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SUMMARY
Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA synthesis at modified
nucleosides and the extensive similarity among tRNA genes. We overcome these limitations with modifica-
tion-induced misincorporation tRNA sequencing (mim-tRNAseq), which combines a workflow for full-length
cDNA library construction from endogenously modified tRNA with a comprehensive and user-friendly
computational analysis toolkit. Our method accurately captures tRNA abundance and modification status
in yeast, fly, and human cells and is applicable to any organismwith a known genome.We appliedmim-tRNA-
seq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse human cell lines and a
surprising interdependence of modifications at distinct sites within the same tRNA transcript.
INTRODUCTION

Transfer RNAs (tRNAs) are short, abundant molecules required

for translating genetic information into protein sequences. The

composition of cellular tRNA pools is critical for efficient mRNA

decoding and proteome integrity. tRNA expression is dynami-

cally regulated in different tissues and during development (Ditt-

mar et al., 2006; Ishimura et al., 2014; Kutter et al., 2011; Schmitt

et al., 2014), and defective tRNA biogenesis is linked to neurolog-

ical disorders and cancer (Kirchner and Ignatova, 2015).

Nevertheless, the regulation of tRNA levels and its physiolog-

ical significance remain under-appreciated because of a lack of

accurate, high-resolution methods for tRNA quantitation. A ma-

jor challenge is posed by the stable structure and pervasiveWat-

son-Crick face modifications, which block reverse transcriptase

(RT) (Motorin et al., 2007). Library generation workflowswithout a

strategy for overcoming RT blocks yield mostly short reads due

to premature RT stops at modified sites, as for instance in quan-

titative mature tRNA sequencing (QuantM-tRNAseq) (Pinkard

et al., 2020). Hybridization-based approaches can circumvent

the need for cDNA synthesis, but they can only distinguish tRNAs

differing by at least eight nucleotides (Dittmar et al., 2006). This

limitation is problematic given the extensive sequence similarity

among tRNA transcripts, which can differ by a single nucleotide

even if they read different codons (Chan and Lowe, 2016). Stra-

tegies to overcome structure- and modification-induced RT bar-

riers have included tRNA fragmentation (Arimbasseri et al., 2015;

Gogakos et al., 2017; Karaca et al., 2014), the use of a thermo-
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stable template-switching RT in thermostable group II intron

RTsequencing (TGIRT-seq and DM-tRNAseq) (Katibah et al.,

2014; Qin et al., 2016; Zheng et al., 2015), and enzymatic removal

of some base methylations in AlkB-facilitated RNA methylation

sequencing (ARM-seq) and DM-tRNAseq (Cozen et al., 2015;

Zheng et al., 2015).

Although these methods have improved tRNA representation

in sequencing libraries, several limitations remain. First, all of

these methods relieve only a fraction of RT blocks, which can

bias recovery toward tRNA subsets with few modified sites or

those that are better substrates for demethylation in vitro. Sec-

ond, removing modifications eliminates information about their

presence and stoichiometry, which could be inferred from signa-

tures of RT stops and misincorporations (Clark et al., 2016; Eb-

hardt et al., 2009; Hauenschild et al., 2015; Katibah et al.,

2014; Li et al., 2017; Motorin et al., 2007; Qin et al., 2016; Ryvkin

et al., 2013; Safra et al., 2017; Zheng et al., 2015). RNAmodifica-

tion profiling based solely on misincorporation signatures would

be advantageous, as RT stops can also arise fromRNA degrada-

tion or structure. Conditions that enable readthrough of Watson-

Crick face modified sites while abrogating stops, however, have

not been described for any RT so far (Werner et al., 2020). A

variant of the HIV-1 RT with improved readthrough of N1-methyl-

adenosine (m1A) was recently derived by protein evolution (Zhou

et al., 2019), but whether this enzyme can also overcome any of

the other types of RT-blocking tRNA modifications is unknown.

The computational analysis of tRNA sequencing data also pre-

sents significant challenges that are often overlooked. The
r(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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number of predicted tRNA anticodon families in different ge-

nomes ranges from 33 in M. hominis to 57 in humans, with

many tRNAs encoded by multiple gene copies. In eukaryotes,

there is also considerable sequence variation among tRNAs

with identical anticodons, which becomes more pronounced

with increasing organismal complexity (Goodenbour and Pan,

2006). While the 41 tRNA anticodon families in budding yeast

constitute 54 distinct tRNA transcripts, �400 unique tRNA mol-

ecules can be potentially produced in human cells (Chan and

Lowe, 2016). Some of these can have tissue-specific functions

even in the presence of closely related isodecoders (tRNAs

that share an anticodon but differ in sequence elsewhere; Ishi-

mura et al., 2014).

The exceptional degree of tRNA sequence similarity can un-

dermine alignment accuracy, particularly for short reads result-

ing from premature RT stops (Pinkard et al., 2020) or tRNA

fragmentation (Arimbasseri et al., 2015; Gogakos et al., 2017).

The problem is compounded by multiple mismatches between

tRNA-derived reads and the genomic reference that arise from

RT misincorporation during modification readthrough. Current

alignment approaches allow mismatches at any position of a

read (Arimbasseri et al., 2015; Gogakos et al., 2017; Hoffmann

et al., 2018; Katibah et al., 2014; Pinkard et al., 2020; Qin et al.,

2016; Zheng et al., 2015), which can decrease mapping accu-

racy for nearly identical tRNAs. The total number of mismatches

is also limited in some approaches, which can eliminate reads

from highly modified tRNAs. Computational tool choice can

thus substantially affect measurements of tRNA abundance

and modification.

Here, we present a novel workflow that overcomes the

experimental and computational hurdles to quantitative tRNA

profiling through modification-induced misincorporation tRNA

sequencing (mim-tRNAseq). We combine a sensitive method

for cDNA library construction from endogenously modified

tRNAs with a new computational framework for read alignment,

data analysis, and visualization. By identifying conditions that

enable efficient RT readthrough of modified sites, we achieve

uniform sequence coverage of tRNA pools from yeast, fly, and

human cells while retaining modification signatures. In parallel,

we developed a comprehensive and user-friendly computational

toolkit, which yields measurements of tRNA abundance,

charging fractions, andmodification profiles with unprecedented

accuracy and resolution. mim-tRNAseq identified a wide varia-

tion in tRNA isodecoder abundance among different human

cell lines and an interdependence among tRNA modifications

at distinct sites. As our workflow is sensitive, robust, and appli-

cable to any organism with a known genome, we anticipate it

will help shed new light on previously intractable aspects of

tRNA biology.

DESIGN

Efficient sequencing library generation from native
eukaryotic tRNA pools
To develop a method for high-resolution tRNA quantitation, we

focused on improving the efficiency of full-length cDNA synthe-

sis from endogenously modified tRNAs by TGIRT. This enzyme

can attach adapter sequences to RNA by template switching
(Mohr et al., 2013), which circumvents potential hindrances to

30 adapter ligation and RT posed by tRNA structure (Katibah

et al., 2014; Qin et al., 2016; Zheng et al., 2015). TGIRT can

also read through a subset of Watson-Crick face modifications

more efficiently than other commercial RTs (Li et al., 2017), albeit

with reduced fidelity (Katibah et al., 2014; Qin et al., 2016; Zheng

et al., 2015). Despite these advantages, RT stops at modified

sites in tRNA are still pervasive in TGIRT-mediated reactions

(Clark et al., 2016; Zheng et al., 2015), and cDNA yield is

extremely low (Zhao et al., 2018; Zheng et al., 2015).

As TGIRT is active in a wide range of conditions (Mohr et al.,

2013), we asked whether its efficiency on tRNA templates can

be further improved. To test this, we first purified tRNA pools

from S. cerevisiae and human K562 cells by gel size selection

of 60–100 nt RNAs from total RNA. We then used these, along

with a synthetic unmodified E. coli tRNA-Lys-UUU, in template-

switching TGIRT reactions. The cDNA yield from all templates

was minimal under conditions previously used for tRNA

sequencing (450 mM salt, 60�C; Katibah et al., 2014; Qin

et al., 2016; Zheng et al., 2015) but dramatically improved at

lower temperatures and salt concentration (Figure 1A).

Although a considerable fraction of cDNAs we obtained were

full length, some RT stops still occurred, and larger products

potentially derived from two tRNA molecules linked by template

switching were also present (Figure 1A). To circumvent these

issues and the known sequence bias of TGIRT during template

switching (Xu et al., 2019), we introduced DNA adapters at the

30 end of tRNA with T4 RNA ligase 2. We reasoned that the sta-

ble structure of mature tRNAs would not pose a challenge, as

their 30 ends contain the stretch of at least two unpaired nucle-

otides that is required for efficient 3’ adapter ligation (Zhuang

et al., 2012). To further minimize potential bias and enable sam-

ple pooling prior to RT, we designed four barcoded adapters

with limited potential to co-fold with tRNA and confirmed that

they can be ligated to size-selected yeast tRNA pools with

89%–95% efficiency (Figure 1B). Pooled adapter-containing

tRNA samples were then subjected to primer-dependent RT

with TGIRT in a low-salt buffer at 42�C. Strikingly, we found

that extending the reaction time eliminated nearly all premature

RT stops on endogenously modified yeast and human tRNAs

(Figure 1B) without compromising template integrity (Fig-

ure S1A). The primer for cDNA synthesis contained a 50 RN

dinucleotide to ensure efficient cDNA circularization (Heyer

et al., 2015; McGlincy and Ingolia, 2017) prior to PCR amplifica-

tion with KAPA HiFi DNA Polymerase, which exhibits minimal

bias for fragment length or GC content (Quail et al., 2011).

This optimization enabled us to construct Illumina sequencing

libraries starting from as little as 50 ng of endogenously modi-

fied tRNA with only five or six PCR cycles, minimizing sample

input requirements and amplification bias.

A comprehensive computational framework for tRNA
sequencing data analysis
We reasoned that the increase in full-length cDNA reads would

reduce alignment ambiguity. However, given TGIRT’s low fidelity

at modified sites, we expected many tRNA-derived reads to

contain multiple mismatches to the reference genome. Another

source of mismatches are non-templated nucleotides added to
Molecular Cell 81, 1802–1815, April 15, 2021 1803
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Figure 1. An optimized workflow for full-length cDNA library construction from eukaryotic tRNA pools

(A) Schematic of template-switching TGIRT reactions primed by anRNA/DNAduplexwith a single-nucleotide 30 overhang and a gel image of cDNA products from

endogenously modified tRNA pools from S. cerevisiae (Sc), K562 cells (Hs), or a synthetic unmodified tRNA (Syn) at different reaction temperatures and salt

concentration. Red, reaction conditions previously used for tRNA library construction; asterisks, premature stops to cDNA synthesis; hash, potential products

from end-to-end linkage of tRNAs.

(B) Schematic of the mim-tRNAseq library generation workflow. Top gel image: 30 adapter ligation reactions with four barcoded adapters. Ligation efficiency was

measured by normalizing input tRNA band intensity to that in reactions from which Rnl2trKQ was omitted. Bottom gel image: comparison of cDNA yield in short

(1 h) or extended (16 h) primer-dependent TGIRT RT on a mix of adapter-ligated tRNA pools from S. cerevisiae and human K562 and HEK293T cells.

See also Figure S1 and STAR methods.
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30 cDNA ends by TGIRT and other RTs (Chen and Patton, 2001;

Mohr et al., 2013). Such read extensions are penalized by most

algorithms but can be recognized and dynamically processed

(‘‘soft-clipped’’) by some aligners. We therefore asked how two

short-read aligners commonly used for tRNA analysis—Bowtie

(Langmead et al., 2009) and Bowtie 2 (Langmead and Salzberg,

2012)—would perform on a tRNA sequencing dataset from hu-

man HEK293T cells obtained with our improved library construc-

tion protocol (Figure 1B).

