Sensitivity and importance measures

in structural reliability---
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In multivariate reliability problems, whi
a sensitivity factor xg¢[t] is defined as t

ch depend on one or more parameters t.
he derivative of the equivalent reliability

index fe(t) = —¢~"(P,(r)] with P (1) the failure probability. z¢ [t] expresses the
change of fe(t) due to small variations of t. Since the numerical evaluation of
¢ [t] is usually impractical. an approximation x¢[t] = z[1] is derived. which is

asymptotically exact for extreme reliability levels.
given. The approximation zg[t]:a[7] also

Simple formulae for x[z] are
provides the basis for a better under-

standing of the commonly used alpha values & = —1/Bu* as importance

measures for stochastic variables.
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The so-called first- and second-order reliability methods
(see, for example, references 1 and 2 and the references
given there) are mainly concerned with approximations
for the failure probability P, or the equivalent (gen-
eralized) reliability index fg = —¢ ™ '(P¢) of multivariable
reliability problems, where ¢(.) is the standard normal
integral. The notion of generalized safety index has been
introduced in reference 3 in full rigour. It has been
proposed as an alternative reliability measure to the
failure probability. Given a vector X=(X;.-» X)) of
random varables, the failure event is formulated as a
subset F of the n-dimensional real space. Failure occurs,
if and only if X attains a value in F,. Thus, {XeF,}isthe
failure event, and P, = P[X e F,] the failure probability.
For the special case that X=U= (U,, -.-, U,) collects
independent, standard normal variables U;, the first-
order approximation for fe[F]= —¢ " (P[UEeF)) is

simply:
BelF1= BLF] (M
where:
i _ [+l O¢F
Bwﬂ[ﬂu{_“u.u' OcF

is the safety index introduced first by Hasofer and Lind*
and the beta-point «* is the point on the boundary of F
with minimal distance to the origin. Throughout the
paper. it is assumed that only one beta-point exists. and
that f# = B[ F] is strictly positive. All results to be given
also apply, nevertheless. to negative safety indices by
passing over to the complement 8= RANE

In addition to the safety-index fi. the alpha-values:
- uf (22}
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are considered to be the second important element in the
first-order reliability method. They appear as coefficients
of U, in the first-order linearization H of F at the beta-
point u*:

{UeF}x{UeH}={i: :,~U,-+_8<0}
={Z+B<0} (3)

and satisfy the normalizing condition:

o =1 4)

||'l\/] a

-

=

They are interpreted as importance measures for the
variables U,; a variable with absolutely large alpha-value
%, is considered to be stochastically important. This

interpretation appears to have been given first in reference

3

Furthermore. it has been observed that x, reflects the
dependency of fe[H] = B[ H] on a small variation of the
mean value g, of the basic variable U;. Replacing U; by
U, + u;, the reliability index of a linear failure event H
= lu: T xu, + f < 0] changes according to:

Be(w) = fe[T2(U; + 1) + B <0]
=0+Z x4 (3)

or (for linear (ailure boundaries):

¢ ﬁqs(l-‘) B (6)
Gl
Finally, it is casily verified thut. in the lincar case, %, is the
correlation between the state variable Z in Eq (3) and U;.
In the following. it is shown that the artificial
restriction to a special parumeter and to lincas farlure
events is unnecessary. A more general and intuitively clear
definition of alpha-values wili be given. for which then
first-order approximations are derived. The alpha-values
7, as deseribed before will appear as spectal cases in that
sencral framework,
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Sensitivity factors of parameters

Let the distribution of the basic varable vector X(t)
= (X ,(th.... X, (1) be arbitrary and depend on a vector
t=(1,. .=.. t,) of parameters, which is bricflv called
parameter t. In general. the dimension k of the parameter
t differs [rom the dimension n of X. Each of the parameters
7, may be related to a single variable X, but also to some
or even all of them. According to reference 6. X{r) can
alwavs be written as a vector-valued function:

X(x) = T(U, t)= (T (Ut )i vas TH(UT)) (7)

of a vector U=(U,, ..., U,)’ of independent. standard
normal variables; since the distribution of X{ t) depends
on the parameter, so does the transformation T = T(x).
Given now a failure domain F, in the space ol x-variables
(failure occurs if and only if X{¢) attains a value in F ), the

failure event can also be expressed in the space of the U-
vanables («-space):

