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by the Morison equation yields an equation of motion which has no analytical solution
Jor response moments except in a few limiting cases. If polynomial approximations
of the Morison drag loads are introduced, some procedures are available to obtain
the stationary moments of the approximate response. If the response process is fitted
by non-Gaussian models such as proposed by Winterstein (1988), the first four
statistical moments of the response are necessary. The paper investigates how many
terms should be included in the polynomial approximation of the Morison drag

loading to accurately estimate the first four response moments. It is shown that a
cubic approximation of the drag loading is necessary to accurately predict the re-
sponse variance for any excitation. For the fit of the first four response moments, at
least a fifth-order approximation appears necessary.

Intreduction

For offshore structures, the main nonlinearity generally is in
the wave loading consisting of potential and viscous forces,
In the particular case of structures with slender elements, for
example, jacket structures, the wave-induced force on any struc-
tural member usually is described by the extended Morison
equation where potential and viscous forces are modeled by a
linear inertia term and a nonlinear drag term, respectively. Other
nonlinearities are often neglected. For example, linear structural
behavior is assumed and the water elevation 5(r), water particle
velocity x(r), and acceleration ¥(r) are assumed to be zero-
mean stationary normal processes during sea states with dura-
tion of a few hours. For a discussion of these assumaptions, see,
e.g., Chakrabarti { 1987).

In the paper, we consider a time-invariant single-degree-of-
freedom osciilator in unidirectional random waves. Zero current
is assumed throughout. Wave loading is modeled by Morison’s
equation, This equation of motion is

my +cy +hy = Kp(x — ¥)|x — y| + Kyx — K5 (1)

where y(¢) is the structural displacement; |.| denotes absolute
value; Kp = 30DCp, Ky = $rpD*Cyy, and K, = brpD*(Cy ~
1); Cp and C,, are the drag and the inertia coefficients; pis
the water density; I the representative diameter, s the mass, ¢
the damping, and k& the stiffness. Equation (1) is not general.
For example, it does not result from modai decomposition of a
multi-degree-of-freedom because modal forcing functions are,
in general, 2 combination of correlated Morison loads. However,
interesting conclusions ¢an be drawn from the study of Eq. (1),
and it is believed that at teast a part of these conclusions remain
true in general. It is assumed that one and only one solution
exists for Eq. (1), and that the system is stable. The existence,
uniqueness, and stability of the solution must be expected on
physical grounds.

If Eq. (1) is solved, the response process may be used to
assess reliability or to estimate fatigue life. It is known that the
results of these analyses are accurate only if a good fit of the
extreme value behavior of the response process is achieved. If
the response is approximated by a truncated series of Hermite
polynomiais, it was shown by Winterstein ( 1988 that for many
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engineering problems, accuiate results can be obtained if the
first four statistical moments of the response are knowr.

Unfortunately, the estimation of even low-order moments of
y(t) is not straightforward. These moments, of course, can be
exactly calculated through time domain simulations, but this
approach is excessively time-consuming to obtain estimates
with low coefficient of variation (cov). Therefore, approxima-
tions must be introduced. It has been proposed to approximate
the drag component of the Morison loading by a polynomial.
The Volterra theory of nonlinear systems is used to describe
the response.

In the following, Eq. (1) is first standardized as proposed by
Hu et al. (1991), Further, classical methods to approximate the
nonlinear drag loading are described. Then the appiication of the
Volterra theory of nonlinear systems to estimate the tesponse to
wave loads with polynomial nonlinearities is discussed, It is
emphasized that the complexity of this method increases rapidly
with the order of the polynomial approximation of the drag
loading and the number of terms included in the Volterra expan-
sion of the response. Therefore, before investigating the possi-
bility to extend the aforementioned method to larger systems
and to implement such method in appropriate computer codes,
it appears necessary to study low-order approximations of the
drag loading. The accuracy in the moments of the response to
low-order approximations is quantified by time domain analy-
ses. It will be shown that a cubic approximation of the Morison
loading yields accurate estimates for the response variance of
any sea state. However, it will be observed that a fifth-order
approximation of the Merison loading is necessary to ensure a
good fit of the first four response moments in quasi-static cases.

