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1. Intréduction
With few exceptions structural reliability methods so far concentrated on
sozcalled first-passage failures, i.e. failure upon completion of a struc-
ture or failure under individual or combined stationary loading and random
but essentially non-deteriorating system properties. Also, the computation
of the reliability of structural systems now appears possible - at least
in the time-invariant case and in a few simplier cases of time-dependent
reliability. Only recently, strength degradation problems began to deserve
.L‘he interest structural failure statistics suggest. The reliability metho-
dology as available as of yet for these problems appears still much less

developed than for first-passage failures - not to mention that degradi

structures were and will be inspected, maintained or repaired. In fact, the
systems and deterioration aspects bring up a whole set of new questions
which are common and partially solved in classical reliability theory but
appear to be not even touched in structural reliability approaches.

Rather than asking for the probability of structural

tem failure in a

given reference time one now might ask in addition for the best inspection

strategy, the number of maintenance and/or repair actions, and the portion
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I time a structural facility cannot be used as designed due to these

n

cperations. Even if one restricts the considerations to the special

frequently not unrealistic case where the facility is simply put out of
1 } gs

function for the times of maintenance or repairs, i.e. neither the system
nor any of its components can fail or deteriorate during these times, the

case.

-~

the computations become much more involved than in the time-invariant

In the folliowing, setting out from some well-known results the formu-

lation of the time-dependent failure probability of systems with not load-
induced smoothly varying componental failure domains is given. Some
preliminary comments on deteriorating systems and maintenance and repair

problems are presented in the final section.

—Deteriorating Cut Set Systems

If the joint distribution of times to first failure in each component of a

structural system were known, the system failure probability would be given
¥ P Y g

by
() = { )
Pe(t) = () (M) Fyy) (1)
: J
with Fjj: ;Tij"t}, the componental failure event and U N F.. the minimal
1]
(disjoint) cut set of failure events. The cc iponental time to failure ’ .

distribution, however, is hard to assess even for simple components. It can

be bounded from the above by
t
F(t)=P,(t)SP_(0) + [ v (nar
o]
where

(3)

V(T) = lim z P(X(T)ES N X (T+A) EF)
ﬁ — —
&+
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is the unconditional outcrossing rate (intensity) of the vector load

process X(T) crossing the boundary of the safe domain 8 towards the exterior

failure domain F. For simplicity, the bour S is assumed to be time-
invariant. From its derivation it is known that the inequality (2) derives
from the fact that the actual of is replaced by the

mean number tion, the condition that
the process an exit can occur is

conservatively neglected and, hence, making the outcrossing rate slightly

different from the unconditional failure rate (renewal, failure intensity)
defined in classical reliability. assumes the validity of the last
condition just mentioned. The fact, that eq. (2) does not assume any
particular form or structure of failure event, let one
conclude its validity for arbitrary failure events of complex systems in

the space of ; too. As kno
or analytical solutions one of
written in a alized form, is
1 P
(r) 1 ~ P(X(T)ESNX (T+A)EF)
1 n
lim T l’(U(X\'l‘.wS\ l“"_.‘\'i +A) )EF))
\~+0 i=1
1 n
e K H\(xn}.::M’(_x_\ﬂ:».‘;xim-.‘.!!':?i-') (4)
bl 5
: - i : T ‘
where X (T) qxlll),,..,xl(ll) and Axilt+j) the change of the i-th
I r

component of X(T) during [tT+A). One recognizes that the event that X(T)
leaves the safe domain in the small (unit) time interval is first decomposed
into the union of events where an exit can occur due to an cutcrossing of
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[ 1 114 i t=t iX(t)+ X 5x,,t=t,) can be given. Then, the first-orde liabilits
one component of X(t) in [T,1+A] whose probability clearly is bounded JIL i =2/ 2 il 3. Theny. Lt irst-orce eliability

techniques can be applied. The crossing probabilities in eq. (5) may further

dividual probabilities. As usual, the

he above by the sum of the i

from t

< " be bounded from the above by mak use of P(NA.) & min P(A ) where th
sing event in [T,T+A] is neglected, . ¥ ¢ A) in P(A,) where the

of more than one outcix

d ; events A, refer to time T. In particular, one may delete the event
£ zero order. The step leading to the last line of i F ' Y sy

\ i EF_ ) is
eq. (4) is, in fact,crucial for any computationally amenable result in the 2 s
I smallest so that
analysis of many time-dependent because the same concept is now .
y m
applied to the components of a cut set (parallel system which fails if all
i "’lk YN{X(T+ )} (5a)

xperienced an outcrossing of their safe domains). Hence, if the

in the k-th cut set of a system is m, and the

3 £ srossings i i - - i *
possibility of one or more outcrossings in the interval [t,t+A] in the A

fails if any of the components

dependence among

Under the same

to max {P((X(T)E

]
to the union operation.

i -
A A T 1 o 2
= ,_)i(‘-.*"-;)Erj.l m (X(T)EF ) J) The unconditional failure rate of whole is the probability
r=1
r#j per unit time that none of the total of K cut sets exists at time T
m
- k one or more cut sets fail in the interval ~
< “"i ) (X(TIEF_))
o0 =1
o 1
n m Vv ( ] = ‘Ei >
_ n k P il: A
$ lim i IN(X, (T)ES,) ) (X(TIEF))  (5) 0
SR\ i=1 i o o F e e ¥
& r=1 .
r+j R *
) = lim T N c'y]
/ k
o A0 k=1
set failure can only occur if the process has been in s.N F.
r=1 1 »
P S lim P P(C ) 6)
at time T which generally is a small probability event and then an 3 R A ( e .

outcrossing occurs due to a change during time A in any of the components

K
i 1y of the omponents, Eg. (5) can be evaluated at least e L6 : SvA- Al *
of 5 in any of the system components. Eq (3) can sl i } mck is the event that at time T no cut set is in a failure state. Lk
k=1
numerically once the second order distribution F(x,,t ix :tz)frp(i(t)-‘il’ t

1°=2

he event that the k-th cut set experiences failure in [T,T

tet, NX (t) $x.