{X()eF .} ={T(U v)eF,; ={UeF(1); (8)
with:
F(r) ={u:T(u. t)e F,} 9)

On the other hand, if F, = F_(t) depends on a design
parameter, which usually occurs as a parameter of a limit
state function g.(-, t) = g.(x, 1), and X =T (U), the failure
event transforms into the u-space according to:

{.\'EFI(‘()}={T(U)€Fx[t)}={UEF(t)} (10)
with:
F(t) = {u: T(u) € F (1)} (11)

Since no explicit difference between design parameters
and distribution parameters is observed in the u-space,
in general there will not be any discrimination between
these two types of parameters. They are formally com-
bined into a single parameter vector t, on which both,
the distribution of X= X(tr) and the failure domain
F.= F_(x) depend formally. Therefore, the failure event
can generally be written as:

(X(t)e F. (1)} = {T(U, 1) F (1)} = {Ue F(1)}

with:
F(t)={U: T(u, 1) e F.(1)} (13)

[t is now necessary to investigate the sensitivity of the
[ailure probability:

P(t)=P[X(r)e F (r)]= P[Ue F(1)] (14)
or the generalized reliability index:
felt) = —¢ ™ '[P(7)] (15)

against small variations of the parameter t. In the first
approximation this can be described by the partial
: ‘ : ‘ :
derivatives — fle(t). because, il fig(t) 1s continuously
(T
differentiable with respect to t. there is:
X otz
A, =it + A -l Y ——Ar, (16)
P
[n analogy with g (6). the partial dernvitives ol f§ (t) are
Jdenoted as tequivalent) alpha-values ol the pariameters ¢,
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Qr tl

o 3 [“-11 1] = (“.(“:' Pe(t) (17
%,

7 ¢ :
alt] = grad flgr) = (:I 6B W r‘:;: ﬁg(f;)

Here. the 7; in xg[7;|t] is only a formal argument,
: ? > ay ¢
comparable with the 7; in the derivation symbol, —.
¢t;
Only in very fortunate cases, such as the one
underlving Eq (3), are exact analytical or easy numerical
solutions for zg available. In view of the first-order
approximation (Eq (1)), or, more precisely:

felt) = i)

. with:

plx) = LF(7)] (18)

: ¢ : - .
one might presume that — f(t) is also an approximation
01,

to .—C“ Pe(t). Therefore:
ct;

2[7;1 ] =(% B(z) (19)
‘k

/ N\ -

aft] = grad ﬁ{z)={c_%ﬁm,.... %
gt |

— (o))

aty

/

are introduced and simply denoted as alpha-values. As
will be seen later. simple formulae for these alpha-values
exist. Furthermore, they provide asymptotic approxima-
tions for 2¢ as described in reference 7.

A failure domain F(z) in the u-space with large safety
index f(z) = B[ Fit)] can be written as:

F(t) = by Gitl = {byu: ue G(t)} (20)

1 2
where b, is a large rezl number and G(t)=— F(z) 1s a

0
domain with meoderate reliability index B[G{x)]. There-
fore. an asymptotic refation like:

Soal=0 s é =
lim - — Be[hGiz1] = — BLG(x)] (21)
s biar t;

justifies the approximation:

1 é - £ 3 i ‘._"- it
e Belh:Gin)] = — % B[ Flx)] = — BLG()]
")"I -,__:LL', ui;

(22)
Since:
BLG(] = — H[Fi=1]
then:
— [ [Fie] = — B[Fi)] (23)

0"t O
or. 1In ather wores
[z, t] 3 : ' (23)

TRl BT



{

» These last approximations are suppmud to be good. if
" the safetv-index fi(r) = fi{ Fr)] of F(x) is large.

Asymptotic relations for distribution
parameters

Although a simple general formula for at] will be
presented later, the subsequent discussion is devoted to
the special case of distnbution parameters, since their
treatment allows for a solution which exhibits some
numerical advantages. Also, the differentiability of f¢(t)
is verified here with more ease than in the general case,
and with the exception of the uniqueness of the beta-point
u*, no further assumptions about the failure domain F(t)
are required.

