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Time variant reliability for structures with nonlinear behaviour

J. Altes*, R. Rackwitz** and U. Schulz***

The paper describes a method for the probabilistic safety assessment of structural components under time-depend-
ent stochastic structural properties and random loadings as well as nonlinear structural behavior. Since no gradient
information is available, a mixed solution strategy is applied using both gradient based FORM/SORM and adaptive
conditional sampling. The results of a time dependent reliability analysis for the linear structure are used as the
starting point for the adaptive sampling scheme for the nonlinear structure. Hence, the reliability analysis is split
into a time-invariant part involving all non-ergodic variables at the critical time and a time-variant part yielding
up-crossing rates. The loads may be modelled as stationary or non-stationary Gaussian processes or rectangular
wave renewal processes. As an example, a pressure vessel is analyzed to demonstrate that the method is feasible for

realistic, large scale finite element models.

The probabilistic safety assessment of structural com-
ponents with respect to fatigue or catastrophic failure re-
quires the consideration of time-dependent stochastic
structural properties and random loadings as well as non-
linear structural behavior, in particular elastoplasticity and
creep. In this case, classical methods i.e. reliability algo-
rithms based on FORM/SORM coupled with a suitable non-
linear Finite element method (FEM) code fail, because
gradient information may be either very difficult and expen-
sive to obtain or simply not available. However, a mixed
solution strategy is possible by performing the necessary
probability integrations only in part by rigorous
FORM/SORM and by adaptive conditional sampling other-
wise. The latter requires only simple function calls to the
FEM code. Unfortunately, any adaptive sampling scheme
depends very much on the starting vector especially for
higher dimension of the basic uncertainty vector. It is
proposed to perform first a possibly line dependent
reliability analysis for the linear structure yielding the criti-
cal combination of stochastic variables. The results can then
be used as the starting point for the adaptive sampling
scheme for the non-linear analysis. If it can be assumed that
the sensitivities vary only insignificantly with time, the
reliability analysis can be split into a time invariant part
involving all non-ergodic variables at the critical time and a
time variant part yielding up-crossing rates. Thereby, the
loads may be modelled as stationary or non-stationary
Gaussian processes or rectangular wave renewal processes.
Their parameters may also be ergodic sequences.

The work is based on the combination of the
reliability analysis program COMREL, developed by the
RCP GmbH, and the Technical University Miinchen — with
the finite element code PERMAS — developed by INTES
GmbH, Stuttgart which allows the calculation of the
reliability of mechanical components. The development of
the PERMAS module RA was initiated and sponsored by
Forschungszentrum Jilich GmbH, Jiilich. So far, the fea-
tures of the PERMAS-RA code covered time-independent
and time-dependent analysis analysis for linear static and
eigenvalue analysisl'4. The current work is based on the
extension of the code with respect to nonlinear structural

behaviour‘5

As an example, the reliability of a pressure vessel of a
nuclear power plant under transient extreme loading is
analyzed to demonstrate that the method is feasible for
realistic large scale convergence towards the true reliability
estimate.

TIME-VARIANT RELIABILITY

Theory and concepts for the computation of time-invariant
reliability are now well known and can be performed effi-
ciently and reliably. Computationally feasible approaches to
time-variant reliability problems at present are all of
asymptotic nature. They rest on the construction of a count-
ing process for the exits of the structural state function into
the failure domain. The intensity parameter of this Poisson
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process is determined from the outcrossing rate of the load
effect process through the possibly time-variant limit state
function. The mean number of exits into the failure domain
has to be determined by time integration of the outcrossing
rate. The calculation of the outcrossing rates is a non-trivial
task. At present, solutions for differentiable Gaussian vector
processes and rectangular wave renewal processes are avail-
able®’. A second difficulty usually arises when assuring the
Poissonian nature (lack of memory) of the outcrossings
under the presence of time invariant or at least non-ergodic
basic variables.

