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Robotic Manipulation in Dynamic Scenarios via
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Abstract—By relabeling past experience with heuristic or
curriculum goals, state-of-the-art reinforcement learning (RL)
algorithms such as hindsight experience replay (HER), hindsight
goal generation (HGG), and graph-based hindsight goal generation
(G-HGG) have been able to solve challenging robotic manipulation
tasks in multi-goal settings with sparse rewards. HGG outperforms
HER in challenging tasks in which goals are difficult to explore
by learning from a curriculum, in which intermediate goals
are selected based on the Euclidean distance to target goals. G-
HGG enhances HGG by selecting intermediate goals from a pre-
computed graph representation of the environment, which enables
its applicability in an environment with stationary obstacles.
However, G-HGG is not applicable to manipulation tasks with
dynamic obstacles, since its graph representation is only valid
in static scenarios and fails to provide any correct information
to guide the exploration. In this paper, we propose bounding
box-based hindsight goal generation (Bbox-HGG), an extension
of G-HGG selecting hindsight goals with the help of image
observations of the environment, which make it applicable to
tasks with dynamic obstacles. We evaluate Bbox-HGG on four
challenging manipulation tasks, where significant enhancements
in both sample efficiency and overall success rate are shown
over state-of-the-art algorithms. The videos can be viewed at
https://videoviewsite.wixsite.com/bbhgg.

Index Terms—Reinforcement learning, hindsight experience
replay, robotic arm manipulation, path planning.

I. INTRODUCTION

THE study of deep reinforcement learning (RL) has enabled
robots to perform many complex tasks [30], such as

organizing books on a bookshelf [25], inserting a peg in a
hole [27], achieving autonomous navigation of vehicles [1]
and aerial drones [4]. The principle of RL is to learn an
optimal policy through interactions with the environment by
the agents. These interactions provide agents with rewards,
which is the only mechanism through which agents can learn
how to complete the tasks successfully. However, in most
complex robotic tasks, where a concrete representation of
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efficient or even admissible behavior is unknown, it is extremely
challenging and time-consuming to design an adequate task-
tailored reward, thereby making this strategy impractical for
wide robotic applications of RL.

Favorably, most tasks have clear success and failure condi-
tions, which can be used to define a binary reward signal that
indicates the task completion. This kind of binary reward
is also known as a sparse reward and is easy to derive
from the task definition with minimum effort. However, RL
algorithms supporting sparse rewards usually suffer from bad
learning efficiency, since they can only deliver shallow and
insufficient information during training. To overcome this issue,
Andrychowicz et al. [2] proposed the algorithm hindsight
experience replay (HER), which improves the success of off-
policy RL algorithms in multi-goal RL problems with sparse
rewards. The concept of HER is to use previous experiences
collected by the agent to define hindsight goals that are easy
to learn at first, and then continue with more difficult goals.
While HER has been proven to work efficiently in environments
where goals can be easily reached through random explorations,
it fails in environments where the goal distributions are far
away from the initial states and hard to reach only by random
exploration and the heuristic choice of hindsight goals from
achieved states.

To tackle this problem, Ren et al. [23] propose hindsight goal
generation (HGG), which uses hindsight goals as an implicit
curriculum to guide the exploration towards intermediate goals
that are easy to achieve in the short term and promising to
lead to target goals in the long term. Despite HGG being
successful at solving tasks with distant goals, it fails to solve
tasks with obstacles in which its distance mechanism cannot
be computed with the Euclidean metric. Our previous work,
graph-based hindsight goal generation (G-HGG) [3], overcomes
this problem by selecting hindsight goals based on the shortest
distances in a precomputed obstacle-avoiding graph, which is
a discrete representation of the environment. G-HGG shows
outstanding performance in complex manipulation tasks with
static obstacles compared with HER or HGG, but it assumes
that the knowledge of the obstacles’ dimensions and positions
are known and constant, so that it can precompute the graph-
based distance before the training. However, in most tasks, the
obstacles’ locations are not always known to the robot and
they may change their positions dynamically, which makes
HGG or G-HGG not applicable to such a task.

A common approach to obtain the information of a dynamic
scenario at every time step is to use image observations, which
are usually easy to obtain and can capture a great range of
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task-relevant features. Therefore, in this paper, we introduce
bounding box-based hindsight goal generation (Bbox-HGG),
an extension of G-HGG, to solve complex robotic manipulation
tasks in dynamic scenarios with the help of image observations.
We state that such tasks cannot be solved by state-of-the-art
sparse-reward RL algorithms. We formulate our Bbox-HGG
algorithm as bounding box creation, obstacle-avoiding graph
construction as pretraining steps, and state extension and multi-
objective sparse rewards as critical training steps. To make
Bbox-HGG applicable to environments with dynamic obstacles,
we first use the bounding box information extracted from
image observations to create a graph-based representation of
the environment to eliminate static obstacles from goal spaces.
We second utilize the bounding box information to extend the
observation states that can provide essential information about
the dynamic obstacles to learn desired behaviors. We third
propose a multi-objective sparse reward to penalize behaviors
that will lead to any collision. Last, we design four new
challenging robotic manipulation tasks, which contain both
static and dynamic obstacles, to compare the performance of
Bbox-HGG, G-HGG, and HGG.

Our main contribution to the literature is a sparse-reward
algorithm that can solve complex manipulation tasks with
dynamic obstacles using image observations. Specifically, first,
we propose a self-supervised mechanism to train a bounding
box encoder (BboxEncoder) to recognize the bounding boxes
of objects from image observations. This BboxEncoder offers
a practical way to extract object information from an unknown
dynamic environment, which can be further used for training
goal-conditioned RL agents. Second, we propose a mechanism
to estimate the dimensions and locations of an obstacle to
automate the creation of the obstacle-avoiding graph and its
respective graph-based distances, which can be used to generate
intermediate goals like HGG and G-HGG. Third, we propose a
multi-objective sparse reward to penalize the agent for colliding
with obstacles, which only requires minimum engineering
to be adaptive to different environments. Last, experiment
results demonstrate that Bbox-HGG provides a significant
enhancement in both sample efficiency and overall success
rate over G-HGG and HGG.

II. RELATED WORK

Since our work consists of different modules, namely, robotic
manipulation with sparse-reward-based RL, image-based RL,
and object recognition, we briefly discuss the related work
from these three main topics.