Therefore, let Eqs (8) and (9) hold, where F, does
not depend on a parameter. Assume also that the
transformation T, t) (2 a mapping {rom the u-space to
the x-space) is, for each parameter t in an (arbitrarily
small) environment of the initial value t, of t, invertible,
and with respect to both arguments u and T, twice
continuously differentiable. Abbreviating (T(, t)) ™ *(x) by

T ~'(x, 1), the following theorem holds (for a proof, see
reference 7).

Theorem 1

(a):
CIRSIEN | L vt — T Y(x*, 1)
IG C_J
1 & R
E .-=Z (_ g I (k" T()}
where:
B = Blxo) = B[ F(z,)]
x* = T(u*, 1p)

(b) Under the additional technical assumptions listed in
appendix 1, fe(t) = fe[F(1)] as a function of t is continu-
ously differentiable in an environment of the initial value
1, of 1, and:

|
lim 1‘;_ BelbF(y)] =

[P

d
= BLF(to)]
J1;
= x[1;] 4]
As pointed out in the previous section. part (b) of theorem
| gives rise to the approximations:
xet;1 1] = 2t ] (25)
ag[t] = af1]

which are assumed o be good il the safety-index fif F(t)]
is large. Here, the evaluation of the right-hand side is
rather simple in applying part (a) of the theorem. ([ the
numerical evaluation of the direct transformation T(:, 1)
is casier than evaluation of the inverse T 7Y 1), it s
advantageous to use the relation
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with:
tT(U' tq) CT(0* 1)
cu, cu, aow. -
il f (27)
Pl T e ¢ Lta )
cu, cu,
it (CT'(fﬁ' Ll TO))' (28)
.:.'I’r er

Until now it has been assumed that the vectors
X = X(t) and U have the same dimension, n. Although it
is. in principle, always possible to find such a U and a
corresponding transformation X = T(U), it is often much
easier in applications to find a transformation X = T(U)
where U= (U,,..., U,)’, but m > n. Using a simple trick,
theorem | also covers this more general situation.

Defining:

vX (T)! Un*—ll"‘v UM)' (29)
<nand X,=U,fori>n+1L:

W T et I SRSERG D TSGR
eF,} (30)

{Xiv)eF,) (31)
,\’(:}zT(U =(F(liz), Uy o) (32)

Hence, the equivaicnt reliability index and alpha-values
for {X(t)e F,} are thc same as for {X() e F.}, while the
trzmsformauon (32) X satisfies the dimensionality
criterion dim(X) = d:m{U]. Usually, T is also invertible.
If not, an invertible transformation might be obtained
by renumbering the variables U,, ..., U...

Asymptotic relations for general
parameters

Comparing Egs (8) and (9) with (10) and (11) it is
recognized that no essential difference between design and
distribution parameters exists after transformation into
the u-space. Both types of parameters occur as parameters
of the transformed failure domain F(t). On the other hand,
in order to obtain a result as in theorem [ also for design
parameters. the failure domain F(t) must now be specified
more precisely as:

Flry =" sV = {uigtesx) < 0} (33)
where the function g is continuous in both variables. If. for
instance. the failure domain £ in the x-space is F, = (4.

<0} where g, =g, (x) contains no parameters, but X
= X(t) = TF(L\ t); then:

Elt) = {uig (Tl 1)) <0} =ty )< O (34)

with:
gl t) =g (Tla. 1)) (35)

Thus, a distnbutional purameter of the X-variables
sppears as a parameter of the limat state function g tn the
w-spatee as well ax a parameter of g, = g (t)

g (33) deseribes the behaviour of F(r) on the whole
w=space. Lo some tacbiteary small) enviconment £ of the
(umique ') beta-pomt ¢® ol Fizg,) sume more restricuve
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«conditions are imposed on F(r): it is required that there
exist an environment E of u*, an environment V of £y (T
being the initial value of t), and functions g, (w.7).. ... g,u.
t). which are defined and twice continuously differentiable
for ue £ and te V, with g,(u*, t5)=0for | €i<¢, and
such, that:

