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Abstract

The probabilistic approach to soils and foundation engineering requires a suitable set of
models. Consistency and comparability require that these models are to a certain extent
standardized but capable of incorporating the most important aspects. The concept of ergo-
dicity is introduced as an important tool of probabilistic modelling. For layered soils some
standard random field models are proposed. Their properties are discussed. Especially for
soils and foundation engineering a Bayesian approach to handle different types of knowledge
i1s mandatory even in simplified form. An attempt is made to quantify prior information
about different soil types and a simple update formula is presented. A methodology to treat
classification errors is proposed. An illustrating example is presnted. © 2000 Elsevier Science
Ltd. All rights reserved.

1. Introduction

Advanced probabilistic approaches to safety and reliability of structures are rather
common and, in part, have penetrated already into practical applications and code
making. Although the soil mechanics profession has started the study of probabil-
istic approaches already in the 1970s the success in theory and applications has been
moderate. Three main reasons can be listed for this discrepancy.

e Most problems in soils and foundation engineering must be solved on the basis
of few direct or indirect field observations.

e Many problems in soils and foundation engineering are dealt with either by
simplistic mechanics, e.g. plasticity theory, or by complicated non-linear finite
elements. Complicated mechanical models carry over to any reliability analysis
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e Probabilistic soi elli ) i
hom;b]llstxc soils mod‘dlmg most frequently is a modelling by layered non-
o ng'li];:glus Idl(lidom fields w}_uch 1s much more complicated than simple ran-
artable modelling as required in most other fields of structural engineering.

faCSfllllsi;;; ficl)lutr;](la;ﬁr‘lhc"nglne'crs tend 19 claim that ‘lhc largest uncertainties are, in
e gza‘;?llgzdﬁl(;jne;?eglt:jl pmg{ess in this field must still be expec-
= . § uncertainty can only be made by experi-
;Ezl::lijobré Ef:ettlerl thbd}: ﬁeld o)tl)fer.vz.mons. This is b@’ond the scope of this slug)’ br:lt it
G “; a Ca;::l){aiicollft:lllli)lg;zucIi]z' tr;:itisl include quantities which capture the
. : $ paper some i
l(‘)retlcal tools in probabilistic soils modelling ufe f‘)evi;\(:/lenc;'z;:fdllziisgizzz;ozul;?neii]f—
Qr;;llnrew?lkr fgr‘ updating prio.r knowledge with actual observation will be LsZtlu(plT
Y a few pieces of the theory and concept are really new (see, for cxample [1-3
bu.l this appears to be the first time that various aspects of px'c;belbilislic ls l 31)
elhlng.a.re collected in one place to form a common basis for ap 7liC'll}0 ?l - 130' !
reliability methods to soils and foundation engineering. It is ]laroloseltli (l)l 'mo C‘m
models are standard models. A certain degree of slandardizaliori wﬁh I ‘]jlt i
models is mandatory for all reliability analyses because their results ; 'esp“c;'lf) o
on .the l.nodels. Such standard models must obey certain requirel:?ef ff)ll]"llIOllzll
engineering point of view. A first obvious requirement is consistency /I\:);O'm' "“T
eniorce. operational simplicity. Easy and straightforward eslimabililhr ii lriCdl_l'Oﬂﬁ
These in part conflicting requirements mean that such models do 113)1 »negqg'“?d'
reflect natl.Jre but capture the most important aspects. The concept of er gg?m-”ly
non-ergodlc uncertainties is introduced. Also some data for their purame%cr ‘mfml(q{
as a priori information, will be proposed. s

2. Probabilistic model of soils with respect to strength and stiffness properties
The following basic soil properties will be considered:

soil density

tangent of friction angle

cohesion
stiffness module

‘Thc.ﬁrst three items are strongly related to any type of stability analysis. A prob-
abilistic n.lodel for the last property may help to study settlements and the like.
The point shear forces along a sliding surface is according to Mohr-Coulomb

T(§)ds€) = [(0(&) — uEE) + c(£)]ds(&) (1)
where f(§) = tan(p(£)) is used, (&) and ¢(§) are friction angle and cohesion

respectively. o(§) are deterministic or random normal stresses perpendicular to the
surface element ds(£) and u(£) the (undirected) pore pressure, respectively. £ is the

R. Rackwitz [ Computers and Geotechnics 26 (2000) 199-223 201
location vector. It is noted that the most interesting quantity, 7(§), is a scalar. In
general, o(£) and u(£) can be assumed to be independent of f(§) and ¢(5). Fre-
quently, the quantities o(&) and u(&) can be assumed to be deterministic. If this is not
reasonable a random variable model of the form oyo(§) and wou(&) with oy and uy
appropriately chosen independent random variables will suffice in most cases
because both quantities generally are the result of summations so that essentially
only the variability of the non-ergodic part remains (see below).

3. General — geological uncertainty and intrinsic site variability

Cohesionless and cohesive soils are distinguished which usually can be classified
into various types. The properties of soils usually vary in space but differently in the
vertical and horizontal direction depending on their artificial or geological deposi-
tion. Any soil property should be modelled as a random field, possibly with a mean
value trend with depth.

X (&) = mx(§) + ox(§)UE)

in which

my(&) = mean value function depending on vertical coordinate &3
ay(&) = standard deviation function depending on vertical coordinate &3
U(€) =a zero mean random, unit variance field with parameter & describing

the spatial variations

E= (&, &, 53)7‘ = spatial coordinates.

