
Vol.:(0123456789)

Machine Learning (2021) 110:1175–1197
https://doi.org/10.1007/s10994-021-05973-0

1 3

Reachable sets of classifiers and regression models:
(non‑)robustness analysis and robust training

Anna‑Kathrin Kopetzki1  · Stephan Günnemann1

Received: 18 September 2020 / Revised: 28 January 2021 / Accepted: 18 March 2021 /
Published online: 28 April 2021
© The Author(s) 2021

Abstract
Neural networks achieve outstanding accuracy in classification and regression tasks. How-
ever, understanding their behavior still remains an open challenge that requires questions
to be addressed on the robustness, explainability and reliability of predictions. We answer
these questions by computing reachable sets of neural networks, i.e. sets of outputs result-
ing from continuous sets of inputs. We provide two efficient approaches that lead to over-
and under-approximations of the reachable set. This principle is highly versatile, as we
show. First, we use it to analyze and enhance the robustness properties of both classifiers
and regression models. This is in contrast to existing works, which are mainly focused on
classification. Specifically, we verify (non-)robustness, propose a robust training proce-
dure, and show that our approach outperforms adversarial attacks as well as state-of-the-
art methods of verifying classifiers for non-norm bound perturbations. Second, we pro-
vide techniques to distinguish between reliable and non-reliable predictions for unlabeled
inputs, to quantify the influence of each feature on a prediction, and compute a feature
ranking.

Keywords  Robustness · Verification · Reachable set · Neural network

1  Introduction

Neural networks are widely used in classification and regression tasks. However, under-
standing their behavior remains an open challenge and raises questions concerning the
robustness, reliability and explainability of their predictions. We address these issues by
studying the principle of reachable sets of neural networks: Given a set of inputs, what is
the set of outputs of the neural network.

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 *	 Anna‑Kathrin Kopetzki
	 kopetzki@in.tum.de

	 Stephan Günnemann
	 guennemann@in.tum.de

1	 Department of Informatics, Technical University of Munich, Munich, Germany

http://orcid.org/0000-0003-2695-0816
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05973-0&domain=pdf

1176	 Machine Learning (2021) 110:1175–1197

1 3

Methods that compute an exact reachable set (Xiang et al. 2017) are not feasible, even
for tiny neural networks (Liu et al. 2019). In this study, we aim to approximate the reach-
able set such that it can be computed for neural networks used on standard data sets. More
specifically, we investigate this problem in the context of ReLU neural networks, which
constitute the most widely used class of networks. To allow flexibility regarding inputs, we
propagate a set of points defined by a zonotope through the neural network. As the ReLU
operation can result in non-convex sets, we derive under-approximated or over-approxi-
mated output sets (see Fig. 1). The resulting sets are used to analyze and enhance neural
network properties (see Sect. 4).

Overall, our main contributions are: (i) Two efficient approaches RsO and RsU (Reach-
able set Over- and Under-approximation) of approximating the reachable set of a neural
network; (ii) Classification: Techniques of applying RsU and RsO to (non-)robustness veri-
fication, robust training, comparison with attacks, and state-of-the-art verification meth-
ods. (iii) Regression: an approach for analyzing and enhancing the robustness properties of
regression models. (iv) Explainability/Reliability: a method of distinguishing between reli-
able and non-reliable predictions as well as a technique of quantifying and ranking features
w.r.t. their influence on a prediction.

2 � Related work

Reachable sets Computing the exact reachable set of a neural network as Xiang et al.
(2017) is not applicable even with tiny networks, as shown in Liu et al. (2019). Some tech-
niques that approximate reachable sets, such as Ruan et al. (2018), cannot handle the com-
mon robustness definition. Most approaches that deal with the reachable sets of a neural
network emerged from robustness verification. The study that is the most closely related
to our over-approximation approach RsO is Gehr et al. (2018). Further developments
of this technique include bounds (Singh et al. 2018, 2019a, b, c). In addition, set-based
approaches are used for robust training (Gowal et al. 2019; Mirman et al. 2018). Our work
goes beyond the existing approaches. First, our over-approximations are (by construction)
subsets of the ones computed in Gehr et al. (2018) and thus tighter. Second, in compari-
son to the improvements presented in Singh et al. (2018, 2019b, c), our approaches do not
require bounds on the layer input. Third, in addition to over-approximations, we provide an
approach to under-approximate the reachable set.

(Non-)robustness verification Reachable sets are applicable to (non-) robustness veri-
fication (see Sect. 3). Other expensive robustness verification methods are based on SMT
solvers (Katz et al. 2017; Ehlers 2017; Bunel et al. 2018), mixed integer linear program-
ming (Tjeng et al. 2019) or Lipschitz optimization (Ruan et al. 2018). One family of verifi-
cation approaches search for adversarial examples by solving the constrained optimization
problem of finding a sample that is close to the input, but labeled differently. The search

Fig. 1   Orange over-/under-
approximation of the reachable
set (Color figure online)

Input Set

x1

x2

x3

Neural Network Reachable Set

p1

p2

Logit Space

1177Machine Learning (2021) 110:1175–1197	

1 3

space, i.e. an over-approximation of the reachable set of the neural network is defined by
the constraints. The distance of the samples to an input point is usually bound by a norm
that the optimization problem can deal with, such as L∞-norm (Wong and Kolter 2018;
Raghunathan et al. 2018; Bastani et al. 2016; Katz et al. 2017; Steinhardt et al. 2017) or L2
-norm (Hein and Andriushchenko 2017). One drawback of these approaches is the strong
norm-based restriction on the inputs. Our approaches can handle input sets equivalent to
norms as well as input sets that couple features and thus allow complex perturbations such
as different brightness of pictures.

The complement of robustness verification are adversarial attacks, i.e. points close to an
input that are assigned a different label. Adversarial attacks compute a single point within
the reachable set, without explicitly computing the reachable set. There are various ways of
designing attacks, one of the strongest being the projected gradient descent attack (PGD)
(Madry et al. 2018). In contrast to attacks, our RsU approach aims to find an entire set of
predictions corresponding to an input set.

It should be noted that, all the above principles are designed for classification tasks. In
contrast, our approach is naturally suited for regression as well. To further highlight the
versatility of our method, we show how to apply it to explaining predictions and to distin-
guishing between reliable and non-reliable predictions.

3 � Reachable sets of neural networks

The reachable set O w.r.t. an input set I of a neural network f is its output set, i.e.
O = {f (x) ∣ x ∈ I} . Computing the exact reachable set of a neural network is challenging,
as proving simple properties of a neural network is already an NP-complete problem (Katz
et al. 2017). Under-approximations Ôu ⊆ O produce a set of points that can definitely be
reached with respect to the input, while over-approximations cover all points that might
possibly be reached O ⊆ Ôo (see Fig. 1).

We propose approximating the reachable set by propagating the input set layer-by-layer
through the neural network. In each layer, the input set is first subjected to the linear trans-
formation defined by weights and biases. This linear transformation is computed exactly
and efficiently for the zonotope-based set representations we exploit. Then, the ReLU acti-
vation function is applied. Since applying ReLU onto a convex set can result in a non-
convex set, we approximate convex subsets. Specifically, we propose an analytical solution
for the over-approximations and an efficient linear optimization problem formulation for
the under-approximations.

Definition of input sets Our approaches operate directly on sets and require an efficient
and flexible set representation. For this, we use zonotopes, as they are closed under lin-
ear transformation and their G-representation provides a compact representation in high-
dimensional spaces. Furthermore, they allow complex and realistic perturbations to be
defined that couple input features such as different light conditions on pictures (in short: we
go beyond simple and unrealistic norm constraints).