Standardized Equation of Motion

Introducing the so-called hydrodynamic mass My = K, we
rewrite Eq. (1) in the form

(m 4+ mp)¥ + oy + ky = Kp(x — Y| x — ¥| + K2 (2)
The left-hand side of Eq. (2) is further standardized as
¥+ 28w,y + wiy

K . K, ;
= (x = YHx =y + —2E—x (3
m+mhyd m+m,,yd

where w, denotes natural frequency with structural damping ¢,.
In the following, it is assumed that a Pierson-Moskowitz or a
JONSWAP one-sided spectral density G,.(.) describes the sea
elevation process 7(¢) during each sea state. Let w, denote
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some dominant, central frequency of the wave excitation which
defines G, (.} in a sea state. Then, dividing Eq. (3) by w} yields
a standardized equation of motion (Hu et al., 1991)

F' 4+ 2@y + @y = (0~ a7 )u - a7 | + fa (4)

where ¥ = (m + mq)wiy/Kp is a standardized displacement;
T o= did(wet); @, = whwe 4 = x/p and a = x/g are the
standardized water particle velocity and acceleration, respec-
tively, with factors p and g obtained from

P* = wiGn(wo) and g¢* = wiG,,(wy) (3)

It is easily shown that the densities of the standardized water
particle velocity u(t) and acceleration a(t) written as functions
of w/wp are independent of the sea state. The two forcing func-
tion coefficients & and 4 in Eq. (4) are measures of water-
structure interaction and hydrodynamic ratio, respectively. They
are given by

a=L glm+ my) and f=LEiKk, (6)
o P

Approximation of Drag Loading

The choice of a low-order polynomial approximation of the
nonlinear term (u — ay’')|u — ay’| is not straightforward,
First of all, at u = 0 the first derivative of u|u| vanishes and
higher derivatives do not exist. Further, the nonlinear term de-
pends on the unknown response when hydrodynamic interaction
is not negligible (o # 0). Therefore, numerous procedures exist
to approximate the nonlinear term (« ~ ay')|u — ay’| by a
pelynomial of given order, but none of them can be shown to
be optimal to fit a given low-order moment of the solution of
Eq. (4).

It is assumed that the approximation order has a larger influ-
ence than the approximation criterion on the model accuracy.
In this study, an approximation of (¥ — a¥"){u — ay”’| which
minimizes the error in the mean square sense is preferred. As-
sume that an accurate approximation of this nonlinear term by
a polynomial of order n is sought

(u —efNu~ay'| =a(u—ay’y + ...
T a,(u —ay’)" (T)

Then the coefficients (a;, ..., a,)in Eq. {7) are chosen so that
they minimize the mean square error

E[((u = a7 )u—ay'| —a(u-ay’)y—...
= a,(u —ay )" (8)

Elementary differential calculations show that this criterion
yields a set of n lingar equations satisfied by the coefficients
(ah IR} an)

_Z @G E[(u — ay' )™ = E{(u — a7 Y u — ay’|],

k=1...2 (9)

Since zero current is considered, the response has zero mean
and any approximation of even order n = 2p reduces to an
approximation of odd order 2p — 1. If wave current is taken
into account, then approximations of even order need also to
be considered. For this reason, Donley and Spanos {1990} con-
sidered a quadratic approximation of the drag loading.

Alternatively, the nonlinear term can be replaced by a series
of Hermite polynomials

(u—ay)lu—ay'| =2 bHe(u—ay') (10)

=0

with He, (.) the ith Hermite polynomial (Winterstein, 1988).
The coefficients &, are obtained from the orthogonal properties
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of the Hermite polynomials. If the series is truncated after »
terms, it can be shown that this alternative method yields exactly
the same polynomial approximation of order » as the mean
square statistical approximation. Therefore, only the latter
method is considered in the following,

In the limit case where & = 0, the system of Eqgs. {9) does
not depend on the response process. If well-known expressions
for the higher-order central moments of a normal process are
used, it follows that for n = 2p — {:

, .
Qi+2%-3) L. ... R
- 22 2 ok, |2
Zl B T T ko2t T Tl7

k=1...p (11}

with o, the standard deviation of . For instance, some *‘opti-
mum’* low-order polynomial approximations of the drag term

ulu| are
2
n=1,ulul = 2\/:0'“:.1 (12)
T
3
n=3,ufu|w\/zcﬁ[-u—+l(i)} (13
T ., 3\o,
2 3« 1/u 1 /{aV
= = _—— = =] === 14
§ 5’”'”4’“\/;““[4m+2(a..) 60(@)]( )

These approximations (12) to ( 14) originally have already been
proposed in Borgman's (1969) seminal paper.