Consider the general task of estimating the probability
Pf(z) such that a realization z(t) of a random state vector
Z(7) representative for a given problem, enters the failure
domain V = {z(1)lg(z(1), 1) <0,0< 1 <t} g(.)
is the limit state function. Z(t) may conveniently be
separated into three components as :

Z" () = [RT QT(r) sT(1)] (1)

where R is a vector of random variables that are either
independent or deterministically dependent of time ¢, o)
is a slowly varying ergodic random vector sequence and
S(7) is a vector, not necessarily stationary but sufficiently
mixing random process variables, having fast fluctuations
as compared to Q(T).

The following formula has been established in part by
making use of the ergodicity theorem®

PD) = 1 - Eplexp(- olEINg (t1 R,Q)IN]
< Eg [E, [E[Ng (1) RO (2)
Herein, E[N{(11 R, Q) ] = f; vt (TIR, Q) dt (3)

is the mean value of exits into the failure domain, and

im 1
-0 0
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the outcrossing rate. Equation 2 is a rather good approxima-
tion for the stationary case but must be considered as a first
approximation whenever S(t) is non-stationary or the limit
state function exhibits strong dependence on 1. However,
the bound given is strict but close to the exact result only
for very small failure probabilities. Therefore, it is used
throughourt,

The local outcrossing rate can be computed by
FORM/SORM. The same methodology is also applied for
the time integration Eq. (3). Substantially more difficult is
the expectation operation with respect to the non ergodic R
variables as those involve the uncertain system properties.
This expectation can be performed either by crude Monte
Cardo integration or with importance sampling.
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ADAPTIVE AND CONDITIONAL SAMPLING
Adaptive Sampling

Comparative studies show that the conventional Monte
Cardo method leads to a very high number of samples when
the failure probability is small and/or X is of large dimen-
sion. Adaptive sampling starts with the mean of the sam-
pling probability density function in the origin of the
U-space. Each time a sample falls into the failure domain,
the density function is shifted into the sampling point in the
U-space or some other preselected point. The idea is to
continuously update the sampling density function leading
to the optimal one. Hence we have

F=]

LW <0

Tx)
h(x) (x)

1 N
dF) = 5 3 Agx)<0 Q)
i=1

where hx(x) is the sampling density and fX(x) the density
of X which is assumed to exist. If hy(x) is appropriately

chosen, i.e. placed in the important region, the coefficient of
variation of the probability estimate decrease rapidly. If the
algorithm searches for the important region during sam-
pling, this is called adaptive Monte Carlo. The sampling
density is the density of a standard normal variable with the
initial mean either at zero or at an explicitly defined starting
solution. Whenever sampling results in a value of the state
function which is absolutely smaller than the previous one,
that point will be used as the new mean of the sampling
density. The probability estimate and its coefficient of
variation are updated during the whole sampling process.
Updating of the sampling density usually can be recognised
by jumps in both the probability estimate and the coefficient
of variation. Adaptive Monte Carlo does not require dif-
ferentiability of the state function.

This updating process asymptotically converges to the
probability density function at the failure point. As the func-
tion is biased towards the failure point, the necessary num-
ber of samples is reduced since a large number of
simulations occur close to the solution point.

The main drawback of the adaptive sampling method
is its inherent danger to over represent a sub-region of the
failure domain, if the sampling density was biased to a local
minimum of the failure function during the first sampling. It
was noticed in many problems, that the efficiency of adap-
tive sampling schemes depends strongly on the starting con-
ditions”. Therefore, the sampling should be repeated with
different starting sets X, if the failure function is highly
nonlinear.

Conditional sampling

The conditional sampling scheme used here is a combina-
tion of a sampling technique and the FORM/SORM algo-
rithm. With the set of basic variables separated into the
subsets X and Y and the failure domain
D= {ylgny) < 0}, the probability of failure is calculated
as:
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Pr= | PD13) fyx) dx 6)

Here the conditional failure probability PI(Dlx) can be

determined by FORM/SORM. The condition is removed by
sampling. The variance of this estimate can be shown to be:

1 o »
NN ‘_Z (P (D)X = x)

=1

var (;f) = )

The variance is unbiased, too. Hence, the accuracy of the
failure probability estimate can be judged from its coeffi-
cient of variation. It is also important to notice that this
estimate is rather inaccurate if N is not much larger than

VP/‘

Criteria for the Number of Samples.