We first generated a non-redundant reference of 420 mature

tRNA transcripts from 596 curated nuclear- and mitochondrial-

encoded tRNA genes retrieved from GtRNAdb and mitotRNAdb

(Chan and Lowe, 2016; J€uhling et al., 2009; Figure 2A; STAR

methods). Alignment was performed with Bowtie or Bowtie 2

with parameters previously used for tRNA sequencing analysis
1804 Molecular Cell 81, 1802–1815, April 15, 2021
(Clark et al., 2016; Cozen et al., 2015; Katibah et al., 2014; Qin

et al., 2016; Zheng et al., 2015). Bowtie end-to-end alignment

allows a maximum of three mismatches to the reference at any

position. Its inability to distinguish modification-induced misin-

corporations from other mismatches can lead to data loss for

highly modified tRNAs or misalignment for highly similar tRNAs.

Indeed, only 25% of reads from our HEK293T tRNA library

aligned with Bowtie, with a third of those mapping to multiple

tRNA references (Figure 2A). Trimming a fixed number of nucle-

otides from 50 read ends prior to alignment, which can remove

non-templated nucleotides, expectedly improvedmapping rates

(Figure S1B). The variable length of non-templated additions,

however, makes such a trimming approach imprecise, and

many trimmed reads still failed to align or were multi-mapped

(Figure S1B).
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Figure 2. The mim-tRNAseq computational pipeline: a comprehensive framework for tRNA sequencing data analysis

(A) Bowtie and Bowtie 2 alignment strategies and mapping statistics for a tRNA library from HEK293T cells constructed with the mim-tRNAseq workflow (n = 1).

(B) Outline of the mim-tRNAseq computational pipeline.

(C) Alignment statistics of HEK293T data (as in A; n = 1) using the mim-tRNAseq pipeline.

(D) Uniquely aligned read proportions for inosine 34 (I34)- and uridine 34 (U34)-containing Ser and Pro tRNA isoacceptors using the three alignment strategies on a

HEK293T dataset generated as in Figure 1B.

(E) Distribution of uniquely aligned reads among tRNA isotypes in published datasets and mim-tRNAseq from HEK293-derived cell lines (hydro-tRNAseq and

QuantM-tRNAseq: HEK293 T-Rex Flp-IN; DM-tRNAseq control or AlkB-treated [+AlkB] and mim-tRNAseq library construction: HEK293T). Proportions were

obtained from published counts per tRNA (‘‘publ’’) or after re-analysis of the datasets with the mim-tRNAseq pipeline (‘‘new’’). tRNA families that carry the same

amino acid (isotypes) are sorted by the number of RT barriers annotated inMODOMICS (decreasing from top to bottom; grayscale, isotypes without MODOMICS

annotation).

See also Figure S1 and STAR methods.
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In contrast, Bowtie 2’s lack of mismatch restrictions and ability

to soft-clip read ends make it seem more suited for tRNA read

mapping. High mismatch tolerance, however, compounds the

problem of misalignment: while Bowtie 2 increased alignment

rates of our HEK293T-derived dataset to 82%, most mapped

reads (85%) could not be assigned to a single reference (Fig-

ure 2A). Multi-mapping rates were similarly high when human

QuantM-tRNAseq data were aligned using Bowtie 2 with the

published settings (Pinkard et al., 2020) (85%; Figure S1C).

These high rates of data loss indicate that standard read align-

ment approaches are poorly suited to the complexity of tRNA

sequencing data, with consequences for the accuracy of all

downstream analyses.

Given these limitations, we reasoned that an accurate tRNA

read analysis workflow requires solutions to two main chal-

lenges: alignment bias against reads with modification-induced

misincorporations and multi-mapping of reads from nearly

identical tRNAs. To tackle the first issue, we took advantage

of the comprehensive annotation of tRNA modifications in

MODOMICS (Boccaletto et al., 2018) and used these data to

enable position-specific mismatch tolerance during alignment
(Figure 2B, top panel). To achieve this, we chose GSNAP, an

aligner designed for detecting complex variants in sequencing

reads (Wu and Nacu, 2010). Unlike most other algorithms,

GSNAP considers alignments to a reference and an alternative

allele equally in SNP-tolerant alignment mode while also effec-

tively soft-clipping read ends. To address multi-mapping, we

devised a strategy to cluster reference sequences by a

sequence identity (ID) threshold. Given that many reads still

map to multiple references with the commonly used strategy of

clustering only completely identical tRNA genes (ID = 1; Fig-

ure 2A) (Clark et al., 2016; Hoffmann et al., 2018; Zheng et al.,

2015), we reasoned that alignment ambiguity could be

decreased by lowering the sequence ID threshold. To maintain

isoacceptor resolution, we chose to only cluster tRNA transcripts

that share an anticodon regardless of sequence ID.

On the basis of these premises, we developed a new compu-

tational workflow to suit the intricacies of tRNA sequencing data

(Figure 2B; STARmethods). To generate an alignment reference,

mature tRNA transcript sequences are matched to MODOMICS

to index known modified sites and clustered by anticodon ac-

cording to sequence ID. Reads are aligned to the resulting
Molecular Cell 81, 1802–1815, April 15, 2021 1805
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indexed reference using GSNAP in SNP-tolerant mode. Unanno-

tated potentially modified sites are detected by a mismatch rate

of >10% and included in an updated index, followed by re-align-

ment of all reads with a more stringent tolerance to mismatches

outside of modified sites to further boost alignment accuracy. To

restore single-transcript resolution for subsequent analyses, we

developed a deconvolution algorithm that assigns cluster-

aligned reads to unique tRNA species (Figure 2B, middle panel;

STAR methods). For this, each cluster is assessed for single-

nucleotide differences that distinguish unique tRNA sequences,

on the basis of which each read is separated from the cluster

‘‘parent’’ and assigned to an individual transcript. Analysis of

coverage, 30-CCA, differential tRNA abundance, and modifica-

tion profiling is then performed after read deconvolution (Fig-

ure 2B, bottom panel). The entire computational framework for

tRNA read alignment, analysis, and visualization is packaged in

an open-source tool with a command-line interface and a broad

set of customizable parameters.

This computational workflow dramatically improved both the

efficiency and accuracy of tRNA read alignment. Both clustering

and SNP tolerance at modified sites prevented data loss for

defined tRNA subsets. A cluster ID of 0.95 maximized unique

transcript resolution and minimized multi-mapping for human

tRNAs (Figure S1D), yielding 86% uniquely mapped and only

2.5% ambiguously aligned reads (Figure 2C). Multi-mapping

rates were 5-fold higher when only completely identical tRNA

transcripts were clustered, resulting in data loss for selected

tRNAs (e.g., tRNA-Asn-GTT-2 and tRNA-Pro-AGG-1; Figures

S1D and S1E). Aligning without SNP tolerance had similar ef-

fects, particularly for transcripts with inosine at position 34

(I34), which is encoded as an A but yields a G in cDNA libraries.

The number of reads mapping to tRNA-Val-AAC, for example,

increased by 300-fold in SNP-tolerant mode, and virtually all of

these contained a G34 (Figures S1F and S1G). This high

mismatch rate at I34 also presented obvious challenges for Bow-

tie and Bowtie 2. Almost no reads mapped to the I34-containing

tRNA-Ser-AGA and tRNA-Pro-AGG with these algorithms, while

many were assigned to tRNA-Ser-UGA and tRNA-Pro-UGG

instead (Figure 2D). The same dramatic under-representation

of tRNA-Ser-AGA and tRNA-Pro-AGG was evident in published

counts for QuantM-tRNAseq libraries, which were generated by

Bowtie 2 local alignment (Figure S1H). In contrast, our computa-

tional workflow yielded a more balanced representation of these

four tRNA species for both mim-tRNAseq (Figure 2D) and

QuantM-tRNAseq libraries (Figure S1H). The choice of read

alignment parameters can thus yield very different tRNA abun-

dance estimates.

RESULTS

The mim-tRNAseq workflow alleviates tRNA
sequencing bias
To benchmark our workflow, we used mim-tRNAseq to analyze

HEK293T tRNAs and compared our results with those published

for the same cell type with DM-tRNAseq (Zheng et al., 2015) and

from the closely related HEK293 T-Rex Flp-IN line (Lin et al.,

2014) obtained with hydro-tRNAseq (Gogakos et al., 2017) or

QuantM-tRNAseq (Pinkard et al., 2020). To distinguish experi-
1806 Molecular Cell 81, 1802–1815, April 15, 2021
mental from computational differences, we also re-analyzed

the published datasets using our computational pipeline (Fig-

ure 2B). Reads from tRNA isotypes with a single known

barrier to RT (Boccaletto et al., 2018) were substantially overrep-

resented in DM-tRNAseq (tRNA-Val, 19%–21%) and hydro-

tRNAseq (tRNA-Gly, 30%) compared with our dataset (�6%).

In QuantM-tRNAseq, tRNA-Arg constituted 16% of published

tRNA counts versus 3.5% in hydro-tRNAseq, 7%–9% in DM-

tRNAseq, and 9% in our dataset. This isotype over-representa-

tion persisted regardless of alignment algorithm (Figure 2E,

‘‘publ’’ versus ‘‘new’’), suggesting that it originated during library

construction. In contrast, tRNA-Tyr, which has five known RT-

blocking modifications, constituted �4% of mapped reads in

our dataset versus only 1% for published hydro-tRNAseq and

DM-tRNAseq counts and 0.3% for QuantM-tRNAseq. This un-

der-representation was largely relieved when DM-tRNAseq

and QuantM-tRNAseq datasets were re-analyzed with our

computational pipeline (Figure 2E). Thus, mim-tRNAseq re-

covers highly modified tRNAs more efficiently than current

methods through a combination of advances in library construc-

tion and data analysis.

mim-tRNAseq improves tRNA coverage and abundance
estimates
We extended our analysis to single-cell and multicellular

eukaryotes by preparing mim-tRNAseq libraries from exponen-

tially growing S. cerevisiae and S. pombe, as well as

D. melanogaster BG3-c2 cells and human induced pluripotent

stem cells (hiPSCs) with a normal karyotype. We determined

the optimal cluster ID threshold as 0.90 for budding yeast and

0.95 for fission yeast, Drosophila, and human tRNA pools (Fig-

ures S1D and S2A). These settings yielded between 85% and

91% of uniquely mapped reads (Figure 3A), with a median of

65%–83% full-length ones (Figures 3B and 3C). In contrast,

unique alignment rates were lower for datasets from DM-

tRNAseq and QuantM-tRNAseq and for libraries we generated

with the standard TGIRT protocol (Figure S2B). tRNA coverage

in those datasets also had substantial 30 end bias, consistent

with RT stops at modified sites (Figures S2C–S2E). Accordingly,

unique tRNA transcripts were represented by a median of <11%

and 6% full-length reads in DM-tRNAseq andQuantM-tRNAseq,

respectively (Figures S2F–S2H).

Most reads in mim-tRNAseq datasets mapped to cytosolic

tRNA, with mitochondrial tRNA fractions ranging from 0.5% in

budding yeast to 3% in hiPSCs (Figure S2I). Importantly, nearly

all mapped reads (>96%) spanned the post-transcriptionally

added 30-CCA stretch (Figures S3A–S3D), indicating that they

originate from mature tRNA. This was not due to bias toward

A-ending RNA species, as our workflow accurately captured

the 3:1 ratio of two synthetic E. coli tRNA-Lys-UUU tRNAs with

either 30-CCA or 30-CC spiked in prior to library construction.

cDNA circularization also did not introduce appreciable length

bias, as tRNA coverage after alignment mirrored initial cDNA

size (Figures 3B and 1B). Moreover, circularization sequence

context is very similar for all cDNAs, as most have a stretch of

one to three non-templated Ts at their 50 ends, corresponding
to non-templated A added to cDNA 30 ends by TGIRT (Figures

S3E and S3F), whichwere effectively soft-clipped during GSNAP
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Figure 3. mim-tRNAseq improves quantitative analysis of tRNA pools in cells from diverse eukaryotes

(A) Alignment statistics for mim-tRNAseq datasets from the indicated cell types. Bars and labels indicate average values, dots show individual sample values

(n = 2).

