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The multinormal integral which has important applications in structural reliability is evaluated by
application of a recent, asymptotic formula for the probability content of general intersections in
the standard normal space together with a recursive scheme proposed earlier by Hohenbichler. It
is suitable for arbitrary correlations, computationally efficient even in higher dimensions and most

accurate for small or large probabilities.
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INTRODUCTION

The numerical computation of the multinormal integral is
required in many problems of statistics and, recently,
turned out to be a key problem in structural and
operational system reliability'. If the problem is
appropriately formulated the multinormal integral shows
up whenever the probability of an intersection of events is
to be determined. For example, an event tree type analysis
of redundant systems requires the evaluation of the
probability of the intersection of the dependent
componental state change (failure) events along a given
path to structural collapse?. Also, consideration of
quality control or inspection results in structural
reliability is intimately related to the evaluation of the
probability of intersections of events®?.

Let U=(U,,...,U,)" be an independent standard
normal vector and a domain D be given as D=7,
{g;(U)= 0} with g,(0)> Ofor at least one j and the functions
g; at least piecewise twice differentiable. If a random
vector X with continuous joint distribution function is
neither normal nor independent a probability preserving
transformation X=T(U) always exists such that the
problem at hand can be cast into the form just described?.

An asymptotic approximation for the probability
content of D has been derived in Refs 6 and 7 which is
given here for further reference:

P(D)~®,(c; R)(det(I—H)) '2=®,(c; R)IC (|u*| — =)
(1)

Herein, @, is the k-dimensional standard normal integral,
c=A"u*, R=A"TA, C=(det(I—H)) ' a second-order
correction term, and u* a point defined by

u*=min{|ul} for J}u: N g,-(u)rg()} (2)
=1
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I is the unit matrix and H a matrix to be defined below.
k(1<k<m) is the size of the index set J for ‘active’
constraints, i.e., for which g,w*)=0. A4 collects as
columns the linearly independent, normalized gradients
(|a;|| =|lgrad g;w*)|=1) of the active constraints. For
simplicity of notation, an orthogonal transformation w=
T"u is performed such that wf, ;=...=w*=0 and b,=
T"a; b;=0for 1<i<kand k+ 1 <j<m. The first column
of T'isformed by any of the a,,i € J. The other columns are
found by a suitable orthogonalisation algorithm.
Further,a negative vectory=(y,,..., ;) to be determined
from

w* = By; B={b;} (1<i<k) (3)
exists. Then, the elements of the matrix H, 4. m-x in
equation (1) are given by

ko dgtwy
h = Z ';‘l"‘ -

o e k+1<rs<m (4)

Ve a7 I 5

For the computation of the multimormal integral in
equation (1) in higher dimensions and with arbitrary
arguments ¢ and R no analytical solution exists and only a
few practical computation schemes are available.
Numerical integration as proposed in Refs 8 or 9 soon
becomes computationally inefficient as the numerical
effort grows exponentially with the dimension. The
primary purpose of approximations like equation (1) also
is just to avoid numerical integration. A bounding
scheme'® combining a result for special correlation
matrices due to Dunnet/Sobel'! and an inequality due to
Sidak'? requires relatively little numerical work but is too
inaccurate for many reliability applications. In Ref. 1 and
further in Ref. 13 computationally more efficient
approximations are proposed and shown to be fairly
accurate. Finally, Ruben derived an asymptotic




formula'*

k *
Dyle; R)~ (det(R) "2 [ ALl (5)
1=1 (}.l')
where the ¢ must be negative and the i obtained from y =
R~ 'c strictly positive. In Ref, 7 equation (5) is shown to
correspond to a linear approximation of the functions
giw)=0 (1 <i<k) in u*.

DERIVATION OF MAIN RESULT

In this paper the multinormal integral is approximated by
applying the foregoing general result (1) for the
probability content of arbitrary intersections to the
multinormal integral in equation (1) on the basis of a
recursive scheme suggested in Refs 1 and 13. In other
words, equation (1) is applied to itself since any
intersection of half-domains in correlated standard
normal variables can be represented as an equivalent
intersection of half-domains in uncorrelated standard
normal variables. This is especially suitable because many
operations turn out to be analytic in this case. Let Z be a
standard normal vector with correlation matrix R = (p))-
It can be represented in terms of an independent standard
normal vector U by

Z=3 o;U; (1<i<n) (6)
3=1
with o, =1 and the other coefficients determined such
that the left-hand and the right-hand side have the same
correlation matrix, e.g., by Cholesky’s triangularization
procedure for positive definite matrices. The multinormal
integral can be rewritten as

