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Abstract

As early as 1971 Rosenblueth and Mendoza (Rosenblueth E, Mendoza E. Reliability optimization in
isostatic structures. J Eng Mech Div, ASCE 1971;97(EM6):1625-42) published a paper on structural opti-
mization the concepts of which have been refined later by Hasofer in 1974 (Hasofer AM. Design for
infrequent overloads. Earthquake Eng and Struct Dynamics 1974;2(4):387-8) and Rosenblueth in 1976
(Rosenblueth E. Optimum design for infrequent disturbances. J Struct Div, ASCE 1976;102(ST9):1807-25)
particularly in the context of earthquake resistant design. In essence, these authors proposed to distinguish
between structures that can fail upon completion or never and structures which can fail under rare ‘dis-
turbances’. Furthermore they distinguished between ‘single mission structures’ and structures which are
systematically rebuilt after failure. The consequences of their findings for code making, especially for set-
ting safety targets apparently have been overlooked since then. In fact, it is rather a yearly failure rate that
has to be specified and verified and not a failure probability for an arbitrary reference time. The paper
thoroughly reviews Rosenblueth’s and Hasofer’s developments and extends the concepts to failures
including ultimate limit state failure under normal and extreme conditions, serviceability failure, fatigue
and other deterioration and, finally, obsolescence. Some newly needed computational tools are addressed.
Partial safety factors are derived for stationary failure processes and a new verification format for fatigue
and other deterioration is proposed. Tools for optimization of structural components are presented.
© 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since about 30 years the civil engineering profession is developing tools for quantifying the
stochasticity in mechanics and evaluating structural reliability. Applications are widespread.
Simultaneously, there is an ongoing debate on ‘how safe is enough’. The late 1970s saw various
national and international attempts to set up a code-type framework specifying targets, formats
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and methods [1-5]. More recently, European efforts concentrated on the so-called EUROCODES
[6]. All of them essentially based their safety considerations on the newly developed FORM metho-
dology implying that the targets are specified in terms of safety (reliability) indices. With the excep-
tion of ANS all related the target safety indices, essentially determined by calibration, to one year.
ANS related it to a time period of 50 years. The EUROCODES recognized the necessity to distin-
guish between different reference times for different buildings. Being the latest the EUROCODES
also recognized the necessity to handle fatigue and other types of deterioration by the same concept.

As carly as 1971 Rosenblueth and Mendoza [7] proposed to use optimization for assessing
targets with special reference to earthquake resistant design in a fundamental paper. The concepts
developed therein were later refined by Hasofer [8] and again by Rosenblueth [9]. In particular, a
distinction was made whether failure would occur upon construction or never and at “large ran-
dom disturbances” only. A second distinction was made with respect to the reconstruction policy.
In the extremes there are just two: no reconstruction after failure and systematic reconstruction or
repair after failure, respectively. Whereas it is true that both types of failure should generally be
considered depending on the type of loading on the structure the matter of reconstruction policy
was apparently overlooked in the past. In fact, for almost all civil engineering structures systematic
rebuilding after failure, be it caused by extreme loading, bad construction, fatigue, other dete-
rioration, loss of serviceability, or by demolition after obsolesce, is mandatory, at least ideally
because buildings serve the user and society. Optimization for one “mission” is thinkable for
certain construction operations only.

In this paper the ideas of Rosenblueth and Hasofer will first be taken up again. On purpose all
basic derivations are carried out with some detail, care and redundancy so that the interested
reader can follow. To a certain extent those ideas will be generalized and concretized. It will be
shown that it is possible to set up a consistent conceptual framework for optimal design and
reliability verification. A suitable optimization scheme will be proposed. It will be demonstrated
that failure rates rather than time-dependent failure probabilities are the basis for setting up
safety targets. Important conclusions will be drawn with respect to code making, in particular
when assessing safety targets and when deriving partial safety factors for practical use. The new
philosophy will require new computational tools some of which will be discussed.

2. Rosenblueth and Hasofer’s treatment

Assume that the objective function of a structural component is
Z(p) = B(p) — C(p) — D(p) (D

B(p) is the benefit from the existence of the structure, C(p) are the construction cost and D(p)
the expected damage cost. p generally is a design parameter vector. Without loss of generality all
quantities will be measured in monetary units. A discussion on matters how and to what extent
this is justified is beyond the scope of this paper. Statistical decision theory dictates that the
expected values for B(p), C(p) and D(p) have to be taken. B(p), in general, will be unaffected or
slightly decrease with each component of p but this will be neglected without substantial error so
that B = B(p). C(p) increases with each component of p under normal circumstances. Frequently,
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it can be approximated by C(p) ~ Cy + Zep;. Cp are those costs which do not depend on p. In
general, there is Cy >> Zeip;. D(p) decreases with p in some fashion. For each involved party, i.e.
the builder, the user and the society, Z(p) should be positive. Otherwise one should not under-
take the realization of the structure. This is illustrated in Fig. 1. Benefits, cost and damages are
not necessarily the same for all involved parties. Therefore, the intersection of the domains where
Z(p) is positive is the domain of p, which makes sense for all parlies.

Furthermore, the decision about p has to be made at = 0. This requires capitalization of all
cost. In the following a continuous capitalization function is used.

8(1) = exp(—y!1) )

with y the interest rate and ¢ time in suitable time units. Usually, a yearly interest rate is defined
and 8(1) = (1 +9/)”" with ' the yearly interest rate. Both forms are identical for y = In(1 + /),
where for y << 1, we have in very good approximation y ~ y'. It will further be assumed that y
is corrected for de- and inflation and averaged over sufficiently long periods to account of fluc-
tuations in time. For the moment it is also assumed that the time for construction is negligibly
short as compared to the average lifetime of the structure. If necessary, adjustments for finite
construction times can be made.

2.1. Failure upon construction

If the structure fails upon construction (or when it is put into service) or never and is aban-
doned after first failure Eq. (1) specializes to

Z(p) = B*(1 = P(p)) = C(p) — H(p)Py(p) = B — C(p) = (B" + H(P))Ps(p) 3

| — Py(p) and Py(p) are reliability and failure probability, respectively. H(p) is the direct failure
cost. In most cases H(p) will be constant including the direct cost of direct physical damage and
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Fig. 1. Cost and benefit over design parameter p [10].
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the cost of demolition and removal but also cost for human life a}ld injury so .that H(p)d: H. ’B*
is the benefit derived from the existence of the structure. If the failure probabl_l‘lly cllaepin 1’s 01(1i gn
uncertain vector R an additional expectation opergtion is necessary and )I’/-(/)) is :-_[0 te]up aced by
Eg[P;(p, R)]. If the structure fails upon construction and is reconstructed immediately

Z(p) = B* — C(p) — (C(p) + H(p)Y_nPs(p)"(1 = Ps(p))

n=1

P/(p) 4
=B — C(p) —(C(p) + H(p))l—%g@ &
since
e P,»(p))?;onz’f(p) ==KV a3 F=T-Pp)

If the failure probability depends on an uncertain vector R an adldmonz’il elxp(:(l:;au?n lo;ie;l;onl:
is necessary as indicated previously. Rosenblug[h and Mendoza dlscgss at cngt g]a 1.t o
by reconstruction for the same reliability and mdepender}ce of the failure e\éc_llz s.l e;ei'] J] :
assumed that reliability is already optimal so that thcr.e is no reason to modify the esl!gn ru1 1:35
after failure although, practically, the design itself will almost certainly be clhﬁe;)ept))rogzl bz
previous one. For structures there is always Pr(p)) << 1, and the term 1/(1 — Pr(p)) ca
neglected. Then, assuming further C(p) << H(p)

’ 5

Z(p) = B" = C(p) — H(p)Ps(p) ©)

This is the formulation most frequently used. Some .ambiguily exists how to quantify the ben-
efit B* in Eqs. (3) to (5). We have for constant b and given reference time 7

T
B(T) = Job(z)a(z)dt = i—i[l —exp[~y 7] )

and for T — oo

b )
B ==
¥

Unless the asymptotic value is taken a reference time has to be specified.