In practice, the maximum number of samples N, and a
target value for the coefficient of variation (30%), are
defined by the user. Samples are generated until all of the
following conditions are fulfilled.

1. Atleast 10% of the N

\nax S3Mples have been performed.

2. The coefficient of variation of the failure probability is

below the target value for atleast 1% of the N, samples.
Only samples exceeding minimum number of samples
defined in (1)) above are counted, provided that they have

been successful and lie in the failure domain.

NONLINEAR STRUCTURAL BEHAVIOR

Since no gradient information is needed, the sampling
method can be used to assess structures with any kind of
nonlinear behavior (nonlinear material, contact analysis or
geometrical nonlinearities). In the present study, an elas-
toplastic material law with a temperature dependent yield
stress and a linear hardening model has been applied.

The solution procedure used in the finite element
code is the initial strain method, working with the original
stiffness. The material constitutive model is considered in

the analysis through the pseudo load vectors {A 0"} and
{A Q°} which are computed from the inelastic strain incre-

ments {A €} and (A €€} for plasticity and creep. The in-
cremental relation is:

(K] {Au) = (AP} + {AQT}+{AQ"} (8)

where [K] is the original stiffness matrix, {Au} is the result-
ing incremental displacement vector and {A P} is the exter-
nal load increment. The solution of Eq. (8) does not require
an update of the stiffness matrix, hence, the Cholesky factor
must be computed only once. This method is efficient but is
restricted to applications where the plastic zones do not lead
to a global failure-of the structure. In our case, however, this
is no severe restriction since for the safety of a critical struc-
ture like a pressure vessel only limited plastic regions are
acceptable.
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EXAMPLES

The example of a pressure vessel of a High Temperature
Reactor has been chosen because the probabilistic behavior
of the system has been studied'®!'! under various aspects.
The reactor pressure vessel (RPV) is part of the primary
circuit pressure boundary of the HTR 200 module (Fig. 1).
The primary circuit consists of the reactor pressure vessel
(RPV), the steam generator pressure vessel (SPV), the con-
necting pressure vessel (CPV) and the fuel discharge tube.

Material: The pressure vessels should be made of the
temperatureresistant steel 20 Mn Mo Ni 55 which is also
used for KWU-PWR reactor pressure vessels. The material

properties are temperature dependent (R, at 350°C = 390
N/mm 2, linear hardening constant = S0000N/mm? ).

Loads: The expected lifetime of the structure is 40 years,
and, the following loading conditions are assumed:

1. 500 shut-down/start-up sequences.

2. About 30,000 minor state changes with pressure and
temperature variations during a day.

3. Five pressure tests of the cold reactor (every 8 years)
with 77bar.

In the finite element model, six different loading cases are
considered:

1. The dead weight of the structure including internal
components. '

The internal pressure under normal operation of 60 bar.
The temperature distribution under normal operation.
An additional accidental internal pressure increase of 10 bar.

An additional accidental rise of temperature.

O igth e, 00 E D

The overload due to the pressure tests every 8 years.
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X = Slimit ~Om (&)
where E“m“ is the maximum allowable equivalent stress
and Em is the highest stress anywhere in the structure.
Elim“ is an uncertain variable, with the mean value slightly
higher than the mean plastic yield stress of the material.

This has the effect that small plastic zones with an
equivalent plastic strain of up to 0.02% are tolerated.

Computing Resources: The computer runs have been per-
formed on a DEC-Alpha 3000 Model 800 workstation,
using about 40 MB of central memory. One static analysis
of the structure needs about 1 minute, a nonlinear analysis
between 2-and 6 minutes.

Results: The failure probabilities P/. are computed as:

FIG.2 FINITE ELEMENT MODEL OF RPV, CPV AND
FUEL DISCHARGE TUBE

Leading cases 2—6 should be modelled as stochastic proces-
ses. Loads 2 and 3 as well as loads 4 and 5 arc highly
correlated with a correlation coefficient of 0.8.