A. Manipulation with Sparse-Reward RL

Robotic manipulation, as a kind of challenging tasks, has
been widely used to examine the performance of many
different RL approaches, such as those based on experience
relabeling [2], [36], intrinsic motivation [35], [6], and guided
exploration and exploitation [9], [23]. The basic idea behind
these approaches is to improve the exploration efficiency,
which is crucial in sparse-reward RL settings, where effective
exploration is extremely difficult in manipulation tasks due to
the sparsity of the goal space and the uninformative sparse

rewards. Experience relabeling-based approaches, represented
by HER [2], leverage the notion that some uninformative
data for one task is likely a rich source of information for
another task. Some other hindsight experiences relabelling
approaches further investigated how to improve data efficiency.
For example, Li et al. [14] proposed a general multi-task
hindsight relabelling approach from the perspective of inverse
RL. Eysenbach et al. [8] further demonstrated that hindsight
relabeling is inverse RL by maximizing the entropy and
derived the theoretical optimum form of hindsight relabelling
approaches. Intrinsic motivation-based approaches are inspired
by the self-consciousness concept which encourages the agent
to explore by providing an internal motivation. For example, in
[29], the tactile information from the gripper is used to construct
the intrinsic reward to encourage the interaction between the
gripper and objects in the environment. Guided exploration
extends the experience relabeling approaches by creating an
implicit curriculum of hindsight goals to lead the exploration
towards target goals. The guidance metric can be calculated
using Euclidean distance [23], [9] or other customized distances
[3].

B. Manipulation with Image-Based RL

To solve more complex tasks in which dynamic obstacles
are involved, using images as state representations is an
appealing idea since they are easy to get and contain plentiful
information about the environment, regardless of whether it is
static or dynamic. Since images are high-dimensional and less
intuitive for the agent to directly learn, researchers have studied
different methods to abstract low-dimensional representations
from images to learn complex behaviors. Nasiriany et al.
proposed latent embeddings for abstracted planning (LEAP
[17]), which encodes images using a variational autoencoder
(VAE) as a latent observation for learning a goal-conditioned
RL policy. LEAP also trained a temporal difference model [21]
to calculate a value function to predict if a goal is reachable, and
therefore used the value function as a planner to select suitable
intermediate goals sampled from the VAE for downstream
tasks. Hafner et al. developed a model-based RL approach to
work with images, which used a recurrent space model [11]
to learn the dynamics of the environment in a latent space.
They also utilized a VAE to encode and decode images and the
recurrent network received sequences of latent representations
and actions to predict the dynamic model of the task. Similar
work such as curious object-based search agent (COBRA
[31]) also integrated model-based RL with image observations
and learned the dynamics of the environment from the latent
representations.

C. Unsupervised Object Discovery

The capability to discover objects from visual observations
is important for robotics, and therefore there are many
studies that investigate unsupervised object discovery [34].
The Multi-Object Network (MONet) [5] was proposed to
learn to decompose and represent complex scenarios into
semantic components in an unsupervised manner by providing
attention masks and reconstructing regions of images. Another
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unsupervised object discovery method is scene representation
via spatial attention and decomposition (SPACE [15]), which
uses probabilistic inference to model images and generate
factorized object representations. Similar to MONet and SPACE,
Nash et al. proposed multi-entity variational autoencoder
(MVAE [16]) to discover objects, in which the encoder returns
a grid of latent representations, selects N representations with
the highest KL divergence, and reconstructs them. Greff et
al. developed the Iterative Object Decomposition Inference
Network (IODINE) [10], which encodes an image with K
latent variables and iteratively refines them to reconstruct the
objects from the image correctly. These methods approach
the unsupervised object discovery problem by learning latent
variables that are independent for each object and can represent
the appearance and position of objects.

III. PRELIMINARIES

A. Multi-Object Network (MONet)

MONet is an algorithm that can decompose and represent
challenging image scenes by jointly training an attention
network and a VAE in an unsupervised manner [5]. The
attention network ψ is used to create K different masks
m1, ...,mK ∈ RH×W×1 that divide the input image Λ ∈
RH×W×C into regions so that each region only contains one
single object including the background. H , W , and C are the
height, width, and channel of an image. MONet concatenates
each mask with the image and passes this information to the
VAE, which reconstructs all the masks m̂1, ..., m̂K ∈ RH×W×1

and parts of the image Λ̂1, ..., Λ̂K ∈ RH×W×C . The latent
variables z1, ..., zK contain the information to represent the
image Λ. Since the latent space encodes the features of an
object, the encoder φ has a posterior distribution qφ(zk|Λ,mk)
and the decoder θ the prior pθ(Λ|zk). Then, the network models
the distribution p(c|{mk}) that shows that some component c
of the image is represented in the kth slot. The corresponding
posterior and prior are qψ(c|Λ) and pθ(c|{zk}). This network
is trained with the following loss:

L(θ, φ, ψ,Λ) = − log

K∑
k=1

mkpθ(Λ|zk)

+βDKL

(
K∏
k=1

qφ(zk|Λ,mk)‖p(z)

)
+γDKL (qψ(c|Λ)‖pθ(c|{zk})) ,

(1)

where β and γ are hyperparameters to balance each component
of the loss function. DKL is the KL-divergence.

B. Hindsight Experience Replay (HER)

Hindsight Experience Replay (HER [2]) is a simple yet
effective RL algorithm designed for goal-oriented tasks with
sparse rewards, in which an agent usually fails to learn
efficiently. This is because the uninformative sparse reward
can only provide very shallow information about the task and
the sparsity of the goal space makes the exploration even more
challenging during training. To improve the learning efficiency,
HER relabels the hindsight experience by leveraging the notion

that some uninformative data for one goal is likely a rich source
of information for another goal. In a multi-goal RL task with
sparse rewards, HER assumes that every goal g corresponds to
a predicate fg : S → {0, 1}. A goal is considered as reached,
once the agent achieves any state s that satisfies fg(s) = 1. A
sparse reward function is defined as rg(s, a) = −[fg(s) = 0],
meaning that the agent constantly receives negative rewards
as long as it has not reached the goal. Only when the goal is
reached, can zero reward be observed. In HER, every transition
(st||g, at, rt, st+1||g) is not only stored with the original goal
g used for the episode, but also with a subset of other goals
(hindsight goals) g′ as (st||g′, at, rt, st+1||g′). Therefore, when
replaying the resulting transitions (st||g′, at, rt, st+1||g′), the
agent is more likely to encounter informative rewards. HER can
be interpreted as an implicit curriculum, which first concentrates
on intermediate goals that are easy to reach, and then moving
on to more difficult goals that are closer to the target goals.

C. Hindsight Goal Generation (HGG)

HGG [23] extends HER to tasks with distant goal distribu-
tions that are far away from the initial state distribution and
cannot be solved by heuristic exploration. These target goals
GT belong to a goal space G and the initial states S0 belong to
the state space S . The distribution T ∗ : G×S → R determines
how they are sampled. Instead of optimizing V π with the
difficult target goal - initial state distribution T ∗, which carries
the risk of being too far from the known goals, HGG tries
to optimize with a set of intermediate goals sampled from T .
On the one hand, the goals contained in T should be easy to
reach, which requires a high V π(T ). On the other hand, goals
in T should be close enough to T ∗ to be challenging for the
agent. This trade-off can be formalized as

max
T ,π

V π(T )− L · D(T ∗, T ). (2)

The Lipschitz constant L is treated as a hyper-parameter. In
practice, to select these goals, HGG first approximates T ∗ by
taking K samples from T ∗ and storing them in T̂ ∗. Then, for
an initial state and goal (ŝi0, ĝ

i) ∈ T̂ ∗, HGG selects a trajectory
τ = {st}Tt=1 that minimizes the following function:

w(ŝi0, ĝ
i, τ) := c‖m(ŝi0)−m(s0)‖

+ min
st∈τ

(
‖ĝi −m(st)‖ −

1

L
V π((s0||m(st))

)
.