2.2. Failure due to time-variant loads and]or resistances

Assume that the failure process can be modeled by an orc@inary rcnew.a‘l procu:gs. Acgtqrdl?'g to
renewal theory [11] a renewal process has independent and identically distributed, positive times
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between failures and subsequent renewals. The density function of the failure times is g(/). For
structures this means, for example; that each reconstruction realizes a new structure with prop-
erties independent from the previous ones. It is useful to distinguish between ordinary renewal
processes where all times have density g(¢) and modified renewal processes where the time to first
failure is g (¢) while all other failure times have density g(). For an equilibrium renewal process
the time to first failure has the special form &1(1) = (1 = G(1))/n where G(1) is the distribution
function corresponding to g(7) and u = E[T]. The modified renewal process may be important
whenever the (structural) component is not “new” at r=0 and the hazard function r(1) =
g(1)/(1 — G(r)) is not constant, e.g. indicaling some deterioration with age. Another situalion in
which a modified renewal process may be realistic is when failure is caused by random dis-
turbances (earthquakes, storms, floods, etc.) which have been observed in the past. For some
types of disturbances the likelihood of such disturbances is influenced by the time which has
clapsed since the last observed disturbance. The equilibrium renewal process as a special case of the
modified renewal process should be used if it assumed that the renewal process is running already
for a long time and the time origin is placed randomly between two successive renewals. This model
is to be used if the time of the last reconstruction or “disturbance” is not known. The refinements of
the ordinary renewal process will be of importance only occasionally in the considerations to come.
We recall some results from renewal theory. The renewal function is defined as

H() = EINOT = Y nPN(D = 1) = 3 1(G,(1) = Gy (1)
n=1 n=1

o o0 o] ! !
= Z”Gn([) - Z(” - l)Gn(f) = ZGH(I) = ZJ g,,(r)dr = J /I(T)dl' (8)
n=1 n=2 n=1 =140 0

where N(7) is the number of renewals in [0, 7] and G,(1) = P(Z;{_l T;<t). The so-called renewal
density as the derivative of the renewal function, also denoted as unconditional failure rate or
failure intensity, is

o P(one or more renewalsin [z, 1 + A]) o =
Ho) = lim - = Z_;gu(f) Q)
Let
(£
(1) = j g1t —v)g(tydr; n=2,3,... (10)
0

be the density function of the time to the sth renewal written as a convolution integral. For
convolution integrals as in Eq. (10) the Laplace transform can be used with advantage. Define by

g0) = }0 expl—0ilg(1)ds (1)

the Laplace transform of g(#). If g(1) is assumed to be a probability density we have g*(0) = 1 and
0<g(e)<lforallg=0.
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For the impOI tant Slational‘y POiSSOﬂ pr QCEeSS \Vith intemlty Aldtis Slmply

00 ! A (12)
e =g = JO exp[—01]/ exp[—Af]dl = o+

mory” of the Poisson process. Further details about

x () i “lack of me .
L o i g e odels are given in Appendix A. For convolutions we

Laplace transforms for other failure time m

have )
* = (13
£:(0) = £1(0)g;_,(0) = 21 O)e" O)] :
If
- (14)
21(6) = J exp[—01]g1()d?
0
g0 = exnl-os
0
and, therefore, for ordinary renewal processes
o0 o0 £ " gx(g) (15)
H(8) = Zg;(o) = Zl[g O =1"r@
and
00 o (16)

R
e =Y g0 =Y g O =1 s

n=1 n=1

For the special case of an equilibrium renewal processes there is

for modified renewal processes. G(1))/ being

in noting the Laplace transform of g1(f) = (1-

1-¢"(0)

I* =
£10)=—

(a7
l’l’f#(a) = —IE

m of the renewal density.

Py . aplace transfor .
As shown later /"(6) is nothing else than the Laps h y = 6 and where the failure

For structural facilities given up qflmjﬁr_stfailure we then have wit
time density can be controlled by the design parameter vector p

o b : “2a-giem 18
B (p) = Jo Juba(‘[)dfgl(ts]))df = -};J() (lisexpl=ilienlr, )¢ V( i
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20
D) = | e 0B = g3ty () (19)
0
and, therefore

b
Z(p) = }7(1 = &i(r.p)) — C(p) — H(p)gi(v. p) (20)

The present value of the expected failure cost for systematic reconstruction after failure is for
ordinary renewal processes

D) = () + HYY_| st PII=(Cp) + HDY [ explyil e, p

n=1 n=1

= () + HDY ') = (€) + Y £ 02— () + HDI ) @)
n=1 .

The benefit B* is as in Eq. (7) in both cases. Therefore,

b
Z(p) = oy C(p) = (Clp) + H(p)I* () (22)

For modified renewal processes /*(y. p) is replaced by hi(y, p).
For Poissonian failure processes with exponential failure times with parameter A(p) which can
be controlled by p it is with Eq. (12) for structures given up after first failure

0y [t )
2p =2~ ) (y+ H(p)) T 23

and for structures being reconstructed systematically

b il
2) =2 - ) =€)+ Hpy A2 (4)

If 2(p) depends on some random vector R the intensity A(p) has to be replaced by Er[A(p, R)]
as pointed out by Hasofer [8] and already used by Rosenblueth and Mendoza [7], ie.

b b Ap, R
=——C(p)— (= o ok BT,
Z(p) ” C(p) (y+H(P)) R|:y+/{(p’ R)} (25)

F I
2(p) === €)= () + H(p) M 26)
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2.3. Failure due to “extreme” overloads

In the original developments of Rosenblueth and Mendozan[z)], Haso{icrb[S] angolr{r?zeiﬁtbul;:;ﬁc[zi
i i e i i that failure will be caused by ran
a slightly different case 1s considered. Assume L s il
S i isturbance occurs the failure probability 1s £y(p). 1
such as earthquakes or storms. If the distur ' ! ek LA,
i i i ¢ cess is a renewal process with dis
failure events are independent. The disturbance pro ; A S
i i d F(1) for the times between events. By ;
function F7 (1) for the time to the first event an ‘ i i R i 4
i i : z i : dependent. Here, it sometime .
he times between the disturbances and failures are indepe ' A  BRLSE
toeco?sider modified disturbance processes. The distribution funcn_ons of the time to first failure
and the times between failures are still Gy(¢, p) and G(1, p), respectively. Let

o e ST 27)
Sl = [Ofn—u(t _fids, n=23....

be the density function of the time to the nth arrival of a disturbance. Furthermore, let

$i () =11

I 28
(1) = J Gu1(t —T)(r)dT; n=2,3,... (28)

0

Then,

gt = Y PAPHOA — PP

n=1

- n— (29)
a(t.p) = 3 PP = PAp)'"™

n=I

These densities take account of all possible disturbanges lcgding to failurg,_ll.e.. ttlzlat izégﬁzle
occurs at the first disturbance or the structure survives the first disturbance but fails in the s A
ete. It follows that with Eq. (14) and by reintroducing the parameter p

o ) = o Sk 3 & E n—1
£10.0) = SO OF X1 — P = D SO O P = B (P

n=1
n=1

P G0)
T 1= (1= PAp)©)

and with ¢%(8) = [/~ (9))"
00 n— Mz—— (3D
g =Y S OO~ B =T 00

n=1
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Then, for structural facilities given up after first failure

00 pf b [
B (p) = J J bd(rydrg (1, pydt = —J (1 —exp[—yiDgi(r, p)dr = é( 1 —gi(y.p)
oJo YJo ¥
b Pi(p)fi(y) )
| () Ny SR o e e 2
y ( =0 - 2o/ () @2
w0 g _HOPDI)
D(p) = JO (0 PO = 810y ) = L P (33)
and, therefore
b P(fi) ) Hp)PAPI)
Zp)=2(1-— L2V N oy PP 34
sy (‘ —- oo~ O Tou- oo (39)

Interestingly, the benefit also depends on the parameters of the failure process in this case.