The G-representation of a d-dimensional zonotope Ẑ with n generators is defined by a
row-vector, the center ĉ ∈ ℝ

D and a matrix Ĝ ∈ ℝ
n×D . The rows of this matrix contain the

generators ĝi . The set of all points within Ẑ is:

1178	 Machine Learning (2021) 110:1175–1197

1 3

Propagating sets through ReLU networks In this paper we focus on ReLU neural networks,
as they are not only widely used but also powerful. A neural network consists of a series of
functional transformations, in which each layer l (of nl neurons) receives the input x ∈ ℝ

nl−1
and produces the output by first subjecting the input to a linear transformation defined by
the weights Wl and bias bl , and then applying ReLU . In the final layer, no activation func-
tion is applied, and the output stays in the logit-space. Thus, starting with the input set Ẑ0

a series of alternating operations is obtained: Ẑ0
W1,b1

→ Z1
ReLU
→ Ẑ1

W2,b2

→ Z2
ReLU
→ …

WL ,bL

→ ZL,
where Zl denotes the set after the linear transformation, Ẑl denotes the set after the ReLU,
and ZL is the reachable set (output layer). Since zonotopes are closed under linear transfor-
mations, applying weights and bias of layer l to zonotope Ẑl−1 = (ĉl−1 ∣ Ĝl−1) results in

Obtaining ReLU(Zl) is challenging, as it may be a non-convex set, as illustrated in Fig. 2a.
It is inefficient to further propagate the non-convex set ReLU(Zl) through the neural net-
work. Therefore, our core idea is to approximate ReLU(Zl) and use this as the input to the
next layer. More precisely, we propose two methods: RsO (reachable set over-approxima-
tion) and RsU (reachable set under-approximation). RsO obtains a superset of ReLU(Zl)
in each layer l, while RsU returns a subset. Using RsO within each layer ensures that no
points are missed and that the output set captures all reachable points. Equivalently, apply-
ing RsU within each layer results in an output set that is a subset of the exact reachable set,
i.e. contains the points that will definitely be reached. Pseudocode for RsO, RsU and prop-
agating a zonotope through the neural network is provided in the appendix (see Sect. 6.1).

Approximation of ReLU(Z) In the following, we describe how to approximate ReLU(Z)
based on zonotope Z. To unclutter the notiation, we omit layer index l. The ReLU function
maps points dimension-wise onto the maximum of themselves and zero. Consideration of
dimension d results in three possible cases: Case 1: ∀p ∈ Z ∶ pd < 0 , where the points are
mapped to zero, Case 2: ∀p ∈ Z ∶ pd ≥ 0 , where the points are mapped onto themselves and
Case 3: ∃p, q ∈ Z ∶ pd < 0 ∧ qd > 0 , where the points are mapped to zero or themselves.

Case 3 causes the non-convexity of ReLU (see Fig. 2a, 2nd dimension). We consider the
three cases separately to approximate each maximum convex subset of ReLU(Z) by one zono-
tope. The three cases are distinguished by computing an index set for each case:

(1)Ẑ = (ĉ ∣ Ĝ) ∶=

{
ĉ +

n∑

i=1

𝛽iĝi ∣ 𝛽i ∈ [−1, 1]

}
⊂ ℝ

D.

(2)Zl =
(
cl ∣ Gl

)
=
(
Wlĉl−1 + bl ∣ Ĝl−1WlT

)
.

(a) ReLU(Z). (b) Under-approximation. (c) Over-approximation.

Fig. 2   Application of ReLU to a zonotope (blue) can result in a non-convex set (red). We approximate each
subset located in each quadrant separately (here: two quadrants) and subject it to ReLU. The obtained set of
sets under-approximates (green sets) or over-approximates (orange sets) ReLU(Z) (Color figure online)

1179Machine Learning (2021) 110:1175–1197	

1 3

These index sets can be efficiently obtained through the interval hull of Z (Kühn 1998),
where |.| is the element-wise absolute value: IH(Z) ∶=

[
c − �g, c + �g

]
 where �g =

∑
i �gi� .

Rn contains the dimensions d such that (c − �g)d ≤ 0 , Rp contains the dimensions where
(c + �g)d ≥ 0 , and R contains the remaining dimensions.

Projection of a zonotope Regarding the dimensions in Rn , ReLU maps each point of
the zonotope to zero. Thus, we can safely project the whole zonotope Z = (c ∣ G) to zero
within these dimensions.

Theorem 1  Let Z be an arbitrary zonotope and Z� = ProjRn
(Z) , then ReLU(Z) = ReLU(Z�) .

ProjM(Z) = Z� =
(
c� ∣ G�

)
 is defined by c�

d
= 0 if d ∈ M, else c�

d
= cd and

g�
i,d

= 0 if d ∈ M, else g�
i,d

= gi,d.

Proof  Applying ReLU and the projection operator to Z results in the sets:

Applying ReLU on the projection results in ReLU(Z):

	� ◻

Projecting Z results in the more compact Z′ with no change to the output set. We over-
load notation, and Z denotes the projected zonotope in the following.

Computation of quadrants that contain a subset Sk of Z Next, we subdivide the pro-
jected zonotope Z into subsets located in one quadrant. Quadrants that contain points of Z
are determined by an index set Rk , where Rk is an element of the power set P(R) of R.
Each index set Rk corresponds to a set Sk = {p ∣ p ∈ Z ∧ pd ≤ 0∀d ∈ Rk ∧ pd ≥ 0∀ ∉ Rk} .
Clearly, all Sk are convex and disjoint, the union over Sk results in Z. It is important to
highlight that we never materialize the subsets Sk , as they are unfavorable to compute.
Our core idea is to approximate each Sk by zonotope Ẑk . Subsequently, we project Ẑk in
all dimensions of the corresponding Rk (see case 1), resulting in ProjRk

(Ẑk) . The obtained
set of zonotopes is an approximatiuon of ReLU(Z) and is the input for the next layer. The
computation of R, Rk and corresponding subsets Sk is illustrated in the following example.

Example 1  Consider zonotope Z = (c ∣ G) (Fig. 2), where c = (6, 1) and generators are
g1 = (3, 0) , g2 = (2, 3) and g3 = (0, 0.5) . The lower bounds are (1,−2.5) , the upper bounds
are (11, 4.5). As all upper bounds are positive, we do not project any dimension. The index

(3)
Rn ={d ∣ ∀p ∈ Z ∶ pd < 0}, Rp = {d ∣ ∀p ∈ Z ∶ pd ≥ 0},

R ={d ∣ ∃p, q ∈ Z ∶ pd < 0, qd > 0}

ReLU(Z) =
{
a ∣ ad = max{0, bd}, b ∈ Z

}

ProjRn
(Z) =

{
q ∣ qd =

{
0 if d ∈ Rn

pd else
, p ∈ Z

}

=

{
q ∣ qd =

{
0 if ∀p ∈ Z ∶ pd < 0

pd else
, p ∈ Z

}

ReLU
(
ProjRn

(Z)
)
=
{
a ∣ ad = max{0, bd}, b ∈ ProjRn

(Z)
}

=
{
a ∣ ad = max{0, qd}, qd =

{
0 if ∀r ∈ Z ∶ rd ≤ 0

pd else
, p ∈ Z

}

=
{
a ∣ ad = max{0, pd}, p ∈ Z

}
= ReLU(Z)

1180	 Machine Learning (2021) 110:1175–1197

1 3

set considering case 3 is R = {2} . We need to approximate all subsets Sk corresponding to
Rk ∈ P(R) . The empty set corresponds to the positive quadrant.

We capture each Sk individually to keep the approximations as tight as possible. Theoretically,
we could decrease the number of zonotopes by over-approximating several Sk by one zonotope or
by not considering small subsets Sk in the case of under-approximation. We discuss such an exten-
sion that restricts the maximum number of zonotopes at the end of this section. This extension
enables a balance between tightness of approximations and run-time, which is useful for larger
neural networks. The approximation of Sk can be either an over-approximation (RsO) or an under-
approximation (RsU).

Over-approximation of ReLU(Z) Given Sk ⊆ Z , we aim to over-approximate Sk by Ẑk = (ĉ ∣ Ĝ)
(to unclutter the notation, we omit the index k w.r.t. center and generators). Our core idea is that if
Ẑk is a tight over-approximation of Sk , the shape of Ẑk should resemble the shape of Z (see Fig. 2c).

As the shapes of two zonotopes are similar if their generators point in similar directions, we
derive Ẑk from the generators of Z. More precisely, the generators of Ẑk are obtained by scaling
each generator gj of Z with a factor �j ∈ [0, 1] and computing the shift of the center such that
Sk ⊆ Ẑk ⊆ Z . Clearly, �j = 1 fulfills this property, but results in ĝj = g and a loose over-approxi-
mation. Thus, we aim to minimize over �j . Each scaling factor �j for generator gj is computed ana-
lytically (see Fig. 3) by first computing an extreme point e of the zonotope. We start in e and test if
the generator gj allows a point tj,d to be reached outside the quadrant under consideration. If this is
the case, gj can be scaled down and Ẑ still over-approximates Sk . We compute the extreme points
and scaling factors for each dimension d, resulting in �j,d.