In general, i.e., when hydrodynamic interaction is non-negli-
gible {(a # 0), no closed solution exists for Egs. (9) because
the statistics of the absolute relative water velocity [u — ay’|
are not known beforehand. Then the coefficients (a;, ..., @.}
of the polynomial approximation must be evaluated iteratively.
Initially, the response is assumed to be zero. Then, coefficients
are 1) evaluated for estimated moments of |u — aj’|, the
response to the approximate excitation is 2) calculared, and 3)
used to update Eqgs. (9). The analysis is then repeated from
steps 1 to 3 until convergence is reached.

If Eq. (4) is solved numerically, then any moment of the
absolute value of relative water velocity |4 — a¥’| can be
evaluated from the time histories. If, on the other hand, an
analytical procedure is used to estimate the response, evaluation
of these moments is difficult. Let us reconsider the linear ap-
proximation of the drag loading. From Egs. (9), it follows that
the moment E[ |« — a3’ |*] is needed to evaluate the coefficient
a of the linear approximation. However, the response to the
linearized forcing function is assumed normal, and therefore
this moment cannot be evaluated exactly. Consequently, further
approximations are necessary to evaluate the ceefficient a, itera-
tively. Since analytical procedures practically allow the calcula-
tion of, at most, the first four moments of the relative water
velocity, the same difficulty is encountered if higher-order ap-
proximations (7} are considered. For instance, it follows from
Eqgs. (9) that the fifth and the ninth-order moments of |u —
ay’! are required to evaluate the coefficients of third and fifth-
order approximations, respectively. In practice, these higher-
order moments are approximated from a moment-based approx-
imation of the probability density of the relative water velocity
(Donley and Spanos, 1990). This probability density can be
best approximated by using Winterstein’s (1988) model, Less
numerical difficulties are encountered if linearization is per-
formed using Bolotin's criterion of equal variances (Bouyssy
and Rackwitz, 1994),

Analytical Solutions
Several methods are available to estimate the moments of

the solution of Eq. (4) when the Morison loading is approxi-
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mated by a polynomial. For example, [to’s differentiation rule
can be used to derive differential equations for the moments of
the approximate response when the motion of the structure is
not accounted for in the drag loading (a = 0) (e.g., Grigoriu
and Ariaratnam, 1988). If hydrodynamic¢ interaction is non-
negligible (a + 0) or if a spectral description of the response
is required, however, the Voiterra theory of nonlinear systems
or one of its improvements provides a more convenient ap-
proach. The basic idea is to express the response to wave loads
with polynomial nonlinearities as a Volterra series in which the
wave elevation 7p(¢) is the input function { Vassilopoulos, 1967).
Using this generalization of the Taylor series expansion from
functions to functionals, the response is written as

y-(:)=2f f Bty . tOnG— 1) ...
k=g ¥ -= oo

nlt — tdde ... dy (15)

with 2,.(#, . . ., ) the kth Volierra kernel (Bedrosian and Rice,
1971).

For practical purposes, expression (13) is hardly tractable.
Therefore, the Volterra series expansion (13) is generally trun-
cated. Then an exact expression can be found for any moment
of the truncated expansion. Response moments can be obtained
by imtegration of higher-order spectra in the frequency domain
if multidimensional Fourier transformations are used. This pro-
cedure was applied by Olagnon et al. (1989) to calcuiate the
response of a free-standing conductor pipe to a cubic approxi-
mation of the Morison wave loading. Hydrodynamic interaction
was taken into account and few iterations were necessary to
reach convergence. Volterra series were also used by Donley
and Spanocs (1990} to evaluate statistics of the response of
a three-degree-of-freedom tension leg platform submitted to
quadratic viscous forces. For this particular case, response sta-
tistics of the second-order Volterra model can alternatively be
obtained by the Kac-Siegert technique (e.g., Naess, 1985). Fi-
nally, it was shown how second-order Volterra models could
be used to assess extreme and fatigue reliability of offshore
structures (e.g., Winterstein et al., 1994 ).