For example, for a stationary Poisson process with intensity 1 of the disturbances and each
disturbance associated with a failure probability Py(p), the failure process is also a Poisson pro-
cess having interarrival time distribution F(1, p) = 1 — exp[—P;(p)1]. If /(p) depends on some
random vector R the intensity 4(p) has to be replaced by Ex[AP/(p, R)]. Then, it is for T — oo

b= HPAp, RV»} b [H@)Pf(p, Ru}

Z(p) 2pp| SR NP M sl D iyt AR, DA

4 [ v+ B R | P = B
r[Pr(p, R)A

b
~ 2~ Clp) — H(py PP R (39)
¥ ¥

where the last approximation is acceptable for Py(p, R)A << y.
For systematic reconstruction after failure the present value of the expected failure cost is

D) = (€ + H) ELL— e+ oy 2D
= () + HODPH () 66)

The last factor in Eq. (36) is called discount factor by Hasofer [8]. Eq. (1) together with Eq. (7)
then reads

U’
Z(p) = ;) = C(p) = (C(p) + H(p))Pr(p)h*(y) (37

For a Poissonian disturbance process with intensity 1
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b A
Z(p) = i C(p) — (C(p) + H(P))Pr'(l’); (38)

If the disturbance process is a Poisson process with intensity 1, the failure process is also a
Poisson process with rate A(p) = Py(p)4. 1f the failure intensity depends on some random vector
R the term Py(p)2 in Eq. (38) has to be replaced by Eg[AP/(p, R)]

_b ER[APs(p, R)]

Zp) = (39)
Y

— C(p) — (C(p) + H(p))

It is noteworthy that with this modification Eq. (39) is very similar'to the apprommatlor} of Eq.
(35). The approximate Eq. (35) differs from Eq. (39) only by C(p)A in the fall’ure; cost term. The
exact two cost factors are f}(y) for structures given up after first failure “mdfl(y.)/(l‘—f'(i)) f?r
structures systematically rebuilt, respectively. If y — 0 and T — oc, the damagg cost ‘(as We“ as
the benefit) become finite in the first case but infinite in the second. chcg, no opn‘n‘lal solution Fo
Eq. (1) can be found in the latter case. Therefore, if the second stralegy is taken as the <)}11y rea-
sonable one, a discount rate y > 0 must be assumed. The same conclus19n also holds for bqs, (20)
and (21). The results of Egs. (20), (22), (34) and (37) are remarkable in _Lhat the objec.twe func-
tions contain only failure rates but no failure probability per referenc_e time. The specm.l results
for Poissonian failure processes, for example Eq. (39), also sugg_est a different interpretation. The
expected total failure costs are 1/y times the cost for a single failure.

2.4. Finite reconstruction times

It is easy to adjust for finite reconstruction (repair) times. Let E[T}] be the mean time to failure
and E[T,] the mean reconstruction time. Then, it can be shown that

o) = wla + AT

is the asymptotic availability of the structure. Thus, th; benefit term in Eq. (7) has _to b;: En'llllt-l-
plied by A(co). The mean time between renewals now is E[T/] + E[T,] and the'densny 0’ ailure
times is obtained by convolution of the densities for 7y and 7, the result of which then has to be
used instead of the failure time densities introduced before. Because usually E[Ty| >> E[T)],

obvious simplifications are possible.

3. Applications

We are now going to use the foregoing results for general failure processes. Let (Schall et al.,

[12]):

e R be a vector of random variables which are used to model structural _proper?ies and possi-
bly other (non-ergodic) uncertain variables like parameters of the loading variables,
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e (O be a vector of stationary and ergodic random sequences which are used to model long
term fluctuations in the parameters of the loading variables, for example traffic states, sea
states, wind states (10 min regimes), etc.,

e S be a vector of sufficiently mixing, not necessarily stationary random processes,

® g(r,q,s(1), 1) > 0 the safe state, g(r, ¢, (1), 1) = 0 the limit state and g(r, g, s(1), 1) <0 the
failure state of a technical facility.

The conditional outcrossing rate is
N <
vi(V, | rg) = lAnlnozP({g(S(r), ) >0]r g} m{g(é(r +A), T+ A)L0 |7, q}) 41

with V' = {g(r, g, 5(¢), 1) <0}. If the process of outcrossings is a regular process (see, for example,
[13,14]), the mean number of outcrossings in a given time interval [z}, 5] is

1

E[N+(Ila B)|r, ql = J‘jvr"(V. T|r, q)dr (42)

7

Asymptotically for small failure probabilities the first passage failure time distribution then is
[13]

Pr(11, 12) = 1 = Eg glexp[—EINT (11, 12) | R, QNI <1 — Eglexpl—Eo[EINT(11, 12) | R, Qll]

(43)

According to Schall et al. [12] the upper bound is a consequence of application of Jensen’s

inequality for expectations of convex functions. Eq. (43) is seen to correspond to a inhomoge-

neous Poisson process of conditional outcrossings. This has been achieved by classifying the
random phenomena into R-, O- and S-variables. In the stationary case Eq. (43) simplifies to

Pr(t1, 1) <1 = Eglexp[—Ep[vF (V) | R, Q)(t2 — 11)]] (44)

It follows that the quantity 4(p, R) in Eq. (26) or AP/(p, R) in Eq. (39) can be replaced by the
outcrossing rate. Eq. (26) now reads

7 +
Z(p):S—C(1;)—(C(,))+H(p))w (45)

For Eq. (45) and the generalizations to come it is essential to recall that the failure process is a
renewal process, i.e. must have independent failure times. This means that at each renewal also
the non-ergodic vector R has independent realizations at each renewal.

In view of Eq. (4) an improvement can be made to account for failures just after reconstruc-
tion. If, further, there are more than one mode in which the structure can fail we can make use of
the “crude” upper bound for unions of crossing events and obtain
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m

" Y {Erolv* (Vi R Q. p)I(1 + P0))}
am=;~cwwwam+waﬂ (46)

4

by assuming that the failure cost is the same for all failure modes.‘[? 1(0) are the failure prob-
abilities when the structure is put into service just after reconstruction. At .Lhe expense of some
more numerical effort the “crude” upper bound for crossings into a union of failure mode
domains can be replaced by an improved upper bound following the arguments in Schrupp and
Rackwitz [15] and Ditlevsen [16]. j ; ‘

In general, other cost components have to be taken into account in an overall econon'ncal
consideration such as violations of the serviceability conditions and fatigue and other d.leterlora-
tion usually implying immediate repair but also obsoles:ce. AlsoZ many structures are inspected
more or less regularly. For simplicity the objective function now is written as

Z(p) = B* — C(p) — I(p) — U(p) — M(p) — A(p) = D(p) 47

where U(p) is associated with serviceability failures, M(p) with fati.gue anAd ptller ugiqg fuilur@,
A(p) with obsolesce whereas D(p) still are the expected cost for qltlmau? limit state Faxllure. Itis
assumed that different failure types do not interact. I(p)_ are all inspection and 1'c_sulung main-
tenance cost. This equation is studied numerically for a §1r_nple example in Appgndlx B.

Assume that the entrance into non-serviceability conditions also follows a Poisson process but

with higher intensity. Then

%ER,Q[V+(I/S,i~ R, Q.p]
U(p) = U=, (48)
¥

with U the repair cost and Vs, the serviceability failure do_mams. ‘

Fatigue and other deterioration phenomena are more d\lﬂictﬂ})tr to h_emdlc. As§ume first that the
mean number of cycles to failure is given by N = vor = CAS™. wy 1s'the cycl{.ng rate, C aqd m
material properties and AS the stress range. In suﬁicwm agreement with experiments t_he failure
process can be assumed to be a Poisson process with exponential interarrival times having mean

Gl (49)
HT] = TOAST

Rackwitz and Faber [17], in fact, found at experiments for high strength steel wires the shape

parameter of a Weibull distribution for lifetimes very close to L}nily, that is an exponential dis-
tribution. Thus, 1/£[T,] can be interpreted as the failure intensity and

Uo(AS/P)m} 1 (50)

M(p) =MER[ s
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is the expected cost for fatigue failures. vy and C and possibly m are non-ergodic random R-
variables. For random ergodic loading one has to use a damage-equivalent constant AS,, in Eq.
(49) which, however, may depend on other non-ergodic variables. The parameter p has been
attached to AS (larger structural dimensions might reduce the stress ranges) but could, of course,
be used, alternatively or in addition, at other variables. If more than one fatigue failure can occur
one proceeds as for ultimate or serviceability failure. Since the ergodicity theorem is already used
when asscssing equivalent constant AS only the expectation over the R-variables has to be taken.
The exponential failure time distribution may not be adequate for other types of deterioration.
Then, one has to proceed using Laplace transforms (see Appendix A).

Frequently, the cumulative damage due to fatigue and other deterioration is assumed to be a
smooth function of time, at least for larger times, and failure is assumed to occur if some limiting
damage is exceeded. The failure time is deterministic for given parameters of the damage process.
In the presence of uncertain parameters the failure probability for given 7 can be expressed as

Py(1) = G(1) = P(g(R, 0, 1)<0) (51

and, thus, the failure time density is obtained by differentiating Pr(1) with respect to time or by a
parametric sensitivity of the failure probability, i.e. f(s) = 2 P(g(R. Q,t)<0). The distribution
function G(r) generally must be determined pointwise by one of the well-known reliability meth-
ods and Eq. (14) must be applied for its Laplace transform. Alternatively, one can make use of
the relationship between Laplace transforms of functions and their integrals, i.e. by determining
the Laplace transform G*(y) directly from G(¢) and then using g*(y) = G*(y)y.