Regarding dimension d, gj can be scaled by the factor �j,d . If we scale gj by a larger factor, we
leave the quadrant corresponding to Sk with respect to dimension d. A larger scaling factor is not
necessary in order to over-approximate Sk . Thus, we minimize over �j,d to obtain the smallest �j
and the tightest over-approximation. Formally, ĝj and ĉ of the over-approximating zonotope Ẑk
are:

ĝj = 𝛼jgj, ĉ = c +
∑

j

sj(1 − 𝛼j)ojgj with the following definitions:

𝛼j = min
d

𝛼j,d, d∗ = argmin
d

𝛼j,d, oj =
gj,d∗

|||gj,d∗
|||
, sj = 1 if d∗ ∉ Rk,−1 else

∀d ∉ Rk ∶ t+
j,d

= cd − 2
|||gj,d

||| +
∑

i

||gi,d||, 𝛼j,d = 1 −
|t+
j,d
|

2|gj,d|
if t+

j,d
< 0, 1 else

∀d ∈ Rk ∶ t−
j,d

= cd + 2
|||gj,d

||| −
∑

i

||gi,d||, 𝛼j,d = 1 −
|t−
j,d
|

2|gj,d|
if t−

j,d
> 0, 1 else

(4)

Fig. 3   Overapproximation of
S
0
 (red) ⊆ Z (blue) by Ẑ (gray)

(Color figure online)

c

ĉ

e

t+2,2

t+1,1

1181Machine Learning (2021) 110:1175–1197	

1 3

Although the generators of Z are scaled down, the obtained zonotope Ẑ is an over-approx-
imation of Sk for the respective quadrant (which we never computed explicitly). This is
shown in Theorem 2 by using Lemma 3 and 4.

Theorem 2  Let Z = (c ∣ G) , Sk = {p ∣ p ∈ Z ∧ pd ≥ 0 ∀d ∉ Rk ∧ pd ≤ 0 ∀d ∈ Rk}
and Ẑk = (ĉ ∣ Ĝ) with the center and generators as defined in Equation 4. Then Sk ⊆ Ẑk.

Proof  Let p ∈ Sk . Since p ∈ Z it exists �j ∈ [−1, 1] such that:

where we use that oj =
gj,d∗

|gj,d∗ |
∈ {−1, 1} , ��

j
= oj�j , c = ĉ −

∑
j sj(1 − 𝛼j)ojgj and gj =

1

𝛼i
ĝj . If

we can show that
��
j
−sj(1−�j)

�j
oj ∈ [−1, 1] then p ∈ Zk . To this end, we distinguish how �j is

obtained: If �j is computed based on d∗ ∉ Rk then sj = 1 and it holds that 2(1 − �j) − 1 ≤ ��
j

(see Lemma 3). If �j is computed based on d∗ ∈ Rk then sj = −1 and ��
j
≤ 1 − 2(1 − �j) (see

Lemma 4). With these constraints and ��
j
∈ [−1, 1] (from the definition of zonotopes) we

obtain
��
j
−sj(1−�j)

�j
∈ [−1, 1] . Using oj ∈ {−1, 1} , we define 𝛽j =

𝛽�
j
−sj(1−𝛼j)

𝛼j
oj and obtain

p = ĉ +
∑

j 𝛽jĝj ∈ Ẑk ⇒ ∀p ∈ Sk ∶ p ∈ Ẑk and Sk ⊆ Ẑk . 	� ◻

Lemma 3  Consider zonotope Z = (c ∣ G) . Let Sk = {p ∣ p ∈Z ∧ pd ≥ 0 ∀d ∉ Rk∧pd ≤ 0

∀d ∈ R
k
} and let Ẑk be a zonotope with the center and generators defined in Equation 4.

Consider the definitions used in Theorem 2. Then 2(1 − �j) − 1 ≤ ��
j
 if �j corresponds to a

d ∉ Rk.

Proof  We use that for a point p ∈ Z ∶ pd ≥ 0 in case d ∉ Rk and t+
j,d

< 0.

(5)

p =c +
∑

j

𝛽jgj = ĉ −
∑

j

sj(1 − 𝛼j)ojgj +
∑

j

𝛽�
j
ojgj

=ĉ +
∑

j

(𝛽�
j
− sj(1 − 𝛼j))ojgj = ĉ +

∑

j

𝛽�
j
− sj(1 − 𝛼j)

𝛼j
ojĝj

(6)0 ≤ pd

(7)⇔ t+
j,d

+ 2
1

2

|t+
j,d
|

|gj,d|
|gj,d| ≤ cd +

∑

i

�igi,d

(8)⇔ t+
j,d

+ 2(1 − �j)|gj,d| ≤ cd +
∑

i

�igi,d

(9)⇔ cd +
∑

i

||gi,d|| − 2
|||gj,d

||| + 2(1 − �j)|gj,d| ≤ cd +
∑

i

�igi,d

(10)⇔

∑

i,i≠j

oi,dgi,d − |gd
j
| + 2(1 − �j)|gj,d| ≤

∑

i,i≠j

�igi,d + �jgj,d

1182	 Machine Learning (2021) 110:1175–1197

1 3

We use that pd = cd +
∑

i �igi,d (7), from the definitions of t+
j,d

 1 − �j,d =
|t+
j,d
|

2|gj,d|
 if t+

j,d
< 0 and

0 else (8), the definition of t+
j,d

 (9), oj,dgj,d =
|||gj,d

||| (10) and �jgj,d = ��
j
|gj,d| (11). Inequality

1

�gj,d�
∑

i,i≠j(oi,d − �i)gi,d ≥ 0 (12) holds because oi,dgi,d = |gi,d| and �igi,d = ±�i|gi,d| ≤ |gi,d|
because �i ∈ [−1, 1] ⇒ (oi,d − �i)gi,d ≥ 0 and thus,

∑
i,i≠j(oi,d − �i)gi,d ≥ 0 . 	� ◻

Lemma 4  Consider zonotope Z = (c ∣ G) . Let Sk = {p ∣ p ∈Sk = {p ∣ p ∈ Z ∧ pd ≥ 0 ∀d

∉ Rk ∧ pd ≤ 0∀d ∈ R
k
} and let Ẑk be a zonotope with the center and generators defined in

Equation 4. Consider the definitions used in Theorem 2. Then ��
j
≤ 1 − 2(1 − �j) if �j cor-

responds to a d ∈ Rk.

The proof of Lemma 4 is similar to the one of Lemma 3 and not shown in detail.
The differences to the previous proof are that for a point p ∈ Z ∶ pd ≤ 0 in case d ∈ Rk
and t−

j,d
> 0 , we start with 0 ≥ pd , we use the t−

j,d
 instead of t+

j,d
 and signs of the terms are

different.
The subset Sk is located in one quadrant and the corresponding Rk contains dimen-

sions that are mapped to zero by ReLU (case 1 on Sk ). Thus, we project the over-
approximation Ẑk in dimensions d ∈ Rk as described above. This projection is exact:
ReLU(Sk) = ProjRk

(Sk) ⊆ ProjRk
(Ẑk).

Under-approximation of ReLU(Z) Finding a tight under-approximation of Sk turns out to
be more challenging. We propose to tackle this by solving a constrained optimization prob-
lem, in which we aim to find a zonotope Ẑk of maximum volume subject to the constraint
Ẑk ⊆ Sk:

How can we instantiate Equation 14 to under-approximate Sk tightly and keep computations
efficient? We derive an efficient linear program by considering the same search domain as
before. More precisely, we constrain the search space to zonotopes that are derived from
the original zonotope Z, by scaling its generators gi by factors �i ∈ [0, 1] , i.e. ĝi = 𝛼igi . As
motivated before, this assumption is reasonable, since Ẑk and Z have similar shapes.

