection accuracy than existing algorithms

on the Jacquard dataset. The selected detection results are

visualized in Fig. 5.
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TABLE IV: Comparison of network size and execution time

for different methods

Author Parameters (Approx.) Time

Lenz [13] - 13.5s
Pinto and Gupta [14] 60 M -

Levine [39] 1 M 0.2-0.5s
Johns [40] 60 M -

Morrison [23] 66 k -

Ours 2.94 M 5ms

Fig. 6: Failed detection cases: the first two cases from Cornell

dataset and the last two cases from Jacquard dataset (best

visualization in color).

E. Comparison of network parameter sizes

To make the designed network more suitable for real-time

application, we develop a fully convolutional neural network

with a small parameter size. The comparison of parameter

size and execution time for different methods is summarized

in Table. IV. It is difficult for the existing deep learning

methods to meet the requirements of speed and accuracy

simultaneously. [23] has fewer parameters but less accuracy,

other works, such as [13], [10], [14], improve accuracy while

the running speed decrease and the number of parameters

increase. Our model achieves high detection accuracy and

fast running speed with a parameter size of 2.94M.

F. Failure cases analysis

During the experiment, it is found that although the

proposed algorithm achieves high detection accuracy, it is

still not effective in some cases. In Fig. 6, some failure

examples are presented. The proposed model does not predict

the orientation of larger rectangular objects in the Cornell

dataset very well and does not have good generalization

ability for some objects with more complex shapes in the

Jacquard dataset. However, these deficiencies can be effec-

tively alleviated by increasing the amount and diversity of

training data.

G. Evaluation on real robot

We evaluate our proposed approach on a Universal

Robot (UR5) attached with a Robotic gripper2F-85 and an

Intel Realsense camera. We mounted the camera orthogonal

to the workstation to satisfy the constraints of a 2D plane.

Therefore we have a constant value in the z-direction. Fur-

thermore, we employ the Real-Time Data Exchange (RTDE)

interface from UR5 with an update rate of 8ms to enable

real-time grasping. The robotic gripper and UR5 are com-

municated to each other via the OPC-UA platform. The

TABLE V: The results of physical grasping experiment.

Objects Detected Physical grasp

Welding gun 9/10 9/10
Mouse 8/10 6/10
Pencil 10/10 10/10
Brush 10/10 8/10

Griper finger 10/10 10/10
Staples box 10/10 8/10

Remote control 10/10 9/10
Knife 10/10 10/10
Eraser 10/10 10/10

Hammer 10/10 10/10

Average 97% 90%

Fig. 7: Robot experiment setup with an UR5 robot arm

whole setup is illustrated in Fig. 7. The experiment pipeline

is described as the proposed approach predicts the grasp

configuration in the camera image coordinate. Then it will

be transferred to the robot world coordinate. We apply the

inverse kinematics to obtain the corresponding joint position.

Sequentially, a point-to-point motion is executed to approach

the desired position. In the end, the robotic gripper with the

predicted configuration grasps the objects. We evaluate our

approach with 10 novel objects, and each object is randomly

placed on the table with 10 random positions. The result in

Tab. V demonstrates that the proposed algorithm can achieve

a 90% grasp success rate.

V. CONCLUSION

We propose a lightweight residual squeeze-and-excitation

network with a multi-scale spatial pyramid module for fast

robotic grasping detection in this work. Through effective

network design, our model achieves a fast inference speed

of 5ms with a parameter number of 2.94M. Furthermore,

the proposed grasping algorithm achieves detection accuracy

of 96.4% and 94.8% respectively on Cornell and Jacquard

grasping datasets. Our method also achieves a success rate

of 90% by using the UR5 robot arm in the physical grasping

experiment.
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[33] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale
dataset for robotic grasp detection,” CoRR, vol. abs/1803.11469, 2018.

[34] H. Karaoguz and P. Jensfelt, “Object detection approach for robot
grasp detection,” in 2019 International Conference on Robotics and

Automation (ICRA), 2019, pp. 4953–4959.
[35] Z. Wang, Z. Li, B. Wang, and H. Liu, “Robot grasp detection

using multimodal deep convolutional neural networks,” Advances in

Mechanical Engineering, vol. 8, no. 9, p. 1687814016668077, 2016.
[36] U. Asif, J. Tang, and S. Harrer, “Graspnet: An efficient convolutional

neural network for real-time grasp detection for low-powered devices,”
in Proceedings of the Twenty-Seventh International Joint Conference

on Artificial Intelligence, IJCAI-18. International Joint Conferences
on Artificial Intelligence Organization, 7 2018, pp. 4875–4882.

[37] Y. Song, L. Gao, X. Li, and W. Shen, “A novel robotic grasp detection
method based on region proposal networks,” Robotics and Computer-

Integrated Manufacturing, vol. 65, p. 101963, 2020.
[38] S. Wang, X. Jiang, J. Zhao, X. Wang, W. Zhou, and Y. Liu, “Efficient

fully convolution neural network for generating pixel wise robotic
grasps with high resolution images,” CoRR, vol. abs/1902.08950, 2019.

[39] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection,” The International Journal of Robotics

Research, vol. 37, no. 4-5, pp. 421–436, 2018.
[40] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a

grasp function for grasping under gripper pose uncertainty,” in 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2016, pp. 4461–4468.

13451

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:52:00 UTC from IEEE Xplore.  Restrictions apply. 


		2021-10-09T09:17:42-0700
	Preflight Ticket Signature