Comparison of analytical and numerical results for response
moments and/or response spectral density were satisfactory in
some cases, but it is not ¢lear whether proposed approximations
of the analytical response are accurate for any sea state, As Eq.
(4) usually must be solved for several sea states to account for
the long-term variability of wave climate in fatigue or reliability
analyses, the accuracy of the aforementioned approximations
for arbitrary excitation is a matter of considerable interest. There
are two kinds of problems. On the one hand, with present-day
computers, only low-order Voiterra expansions of the response
can be handled in practical cases. The computational effort to
estimate responses increases substantially with the number of
terms included in the truncated expansion (15). If the Volterra
series expansion ( 15) is truncated after the £th term, it follows
from the normality of the sea elevation n(z) that a k-fold and
a 2k-fold integration in the frequency domain needs to be per-
formed in order to estimate second and fourth-order response
moments, respectively, Notice that similar integrations need
also to be performed to estimate the moments of the relative
water velocity, which are necessary to evaluate the coefficients
of the approximation {7). In addition, the derivation of high-
order Volterra kernels, for example, using the harmonic input
method described in Bedrosian and Rice (1971), is not straight-
forward. Consequently, the Volterra series expansion { 15) must
be truncated after the first few terms. The analysis can further be
simplified by using approximate higher-order transfer functions
{e.g., Newman, 1977). On the other hand, it is not clear whether
approximations of the drag loading by polynomials of low order
yield accurate responses for all possible sea states. This problem
is crucial, because at least the k first terms of the Volterra series
expansion must be taken to capture the effect of the kth-order
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viscous force, when the drag loading is approximated by a
polynomial of order k.

1t follows from the foregoing discussion that, before investi-
gating the possibility to take additional terms into account in
the Volterra expansion of the response, to introduce approxima-
tions of the transfer functions, and to implement such methods
in appropriate computer codes, it is mandatory to find how
accurate the drag loading needs to be approximated in order to
obtain a good fit of the response moments for all sea states.
The answer to this question will provide conclusions on the
feasibility of fatigue and reliability analyses when wave loads
are modeled by the Morison equation,

Fit of Response Moments

In the following, a numerical study is performed o assess
the ability of first, third, and fifth-order approximations of the
drag loading to yield approximate solutions with accurate first
four moments. Ag zero current is considered, the response has
zero mean and zero skewness. Therefore, only the fit of second
and fourth-order response moments is considered.

Time histories of the stationary normal standardized water
particle velocity u(t) and acceleration a(¢) are simulated by
using the spectral representation method. A Pierson-Moskowitz
spectrum is assumed for the sea elevation process. Harmonics
with random phase and deterministic amplitude are used provid-
ing ergodic time series. Time histories with duration of 4096 s
and time step Af = 0.125 s are simulated with ¥ = 16384
harmonics so that they are almost perfectly normal according
to the central limit theorem.

The constant average acceleration step-by-step method pro-
posed by Newmark is used to solve Eq. (4) numerically. For
a = 0, the forcing function in Eq. {(4) depends on the response
process and the “‘exact’” response at the end of each time step
is computed iteratively. The time history of the response to each
approximate forcing function is also computed with the 8 =
0.25-Newmark method. The displacement at the end of each
time step is the unique real root of a first, third, or fifth-order
algebraic equation whose coefficients depend on data available
at the beginning of the time step. Iterations are necessary to
evaluate the coefficient of the approximation according to Egs.
(9). Zero response is used as initial guess for the coefficient
evaluation and convergence is reached in less than six iterations,
Finally, statistics of the response time histories are calculated.
However, it is well known that higher moments of simulated
time histories of water velocity and acceleration exhibit some
scatter (Tucker et al.,, 1984). Therefore, the aforementioned
procedure is repeated several times until convergence is reached
in response moments. It is found that less than 150 time histories
are sufficient to reach a cov of 13 percent in fourth-order re-
sponse moments.