EnFlt)=En () {g,(, <0} for teV (36)
j=1
[l ¢ =1, then g, equals the function g as in Eq (33).
Condition (36) is less restrictive than it might appear.
If. for instance:

Fiy= [ {g,(, 11 <0} (37)
i=1

where g, is twice continuously differentiable and g;(u*, t,)
=0 for 1 <j<¢, but g;(u*, 1,) <0 for ¢+ 1 £j<t+s5,
then for small environments E of «* and ¥ of 9, Eq (36)
holds, and g,, |, ..., g,., do not contribute locally. They
must only be taken into account globally, i.e. for u¢ E or
t ¢ V, and due to Eq (37), a possible choice of g in Eq (33)
is:

g, T)= max g;(u, 1) (38)
I€igt+s
Note that in Eq (37) the case g;(u*, o) > 0 is impossible,
since «* would not lie on the boundary of F(t,).
In addition to Eq (36) it is also required that the
gradients a,, ..., a,:

1

) é S
= (__ g,(t*, 1), . g,(u, ro)) (39)

\ou, ou,

are linearly independent. In particular, t cannot exceed n.
In contrast to theorem I, the differentiability of Be(x),
or the existance of the limits:

ae[t;]t] =lim % [Be(t + he;) — Be(7)] (40)

h=0
(e; being the jth unit vector in R¥) cannot, to the author’s
knowledge, be guaranteed with practical conditions.
Therefore, in place of ag, upper and lower equivalent
alpha-values are introduced, which are defined as the
respective upper and lower limits:

o [r;l¢] = (-i) Be[F(1)] = lim sup } (Be(x + he)
»’TJ u h—=0 d
= felr)] (41)

g gy
CHEARIES ({L_) BelF(z)Y] =lim 1]nfi; [Belr + he)
\¢T; /4 h—(

= Bel(x)] (42)
Theorem 2 shows that asymptotically, for a large safety-
index, 2 and «,, arc closc together and well-approximated
by x for a prool. sce reference 7):

Theorem 2

(4) «* can be represented as a lincar combination of the
gradients a;:
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(b) If:
f = filry) = ﬂ[F{to)}

d c \
C‘ = (—_--‘ g—r(lr.. Tr))- ey gr(u‘ Tﬂ))
et ét

7 J

|
1[T1|"~'0] e E (:'"Cf)

(c) Under the assumptions listed in appendix 2 and using
the notation introduced in Eqs (41) and (42):

It ](i) Be[bE(e)) = lim 1( ) Be[bF(z)]
b\é u b—x b |

7
b DNOY CT;

=af1;] 1]

"For the special case that ¢ = 1, the result of theorem 2(b)

reduces to:

Lo @

“[T_i]fo] o g, (u*, 15) (43)

I |l éx;
As in the previous section, theorem 2 implies the asymto-
tic approximations:

‘Ig[fj!t]xa:szjl"]xszjlf] (44)

where a formula for 2(1;|t] is given in part (b) of the
theorem.

Comparison of theorems 1 and 2

For distributional parameters t, theorem 1 applies as well
as theorem 2, if the failure domain in the x-space is defined
as:

F,={g9.<0} (43)
where g, is a continuous function, and in some environ-
ment Eof x*= Tla® <5k

I
EnF,=En () {g.;<0} (46)
1=1

where the functions g, ; are twice continuously differenti-
able in E. Of course, the formulae for 2[t;[to] in both
theorems are equivalent. Nevertheless, theorem 1 exhibits
some numerical advantages, whenever the numerical
evaluation of the partial derivatives of the function g;
becomes too involved, since theorem | requires only the
derivatives of the transformation Tand not those of g;. It
is also worth mentioning that, in contrast to theorem 2.
theorem [ requires no specific assumptions about the
failure domain F, but implies the differentiability of the
function fie(t). On the other hand, theorem 2 also relates
to design parameters which are not covered by theorem 1.