If fatigue or other deterioration phenomena are treated by the outcrossing approach one can
use the general formulation in Eq. (43). The asymptotic first passage time distribution (all con-
ditions and condition for failure at ¢ = 0 dropped temporarily) is

"
GH=1- exp[—J vF(r)dr] (52)
0
with density

.;er(r)dr] (53)

£(t) = v* (1) expl-
Its Laplace transform is
gy = Jm exp[—yvt () exp[—J vi(r)dzldr = rov*(t) exp[—J (y+ u*(r))dr:ldt (54)
0 0 0 0

Inspection and maintenance can be an important part of the total cost of a structure. A simple
model for inspection and maintenance is to assume regular inspections and, depending on the
result of the inspections, repairs with probability Pg(p). As an example one could write
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1 Pr(p)expl—m L
1)~ I +1(p) r(p) expl msp)/] (55)
TinspY 1 - exp[_finspy]

where Tins, is the time between inspections, /y the cost per inspection and /,(p) the repair cost.
Here use has been made of Table A.1 for the Laplace transform of deterministic inspection times.

For completeness, the case of obsolescence is also considered. Structures become obsolete quite
frequently after some time because they no longer fulfill their originally intended purpose. Let @
be the rate at which a structure becomes obsolete and A be the demolition cost. After demolition
there will be immediate reconstruction. Then

A(p) = (C(p) + A)% (56)

assuming a Poisson process for the event of obsolesce. Also here it may be wise to switch Lo
another lifetime distribution, for example to the normal and, thus, a “‘discount factor” as in Eq.
(A2).

4. Practical computation of outcrossing rates

In this section we review some typical examples for the computation of olutcross‘ing rates, pri-
marily for clarification of terminology. More specific results can be found in the literature. The
formulations are presented in terms of first-order reliability methodology. The r‘esults are given
conditional on R- and Q-variables. The necessary expectation operation can be performed together
with the computations illustrated below as indicated by Schall et al. [12].

4.1. Rectangular wave renewal processes
Breitung and Rackwitz [18] have shown that under stationary conditions it is to first order:

ns ns

(Y, g) = Z;)_,-[P({S,-‘ e P)nisterpr= ;if[P(ST €n

—P({ST e V}n|s7 eV} (57)

ng ns

~ 3 O(—B) — Ba(—p, =i | — 1< )_4P(=P)
i=1

i=1

where S; is the vector of components of S before a jump of the ith component with jL!mping rate
J; and S7 the vector after the jump, g the geometrical safety index defined by f = mm‘{_HuH} for
g(u)<0 and u = T"'(r, ¢, 5) a probability preserving transformation into the space of md.epe.n-
dent, standard normal variables (Hohenbichler and Rackwitz, [19]). &; the mean value sensitivity
of the ith component of S. ¥ denotes the failure domain and ¥ its complement. The second term
in the brackets of the third line in Eq. (57) often is negligibly small. If second order methodology
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is applied a factor containing second order correction must be multiplied to Eq. (57). For further
results see Ref. [20].

4.2. Differentiable Gaussian processes

The outcrossing rate of a stationary, standardized Gaussian process is to first order Veneziano
et al. [21]

vp(Vor, q) %wo (58)
where

wg = —QTR(Y
and

2
R= ‘5;18_@ 08,71, T jrmymryy bJ =1, ... s

the matrix of second derivatives of the matrix of correlation functions. @ and 8 are defined as
above. If second order methodology is applied essentially an additional correction factor must be
multiplied to Eq. (58). For further results see Breitung [22]. For non-normal translation processes
similar results are available (see, for example, Rackwitz [23]).

4.3. Combined rectangular wave renewal and Gaussian processes

Rectangular wave renewal and Gaussian processes can easily be combined because the reg-
ularity [14] of the outcrossing process enables simple addition [16]

v(V,r,g) = v/ (V,r, @)+ vp(V,r, q) (59)

When computing v,(V, r, q) or vp(V,r, q) the other process is treated as a R-variable.

4.4. Non-stationary oulcrossing rates

The results in Eqgs. (57) and (58) are easily extended to the non-stationary case. For simplicity,
only scalar processes are considered herein. Then, Eq. (57) is modified to

ViV, T, @) SMOD DB — D(—B(1))) (60)

and Eq. (58) to
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(V. 1.1, q) = wn(D)(BO)W(B(T)/wo (7)) (61)

with W(z) = ¢(z) — z®(—z) [36].

The case where the outcrossing rate increases monotonically with time as in fatigue or other
deterioration is most important for our purpose The outcrossing rates, if plotted versus 8, always
are bell-shaped with peak around B(z) = 0 (see also Appendix D) because, for large fs, the out-
crossing rate is small. If 8 becomes smaller the outcrossing rate increases. For very small or even
negative A the likelihood of the process of being already in the failure domain becomes larger
and, if there are crossings of the failure surface, those will be mostly incrossings and thus the
outcrossing rate decays again down to zero.

5. Design for maximum admissible failure rates

The renewal density of a Poisson process is #(z) = A. This result follows from

P(N(t) =n) = (-;”I,ll expl—41]

and, therefore

< y dH()
o= foocr = == A
H() = Z]:nP(N(r) n) = Atand h(t) = =3,
=
If the failure process is conditionally a stationary Poisson process it is now easy 1o impose some
maximum admissible failure rate. For example, for failure in ultimate limit states the condition is

ER‘Q[U+(VU(Rv Qv S, P)] L Vadmissible (62)

and similarly for serviceability failure.

For non-exponential failure times this condition must be modified. The failure rate then is not
necessarily constant over time. In the limit it becomes infinitely large for deterministic failure times.
Unfortunately, the relation between non-exponential failure time distributions and the correspond-
ing outcrossing rates is not yet known unless the outcrossing approach is used as in Eq. (53). Even
then, it is not obvious how and at which quantity to set reliability constraints. However, the following
considerations will lead to a reasonable solution. Let G(#) be the non-exponential distribution func-
tion of failure times and g(¢) its density. The process of failures and immediate reconstruction still is a
renewal process. In renewal theory the following important result is proven [11]

lim lz(t):lprovided thatf{(r) — Ofort — o (63)
1 —00 I

with ¢ = E[7] the mean time between failures. It is valid for both ordinary and modified renewal
processes. The condition for f{7) in Eq. (63) is fulfilled for all failure time models of practical
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interest. The limiting operation simply says that the renewal process is active already for a long
time. The result in Eq. (63) also says that the renewal process becomes stationary for large 1. This
is in agreement with our basic assumptions, at least ideally. The unconditional failure rate or
renewal density is asymptotically inversely proportional to the mean time between failures which
must exist. No other detail of the particular distribution function of failure times is used. The
renewal density of a Poisson renewal process with parameter 4 is, as mentioned, /() = 4 giving
Eq. (62) a new important interpretation. For the equilibrium renewal process the renewal density
is independent of 7 and equals exactly A(t) = 1/ which follows from Eq. (17).

Consequently, for reliability verification the mean failure time must be computed and the cor-
responding asymptotic renewal density must be checked against the admissible failure rate

1

1 = — g, issible
llll};lc /7([) ERVQ[E[T(R, Q)]] Vadmissibl

(64)

with E[T(R, Q)] the mean time to failure. Some tools for performing the expectation operation
over R and Q are given in Appendix C. The same concept should be followed if fatigue or other
deterioration is investigated by Eq. (52) or (53). Then, for Eq. (53) the limiting condition is, for
example

1

lim (1) = _ < Vadmissible (65)
B [Erol[q 0" (1, R, Q. p)exp[—[v*(z. R. Q. p)drldr]]

Unfortunately, this condition is difficult to verify. Eq. (65) will be illustrated at an example in
Appendix D. If the outcrossing rate is decreasing with time, Eg[Ep[vt(0, R, Q, p)]] € Vadmissible
clearly is a simple conservative alternative to Eq. (65).