For operational reasons the random field U(£) should be a homogeneous normal
or log-normal, centralized and standardized field. Moreover, U(&) should be an
ergodic field implying that the field becomes asymptotically independent for large
separations A& = £ — &. Only then operations like averaging or extreme value
analysis is straightforward based on a well-cstablished theory. Also, only in this case
estimation and statistical analysis is easy. The representation of a field by non-
ergodic uncertain quantities such as my(£3) and o(&) in Eq. (2) and ergodic quan-
tities like U(£), therefore, is an extremely important step in the modelling process. It
is noted that true ergodicity possibly is nowhere present in nature. Ergodicity is
rather a tool of modelling.

In general it suffices to assume a linear trend with depth

my(§3) = A + B &)

or one uses &3 = f(£3) instead of & in order to retain linear regression theory in
applications. Trends in the variance or the spatial correlation usually can be
neglected but can be present, especially in £3. The function of variance o?(§), in fact,
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must be determi st by 'essi i
S Vuri.mn‘lcdgrsl by regression using local averages for the local mean and
L A‘[ LC(.i : nly then can the mean value trend be removed by e ]
' R e norm
bl reg in the spatial correlation, after a possible trend in lhe)mc 1llmd
drild as o - Y = M % b
e thc(c cu.ln {Ell}O\’Cd. 1s normally difficult to handle. After sland'u‘diztlti :
i = : . R d <
e szemone a.lmn function can best be identified by plotting the cumul‘ l'on
e % = S
A el beuossmgs over the spatial parameter. If this plot is not lincar a fol]:S
o H 1‘ -3 Jiil P - - 3 i ¥ 3
De e ;Imc;t/ud by an appropriate scaling (transformation) of the para-
e an&.bias 1IOL pl(‘)CCdLIll'C usually requires some iteration. The statistical
e <csl when esllm‘c.llmg variance functions and/or correlation Funclionz"
g 1‘ aelt Uiln when estimating mean value trends. Therefore, care is in ord .
rue trends in the varian (i e o
2 . ce functions and true non-h i
: a s -homog
IdE;_(I)n l“uncmlmns has to be verified and removed - ol
he coefficier F i i ;
L ll:lsul;ir:ldr;gtﬁ, b]Lj}I.] primarily A, can be used to model both statistical
g 2 ertainties. e coeflicients must be ider :
e ‘ L s S considered as random in th
N iryn,pilrstlly,t gon;}am a usually small part of purely statistical lll]CCI‘t‘iil]l)e
rtant 1s that they, secondly, al ¢ i LG
e : . y, also can model ignorance about {}
its parameters. This uncertai i 2
: ! ; g rtainty will be necessaril jecti
prior estimates from simil: i i e i
< ar soil types are available objecti i :
A ron ective, but with a relagj
uninformative distributi i : ‘ i
ion function (see below). A z 4
( . And S rtainti
G s ) clearly, those uncertainties are

4. Random field modelling
4.1. Definitions

Homog; zer : .
A dégllczuli. zero mean, nplmal or log-normal scalar random fields are cor
B t_, efined by their correlation function R(.) or their two-sided spectral d o

nction S(.) for which the Wiener-Chintchin relationships are [2 3] T

R(AE, A, AE) = | | ; <
ol .“J:»;*S(A"KZ‘K3)CXP(’Z]:K/AE/)dKidKQdK}
o

e
S(K.,Kz,fc_):—QJ” 5 e '
1 3 @n) WR(A,SI. A&y, A&3)exp(—i _EI'CiAf_/)dASIdAE:dAég (5)
=

where ;218 separati
he ;7,/25 t ; l’?e% separation  of two points in the i-direction and
R,(p 2 ’ ,), L_E /,Y_, 3 is the ~corresponding  directional wave number. Here
il 1% .p_, p3) = EX(E)X(E+ p)] is th'e second moment of the considered (ccmrulin‘d;
il property. We note that there is always |Ry(A&)|> Ry(0) = o° and sym etr
with respect to the argument, i.e. Ry(..., A&, ...) = Ry( Ag, .. ) If Lrln'm'y
5 ' ; R s e RN 11S 18
;ﬁgcteor[mch drglumenl. the random field has so-called quadrant symmetry The; ;:
s to use only positive spatial lags in the auto-covarianc [i . it
e g covariance function and positive
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G(ie) = 2"S(k) (6)
with # the dimension and
o = ‘ S(k)dk = ‘ G(r)dx (7
J -0 JO

Quadrant symmetry can generally be achieved by a suitable orthogonal rotation of

the coordinate system.
A random field is separable if, for example,

R(AE) = R(AE)R(AE)R(AES) ®)

and, consequently,

S(6) = Ster)S(2)S(3) 9)

which generally makes computations much easier. For computational convenience.
the random field should at least be separable with respect to the horizontal and
vertical direction in which case its correlation properties can be described by

R(AE) = R(AE, AE)R(AE) (10)

1s in smaller dimensions than # are admissible,

then R(AE") = R(AEYR(AEM) with dimension 1 = m + k is also admissible.

A special class of homogencous random fields is the class of isotropic fields, that
are fields whose correlation structure is invariant with respect to coordinate trans-
lations, rotations and mirror reflections. Their auto-covariance function only

depends on the spatial separation AE = \// AE + A& + A2 and their spectral density

only on the wave number « = V’K% + 13 +3. In this case one can define radial

and radial spectral functions which are related to the original

Quite generally, if correlation functior

covariance functions
functions by

n/2

S, ) n=1RoNd 11
TEiveys Pl o

0

00
2= J G(r)dx =
0
y implies quadrant symmetry.