(B) Metagene analysis of scaled sequence coverage across nuclear-encoded tRNA isotypes ordered per sample by differences between 30 and 50 coverage
(decreasing order from top to bottom; n = 1). y axis values normalized to the second-to-last bin from the 30 end. Each x axis bin represents 4% of tRNA length.

Indicated are major known barriers to RT.

(C) Boxplots of full-length fraction per tRNA transcript in datasets from (B) (center line and label: median; box limits: upper and lower quartiles; whiskers: 1.5 3

interquartile range).

(D) Correlation plots of unique tRNA gene copy number and corresponding proportion of uniquely aligned tRNA reads in single replicates (same samples as in B)

from S. cerevisiae,S. pombe, andD.melanogasterBG3-c2 cells and hiPSCs. Solid blue lines: linear regressionmodel; shaded gray: 95% confidence interval (CI).

See also Figures S2 and S3.
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alignment. Indeed, nucleotide frequencies downstream of non-

templated nucleotides were highly similar to those obtained by

aligning the 50 ends of predicted tRNA transcripts (Figures S3E

and S3F).

We asked whether these experimental and computational ad-

vances would enable more accurate tRNA quantitation. We first

sought to compare our measurements of absolute tRNA abun-

dance with data obtained with an orthogonal, hybridization-

based approach. Absolute RNA quantitation by, for example,

Northern blotting or arrays requires highly specific probes and

careful comparisons of signal in serial sample dilutions to cali-

bration curves with known target amounts. The design of spe-

cific probes for tRNAs, however, is extremely challenging: even

with full-length probes, a difference of at least 8 nt is required

to avoid cross-hybridization (Dittmar et al., 2004, 2006). Probe

design is particularly problematic for human tRNA pools, which

can contain >400 tRNA species from 57 anticodon families. As

the major tRNA transcript for each anticodon family can differ

among cell types (Ishimura et al., 2014), probe selection can

unduly influencemeasurement accuracy. In contrast, the 41 anti-

codon families of S. cerevisiae consist of only 54 tRNA species,

andmost major anticodon variants differ sufficiently in sequence

to be distinguished by hybridization. We therefore compared

fluorescence intensity measurements for 39 of the 41 budding

yeast anticodon families obtained by direct hybridization to a

tRNAmicroarray (Tuller et al., 2010) to the fraction of reads map-
ping to those anticodon families in mim-tRNAseq datasets. This

comparison yielded Pearson’s r = 0.75 (p = 3.8 3 10�8), corrob-

orating the quantitative nature of mim-tRNAseq (Figure S3G).

The main regulatory elements for tRNA transcription are

intrinsic and overlap with conserved structural regions of mature

tRNAs, and it remains unclear how selective tRNA gene expres-

sion is achieved in metazoans (Ishimura et al., 2014; Kutter et al.,

2011; Schmitt et al., 2014). In rapidly growing yeast cells, howev-

er, nearly all tRNA loci are transcribed (Harismendy et al., 2003;

Roberts et al., 2003). tRNA gene copy number thus positively

correlates with the abundance of tRNA anticodon families during

exponential growth measured by hybridization (R2 = 0.47 in

microscale thermophoresis and R2 = 0.60 in tRNA microarray;

Jacob et al., 2019; Tuller et al., 2010). We leveraged the superior

resolution of mim-tRNAseq to probe this relationship at the level

of individual tRNA transcripts (Figure 3D). We obtained the high-

est correlation between gene copy number and tRNA abun-

dance reported so far (adjusted R2 = 0.92 for S. cerevisiae and

R2 = 0.91 for S. pombe, p < 3.71 3 10�30), further underscoring

the quantitative nature of mim-tRNAseq. This correlation

decreased substantially for a S. cerevisiae library from budding

yeast generated by template switching in otherwise identical

RT conditions (R2 = 0.61; Figures S3H and S3I), consistent with

30 sequence preferences of TGIRT in this setup (Xu et al.,

2019). An even more drastic reduction was seen in a

S. cerevisiae library generated with Superscript III (R2 = 0.31),
Molecular Cell 81, 1802–1815, April 15, 2021 1807
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which displayed substantial 30 end coverage bias despite high

rates of unique read alignment (Figures S3H, S3J, and S3K).

The correlation between gene copy number and tRNA abun-

dance was also lower in Drosophila BG3-c2 cells (adjusted

R2 = 0.79) and hiPSCs (adjusted R2 = 0.62). The values were

similar regardless of whether we used copy numbers for all pre-

dicted human tRNA genes or only the high-confidence tRNA

gene set (Figure S3L). These findings are consistent with differ-

ential tRNA gene use in distinct cell types (Dittmar et al., 2006;

Ishimura et al., 2014; Kutter et al., 2011; Schmitt et al., 2014)

and highlight thatmechanisms beyond gene copy number shape

metazoan tRNA pools.

mim-tRNAseq captures differences in tRNA abundance
and aminoacylation
To establish whether mim-tRNAseq can accurately detect differ-

ences in tRNA abundance, we first compared the tRNA pools of

karyotypically normal hiPSCs with those in two aneuploid human

cell lines (K562 and HEK293T). Of the 368 cytosolic tRNA spe-

cies resolved quantitatively by mim-tRNAseq, 205 were unde-

tectable in one or more cell lines (%0.005% of tRNA-mapped

reads). Remarkably, more than half of the detectable tRNAs

were differentially expressed, some by up to 3 orders of magni-

tude (adjusted p < 0.05; Figure 4A; Table S1). In contrast, the

relative levels of tRNAs with a given anticodon differed by only

up to 1.7-fold among the three cell lines (Figure 4B; Table S1).

Of the 47 tRNA anticodon families passing our detection

threshold, 11 differed in abundance between HEK293T cells

and hiPSCs, and 21 differed in abundance between K562 cells

and hiPSCs (Figure 4B; Table S1). Each cell line exhibited a

distinct pattern of tRNA expression, with differences being

more pronounced for low-abundance transcripts (Figure 4C;

base mean expression given by line plot in rightmost panel).

These data suggest that different cell types can converge on

similar anticodon pools via distinct tRNA transcript subsets,

possibly through the relatively stable expression of major tRNA

isodecoders (Kutter et al., 2011).

We validated the changes in relative abundance by Northern

blotting for two tRNA species: tRNA-Arg-UCU-4 and tRNA-

Gly-CCC-2, which differ sufficiently from their isodecoders to

avoid probe cross-hybridization and represent tRNAs with low

and high abundance. tRNA-Arg-UCU-4 and its mouse ortholog

are highly expressed in the central nervous system and are

also present at low levels in HEK293T cells (Ishimura et al.,

2014; Torres et al., 2019). mim-tRNAseq detected 6- to 8-fold

lower levels of tRNA-Arg-UCU-4 in K562 and hiPSCs versus

HEK293T (Table S1), and a similar 5- to 10-fold decrease was

observed by Northern blotting (Figures 4D and 4E). Differential

abundance estimates by mim-tRNAseq and Northern blotting

were also highly concordant for the abundant tRNA-Gly-

CCC-2 (�1% of tRNA-mapped reads; Figures 4D and 4E).

We then confirmed the ability of mim-tRNAseq to accurately

measure tRNA aminoacylation. Charged tRNAs have period-

ate-resistant 30 ends and can be quantified as a fraction of tRNAs

with 30-CCA versus 30-CC following oxidation and b-elimination

(Evans et al., 2017). We compared mim-tRNAseq data from

oxidized tRNA of wild-type (WT) yeast and a trm7D strain, which

has a tRNA-Phe-GAA charging defect (Han et al., 2018). This
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defect was evident by a 2.5-fold decrease in 30-CCA proportions

for both tRNA-Phe-GAA isodecoders in tRNA pools from trm7D

cells in the absence of other changes in aminoacylation status

(Figure 4F). Thus, mim-tRNAseq enables the sensitive and accu-

rate quantitation of differences in tRNA abundance or charging.

Improved readthrough facilitates the discovery and
annotation of Watson-Crick face tRNA modifications
Mismatches to reference and/or premature RT stop signatures

are frequently used to detect Watson-Crick face RNA modifica-

tions (Clark et al., 2016; Ebhardt et al., 2009; Hauenschild et al.,

2015; Katibah et al., 2014; Li et al., 2017; Motorin et al., 2007; Qin

et al., 2016; Ryvkin et al., 2013; Safra et al., 2017; Zheng et al.,

2015), but their analysis is prone to both experimental and

computational artifacts (Sas-Chen and Schwartz, 2019). As

tRNA-derived reads are particularly misalignment-prone with

standard algorithms (Figures 2A and 2D), this could affect the ac-

curacy of modification calling.

In contrast, mim-tRNAseq abrogated nearly all RT stops and

yielded reproducibly high levels of mismatches coinciding with

frequently modified tRNA positions (Figure 5A). We quantified

the extent of readthrough at annotated Watson-Crick face

tRNA modifications by calculating the proportion of aligned

reads extending past a given position. We then took the mini-

mum value in a 3-nt window centered around it to avoid

readthrough overestimation. The median readthrough values

we obtained with this approach were �100% at the most com-

mon RT barriers in tRNA such as m1A, N1-methylguanosine

(m1G), N2,N2-dimethylguanosine (m2
2G), and N3-methylcytosine

(m3C), as well as bulkier modifications such as wybutosine (yW)

and other wyosine derivatives (Figure 5B). All 162 annotated

Watson-Crick face modifications in tRNA from budding yeast

(100%) and 232 of the 250 annotated ones in human tRNA

(93%) had a readthrough efficiency of >80% (Table S3). This is

due to both experimental and computational advances, as read-

through was much lower in libraries generated with standard

TGIRT conditions or in DM-tRNAseq (Figures S4A and S4B).

There was a notably large variation in bypass of the same modi-

fication type in different tRNAs in libraries made with Superscript

IV (Figure S4C).

The only RT blocks remaining in mim-tRNAseq datasets were

at rare hypermodified positions. These include 2-methylthio-de-

rivatives of A37 (ms2t6A/ms2i6A in human cytosolic tRNA-Lys-

UUU and 3-4 mitochondrial tRNAs in Drosophila and human

cells) and rare stretches of two modified sites (m2
2G26/27 and

20/20a N3-[3-amino-3-carboxypropyl]-uridines [acp3U]; Figures

5B, S2I, S4D, and S4E). These few remaining RT stops do not

affect tRNA quantitation, as the cDNA fragments derived from

them are sufficiently long (39–56 nt) for unambiguous read align-

ment with our pipeline.

We then examined whether different modifications aremarked

by specific signatures of nucleotide misincorporation. This can

depend on the processivity and fidelity of an RT, the reaction

conditions, and the sequence context of the modified site

(Hauenschild et al., 2015; Katibah et al., 2014; Li et al., 2017;

Qin et al., 2016; Safra et al., 2017). Signature analysis is espe-

cially challenging when RT stops are pervasive, as mismatches

at read ends stemming from non-templated nucleotide addition
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Figure 4. mim-tRNAseq accurately captures differential tRNA expression and aminoacylation with single-transcript resolution

(A) Differential expression analysis of unique tRNA transcripts in HEK293T and K562 relative to hiPSCs. Axes represent log-transformed normalized read counts

from DESeq2, with significant down- and upregulation in hiPSCs indicated with closed orange and green triangles, respectively (false discovery rate [FDR]-

adjusted one-sided Wald test p % 0.01, n = 2).

(B) Differential expression analysis as in (A) for counts per tRNA anticodon family.