It is interesting to study the speed with which the renewal density approaches its asymptotic,
stationary value. For non-exponential failure times the renewal density has a characteristic,
damped oscillating graph around the asymptotic value with period approximately equal to twice
the mean failure time u for failure times with smaller coefficient of variation. The maxima occur
at w, 24, 34, ... where the first maximum is largest. Damping will increase with increasing stan-
dard deviation o. For realistically large variability of failure times, say with coeflicient of varia-
tion > 0.2, the renewal density will reach its asymptotic value after a few oscillations. An intuitive
interpretation of this behaviour is that for an ordinary renewal process the probability of renew-
als is larger at multiples of the mean than in between. For example, for a gamma distribution with
density as in Table A.1 and p = k/4 and o = \/k//. one finds

) /q_nk[nk—l ) 00 ;_nk,nk—l ;
Ju(D) = T exp[—4t); A1) = ;Tﬂd exp[—21] (66)

showing the described behavior. For the gamma distribution the infinite sum can be simplified for
integer k > 1
k=1

h(t) = %Ze(k)’ exp[).t(s(k)f - 1] (67)
J=1
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with e(k) = cos(2m/k) + isin(2m/k). With this model (integer k) only coeflicients of variation of
V = 1//k can be obtained. The renewal density is shown in Fig. 2 for three typical coefficients of
variation.
The renewal density overshoots the asymptotic value by a factor of 2 to 4 for coeflicients of
variation between 0.2 to 0.1, respectively, and by much less for larger coefficients of variation.
Also, for normally distributed failure times one can find the exact renewal density.

o1 [—np\ _°°_1_ t—np
10 = o )b = o) (©9)

n=1

It can be demonstrated that also for this distribution similar conclusions as for the gamma
distribution hold. The renewal densities for the gamma and for the normal distribution with
otherwise identical properties differ only very little. The compact results for the gamma and the
normal distributions are, of course, due to the fact that for both distributions a convolution the-
orem holds. For other distributions that are not stable under convolutions the evaluation of
renewal densities is very difficult and one usually must use the asymptotic value. Note, however,
that the normal distribution extends to the negative axis and, therefore, is only an approximate
failure time model, even if u >> o. Practically, sufficient accuracy of the sum in Eq. (66) or (68) is
reached after a few terms; convergence being the more rapid the larger the coefficient of variation.

One could argue that the maximum value, i.e. max{A(z)} = (A(r), must be used as a constraint
instead of the asymptotic value 1/u. For the user of a structure this requirement can make sense
if and only if he/she knows its age and knows that failures do not occur totally at random. He/she
then might not wish to be exposed to higher risk when the structures reaches ages of multiples of

Renewal density/(1/mean)

25
V=02
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1 \// \.//\V’\
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Fig. 2. Renewal density divided by asymptotic value versus time divided by mean failure time.

R. Rackwitz | Structural Safety 22 (2000) 27-60 45

its mean failure time. If the conditions for a modified renewal process are fulfilled, possibly in
regions with seismic activity where many structures will be affected by the same disturbance, the
maximum renewal density may also be limited with some justification, also from a societal point
of view. For society this policy, in general, would be somewhat doubtful. A steady, random
stream of failures and subsequent reconstructions of many structures should be considered. But
this corresponds precisely to the conditions of an equilibrium renewal process at any point in time
and a constant limiting value should be used which is exactly 1/u.

The determination of max{/(z)} for failure time densities known only pointwise unfortunately
can involve heavy numerics. It is first necessary to take the Laplace transform numerically and
then its inverse which is a notoriously difficult problem. It is mentioned that not only the Laplace
integral needs to solved numerically but also the expectations with respect to the R- and Q-vari-
ables have to be taken. Relevant, more recent algorithms are described in de Hoog et. al. [24],
Garbow et al. [25] and Murli and Rizzardi [26]. All of the algorithms proposed in these references
have been found to work sufficiently well but further research is necessary. Whereas taking the
Laplace transforms and their inverses of implicitly given failure time densities turned out to be
relatively easy, the, at first sight, simpler problem of taking directly the Laplace transform for
renewal densities and its inverse is rather difficult. The author will report about his numerical
studies at another occasion.

One, therefore, concludes that generally the asymptotic value of the renewal density must be
limited and that the maximum renewal density may be limited only in some rare cases.

6. Partial safety factors

It is possible to derive partial safety factors for practical use. We take as time unit one year and
assume a target failure rate < < 1. Then, a definition of the time-variant partial safety factor is
possible but suitably modified to account for the cycling velocity of time-variant loads. Time-
invariant partial safety factors are defined as follows:

x3

4 X,
Lory == (69)
Xei Xi

=

depending on whether the variable is a loading variable or a resistance variable. For independent
variables the design value (most likely failure point) is defined as

X = F'o(—aip)) (70)
and the characteristic value by

Xei = [7,.‘1((])(11‘.',-)) (71)

Fi(.) is the distribution function of the basic variable. o; is the mean value sensitivity of the ith
variable defined by o; = 8(u)/ 01}, -uc.; depends on the definition of the characteristic value. g is
the geometrical safety index. If a better probability integration method is used, for example SORM,
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this index is to be replaced by the generalized safety index By, = —®~'(P(g(X )<0)) with
P(g(X)<0) some more accurate failure probability. The foregoing definition of sensitivities and
partial safety factors makes sense only if the original basic variable vector X is independent. Thep,
each of the o-values in the standard space corresponds to the (normalized) sensitivity of chapges in
the median of the respective X-variable. However, relation (71) allows to define a representative a,;,
which is also valid for general dependent variables and reduces to the sensitivity given before for
independent variables.

— @ F())]
i .Bgcn (72)

oy =
o lleerll

Re-normalization by [|e,| is only necessary if fgen is used. x} is obtained by transforming the
most likely failure point u; back into the original space. These representative a,-,,-—v.alues do not
correspond to the direction cosines of the B-point except in case of independent variables. Those
representative a,-values should be used in Eq. (70). i : g :

Recognizing the fact that the 3-point is also the critical point in time-variant reliability and B in
formula (70) is the geometrical safety index, another equ1vale_nt safety. index Beqy can be defined,
which takes account of time effects. Assuming stationarity it is according to Eq. (57)

vy = ZA4P(—Pequ)Csorm (73)

and according to Eq. (58)

vp = %(o(ﬁcqu)CSORM (74)
and, therefore
O 1 L N (75)
e (E;tiCSORM)
2mvp ) 76
= [-2In[—— (76)
Peau n(CUoCSORM

If both types of loading processes are acting fBeq, has to be determined using Eq. (59) from

. wg 5
vy+vp = Eﬂiq)(‘—ﬂcqu)CSORM +\/—2—”(ﬂ(ﬁequ)(/SORM (77)

by iteration. Csorm stands for any correction of the ﬁrst-orqer re.sult. Csorpm 18 the same for both
types of processes in Eq. (77) because it has to be determined in the space of al] variables. In
general, Csopym is set to unity in first approximation. If the failure rates are given, Vadmissible
replaces vy, vp or v, + vp, respectively. The equivalent safety index Bqu can then be used in Eq.
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(70), possibly together with a representative o,. It is noted that these partial safety factors are
much easier and more accurately to determine than those for time-variant failure probabilities as
proposed by Rackwitz [27]. The distribution functions in which those factors are defined for time
varying loading correspond to the point-in-time distribution. This might require a redefinition of
the time reference of characteristic values for loads. The new definition of design values applies to
both loading and resistance variables,

For example, let some occupancy load be Rayleigh distributed with location parameter w = 0.5
[kN/m?] and jump rate 1 = 0.1 [1/year] and let vygmigsiie = 1075, The characteristic value is X =
0.865 [kN/m?] corresponding to the 95% quantile and & = —0.7. From Eq. (75) one determines
with Csorm = 1

Bequ = — @ (Vadmissible/2) = —®~' (1075/0.1) = 3.09

and from Eq. (70)

x" = wy/= In(P(afequ)) = 0.5/— In(P(—0.7-3.72)) = 1.158.

The partial factor [Eq. (69)] is y = X" /x. = 1.158/0.865 = 1.34.