G(x) and GR(k) coincide only for n=1. Isotrop
lated by the Fourier—

Radial correlation function and radial spectral function are re
Bessel transform

(2 Ju(kp)
Rl = | T e
; Jo (kp) T
1 Ju2(Kp) 3
GR,(K):_I(,‘ ;&L;J"*‘Rﬁ(p)dp (12)
X (27T)”/'. 0 (Kp)% J
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:’]vhetrF: Jy (._) is lh_e Bessel function of the first kind and order k and p = A£. Note that
’ he terms mlvolvn?g the Bessel function simplify to Jo(kp) and sin(kp)/icp in the two-
and three-dimensional cases, respectively.
L.“ .anﬁxsotroplc field has admissible correlation function RE(AE), then, an aniso-
nl]i]l‘)lF d:l can b.c.generaled by R"t(AE) = RR(|AETCAE|) where C is a diagonal
2 rix no plopomonal‘to the identity matrix 7. Such a field has an ellipsoidal cor-
relation structure and will also be quadrant symmetric. :
t..ﬁodfar th description of standardized fields by autocorrelation functions or spec-
ral densities are second moment descriptions and thus distribution-free. In most
cases, hgwever, the Gaussian or normal distribution is used. Then, the ﬁclc.l is call ~d
a Gaussian or normal field. Y .

4.2. Special one-dimensional models

Among the many possible forms of admissible correlation functions, six dj

stajm(igrd one-dimensional functional forms may be used (Table 1) L
o(.) is the Bessel function of first kind ¢ rder stk ifi

function of second kind and order IJl.\md bt o bl

All autocorrelation functions belong to ergodic fields. From Fig. 1 it is see
the autocorrelation functions do not differ very much for small éep'uﬂli‘seb-n 3
contrast. the spectral densities, especially for model V and VI, sho‘w %‘i 1:}01“ r. l”
feren.ces for small as well as for large k. The oscillating behaviour éfglliét‘ll]l d}lh
d‘ensny of model VI may discriminate it as a model describing natural ﬂucts!)e'cuaI
The first two and the sixth functions belong to the class of nbn-differential;lld*“OIAISI
cesses, the next three functions to differentiable processes. The property of ;rﬂn 0
en.tlabilily is usually not important because averaging operations, as c)(,n?n i
soils engineeering, will make non-differentiable fields differentiable, -Differel1ti:lc))}ll'tlll
however, will be necessary if extreme values have to be determined. The secondl-c:n):j

Table 1
One-dimensional models for correlation function and spectral density

Type of auto-correlation Autocorrelation function R(p)
function :
I a? expl—d|p|] :
11 a? expl—alp|] cos(bp)
m aexp[—ap’]Jy(bp) 2[y o exp[—ap®|Jo(bp) cos(kp)dp
v o’ exp[—ap?]
v 2 (ap)” Ky (ap)
2 TT(h)

VI {a:(l —lpl/a)  forlp|za

0 Jorlpl > a
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R{p)

Fig. 1. One-dimensional autocorrelation functions and their spectral densities.

third functions have the form of a damped oscillation. The third to fifth functions
are decaying rather rapidly. The fifth model is widely used in turbulence theory. The
last function is a function with zero correlation outside a given value. Models I, IV
and VI are one parameter models. The others have two parameters and the estima-
tion problem will become more difficult. The corresponding spectra are all analytic.
There is no particular physical preference to any of the proposed models. However,
strength properties of non-cohesive soils show distinet Markovian behaviour and,
therefore model 1 appears appropriate. Also, if the geological formation processcs
show periodic behaviour one may select model I or I11. This is not to be confused
with the oscillating behaviour of empirical autocorrleations functions which is
purely statistical bias. Other forms of autocorrelation functions are possible, espe-
cially those generated from higher order auto-regressive processes.

Functions which are valid functions in one dimension may no more be valid (not
positive definite) in higher dimensions. In particular, for isotropic fields there must
be p(Ag)= — 1/n for all AE. Since there is no simple relationship between G(.) and
G®(.) it is generally necessary to start from an admissible autocovariance or auto-
correlation function and then generate the spectral function by Fourier-Bessel
transforms.

The choice of one of the above models together with an assumption about the
distribution lunction of the field makes estimation of the parameters much ecasier.

4.3. 3-Dimensional fields

4.3.1. 3-Dimensional exponentially correlated fields
The exponentially correlated field with correlation function




]
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3

RI(AE) =0 exp 7}:(/,1«3‘5,‘ (13)

i=l

is a separable, non-differentiable field with (two-sided) spectral density function

Sl et ajaay
5\(/\'):’7'7”“, TR T 5 (14)
Ky — ap)(k3 — a3)(ks — a3) '
Fora; — oc aa white noise field can be generated with
RA(AE) = 07 8(AE))S(AE)S(AE) (15)
Sl = ==
Sy(i) = —— 16)
(27) (
The field is isotropic if @) = 4> = a5 = a.
4.3.2. 3-dimensional fields with Gaussian correlation function
I'he field with correlation function
Ry(A§) = o’ exp| =) u;AE] (17)
i=I
1s a separable differentiable ficld with spectral density
. o’ |
Sx(x) exp (18)

= D
(47{) \/(l|(13(h

The field is isotropic if ¢; = «» = a3 = a. Both 3-dimensional models are casily een-
eralized to n dimensions.

4.4. Horizontally isotropic fields

For horizontally isotropic fields one can use the models shown in Table 2. Note
that Aéjp =0 and k> =0.