(C) Left panel: hierarchically clustered expression heatmap showing scaled z score of normalized unique transcript counts in HEK293T, K562, and hiPSCs (n = 2).

Middle panels: differential expression for HEK293T and K562 relative to iPSCs (values, log2 fold changes; bar plots, numbers of up- and downregulated genes in

green and orange, respectively). Right panel: base mean normalized per tRNA transcript across all samples.

(D) Northern blot analysis of tRNA-Arg-UCU-4 and tRNA-Gly-CCC-2 in HEK293T, K562, and hiPSCs (n = 2, matched samples to those used for mim-tRNAseq).

Band intensities were quantified by densitometry and normalized to the mean value for HEK293T.

(E) Relative abundance of tRNA-Arg-UCU-4 and tRNA-Gly-CCC-2 in HEK293T, K562, and hiPSCs measured by mim-tRNAseq (C) or northern blotting (D),

normalized to the mean value for HEK293T (n = 2, matched samples).

(F) tRNA charging analysis in wild-type and trm7D S. cerevisiae. Charged tRNA are represented by proportion of reads with 30-CCA ends (light green, in%). Light

green bars and tRNA-Phe-GAA labels, average charged tRNA fractions (% CCA; n = 3).

See also Table S1 and Figure S3.
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during RT may manifest as misincorporation and lead to

spurious modification calls (Sas-Chen and Schwartz, 2019). As

mim-tRNAseq enables near-complete modification readthrough

(Figure 5B), we examined misincorporation patterns at anno-

tated sites as a function of modification type and sequence

context. We found distinct and highly reproducible misincorpo-

ration signatures at specific modifications (Figure 5C). The

ones at m1G, m2
2G, and m3C were largely independent of

sequence context, whereas those at m1A and acp3U were influ-

enced by the upstream template nucleotide (Figure 5C). We also

observed distinct signatures for wyosine derivatives, inosine and
N1-methylinosine (m1I), where the tRNA sequence space is not

sufficiently large to explore the impact of sequence context. In

contrast, misincorporation signatures of Superscript IV were

much less specific for distinct modifications, with a high preva-

lence of T mismatches regardless of modification type (Fig-

ure S4F). A recent comparison of 13 RTs found a similar lack

of distinguishable signatures for m1G and m2
2G (Werner

et al., 2020).

To validate the specificity of these signatures, we compared

misincorporation patterns at G37 in tRNA-Phe-GAA from WT

and trm7D yeast (Figure 5D). The conversion of m1G37 to yW
Molecular Cell 81, 1802–1815, April 15, 2021 1809
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Figure 5. Near-complete modification readthrough in mim-tRNAseq datasets enables modification discovery and annotation

(A) Average proportion of stops (red) and misincorporation rates (blue) per nucleotide for all tRNA unique transcripts (n = 2) in S. cerevisiae, S. pombe, and

D. melanogaster BG3-c2 cells and hiPSCs. x axis, canonical tRNA position at major sites with known RT barriers.

(B) RT readthrough per annotated modification aggregated for cytosolic and mitochondrial tRNA from the four species.

(C) Boxplots of misincorporation signatures for annotated modified sites as in (B) (center line: median; box limits: upper and lower quartiles; whiskers: 1.5 3

interquartile range). Signatures stratified by upstream context (rows) and modification type (columns); proportion per nucleotide scaled to total misincorporation

at this site.

(D) Boxplot of misincorporation signature at G37 of tRNA-Phe-GAA from WT and trm7D S. cerevisiae (n = 3).

(E) Modified site discovery by mim-tRNAseq (‘‘new’’) compared with misincorporation-inducing modified sites previously annotated in MODOMICS (‘‘annot.’’).

Labels indicate percentage of newly detected sites relative to annotated ones.

See also Figure S4 and Table S2.
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in this tRNA requires 20-O-methylation of C32 and G34 by Trm7

(Guy et al., 2012). Accordingly, the misincorporation signature at

G37 in tRNA-Phe-GAA from trm7D cells was distinct from that in

WT (Figure 5D) and nearly identical with that of m1G in our aggre-

gate analysis (Figure 5C).

This remarkable consistency enables the use of misincorpora-

tion signatures not only for mapping RNA modifications but also

for predicting their identity. We therefore probed our datasets

from S. cerevisiae, S. pombe, and Drosophila BG3-c2 cells and

human cells for misincorporation-inducing modifications not an-

notated in MODOMICS. Such sites were identified by a

mismatch frequency of >10% and the presence of a distinct mis-

incorporation signature to limit spuriousmodification calls due to

genomic misannotation or SNPs. Modification type was then

predicted by combining information on the canonical tRNA posi-

tion, nucleotide type, and misincorporation signature in compar-

ison with known sites (Figure 5C). Performing this analysis with

single-transcript resolution revealed many uncatalogued modifi-

cations (Figure 5E; Table S2), including 30 sites in S. cerevisiae

and 358 sites in human tRNAs, despite comprehensive existing

annotation. Discovery rates were higher in poorly annotated spe-

cies such as S. pombe and D. melanogaster. Our predictions

generally agreed with prior annotation of modified sites based

on RT stops and/or misincorporations (Table S2), with some

important differences. First, we identified one m1G9 site, two

m2
2G26 sites, and seven m1A58 sites in tRNAs from S. pombe,
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which had not been detected by hydro-tRNAseq (Arimbasseri

et al., 2015). Second, we found no detectable misincorporation

at G37 in human tRNA-Pro-AGG or C47d in human tRNA-Ser-

AGA and tRNA-Ser-CGA, although these positions have been

annotated as m1G37 and m3C47d, respectively (Arimbasseri

et al., 2016; Clark et al., 2016). These differences likely result

from our workflow’s improved resolution of nearly identical

tRNAs, as human tRNA-Pro-UGG and tRNA-Ser-UGA contain

m1G37 and m3C47d, respectively (Figures 2D and S5C). These

data demonstrate that mim-tRNAseq can map potentially modi-

fied tRNA sites and predict modification type with high sensitivity

and specificity.

Accurate quantitation of RNA modification
stoichiometry on the basis of misincorporation rates
Proportions of RT stops and/or misincorporations are widely

used to estimate RNA modification levels (Arimbasseri et al.,

2015; Clark et al., 2016; Gogakos et al., 2017; Ryvkin et al.,

2013), but whether such measurements are quantitative is un-

known. Misincorporation rates at individual modified positions

in mim-tRNAseq datasets varied remarkably across tRNA spe-

cies (Figure 6A) despite efficient readthrough (Figures 5B and

S5). To test whether this variation reflects modification stoichi-

ometry, we sequenced endogenously modified tRNA from WT

and mutant yeast lacking m1G9 (trm10D) (Jackman et al.,

2003) or m2
2G26 (trm1D) (Ellis et al., 1986) pooled in defined
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Figure 6. Misincorporation rates in mim-tRNAseq reflect modification stoichiometry

(A) Global heatmap of average misincorporation proportions in S. cerevisiae per unique tRNA transcript with coverage above 2,000 reads (n = 2; top bar graph,

mean misincorporation per position; right bar graph, number of sites per transcript with detectable misincorporation signatures inR10% of reads spanning that

position).

(B) Relative misincorporation proportions at G9 in samples fromwild-type (WT) S. cerevisiae and trm10D (lacking m1G9) or mixes thereof (filtered for clusters with

R10% misincorporation in WT and scaled to WT proportion; solid blue line, linear regression model; shaded gray, 95% CI).

(C) Analysis as in (B) but for misincorporation at G26 in samples from WT S. cerevisiae or trm1D (lacking m2
2G26).

(D) Misincorporation proportions per canonical nucleotide position and identity (aggregated per species; e2, second nucleotide of variable loop; n = 2).

(E) Significant changes in misincorporation rates in trm1D relative to WT S. cerevisiae (FDR-adjusted chi-square p % 0.01, log2 fold change R 0.5, n = 1).

See also Figures S5 and S6 and Table S3.
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ratios prior to library construction. Misincorporations were pre-

dictably absent at G9 or G26 sites in samples from the knockout

strains. Strikingly, their rates had a near-perfect linear correlation

to initial pooling ratios in mixed samples (R2 = 0.97; Figures 6B

and 6C). Mismatch proportions in mim-tRNAseq datasets thus

accurately reflect the stoichiometry of m1G and m2
2G26, and

possibly all other misincorporation-inducing modified tRNA ba-

ses. Calibration curves with endogenously modified tRNAs are

not feasible for all misincorporation-inducing modifications (Fig-

ure 5B), however, as some of them are essential for cell viability

(Anderson et al., 1998; Gerber and Keller, 1999).

These findings enabled us to profile modified tRNA fractions

with single-transcript resolution in cells from four eukaryotic spe-

cies. Misincorporation rates were �100% at all instances of I34

and of wyosine derivatives at position 37, suggesting thesemod-

ifications are present in stoichiometric levels (Figures 6D and

S6A). We observed a similar trend for m2
2G26, with a clear sep-

aration between a majority of fully modified tRNAs and a very
small number of transcripts with 10%–30% misincorporation.

In contrast, the modified fractions of m1G, m3C, and m1A varied

substantially among individual tRNAs independently of

sequence context (Figures 6D, S6A, and S6B). Instances of

very high misincorporation were detectable for all three modifi-

cations (m1A, 100%; m3C, 94%; m1G, 88%), indicating that

mim-tRNAseq can capture high stoichiometry at these sites if it

is present (Figure 6D; Table S3). However, some tRNAs seem

to contain these modifications at sub-stoichiometric levels.

Sub-stoichiometric m3C32 and m1G37 are consistent with the

regulatory rather than structural roles of modifications within

the tRNA anticodon loop. The stoichiometry of m1G37measured

by mim-tRNAseq ranged from 14% to 80% in tRNAs from the

four eukaryotic species (Table S3). In bacteria, m1G37 in tRNA-

Pro-UGG and tRNA-Pro-GGG aids in reading frame mainte-

nance (Gamper et al., 2015; Maehigashi et al., 2014). Eukaryotic

cells, however, lack tRNA-Pro-GGG because of toxicity from its

high miscoding capacity (Pernod et al., 2020). A recent study
Molecular Cell 81, 1802–1815, April 15, 2021 1811
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estimated m1G37 stoichiometry in bacterial tRNA-Pro-UGG by

primer extension at 68% in E. coli and 73% in Salmonella enter-

ica (Masuda et al., 2019). Our workflow estimated m1G37 stoi-

chiometry at 53% in yeast tRNA-Pro-UGG and 72% for tRNA-

Leu-UAA (Table S3). Gel-based primer extension assays with

AMV RT, which is blocked by m1G, were consistent with these

measurements (Figures S5D and S5E), providing an orthogonal

validation of mim-tRNAseq modification stoichiometry

estimates.

In contrast to the regulatory roles of anticodon loop modifica-

tions, m1A58 is important for the maturation and stability of initi-

ator tRNA-Met in yeast (Anderson et al., 1998) and may play a

similar role in other eukaryotic tRNA species. A sequence

comparison of budding yeast tRNAs with high or low m1A58

levels revealed no notable differences, however, indicating that

sequence alone is unlikely to be amajor determinant of modifica-

tion stoichiometry at this position (Figure S6C).