Finite element discretization: The example is restricted to
the reactor pressure vessel in order to keep the finite ele-
ment model (Fig.2) into a moderate size. Since many non-
linear computations are performed during the simulation,
the mesh is rather coarse but higher order elements are
used:

Finite elements 266 (27-node hexahedron)
Nodal points 3492
Degrees of freedom 9916

Stochastic model: The stochastic model consists of 9 dif-
ferent basic variables:

*  Five basic variables describe the material parameters of
the different parts of the pressure vessel. To be on the
safe side, only a small correlation with a coefficient of
0.5 is assumed between these variables.

*  Four basic variables define the different loading condi-
tions. Of these, the temperature and internal pressure
under normal operation are correlated with a correla-
tion coefficient of 0.8.

Time-variant analysis: The following combinations are
studied:

Combi [ ing Loads Rate/year
1+2+3 12.5
B 1+2+3+4+° 750.0
6 0.13

Nonlinear Analysis: For the nonlinear analysis, the loads are
assumed to be time invariant stochastic variables. The limit
state function is defined in terms of thy maximum
equivalent stress anywhere in the structure.
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R
Combination Pf No. of Iterations

A 6.0*10° 514

B 28% 10" 500

o) 54107 2145

The goal of the present work was not to study the
specific results for the reactor pressure vessel but the ap-
plicability of the implemented algorithm. The behavior of
the adaptive sampling scheme for cases A and C
shown in Fig. 3.
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The estimated coefficient of variation as well as the
predicted reliability index show characteristic jumps when-
ever the sampling density is adapted.

Considerable savings in the number of necessary
samples are achieved, if the starting solution is chosen
closer to the limit state rather than the mean values of the X
variables. The starting solution must be chosen carefully in
order to avoid numerical instabilities from samples that are
close to the U-space bounds.

Pipe Junction

For the pipe junction shown in Fig.4 in the results of dif-
ferent methods for calculating the reliability are compared.

The finite element model of the pipe junction has
4757 degrees of freedom (27-node hexahedrons). The
stochastic model consists of 3 basic variables: the internal
pressure (normal distribution), the Young’s modulus (log-
normal distribution) and the yield limit (lognormal distribu-
tion). The limit state function is the difference between the
yield limit of the material and the maximum Von. Mises
stress resulting from the internal pressure.

The results clearly show, that the beta indices are
close together, the FORM and SORM method need the
shortest computing times and the adaptive Monte Carlo
method starting at the beta-point resulting from FORM/
SORM method saves considerably number of samples.

Method Beta Py Simulations CD:pmlzing
FORM 6627 | 1.72%10-11 = 1345
FORM 6639 | 1.59%10-11 10 5525
}——S—ORM 6.641 | 1.56*10-11 - 208 s
SORM 6.641 | 1.57*10-11 10 51Ss \
AMC’ 6.641 | 1.57*10-11 524 53908 T
AMC™ 6.651 | 1.47*10-11 128 13295

Note: AMC Aduptive Ments Carlo: AMC” Start with mican yutwss of
basic variables ; AMC™" Start at beta-point of PFORM

CONCLUSIONS

The Adaptive Monte Carlo Method to compute the time-
variant reliability of structures with nonlinear material be-
havior is suitable for any type of nonlinearities where the
FORM/SORM method fail due to the lack of gradient infor-
mation. The number of samples necessary slightly increases
with the reliability index and the number of uncertain vari-
ables. The authors have implemented an efficient computer
program to allow the treatment of realistic structures
without the need for large-scale supercomputers.

The adaptive simulation scheme is more efficient ifa
starting solution is chosen which is closer to the limit state
than the mean values of the uncertain variables Due to the
large number of independent finite element computations,
the method is also well suited for the application of parallel
computers.

Adaptive or conditional sampling is only one of the
methods under study. An especially effective combination
of sampling methods and response surfaces is being
developed and will be reported in the near future.
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