Note that ficld I'is not the same as the exponentially correlated field defined by
Eq. (13). While the former is separable, the latter is not because it depends oﬁ

iy

V A& + A& The three-dimensional equivalent of the (complicated) model VI has

the following representation.
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Lable 2

Models for horizontally isotropic correlation functions and spectral densities

Model Ry(AE&2) GRk1a)

1 o7 expl—a A withay > 0 c_2

11 o7 exp[—an A& cos(hr AEp) with ap > b1y > 0 ; [0 Ry(AED ) o (ki AER)AEHAAE)
111 o? exp|—a2/ T;i‘/ul/”»:i\flll withapy > 0,b1p > 0 {—IH\ Ry(AE )oKk AER)AEHAAE)S
Y o expl—apn \:’3.} withapy >0 "‘,;ruxpi ;“ ‘
v ot bty b

Tty T4,
VI nlll : oot :u‘c.\in(’ :‘V"‘ ))} 22 [ Ry(A&) (koAb ) AE DA,

for Aép <ap»

This correlation function is also admissible in two dimensions.

The two-dimensional isotropic lields for the horizontal variations can be com-
bined with any of the functions for the vertical variations (o obtain a valid repre-
sentation of a three-dimensional field.

4.5. Correlation radius (scale of fluctuation, correlation distance, correlation lengih)

The correlation radius § is delined as the width, area or volume of a rectangle,
circle or sphere, respectively, with unit correlation having the same area, volume and
hypervolume under the correlation function (Table 3). It thus defines a characteristic
size of the field where correlation is strong. In the one-dimensional case

2 >

|
W =8 = R(AE)IAE = (7]7: wG(0) (20)

J0

lable 3

Correlation radius for models in Tables 1 and 2

Model One-dimensional (vertical) Two-dimensional (horizontal)
| 2 2
‘, P
2 (e, b
I e s
e (a b
i i
11 \ L ',“v‘l‘{ 7‘
/ [ T
IV s -
) 2/ b+ 1) dabys
v 2 b
n1(h) a

Vi 3 1.017a3
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If the field is separable one obtains, for example, in the two-dimensional case
assuming an ellipsoidal correlation structure

2 4 a0
[+%3 :dgqn:&&n:—ﬂ' R(A&))dAE,
o” Ja !

‘ ‘R(Aég)dAég = i?nlo'(o. 0) 2n
0 o=

For isotropic fields there is only one such measure

5 210 R 2G(0 268
a = 783 :;”J AoRhedas, T 9 70.0) )
“Jo o=

g2

in two dimensions and

2

4 e 3 3
o = omsl = [ AE RIMEINAAE L = 25G(0,0,0) = T GH(0) (23)
JO s as

B
in three dimensions provided that the integral _f(?“p/"R(p)dp exists. The correlation
radius can be interpreted as a scalar measure of the average spatial extension of the
field where the correlation is strong. In fact, it has been frequently suggested to
model a random field by a field which has correlation one inside the correlation
radius and zero outside.

1,() is the modified Bessel function of first kind and order zero. The three-dimen-
sional correlation radii are computed correspondingly. All correlation parameters
are analytic. The estimation of the correlation parameters from field measurements
is best be done by the method of least squares. From Lhe correlation parameters o,
representing a length, area or volume, respectively, the corresponding correlation
radii §; can be computed. It is noted that a definition sometimes found in the litera-
ture defining the “correlation length” as the length where the correlation function
falls off to exp(—1) is an inferior definition — especially in higher dimensions,

compared with the definition above that the correlation radius is a scalar measure of

the distance where correlation is strong. It is also noted that alternative definitions
exist. The correlation radius (in one dimension) sometimes, for example, in turby-
lence theory, is defined as

' ) Ter 2 1
o =48 = e R(AE)AAE = 7{;371(](0) 4
)

J( -~
and correspondingly in higher dimensions.

4.6. Log-normal fields and other non-gaussian fields

A log-normal field can be generated from a normal field by an appropriate trans-
formation. The original field is represented by

X(E) = exp[U(€)Sy + nx] (25)
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with 83 = In(1 4 ¥3), ny = In(my) - 16} and ¥y = o and where U(#) is a zero

mean, unit standard deviation normal field. The equivalent correlation function is

In(px(AVE + 1)
(V3 +1)

(L 1)retao

Pr(AE) = 5 or py(A§) = (26)
v

from which it follows that py(A&) be such that py(A&)F3 < —1. Otherwise the
equivalent autocorrelation functions pp(A&) are no longer positive definite.
Restrictions, therefore, must be imposed on the parameter # for the second and third
univariate correlation functions in Table 1. Other non-Gaussian fields can also be
generated on similar lines [4]. The Nataf model assumes that the original variable X
can be transformed into a standard normal variable, i.e. by

u=o"! [Fyx(¥)]

Let ) and u, be the transformed variables at spatial distance A&. The correlation
function of the transformed field must be obtained from the integral equation

.+NJ*+M [F}](‘D(Ul ) — ”1,\'] [f}l (®(2)) —Mlﬁ,\_:]

oy

px(AE) =

@211, 12 2 py(AE)du duy

—ood —c0 gy

¢(., ..~) 1s the bivariate standard normal density. The equation must be solved for
pu(AE) for any given py(Aé&). In a few cases the integral is analytic [5]. Otherwise a
numerical solution must be sought. Again, the function py(A§) must be positive
definite which imposes rather severe restrictions on the original distribution function
and/or the type of py(A§).

4.6.1. Cross-correlations between components of property vector
The components of X(&) may be independent or dependent. Then, in general, it
must be assumed that for any & the correlation matrix is

P11 P12t Pir
g | B PR @)
/’;-I P;-z /’u
For normal-lognormal fields there is
Cov[In(X)), In(X))] = In{l + M} (28)
my,my,
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Cov[X;, X;]

(‘o\'[.\',. ln(.\',)'] = (29)
ny
A generic element of the correlation function matrix has the form
Ry, v (AE) = py R(AE) (30)

implying that all soil properties have the same spatial correlation structure. Obser-
vations and geological considerations indicate that this is true in good approxima-
tion.