Potential applications

of the equivalent reliability index fig(t) which is induced
by a small variation A+ of the parameter y. Under the
assumptions of theorem 1. fiu(r) is continuously differ-
entiable, therefore:

A Ef(r) =
Aff = fliule + A0) = flel0) = E JJ?-- At (47)

1=1




\

sFurthermore, since 2¢[t;|t] is asymptoticallv approxi-
*mated by x(t;| ], due to Eq (25), one obtains:
k
ABe = ) x(r;| €] Ag, (48)
i=1
where a simple formula for ;| t] is given in theorem 1.
The same approximation (48) also follows from theorem 2
by applying it to the artificial parameter h defined by:

glu, h) = g(u, © + hAx).

The approximation (48) is especially useful in pro-
babilistic structural design; in particular, it simplifies the
reduction of cost under reliability constraints, or the
improvement of reliability given a cost limit. Denoting the
cost of a structure established with design parameters t by
(1), the change of cost due to a small variation At of t is-

k a T k
pe=y & ) At;=:3 y,(1) At (49)

o = J
i=1 G'I.'J- i=1

Hence, in order to preserve the costs but increase the
reliability, a reasonable choice of Ay is:

At=enm,, (50)

Here, ¢ is a small, positive real number and =, is the
projection of:
B L
o’ =—— qg[1]

fal<]l

onto the hyperplane orthogonal to yiz) = (7.(2), ...,
7))

L ao e (GO-YG)_‘,(J (5 i)
where
|
V¥=—— [t
TR

Similarly, the costs are reduced but reliablity is preserved
by taking:

AT = =€, (52)
where. again. ¢ is 2 small. positive number and:
Ty =10 = (1", «%a® (53)

Il ¥(r] and a[t] are parallel or, more precisely, a® equals
7% then both ., and n,,, vanish. In this case, provided
that 2. <] is well approximated by «[t] and only small
variations At of t are taken into account, a substantial
increase of reliability is always connected with additional
cost, and each significant reduction of cost also implies a
decrease in reliability. Inversely, the design can be impro-
ved as long as «° differs substantially from v°.

In the second extremal case that v[(t] and a[t] are
antiparallel or, a” = —v° un increase in reliablity is
equivalent to a decreuse of cost. More generally, if the
scalar product of @ and v is negative by taking:

Ar=za® -, (54)

with 2, 20 and #, 2 0 and «, 4+, small but non-zero,
reliability is increased while at the sume time the costs are
reduced. It would then usually be meuaningless to use Eqs
(50) or (52) instead of (54), 11, for example. emphasis lics on
reduction of cost. just take:, =0in LEg(53). This fortunate
case of negative a'y will. however, not often oceur n
pracucal applications
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Alpha-values of variables

The aim of this section is to define an importance
measure [or stochastic variables. and to reveal its relation
to the alpha-values x, of variables. Consider a vector X
i ) SO X ,) of random variables. which are arbitrarily
distributed with the exception of a single standard normal
variable X, = U, Provided that U, is stochastically
independent of the rest-vector X, el 7, P RRRRID, ICRD, N
.... A,). an intuitive measure for the stochastic im-
portance of U, is given by the increase Afe of reliability,
resulting from a complete reduction of its variance
keeping the mean value constant. If Afg is very small. then
U; could be modelled as a deterministic variable as well
and the stochastic importance of U; is negligible. If,
however, Af is absolutely large the stochastic nature of
U, can be essential. For technical reasons, but also aiming
at the well-known alpha-values z,, only differentially
small variations of the standard deviation ¢; of U, are
considered: analogously, small variations of the mean
value y; are also investigated.

Therefore, let:

t=(y, 6) 19=(0,1)
X=X,
P(t)=P[X(1)e F,] Belt)= —¢ '[Py(r)]

Then, under the conditions described:

NPy #+o,U,, X;wn IR o1

2,[U]= % Belto) (55)

is a measure for the stochastic importance of the variable
X;=U, and is called the alpha-value =z, of the varable
U:. Analogously, the alpha-value x, of U, is defined as:

2,(U] = C— Be(xo) (56)

which reflects the effect of a small variation of the mean
value.