(3)
m(·) is a state abstraction to map from the state space to the
goal space. c > 0 provides a trade-off between 1) the distance
between target goals and 2) the distance between the goal
representation of the initial states. Finally, from each of the K
selected trajectories τ i, the hindsight goal gi is selected from
the state sit ∈ τ i, that minimized (3). More formally,

gi := arg min
st∈τ

(
‖ĝi −m(st)‖ −

1

L
V π((s0‖m(st))

)
. (4)

D. Graph-Based Hindsight Goal Generation (G-HGG)

G-HGG [3] identifies that the Euclidean distance metric ‖ · ‖
used in (3) and (4) is not applicable in environments with
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obstacles, where it is not an accurate distance metric. And
this leads to non-optimal or even incorrect intermediate goals
for the agent to solve the task. G-HGG proposes replacing
the Euclidean distance in HGG with a graph-based distance
extracted from an obstacle-free graph G = (V,E). The graph
G serves as a discrete representation of the accessible goal
space in the environment. Thus, one must define GA ⊂ G where
GA represents all the accessible goals of the environment. This
implies that if some goal from the goal space g ∈ G lies inside
an obstacle, then it is excluded from the accessible goal space.
Additionally, a set of vertices V and weighted edges E are
defined to discretize the accessible goal space. The Dijkstra’s
algorithm [7] is used to calculate the shortest path distance
between each node pair and store them in a table. With this
table, it is possible to create a metric dG that maps any two
points g1, g2 ∈ G to the closest discretized coordinates and
read the distance from the table. dG is used to replace the term
‖ĝi −m(st)‖ in (3) and (4) with dG(ĝi −m(st)).

IV. PROBLEM STATEMENT

In this paper, we focus on learning manipulation skills in
dynamic environments via RL with sparse rewards, in which
the localization information of each object is unknown to the
RL agent. This constraint makes state-of-the-art RL algorithms
inapplicable to such an environment that shares the following
characteristics:
• An internal state space Sint ⊂ Rl, l ∈ N. It contains the

internal information of a robotic arm, such as the joint
positions and angular velocities.

• An external state space Sext ⊂ R3. It is an image obser-
vation Λ that captures the information of the environment.

• A multidimensional state space S, which is the concate-
nation of Sint and Sext.

• An action space A ∈ R3 that controls the position of the
end effector.

• An initial state distribution S0 : S → [0, 1].
• A goal space G ⊂ R2. A goal is defined as a point on

one 2D plane in the environment.
• A target goal distribution GT ⊂ G → [0, 1].
• A goal predicate fg : S → {0, 1}, g ∈ G to determine if

a state is under the distance threshold δg to a goal:

fg(s) :=

{
1, if ‖m(s)− g‖ ≤ δg
0, otherwise.

(5)

• A sparse reward function rg : S ×A→ R defined as:

rg(s) :=

{
0, if fg(s) = 1

−1, otherwise.
(6)

• Obstacles {o1, o2, ...} that can be either static or dynamic.
In our environments, we consider obstacles located on a
table; therefore, if an obstacle oi is dynamic, it performs
a linear motion with a velocity vi ∈ R2 and two limit
positions that oi can reach periodically.

As introduced and explained in prior work, the task of
designing RL algorithms that can learn manipulation skills
in dynamic scenarios via sparse rewards is challenging and
remains unsolved. The reasons are listed as follows.

Phase 1

BboxEncoderIntermediate
Dataset

Object
recognition

MONet

Dataset

O
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y BboxEncoder
training

Obstacle region
detection

Create an obstacle
avoiding graph
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Modify state st
and reward rt

TrainingAgent-Env.
interaction G-HGG
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Im
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e
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rv

at
io

n

Fig. 1: Overview of the phases of our solution and their
correlation. The BboxEncoder from the first phase is used
in the second phase and the third phase. The graph created in
the second phase is used in the third phase.

• Certain approaches, like HER [2] and EBP [36], only
achieve their success through hindsight replays of past
experience with heuristic goals. These methods are not
able to learn long distant goals.

• Some guided exploration approaches can learn distant
goals but are only applicable to scenarios with no
obstacles or static obstacles since they require environ-
mental information beforehand (CHER [9], HGG [23],
G-HGG [3]). Therefore, these methods are not applicable
to environments with dynamic obstacles.

• Prior studies assume complete knowledge of the local-
ization information of static obstacles, which is either
unknown or difficult to be obtained in the real world.

To tackle this problem, we consider using image obser-
vations as a way to acquire the localization information of
the environment and then propose a method that can learn
manipulation skills in dynamic scenarios via RL with a sparse-
reward setup. In particular, our method aims to achieve the
following goals. First, our method should be able to derive the
object information from a dynamic environment using image
observations, such as identifying and locating the manipulatable
object and obstacles. Second, based on the derived information,
our method should create a representation of the environment
that can be used to generate accessible hindsight goals for the
agent. Third, our method should learn a policy by only using
sparse rewards, which allows the agent to reach distant goals
and yet prevent collisions in the environment with minimal
engineering effort.

V. METHODOLOGY

In this section, we first present the overview of our algo-
rithm Bbox-HGG. Then, we give a detailed explanation of
each component of Bbox-HGG, namely, the training of our
BboxEncoder for object recognition, the adaption of G-HGG to
the dynamic environment, and the extension of the state space
and sparse reward function. Finally, we summarize Bbox-HGG
with its pseudocode.

A. Overview
To tackle the limitations of prior works, our method first aims

to acquire the localization information of each object in the
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environment from image observations. Second, similar to the
idea of G-HGG, our method also creates an obstacle-free graph,
but with the environmental information obtained from the first
step instead of using prior knowledge. Last, we introduce two
additional mechanisms, namely, the extended observation and
multi-objective sparse reward, to allow our policy to solve
manipulation tasks in environments with dynamic obstacles.
The overall architecture of our algorithm is shown in Figure 1.
The algorithm is briefly explained in three phases as follows.
• In the first phase, we design a bounding box encoder

(BboxEncoder) that can recognize the bounding box of
each object in the environment via image observations.
We use an indexing mechanism to differentiate the
manipulatable object from obstacles.

• In the second phase, we estimate the regions that each
obstacle will constantly occupy through the episode
and create a graph avoiding regions that are constantly
occupied by obstacles so that G-HGG can be applied to
generate proper intermediate goals for training.

• In the third phase, we extend the observation space with
the localization information of the bounding boxes. We
also design a multi-objective sparse reward to penalize
any collisions with the obstacles.