4.7. Spatial averaging of homogencous fields
4.7.1. Analvtical approach for averages along coordinate axis

There is always a certain amount of local spatial averaging w hen observing a
homogeneous random ficld. Averaging over a distance L. an arca A with side

lengths L; and 2, or a volume V with side length Z,, L, and Lz yiclds the mean of

the average while the variance of a quadrant symmetric field is

., fhe. rhi & 6\ [, &
V8 R e (17 ><1—)(17)
”[ I‘J If\l<2~-~Lu.’n ,[(l .‘n \ /,| /J /A/r,

Cy(&r1:62, -+, &,)dé dé L dg,

N
L\I'Z [H.ﬂ 0 0 1] Lo Ly,
Px(Gisbass s &,)d&d¢, . . . d§,

where y(.) is termed variance function [2]. This variance function decays with L,

Ls. ... L, and simplifies for large L, L, ... L,. In particular, it is

ST oLis - / £ £\
L8088

Jo JO /~I, L) ['11

2y oees Eu)d‘fid&,’, cee tlvf,,

NIy Ls.....L,) = -
]1/\/ ,) I\/j

Quite in general. for D = ][; , L. the variance function can be approximated by
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| for D<a,

r) = % for D > q,

(33)

For the correlation functions given in Table 1 the one-dimensional variance
functions are given in Table 4 and Fig. 2. Closed form integration formulac over
surfaces in higher dimensions are complicated if available at all.

If the random field is separable there is, of course,

)/(LI~ L2y ey I‘u) = )/(LI)V(LZ,)"')/(LH) (}5)

This relationship is especially useful when the correlation function for the hor-
izontal field is separable from the one in the vertical direction.

Local averages of Gaussian fields are, of course, normally distributed. According
to the Central Limit Theorem local averages of non-Gaussian fields tend to the
normal distribution for large averaging distances L, say for L > 5w, at least for the
crgodic ficlds discussed herein. The assessment of distributional characteristics for
shorter averaging distances is difticult [6] and not yet practical.

4.7.2. Numerical approach

Unfortunately, the semi-analytical formulae and approximations for spatial
averages can not be used in many applications because the averaging direction is
hardly parallel to the coordinate axes. It is also rarely possible to rotate the coordi-
nate axes such that the foregoing results become applicable.

For a general surface with sufficiently small surface elements and (&) pointing in
a certain direction, the point shear force on a surface element for use in a numerical
analysis is:

(&) As(E) = [(0(8) — u@E) + (&) As(E) (36)
Table 4
Exact one-dimensional spatial variance functions for models in Table 1
Model y(Ly)

O Mabicle :
I (arly)
I cos(Litn) 2y sniab)]
1 Numerical
v (\741\1|A‘1(\\11|1‘\‘Iw'r\w'n‘li")
all
' Numerical
1 for Ly <a

Vi1

(7“) (] - }’1[‘!) forl, > a




()
2
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Variance
functions £33

0.5

L

Fig. 2. Comparison of different variance functions for models in Table 1.

from which for the mean, variance and covariance, respectively

Hr(®]As(8) = {((0(8) — u@)m&3) + me(83)) }As(®) (37)

; s | (0® — w@)? Var[fi&)] + Varle@+ 3
V: As(E)) ~ _ (As(E)) 38
OO o) - upmebUED®] | hd
(o(&1) — u(€))o(&2) — p(E2))R(AE)+
Ho (&) — uE1)pp R (AE)+
Ho(E2) — ulE2)pre Rl A) + Ro(AE)
(ASEDNASE))

Cov[t(&1), (&) As(ENNAs(E)) =

(39)

with (£11, &2, £13) and (&), &2, £23) the location vectors of two distinct points and

AE = \/(511 By T e T £3)° the distance between those points,

The appropriate size of the surface clement depends on the correlation length. In
general, it should be chosen not larger than half the correlation length, provided that
such a size is mechanically feasible. This leads to a relatively fine discretization mesh
at the expense of increased numerical effort. Also, it can be shown that the variances
and covariances are generally estimated too small.

Much better results are usually obtained if averaging is performed first. In this
case surface integrals nced to be computed. For example, assume that the surface
has the following explicit parametric representation.

& = (&2, &) (40)

For a centralized, homogeneous field we now have for the surface §
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a/z,-(s,‘l,s,-.g))z (ah,(s,-.l,s,z))z \/1 (a/uxsk,l.s,_:))ﬁ (ahk(sk.l,sk.z))z
\/] +< & + 0> + & * 0&; >

dg; 1dg;2dE; 1 d&n

43)

where B is the (unique) projection of the surface S onto the (&, £&)-plane and

Pkt Oh(E1, £\ | (i, sﬂ)
A(S) _JB\/I +( 3, ) +( s dgdé; (44)

the area of S. Analytical results hardly exist and integrations have to be performed
numerically. For piecewise plane surfaces substantial simplifications are possible
because the derivatives of /(&, &) remain constant within each plane. Further sim-
plification can be achieved for separable fields and if the surface is parallel to one of
the coordinate axis. Clearly, other parameterizations can be chosen with the corre-
sponding alterations in the relevant fomulae. For property vectors one proceeds as
in Eq. (39). Eqgs. (40)-(44) are given here for the first time.