PZ<e)=P(Z,<c)P( () Zi<c| 2, <c, )
=2

n

mfb(c',)P(ﬂ oZ, + Y -:tUUJmc,-S_()})
= j=2

2

\

~op( () 9(V)<0} ) ™)
\i=2

where the variable Z, is again standard normal but
truncated at ¢, and independent of the other U’s. Z, can
be represented by its Rosenblatt-transformation® as
follows:

Z, =07 [®(c,)D(U,)] (8)

Hence, the g-functions in equation (7) are:

gi(U)=a;; @~ [®(c, )D(U,)] + ¥ ;U —¢,
j=2

=0, O [D(c, )DU,)] + (1 —a} ) 2V ~¢, (9)

The second term on the right-hand side of equation (9)
is replaced by an equivalent term in one standard normal
variable V.

It is seen that the dimension of the intersection in
equation (1) is reduced by one in equation (7). Let the
point u* defined as in equation (2) be found by some
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suitable search algorithm. Note that due to the reduction
of dimension in equation (9) the search for u* is only a
search in two variables. An approximation for the second
factor in equation (7) then is by using equation (1)

/ \

P( ("1 }g,-(lJ)s-n:U:-)wl’( (r] {al(u—u*)<0) )C'z (10)

/

where, as before, J,< {2,...,n} is the subset of k<n—1
active constraints at u* and C, the correction factor as in
equation (1). Therefore, equation (7) can be rewritten as

5

P(Z gc;:tb(f,;(‘zf’(ﬂ :H,T(ufu*)g();) (11)
\ (e,

which is the main improvement as compared to Ref. 13.

For the last factor in equation (11) one, in turn,
proceeds as described in equation (7) with new Z, in
equation (6) given by Z,=a/U being standard normal
with correlations p;; =a,TaJ and the new ¢, defined by ¢, =
a/u*. Repeated at most (n— 1)-fold application of this
scheme finally yields the result. Note that the points u*
and the gradients a, are different in each step.

TECHNICALITIES

The computation of the correction factors C,(1=>2) is
facilitated by the following observations. Equation (9)
shows that the g-functions are nonlinear only in the first
variable but linear in the second variable. With Z, as in
equation (8) their gradients have the elements:

Ogi(w) _ oy

= — ®(cy Ne(u,) (12a)
duy @(z,)

(12b)

The Hessian matrix of second derivatives has only one
nonzero entry, i.e.,

-~
07g(u) pluy) =
7 = Pey) —5— [2,P(c, ) () —u 0(z,)]  (13)
ouj ¢(z,)
In particular, the (directional) second-order derivatives at
w*=T"u* in the directions orthogonal to the active
gradients to be used in equation (4) can be given
analytically as:
a9 ~%
d7gi(w*) d%g;(u*)
~ - :hlrbla mL1 {14]
ow, 0wy ouy
The direction Hessian matrix in the directions
(bﬂ + !""‘bn) is

":.‘.gl(u*' i

Nesd
Ol

H

(15)

H=b,b! (16)
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It is easy to show that H, has the n—k eigenvalues:

; ["3.1. ), u*} n ;

Mk = 31(* 2. b (17a)
t‘ui‘ j=k+1

Mgaa = Ayp=0 (17b)

Further, if there are several active constraints g,(u)=0
li=2,..., k) in u¥*, it is according to equation (4) with the
y;'s determined from equation (3):

: sigbi [k o B and

he1= ) 0 —= Y by (18a)
i=1 Uy j=k+1

R e (18b)

Therefore, the asymptotic correction factor in equation
(10) or (11) becomes:

Co=(1-4,,,)" 12 (19)

It can be shown that for smaller ||u*| the correction factor
can be improved especially for not very small

probabilities by!>:

(20)

REMARKS

In equation (10) the inactive constraints are omitted and
similarly in all consecutive steps. It is possible to retain
those constraints if one can justify reasonable expansion
points. The simplest choice is to use u* but better results
are obtained by determining points defined by

n 3
u'| =min{|lul} for {u(m gj{u)s_o) Z (.t'hlu):O]}
j=2
Jj;*i
where i runs over all indices not contained in J,. In these
points a linear expansion of the corresponding surface
may be used.