The first two phases are performed before the training of the
RL agent and the third phase takes place during the training.

B. Bounding Box Encoder (BboxEncoder)

The objective of our BboxEncoder is to create a representa-
tion of the environment that can take images as the input and
output the position and dimension information of the bounding
box of each object inside. The BboxEncoder is trained with
an MONet (See Section III-A) and an image dataset with
objects rendered at random locations, which allows it to work
in different environments. The MONet is also trained using
the dataset in an unsupervised manner. The training pipeline
of our BboxEncoder is summarized as follows.
• First, to train MONet to discover objects, we create a

dataset with raw images that are randomly rendered from
different environments.

• Second, with this raw dataset, we train MONet to discover
each bounding box of the object via an unsupervised
manner. It should be noted that the MONet can only
create a mask for each object from the raw images, rather
than generating the bounding box that we need.

• Third, we train our BboxEncoder to detect all the bounding
boxes in a self-supervised manner using the dataset and
the masks generated by MONet.

1) Dataset: Our tasks are performed in MuJoCo [28]
environments based on the standard robotic manipulation
benchmark from OpenAI Gym [20]. All our environments
are manipulation tasks featuring a Fetch robot with a gripper
that pushes a puck in an environment with dynamic obstacles
(See Figure 2a). To model different scenarios, the dataset is
created by rendering 38, 400 images of instantiated objects with
different shapes, sizes, or colors. A more detailed description
of the generated dataset can be found in Appendix A-A and
some sampled images are visualized in Figure 2b. It should be

(a) Demo scene. (b) Top-view sampled images from the dataset.

Fig. 2: Visualization of the environment and the image dataset.

MONet

Λ

m2m1 mK mK+1

...

a1 a2 aK aK+1

m1 · Λ m2 · Λ mK · Λ mK+1 ·Λ...

...

Maskes

Maskes
images

Fig. 3: The overview of MONet. This network receives
an image Λ and creates masks (black and white im-
ages) m1,m2, ...,mK+1 and latent vector representations
a1, a2, ..., aK , aK+1 for the objects. The bottom row shows
the masked images that are the multiplication of the image
with each mask.

noted that, during the dataset generation and the RL-training,
we set the table and robot arm invisible when rendering an
image to facilitate the identification of objects relevant for the
task. In practice, it is possible to position the camera in a place
where the robot arm does not occlude other objects or use
multiple cameras to obtain the full information.

2) Object Discovery: In this paper, we use MONet to
discover objects from image observations so that we can further
train our BboxEncoder. Compared with other object discovery
methods, MONet has a determined amount of slots for encoding
different objects and one object is always assigned to the same
slot. MONet also creates one mask for each slot, with which
we can create a masked image that only contains one object.
In our implementation, MONet is initialized with K + 1 slots.
The K+1th slot is designated to model the background, while
other slots model the foreground objects. We train MONet with
the dataset created from Section V-B1. And with a well-trained
MONet, it can take an image Λ as the input and output latent
vectors a1, a2, ..., aK+1 and masks m1,m2, ...,mK+1. It is
important to note that Λ can have fewer than K objects and
therefore some variables and masks will represent no object.
Figure 3 shows the architecture of MONet, the masks it creates,
and the masked images.

3) BboxEncoder: The BboxEncoder is designed to take an
image Λ as the input and yield the axis-aligned bounding boxes
surrounding those objects in the image. One bounding box is
defined as a vector b ∈ R4, which consists of a position vector
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Fig. 4: Training pipeline of the BboxEncoder. It receives an
image Λ as the input and the latent variables z1, z2, ..., zK
contains the information of each bounding box. Cut and crop
operations are used to reconstruct the images and the masked
images from MONet are used to train the BboxEncoder in a
self-supervised manner.

spatialTrans
with
M

spatialTrans
with
M−1

Fig. 5: Spatial transformations as cut and crop operations.

p = (x, y) and a dimension vector d = (w, h), where (x, y) is
the center of the bounding box and (w, h) are half of the size
of the width and height. Therefore, an image Λ with n objects
contains the bounding boxes b1, b2, ..., bn, bn+1.

The overview of the training pipeline of the BboxEncoder
is shown in Figure 4. During training, the BboxEncoder
receives an image Λ as the input and outputs bounding
boxes (b1, b2, ..., bK) to reconstruct the masked images (m1 ·
Λ, ...,mK+1 · Λ) by cut and crop operations on the image
Λ. BboxEncoder uses the latent variable zk to represent the
kth bounding box, namely, zpk ∈ R2 for positions, zdk ∈ R2

for the dimensions, and zpresk ∈ R for the presence of
the bounding boxes. With zpk and zdk , we perform cut and
crop operations by applying the spatial transformation with

matrix M =

[
zd(0) 0 zpk(0)

0 zdk(1) zpk(1)

]
, as illustrated in Figure

5. By applying the spatial transformation, we can get the
reconstructed images, which are expected to approximate the
masked images from MONet. It should be noted that the
BboxEncoder also models empty bounding boxes since some
masked images mk · Λ are empty as explained above. To
recognize such bounding boxes, we use variable zpresk as a
probability to indicate the presence of an object in mk · Λ.

The architecture of the BboxEncoder comprises K convolu-

tional blocks, one for each slot representing objects. Each of
them receives Λ as the input and extracts the features for the
corresponding object. These outputs are passed to three shared
multi-layer perceptrons, which outputs K vectors containing
the variables zpk , zdk , and zpresk . The architecture of the
BboxEncoder is shown in Figure 6. With zk = (zpk, z

d
k , z

pres
k ),

the loss used to train this network is:

L(Λ) = E
q({zk}Kk=1|Λ)

[
− log

K∑
k=1

p(Λ ·mk|zk)

− α · log p(Λ̄|{zk}Kk=1)

+

K∑
k=1

DKL(q(zk|Λ ·mk)‖p(zk))
]

+ β · LPC

. (7)

The first term corresponds to the probability that the bounding
box of a slot contains the object extracted by the mask.
The second term corresponds to the probability that we can
reconstruct the background by removing all bounding boxes
modeled by the latent variables. In this term, α is a binary
coefficient. We use it to activate the second term after a certain
number of training steps. Λ is the background image. Since
we are reconstructing the images with cut and crop operations,
this loss helps to create more accurate bounding boxes. The
third term is the KL-divergence of the latent variables.