4.7.3. Prior information on various soil types

In general, the parameters such as the mean, the standard deviation and the cor-
relation parameters of the soil under consideration must be inferred from in situ
tests usually together with some prior information if classification of the soil into
one of several types is possible. The purpose of classification is to enable the use of
prior information collected from previous soil investigations of the same soil class.
Classification here is primarily with respect to mechanical properties rather than
from a geological point of view. An excellent vehicle to process actual observations
together with prior information is Bayes’ theorem. For simplicity it is assumed that
the standard deviation of a property of a given soil class k is known but its mean is
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not known. The soil properties are normally distributed. If they are assumed to be
log-normally distributed the same procedures hold but for the logarithms of a
property. Further, assume that the a priori distribution is uniform for a given soil
class k. '

ﬂ (-;'n"”/\'
Pl TG e m/ﬁ) B
D[ ARl () dmy [(D(L&) _¢(;’A '
ox//n ar//n

where

" (mi|X,) = aposteriori density of n
J(xulmy) = likelihood function of X, given iy,
f'(my) = apriori density of iy

X, = mean of a sample of size n

bk, br—| = upper/lower a priori boundary for

It is seen that the assumption of a uniform prior distribution enables an analytica]
result for the a posterior density. If the standard deviation is not known, similar but
more complicated formulae can be given [7].

In Eq. (45), and bearing in mind that the sample size is usually rather small, the 4
priori density contains much of the information available. In the following Tables 54
and b we have made an attempt to compile suitable class boundaries for some
selected soil categories from many sources in the literature. The tables arc meant to
form the starting point of better tables or of tables of similar kind with different
states of prior knowledge.

Mean properties are given as ranges for which a uniform prior distribution may be
assumed. In exceptional cases both the midpoint and the boundaries can be different
from those given in Table 5. The spatial fluctuations in terms of standard deviations,
given their mean, vary as in Table 6.

These values are relatively small compared with the mean value variability.
Sometimes, the standard deviations can be reduced by extensive site exploralion and
laboratory testing. It is important to note that they can only be so small because the
mean varies according to Eq. (45). Sometimes the standard deviations are somewhat
smaller for artificially deposited soils than in Table 6.

The correlation coefficient between specific weight and friction coefficient is
slightly positive between 0 and 0.5. The correlation coeflicient between friction
coeflicient and cohesion is negative around —0.5.

In general, the correlation radius for natural soils in the horizontal direction is
about 5 to 50 times larger than in the vertical direction when predominantly hor-
izontal deposition (and layering) is present. The vertical correlation radius has been
found to be between less than 0.5 m to rarely more than 10 m. Small values for the

vertical and large values for the horizontal direction are characteristic for strongly
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Table §

(a) Prior information for non-cohesive soils; (b) prior information for cohesive soils*

(2)

Soil type Compaction Mean Mean Mean Stiffness
specific  specific friction (MN/m?)
weight weight cocflicient
(kN/m?)  (kN/m?)
normal  saturated
humidity

Sand, gravel Loaose 15-17 17-19 0.58-0.65 30-100

Uniform grain size Medium 16-18 18-20 0.65-0.73 50-150

Dense 17-19 19-21 0.70-0.83 150-250

Coarse gravel, boulders  Loose 15-17 17-19 0.65-0.73 150-300

Medium 16-18 18-20 0.70-0.83 150-300
Dense 17-20 19-21 0.78-0.90 250-350
Sand, gravel Loose 18-20 20-22 0.57-0.70 30-100
Non-uniform grain size  Medium 19-21 21-23 0.62-0.75 50150
Dense 20-22 22-24 0.70-0.85 150-250

Sand, gravel Loose 1820 20-22 0.57-0.70 100-300

Slightly cohesive sand Medium 20-22 22-24 0.63-0.75 100-300

Non-uniform grain size ~ Dense 22-24 24-26 0.70-0.83 100-300

(b)

Cobhesive soil type Consistency  Mean Mean Mean Mean Stiffness
specific  [riction cohesion cohesion (MN/m?)
weight  coeflicient (kN/m?) (kN/m?)
(kN/m?) consolidated unconsolidated

Anorganic cohesive soils  Soft 16-18 0.27-0.36  0-5 10-20

Plastic S 17-19 0.27-0.36  5-15 20-50

Vory siff 2022 0.27-0.36  10-20 50-100

Anorganic cohesive soils  Soft 17-19 035042 05 0-10

Medium plastic Stft 18-20 0.35-0.42  5-10 15-30

Very stiff 19-21 0.35-0.42 1020 40-100
Anorganic cohesive soils  Soft 18-20 0.42-0.55 0-3 0-10
Weakly plastic Stiff 19-21 0.42-0.55  0-5 10-25

Very stifl 20-22 0.42-0.55  3-10 30-70

Boulder clay 20-24 0.52-0.64 20-30 -

Organic cohesive soils Soft 13-18 0.24-028 03 5-15

Silt Sufl 14-19 024 028 03 10-30

* Under water, the unit weight is reduced by 10 (kN/m?).
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Table 6
Representative standard deviations

Standard deviation

0.06-0.10
2-7
10 %

Soil property

Specific weight (kN/m?)
Friction coeflicient
Cohesion (kN/m?)
Stiffness (MN/m?)

|

cohesive soils and for non-cohesive soils with small grain sjze.
relation radii for artificially deposited soils are considerably shorter depending on
the homogenization processes that took place during excavulion‘, transport and
deposition of the soil. The magnitudes of the proposed correlation radii may be
taken for all properties unless site specific information is available,

All quantities refer to a reference volume (area) of about 0.5 (m?) and 0.65 (m?),
respectively. The standard deviations given in Table 6 do not contain the unavoid-
able measurement error, which for most types of standard experiments is about 20—
30% of the standard deviations given above.