The special case of fatigue and other deterioration phenomena requires additional considera-
tions. If the outcrossing rate approach is used the same concept as outlined before can be applied.
If the approach with assigned failure time distributions is used no equivalent to Eq. (69) exists
and, consequently, no partial safety factors in the classical sense can be defined. The most natural
verification format follows directly from Eq. (64). For example, for the simple model underlying
Eq. (49) or any other life time distribution it is

i £ v\ N
Eg {@:’ ~ UO(A% < Vadmissible (78)
where now the “critical” R-variables denoted as v}, AS* and C* are obtained using the first order
version of Eq. (C.3) in Appendix C. They can also be denoted as “critical” or “most likely™
points. The ratio between these “most likely”” values and the corresponding characteristic values
may still be called “partial safety factors™ but their definition differs from the one in Eq. (70).
For example, if we use Eq. (49) with AS being normally distributed with mag = 200 and stan-
dard deviation 055 =100 and C independently log-normally distributed with mean me = 1013
and coefficient of variation of V¢ = (8% = In(1 + V%)), respectively. together with deterministic
vg = 100 and m = 3, we obtain from Eq. (C.3) to first order

v(]AS’”] ]'OC JOO VUAS”I i
& = Sas@)e(r)dxdy
R[ Bl dessle . @ 7

—o0 EXp(t2dc + In(mc))

. o(ufoas + pas)”
exp(uide + In(mce))

@21y, ur)duyduy

—0c

2r02(u}, 13) = 3.23- 1074 < vygmiitie
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where @»(.) is the two-dimensional normal density. We find (u], u3) = ('.--»0,‘833‘ 1) and, thus,
AS* C*)~= (116.7,1.63-10'3). The approximate, asymptotic renewal de}mly is to be _comp\ared
Wi'[h’ the exact value of 2.84-10~% determined by numerical intcgr'f}tlon. The qua_lllty of the
approximation Eq. (C.3) appears remarkable, especially in view of the unrealistically large,
assumed variabilities. . o

For the model in Eq. (49), reliability verification by Eq. (78) is th.e same as designing a struc-
tural component such that the mean time to failure fulfills the equation

cr 1

atl] = ——=—7 = Tadmissible =
E[T!.Ll] VS(AS*)I” admissibl

Vadmissible

7. Numerical optimization of Eq. (1)

Optimization of Eq. (1), or in a more general conlex.t, of Eg. 47) can be done by d}r:y lsu.|‘tatéle
method — but not without difficulties. The difficulty simply is to des1g1} a schem?, which leeN}-
cient and reliable. Because expected failure intensities are best determined by POR}\/!,/iF) ; ;
which in turn involves optimization, and in the formulations above expcct.aqo‘ns' O\elf Edp Z(;g
transforms, which again involves optimization as shown in Appendl?( C optnmzﬁ'uor; o : lc:]( )
requires two algorithms on top of each other. Frorq past experience itis kfnow_n 11‘}[ l}lS se An g
somewhat delicate. Large numerical effort is reqmre(_i. IB.ut most important is that L?nve]~g.e1n§e,
proofs are rarely available. A general solution for optimizing Z( [_7) has r?clgntly' been pl(c)lp;)/lsgé y
Kuschel and Rackwitz [28] on the basis of a proposal made? earlier by F I"llS.Hdnsell 111 Ma ‘sen
[29] and Kuschel and Rackwitz [30]. It requires a formulagon of the re]1ab111lyb|3‘rc?l?. em 11:] le:u.]-
dard space and twice differentiability of the limit state function. It rests on the o bel;‘llll?n'[ml, 1tn
the B-point the state function must be equal to zero .and the no‘rmal vector [O the rlgl'x‘)st'a e
function must be perpendicular to the limit state function apd parallel to thc{ ;/u.l'o;o .‘11 ec (1103
cosines of the S-point. The advantage of the new ap.prvoac.h is that 0r~11y‘0¥1e fl gf);lt_l m is ,neet e
and convergence can be proven easily. The basic optimization task for stationary failure events in

a specific failure mode can be written as:

Er olvT(Vylug, ug, Us, p)] (79)
Y

b
Minimize : —Z(p) = S + C(p) + (C(p) + H)

subject to:

EpolvT(Vu(ug, ug, us, P)I< Vadmissible

glug, ug, us,p) =0

(g, g, us)! Vuglug, g, us. p) + | (ur, ug, us)| | Vug(ur, ug, us p) =0
hi(ug, g, us,p) =0;i= I ik

hiug, ug, s, p)<0; 1= k+1,....,m

80
(R, UQ. Us: Piower < (UR, Ug, s, PYS (Ur, U, s, Pupper (E0)
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The first condition concerns a possible imposed upper value for the crossing rate. It may even be
necessary Lo specify several such failure rate limits for different failure modes and types. The second
and third conditions just formulate the Kuhn-Tucker condition for a valid B-point. The forth and
fifth conditions describe the mathematical and physical admissibility of the design parameter vector.
The sixth condition contains lower and upper bound for the transformed basic variable vector and
the design vector. This task can conveniently be solved by a constrained sequential quadratic pro-
gramming procedure [31]. The optimization scheme is a first order scheme. Second order corrections
to the crossing rates can be introduced and the optimization problem is solved by iteration.

Eq. (79) is valid for Poissonian failure processes. For other than stationary Poissonian failure
processes the first condition in Eq. (80) has to be modified according to Eq. (64).

If the additional cost terms for the extensions as in Eq. (47) are included care must be taken of
the possibility of multiple minima.

Further technical details and some numerical results are described in Kuschel and Rackwitz
[28]. The purpose of this section was merely to demonstrate that an explicit optimization of Eq.
(1) and its variants is feasible and the new concepts outlined before are also operational from this
point of view.

8. Discussion

The foregoing developments are based on more than 25 years old, but apparently since then
overlooked findings by Rosenblueth and Hasofer. It is believed that the generalization put for-
ward in this paper will to a certain extent affect the whole safety philosophy for structural facil-
ities. They should, at least, change the philosophy for setting up reliability targets in codes.

First of all, the optimal solution for building facilities with or without a systematic rebuilding
policy is based on failure intensities and not on time-dependent failure probabilities. It is neither
necessary to define arbitrary reference times of intended use nor is it necessary to undertake the
complicated task to compute first passage time distributions. No table of recommended reference
times of usage of structures is needed. The same targets, in terms of failure rates, can be set for
temporary structures and monumental buildings, given the same marginal cost for reliability and
failure consequences. Nevertheless, it is necessary to define a time unit. For civil engineering
facilities this is no doubt one year in consideration of the length of their life cycles. Other choices
are possible provided that the failure intensities are small and much smaller than the interest rate.
Also, the optimum design parameters are independent of assumed, highly variable lifetimes. This
does not mean that lifetime aspects, especially in case of fatigue and other deterioration, are
ignored. Here, design must be directly for mean failure times which are sufficient to derive the
corresponding asymptotic renewal densities to be checked against target failure rates.

On the basis of optimization studies in Appendix B, an attempt is made to design a table of
target values to be used in practice as an alternative to similar tables in codes such as Refs. [1-6]
and as a substitute for direct optimization. Yearly safety indices By = — ! (Vyamissivle) are given
together with the yearly rates vygmisible in parenthesis. Table 1

The grading for both the relative effort to achieve reliability and the expected failure con-
sequences by an order of magnitude agrees well with the example calculations in Appendix B and
other studies where several other stochastic models have been used. The proposed values agree
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Table 1
Proposed target failure rates

Ultimate limit state failure

Expected failure consequences

1 e a 14.( "
Relative effort to achieve reliability Insignificant Norm l . s ;1gle0 -
High 2.3(107%) 3.1 (1079) 1 i)
Nl&' al 3.1(107%) 37 (10‘4_) 43(107%)
L S\lmmd 3.7(107%) 43 (1079 4.7 (107

Serviceability limit state failure

=
High 1.3 (.10102:
Normal ‘I).7(5 o )
Low 2.3(1072)

with values proposed in the industry with high damage potential and‘ elsewhere f.ordac?(ligx:)t(;g
situations (for example, the so-called safe shut doxyll earthquake has a retlzlhm p?rl{o ﬁhol !
years and the resulting return period of failure will be yet smaller). The no m% Cdb.ud Ov'vn]
situation” would require a still smaller failure rate. For normal office, h0u5}ng an 1111 }Jsm}?
buildings the marginal cost for reliability are very sn};}ll. (_)n; therefore could'drglue to low e'r the
failure rate down to 10~5. The targets for serviceability limit states appear rdl‘hur CO]ISEl:I‘.\{dU.VCk.
Present practice appears to accept larger risks. The values are also compall'bvle with lhé yearly r;s
for life and limb set in ISO 2394 as P < 107%/P(D | F) where P(D | F) is the probability of a
i i iven that the structure collapses. .

perlfl(l):\?;lunegs !i(tllllf}?egt;ble have been set for structural compf)ner}ts (failure mode‘s). For stlruclu‘ral
systems they are meant for the structural component domm.atmg sFru?Lurzll fmlt:_r;. If ne‘r? ‘;e
many components of the same importance or many equal.ly likely failure modes with comparable
failure consequences the values in the table have to be suitably lowered.