The last term is an additional loss called the perceptual
cycle-consistency (PC) loss, which is inspired by [32] and
we adapt it for our solution. LPC is used to improve the
disentanglement between object representations, which means
that the appearance variation of one object is reflected only
in the corresponding latent variable that models this object
instead of other latent variables. The way to construct this loss
is described as follows. We first create an augmented latent
variable ẑi, 0 ≤ i ≤ K by setting:

ẑpi ∼ U(−1, 1), ẑdi ∼ U(−0.02, 0.02) + zdi , ẑ
pres
i ← zpresi ,

(8)
where U means the uniform distribution. Second, we create
the augmented image Λ using ẑi and the set {zk}Kk=1,k 6=i by

Λ← reconstruct({zk}Kk=1,k 6=i ∪ ẑi). (9)

We reconstruct a new image Λ by combining all the cut and
cropped images into a new image. The variables {zk}Kk=1,k 6=i
and ẑi determine the position and dimension of the correspond-
ing cut and cropped images in the image Λ. Third, we feed
Λ to our BboxEncoder Φ and we can get {zk}Kk=1 ← Ψ(Λ).
Finally, the loss LPC is calculated as the mean squared error
(MSE) between the set of variables of the original image Λ
and the reconstructed image Λ without considering the selected
index i as

LPC ←MSE({zk}Kk=1,k 6=i, {zk}Kk=1,k 6=i) (10)

In (7), we use α and β to activate the respective terms of
the losses in later training steps, since the bounding boxes are
not correct at the beginning.
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Fig. 6: Architecture of BboxEncoder. (a) Block 1 of Multi-layer perceptrons for sampling variational variables. (b) Block 2 of
Multi-layer perceptrons for sampling variational variables. (c) Convolutional layers are on the left and connect to the block of
Multi-layer perceptrons.

C. Adaption of G-HGG

In this section, we first provide a strategy to infer the index of
each bounding box to differentiate the manipulatable object and
obstacles. Second, we explain how to automatically create the
graph representation of an environment with dynamic obstacles
like G-HGG.

1) Object Index Inference: Despite the fact that the BboxEn-
coder can localize objects and extract their bounding boxes, it
is not possible to automatically differentiate different types of
bounding boxes, such as the manipulable object, an obstacle,
or an empty bounding box. To formalize this, we first define
an index set I for each representation of the object in an
environment as I = {1, 2, ...,K}. Our first step is to identify
a subset Iactive ⊂ I that represents all nonempty bounding
boxes. Within Iactive, the second step is to identify the index
of the manipulable object Im and the indexes for obstacles
Iobstacle.

To obtain these indexes, we need to sample two different
types of rollout before training. In the first type, the agent does
not perform any action, which means that the variation of one
bounding box’s position only comes from the dynamics of the
environment, so that we can get Iactive. In the second type,
the agent is controlled to perform some random actions on the
manipulable object. Therefore, we expect that, in the second
type, the position of the manipulatable object varies more than
that in the first type. Then, we can calculate the errors between
the mean positions in both types and identify the index that
corresponds to the manipulable object Im.

From the sampled rollouts, we feed the image observa-
tions to the BboxEncoder. For the first type of rollout, we
can get two sets Ap = {(zp1 , ..., z

p
K)j}Jj=1 and Apres =

{(zpres1 , ..., zpresK )j}Jj=1, which correspond to the sets of the
position and presence. For the second type, we can get one set
Bp = {(zp1 , ..., z

p
K)j}Jj=1. J is the total number of sampled

images. With Ap, Apres, and Bp, we can calculate the index
Im and Iobstacle by following Algorithm 1. With these indexes,

Algorithm 1 Object Index Inference

1: Given:
• Set of position variables Ap and presence variables
Apres from rollouts with no movement from the agent

• Set of positions variables Bp from rollouts with random
movement by the agent

• Iactive = ∅ and Iobstacle = ∅ . empty set: ∅
2: µpres = mean(Apres) . calculate mean per slot
3: for i = 1,K do
4: if µpresi > δ then . e.g. δ=0.8
5: Iactive ← Iactive ∪ {i}
6: µA,p = mean(Ap)
7: µB,p = mean(Bp)
8: di = (‖µA,posi − µB,posi ‖2), i ∈ Iactive
9: m = arg maxi∈Iactive

(di)
10: Iobstacle ← Iactive\{m}
11: Im = {m}
12: Returns: Iobstacle, Im

we can extract the position and dimension of each bounding
box from the environment, namely, bm and bi, i ∈ Iobstacle.

2) Distance Graph: In order to select intermediate goals
that are reachable for the agent to reach, we need to create
an obstacle-free graph as a representation of the environment
where the space occupied by obstacles are removed. Detailed
explanation about building the obstacle-free graph can be found
in [3]. The space covered by the bounding box of each obstacle
is considered as an obstacle. Therefore, we need to calculate the
dimensions of the bounding box of each obstacle. In contrast to
G-HGG that defines GA using the localization information of
an obstacle from the environment, we obtain this information
from the proposed BboxEncoder. For the same reason, G-
HGG is only applicable to stationary environments, while our
method can be used in dynamic environments. Specifically,
we first estimate an obstacle space Gobstacle, so that ∀g ∈
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Gobstacle =⇒ g /∈ GA. Since the obstacles are constantly
moving, Gobstacle also changes at every timestep. An ideal
option would be to estimate a distance graph at each timestep,
but creating such a graph is not practical due to the computation
burden and the memory constraint. In this paper, we only
consider a region that is constantly occupied by an obstacle as
Gobstacle. Then, we can locate such a region Gi by calculating
the position boundaries xi,min, xi,max, yi,min, yi,max of the
ith obstacle. Finally, we can get the overall Gobstacle as

Gi := {(x, y) ∈ G|xi,min ≤ x ≤ xi,max, yi,min ≤ y ≤ yi,max}
(11)

Gobstacle :=
⋃

i∈Iobstacle

Gi (12)

To estimate xi,min, xi,max, yi,min, yi,max, we consider the
bounding box for ith obstacle with its width wi, height
hi and coordinates of the center that are collected during
rollouts, namely, X = {xi,1, xi,2, ...} and Y = {yi,1, yi,2, ...}.
We calculate xi,min = max(X) − wi, xi,max = min(X) +
wi, yi,min = max(Y )− hi, yi,max = min(Y ) + hi. Here we
estimate the region Gi that is covered by the obstacle through
the whole episode. If xi,min > xi,max or yi,min > yi,max,
we set Gi = ∅, since there is no region that the obstacle will
always occupy.

D. Extension of States and Sparse Reward
In this subsection, we first present the extension of the

observation state with the information of the bounding boxes.
Second, we provide a multi-objective sparse reward so that the
agent can learn better obstacle-avoiding behavior.