1 t,) =P (X(t)ax,,

2;t=t2) or even simplier I-‘(El, r;l,- ilﬂ'\xiz, 9
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3. Some Preliminary Formulations for

- 3 & e ident it A 4
(5). The second line makes use of the identity Deteriorating Systems

explicitly in eq.

P(AfB) = P(B) = p(ANR) . The first ineguality sign results from neglecting The same type of formulation does not appear to be useful for deteriorating

s probability that at systems, i.e. systems whose propert

the second term in the second line which simply is on the load history and

time T one or more cut sets are already in a failure state, Its probability especially for those where the load on depends on the number
clearly is always smaller than the first and should be relatively small for and the type of

high-reliable systems. The second inequality is the well-known upper bound

for unions of events. Inserting now the upper bound (5) yields e, series syst

critical deterioration state.

v_{1) = lim = L 5 L P((}c('r)‘n\xi_('rw\)(F’jk)u

/ rird

K mk n
o

Ao T k=1 §=1 i=1

mk nd makes “n
NX(MESs, ) N (X(DIEF ) (7)

r=1

r#+j

In principle, the event in the first line of eq. (6), especially C'k, could

have been written out. The formation of a cut set representation, however,

dx, (t)
now amounts to an enormous number of cut sets of considerable length whose _;__ = (8}
atc (8

numerical computation might be possible only for relatively small systems

As an alternative the bound (7) is proposed for a numerical analysis which
which upon integration yields
at the most involves K'mk'n (mk+1)-dimensional intersections. Practically, r.

one might concentrate only on the dominant cut-sets which then either yield £ £
: (X, (£)) - G, (E))) ™ [ ac], of [ g,15,¢
more or less reliable estimates or upper bounds to eq. (7). In passing it 9 t RS
(5 o
is alsoc noted that lower bounds for ‘\)F[ﬂ appear difficult to assess. Finally, (9

it should be observed that the developments given so far are very much in
if Z(t) resp. g(Z(t))

accordance with the formulations in classical reliability where the comput-=
the central limit theorem holds and where X, (t )} is the damage at time L .
ations facilitate greatly if the componental failure events can be assumed ; o
Let, for simplicity and without sub generality, g (Z{t)) =
- 1

to be independent (see, for example, Henley/Kumamoto, 1981).

1i1’-(t) be positive white noise with andard deviation 1.9 and
i

hi'xi(t)) = t‘i a random component property. Then,
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P(max {X (T)}sx) = P(X,(t) & x - X,(t))
(e .t]

5 —t_)-X, (t)
x-[c 1, mt-t )-X, (€, ] s

=

-t
c,10 vt .

is the probability distribution of the damage at time t and with a; the
critical damage threshold and Ci=1'

a -[lim(t—tc)-xi(to) ]

P(TiSt)=¢( (11)

1,0 /t-to

is the probability distribution of the time to first failure of the i-th

system component. In rewriting the failure event as

{a (12)

P, (t) = - (X () - X, (£)) 5 o}

i

and transforming it into the independent normal space
t =
?1( )

-1 =
{F"i W“u”"“"ci (9, )11, (m(t-t )

-1
= 3
+uo %3 Bl s [¢(U13),to]) s o} (13)

with F;I[ ] the inverse distribution function of the j-th independent

Ol

e
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random variable, shows that first-order reliability methods can be applied
to evaluate eq. (11) for arbitrary distributional assumptions for the
initial damage xi(to) » the material property C:L and the threshold a,. It
follows further that the failure probability of a series system as given

by

Fs(t) = U ?i{t) (14)

can be calculated in the usual way (Hohenbichler/Rackwitz, 1983).
Parallel systems appear to be more difficult to compute. Assume a

certain sequence of component failures and eonsider the i-th component

failure. Clearly, eq. (13) holds where 1, now is the load distribution

i
factér for this system state. The initial damage is the random damage xi(to)

accumulated in the i-th component at t =T

e Py the random failure tiwme of

the (i-1)-th component. But the distribution of both quantities conditioned
on the failure time of the (i-2)-th component is known. Therefore, the
failure event of the n-th component can be given in terms of the states
and failure times of the previously failed components. And if there are N
exhaustive and mutually exclusive component failure sequences the system

failure probability simply is the sum over all sequence probabilities.

In practice, only a few dominating sequences may have to be evaluated
and even then each sequence may be truncated after a few component failures
since load redistribution shortens the survival time of the remaining
components considerably. Numerical studies for equal load-sharing systems
indicate that at least for smaller systems the study of only the first two
or three component failures is sufficient. It should be noted that since
eq.

(11) resp. (13) is nothing else than the first passage time distribution

of failure times at time t of the parallel system, the (numerical) derivative
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with respect to t is the unconditional failure rate and, thus, can be inter- repair. However, much further research work needs to be done in this area.
preted as the unconditional cut set failure rate. Therefore, the consider-
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4. Summary

Present formulations of structural reliability cover component reliability r.
under rather general circumstances but system reliability only

for time-invariant systems. The purpose of this paper was to extend the
formulations to time-variant non-deteriorating and, at a still modest level,te
deteriorating systems. It focuses at formulations and solution procedures

in the context of the first-order reliability methodology which, in fact,

appears to be the key to handle various dependencies which might exist

between systems components. Solutions, even numerical ones, are urgently

needed in order to get hold of the important questions of maintenance and

al