Having defined the alpha-values of X, for a standard
normal variable X ;, which is stochastically independent of
the rest-vector X, the general definition follows directly
from a required scale-invanance: The alpha-values a, and
2, of X; must not depend on the specific scale to which X,
is related. For instance, X,. given in feet or in meters, must
have the same alpha-value. although the numerical values
of X; greatly depend on the respective scale. In general,
any two variables X; und Y. which are functionally
related. such as:

Yi=T{X) (37)

where T, isa strictly increasing function, can be considered
as equivalent variables but measured on different scales.
Therefore, if ¥ =(Y,,.... ¥.) is a random vector and T
=(T,, ..., T,) a transformation with:

¥=TX)=(T(X). .... T.iX)) (58)

where T/(X) = T(X,) decpends only on the variable X, und
the function T, = T;(X,) is stnictly increasing, then, the
alpba-vulues of ¥, must be defined us:

,[Y]=2[X] and 2 1¥]=2[X] (39)
In partcular, 2. [ Y] s & measure for the stochastic
tmportuance of Y. based on ¢ steadardized varation of the
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wariance ol Y, or the corresponding variation of the
standard normal variable X,.

This definition already covers the general case of a
non-degenerate variable, i.e. a variable Y, with continuous
distribution function, or equivalently:

PLY;=)]=0 (60)

for each real number y.

In reference 6, it is shown that under assumption (60)
it is always possible to find a random vector X and a
transformation ¥ = T(X) which satisfies all the imposed
conditions; X can even be chosen as a vector of independ-
ent, standard normal variables X = U. According to Ref
7, each admissible transformation ¥ = T(X) leads to the
same alpha-values «, and 2, so that the alpha-values of
variables are thus well-defined.

An exact numerical evaluation of those alpha-values
is, however, impractical in most applications, and appro-
ximations are highly desirable. As a consequence of
definitions (54)-(59), it suffices here to derive approxim-
ations for x,[U;] and «,[U ], where U= (U,,..., U,) isa
vector of independent, standard normal variables. The
(transformed) failure domain in the u-space is again
denoted by F.

If:

P (flyy ooy s Ty nes O

S = s L)

U):=T(U )=, +0,U,, ...
then (compare with Eq (25)):

s Uy g U)

2,[U] == Pe[ Uto) F]
Z*E[Galr(}]zafaflto] (61)
%, (U] = = Be[ Uo) € F]

= 2e[:1to] = al;| 7o)

and from theorem I(a), it is easily derived that:

|
:z[ailr,,]:ﬁ[(u')'((),...,o —u0,...,0)]
L (wry = = (62)
= —— (uf)’ = — fa} 2
B
|
a[;r,ito]=F[[m)' (0 00, o 0]
I i
= ‘"'—)-ul-‘—_w‘ll‘ (63)
or. finally:
7. [U] = —fxF (64)
2, (U] =z (65)

In particular. %7 is an approximate measure for the
stochastic importance of the variable U, (or equivalent
variable Y), while , indicates the sensitivity of fig due to a
standurdized variation of the mean value.

A more rigorous derivation of Eqgs (64) and (65) is
given in reference 7. In the sume reference, it s also shown
that x, [U,] 15 related to the conditional mezn value of U,
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in case that failure occurs:

iy S Y= Pe)
E[U,|UeF] = —=,[U] (ﬁ%[—ﬁg’ (66)
or:
w(_ﬁl)

E(¢~'G(Y)|YeF,]= —-1,[Y] (67

S —Pe)
Here, ¢ is the distribution function of U, i the standard
normal density, and G the distribution function of .

Conclusions

Il the failure probability P,= P,(t) or the equivalent
reliability index fig = () depend on a vector t = (z,,. . .,

7,) of parameters, the partial derivatives z¢[1,]1,] = —
dt

PBelto] express the dependency of Bg[t] against small

variations of 7;, and can, therefore, be interpreted as
sensitivity factors of parameters. While their numerical
evaluation is often impractical, simple formulae for the
partial derivatives a[t;| to] of the Hasofer-Lind reliability
index f(t) are presented*, which are furthermore shown to
be asymptotic approximations for z[t.]. They therefore
provide a useful tool for the improvement of structural
designs under reliability aspects. Finally, a unique im-
portance measure «,[ Y] for random variables has been
defined as the derivative of f with respect to the standard
deviation of Y, measured on the intrinsic standard normal
scale of Y. This importance measure is asymptotically
approximated by the square of the Paloheimo-Hannus
alpha-value «;°.
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Nomenclature 2 Sl
OfICT[A

k) failure domain in u-space goumsy

E_JE.i) failure domain in x-space

g, ; limit state function

grad gradient 2

P;, PLF] = P[Ue F], S

P(F,]=P[XeF,] [lailure probabilities :