1) State Extension: To properly evade dynamic obstacles,
the agent needs to observe the movement of obstacles at every
timestep, and these observations can be obtained using our
BboxEncoder. In this work, we extend the state representation
with additional information as follows:
• positions of the manipulable object: (xtm, y

t
m)

• positions of ith obstacle: (xti, y
t
i)

• velocity vti = (vtxi
, vtyi) of ith obstacle:

vtxi
=
xti − x

t−1
i

∆t
, vtyi =

yti − y
t−1
i

∆t

• coordinate angle between ith obstacle and the manipulable
object:

αti = tan−1(
yti − ytm
xti − xtm

)

• minimal distance dti between ith obstacle and the object:

e1 = |xtm − xti| − wtm − wti , e2 = |ytm − yti | − htm − hti
l = (max(0, e1),max(0, e2))

dti = ‖l‖2

• distances cti = (cti,1, c
t
i,2, c

t
i,3, c

t
i,4) to corners of ith

obstacle from the center of manipulable object:

cti,1 = ‖(xti − wti − xtm, yti − hti − ytm)‖2

cti,2 = ‖(xti + wti − xtm, yti − hti − ytm)‖2

cti,3 = ‖(xti − wti − xtm, yti + hti − ytm)‖2

cti,4 = ‖(xti + wti − xtm, yti + hti − ytm)‖2

. Finally, the extended state s̄t is described as

s̄t = ( st︸︷︷︸
original state

, xtm, y
t
m, x

t
1, y

t
1, ..., x

t
i, y

t
i , v

t
i , d

t
i, c

t
iα
t
i,︸ ︷︷ ︸

measures for ith obstacle

, ...

︸ ︷︷ ︸
measures for all obstacles

).

(13)

The original state st = Sint is described in Section IV.
2) Sparse Reward Modification: By observing the experi-

ment, we notice that the agent can reach the target goal even
after colliding with the obstacles in the process of completing
the task, which should be punished since we expect the agent
to finish the task in a collision-free manner. Prior work tackles
this problem by designing a dense reward that is related
to some measurements to the obstacle to achieve collision-
free movement. However, designing an adequate task-tailored
reward is challenging and time-consuming.

To balance the simplicity of using sparse rewards and the
expected task-driven behavior, we propose a multi-objective
sparse reward, which is a conditioned binary reward function
with different magnitudes for each objective. Specifically, the
multi-objective sparse reward is defined as

rg(s) :=


η, if collision
0, if fg(s) = 1

−1, otherwise.
(14)

The additional reward η is a constant value that is designed to
punish the collision, which can be viewed as a hyperparameter.
When the agent collides with any obstacle, it will be given
a reward η < −1. While the agent fails to reach the goal
without colliding with any obstacle, it will be given a reward
−1. Only when the agent reaches the goal successfully, will it
be rewarded with 0. Experiment results show that the smaller η
is, the easier it is for the agent to avoid the obstacle. However,
if η is too small, the agent may not learn anything, since it
avoids proximity to the region where the obstacle moves, even
if it is necessary to reach the goal. Examples and detailed
illustrations are given in Section VI-C. The collision condition
is triggered when dti ≤ 0.

E. Algorithm Overview

The overall Bbox-HGG algorithm is provided as Algorithm 2.
The BboxEncoder is pre-trained with the image dataset and
MONet. Line 1 implements the object index inference algorithm
presented in Section V-C1. From line 3 to 10 G-HGG is
implemented with the modifications presented in Section V-C2.
Lines 15 and 18 implement the modification of the state
representation explained in Section V-D1. The code of Bbox-
HGG is available at here1.

VI. EXPERIMENTS

In our experiments, we compare the performance of Bbox-
HGG against G-HGG and HGG on four challenging tasks.

1https://github.com/erick-alv/HGG-extended-master

https://github.com/erick-alv/HGG-extended-master
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Algorithm 2 BBOX-HGG

1: Given:
• Pretrained BboxEncoder: Ψ . See Section V-B
• Policy and value networks: θ, φ

2: Sample transitions and encode them with Ψ to infer objects
indices Iobstacle and m . See Algorithm 1

3: Sample new set of transitions to estimate Gobstacle and
modify GA . modified G-HGG

4: Construct graph G=(V, E) and precompute distance dG .
G-HGG

5: Initialise θ and φ
6: Initialise replay buffer D
7: for iteration do
8: Sample targets tasks {(ŝi0, ĝi}Mi=1 ∼ T ∗ and render

goal images {giimg}Mi=1

9: Encode images Ψ, get coordinates with algorithm 1
and index m: {(zpm)i}Mi=1

10: Find trajectories and goals gi by optimizing (3); using
dG and coordinates obtained with algorithm 1 . modified
G-HGG

11: for episode do
12: (s0, g)← (ŝi0, g

i)
13: for t = 0, ..., T-1 do
14: Get states st and image imt

15: Extend st to s̄t . See Section V-D
16: at ← πθ(s̄t‖g) +Nt
17: Perform at, get st+1 and render imt+1

18: Extend st+1 to s̄t+1

19: Store (s̄t‖g, at, rg(s̄t+1), s̄t+1‖g) in D
20: for t=1, ..., N do
21: Sample a minibatch B from D using HER
22: Optimize θ and φ using DDPG with B

Moreover, to provide a ground truth, we also test our algorithm
by replacing the bounding box information obtained from the
BboxEncoder with the real bounding box information retrieved
from the simulation.

A. Environments

To demonstrate the effectiveness and advantages of Bbox-
HGG, we create four new experimental environments on top
of the well-used benchmark environments developed by [19].
All our tasks are simulated in MuJoCo [28], in which a Fetch
robot with a gripper is controlled to push a puck through
environments with dynamic obstacles. These tasks share the
following characteristics:

• The agent receives a state containing the joint positions
and velocities of the robotic arm. This information is
directly retrieved from the simulation. This state is
additionally extended as described in Section V-D1.

• The objects in the environment are located on an 0.5 m
square table. The images used for the BboxEncoder are
captured from a camera located 2.1 m above the table.
The camera’s field of view is 15◦.

• The robot is controlled by a three-dimensional vector
describing the end effector’s position. There is no control
over the gripper since we only have pushing tasks.

• The accessible goal space GA is defined by a 2D region
on the table.

1) FetchMovingObstacle: (Figure 7a): In this environment,
the robot must push the manipulatable object (red puck)
from its initial position to the goal position (sample from
the green region). The start position of the object is selected
randomly inside the shaded red region. This environment only
contains one obstacle (blue cube) that moves in the shaded-blue
region along the x-axis. At the beginning of each episode, the
obstacle’s velocity is randomly sampled from an array, which
begins at 1 m/s and ends at 1.5 m/s with an interval of 0.05
m/s.

2) FetchMovingCom: (Figure 7b): The task in this environ-
ment is the same as FetchMovingObstacle and the respective
areas are marked with the same color. In addition to one
moving obstacle, there are another two static obstacles in this
environment. The robot has to push the puck to pass through
the free space between the yellow obstacle and the moving
obstacle, which is not big enough for the puck to pass all the
while and the agent must wait for the right moment when the
space is big enough.

3) FetchDoubleObstacle: (Figure 7c): In this environment,
the goal is to push the puck to a goal position passing through
two dynamic obstacles that move in opposite directions to each
other. The velocity of each obstacle is independently sampled
from an array, which begins at 0.6 m/s and ends at 1.1 m/s
with an interval of 0.0167 m/s.