Frequently, the cor-

4.7.4. Updating, classification and failure probabilities

This type of uncertainty is the uncertainty in classifying soil into one of the soil
types in the tables above. Let a set {k} of different layers be present with known
standard deviation but unknown mean. Layer boundaries are assumed to be known.
If it is possible to assign prior probabilities to each set, the failure probability of the
problem is

J
Pr="3 plk}P(V,{k}) "
J=1

with
J 5
1= Z,;,{/\»}
J=1

and Vi{k} the considered failure event. In general, it is hardly feasible (o investi

the prior and posterior probabilities for all combinations in the set {k}.
Alternatively and more feasibly but also implying appreciable information about

the number of soil classes present, one may wish to identify a certain or aJ] of the soil

classes from measurements. For a particular soil class the mean sy is uniformly

distributed, i.c. the prior probabilities are taken as given in the figure (Fig. 3).
Then, the failure probability is

K
Bf =P 7

gate
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Class k

Y

b_1 bk m

Fig. 3. Prior densities of mean for different soil classes.

in which p), are the prior probabilities for soil class & in a specific layer. For the soil
. d ) s 3 3 : ; : A .
roperty u/ﬁder investigation a normal distribution with known standard devmtlonl is
" Llllﬂ(.d If the classification were correct the updated (posterior) mean has density
ass cd. S§

[see Eq. (45)]
L w({?"\' i -‘1')
Sl ) o\ ow//in (48)

Fmdn) = o i mdmy (P ) _ (=l
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that correct classification means that my can, in fact, fall only in between the
Note tha The probabilities of class & being true become

boundaries[hi 1. by

Pk) ok P(3, € [br—1, billmy )f (my )dmy,

b,

"k, %y € [Pro1. be]) =% - ]
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(50)

where

e . Xp — br-y i3 Xn = by 51
["‘ P, € v by dm = o(Z=2) —o(ZK)

J b,
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The a posteriori failure probability is

K
Pl=> piP(V)) (52)
k=1

In the worst case this procedure has to be performed for all layers. In principle,
one then has in fact to perform an analysis for all combinations. In practice, one
probably will take only the most likely posterior soil class for each of the layers. The
above procedure assumes that the measurements are independent implying a suffi-
ciently large spacing between the observations, ie.. larger than the correlation
radius. If the spacing is smaller a simple approximate scheme can correct for corre-
lations among observations, i.e. replacing ax/\/n by 0,81 1/ /1.

4.7.5. Hustrative Z)Xamp/e
In this section we illustrate the material proposed before. As an example we take
embankment stability. Bishop’s widely used slip circle method is used [8]. The failure

condition can be written as:

= i t i/i'— i ; = Q1
g(X) =rL (Z{LJ“—(—}”——LQ\ +(Vi— 1+I)} = ;v,hm sm(H,)) i

— [cos(6;) + sin(;);
+ end effects <0
where:
r =radius of slip circle
L =length of rupture zone
¢ = effective average cohesion in ith slice
l = tan (¢;) = cflective average friction coefficient in ith slice
hi = height of ith slice
Vi = breadth of ith slice
u; =average pore pressure in ith slice
Vi =average bulk density in ith slice
0 =location angle of ith slice measured counter clockwise from negative
Z-axis
Vi— Vi = net vertical shear forces which are set equal to zero for simplification
end effects = two stabilizing moments from end surfaces of slip cylinder
H =embankment height
13 =slope angle
The simplification of setting V; — Vi; = 0. i.e. a possible local violation of equi-

librium conditions, can be removed at the expense of additional iteration. Detailed
probabilistic analyses of the slope stability problem can be found in the relevant
rather rich literature. A fairly exhaustive study has been presented in [9], which is
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also the basis of the present example. In order to simplify the analysis we assume
¢; = u; = end effects = 0. Further, # = 15 (m), L = 30 (m) and & = 0.526 as well as
¥i = vy =20 (kN/m?) is assumed. Therefore, the friction coefficients in the various
slices are the only random quantities. The slip circle radius is r =26 (m) and the
circle center is at (yy, zo) = (0,25). The circle cuts the ground at (—7.14, 0) and
(23.35, 13.56). This circle is close to the critical circle. The chosen material is medium
compacted non-uniform sand with mean friction coefficient 0.662 and a standard
deviation 0.087 (see Table 5a). The deterministic safety factor related to the mean is
1.32. The material is modelled as a separable Gaussian field without depth trend and
auto-correlation function

p(AE) = exp[A B (%5—”

i=x.),2

as in Eq. (17). As standard case we choose h. =2 (m) and b, = b, = 5b. with cor-
relation length a; = /b, equal to 3.55 (m), 17.73 (m) and 17.73 (m), respectively, in
accordance with the above remarks. The slip circle as it cuts the ground is sub-
divided into m equally large sections. For this illustration we have selected m = 10
which has been found suflicient. At first, we need to determine the variances. In the
y-direction the result for model IV in Table 4 is valid. For the other two directions
we choose the following parametric representation & = & and & = ay & + zo; With
ar = tan(ay) (see Fig. 4). Application of Eq. (42) yields

s ] )

| et et —5y 2y — (ax + zm))°
a,\J [ (&1 — &) Eax +zmy — (Gax + zmy)) }déldéz

X
Yk

P

s exp| —
A(S/‘»)“ 4

k /);“) /’g
, L 5 2
(\/Eh,\-crf(/;f) + b1 —exp| — (A)

—ta

) e
b, )
1 byb. srsiadi D v,:,b 3
X ET |:\/n/nkurl (\k W) - b, /):(l b e)\p|:—bv‘vbj)] (54)

withb = b2 +azh} and A(Sp) = /1 + a}v;.