To examine whether the stoichiometry of misincorporation-

inducing tRNAmodifications differs in distinct cell types or states,

we calculated log odds ratios of misincorporation proportions

across all tRNA positions (see STAR methods). There were very

few statistically significant changes when comparing mim-

tRNAseq datasets from hiPSCs and HEK293T or K562 cells (Fig-

ures S6DandS6E), suggesting thatmost tRNAs aremodified to a

similar extent in these cell lines. A comparison of datasets from

WT and trm10D or trm1D yeast, however, revealed the striking

precision of our approach in detecting transcripts with large

reductions inm1G9orm2
2G26 (FiguresS6F andS6G). Unexpect-

edly, in trm1D yeast cells that lackm2
2G26, therewere also differ-

ences inmodification levels at other tRNA sites. These included a

3- to 6.5-fold increase in m1G9 levels in four tRNAs (tRNA-Lys-

CUU-1, tRNA-Thr-AGU-1, tRNA-Arg-CCU-1, and tRNA-Asn-

GUU-1) anda2-fold decrease inm3C32of tRNA-Ser-UGA-1 (Fig-

ures 6E and S6G). m1G9 levels in tRNA-Lys-CUU-1 and tRNA-

Thr-AGU-1 also increase upon Trm10 overexpression in yeast

(Swinehart et al., 2013). Sequence comparisons between tRNAs

with increased versus unchangedm1G9 levels in trm1D cells indi-

cate that a U7:A66 pair rather than G7:C66 pair may be linked to

m1G9 hypermethylation in the absence of m2
2G26 (Figure S6H).

These findings reveal an interdependence between Watson-

Crick face modifications at distinct tRNA sites and suggest that

their stoichiometry is determined by structural features.

DISCUSSION

The abundance, charging, and modification status of individual

tRNA species can differ in distinct cellular environments.

Measuring these properties on a global scale, however, has

not been feasible because of technical limitations. No library

construction method so far has allowed the efficient reverse

transcription of these highly modified RNAs, while the lack of

computational tools suited to the complexity of tRNA

sequencing data has been another major methodological gap.

We describe conditions that permit near-complete tRNA

modification readthrough by TGIRT, dramatically improving

cDNA yield and the fraction of full-length products from tRNA

templates. All but one rare tRNA modification roadblock are

resolved by mim-tRNAseq, which alleviates the bias of existing
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tRNA quantitationmethods toward low-modified tRNAs species.

Our library construction protocol circumvents the need to purify

enzymes for modification removal (Zheng et al., 2015) or RT

(Zhou et al., 2019), which can introduce unwanted variation.

We also describe multiple conceptual advances in the analysis

of tRNA sequencing data, including the use of modification an-

notations, which permits position-specific mismatch tolerance

during read alignment. Collectively, these advances enable the

efficient and accurate mapping and analysis of tRNA-derived

reads with single-transcript resolution.

One poignant example of the substantial improvements in our

computational workflow concerns tRNAs with I34, which is

essential for wobble pairing during decoding. Inosines are inter-

preted as cytosines during RT, resulting in the stoichiometric

presence of G in sequencing reads. When using Bowtie or Bow-

tie 2 to align tRNA datasets from human cells, we found that

reads with G34 were frequently mapped to nearly identical

tRNA isoacceptors with U34. Such misalignment can have

wide-ranging implications, as it would not only skew abundance

estimates but can also lead to spurious conclusions about tRNA

modification status and stoichiometry. These findings highlight

the importance of both sensitivity and accuracy of read align-

ment in the context of analyzing tRNA transcriptomes.

The robust misincorporation signatures deposited by TGIRT

reveal the location, type, and stoichiometry of Watson-Crick

face base modifications in tRNA. Calibration measurements of

observed versus expected modified fractions in existing ap-

proaches for sequencing-based modification analysis are either

lacking (Ryvkin et al., 2013; Zheng et al., 2015) or display a non-

linear relationship (Zhou et al., 2019), likely because of persistent

RT stops. In contrast, mim-tRNAseq enables efficient read-

through of almost all tRNA modifications, while modification ID

is also discernible by highly specific misincorporation patterns.

Improved readthrough permits accuratemeasurements of modi-

fication stoichiometry frommisincorporation rates alone, evident

from calibration curves with near-perfect linear regression for

m1G and m2
2G (R2 = 0.97). Performing this calibration with mix-

tures of endogenously modified tRNA pools shows that our

entire workflow is free of bias toward low-modified tRNAs.

Remarkably, we find that although some tRNA positions are

almost always fully modified (e.g., m2
2G26 and I34), others are

sub-stoichiometric in some tRNA species. This is in line with a

model in which some modifications are deposited because of

overlapping substrate specificities in RNAmodification enzymes

(Phizicky and Alfonzo, 2010). Indeed, methylation at G9 in some

yeast tRNAs is enhanced when they lack m2
2G26, while methyl-

ation of C32 is decreased, suggesting that a tRNA conforma-

tional change upon m2
2G26 loss (Steinberg and Cedergren,

1995) might change the affinity of other modification enzymes

for individual tRNAs.

In summary, mim-tRNAseq is a sensitive and accurate start-

to-finish technique for quantitation of tRNA abundance and

charging, which also reports on the presence and stoichiometry

of misincorporation-inducing RNA modifications. The robust

library construction workflow and the easy-to-use and freely

available computational toolkit make mim-tRNAseq broadly

applicable for studying key aspects of tRNA biology in a range

of organisms and cell types. Our experimental workflow can
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also be implemented for the discovery and quantitation of modi-

fied sites in other RNA species.
Limitations
mim-tRNAseq currently reports on the presence and stoichiom-

etry of those Watson-Crick face tRNA modifications that elicit

robustmisincorporation during RTwith TGIRT. Various protocols

for chemical treatment of the ‘‘RT-silent’’ modifications (e.g.,

pseudouridine, N5-methylcytosine, N7--methylguanosine) have

been developed to enable their detection via misincorporation

(Motorin and Helm, 2019). Combining them with mim-tRNAseq

can expand the modification range detectable in a single

sequencing reaction. Our stoichiometry measurements for

m1G and m2
2G26 were validated with mixtures of endogenously

modified tRNA pools fromWT andmodification-deficient strains,

but such validation is not feasible for modifications essential for

cell viability. Finally, mim-tRNAseq requires low starting material

but is not compatible with single-cell tRNA profiling.
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Wirecki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al.

(2018). MODOMICS: a database of RNA modification pathways. 2017 update.

Nucleic Acids Res. 46 (D1), D303–D307.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer,

K., and Madden, T.L. (2009). BLAST+: architecture and applications. BMC

Bioinformatics 10, 421.

Chan, P.P., and Lowe, T.M. (2016). GtRNAdb 2.0: an expanded database of

transfer RNA genes identified in complete and draft genomes. Nucleic Acids

Res. 44 (D1), D184–D189.

Chen, D., and Patton, J.T. (2001). Reverse transcriptase adds nontemplated

nucleotides to cDNAs during 50-RACE and primer extension. Biotechniques

30, 574–580, 582.

Clark, W.C., Evans, M.E., Dominissini, D., Zheng, G., and Pan, T. (2016). tRNA

base methylation identification and quantification via high-throughput

sequencing. RNA 22, 1771–1784.
Molecular Cell 81, 1802–1815, April 15, 2021 1813

https://doi.org/10.1016/j.molcel.2021.01.028
https://doi.org/10.1016/j.molcel.2021.01.028
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref1
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref1
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref1
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref1
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref2
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref2
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref2
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref3
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref3
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref3
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref3
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref4
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref4
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref4
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref4
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref5
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref5
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref5
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref6
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref6
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref6
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref7
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref7
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref7
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref7
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref8
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref8
http://refhub.elsevier.com/S1097-2765(21)00048-4/sref8


ll
OPEN ACCESS Technology
Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A.,

Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., and de Hoon, M.J.L.

(2009). Biopython: freely available Python tools for computational molecular

biology and bioinformatics. Bioinformatics 25, 1422–1423.

Cozen, A.E., Quartley, E., Holmes, A.D., Hrabeta-Robinson, E., Phizicky, E.M.,

and Lowe, T.M. (2015). ARM-seq: AlkB-facilitated RNA methylation

sequencing reveals a complex landscape of modified tRNA fragments. Nat.

Methods 12, 879–884.

Dittmar, K.A., Mobley, E.M., Radek, A.J., and Pan, T. (2004). Exploring the

regulation of tRNA distribution on the genomic scale. J. Mol. Biol. 337, 31–47.

Dittmar, K.A., Goodenbour, J.M., and Pan, T. (2006). Tissue-specific differ-

ences in human transfer RNA expression. PLoS Genet. 2, e221–e229.

Ebhardt, H.A., Tsang, H.H., Dai, D.C., Liu, Y., Bostan, B., and Fahlman, R.P.

(2009). Meta-analysis of small RNA-sequencing errors reveals ubiquitous

post-transcriptional RNA modifications. Nucleic Acids Res. 37, 2461–2470.

Edgar, R.C. (2010). Search and clustering orders of magnitude faster than

BLAST. Bioinformatics 26, 2460–2461.

Ellis, S.R., Morales, M.J., Li, J.M., Hopper, A.K., and Martin, N.C. (1986).

Isolation and characterization of the TRM1 locus, a gene essential for the

N2,N2-dimethylguanosine modification of both mitochondrial and cyto-

plasmic tRNA in Saccharomyces cerevisiae. J. Biol. Chem. 261, 9703–9709.

Evans, M.E., Clark,W.C., Zheng, G., and Pan, T. (2017). Determination of tRNA

aminoacylation levels by high-throughput sequencing. Nucleic Acids Res.

45, e133.

Gamper, H.B., Masuda, I., Frenkel-Morgenstern, M., and Hou, Y.-M. (2015).

Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA.

Nat. Commun. 6, 7226.

Gerber, A.P., and Keller, W. (1999). An adenosine deaminase that generates

inosine at the wobble position of tRNAs. Science 286, 1146–1149.

Gogakos, T., Brown, M., Garzia, A., Meyer, C., Hafner, M., and Tuschl, T.

(2017). Characterizing expression and processing of precursor andmature hu-

man tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475.

Goodenbour, J.M., and Pan, T. (2006). Diversity of tRNA genes in eukaryotes.

Nucleic Acids Res. 34, 6137–6146.

Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns

and correlations in multidimensional genomic data. Bioinformatics 32,

2847–2849.

Guy, M.P., Podyma, B.M., Preston, M.A., Shaheen, H.H., Krivos, K.L.,

Limbach, P.A., Hopper, A.K., and Phizicky, E.M. (2012). Yeast Trm7 interacts

with distinct proteins for critical modifications of the tRNAPhe anticodon loop.

RNA 18, 1921–1933.

Han, L., Guy, M.P., Kon, Y., and Phizicky, E.M. (2018). Lack of 20-O-methyl-

ation in the tRNA anticodon loop of two phylogenetically distant yeast species

activates the general amino acid control pathway. PLoS Genet. 14, e1007288.

Harismendy, O., Gendrel, C.-G., Soularue, P., Gidrol, X., Sentenac, A., Werner,

M., and Lefebvre, O. (2003). Genome-wide location of yeast RNA polymerase

III transcription machinery. EMBO J. 22, 4738–4747.

Hauenschild, R., Tserovski, L., Schmid, K., Th€uring, K., Winz, M.-L., Sharma,

S., Entian, K.-D., Wacheul, L., Lafontaine, D.L.J., Anderson, J., et al. (2015).

The reverse transcription signature of N-1-methyladenosine in RNA-Seq is

sequence dependent. Nucleic Acids Res. 43, 9950–9964.

Heyer, E.E., Ozadam, H., Ricci, E.P., Cenik, C., and Moore, M.J. (2015). An

optimized kit-free method for making strand-specific deep sequencing li-

braries from RNA fragments. Nucleic Acids Res. 43, e2.

Hoffmann, A., Fallmann, J., Vilardo, E., Mörl, M., Stadler, P.F., and Amman, F.

(2018). Accurate mapping of tRNA reads. Bioinformatics 34, 1116–1124.

Ishimura, R., Nagy, G., Dotu, I., Zhou, H., Yang, X.-L., Schimmel, P., Senju, S.,

Nishimura, Y., Chuang, J.H., and Ackerman, S.L. (2014). RNA function.

Ribosome stalling induced by mutation of a CNS-specific tRNA causes neuro-

degeneration. Science 345, 455–459.
1814 Molecular Cell 81, 1802–1815, April 15, 2021
Jackman, J.E., Montagne, R.K., Malik, H.S., and Phizicky, E.M. (2003).