Importantly, to ensure that we under-approximate a part of Z located in one quadrant,
we add a constraint that forces the lower bound of the interval hull of Ẑ to be non-negative
if d ∉ Rk : ĉd −

∑
i
��ĝi,d�� ≥ 0 ∀d ∉ Rk and one that forces the upper bound of the interval

hull of Ẑ to be negative if d ∈ Rk : ĉd +
∑

i
��ĝi,d�� ≤ 0 ∀d ∈ Rk . Since the volume of the

zonotope grows with �i , we instantiate the objective function by
∑

i �i . Combining all of
these considerations results in the following linear optimization problem:

(11)⇔

∑

i,i≠j

(od
i
− �i)gi,d + (2(1 − �j) − 1)|gj,d| ≤ ��

j
|gj,d|

(12)
⇔

1

|gj,d|
∑

i,i≠j

(oi,d − �i)gi,d

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

+(2(1 − �j) − 1) ≤ ��
j

(13)⇒ 2(1 − �j) − 1 ≤ ��
j

(14)Ẑk = argmax
Ẑ

V(Ẑ) subject to Ẑ ⊆ Sk

1183Machine Learning (2021) 110:1175–1197	

1 3

Theorem 3  Let Ẑk be computed from zonotope Z based on �∗, �∗ , then Ẑk ⊆ Sk.

Proof  Let �i =
�i

1−�i
 . Since ||�i|| ≤ 1 − �i it holds that �i ∈ [−1, 1] . Since p ∈ Ẑk 𝛽i ∈ [−1, 1]

exists:

To prove that p ∈ Z we need to show that
(
1 − 𝛼i

)
𝛾i + 𝛼i𝛽i ∈ [−1, 1] . Considering

�i ∈ [−1, 1] , �i ∈ [0, 1] and 𝛽i ∈ [−1, 1] we obtain:

Thus, we define 𝛽i =
(
1 − 𝛼i

)
𝛾i + 𝛼i𝛽i and obtain p = c +

∑
i �igi and thus, Ẑk ⊆ Z . The

constraints ĉd −
∑

i
��ĝi,d�� ≥ 0∀d ∉ Rk and ĉd +

∑
i
��ĝi,d�� ≤ 0∀d ∈ Rk ensure that Ẑ is located

in the desired quadrant:

Thus, Ẑk ⊆ Sk . 	� ◻

If the quadrant under consideration is empty (which can happen for many quadrants)
the optimization problem is not solvable and we can safely ignore this quadrant. Since all
points in Ẑk are negative w.r.t. the dimensions d ∈ Rk (case 1), we compute ProjRk

(Ẑk) and
obtain an under-approximation of ReLU(Sk) . See Fig. 2b for illustration.

Balancing approximation tightness and run-time For large input sets, the number of
convex subsets that define the reachable set of a neural network scales exponentially with
the number of neurons. Let us consider zonotope Z = (c ∣ G), c ∈ ℝ

D, G ∈ ℝ
n×D . In the

worst case, Z consists of points that are spread over 2D quadrants. RsO and RsU approxi-
mate each subset Sk located in one quadrant by a separate zonotope Zk.

To balance approximation tightness and run-time, we extend RsO and RsU, such that
the number of zonotopes can be restricted by the user. The overall number of zonotopes
(w.r.t. the whole neural network) is restricted by B and the amplification is restricted by A.
The amplification is the maximum number of zonotopes Zk used to approximate ReLU(Z)
w.r.t. one layer and one input zonotope Z. It is defined by the number of quadrants q that

𝛼∗, 𝛿∗ = argmax
𝛼,𝛿

∑

i

𝛼i subject to ĝi = 𝛼igi, 𝛼i ∈ [0, 1],

ĉ =c +
∑

i

𝛿igi,
||𝛿i|| ≤ 1 − 𝛼i

ĉd −
∑

i

||ĝi,d|| ≥ 0 ∀d ∉ Rk, ĉd +
∑

i

||ĝi,d|| ≤ 0 ∀d ∈ Rk

p = ĉ +
∑

i

𝛽iĝi = c +
∑

i

𝛿igi +
∑

i

𝛽i𝛼igi

= c +
∑

i

𝛾i
(
1 − 𝛼i

)
gi +

∑

i

𝛽i𝛼igi = c +
∑

i

((
1 − 𝛼i

)
𝛾i + 𝛼i𝛽i

)
gi

∀i ∶
(
1 − 𝛼i

)
𝛾i + 𝛼i𝛽i ≥ −

(
1 − 𝛼i

)
− 𝛼i = −1

∀i ∶
(
1 − 𝛼i

)
𝛾i + 𝛼i𝛽i ≤

(
1 − 𝛼i

)
+ 𝛼i = 1

pd = ĉd +
∑

i

𝛽i ̂gi,d ≥ ĉd −
∑

i

||ĝi,d|| ≥ 0 if d ∉ Rk

pd = ĉd +
∑

i

𝛽i ̂gi,d ≤ ĉd +
∑

i

||ĝi,d|| ≤ 0 if d ∈ Rk

1184	 Machine Learning (2021) 110:1175–1197

1 3

contain points of Z and can be computed as follows. First, we compute the interval hull
of Z. With respect to dimension d, all points within Z are in the interval [
ld
low

, ld
upp

]
=
[
cd − �gd, cd + �gd

]
 , where �g =

∑
i �gi� . Second, we count the number Rn of

dimensions d where ld
low

< 0 and ld
upp

> 0 . The number of quadrants is q = 2Rn.
Over-approximation: If q > A , we compute the interval hull of Z and restrict the inter-

vals to their positive portion. Thus, we over-approximate ReLU(Z) by one zonotope instead
of q zonotopes. If the overall number of zonotopes is larger than B, we estimate the size of
each zonotope Z = (c ∣ G) by size(Z) =

∑
d log(�g)d , where �g =

∑
i �gi� . The largest B − 1

zonotopes are kept while the smaller ones are merged (i.e. we compute an over-approx-
imation of their union by minimizing/maximizing over the lower/upper limits of their
interval hulls). The resulting interval is transformed into the G-representation of a zono-
tope: llow = minZk (ck − (�g)k) , lupp = maxZk (ck + (�g)k) , Zuni = (llow + gext ∣ diag(gext)) ,
gext = 0.5(lupp − llow) where diag(gext) is a diagonal matrix.

Under-approximation: In this case, we simply drop the smallest zonotopes if q > A or
the overall number of zonotopes is larger than B.

4 � Applications and experiments

We highlight the versatility of our RsO and RsU approach by describing several appli-
cations in classification and regression tasks. More specifically, we discuss (non-)robust-
ness verification, robust training, quantification of feature importance and the distinction
between reliable and non-reliable predictions. Furthermore, we analyze reachable sets of
an autoencoder. Our input zonotopes capture three different shapes: cube (equivalent to L∞
-norm), box (with a different perturbation on each feature) and free (with coupling of fea-
tures). We train feed-forward ReLU networks on standard data sets.

Experimental setup Our approaches are implemented in Python/Pytorch. We train feed-
forward ReLU networks using stochastic gradient descent with cross-entropy loss (clas-
sifiers), Huber loss (regression models), mean-square-error loss (autoencoder models) or
robust loss functions (see following sections) and early stopping. Experiments are carried
out on the following popular data sets and neural network architectures (accuracy denotes
worst accuracy obtained for this data set by one of the specified neural network architec-
tures): Classifiers: Iris (Fisher 1936; Dua and Graff 2017): 3 classes, 4 features, 1 − 5 hid-
den layers of 4 neurons each. Wine (Forina et al. 1990; Dua and Graff 2017): 3 classes
(cultivars), 13 features, 1 − 5 hidden layers of 6 neurons each. Tissue (Jossinet 1996; Dua
and Graff 2017): breast tissue probes, 6 classes, 9 features, 1 − 3 hidden layers of 8 neurons
each. Breast cancer Wisconsin (diagnostic) (Street et al. 1999; Dua and Graff 2017): 2
classes, 30 features, 1 − 2 hidden layers of 10 neurons each. MNIST (LeCun et al. 2010):
28 × 28 gray-scale images, 10 classes, 1 hidden layer of 15 neurons. Fashion-MNIST (Xiao
et al. 2017): 28 × 28 gray-scale images, 10 classes, 1 hidden layer of 15 neurons or 5 hid-
den layers of 30 neurons. Regression Models: Abalone (Nash et al. 1994): 8 features, 1
output, 1 − 3 hidden layers of 6 neurons each. Housing (Harrison and Rubinfeld 1978): 13
features, 1 output, 1 hidden layer of 13 neurons. Airfoil (Brooks et al. 1989): 5 features, 1
output, 1 − 4 hidden layers of 5 neurons each. Autoencoder: MNIST (LeCun et al. 2010):
28 × 28 gray scale images, 28 × 28 output, 3 hidden layers of 30 × 60 × 30 neurons. Fash-
ion-MNIST (Xiao et al. 2017): 28 × 28 gray scale images, 28 × 28 output, 3 hidden layers
of 30 × 60 × 30 neurons.