~
¥

This is slightly more complex than the formula along a coordinate axis for model 1V
in Table 4. For the covariances [see Eq. (43)] we associate the first integral with the
first polygonal plane and the second integral with the second polygonal plane. It is,
in fact, possible to reduce the double integral into four bivariate normal integrals
which in turn can be reduced to simple integrals [10]. However, the formulac are
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Fig. 4. Geomelry of slip circle and polygonal planes.

complicated and a two-dimensional numerical integration will do as well. For other
auto-correlation functions one proceeds similarly.

All further reliability analyses are performed with FORM/SORM (sce, for exam-
ple, [11-13]). Characteristic for these methods is that they can handle random vari-
ables and so arc consistent with Bishop’s discretized mechanical model. We shall
now demonstrate:

. Influence of correlation length

. Influence of type of auto-correlation function [Eq. (13) and (17)]

. Influence of prior information on mean friction coefficient from Table 5a
Influence of updating of prior information by samples

Influence of classification errors

fﬁ};wl\).—.

Fig. 5 shows some results for two correlation settings, i.e. b, = b, = 5 and
by = b, = 10b:, respectively. It is seen that the vertical correlation parameter b-
plays a dominating role. Also, the type of autocorrelation function is of certain
importance. The exponential function Eq. (13) decays faster than the Gaussian
function Eq. (17) for smaller A. Therefore, the safety indices are generally larger
for the exponential function under our size conditions (Table 7). Very large
h.(b. > 10) produce numerical instabilities and singularities because the variables
become highly correlated and the Choleski-scheme used here for decorrelating the
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Fig. 5. Safety index versus (soil lines for Gaussian autocorrelation function, dashed lines for exponential
autocorrelation function, upper lines for by = b, = 5h., lower lines for b, = h, = 10b-, lower dotted line
for fully correlated variables, two upper dotted lines for uncorrelated variables).

shear forces fails. The curves approach the line for fully correlated shear forces
which is computed by using the same random friction coefficient in each slice. For
the independent variable case a variance reduction has been performed for the shear
force in each slice. The average breadth of a slice is 3 (m), which is roughly the cor-
responding correlation length in this case.

The FORM-results have been checked by the more accurate SORM-procedure
because due to the tan(.)-term in Eq. (53) the failure surface must be non-linear. For
the standard case it is Brorm = 7.003 whereas Bsorm = 6.493. For our purposes the
agreement is sufficiently good but actual applications should probably always be run
with SORM or even a higher order method.

We assume that the classification is correct and the class boundaries for the fric-
tion coefficient are [0.577, 0.754] (see Table 5a). Without any field sample the safety
index now is 4.946 compared with 7.033 for fixed friction coeflicient. If samples are
taken having the sample mean at 0.662 one obtains the following results using either
Eq. (45) (untruncated distribution of m, i.e. with the denominator neglected) or Eq.

Table 7

Safely indices versus sample size for example o

n ; Truncated Not truncated
1 4982 2.437

2 5.021 3.258

3 5.079 3.793

! 5.209 4.483

10 5.507 5.348

00 7.033 7.033
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Table 8
Total failure probabilities for example
Class 1 Class 2 Class 3 =
Range of friction coeflicient 0.577-0.754 0.649-0.839 0.510-0.700
i 0.33 0.33 0.33 1
Py lin Eq. (47)] 3.788 %1077 4349x 10~ 1.021x10°* 3.405x 104
VA 0.371 0.29 0.34 1

1.529% 10712

3.855x10° 1.312x107

P} [in Eq. (51)]

4.154x 1077

(45) with truncated range of validity at the class boundaries. The former is incon-
sistent with our assumptions but it is interesting to see that giving up the boundaries
leads to considerably smaller safety indices unless n approaches infinity.

Finally, classification errors are also included. Definitions and results are shown in
Table 8. The prior weights are all cqual. The ranges of the friction coeflicients in the
different classes are rather arbitrary. The posterior weights and corresponding fail-
ure probabilities are computed assuming one experiment with friction coefficient

0.662. This falls in between all class boundaries. Assuming a uniform distribution of

the mean friction coefficient within the class boundaries quite different failure prob-
abilities are obtained. Clearly, class 3 gives the largest failure probability a priori
and a posteriori. The a posteriori weights differ only a little from the a priori
weights. Note that class 1 is the most likely given the sample because the experiment
falls close to the middle of the class range while it falls close to one of the boundaries
for the other two classes. 1T, in fact, a (much) larger sample were taken with the same
mean of experimental results class 1 would become dominant.

The prior values are computed assuming a uniform distribution of the mean fric-
tion cocfficient. It should be mentioned that these results are valid only for the
assumed geometry of the slip cylinder and its length along the embankment. Each
modification of the property vector changes the most critical geometric parameters.
Nevertheless, the example demonstrates that actual local information is extremely
important. Tables of the type as in Table 5a or b can only serve [or first estimales. It
is also inferred from Table 8 that starting from diffuse priors for the class weights
can require a considerable amount of local samples.

5. Summary and conclusions

The probabilistic approach to soils and foundation engineering requires a suitable
set of models. Consistency and comparability require that these models are to a
certain extent standardized but capable of incorporating the most important aspects.
The concept of ergodicity is introduced as an important tool of probabilistic mod-
elling. For layered soils some standard random field models are proposed. Their
properties are discussed. Other models have been excluded from discussion on pur-
pose because, for example. they contain more parameters that can usually be deter-
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mined from limited test data or have properties not suitable for soil modelling.
Especially for soils and foundation engineering a Bayesian approach to handle dif-
ferent types of knowledge is mandatory — even in simplified form. An attempt is
made to quantify prior information about different soil types and a simple update
formula is presented. A simple methodology to treat classification errors is pro-
posed. An illustrating example is presented.
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