Identification of the yeast gene encoding the tRNA m1G methyltransferase

responsible for modification at position 9. RNA 9, 574–585.

Jacob, D., Th€uring, K., Galliot, A., Marchand, V., Galvanin, A., Ciftci, A.,

Scharmann, K., Stock, M., Roignant, J.-Y., Leidel, S.A., et al. (2019).

Absolute quantification of noncoding RNA by microscale thermophoresis.

Angew. Chem. Int. Ed. Engl. 58, 9565–9569.

J€uhling, F., Mörl, M., Hartmann, R.K., Sprinzl, M., Stadler, P.F., and P€utz, J.

(2009). tRNAdb 2009: compilation of tRNA sequences and tRNA genes.

Nucleic Acids Res. 37, D159–D162.

Karaca, E., Weitzer, S., Pehlivan, D., Shiraishi, H., Gogakos, T., Hanada, T.,

Jhangiani, S.N., Wiszniewski, W., Withers, M., Campbell, I.M., et al.; Baylor

Hopkins Center for Mendelian Genomics (2014). Human CLP1 mutations alter

tRNA biogenesis, affecting both peripheral and central nervous system func-

tion. Cell 157, 636–650.

Katibah, G.E., Qin, Y., Sidote, D.J., Yao, J., Lambowitz, A.M., and Collins, K.

(2014). Broad and adaptable RNA structure recognition by the human inter-

feron-induced tetratricopeptide repeat protein IFIT5. Proc. Natl. Acad. Sci. U

S A 111, 12025–12030.
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mTeSR1 STEMCELL Technologies Cat# 85850

Micro Bio-Spin P30 columns, RNase-free BioRad Cat# 7326251

Glycogen Ambion Cat# AM9510

T4 Polynucleotide Kinase New England Biolabs Cat# M0201L

T4 RNA ligase 2 (truncated KQ) New England Biolabs Cat# M0373L

SUPERase In Ambion Cat# AM2694

TGIRT InGex Cat# TGIRT50

Superscript III Invitrogen Cat# 18080044

AMV RT Promega Cat# M9004

CircLigase ssDNA ligase Lucigen Cat# CL4115K

KAPA HiFi DNA Polymerase Roche Cat# KK2102

DNA Clean&Concentrator-5 PCR purification kit Zymo Research Cat# D4013

Immobilon NY+ Millipore Cat# INYC00010

Deposited data

Raw and analyzed sequencing data This paper GEO: GSE152621

DM-tRNAseq raw data for H. sapiens HEK293T Zheng et al., 2015 GEO: GSE66550

Hydro-tRNAseq raw data for H. sapiens HEK293

T-Rex Flp-IN

Gogakos et al., 2017 GEO: GSE95683

QuantM-tRNAseq raw data for H. sapiens HEK293

T-Rex Flp-IN

Pinkard et al., 2020 GEO: GSE141436

Experimental models: cell lines

D. melanogaster BG3-c2 cells P. Becker, LMU N/A

HEK293T cells O. Griesbeck, MPIN N/A

HPSI0214i-kucg_2 cells Kilpinen et al., 2017; ECACC Cat# 77650065

Experimental models: organisms/strains

S. cerevisiae: strain BY4741 Euroscarf N/A

S. cerevisiae: strain BY4741 trm1D::kanMX Euroscarf N/A

S. cerevisiae: strain BY4741 trm7D::kanMX Euroscarf N/A

S. cerevisiae: strain BY4741 trm10D::kanMX Euroscarf N/A

S. pombe: strain ED668 h+ S. Braun, LMU N/A

Oligonucleotides

RNA sequences, primers for library construction,

and probes for primer extension and Northern

blotting, see Table S4

This paper N/A

Software and algorithms

mim-tRNAseq v0.2.5.6 This paper https://github.com/nedialkova-lab/mim-tRNAseq

Bowtie v1.2.2 Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml

Bowtie2 v2.3.3.1 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

GSNAP v2019-02-26 Wu and Nacu, 2010 http://research-pub.gene.com/gmap/

Samtools v1.11 Li et al., 2009 http://samtools.sourceforge.net/

Bedtools v2.29.2 Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

BLAST+ v2.9.0 Camacho et al., 2009 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_

TYPE=BlastDocs&DOC_TYPE=Download
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Infernal v1.1.2 Nawrocki and Eddy, 2013 http://eddylab.org/infernal/

usearch v10.0.240_i86linux32 Edgar, 2010 https://www.drive5.com/usearch/

R/DESeq2 v1.26.0 Love et al., 2014 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

R/ComplexHeatmap v2.2.0 Gu et al., 2016 https://www.bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

Python/Biopython v1.70 Cock et al., 2009 https://biopython.org/

Other

Detailed protocol for mim-tRNAseq library

construction

This paper Methods S1
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Lead contact
Please direct any requests for further information or reagents to the LeadContact, Danny Nedialkova (nedialkova@biochem.mpg.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The accession number for the sequencing data reported in this paper is GEO: GSE152621. Themim-tRNAseq computational pipeline

is available under a GNU public License v3 at https://github.com/nedialkova-lab/mim-tRNAseq. A package description and instal-

lation guide are available at https://mim-trnaseq.readthedocs.io/en/latest/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and strains
S. cerevisiae cells (BY4741 wild-type, trm7D, trm1D and trm10D) were grown in yeast extract-peptone-dextrose (YPD) medium.

S. pombe cells (ED668 h+, ade6-M216 ura4-D18 leu1-32) were cultured in yeast extract with supplements (YES). Overnight cultures

were diluted to an optical density 600 (OD600) of 0.05, grown at 30�C at 250 revolutions per minute, and harvested at OD600 = 0.5 by

rapid filtration and snap-freezing in liquid nitrogen. D. melanogaster BG3-c2 cells were cultured at 26�C in Schneider’s Drosophila

Medium (GIBCO) supplemented with 10% fetal calf serum, 1% penicillin/streptomycin, and 10 mg/ml human insulin. HEK293T cells

were grown at 37�C and 5% CO2 in DMEM supplemented with 10% fetal bovine serum (Sigma Aldrich). The HPSI0214i-kucg_2 hu-

man induced pluripotent stem cell line (obtained from HipSci; Kilpinen et al., 2017) was cultured at 37�C and 5% CO2 in mTeSR1

(STEMCELL Technologies). K562 cells were grown at 37�C and 5% CO2 in RPMI 1640 supplemented with 10% fetal calf serum

and 2mM L-Glutamine.

METHOD DETAILS

RNA isolation
RNA from Drosophila BG3-c2, HEK293T, and human iPS cells was isolated with Trizol (Sigma Aldrich) according to the manufac-

turer’s instructions. For total RNA isolation from yeast, frozen cells were resuspended in 100 mM sodium acetate pH = 4.5,

10 mM EDTA pH = 8.0, 1% SDS (1 mL per 50 OD600 units). An equal volume of hot acid phenol (pH = 4.3) was added, and the

cell suspension was vortexed vigorously followed by incubation at 65�C for 5min (S. cerevisiae) or 45min (S. pombe) with intermittent

mixing. After addition of 1/10 volume 1-Bromo-3-chloropropane (BCP, Sigma Aldrich), samples were centrifuged at 10,000 x g for

5 min and the aqueous phase was transferred to a new tube. Following an additional round of hot acid phenol/BCP and a round

of BCP only extraction, RNA was precipitated from the aqueous phase by the addition of 3 volumes of 100% ethanol. Pellets

were washed in 80% ethanol, briefly air-dried, and resuspended in RNase-free water. For RNA isolation from yeast under conditions

that preserve tRNA charging, frozen cells were resuspended in ice-cold 100 mM sodium acetate pH = 4.5, 10 mM EDTA pH = 8.0.

One volume of cold acid phenol (pH = 4.3) was added and cells were lysed with 500 mm-diameter glass beads by three rounds of

vortexing for 45 s with a 1-min incubation on ice in between. One-tenth volume of BCP was then added and the samples were centri-

fuged at 10,000 x g/4�C for 5 min, followed by a second round of cold phenol-BCP and one round of BCP-only extraction. RNA was

ethanol-precipitated from the aqueous phase and pellets were washed in 80% ethanol containing 50 mM sodium acetate, pH = 4.5,
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briefly air-dried, and resuspended in 50mM sodium acetate pH = 4.5, 1mMEDTA pH = 8.0. RNA concentration was determined with

NanoDrop and samples were frozen at �80�C in single-use aliquots.

RNA oxidation and b-elimination
Tomeasure tRNA charging levels, RNA oxidation and b-eliminationwere performed as described (Evans et al., 2017) withminormod-

ifications. 25 mg of total RNA were resuspended in 10 mM sodium acetate pH 4.5 and oxidized by the addition of freshly prepared

NaIO4 to a final concentration of 50 mM in a 58 mL volume for 30 min at 22�C. The reaction was quenched by addition of 6 mL 1 M

glucose for 5 min at 22�C. RNA was purified with Micro Bio Spin P30 columns (BioRad) followed by two rounds of ethanol precip-

itation in the presence of 0.3M sodium acetate pH = 4.5. Pellets were resuspended in 20 mL RNase-free water and b-elimination

was performed by addition of 30 ml 100 mM sodium borate pH = 9.5 (freshly prepared) for 90 min at 45�C. RNA was recovered

with Micro Bio Spin P30 columns followed by ethanol precipitation, resuspended in RNase-free water, quantified on a NanoDrop,

and stored at �80�C in single-use aliquots.

tRNA purification by gel size selection
Two synthetic RNA standards corresponding to E.coli tRNA-Lys-UUU with intact 30-CCA (50-GGGUCGUUAGCUCAGUUGGUA

GAGCAGUUGACUUUUAAUCAAUUGGUCGCAGGUUCGAAUCCUGCACGACCCACCA-30) or a 30-CC (50-GGGUCGUUAGCUCA

GUUGGUAGAGCAGUUGACUUUUAAUCAAUUGGUCGCAGGUUCGAAUCCUGCACGACCCACC-30) were added to total RNA in

a 3:1 molar ratio at 0.06 pmol/mg, followed by incubation at 37�C in 50 mM Tris-HCl pH = 9.0 to deacylate tRNAs. Deacylation

was omitted for samples subjected to oxidation and b-elimination. Total RNA was subsequently dephosphorylated with 10 U of

T4 PNK (NEB) at 37�C for 30 min and purified by ethanol precipitation in 0.3M sodium acetate pH = 4.5 with 25 mg glycogen (Ambion)

as a carrier. RNA was resolved on a denaturing 10% polyacrylamide/7M urea/1XTBE gel alongside Low Range ssRNAmarker (NEB)

and visualized with SYBR Gold. Species migrating at the size range of mature tRNAs (60 – 100 nt) were excised and gel slices were

crushed with disposable pestles. Low-retention tubes and tips (Biotix, Axygen) were used for all subsequent steps of sequencing

library construction to maximize nucleic acid recovery. Following addition of 400 ml gel elution buffer (0.3M sodium acetate pH =

4.5, 0.25% SDS, 1mM EDTA pH = 8.0), the gel slurry was incubated at 65�C for 10 min, snap-frozen on dry ice, and thawed at

65�C for 5 min. RNA was eluted overnight at room temperature with continuous mixing. Gel pieces were removed with Costar

Spin-X centrifuge tube filters and RNA was recovered from the flow-through by ethanol precipitation in the presence of 25 mg of

glycogen. This protocol typically recovers 5%–10% of total RNA in the 60 – 100 nt fraction, consistent with estimates of tRNA pro-

portions in cells (Warner, 1999).