9. Summary and conclusions

Some early findings by Rosenblueth and Hasofer are reyicwed and 'genequllzerf11101llel"fs'; Fhan
failures by “rare disturbances” can also be handled. Those m;ludc serviceability (.11 ure\s,i ;:tlgu?
failures and ultimate limit state failures but also obso_lescc. I't ls'proposcfl t.h'dl tf)or.lgl.mobt a C.“-”.l
engineering facilities the only reasonable recqnstruchon pohgy is Syslegmt.u.: re ulx .111!% E)rr Zrzﬁc_m_
1t is found that the failure rate (failure intensity, renewal dcn.sn'y)'ls the 'ccTs:vle ctn ec“;)lso [‘0;. “::]g
up safety/reliability targets for high reliabilit}f structures. This is dp.pro?lma.e y tru s Tooé
mission” structures. Structures should be optimal. A general o.b_]elctlve uncll.llotl;. 11: plfllf_‘ 1._ o t
for its maximization in a first order sense are prcsgnted. Th.e prmc1p1f:s c:)f] I’Cf"lc?] i 1‘y \lc: 1(:{4 ]-lmx, u
also of reliability-based design are illustrated_. leen. codified ’ddmlSS‘l e ﬂd‘l lurc ;1;1 b‘,.oga‘;]??-
ple, related to one year, it is possible to dc_rwe partial s:af;:ty factor.'s 150» Fh;l ]i ‘l.1l0 pd“i . SAIC
analysis is in complete correspondencq with a determxms_tlc p'arlld ‘sal ety chleS:W sign. An
exception is fatigue and other deterioration where a more direct approach is n ary.
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A number of new, primarily computational problems evolve. A few of them have been
addressed. Others must be left to future development.

Actual optimization may not be practical in every day engineering work, however. For codes fail-
ure rates may still be assessed by optimization and, in parallel, by calibration at present practice using
Lind’s postulate that present practice is already “almost” optimal [35]. This postulate should pri-
marily be used to determine the failure cost which also may contain certain “Intangibles”.
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Appendix A. Laplace transforms for failure time distributions and discount factors

Unfortunately, Laplace transforms are analytic only for a few stochastic models for interarrival
times of failures. Table A.1 presents some results. with erf(x) = \%;jacxo[ffz]dl the error func-
tion, erfe(x) =, 1 —erf(x), B(r, s) the complete betafunction, | F| (¢, d: x) the confluent hgrpergeo-
metric function, y = {2 with a</<b, z = 1 — b, Si(x) = s i“lf-‘ﬂdu and Ci(x) = —_[ic%du. For
the Gaussian and Cauchy model it is important that the one-sided Laplace transform is taken
implying a truncation of the distribution at ¢ = 0. For other distribution models like the impor-
tant lognormal or Weibull distribution the Laplace transform must be determined numerically.
The result for the Cauchy distribution is given here because it is a distribution without finite
moments and Eq. (63) fails. The result for the inverse Gaussian distribution is given in Hasofer
and Rackwitz [32].

Hasofer [8] derives an approximation for f*(6) for small y and o/u in terms of the cumulants of
(), which may be useful in some cases.

ro~ exp[—ﬁ(u - %9«72 g )] (A1)

This happens to be the two-sided Laplace transform of the normal distribution (i.e. without
truncation). Eq. (A.1) is superior to an asymptotic formula resulting from expanding the term
exp[—61] into a Taylor series around 7 = 0 and integrating term by term [33]. If u; and o, are
mean and standard deviation for the time to the first event and w and o are mean and standard
deviation of the times hetween events, respectively, the discount factor is with y = 6

S !
L= exp[y(ul —%yaf):l —exp[y(ul -4 *%}"712 +%V“2)}

(A.2)
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Table A.l
Analytic laplace transforms for some failure time models (7 0)

Name Density function f{#) Laplace transform f*(0) -
3-Spike 8(a) exp[—6a]
A
Exponential Zexp[—it] a1
1 exp[—af] — exp[—ho)
Uniform — TERR T
o —"v)hl (e e+ sy —6)
Beta Bs)
pra
(,—i»—) [sin(ue)a(uo) — cos(af) (Si(uH) - ;)}
wla- G 2
Cauchy R YT 1 ‘ _’, e f
(—+—1an*] (;)) an|5 o ”
2 L3 .5 5 L[ Ow
; ! £y 1 — 6w 7em(~(/“u"> erf (v)
Rayleigh ;Eexp [~ (W) ] W \/; I 3 er, 7

(7

| ((/02 - [.L)
i ] i
1o V2o
exp {—9 (;/_ = ;()o‘)jl —— =
2 20 (—
23

la* 20 a
exXp [ —Xp \874»;7;

Gamma

Truncated Gaussian

Inverse Gaussian

If no distinction is made between the times to the first event and the tjmes between events _lhe
second exponent-term in the denominator reduces to unity. prcver, it is found b3f numerical
studies that it is better to compute the discount factor by using the Laplace transform of the

truncated Gaussian distribution as in Table A.1. : : ] e 4
Alternatively, the discount factor can be approximated by making use of the Laplace transform

of the gamma-distribution specified by its first two moments

O 0
el ey

2 m w

1 —f(y) i (ﬂ)(ﬁ) Al (H_Z)(?)2 s (n_z)(;):

2 o2 o?

(A.3)
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Appendix B. Numerical study of Eq. (43)

In order to illustrate the various factors on optimal failure rates some numerical studies have
been performed at a simple example. The loading process is assumed (0 be one-dimensional. A
stationary rectangular wave renewal process with outerossing rate v*(V, t) = Ad(—B) is assumed.
The state function is g¢/(x) = R — S for the ultimate limit state and gs(x) = R/a — § for the ser-
viceability limit state. Both resistance and loading is assumed log-normally distributed. The
design parameter is the central safety factor p = mg/mg. Fatigue, inspection and maintenance as
well as failure upon reconstruction is not taken into account. Fig. B.1

Then, the objective function is
In & b+ ViR
a\'1+7173

CIn((1+ 12)(1 + 12)

l)
Z(p) ~ = (Co+Cip)—U
4 (B.1)

1 2
In{p 0 Vf
1+ V5

AD| —
\/ln((l + VR + 13)

~ 6 +C|/)+A)$- (C(p) + H)

¥

1
0.7 i
bl - C(p) - D(p)

s i o .
025 by - C(p) - U(p) - A(p) - D(p)~

e
0.25
05
0.75

710 1 2 3 4 5 6 7 8 9 10

Fig. B.1. Cost over parameter p (R and S lognormal, 7 =1, h = 2y =0.07, U/Co = A4/Cy =02, C/Cy=10.03,
H/Cy=3,0=002a=Ry/Rg=1.5).
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Fig B.2. Optimal failure rates over various parameters.
The optimal failure rate is obtained by differentiation and solution of
: - 2
AZ(p) _ (B2)
dap

Fig. B.1, which also presents the parameter : ) ; >
illust%ates that magnitude and position of the optimum largely depends on. [1:0. L?/pt;, Of 'g?s;te gsge
sidered. In particular, repairs after serviceability failure and renewals after obso 65(,(1 .uu‘ el

: " i ter substantially. The parameter assumptions in Fig.
the reasonable domain of the design parame stantia ! i
i i . Other types of buildings may require ma L
B.1 may be typical for road bridges : : il e
impli jecti > r can become positive 1l ¢ y
_(B.1) implies that the objective function neve : : v a
thfnlq y(?}siallyrf) and in view of repairs and replacements b must db(laudt two llmcsFLiI;c \gﬂ?uc’lﬁcfi Y ch;r
i ildi e of the optimal designs in . B.2 4 3,
ally reasonable buildings. In fact, some ' ‘ : Bl iand: B
f:l?:rzngel:cr‘:aiﬁ parameters of the objective function are varied while ‘th otl;)ers ;r/e kept as in Fig,
e ic ted for by changing b and/or y.
S ative Z(p) which can only be correc | e :
B'Bygie}slzzilgzg affect 1(11[2 position of the optimum failure rate gnly mslgmhcam{))i. ’(lj"he !d.rger
the desmolition cost and/or the obsolesce rate @ the more narrow will be the reasonable domain as

seen in Fig. B.1.