The analysis is performed for several values of the frequency
ratio wo/w, and structural data (e, B, £,). The frequency ratio
wolw, is taken in (0; 1) ranging from static to dynamic excita-
tion. The relative errors in second and fourth-order response
moments for the first, third, and fifth-order approximations of
the drag loading are reported as a function of the frequency
ratio wy/w, in Figs. 1 to 3 for & = . Errors measured for a =
1 are reported in Figs. 4 to 6. In each figure, three curves are
reported which correspond to hydrodynamic ratio 8 = 0.0, 0.5,
and 1.0. Note the different ordinate scales in those figures,
A damping ratio § = 2 percent was assumed which appears
reasonable for steel structures. Finally, the kurtosis of the re-
sponse is shown in Fig. 7 as a function of the frequency ratio
fora =0anda = 1.

¢ It is first observed that a first-order approximation of the
drag load provides good fits of both second and fourth-order
response moments for high values of the frequency ratio wy/w,
(see Figs. 1 and 4). This confirms findings by other authors
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(¢.g., Manuel and Comnell, 1993). In fact, 2 limit theorem by
Rosenblatt proves that the response process asymptotically be-
comes normal as wy/w, increases to infinity (e.g., Kotulski and
Sobczyk, 1981).

Most structures, however, are designed to behave essentially in
a static manner. Then the response can no longer be assumed
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normal (see Fig. 7). In the limit wy/w, = 0, the response is the
forcing function multiplied by a constant. Consequently, fourth-
order response moments predicted with linear—i.e., normal—
approximation of the loading are excessively inaccurate in
quasi-static cases. This is confirmed by the results shown in
Figs. | and 4. Our results further show that a linear approxima-
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tion may be excessively inefficient to fit response variance for in Bouyssy and Rackwitz {1994) showed that Bolotin’s linear-
low values of the frequency ratio. For example, when @ = 0, ization scheme also underestimates the variance for quasi-static
the approximation (12) strongly underestimates response vari-  excitations, but yields exact variance estimates in the ideal static
ance (by 40 percent in the drag-dominated case £ =0)inthe case. More generally, as already reported by Hu et al. {1991},
case of quasi-static excitation (0 < wol/ ws < ). Results reported it is found that for @ = 0, linearization procedures strongly
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underestimate response variance at the subharmonic {, and not
at the subharmonic § as usually expected (e.g., Eatock Taylor
and Rajagopalan, 1982).

As the water-structure interaction incteases, variance predic-
tions improve substantially for quasi-static cases {see Fig. 7).
At the same time, the fit of fourth-order response moment re-
mains poor. From these results or the evolution of the response
kurtosis with wy/w, shown in Fig. 7, it is concluded that an
increased non-Gaussianity of the response results in quasi-static
cases when the structural motion is accounted for in the Morison
loading. This phenomenon was already noticed by Manuel and
Cornell {1993).

* Results reported in Figs. 2 and 5 indicate that the response
variance still is underestimated when a third-order approxima-
tion of the drag loading is used. The fit, however, appears suffi-
ciently satisfying as the relative error does not exceed 4 percent
in the drag-dominated case. On the other hand, the estimates
of the fourth-order response moments remain inaccurate in
quasi-static cases. As noticed for the first-order approximation,
it appears that the fit of response moments improves for increas-
ing hydrodynamic interaction. For low values of the frequency
ratio wo/w; and of the hydrodynamic ratio 3, it seems that more
terms need to be included in the approximation of the drag
loading in order to obtain accurate fourth-order response mo-
ments,

* Resuits obtained with a fifth-order approximation of the
Morison loading are accurate for any kind of excitation (see
Figs. 3 and 6). The improvement in fourth-order moment pre-
dictions is impressive, and even a better fit of the response
moments is achieved as o increases. Some oscillations are ob-
served in the evolution of the error in fourth-order Tesponse
moment as a function of wy/w,. This indicates that more than
150 samples would be necessary to reach a low cov in the first
four moments of the response to fifth-order viscous forces, This
confirms that it is excessively time-consuming to estimate re-
sponse moments by simulations.