4) FetchSlideObstacle: (Figure 7d): In this environment,
the robot must slide the puck to two target goal regions. The
simulation samples a goal randomly from one of these two
regions at the beginning of each episode. The obstacle moves
along the y-axis obstructing the puck from reaching the goal
and forcing the agent to act at the right moment when it is not
blocked. Detailed descriptions of these four environments are
introduced in Appendix A-B.

B. Results

We tested Bbox-HGG on the four environments to compare
its performance with G-HGG, HGG, and the ground truth
from two sets of results, namely, the training sample efficiency
and the testing success rate of the best policy. It should be
noted that HER is not examined in this paper, since G-HGG
has demonstrated that HER can not solve manipulation tasks
with obstacles [3]. To examine the training sample efficiency
(Figure 8), we only compare the median success rate against
the training iteration without considering no collision as a task
completion condition, since we expect G-HGG or HGG would
fail to finish the task without receiving any information about
the dynamic obstacles. The testing success rate (Figure 9) is
calculated by averaging the performance of the best policy from
each algorithm in 100 episodes. It should be noted that the
ground truth results (labeled as "Real") are generated by running
Bbox-HGG with the true information about the bounding
boxes from the environment instead of estimating them via



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) FetchMovingObstacle (b) FetchMovingCom (c) FetchDoubleObstacle (d) FetchSlideObstacle

Fig. 7: Robotic manipulation environments.
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Fig. 8: Learning progress of the median training success rate (line, without considering any collision behavior) and interquartile
range (shaded) of Bbox-HGG, G-HGG, HGG, and the ground truth of Bbox-HGG (Real).
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Fig. 9: Success rates of the collision avoidance testing of Bbox-HGG, G-HGG, HGG, and the ground truth of Bbox-HGG.

the BboxEncoder. These tests have a tolerance parameter
N ∈ {0, 2, 4} for the number of collisions that can be allowed
per episode. If the number of collisions surpasses N , then the
episode is terminated as a failure. The most remarkable results
can be observed, in all four environments, Bbox-HGG can
learn obstacle-avoiding behavior with a similar success rate
across different numbers of tolerance parameters, while the
other algorithms are not able to solve any of the tasks.

In the FetchMovingObstacle environment, as shown in Figure
9a, while G-HGG and HGG display an almost zero success
rate with different collision tolerances, Bbox-HGG reaches a
minimum average success rate of 80%, increasing to over 90%
when N = 2. The error bars also indicate that Bbox-HGG has a
robust performance and gets more accurate when the tolerance
increases. As shown in Figure 8a, Bbox-HGG also exhibits
the best training success rate and yet has as competitive a
sample efficiency as HGG. Since the obstacle moves along
the whole table and leads to Gobstacle = ∅, our algorithm is
still able to learn obstacle-avoiding behavior with the help of
our extended state and multi-objective sparse reward, which
makes the agent more cautious when passing the area of an
obstacle. Surprisingly, we find that our Bbox-HGG achieves

even better performance than the ground truth that uses the
real information about the bounding boxes. We believe that,
since the coordinates obtained from the Bbox-Encoder are not
rigorously accurate, the agent learns to keep some security
distances around the obstacle to guarantee its success.

In the FetchMovingCom environment, as shown in Figure 9b,
Bbox-HGG achieves a success rate of 40% with zero tolerance
of collision and increases to around 80% with N = 2, since
the safe space is very tiny for the object to pass through.
However, HGG or G-HGG still achieves almost zero success
rates across different tolerances. As shown in Figure 8b, G-
HGG has better sample efficiency than Bbox-HGG without
considering the collision. This is because the obstacles are
not challenging enough to prevent G-HGG finishing the task
without considering any collision. On the other hand, Bbox-
HGG is more cautious when passing through the obstacles.
This result is also demonstrated by Figure 11a, where G-HGG
is equivalent to G-HGG when the collision sparse reward
η = −1. Similar to the results of FetchMovingObstacle, Bbox-
HGG still exhibits slightly better performance than the ground
truth approach in terms of success rate and sample efficiency.

The FetchDoubleObstacle is an environment extended on
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the basis of FetchMovingObstacle, in which two obstacles
are moving in opposite directions with randomly sampled
velocities. As shown in Figure 9c, Bbox-HGG is still able
to solve the task with a success rate over 80% with a small
tolerance (N = 2), which outperforms G-HGG and HGG. As
shown in Figure 8c, Bbox-HGG exhibits slightly better sample
efficiency than HGG and eventually peaks at around 90%. The
ground truth still shows better performance than Bbox-HGG,
since the narrow gap between the two obstacles requires more
accurate representation information about the environment.

The FetchSlideObstacle task is challenging since the two
target goal spaces are separated from each other, which makes
it a multi-task RL environment that can not be perfectly solved
by HGG or G-HGG even without the obstacle. Nevertheless,
Bbox-HGG still yields better results than the other algorithms
in terms of success rate and is clearly more sample efficient.
As shown in Figure 9d, Bbox-HGG can achieve a success rate
of 30%, while G-HGG and HGG display no success rates. As
shown in Figure 8d, HGG suffers from a very bad sample
efficiency since the object is very close to the obstacle and
Bbox-HGG gradually increases its success rate during training.
In this environment, the ground truth approach shows better
performance since the object is too close to the obstacle, which
requires accurate information to move forward.

C. Ablation Study

We first provide an ablation study on the collision reward η,
which is manually designed in the multi-objective sparse reward
as defined in (14). Figures 10 and 11 illustrate the training
success rates and testing success rates with different collision
tolerance parameters for Bbox-HGG in FetchMovingObstacle
and FetchMovingCom. In line with our main results, Bbox-
HGG can learn outstanding obstacle-avoiding skills in both
scenarios with minimum effort on designing the multi-objective
sparse reward. In both scenarios, we can find that a small
η is helpful to achieve better testing success rates with
different tolerance parameters (Figure 10b and Figure 11b),
for example, η = −5 has better performance than η = −3.
However, a low value η = −10 leads to worse success rates
(FetchMovingObstacle) or even failure to solve the task at
all (FetchMovingCom), since the excessive collision penalty
makes the agent unable to move to target goals without being
worried about colliding with any obstacles. For the same reason,
we can observe that the sample efficiency increases with η
consistently (Figure 10a and Figure 11a), where η = −1
exhibits the best sample efficiency while η = −10 yields the
worst sample efficiency. Despite Bbox-HGG being generally
robust to changes in η, we recommend rough parameter tuning
on the collision reward for each scenario.