1185Machine Learning (2021) 110:1175–1197	

1 3

For classification, all data sets are balanced by sub-sampling training- and test-sets such
that evaluation experiments are done on the same amount of points for each class. The
input size of MNIST and Fashion-MNIST is reduced from 28 × 28 to 30 by using principle
component analysis (PCA). In the evaluation experiments, we use 30 input points of the
iris data set, wine data set and tissue data set, 86 points of the cancer data set, 200 point of
the MNIST data set and 100 points of the Fashion-MNIST data set, which are not part of
the training set.

Experiments are conducted in Python (version 3.6) on a machine with 10 Intel Xeon
CPU cores with 2.2 GHz, 4 GEFORCE GTX 1080 Ti and 256 GB of RAM running
Ubuntu (version 16.04.6).

Definition of input sets Using zonotopes as input sets has the advantage that we are able
to verify different kinds of perturbations. Here, the input set Ẑ = (ĉ ∣ Ĝ) is defined by using
an input data point x as center ĉ and the following perturbations specified by the generator
matrix Ĝ . Cube: Ẑcube is a hyper-cube whose shape is equivalent to the unit ball of the L∞
-norm. As the allowed perturbation on each input feature is the same, the generator matrix
is �Id for different � . Box Ẑbox is a so called axis-aligned parallelotope (n-dimensional box).
This shape allows different disturbances on each input feature, but it does not couple fea-
tures. For this, we first compute a zonotope by using the eigen-vectors that correspond to
the d largest eigenvalues of the data set as generators. Zbox is obtained by computing the
interval hull of this zonotope and scaling its volume such that it is equivalent to the vol-
ume of Ẑcube for a given � . Free Ẑfree is an arbitrary zonotope that enables disturbances to
be coupled between input features which cannot be captured by norms or intervals. This
input zonotope is obtained by increasing/decreasing all feature values simultaneously by at
most � and additionally allowing a small, fixed perturbation 𝛿 ≪ 𝜀 on each feature. If the
input is an image, this perturbation would brighten/darken all pixel values simultaneously:
Ĝ = [𝛿Id, 𝜀�].

For feature rankings, the following setting is used: to quantify the influence of feature f1
on the prediction of x, we define a box-shaped input set Ẑf1 = (x|G) around x that allows
a perturbation � on f1 and a minimal perturbation � (here: � = 0.01 ) on all other features.
More formally, we use a diagonal input matrix G, where G1,1 = � and Gi,i = � ∀i ≠ 1.

Classification: (Non-)robustness verification First, we evaluate the potential of reach-
able sets by using them for robustness/non-robustness verification, i.e. for studying how
predictions of a classifier change when perturbing input instances. More precisely, we aim
to analyze if predictions based on an input set map to the same class or if they vary. For-
mally, the set of predictions (classes) is P = {argmaxc f (x)c|x ∈ I} , given input set I.

For verification, we compute a robustness score against each class. Let a be the pre-
dicted class and b ≠ a the class against which we quantify robustness.1 The least robust
point p within the reachable set (output/logit space) is the one where its coordinate pb is
close to or larger than pa . Based on these considerations, we define the robustness score
against class b of reachable set RS:

(15)sb = min
p∈RS

(
pa − pb

)
= min

Z=(c∣G)∈RS

(
ca − cb −

∑

i

|||g
a
i
− gb

i

|||

)

1  Please note that reachable sets capture all classes jointly. More precisely, the method does not require any
label/class information at all. Thus, it is directly applicable to other tasks such as regression.

1186	 Machine Learning (2021) 110:1175–1197

1 3

where Z ∈ RS denotes the computed zonotopes, and we use that pa = ca +
∑

i �ig
a
i
 ,

pb = cb +
∑

i �ig
b
i
 and

∑
i �i(g

a
i
− gb

i
) is minimal if �i ∈ {−1, 1} depending on the sign of

ga
i
− gb

i
.

Robustness certificates are obtained by computing the scores against all classes b ≠ a on
the over-approximated reachable set RSO . If all scores are positive, the robustness certifi-
cate holds, and all points from the input set are classified as class a. Non-robustness certifi-
cates are obtained by checking if there is a class b, such that sb on the under-approximated
reachable set RSU is negative. If this is the case, at least one point from the input set is
categorized as class b.

There are three benefits to these scores. First, computing scores is efficient (see Equa-
tion 15). What is more, the scores are fully differentiable w.r.t. the network parameters,
enabling immediate robust training (see later experiment). Second, the scores are appli-
cable to class-specific verification (i.e. robust against class b1 , non-robust against b2 ). And
thirdly, the scores allow relative quantification of (non-)robustness. A reachable set with a
high score is more robust than one with a low score.

We compare the performance of RsO on robustness verification using the state-of-the-
art methods, Wong and Kolter (2018), Singh et al. (2018), Singh et al. (2019b), Singh
et al. (2019c) and es (exact approach) (Xiang et al. 2017), which computes the exact reach-
able set (implementation (Liu et al. 2019)). RsU is compared with the success rate of
FGSM attacks (Goodfellow et al. 2015; Szegedy et al. 2014) and PGD attacks (Madry et al.
2018). To handle the box setting, FGSM attacks are scaled, such that the perturbed input is
contained within the input zonotope. The PGD attack is projected onto the input zonotope
in each step, i.e. extended to handle arbitrary input zonotopes. Figures 4 and 5 illustrate
(non-)robustness verification on the cancer data set, MNIST, iris data set and FashionMN-
IST for cube-, box- and free-shaped input zonotopes.For robustness verification, we meas-
ure the number of samples for which the scores against all non-target classes are positive.
For non-robustness verification, we count the number of samples in which a negative score
exists against a class. In the cube and box settings, RsO perform similar way to dr, dz and
dp, while RsU is similar (cube) or slightly better (box) than PGD attacks. Based on arbi-
trary input zonotopes (free setting), RsO and RsU outperform both state-of-the-art robust-
ness verification approaches and PGD attacks.

Fig. 4   Performance evaluation of RsO and RsU in (non-)robustness verification on the cancer data-set (left,
2 hidden layers, acc. 97% ), MNIST (middle, 1 hidden layer, acc. 94% ) and iris (right, 5 hidden layers, acc.
97%)

1187Machine Learning (2021) 110:1175–1197	

1 3

The run-time of RsO and RsU increases with the number of input features, the number
of neurons in the neural network and the perturbation � . The dependency on � is due to the
fact that huge sets usually decompose into more convex subsets than smaller sets when
they are subject to ReLU, and so, run-time increases with the size of the input set. Note
that we compute the full reachable set of the neural network, which provides much more
information than a binary (non-)robustness-certificate. The other techniques, dz, dp, dr are
designed for robustness verification/attacks and do not return any further information. A
run-time comparison is thus biased. Still, for smaller � and also for the free-shaped input,
the absolute run-time of our methods is competitive.

Since es (Xiang et al. 2017; Liu et al. 2019), which computes the exact reachable set,
requires too much time even with the smallest neural network architecture, it was not pos-
sible to conduct a meaningful comparison. The exact approach es only ran on the small-
est neural network (iris data set, neural network with 1 hidden layer of 4 neurons) for the

Fig. 5   Performance evaluation and run-time of RsO and RsU in (non-)robustness verification on Fashion-
MNIST (acc. 92% ) using cube-shaped (top), box-shaped (middle) and freely-shaped input sets (bottom)

Table 1   Comparison of RsO and RsU with the exact reachable set computation (es) (Xiang et al. 2017; Liu
et al. 2019) on 29 correctly classified samples of the iris data set (neural network with 1 hidden layer of 4
neurons, acc. 97% , cube setting)

� RsO RsU es

No. rob. Time [ms] No. non-r. Time [ms] No. rob. No. non-r. Time [ms]

0.001 29 0.47 0 0.46 28 0 14.68
0.005 29 0.46 0 0.47 28 0 14.56
0.01 29 0.47 0 0.46 28 0 14.61
0.02 29 0.58 0 2.40 – – > 3d

1188	 Machine Learning (2021) 110:1175–1197

1 3

smallest perturbations � ∈ {0.001, 0.005, 0.01} (see Table 1)2. Note that the exact approach
es certifies 28 of the 29 samples as robust and 0 as non-robust and rejects one sample for
which it was not able to solve an underlying optimization problem. When performing the
exact method es on a cube-shape input with perturbation � = 0.02 , it did not finish even
after more than three days. This might be explained by the fact that es uses half-spaces to
describe the reachable set. Applying ReLU on sets described by half-spaces requires expo-
nential time, and thus, es is not feasible even for small neural networks. Consequently, the
reachable set needs to be over-/under-approximated as in our approach.