Conclusions

To the authors’ knowledge, this is the first time that the ability
of low-order approximations of the drag loading to predict first
four response moments is investigated. In a sense, this com-
pletes the study of the drag load nonlinearity performed by
Gudmestad and Connor (1983). From an extensive numerical
analysis, it is concluded that;

* A linear approximation is not capable to accurately pre-
dict response moments in quasi-static cases.

* A cubic approximation of the Morison loading yields ac-
curate estimates of the response variance for any kind of excita-

Journal of Offshore Mechanics and Arctic Engineering

tion. Fourth-order moments of the response, however, cannot
be predicted accurately in drag-dominated quasi-static cases.

* A fifth-order approximation of the Morison loading yields
accurate estimates of the response first four moments for any
kind of excitation.

The aforementioned analytical technique to calculate the re-
sponse and its first four moments become excessively complex
if a fifth-order approximation of the forcing function is used.
Indeed, at least a fifth-order Volterra series of the response is
necessary to account for the effect of the fifth-order viscous
forces. Then, the evaluation of the first four response moments
involves up to 10-fold integrations and, when a = 0, rough
approxirnations of the moments up to ninth order of the relative
water velocity are necessary for the evaluation of the coeffi-
cients in the drag loading approximation. Therefore, it is not
sure that response moments evaluated by the approximate Vol-
terra approach will be accurate, especially in drag-dominated
quasi-static cases. As the influence of additional terms on the
results cannot be quantified, the quality of the truncated Voiterra
expansion is unknown, and it is expected that this technique
can match simulation results only in favorable cases.

Thus, and this is probably the most serious aspect of our
conclusions, it is questionable whether analytical methods could
provide accurate estimates of the first four response moments
for all sea states (i.e., frequency ratios). It appears not worth
improving the analytical tools as long as large uncertainties
exist in the modeling of viscous forces. From recent studies
suggesting that low-order Volterra series expansion can be supe-
rior to the Morison equation in predicting nonlinear wave forces
{Worden et al., 1994}, it is expected that a large part of the
numerical difficulties encountered in estimating response to the
nonlinear drag loading will be overcome in the future. Then,
realistic fatigue and reliability analyses accounting for long-
term variations in wave climate would become feasible,

Acknowledgment

This study was supported by Eif Aquitaine under Contract
No. EAP-9125, which is highly appreciated.

References

Bedrosian, E., and Rice, 8. O., 1971, “‘The Output Properties of Volterra
Systems (Nonlinear Systems With Memory) Driven by Harmonic and Gaussian
Inputs,”” Proceedings of the IEEE, Vol. 59, pp. [688~1707.

Borgman, L. E., 1969, “‘Ocean Wave Simulation for Engineering Design,”
ASCE Journal of the Waterways and Harbors Division, Vol. 95, pp. 557-583.

Bouyssy, V., and Rackwitz, R., 1994, “*Approximate Non-Normal Response
of Drag Dominated Jacket Structures,”’ Proceedings, 6th International W.G. 7.5
IFiP Conferance, Chapman and Hall.

FEBRUARY 1997, Vol. 119 / 35




Chakrabarti, 8. K., 1987, Hydrodynamics of Offshare Structures, Springer Ver-
lag, Berlin, Germany. '

Danley, M. G., and Spanos, P. D., 1990, Dynamic Analysis of Nen-Linear
Structures by the Method of Statistical Quadratization, Springer Verlag, Berlin,
Germany,

Eatock Taylor, R.. and Rajagopalan, A., 1982, “‘Dynamics of Offshore Struc-
tures, Part I: Perturbation Analysis,”” Journal of Sound and Vibration, Val. 83,
pp. 401-416.