30 adapter ligation
50 to 200 ng of gel-purified tRNA was ligated to one of four adapters with distinct barcodes:

I1: 50-pGATATCGTCAAGATCGGAAGAGCACACGTCTGAA/ddC/-30;
I2: 50-pGATAGCTACAAGATCGGAAGAGCACACGTCTGAA/ddC/-30;
I3: 50-pGATGCATACAAGATCGGAAGAGCACACGTCTGAA/ddC/-30;
I4: 50-pGATTCTAGCAAGATCGGAAGAGCACACGTCTGAA/ddC/-30 (barcodes italicised; underlined sequence complementary to

RT primer). The adapters are blocked by the 30 chain terminator dideoxycytidine to prevent concatemer formation, and 50- phosphor-
ylated to enable pre-adenylation by Mth RNA ligase prior to ligation (McGlincy and Ingolia, 2017). Ligation was performed for 3 hours

at 25�C in a 20-ml reaction volume containing pre-adenylated adapter and RNA substrate in a 4:1 molar ratio, 1x T4 RNA Ligase Re-

action Buffer, 200 U of T4 RNA ligase 2 (truncated KQ; NEB), 25% PEG 8000, and 10 U SUPERase In (Ambion). Ligation products

were separated from excess adapter on denaturing 10% polyacrylamide/7M urea/1XTBE gels. Bands migrating at 95-125 nt

were excised and ligation products were recovered from crushed gel slices.

Reverse transcription
All reactions contained 125 nM primer, 125 nM template and 500 nM TGIRT (InGex) or 200 U Superscript III (Invitrogen). To prime

reverse transcription in template-switching reactions, a synthetic RNA/DNA duplex with a single-nucleotide 30 overhang was gener-

ated by annealing an RNA oligonucleotide (50-GAGCACACGUCUGAACUCCACUCUUUCCCUACACGACGCUCUUCCGAUCU-30)
to a DNA oligonucleotide (50-pRAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGGAGTTCAGACGTGTGCTCN-30). The DNA

oligonucleotide contained a phosphorylated A/G at its 50 end, which is a preferred substrate for CircLigase used in subsequent

cDNA circularization (Heyer et al., 2015; McGlincy and Ingolia, 2017). For primer-dependent reverse transcription reactions,

adapter-ligated tRNA and RT primer (50-pRNAGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/GTGACTGGAGTTCA

GACGTGTGCTC-30; underlined sequence complementary to 30 adapter, 50-RN to ameliorate potential biases during circularization)

were mixed in MAXYMum Recovery PCR Tubes (Axygen), denatured at 82�C for 2 min and annealed at 25�C for 5 min in a Thermo-

cycler. TGIRT reactions were assembled in a 20-ml final volume by combining template and primer with 10 U SUPERase In, 5mMDTT

(from a freshly made 100 mM stock) and manufacturer-recommended TGIRT buffer (20 mM Tris-HCl pH = 7.6, 450 mM NaCl, 5 mM

MgCl2) or low salt buffer (50 mM Tris-HCl pH = 8.3, 75 mM KCl, 3 mMMgCl2). After TGIRT addition, samples were pre-incubated at

reaction temperature for 10 min (primer-dependent reactions) or 22�C for 30 min (template-switching reactions), initiated by addition

of dNTPs to a final concentration of 1.25mM, and incubated in a Thermocycler for 1 hour or 16 hours. For Superscript III RT, template
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and primer were denatured at 75�C for 5 min and chilled on ice, and reverse transcription was performed in the presence of 1X First-

Strand Buffer, 5 mM DTT, 0.5 mM dNTPs, 10 U SUPERase In, and 200 U Superscript III (Invitrogen) at 57�C for 60 min.

Template RNA was subsequently hydrolyzed by the addition of 1 ml 5M NaOH and incubation at 95�C for 3 min and reaction prod-

ucts were separated from unextended primer on denaturing 10%polyacrylamide/7M urea/1XTBE gels. Gels were stained with SYBR

Gold, the region between 60 and 150 nt was excised and cDNAwas eluted from crushed gel slices in 400 ml 10 mMTris-HCl pH = 8.0,

1 mM EDTA at 70�C/2000 rpm for 1 hour in a Thermoblock, followed by ethanol precipitation in 0.3M sodium acetate pH = 5.5 in the

presence of 25 mg glycogen.

cDNA circularization and library construction PCR
Purified cDNA was circularized with CircLigase ssDNA ligase (Lucigen) in 1X reaction buffer supplemented with 1 mM ATP, 50 mM

MgCl2, and 1M betaine for 3 hours at 60�C, followed by enzyme inactivation for 10 min at 80�C. One-fifth of circularized cDNA was

directly used for library construction PCR with a common forward (50-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA

CACGACGCT*C-30) and unique indexed reverse primers (50-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCA

GACGTGT*G-30, asterisks denote a phosphorothioate bond and NNNNNN corresponds to the reverse complement of an Illumina

index sequence). Amplification was performed with KAPA HiFi DNA Polymerase (Roche) in 1X GC buffer with initial denaturation

at 95�C for 3 min, followed by five to six cycles of 98�C for 20 s, 62�C for 30 s, 72�C for 30 s at a ramp rate of 3�C/sec. PCR products

were purified with DNA Clean&Concentrator 5 (Zymo Research) and resolved on 8% polyacrylamide/1XTBE gels alongside pBR322

DNA-MspI Digest (NEB). The 130-220 bp region of each lane was excised and DNAwas eluted from crushed gel slices in 400 ml water

with continuous mixing at room temperature overnight. After ethanol precipitation in 0.3M sodium acetate pH = 5.5 and 25 mg

glycogen, libraries were dissolved in 10 ml 10 mM Tris-HCl pH = 8.0, quantified with the Qubit dsDNA HS kit, and sequenced for

150 cycles on an Illumina NextSeq platform.

Northern blotting
Two micrograms of total RNA were resolved on denaturing 10% polyacrylamide/7M urea/1XTBE gels. RNA was transferred to Im-

mobilon NY+membranes (Millipore) in 1XTBE for 40min at 4mA/cm2 on a TransBlot Turbo semi-dry blotting apparatus (Bio-Rad) and

crosslinked at 0.04 J in a Stratalinker UV crosslinker. Membranes were incubated at 80�C for one hour and pre-hybridized in 20 mM

Na2HPO4 pH = 7.2, 5xSSC, 7% SDS, 2x Denhardt, 40 mg/ml sheared salmon sperm DNA at 55�C for 4 hours. The buffer was

exchanged and 10 pmol 50-end 32P-labeled probe (Arg-UCU-4: 50-CGGAACCTCTGGATTAGAAGTCCAGCGCGCTCGTCC-30;
Gly-CCC-2: 50-CGGGTCGCAAGAATGGGAATCTTGCATGATAC-30) was added, followed by hybridization at 55�C overnight. Mem-

branes were washed three times in 25 mM Na2HPO4 pH = 7.5, 3xSSC, 5% SDS, 10x Denhardt, once in 1xSSC, 10% SDS, and

exposed to PhosphorImager screens, which were subsequently scanned on a Typhoon FLA 9000 (GE Healthcare). Band intensity

was quantified with ImageQuant (GE Healthcare).

Primer extension analysis of m1G37
The extent of RT arrest at m1G37 in tRNA-Leu-UAA and tRNA-Pro-UGG from S. cerevisiae was quantified via primer extension with

AMV RT, an enzyme with low processivity at this modification (Werner et al., 2020). The primers were designed to enable a 4-nucle-

otide extension to m1G37 (tRNA-Leu-UAA: 50-CGCGGACAACCGTCCAAC-30; tRNA-Pro-UGG: 50-TGAACCCAGGGCCTCT-30) and
5’-end-labeled with g-32P-ATP. 3 mg of total RNA from exponentially growing yeast cells was mixed with 1 pmol end-labeled primer

and incubated at 95�C for 3 min followed by slow cooling to 37�C. RT reactions were assembled by adding 15 U AMV RT (Promega),

0.5 mM dNTPs, 20 U SUPERase In (Ambion) and 1X AMV RT buffer in a 5-ml volume. Following incubation at 37�C for 45 min, reac-

tions were stopped by addition of 5 ml 2X RNA loading dye (47.5% Formamide, 0.01% SDS, 0.01% bromophenol blue, 0.005%

Xylene Cyanol, 0.5 mM EDTA), boiled at 95�C for 5 min, and resolved on a denaturing 15% PAA/7M urea/1X TBE gel. The gel

was exposed at �80�C to a PhosphorImager screen, which was scanned on a Typhoon FLA 9000 (GE Healthcare). Band intensity

was quantified with ImageQuant (GE Healthcare).

QUANTIFICATION AND STATISTICAL ANALYSIS

Read preprocessing
Sequencing libraries were demultiplexed using cutadapt v2.5 (Martin, 2011) and a fasta file (barcodes.fa) of the first 10 nt for the four

different 30 adapters (see 30 adapter ligation above). Indels in the alignment to the adapter sequence were disabled with --no-indels.

Following demultiplexing, reads were further trimmed to remove the two 50-RN nucleotides introduced by circularization from the RT

primer with -u 2. In both processing steps, reads shorter than 10 nt were discarded using -m 10. Example commands for demulti-

plexing and 50 nucleotide trimming:

cutadapt --no-indels -a file:barcodes.fa -m 10 -o mix1_{name}_trim.fastq.gz mix.fastq.gz

cutadapt -j 40 -m 10 -u 2 -o mix1_barcode1_trimFinal.fastq.gz mix1_barcode1_trim.fastq.gz
Molecular Cell 81, 1802–1815.e1–e7, April 15, 2021 e4



ll
OPEN ACCESS Technology
Modification indexing and clustering
mim-tRNAseq uses modification data from MODOMICS (Boccaletto et al., 2018) to guide accurate alignment of short reads from

tRNAs. A prepackaged set of data is available for S. cerevisiae, S. pombe, C. elegans, D. melanogaster, M. musculus, H. sapiens

and E. coli, and can be specified with the --species parameter. For other organisms, mim-tRNAseq requires a fasta file of predicted

genomic tRNA sequences (-t) and a tRNAscan-SE ‘‘out’’ file containing information about tRNA introns (-o), both of which should be

obtained from GtRNAdb (Chan and Lowe, 2016) or from running tRNAscan-SE (Lowe and Chan, 2016) on the genome of interest.

Lastly, a user-generated sample input file is required which contains two tab-separated columns specifying the path to trimmed

tRNA-seq reads in fastq format, and the experimental condition of each fastq file. Additionally, a mitochondrial tRNA fasta reference

is supplied with the prepackaged data inputs listed above, or may be supplied (-m) for custom genomes as a fasta file obtained from

mitotRNAdb (J€uhling et al., 2009). mim-tRNAseq automatically removes nuclear-encoded mitochondrial tRNAs (nmt-tRNAs) and

tRNA species with undetermined anticodons (where applicable), generates mature, processed tRNA sequences (with appended

30-CCA if necessary, 50-G for tRNA-His, and spliced introns), and fetches species-matched MODOMICS entries accordingly. Tran-

script sequences are then matched to MODOMICS entries using BLAST in order to index all known instances of residues modified at

theWatson-Crick face within each tRNA. An additional modifications file for modifications reported in the literature but not yet added

to MODOMICSmay be supplied and is automatically processed by the pipeline (e.g., I34 annotation; Arimbasseri et al., 2015; Torres

et al., 2015). tRNA clustering is enabled with the --cluster parameter, which utilizes the usearch --cluster_fast algorithm (Edgar, 2010)

to cluster tRNA sequences by a user-defined sequence identity threshold (customizable with --cluster-id). Regardless of the chosen

threshold, only tRNAs sharing an anticodon are clustered tomaintain isoacceptor resolution in caseswhere tRNA transcripts differ by

a single nucleotide in the anticodon. The clusters are re-centered based on the number of identical sequences, and this is used to re-

cluster and improve the selection of a representative centroid/parent sequence for each cluster (https://www.drive5.com/usearch/

manual7/recenter.html). Polymorphisms between cluster members are recorded, and mismatches at these sites during alignment

are tolerated, but they are not included in misincorporation analysis for modified sites. Since inosine is interpreted as a G during

reverse transcription, annotated inosines are changed to G in tRNA reference sequences.