We second provide an ablation study on Bbox-HGG with and
without the extension of states and sparse-reward. Due to the
page limit, we choose the FetchDoubleObstacle environment
as the example to show the performance. Figure 12 shows the
training success rates and testing success rates with different
configurations, namely, the full Bbox-HGG, Bbox-HGG with-
out state extension, and Bbox-HGG without reward extension.
Bbox-HGG achieves over 90% success rate during training
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Fig. 10: Ablation study of η in FetchMovingObstcle.
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Fig. 11: Ablation study of η in FetchMovingCom.
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Fig. 12: Ablation study on Bbox-HGG without state extension
or reward extension in FetchDoubleObstacle.

and 60% success rate during testing with a tolerance parameter
N = 0. However, Bbox-HGG without state modification can
not solve the task at all since it lacks the information of the
obstacles. Bbox-HGG without reward extension is similar to
G-HGG since it only receives a simple sparse reward. This
configuration achieves better sample efficiency than Bbox-
HGG during training and very bad testing success rate when
considering the collision behavior. As explained before, the
better sample efficiency achieved by Bbox-HGG without reward
extension is because it does not consider the collision behavior,
which can be demonstrated by the testing success rate. In
Figure 12b, the success rate of the Bbox-HGG without reward
extension drops significantly, while the full Bbox-HGG is able
to perform well. In brief, the results demonstrate the state and
reward extensions are important for Bbox-HGG.

D. Discussions and Limitations

Although we have extensively evaluated Bbox-HGG in
simulations, our method is still applicable in a real-world
setup. For instance, to generate the image dataset automatically
in the real world, a camera can be mounted on the ceiling
to capture images of the environment, where the robotic arm
can be controlled to move the objects randomly for different
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setups. This has been proven to be applicable by many works,
such as [13], [22], [33]. To ensure a successful sim-real policy
transfer, we can first increase the simulation fidelity and use
domain randomization technology to improve the robustness of
the policy learned in the simulation. Some similar ideas can be
found in [24], [18], [26], [12]. There are a few limitations of
the proposed method that can be studied for future work. For
example, we only consider 2D information about the obstacles
that the agent can move around, while there are 3D obstacles
in the real world. Therefore, we also disable the gripper control
of the agent, which can be further utilized to avoid obstacles.

VII. CONCLUSION

This work introduces a novel automatic hindsight goal gener-
ation algorithm, Bbox-HGG, which is an extension of HGG and
G-HGG for challenging manipulation tasks in environments
with both static and dynamic obstacles. Specifically, we first
propose a BboxEncoder that can estimate the bounding box
information for each object in an environment. According to the
bounding box information, we second design an automatic way
to create a valid graph for computing an obstacle-free graph,
extend the observation state, and modify a multi-objective
sparse reward. Experiments on four different challenging object
manipulation tasks demonstrate the superior performance of
Bbox-HGG over HGG and G-HGG in terms of both learning
efficiency and maximum success rate. For future work, we
aim to improve, extend, and deploy Bbox-HGG in real-world
applications. For instance, first, it would be an important
advance to bridge the gap between theory and practice by
deploying a policy learned with Bbox-HGG to a physical robot.
Second, we are positive that Bbox-HGG could as well be
applied to more diverse tasks with even better object recognition
solutions. Last, it would be very interesting to investigate how to
solve similar tasks only using one-dimensional sparse rewards.

APPENDIX A
EXPERIMENT SETTINGS

A. Dataset Generation

To create the images, an environment is set up in the
following manner. The table is created with a box with center
at (1.3, 0.75, 0.2)T and dimensions (0.5, 0.5, 0.4) for width,
length, and height. The camera is positioned at (1.3, 0.75, 2.5)T,
is pointing at (1.3, 0.75, 0.2)T, and has 15◦ as the field of view.
When rendering an image, the table is set invisible. The number
of instantiated objects is limited by nmax = 4. The number of
rectangles nrect in an image is selected from {0, 1, 2, 3} with
probabilities (0.3, 0.2, 0.3, 0.2), the number of cylinders ncyl
from {0, ..., nmax−nrect} and the number of cubes ncub from
{0, ..., nmax − nrect − ncyl} uniformly. Each of the objects is
created with the factors listed in Table I. Values are selected
uniformly from the given range. In addition, each object has a
color from the set {red, green, purple, yellow}.

B. Environment Settings

For our experiments, the agent was trained during E epochs
and C=20 cycles. Each iteration comprised M = 50 episodes
of T time steps.

TABLE I: Factors of variation of objects dataset

Object type Factor of variation Range

Rectangle

Height {0.02, ..., 0.035}
Width {0.02, ..., 0.04}
Length {0.08, ..., 0.25}

Rotation z axis {0◦, 90◦}

Cylinder

Height {0.02, ..., 0.035}
Radius {0.035, ..., 0.08}

Rotation x axis {0◦, ..., 180◦}
Rotation y axis {0◦, ..., 180◦}

Cube

Length {0.02, ..., 0.035}
Rotation x axis {0◦, ..., 90◦}
Rotation y axis {0◦, ..., 90◦}
Rotation z axis {0◦, ..., 90◦}

TABLE II: Parameters for environments

Environment E T

FetchMovingObstacle 30 100
FetchMovingCom 25 100

FetchDoubleObstacle 30 100
FetchSlideObstacle 30 50

In addition, for the proximity tolerance to a goal, we select
δg = 0.05. The regions to sample target goals and start position
are in Table III. The configuration of the obstacles is listed in
Table IV. The fourth column shows the axis where the obstacle
moves, and the lower and upper limit in this axis. The fifth
column indicates how many equally distant samples are taken
from the velocity range; these are then used for the random
selection of a speed at the beginning of an episode.

TABLE III: Start and goal regions

Environment Region Range x-axis Range y-axis
FetchMoving-

Obstacle
Target goal (1.28, 1.32) (0.55, 0.59)

Start position (1.28, 1.32) (0.91, 0.95)

FetchMoving-
Com

Target goal (1.37, 1.43) (0.67, 0.73)
Start position (1.08, 1.12) (0.63, 0.67)

FetchDouble-
Obstacle

Target goal (1.28, 1.32) (0.55, 0.58)
Start position (1.28, 1.32) (0.92, 0.96)

FetchSlide-
Obstacle

Target goal 1 (1.57, 1.73) (1.07, 1.17)
Target goal 2 (1.57, 1.73) (0.33, 0.43)
Start position (0.7, 0.8) (0.09, 1.12)

TABLE IV: Obstacles configuration

Environment Obstacle
Dimensions

(x, y, z)

Movement:
axis

limits

Velocity:
n-samples

range
FetchMoving-

Obstacle
Blue

obstacle (0.09, 0.03, 0.025)
x-axis

1.05; 1.55
10

(1, 1.5)

FetchMoving-
Com

Blue
obstacle (0.09, 0.03, 0.025)

x-axis
1.24; 1.55

20
(0.3, 0.5)

Purple
obstacle (0.3, 0.02, 0.04) none none

Yellow
obstacle (0.02, 0.15, 0.04) none none

FetchDouble-
Obstacle

Blue
obstacle (0.1, 0.02 0.035)

x-axis
1.05; 1.55

30
(0.6, 1.1)

Purple
obstacle (0.1, 0.02 0.035)

x-axis
1.05; 1.55

30
(0.6, 1.1)

FetchSlide-
Obstacle

Blue
obstacle (0.04, 0.17, 0.1)

y-axis
0.31; 1.19

30
(0.9, 1.2)
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