Classification: class-specific verification Robustness scores allow class-specific (non-)
robustness verification in cases where distinguishing between classes is not equally impor-
tant, e.g. in the tissue data set. The authors of the data set are of the opinion that dis-
tinguishing between the class 3, 4 and 5 (fibro-adenoma, mastopathy and glandular) is of
minor importance, while it is crucial to distinguish these classes from class 1 (carcinoma).
This is illustrated in Fig. 6, left part, where classes 3, 4 and 5 are not robust against each
other, while class 1 is robust against all other classes (plot: percentage of instances which
are evaluated as (non-)robust; x-axis: ground truth class, y-axis: class we test against).
Thus, class-specific analysis allows classifiers to be evaluated more specifically and focus
on crucial robustness properties.

Furthermore, it allows us to draw conclusions about the concepts a neural network has
learned (see Fig. 6, right part, Fashion-MNIST with classes: 0 top, 1 trousers, 2 pullo-
ver, 3 dress, 4 coat, 5 sandal, 6 shirt 7 sneaker, 8 bag, 9 boot). It is striking that class 2
pullover is less robust against classes of items of a similar shape (0 top, 4 coat) but robust
against classes of items of different shapes (1 trousers, 3 dress, 5 sandal, 8 bag, 9 boot).

Fig. 6   Class specific verification on the breasttissue data-set (3 hidden layer, acc. 97% , box setting, left) and
Fashion-MNIST (1 hidden layer, acc. 92% , cube setting, right)

Table 2   Distinguishing between reliable and non-reliable predictions: comparison of RsO and softmax
scores (fashionmnist, classification acc. 96 % , � = 0.005)

TPR [%] TNR [%] reliablity acc[%]

RsO 90.5 75.0 89.5
softmax scores 92.0 71.4 90.7

2  Note that we used a version of Liu et al. (2019) in which a previously existing bug in an underlying
library has been fixed. This fix is crucial for correctness, but results in longer run-times than originally
reported in (Liu et al. 2019; Xiang et al. 2017).

1189Machine Learning (2021) 110:1175–1197	

1 3

This indicates that the neural network has extracted the shape and learned its importance
for a classification decision.

Classification: reliability of predictions Distinguishing between reliable (label 0)
and non-reliable predictions (label 1) can be seen as a binary classification problem.
Although a wrong prediction (w.r.t. ground truth) can theoretically have a high robust-
ness score, we observe that the robustness scores corresponding to wrongly predicted
inputs are mostly negative or close to zero. Thus, we consider a prediction as reliable if
the corresponding robustness scores (w.r.t. the predicted class) is larger than a positive
threshold � . This threshold � is chosen such that it maximizing the number of correctly
identified reliable/ non-reliable samples on the validation set. Table 2 compares the per-
formance of RsO with our proposed baseline approach that uses softmax scores to dis-
tinguish between reliable and non-reliable predictions.

Our comparison shows that, while softmax scores result in a slightly higher true-pos-
itive-rate and overall accuracy, RsO provides a significantly higher true-negative-rate.
Thus, RsO identifies more non-reliable predictions than softmax scores. Furthermore,
RsO provides a robustness certificate as well as an indicator for reliability.

Classification: robust training The robustness scores as defined in Equation 15 are
directly used in robust training by incorporating them into the loss function, e.g. as
follows:

where Lpred is the cross-entropy loss and �[pred=target] = 1 for correctly classified inputs,
otherwise 0. Note that the loss is fully differentiable w.r.t. the neural network weights (i.e.
we can backpropagate through the zonotope construction) which makes it possible to train
a model with enhanced robustness against any perturbation that can be described by any
(input) zonotope. Figure 7 compares robustness of models obtained by robust training
( Lrob ), retraining (warm-start with a normally trained model, further training with Lrob ),
normal training, and mixup (a robust training technique based on a convex combination of
samples, see Zhang et al. 2018).

Robust training, retraining and mixup enhance the robustness of the neural network on
cube-, box- and free-shaped perturbations as well as the accuracy of the neural network.
While the performance of mixup and robust training are comparable on box- and free-
shaped perturbations, retraining outperforms mixup on all three perturbation shapes.

Regression: (Non-)robustness analysis and robust training Obtaining robust neural net-
works is desirable in any task but has mainly been studied for the purpose of classification.
Classifiers are robust if an input x and all points in its neighborhood are assigned to the
same label. In regression tasks, there is no equivalent robustness definition, because out-
puts are continuous and not categorical. However, intuitively, regression models are robust

(16)Lrob = Lpred + �[pred=target] ⋅max
b

ReLU
(
−sb

)

Fig. 7   Evaluation of gg against box-shaped perturbations with � = 0.1 on FashionMNIST (Acc.: normal
91% , mixup 94% , retrain 93% , robust 92%)

1190	 Machine Learning (2021) 110:1175–1197

1 3

if close inputs result in close outputs. Assume that inputs and outputs are standardized
before training, such that all features are on an equal scale. The extension la of output fea-
ture a within the reachable set RS quantifies robustness: the smaller la is, the more robust is
the model. The extension is defined by the two most distant points u and v within RS w.r.t.
dimension a: la =

|||maxu∈RS
ua −minv∈RS

va
||| . For input features, the extension lin is equiva-

lently defined on the input set. In the cube setting, lin is the same for all input features.
If we have la ≤ lin for all output features a, the regression model maps close inputs to

close outputs and we consider it as robust. We use this robustness definition to define a
robust training function based on feature extension and a standard loss function Lval (e.g.
Huber loss):

If la is larger than lin the second term of Lrob is positive, otherwise it is zero. We compare
four different training modes: normal (training with Huber loss), retrain (warm-start with
a normally trained model, and further training with Lrob ), robust (training with Lrob ), and
mixup (a training technique that convexly combines inputs, see Zhang et al. 2018). Fig-
ure 8 illustrates the training and robustness analysis, based on the abalone data set (2 hid-
den layers, first row) and the airfoil dataset (1 hidden layer, second row).

While mixup seems to decrease the robustness of regression models, robust training and
retraining results in smaller reachable sets and thus ensures that close inputs are mapped

(17)Lrob = Lval + ReLU
(
max
a

la − lin

)

Fig. 8   Robust training and robustness analysis of regression models. The smaller the mean extension
the more robust is the model. (Error on the test set—abalone data: normal 0.20, retrain 0.24 (start at
epoch 100), robust 0.24, mixup 0.20, airfoil data: normal 0.12, retrain 0.18, robust 0.18, mixup 0.11)

Fig. 9   Ranking (top 3 features) for samples (y-axis) of the wine data set (class 2, 13 features, 1 hidden
layer, neural network accuracy 93.3 % ) computed by RsO (left), igm (middle) and lime (right)

1191Machine Learning (2021) 110:1175–1197	

1 3

to close outputs. Thus, robust training and retraining both improve robustness properties
without significantly reducing prediction accuracy.

Explainability: reature ranking for classifiers and regression models Reachable sets
enable the importance of features to be quantified w.r.t. a model output. To quantify
the influence of feature f1 , we define a box-shaped input set with a large perturbation �
on f1 , while the perturbation on the remaining features is small. The size of the reach-
able set corresponding to Ẑf1 captures the variation in the predictions caused by varying f1
and thus quantifies the influence of f1 . Since the exact size/volume of Ẑf1 is inefficient to
compute (Gover and Krikorian 2010), we approximate it using the interval hull. Here, we
use the scaled version of the volume that considers the dimensionality d of the zonotope:
V(IH(Z)) =

�
2
∏

i �gi
� 1

d where �g =
∑

i �gi� . The volume of the reachable set is approxi-
mated by the sum of all interval hull volumes.Figure 9 illustrates the three most impor-
tant features for samples of the wine data set computed by our RsO approach in compari-
son with two other approaches: the integrated gradients method (igm) (Sundararajan et al.
2017) and local interpretable model-agnostic explanations (lime) (Ribeiro et al. 2016). RsO
identifies four possibilities for the most important feature: f12 (blue, ≈ 30% of samples), f9
(teal, ≈ 10% of samples), f7 (bright green, ≈ 50% of samples) and f6 (yellow, ≈ 20% of
samples). Igm identifies three of these possibilities, while lime identifies five possibilities.
Overall, the rankings of RsO, igm and lime are of different complexity in terms of differ-
ent features. The most (second-most/third-most) important feature identified by igm adopts
2-3 possibilities, by lime 5-6 possibilities and by RsO 4-6 possibilities. Consequently, the
complexity of the feature ranking computed by RsO is between the one obtained by igm
and lime.