A crucial assumption for the foregoing results to hold is
that the coordinate origin is not contained in D. If,
however, 0D or g,(0) <0 for all i (which implies that D is

| a ‘large’ probability domain), it is proposed to use the so-

| called equivalent plane concept outlined in Refs 13 and
16. A simple, but accurate procedure is as follows.
Referring to the last two lines in equation (7), all points
u#(1<i<m) for which

|u#|| =min{|u] | for {u: g;(u)<0)]

are determined. The individual events in equation (7)
have probabilities involving the binormal distribution
function. In particular, it is

P((X,<e)n (X, <e1)
P(X,<c,)

P(( Y ayU, s;(-])r‘\(U, éc‘l))
j=1 /

\\J

P(X;€¢;| X, €¢;)=

P(U, <c,)
_ Dyleiseq; oyy)
)
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where @, is best evaluated by numerical integration from:

D, (e, ¢y 00)=D(c,)P(cy) + ( I ple,eq; p)rdp

JO
with ¢(¢;,¢,; p) the two-dimensional standard normal

density. This suggests to use improved ¢;'s in equation (7)
given by

ci=0

@, (ciyc4; ?’-UJ
Dley)

and to be interpreted as the distances to the origin of
equivalent hyperplanes with the same gradients in u¥ as
the surfaces g,(u) and the same (individual) probability
contents, respectively. It is easy to show that this
procedure is asymptotically exact, i.e., for all ¢’s
approaching infinity, The proposal in Ref. 13 to
determine equivalent gradients, too, by matching the
derivatives of the probability of the given and the
equivalent domain with respect to the coordinates can be
shown to produce only slight if any improvement in the
nonasymptotic case but requires substantial more
numerical effort. If ®(c; R)=P(| T~ {X;>c;}) needs to
be computed one simply passes over to the complement,
ie., ®(c; R)y=1—®(—c; R).

Another assumption in the approach is the linear
independence of the active gradients a,(i e J) at u*. In the
case of the multinormal integral this can be achieved by
checking in each step of the procedure whether there are
‘components’ in the intersection (see equation (11)) for
which |p,|=1. For p;=+1 the component with
min{e;,¢;} 1s omitted; if p;;= — 1, there is ®,(...)=0 for
¢;< —c;. In each step there are at most p—1 active

Table 1. Comparisons in terms of f=—® '(P)
c=—4.n=10
i Eq. (5) Ref. 13 Eq. (11) Exact!!
0.0 14.11 14.15 14.15 14.15
0.2 8.69 895 8.94 8.93
0.4 6.46 7.10 7.08 7.05
0.6 475 597 597 5.92
0.8 2.67 il 5.10 5.06
0.9 —0.26 4.70 4.69 4.65
0.99 - 4,18 4.17 4.17
c=—4; p=0.6
n Eq. (5) Ref. 13 Eq. (11) Exact!!
2 4.68 4.73 4.73 4.73
5 5.17 549 449 5.48
10 4.75 597 597 592
20 0.53 6.42 6.39 6.28
50 7.00 6.92 6.67
100 125 7.20 6.92
p=0.6; n=10
¢ Eq. (5) Ref. 13 Eq. (11) Exact'!
0 1.16 1.14 1.13
-2 3.56 3.56 351
4 4.75 5.97 5.97 592
—6 7.81 8.39 8.38 8.34
8 10.48 10.81 10.80 10.79
)




components in a p-dimensional U- space which will have
linear independent gradients provided that this checking
is done.

The accuracy of the method described before has been
tested at the examples given in Ref. 13. The quality of the
numerical results is at least as good as the best
approximation in Ref. 13. Theoretically, the results are
asymptotically exact, i.e., for all values |u*| being large
during reduction of equation (11). Practically, the whole
range of probabilities is calculated with sufficient
accuracy as demonstrated in Table 1 for the
equicorrelated case which can be checked by Dunnet/
Sobel’s'! integration formula in one dimension. It is seen
that Ruben’s formula is inaccurate except for relatively
small p’s and large negative ¢’s. Equation (11) turns out to
be only slightly more accurate than the method in Ref. 13
despite the somewhat dubious theoretical basis of the
latter. The error in both methods increases moderately
with the problem dimension and is worst for medium
correlations. Further numerical comparisons are given in
Ref 17

The computation times of the new method presented
herein are significantly smaller than for the method in Ref.
13 (roughly by a factor of 10) but still proportional to n?
and depend to a certain degree on the minimization
routine used for searching the points(s) u* in equation (2)
resp. equation (10). The analytical form of first- and
second-order derivatives of both the objective function
and of the constraints in equation (2) suggest to use a
search algorithm for w* which directly uses this
information.
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