0

assumptions for the numerical studies to come,
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Fig. B.3. Optimal failure rate for various coefficients of variation of R and S.

As already indicated in Fig. B.1 the optimum Lotal costs are by a factor of 2 or more when 4l
cost components are considered than for failure cost alone. The corresponding failure rate has the
same tendency. In Fig B.1 this is primarily due to the maintenance cost after serviceability failure.
The failure rate for serviceability failure at optimum is around 0.01. It changes as the failure rate
for ultimate limit state failure. This is, of course, a consequence of how serviceability failure was
defined (see parameter p/a in Eq. B.1).

Fig. B.2 shows a number of interesting features. If C) is increased by an order of magnitude the
optimal failure rate also increases by an order of magnitude. If the failure costs H are decreased
by an order of magnitude the optimal failure rate also decreases by an order of magnitude, but by
less than an order of magnitude for very high failure cost H. :

The coefficient of variation of either loading or resistance has large influence on the optimal
failure rate. However, it should be mentioned that a log-normal distribution is an inadequate
model for loads for larger coefficients of variation. Therefore, no larger coefficients of variation
than 0.6 are used. Other common distribution models, however, show approximately the same
sensitivity against changes in the coefficients of variation. Fig. B.3 illustrates variations of the
optimal failure rate with the coefficients of variation over €, and H. While for small Vs the
optimal failure rate increases significantly with ¥ this is no more the case for larger V.

The variation of @ shows that shorter renewal intervals after obsolescence can lead to larger
optimal failure rates, which makes sense. Note that & = 0.01 implies a mean reconstruction
interval of 100 years.

Finally it is observed that the absolute values of the optimal failure rates are well within the
range of rates proposed previously.

Appendix C. Numerical determination of Eg[f*(y, R, p)]

It will be shown that the expectation operations in previous formulae can also be performed

accurately by a FORM/SORM-like procedure without resorting to multidimensional numerical
integration.



56 R. Rackwitz | Structural Safety 22 {2000) 27-60

Without loss of generality we consider the computation of a general expectation like Elg(R))
where g(R) is a monotonic, complicated function of the vector R. In.genn;ral, R l'ms lll‘d?y
dimensions and thus numerical integration is not suitable. A first approximation consists of the

well-known formula

L gy P2(ELRD c.
Elg(R)] ~ (EIR) +5zzl-gr—ﬁrj—aﬁ (3
==

where o;; are the elements of the covariance matrix o_f R. For highly 1_19n-l1near fgnctxops g;l(ﬁl)l;;x;
larger variability of the R’s this is found to be rather inaccurate cven if the stecon t_crr.nl?s i > ime.

A second approximation is based on arguments lea@lpg to thg Lgplacc dp?rox11]1fl ,IOI]‘ ks =
grals [33]. It is convenient to first perform a probability distribution transforma }o? X lv llu)
where u is a standard normal vector with independent components [19]. Then, given that the

integrand in
Elg(T)] = j (Tl pu)du
RR

has a unique maximum the expectation can be written as:

At = | m ey - ) |an (€2)
k(u) is expanded to second order
Je(w) = lul>~2 In(g(T(w))) ~ k(") +%(u — )T Se Y =) + - (€3)
with the matrix of second derivatives of k(u)
i 1 &Pg(Tw) 1 3g(Tw) ag(T(l,*))); =1 ”R} (C.4)
e {(‘Si" T (T dwdy; - g(Tw)) O iy

and u* the solution of max{g(7(x))e(u)} or of min{k(u)}. Making use of Aitken’s integral
—1/2
(271)_'Z/ZJ exp[—%xTAx}d.\‘ = |det(A)| ™"
RI!
with A a positive definite matrix the result is

Fle(Tu)) ~ g(Tw H@r)™ el |det(S@)| (C.5)
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with excellent numerical accuracy. Quite frequently, [det(8)] 7! is close to unity. If it is set to
unity it makes sense to speak of a first order approximation. In Eq. (65) an additional expectation
operation over the failure density is required. The same formulae apply also for this case except
that now g(R, ) replaces g(R) and (u*,r") is the solution of max{g(T(u), Hp(u)} or of
min{k(u, r)}. All other quantities have to be evaluated for 1 = r*. Here, no asymptotic argument
can be applied except that the results become asymptotically exact for all standard deviations
approaching homogeneously to zero. It is important to use Eq. (C3), ie. to take In(g(7(u))) in
the exponent of k(u). Otherwise the critical point is u* = 0, the determinant of the Hessian is
unity and a trivial result is obtained. For example, if we use the same data as in the example
following Eq. (78), i.e. AS normally distributed with mas = 200 and standard deviation Oas =
100 and C independently log-normally distributed with mean mc = 10'3 and coefficient of varia-
tion of 1, respectively, together with vy = 100 and m = 3, we obtain from Eq. (C.1) and exact
numerical integration E[R]/exact~0.41. From Eq. (C.3) we obtain to first order E[R]/exact =~
1.14 and to second order E[R]/exact ~ 1.01, respectively. The assumed large variability makes the
function g(R) highly non-linear.

Alternatively, the expectations may be taken by Monte Carlo. An adaptive importance sam-
pling scheme adjusting the sampling density iteratively appears especially appropriate.

Further comparisons between methods and some other developments are given in Ref. [34].

Appendix D. Example for Eq. (54)

If the failure time distribution is given as in Eq. (54), for example, the renewal density or mean
failure time can easily be computed for most failure time models, possibly using Appendix C for
the expectation operations. If the model Eq. (54) is used the failure time distribution is not known
explicitly. Assume a structural component whose resistance is decaying according to

b(t) = by + b1 t" (D.1)

It is loaded by either a stationary Gaussian or a Stationary rectangular wave rencwal process
with zero mean and unit standard deviation. Their outcrossing rates are given by

vF(b(0), 1) S U1 = D(—b(1)))D(~b(1)) (D.2)
for the rectangular wave renewal process [see Eq. (57)] and by
v (B(2), 1) = wnelb(x) W(b(r) /) (D.3)

for the Gaussian process [see Eq. (58)]. The deterministic or random vector r collects, for example,
the quantities by, by and m. Let by = 5, b; = —0.000005, m = 2, A = wy = 200 be deterministic
implying that the outcrossing rate is largest for 1 = 1000 time units and the failure time density is
largest for ¢ ~ 500 time units (see Fig. D.1). The Laplace transform of the failure time density to
be used in Eq. (14) becomes




58 R. Rackwitz | Structural Safety 22 (2000) 27-60

30
B
2 20
2
% 10
0

0 500 1000 1500 2000

time

Fig. D.1. Outcrossing rate.

0.01

0.0075

0.005

failure time density

0.0025

0 100 200 300 400 500 600 700 800
time

Fig. D.2. Failure time density.

(b, 1) + P (D.4)
0

Fn) = J?v*(b(z), Dexpl—

7%(0.05,r) = 1.17 X 1072 for the rec-

For y = i erical integration ' .
o ol aeamin and /- (04 5 3 for the Gaussian process. The failure

tangular wave renewal process and f*(0.05, r) = 2.42 x 107
density is (sce Fig. D.2)

’ ( D.
[, r) = v (b0, r)expl— [Oer(b(r), r)dz] (D.5)

-3

i i i ,r} = =3 at * = 542 and max{f{¢*,r} =7.15x 107 at
with maximum density max{f(r",r} = 5.63 x 107" at/ o ot
* =516 lr':spectiw:]y.yMean and standard deviation are E[T] = 504 and D[] =77.5 for the rectan

gular wave renewal process and E[T] = 472 and D[T] = 86.5 for the Gaus_srdn’ pr’ogesg, ;l;)l;z ;jllizlrz
rate or renewal density is thus 1/E[T] ~ 0.002, which can pc F:ompared wath ana rrgg;ribution <
rate according to Eq. (65). Note that the cocflicient of variation of the fai u’r.e] tunef 1c ibution s
only about 15%. Note further that the time for the maximum of 'the .ffudurel mtlhc o ~ngem
approximately one half of the maximum of the outcrossing rate, which is due o p

term in Eq. (D.5). Also, due to the same reason, the densities are skewed to the left.
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If the vector R has uncertain components the computational problem is substantially more

complicated and numerically involved. The considerations in Appendix C can facilitate numerical
calculations. Further research is necessary.
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