Reachable set approximation: analysis of the limits. RsU and RsO approximate the
reachable set of a ReLU network layer-by-layer. Within each layer, they compute a lin-
ear transformation (defined by the weights and biases) and approximate the outcome of
applying ReLU by a set of convex subsets (zonotopes). The number of subsets required to
approximate ReLU(Z) is the bottleneck of our approaches. Worst case, applying ReLU on
Z = (c ∣ G) , c ∈ ℝ

D , G ∈ ℝ
n×D results in 2D subsets/zonotopes. Considering a neural net-

work with K layers of D1,D2,D3,…DK neurons, the reachable set approximation requires
up to 2

∑K

k=1
Dk subsets/zonotopes. Figure 10 illustrates that the run time of RsO linearly

increases with the number of subsets and thus exponentially increases with the number
of neurons in the worst case. Thus, the number of neurons limits the applicability of our
approaches on large neural networks.

To improve this, we propose an extension, which restricts the amplification number
and the total number of zonotopes (see Section Balancing approximation tightness and
run time), which is applicable to larger neural networks. Results on this extension on

Fig. 10   Run time of RsO vs.
worst case no. of subsets required
to approximate the reachable set
(wine data set, acc. 1,2 layers:
93% , acc. 3-5 layers: 97%)

1192	 Machine Learning (2021) 110:1175–1197

1 3

robustness verification and for the analysis of autoencoders are presented in the next sec-
tion and in the appendix (see Sect. 6.2).

Autoencoder analysis To illustrate the strength of our approach, we compare reacha-
ble sets obtained by RsO and RsU with a sampling-based set approximation. We approxi-
mate the reachable set of an autoencoder (three hidden layers, 60 × 30 × 60 neurons) with
respect to a cube shaped input set with � = 0.001 . RsO and RsU are restricted such that
the maximum amplification of a zonotope is A = 100 and the overall number of zonotopes
is less or equal to B = 1000 . To compare with RsO and RsU we introduce a simple base-
line based on sampling. This sampling approach chooses 109 points among the vertices of
the cube shaped input set and computes the corresponding outputs. The set spanned by
these 109 outputs is used to approximate the exact reachable set.

Since we consider autoencoder models, the reachable set consists of pictures from the
same space as the input. To visualize the properties of the reachable sets computed by RsO,
by RsU and by the sampling approach, we draw example pictures from the reachable sets.
Furthermore, we compute the extension/size of the range of each pixel based on the reach-
able set under consideration (Fig. 11).

Even though we restrict the number of convex subsets to 1000, RsO and RsU result in
similar example pictures and similar extensions for each pixel (see Fig. 11, second row and
third row). This illustrates that our approximations are tight and close to the exact reach-
able set, since the exact reachable set is enclosed by the under- and over-approximation. In
comparison to RsU, the sampling approach results in pixel extensions that are about two
times smaller/worse and example pictures that are too close to the image reconstructed
from the original input. Thus, sampling 109 instances from the input set and computing the
corresponding outputs still leads to a dramatic underestimation of the exact reachable set.
This shows that RsU outperforms the sampling approach, even if we restrict the overall
number of zonotopes and the possible amplification. In conclusion, these results highlight
the fact that computing an upper bound (RsO) and a lower bound (RsU) to the reachable set
of neural networks provides more information on the mapping of networks than sampling.

Fig. 11   Analysis of an autoencoder (MNIST, cube, � = 0.001 ). First row: input image, output image drawn
from the reachable set approximated by RsO (second), RsU (third) and sampling (fourth). Second row:
extension/size of the pixel range corresponding to the reachable sets computed by RsO (left), RsU (middle)
and sampling (right). The smaller the ranges computed by RsO and the larger the ranges computed by RsU
or sampling the better is the performance

1193Machine Learning (2021) 110:1175–1197	

1 3

5 � Conclusion

We propose RsO and RsU as two efficient approaches for over- and under-approximating
the reachable sets of ReLU networks. Approximated reachable sets are applicable to the
analysis of neural network properties: we analyze and enhance the (non-)robustness prop-
erties of both classifiers and regression models. Our approach outperforms PGD attacks
as well as state-of-the-art methods of verification for classifiers with respect to non-norm
bound perturbations. Reachable sets provide more information than a binary robustness
certificate. We use this information for class-specific verification, robustness quantification,
robust training, distinguishing between reliable and non-reliable predictions, ranking fea-
tures according to their influence on a prediction and analyze autoencoders.

Appendix

Pseudocode

Algorithm 1 and 2 show how we under-/over-approximate the outcome of applying ReLU
on a zonotope, while Algorithm 3 and 4 show how the reachable set of a neural network is
approximated with and without limitations on the number of used subsets.

Algorithm 1: RsO over-approximates applying ReLU on a zonotope
Input: Zonotope Z = (c | G), Maximum number MaxAmp of subsets used to

approximate one zonotope
Output: Set of zonotopes RS = {Ẑn}n that over-approximates ReLU(Z)

1 Compute index sets Rn, R (see Equation 3);
2 Project Z: ∀i,∀d ∈ Rn : cd = 0 and G[i, d] = 0;
3 Compute quadrants with Sk ⊆ Z: {Rk}k = P(R) = power set of R;
4 Initialize RS = {};
5 if |P(R)| > MaxAmp then
6 Compute interval hull IH (Z) :=

[
c−

∑
i |gi|, c+

∑
i |gi|

]
;

7 Restrict IH to its positive parts ;
8 ZIH = (c|GIH) with GIH = diag(

∑
i |gi|) ;

9 RS = {ZIH} ;

10 else
11 for Rk ∈ P(R) do
12 Overapproximate Sk by Ẑk (see Equation 4);
13 RS = RS ∪ {Ẑk}

14 return RS;

1194	 Machine Learning (2021) 110:1175–1197

1 3

Algorithm 2: RsU under-approximates applying ReLU on a zonotope
Input: Zonotope Z = (c | G), Maximum number MaxAmp of subsets used to

approximate one zonotope
Output: Set of zonotopes RS = {Ẑn}n that under-approximates ReLU(Z)

1 Compute index sets Rn, R (see Equation 3);
2 Project Z: ∀i,∀d ∈ Rn : cd = 0 and G[i, d] = 0;
3 Compute quadrants with Sk ⊆ Z: {Rk}k = P(R) = power set of R;
4 Initialize RS = {};
5 for Rk ∈ P(R) do
6 Underapproximate Sk by Ẑk (see Equation 15);
7 RS = RS ∪ {Ẑk} ;
8 if |RS| > MaxAmp then
9 break ;

10 return RS;

Algorithm 3: PropZ propagates zonotope through ReLU network
Input: Zonotope Z0 = (c0 | G0), approximation method (RsO or RsU)
Output: Set of zonotopes RS = {Zn}n that approximates the reachable set

1 Initialize set of zonotopes RS = {Z0}n
2 for k ← 1 to K // iterate over layers
3 do
4 RS′ = {} ;
5 RS′′ = {} ;
6 for Z ∈ RS do
7 Linear transformation: Z′ = lintrans(Z) (see Equation 2) ;
8 RS′ = RS′ ∪ {Z′} ;

9 if over approximate then
10 for Z ∈ RS′ do
11 Apply ReLU activation function: RS′′ = RS′′ ∪ RsO(Z,∞) ;

12 if under approximate then
13 for Z ∈ RS′ do
14 Apply ReLU activation function: RS′′ = RS′′ ∪ RsU(Z,∞) ;

15 RS = RS′′ ;

16 return RS;

1195Machine Learning (2021) 110:1175–1197	

1 3

Algorithm 4: PropZLimit propagates zonotope through ReLU network
(limited no. subsets)
Input: Zonotope Z0 = (c0 | G0), approximation method (RsO or RsU), Maximum

number of zonotopes MaxZono, Maximum amplification MaxAmp
Output: Set of zonotopes RS = {Zn}n that approximates the reachable set

