Structural Safety, 11 (1992) 255-258 255
Elsevier

On predictive distribution functions for the three
asymptotic extreme value distributions *
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Abstract. This technical note is concerned with the estimation of parameters in the three extreme value distribu-
tions and the quantification of the statistical uncertainty. A Bayesian approach is used. The predictive distribution
functions are determined. It is shown, that the predictive distribution functions which are determined on the basis of
the noninformative priors do not lead to rational decision rules. Priors which lead to reasonable decision rules are
suggested. These are, however, not noninformative.
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Extreme value distributions frequently are used when studying the variability of loading and
resistance variables in structural reliability. Their parameters in general must be estimated
from a limited number of observations. Therefore, it is usually necessary to consider the
statistical uncertainties involved. It has been widely accepted in structural reliability, that a
Bayesian approach is the most appropriate to deal with statistical uncertainties. In the
following note we draw attention to a peculiarity present in the Bayesian analysis of extreme
value distributions. The three extreme value distributions are given in Table 1 for easy

reference.
Assume that the location parameters u, v and w in the Gumbel, Frechet and Weibull

distributions, respectively, are unknown. Let n experiments be performed in order to deter-
mine the unknown parameter. The effect of statistical uncertainty can be quantified in terms of
the predictive distribution function whose density is

fr(x) = [ f(x10)1,(0) do (1)

where 0 is defined in the region ©. Schrupp and Rackwitz [1] have shown that the following
statistics are sufficient statistics for the parameters u, v and w, respectively:

n n n

r= ) exp[—ax], s= Y (x —T)_k, t= ) (xi_T)h

i=1 i=1 ol
where x; is the outcome of an experiment. When a sufficient statistic exists a conjugate prior

* Discussion is open until May 1993 (please submit your discussion paper to the Editor, Ross B. Corotis).
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TABLE 1

The asymptotic extreme value distributions

Fy(xlw)=a expl— alx —u)—cxp[—alx - w]]

Gumbel (maxima)
Fy(x |u) = exp[ —exp[— alx — )]

k v _ v
Frechet (maxima) [y(xlo)= ;(:)“ ICXP[*(T = T) ]

v
Fy(xle)=expl—(—)*]
b e

B x—1., x—=7.,
Weibull (minima) Frlxlw)= ;(T)h ; EXD[—(T)’]

: E
Fylx|w)=1-expl— "

exists, too (see Box and Tiao [2]). As priors for the parameters u, v and w the following
functions can be proposed:

f'(u) cexp( pau), f'(v)yov™,

where p, g and m are constants. The priors are improper in the sense that they integrate to
infinity. They correspond to noninformative priors (see Box and Tiao [2] and Zellner [3]) when
p =00 and ¢ =m = 1.0. The prior for u is noninformative in the sense that

Frwyaw

TABLE 2
Conjugate priors and predictive functions (I' denotes the gamma-function)

exp[(n+ plau—r explau]lar"*?

Gumbel filw)= I(n+p)
a exp[ —ax] —n—1-p
fr(x)=(”+p)7cxp[4ax](l+———r—) 1-p
exp[—ax], _,
Flx)=(+——"")7"7"
r
U,,,\.,{, CXP[‘ L'ks]ks"”] -q)/ k
Frechet file)= (n+(1-q)/k)
—k
=+ e ; GEEETD | pynmr-amark - gy
g &

: —k
Er‘_—_j')_),”,“ )k

Fy(x)=(0+

",‘nh*m CXP[ o w—hl ]I"/H(m -1)/h
T(n+(m-1)/h)

-1 h (x—7)"
)n—((——
! !

h

h
(X i T) )7;:—(m——1)/h

Weibull fiw)=

m +1)ﬂxflf(mAl)/h(x_T)hfl

fy(x)=(n+

Fylx)=1-0+
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Fig. 1. Gumbel distribution (& = 1.0, u = 0.0, »=0.0).

Pla <u<b)/Plc <u<d)= 0/0 is indeterminate when a, b, ¢ and d are finite numbers and
the prior for v (or w) is noninformative in the sense that P(v < a)/P(v > a) is indeterminate.
the that not even the first moment of these priors exist as one should expect. The conjugate
priors and the corresponding predictive density and distribution functions are shown in Table 2.

Assume that samples are taken reproducing the initial values of the parameters, and that the
prf:dictivc distribution functions are determined on basis of the noninformative priors. In Fig. 1
1t is seen, that the predictive distribution function for the Gumbel distribution decreases as the
number of experiments increases even for large values of F,(). A similar behavior can be
obse.rved for the Frechet distribution. On the contrary for the Weibull distribution the
predictive distribution function increases as the number of experiments increases. This makes
no scnse it the Gumbel or Frechet distribution are used to model loads or the Weibull
distribution is adopted for resistances. With such choices for the priors erroneous conclusions
woul.d be.drawn with regard to the effect of statistical uncertainties and the sample size
required in an investigation. Similar findings have been discovered clsewhere in Bayesian
analysis. In fact noninformative priors cannot always be used as a basis for rational decisions
and Berger [4] concludes: “... even unanimously acclaimed noninformative priors (such as
those for location parameters or scale parameters) can lead to inferior decision rules”.

In the context of reliability applications one would require that Fy.(x) > F,(x|8) for small

values of x and F,(x) <Fy(x|0) for large values of x. Furthermore, one would require that
an equation

Fy(x]8)=Fy(x) )

holds for some value x =x* independent of n. x* may be sclected as the point where
fx(x18) takes on its maximum value but other choices such as the distribution median or the
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Fig. 2. Gumbel distribution (a = 1.0, 1 = 0.0, p=0.46). Fig. 3. Frechet distribution (r = 0.0, k=23,
q=—0.27).
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Fig. 4. Weibull distribution (7 = 0.0, h = 2.3, m = 1.87).

mean are also possible. For the Frechet distribution with x* the maximum point the following
equation must then be fulfilled

k+1 k+1
. nk (3)

When k and g are constants this equation always holds for » approaching infinity but it is
impossible to determine g such that the equation holds independent of n and k. It is, however,
possible to find approximate solutions. The simplest approximation inferred from a systematic
numerical analysis with respect to the parameters involved is

g=1-055, k>10 (4)

The predictive distribution function which is determined on the basis of this prior is shown in
Fig. 3. It is seen that the conjugate prior in Table 2 with eqn. (4) now leads to reasonable
decision rules. For the Gumbel and Weibull distribution one analogously obtains the following
approximations:

m=1+038h, h>1.0 (6)

The predictive distribution functions for the Gumbel and Weibull distributions are shown in
Fig. 2 and 4 respectively.

It must be emphasized that these choices for the parameters in the prior distribution
correspond to not noninformative priors and the values in eqns. (4) to (6) just correspond to the
least informative prior. The degree of noninformativeness depends on the value of the
respective nuisance parameters.

-n—(1-g)/k

1+

exp

References

1 K. Schrupp and R. Rackwitz, Conjugate priors in extreme value theory, in: Pridiktive Verteilungen und ihre
Anwendungen in der Zuverléssigheitstheorie der Bauwerke. Berichte zur Zuverlissigheitstheorie der Bauwerke
LKI, Technical University Munich. Heft 71, 1984. ’

2 G.E.P. Gox and G.C. Tiao, Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA, USA. 1972

3 A. Zellner, An Introduction to Bayesian Inference in Econometrics, Wiley, New York, USA, 1971. ’ ’ ‘

4 J.0. Berger, Statistical Decision Theory, Foundations, Concepts and Methods, Springer, New York, USA, 1980.