R" n-dimensional real space oo 1

7 oA ) transformation from wu-space wo
x-space

lim, lim inf, lim sup limit, lower limit, upper limit

U= U) vector of independent, standard-
fiormal random vanables

u-space space of U-variables

o=l ) beta-point*

X=X, ... X) vector of arbitrarily distributed
random vanables

x-space space ol X-variables

L *® . T oS
; i u, alpha-values

2[r], 2[7;1 7]

) . eyt . . T o “.

= = fzy) alpha-value of purameter (sensi
dr;

tvity factor)

2le) 2 [rileg]
Bl i (t) cquivalent alpha-value of para-
AT meter (sensitivity factor)




alpha-values of random variables

(importance measure)

B reliability index®

fe generalized or equivalent reliabil-
ity index?

Y standardnormal density function

@ (cumulative) standardnormal dis-

tribution function

oy set

- Euclidian norm of vector

‘element of”, ‘contained in"

partial derivative

sece Eqs (41) and (42)

sum
(e.g ¢ transposition of vector
A, ) intersection of sets

U union of sets

N difference of sets

X Cartesian product of sets
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F =N

Appendix 1 Conditions for theorem 1

(1) Foranenvironment Wolt,, T(u, 1) is defined for each
ueR" and te W, and T(-, 1) is invertible for each
te W

) I T Y. =TT, 1)] " Yw) and Glu, ©)=T '[Ny,
o), ], then G is twice continuously differentiable in
R" x W.

(3) For | <i<k. the functions:

; aG{u. iz S
Jilu) = sup | ¢[ Clu. 1)] {u_r} [C{u_ 1) —t— (lu. ”:H
Wi du (5 o

teid | «T ou

i

' =] 17 r“(;(u. t]
hi(u) = sup | vlGlu. )] — ——

with JEGlu. 0] = Y[G(w. 1] ... Y[G,(u. t)]. w being

hetnge the
o'y '

the standard  normal density, and

funcuional determinant, are Lebesguc-inteerable over
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F = F(z,):

J],(a: du< x
y

(4) For each te W:

G
PF#L£2=O]=O

cu

Jll‘(ul du<

¥

(5) F has a unique beta-point which is BF]=>0

Appendix 2 Conditions for theorem 2
(1) F has a unique beta-point u* which is PLF]>0.
(2) Foranenvironment W of t,, there exists a continuous
function g = g(u, ) on R" x W, such that:
{g(. 1) <0< F(v) < {g(, 1) <0}
for each te W, and:
9F(to) = {g(, to) = 0}
wheie dF(z,) is the boundary of F(tg).

(3) For an environment E of u*, there exist functions
g;i=g;(u, ©) on Ex W(l <j<t), which are twice
continuously differentiable on E x W and such that-

1

EnF(t)=En () {g.(, 1)<0} for

=

telW

(4) The gradients a,, ..., a,:

a =

a;=grad g;(u*, o) = a g{at, To), o,

{,: Z = \

(‘:T" g]lu » To))
are linearly independent.

(3) Forlgj<t:
l
lim sup ThT P[F(ty + he}) AF(ty)] < oc
h=0 1]

where AAB = (4 U B)\(A4n B).
Furthermore, a sufficient condition for (5) is made up
of the following:

(1) For te W, F(t) can be represented finitely by many
unions and intersections of sets F (x), with:

{fi(, 7)<0} Fitic{fi(. 11<0}

where the [unctions fi=fu, ) are continuously
differentiable on R" x W.

(2) The distribution of the random variables f;(U, t,) has
a probability density ¢; = y,(s), which is continuous

ats=0.
(3) For some £ >0, the random variables:
H; = sup ‘f— Sl o + he)
Uhiiaig TR £

have finite variance.
(4) The conditional mean values:
M) = ELHT L AL o) = 8]

are continuous at x = ().
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