1 Initialize set of zonotopes RS = {Z0}n
2 for k ← 1 to K // iterate over layers
3 do
4 RS′ = {} ;
5 RS′′ = {} for Z ∈ RS do
6 Linear transformation: Z′ = lintrans(Z) (see Equation 2) ;
7 RS′ = RS′ ∪ {Z′} ;

8 if over approximate then
9 for Z ∈ RS′ do

10 Apply ReLU activation function: RS′′ = RS′′ ∪ RsO(Z,MaxAmp) ;

11 if under approximate then
12 for Z ∈ RS′ do
13 Apply ReLU activation function: RS′′ = RS′′ ∪ RsU(Z,MaxAmp) ;

14 RS = RS′′ ;
15 if |RS| ≥ MaxZono then
16 Finde smallest zonotopes ∈ RS ;
17 Remove smallest zonotopes from RS ;
18 if over approximate then
19 Union smallest zonotopes over approximativly by interval hull;
20 Add union to RS;

21 return RS;

Extension of RsO and RsU for large(r) neural networks

The subsection “Reachable Set Approximation: Analysis of the Limit” (page 17) shows
that the number of zonotopes required to approximate the reachable set might increase
exponentially with the number of neurons of the neural network in the worst case. Thus,
we propose an extension (see page 9: “Balancing approximation tightness and run-time”)
that allows to restrict the number of total subsets (max. zono.) and the amplification (max.
amp.). The maximum amplification is the maximum number of subsets used to approxi-
mate ReLU(Z) w.r.t. the zonotope Z subjected to ReLU, while the maximum number of
zonotopes is the maximum number of zonotopes w.r.t. to the whole neural network that
is used to approximate the reachable set. This restriction allows to use RsO for robust-
ness verification of larger neural networks. To illustrate how these restrictions affect the
tightness of our approximations, we compare the performance of RsO for different max.
zono. and max. amp. values on a neural network with 5 hidden layers of 30 neurons on
the FashionMNIST data set (see Fig. 12). Without limitations, RsO might require up to
2150 ≈ 1.43 ⋅ 1045 subsets.

Figure 12 illustrates that the number of robustness certificates increases with the maxi-
mum amplification (left plot). Furthermore, the number of robustness certificates increases
with max. zono. up to 10, 000, but choosing larger max. zono. does not result in a fur-
ther increase of robustness certificates (right plot). Thus, to obtain tight approximations

1196	 Machine Learning (2021) 110:1175–1197

1 3

the max. amp. should be chosen as large as possible and feasible, while the max. zono.
should be chosen as small as possible but as large as necessary to obtain the maximum
performance.

Acknowledgements  This research was supported by BMW AG. We would like to thank Marten Lienen for
help with the toolbox that was used to compute the exact reachable set.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A. V., & Criminisi, A. (2016). Measur-
ing neural net robustness with constraints. In NeurIPS, Vol. 29.

Brooks, T. F., Pope, D. S., & Marcolini, A. M. (1989). Airfoil self-noise and prediction. NASA Technical
Reports.

Bunel, R., Turkaslan, I., Torr, P. H., Kohli, P., & Kumar, M. P. (2018). A unified view of piecewise lin-
ear neural network verification. In NeurIPS, Vol. 31, PP. 4795–4804.

Dua, D., & Graff, C. (2017). UCI machine learning repository. In University of California.
Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In Automated

Technology for Verification and Analysis, PP. 269–286.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics.
Forina, M., Leardi, R., Armanino, C., & Lanteri, S. (1990). Parvus: An extendable package of programs

for data exploration. Journal of Chemometrics.
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., & Vechev, M. (2018). Ai2:

Safety and robustness certification of neural networks with abstract interpretation. In IEEE Sympo-
sium on Security and Privacy, PP. 3–18.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples.
ICLR.

Gover, E., & Krikorian, N. (2010). Determinants and the volumes of parallelotopes and zonotopes. Lin-
ear Algebra and its Applications, 433, 28–40.

Fig. 12   Performance of RsO on robustness verification using fashionmnist (classification acc. 95% ) with
different max. amp. and fixed max. zono. (left), with fixed max. amp. and different max. zono. (right)

http://creativecommons.org/licenses/by/4.0/

1197Machine Learning (2021) 110:1175–1197	

1 3

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arandjelovic, R., Mann, R., &
Kohli, P. (2019). Scalable verified training for provably robust image classification. In ICCV, PP.
4841–4850.

Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean air. Journal of Envi-
ronmental Economics and Management, 5, 81–102.

Hein, M., & Andriushchenko, M. (2017). Formal guarantees on the robustness of a classifier against
adversarial manipulation. In NeurIPS, Vol. 30.

Jossinet, J. (1996). Variability of impedivity in normal and pathological breast tissue. Medical and Bio-
logical Engineering and Computing, 34, 346–350.

Katz, G., Barrett, C. W., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex: An efficient
SMT solver for verifying deep neural networks. CAV, 10426, 97–117.

Kühn, W. (1998). Rigorously computed orbits of dynamical systems without the wrapping effect. Com-
puting, 61, 47–67.

LeCun, Y., Cortes, C., & Burges, C. J. (2010). Mnist handwritten digit database. NYU: Courant
Institute.

Liu, C., Arnon, T., Lazarus, C., Barrett, C. W., & Kochenderfer, M. J. (2019). Algorithms for verifying
deep neural networks. Foundations and Trends in Optimization, 4, 244–404.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep learning models
resistant to adversarial attacks. ICLR.

Mirman, M., Gehr, T., & Vechev, M. (2018). Differential abstract interpretation for provably robust neu-
ral networks. ICML, 80, 3578–3586.

Nash, W. J., Sellers, T. L., Talbot, S. R., Cawthorn, A. J., & Ford, W. B. (1994). The population biology
of abalone (haliotis species) in tasmania. i. Blacklip abalone (h. rubra) from the north coast and
islands of bass strait. Sea Fisheries Division, Technical Report, 48.

Raghunathan, A., Steinhardt, J., & Liang, P. (2018). Semidefinite relaxations for certifying robustness to
adversarial examples. In NeurIPS, Vol. 31.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “why should i trust you?”: Explaining the predictions
of any classifier. In SIGKDD, PP. 1135–1144.

Ruan, W., Huang, X., & Kwiatkowska, M. (2018). Reachability analysis of deep neural networks with
provable guarantees. In IJCAI, PP. 2651–2659.

Singh, G., Ganvir, R., Püschel, M., & Vechev, M. (2019a). Beyond the single neuron convex barrier for
neural network certification. NeurIPS, 32.

Singh, G., Gehr, T., Mirman, M., Püschel, M., & Vechev, M. (2018). Fast and effective robustness certi-
fication. In NeurIPS, Vol. 31.

Singh, G., Gehr, T., Püschel, M., & Vechev, M. (2019). An abstract domain for certifying neural net-
works. In Proceedings of the ACM Programming Languages, 3.

Singh, G., Gehr, T., Püschel, M., & Vechev, M. (2019). Boosting robustness certification of neural net-
works. ICLR.

Steinhardt, J., Koh, P. W., & Liang, P. (2017). Certified defenses for data poisoning attacks. In NeurIPS,
Vol. 30, PP. 3520–3532.

Street, N., Wolberg, W., & Mangasarian, O. L. (1999). Nuclear feature extraction for breast tumor diag-
nosis. Biomedical Image Processing and Biomedical Visualization, 1905, 861–870.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. ICML, 79.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014).

Intriguing properties of neural networks. ICLR.
Tjeng, V., Xiao, K. Y., & Tedrake, R. (2019). Evaluating robustness of neural networks with mixed inte-

ger programming. ICLR.
Wong, E., & Kolter, J. Z. (2018). Provable defenses against adversarial examples via the convex outer

adversarial polytope. ICML, 80, 5283–5292.
Xiang, W., Tran, H.-D., & Johnson, T. (2017). Reachable set computation and safety verification for neu-

ral networks with relu activations. CoRR.
Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: A novel image dataset for benchmarking

machine learning algorithms. Zalando SE.
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimiza-

tion. ICLR.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Reachable sets of classifiers and regression models: (non-)robustness analysis and robust training
	Abstract
	1 Introduction
	2 Related work
	3 Reachable sets of neural networks
	4 Applications and experiments
	5 Conclusion
	Acknowledgements
	References