Read alignment and modification discovery
After clustering, reads are aligned using GSNAP to the representative centroid cluster sequences of mature tRNA transcripts. By

enabling SNP-tolerant alignment with --snp-tolerance, the indexed modified sites are treated as pseudo-SNPs to allow modifica-

tion-induced mismatches at these sites in a sequence- and position-specific manner. Soft-clipping during alignment in combina-

tion with the GSNAP parameter --ignore-trim-in-filtering = 1 ensures that non-templated nucleotide extensions are not counted as

mismatches during alignment. Mismatch tolerance outside of indexed SNPs is controlled using the --max-mismatches parameter,

where an integer of allowed mismatches per read can be provided, or a relative mismatch fraction of read length between 0.0 and

0.1 can be supplied (default 0.1). If --remap is specified, then misincorporation analysis is performed and new, unannotated

modifications are called where --misinc-thresh (total misincorporation proportion at a residue; default is 0.1 or 10%) and --min-cov

(minimum total coverage for a cluster) regulate the calling of new modifications, which exclude mismatch sites between cluster

members appearing as misincorporations in this analysis. The existing SNP index is then updated with these new sites, and

realignment of all reads is performed with a mismatch tolerance set using --remap-mismatches. New potential inosine sites are

classified for position 34 where a reference A nucleotide is misincorporated with a G in 95% or more total misincorporation events.

Both --remap and --max-mismatches are extremely useful for detecting unknown modifications in poorly annotated tRNAs, sub-

sequently allowing more accurate and efficient read alignment, which improves the results of all downstream analyses. Users

should consider a low mismatch tolerance during remap to avoid inaccuracy resulting from lenient alignment parameters. We

recommend a relative mismatch fraction of 0.075 during remapping (--remap-mismatches 0.075). Only uniquely mapped reads

are retained for post-alignment analyses.

Read deconvolution
This process aims to recapitulate the single-transcript resolution of --cluster-id 1 (see above), but with the alignment accuracy and

decreased multi-mapping achieved at lower --cluster-id values. The deconvolution algorithm first searches each cluster of tRNA

reference sequences for single-nucleotide differences that distinguish among cluster members. For this, each nucleotide in a refer-

ence sequence is assessed for uniqueness at that position when compared to all other reference sequences in the cluster. If a nucle-

otide is unique in position and identity for a specific tRNA reference in the cluster, it is catalogued. Then, after alignment, each read is

assessed for mismatches to the cluster parent to which it was aligned. These are then scanned individually to find potential matches

to the previously catalogued set for the cluster which can distinguish unique tRNA references. Based on the presence and identity of a

unique distinguishing mismatch, a read is then be assigned to a specific tRNA reference within a cluster. Depending on the organism

and/or cluster ID threshold, unique distinguishing mismatches may not always be present for all tRNA references in a cluster. Reads

without distinguishing mismatches remain assigned to the cluster parent, which is then marked as not fully deconvolved. Using this

algorithm, uniquely aligned reads are assigned to individual tRNA sequences in the reference (where possible) before any of the

downstream analyses detailed below. For differential expression analyses of reads summed per tRNA anticodon, read deconvolution

is not necessary and therefore not performed.
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Modification, RT stop, readthrough and 30 CCA end analyses
Following read deconvolution, all other mismatched positions for the read are extracted from alignment records in bam files, and

converted into positions relative to the unique transcript to which the read was assigned (or the cluster parent if definitive assignment

is not possible). The identity of themisincoporated nucleotide is recorded to enable signature analysis, and the counts ofmismatches

for each of the four nucleotides for all reads with the misincorporation are normalized relative to total read coverage at that position.

Stops during reverse transcription are extracted from the alignment start position of each read relative to the reference (50 read ends

correspond to cDNA 30 ends during RT) and normalized to total read counts for the unique tRNA. Similarly, readthrough for each

position is calculated as the fraction of reads that stop at a position relative to read coverage at each position (as opposed to

stop proportions which are normalized to total tRNA read coverage). This value is then subtracted from one to estimate the proportion

of reads per position that extend beyond that site, and theminimum value in a 3-nucleotide window centered around themodification

is recorded. Using a 3-nucleotide window ensures that potential variance in the position at which the RT stalls due to themodification

is accounted for. Taking the minimum value of readthrough for these 3 nucleotides reduces the likelihood of readthrough overesti-

mation. Misincorporation, stop data, and readthrough per unique tRNA sequence, per position are output as tab-separated files, and

global heatmaps showing misincorporation and stop proportions across all unique tRNA sequences are plotted per experimental

condition. Misincorporation signatures are also plotted for well-known conserved modified tRNA sites (9, 20, 26, 32, 34, 37 and

58) separated by upstream and downstream sequence context to assess potential factors influencing misincorporation signatures.

Lastly, the dinucleotide at the 30 ends of reads is quantified, so long as the read aligns to the conserved 30-CCA tail of the reference.

Proportions of transcripts with absent 30 tails, 30-C, 30-CC and 30-CCA are calculated per unique tRNA sequence and plotted pairwise

between conditions for quantitation and comparison of functional tRNA pools, or tRNA charging fractions in periodate oxidation

experiments.

Post-alignment analyses
The cluster deconvolution algorithm allows coverage analysis, novel modification discovery and read counting for tRNA quantitation

to be done at the level of unique tRNA sequences. Coverage is calculated as the depth of reads at all positions across a tRNA

sequence and plotted using custom R scripts. Cytosolic tRNAs with low read coverage can be filtered at the coverage analysis

step by supplying aminimum coverage threshold to --min-cov. Unique tRNA sequences filtered out here are excluded from all down-

stream analyses, except differential expression analysis by DESeq2 (Love et al., 2014) where all unique tRNA sequences are

included. Normalized coverage (read fraction relative to library size) is plotted per sample in 25 bins across gene length in ametagene

analysis. Normalized coverage is also scaled relative to the second last bin to account for potential differences in 30 CCA intactness.

Read counts per unique tRNA sequence are summed to calculate read counts per isoacceptor family (all tRNAs sharing an

anticodon). These counts are subsequently used by a DESeq2 pipeline for count transformations, sample distance analysis using

distance matrix heatmaps, PCA plots, and differential expression analysis at the level of isoacceptor families and unique tRNA tran-

scripts (only for completely resolved clusters). In the case that only one experimental condition is supplied, or if there are no replicates

for one or more conditions, differential expression analysis is not performed on these samples, but a normalized counts table is still

produced for investigations into tRNA abundance.

Data analysis with the mim-tRNAseq package
The following parameters were used for the analysis of mim-tRNAseq generated sequencing datasets (seemimseq --help or https://

mim-trnaseq.readthedocs.io/en/latest/intro.html for full explanations of parameters; package version v0.2.5.6):

S. cerevisiae: --cluster --cluster-id 0.90 --snp-tolerance --min-cov 2000 --max-mismatches 0.1 --control-condition Exp --cca-

analysis --remap --remap-mismatches 0.075

S. pombe: --cluster --cluster-id 0.95 --snp-tolerance --min-cov 2000 --max-mismatches 0.1 --control-condition Exp --cca-anal-

ysis --remap --remap-mismatches 0.075

D. melanogaster: --cluster --cluster-id 0.95 --snp-tolerance --min-cov 2000 --max-mismatches 0.1 --control-condition bg3

--cca-analysis --remap --remap-mismatches 0.075

H. sapiens: --snp-tolerance --cluster --cluster-id 0.95 --min-cov 2000 --max-mismatches 0.1 --control-condition kiPS --cca-

analysis --remap --remap-mismatches 0.075
tRNA read alignment with Bowtie and Bowtie 2
To test previously used alignment strategies as in DM-tRNAseq (Zheng et al., 2015) or ARM-seq (Cozen et al., 2015), a non-redundant

set of reference human tRNA transcripts was created by fetching the full set of 610 predicted tRNA genes for human genome hg19

from GtRNAdb (Chan and Lowe, 2016) and the 22 mitochondrially encoded human tRNA genes from mitotRNAdb (J€uhling et al.,

2009). Following intron removal and addition of 30 CCA (for nuclear-encoded transcripts) and 50-G (for tRNA-His), a curated set of

596 genes (excluding anticodon/isotype mismatch and nuclear-encoded mitochondrial tRNAs) were collapsed into 420 unique se-

quences. Corresponding Bowtie and Bowtie 2 indices were built from this set of references. Bowtie alignment was performed with a

maximum of 3 allowedmismatches per read (-v 3), filtering for uniquely aligning reads (-m 1) and ensuring the best alignment from the
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best stratum (i.e., reads with the least number of mismatches) were reported (--best --strata). Bowtie 2 alignments were performed in

very sensitive local mode (--very-sensitive --local) and up to 100 alignments per read were allowed (-k 100). Read quality scores were

ignored for alignment score and mismatch penalty calculation (--ignore-quals) with increased penalties for ambiguous characters

(‘‘N’’) in reference or read (--np 5). Output alignments in SAM format were reordered to match read order in input fastq file (–reorder).

The alignment commands for both algorithms are given below:

bowtie -v 3 -m 1 --best --strata --threads 40 -S

bowtie2 --local -x -k 100 --very-sensitive --ignore-quals --np 5 --reorder -p 40 -U

QuantM-tRNAseq data for HEK293 T-Rex Flp-IN cells downloaded from the NCBI Gene Expression Omnibus repository was

adapter-trimmed and analyzed with Bowtie 2 as described in (Pinkard et al., 2020):

bowtie2 --local --score-min G,1,8 -D 20 -R 3 -N 1 -L 10 -i S,1,0.5
Sequence logo analysis
Alignment files for uniquely aligned reads from human HEK293T and S. cerevisiae cells were utilized to generate frequency plots of

untemplated nucleotide additions by TGIRT, and 50 sequence logos in each sample. Briefly, CIGAR strings for each unique alignment

were assessed for GSNAP soft-clipped nucleotides representing untemplated additions. The number of additions per read were re-

corded and plotted as frequency histograms. Since a total of 3 additions or less were present in > 90% of reads analyzed, we gener-

ated sequence logos using the Python package Logomaker (Tareen and Kinney, 2020) for these reads using soft-clipped residues

and the first 10 nucleotides after them. For the logo representing all cataloged tRNA genes, we used mature tRNA transcript

sequences from each genome present in GtRNAdb, and generated a multiple sequence alignment of these using Infernal (Nawrocki

and Eddy, 2013). A sequence logo was then generated from the first 11 nucleotides of each aligned tRNA transcript (in order to

include G-1 for tRNA-His, plus 10 additional nucleotides as in the uniquely aligned read logo above).

Differential modification analysis
To test for global differential modification between two conditions, first, misincorporation proportion and coverage data generated by

mim-tRNAseq were used to calculate absolute counts of modified and unmodified bases per position for each resolved tRNA tran-

script. Then, log odds ratios (logOR) were calculated for each position, x, as follows:

logORx = log

�
Ma=Mb

Ua=Ub

�

whereMa andMb are the counts of modified nucleotides at position x in condition a and b, andUa andUb are the counts of unmodified

nucleotides at position x in condition a and b, respectively. Significance for each logOR was determined with chi-square tests using

the respective modified and unmodified nucleotide counts for each condition in a two-dimensional contingency table for the Pear-

son’s chi-square test. Correction for multiple testing was performedwith the FDRmethod. Following significance tests, logOR values

were filtered for FDR-adjusted p values % 0.01, absolute log2 fold-changes R 1, and total misincorporation at the given position of

10% ormore in at least one of the conditions to ensure only sites with high-confidence misincorporation levels are kept. The resulting

logOR were used in generating heatmaps for individual contrasts between cell types or experimental conditions.
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