Grigoriu, M., and Ariaratnam, 3. T., 1988, “‘Response of Linear Systems to
Polynomials of Gaussian Processes,” ASME Journal of Applied Mechanics, Vol.
55, pp. 905~910,

Gudmestad, O. T., and Connox, [, 1., 1983, *‘Linearization Methods and the
Influence of Current on the Nonlinear Hydrodynamic Drag Force,”’ Applied Ocean
Research, Yol. 5, pp. 184194,

Hu, 5.-L. J,, Tsiatas, G., and McGrath, I, E., 1991, *‘Optimal Linearization of
Morisen-Type Wave Loading,” ASCE Journal of Engineering Mechanics, Vol.
117, pp. 1537-1553,

Kotulski, Z., and Sobezyk, K., 1981, *'Linear Systerns and Normality,'* Journal
of Statistical Physics, Vol. 24, pp. 359-373.

Manuel, L., and Corneil, C. A, 1993, *'Sensitivity of the Dynamic Response of
a Jack-Up Rig to Support Medelling and Morisen Ferce Modelling Assumptions,”™
Proceedings, 12th International Conference on Offshore Mechanics and Arctic
Engineering, Vol. 2, pp. 243250,

Naess, A.. 1985, “Smatistical Analysis of Second-Order Response of Marine
Structures,”” Journal of Skip Research, Vol. 29, pp. 270-284.

Newman, I. N., 1974, “Second Order Slowly Varying Forces in Irregular
Waves,”” Proceedings, International Symposium on Dynamics of Marine Vehicles
and Offshore Structures in Waves, University College London, UK., pp. 182—
186.

Qlagnon, M., Prevosto, M., and Joubert, P., 1988, **Nonlinear Spectral Compu-
tation of the Dynamic Response of a Single Cylinder,” ASME JOURNAL OF
OFFSHORE MECHANICS AND ARCTIC ENGINEERING. Vol. 110, pp. 278-281.

Tucker, M. I., Challenor, P. G., and Carter, D. J. T., 1984, “Numerical Simula-
tion of a Random Sea: A Common Error and Its Effect Upon Wave Group
Statistics,'” Applied Ocean Research, Vol. 6, pp. 118-122.

Vassilopoulos, L. A.. 1967. *“The Applicaticn of Statistical Theory of Nonlinear
Systems to Ship Moticn Performance in Random Seas,”” International Ship Build-
ing Progress, Vol. 14, pp. 54-85.

Winterstein, 5. R., 1988, “'Nonlinzar Vibration Mecdels for Extremes and Fa-
tigue,”” ASCE Journai of Engineering Mechanics, Vol. 114, pp. 1772-1790.

Winterstein, S. R., Ude, T. C., and Marthinsen, T., 1994, ‘*Volterra Models of
Ccean Structures: Extreme and Fatigue Reliability,”” ASCE Jowmal of Engi-
neering Mechanis, Vol. 120, pp. 1369-1385,

Worden, K., Stansby, P. K., Tomlison, G. R., and Billings, S. A., 1994, ‘‘Identi-
fication of Nonlinear Wave Forces,”' Journal of Fluids and Structures, Vol. 8,
pp. 19-71.

The American Society of
® Mechanical Engineers

ASME COUPON BOOKS

Use coupons to purchase all ASME publications
-—— including special publications, codes and
standards, and technical papers (preprints).
Use coupons to save money. Technical papers
cost /ess when you purchase them with
coupons! Oune coupon may be redeemed for one
technical paper. That's a savings of $.50 for
members, $1.00 for non-members (off the regu-
lar price for preprints).

EaX
201-882-1717
201-882-5155

IELEPHONE
800-THE-ASME
(800-843-2763)
USA & CANADA

95 800-843.2763
MEXICO
201-882-1167

E-MAIL

infocentral@asme.org

TECHNICAL PAPERS (PREPRINTS) CouronN Book
Contains 10 covpoNs ORDER No. CBO0O0O1
$40 (ASME MEMBERS) / $80 (NoON- MEMBERS)

UBLIC s C N Boo
CoNTaINS 10 courons (810 EACH)
ORDER No. CB0002
$100 (MemBER & NoN- MEMBER)

MAIL

ASME

22 Law DRIVE

P.O. Box 2300
FAIRFIELD, NEW JERSEY
07007-2300

OR

QUTSIDE NO. AMERICA

36 / Vol. 119, FEBRUARY 1997

Transactions of the ASME




