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Vorwort

Die nachstehende Abhandlung ist das Resultat einer ganzen
Reihe von Uberlegungen, die in den letzten Jahren vom Ver-
fasser angestellt wurden, wenn die Zuverlidssigkeitsmethode
1. bzw. 2. Ordung auf komplexe mechanische Probleme ange-
wandt werden sollte. Sie stellen dennoch nur erste Uber-
legungen, die in weiteren Beispielen ausprobiert und weiter-
entwickelt werden miissen, dar. Viele Anwendungen lassen sich
jedoch so beherrschen - vielleicht aber noch nicht in der
optimalen Weise. Die Thematik wird sicher in weiteren For-

schungsarbeiten aufgenommen werden.

Preface

The following paper is the result of the author's attempts
in recent years to apply the first-or second order relia-
bility technique to mechanically complex problems. The ideas
presented herein still have to be applied at more examples
and need further development. Yet, many practical problems
can be handled - presumably in a still suboptimal manner.

The topic certainly will be subject to future research.

Miinchen, Herbst 1982 Der Autor



Introduction

Essential steps forward in formulating and numerical
treatment of structural reliability have been made in
the very past. This is in part due to the achievements
in so-called first- or second-order reliability methods
which now, in principle, can deal with arbitrary systems
with many components and with quite arbitrary nature of
the uncertainties represented by random vectors. (See,
for example, 1-7). The perhaps most important result is
that multidimensional integration of probability masses
over complex domains has essentially been reduced to a
problem of mathematical programming together with an
application of certain statistical facts for normal
variables. Yet, the use of this methodology in complex
engineering problems may still require a numerical effort
which is hardly justified in practical applications.
Additional measures have to be taken in order to make

such problems numerically feasible. The following



difficulties are typical for many such problems.
Firstly, the number of basic uncertainty variables is
very large. Their stochastic model can be rather com- |

plex exhibiting dependencies between variables and

severe departures from normality. Secondly, the failure E

surfaces (or the state functions) of the components or |

the system are available only in implicit form, i.e.

involving themselves considerable, generally iterative

numerical calculations. Finally, there can be conver-

gence problems in the reliability part when searching

for the so-called most likely failure point (failure point,
Hasofer-Lind point, B-point) The first type of

problem is perhaps most difficult to overcome except

by sound prior knowledge of the dominating variables

and by pooling the other variables into one or several

random "model simplification" factors whose statistical

properties must be estimated in an appropriate manner.

The second type of problem is encountered quite fre-

quently in practice and deserves special attention.

Since, for computational reasons, the physical model can

only be evaluated in a few points, the task is essentially

one of finding "optimal" approximations of the physical

context on the basis of these points and to optimally

design the "experiment", i.e. select only points which

are of interest. Their investigation is the main purpose
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of this paper. It also usually implies the necessity

to decouple the physical and probabilistic part of an
analysis and define the way and the ingredients of
mutual interaction between these parts. It is believed
that a interactive, iterative approach is most effective.
The third type of problem is typical for any method in-
volving mathematical programming. Therefore, even if

the problems of the first and second type would not

exist this "technical" problem requires some thought.

In the following a first attempt is made to outline
a procedure which enables a practical solution to such
problems. It is based on a combination of the first-
resp. second-order reliability method with certain
"response surface" techniques well-known in a number of
technical and scientific fields. (See [8] for a survey
of the methodology). The solutions proposed are still
widely empirical and/or intuitive and certainly deserve
further consideration. They undoubtedly have been im-
plicit in many previous investigations in the structures
area (see. for example, [9]), but, apparently, have never
been studied systematically. It will be seen, indeed,
that both methodologies well melt together and that
first- or second-order methods can be interpreted as a
special response surface method particularly suitable

for reliability problems.



Basic Formulation

Let the state of a structural component be described by

a function
M= g(X,I) (1)

where (E,E):(X1,...,Xn,ﬂ¢,...Hm) is a vector of
variables. Among these variables the first n variables
are uncertain with joint probability distribution

n
FX(E):P(rﬁ {Xitxi}). The rest of m variables is a set of
— i=1

deterministic variables. As usual, the failure probability

is

Pelll) = PlodX, M50l = 4  @F.0 (2)

with the failure domain described by

F() = {X€(g(x,1)<0)]} (3)

Eq. 2 can advantageously be evaluated by the first- (second-)

order reliability method, i.e. by transforming X into an
independent standard normal vector U and then using the

well-known results for linearly or quadratically bounded

failure domains in normal variates. These planes or guadratics




are fitted to the true failure surface in the most likely
failure point.

However, if q(é,ﬂ) is difficult to evaluate and,
therefore, must be approximated by a simpler "response
surface" s(X,II) in a number of knot-points (ﬁi,ﬁi) several
questions arise. A first such questions is to select the
general type of response surface. A natural choice is to
use polynomial surfaces [10]. For reasons which will be
explained later on we will restrict ourselves to linear
Oor quadratic surfaces. The next question is how to approxi-
mate the original state function or failure surface, i.e.
by a Taylor expansion, by interpolation surfaces or by
fitting regression surfaces according to a least squared
deviation criterion. We might require that any approximation
strategy yields, if applied iteratively, the correct
probability result, at least in the sense of the first-or
second-order reliability method. Once the type(s) of approxi-
mating surface(s) is (are) chosen the selection procedure
of the sequence of knot-points is of utmost importance as
their total number determines the feasibility of a reliability

study. Finally, rules are required to reduce the space of

uncertainty variables as early as possible in the analysis.




Types of Response Surfaces

For the moment, assume that U is an independent standard
normal vector. Fitting an arbitrary surface by linear or
quadratic approximations in principle can be done in
three ways. If the original surface is at least twice
differentiable in some domain a simple Taylor expansion

in a given point may be obtained.

n
og (u) o
m > t(u) = g(go)+ I o(u,-u;)
HOL R s e
n n 9dg(u) = =g -
+3 I I = ol¥7u)(uymuy)
v . b .48
i=1 3=1 g =

(4)

Unfortunately, the closeness of fit of this form highly
depends on the expansion point HO which generally is un-
known before hand. In the context of first-order relia-
bility methods the optimal point is the B-point denoted

by g*. Also, differentiability is seldomly assured. Further-
more, t(u) does take account of the behaviour of g(u) only
in the immediate vicinity of the expansion point Ho.

If the derivatives have to be evaluated numerically, by
simple tangent or secant differential quotients, a minimum of

1+2n+n(n-1) /2 points have to be evaluated while 1+n points

are needed for the linear expansion.



An alternative to simple Taylor expansions is, with

the same number of knot-points, the first-order Lagrangian
interpolation which for small distances between the knot-
points reproduces the Taylor expansion under suitable
continuity conditions for the state function. It has the

following functional form [10]

n
*
= .+ F it .
M= h(u) A+.F.‘. {[Bj CJ(uJ Ll:| )

=1
n
* *
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A=G(u); Bj'Rj1(uj-uj2)+Rj2(uj ujl)’ (5)
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For simplicity, the knot-points have been selected ana-

Lok 'usly to the "secant" Taylor expansion. It is worth
ng that the coefficients of eq. (5) can be given
dAecitly.

MP€311y, the method of least squares may be used. Approxi-
on of g(u) then is virtually a regression problem.

n n
Maril: = b i 00 b s iR e h 8

n
Lol
1 5 =

;13745

where the b's are determined such that g(u) is fitted

by r(u) in a redundant number of knot-points such that



the sum of squared differences L[g (_g}( )=1 (E},) | becomes

k : : 5
minimal and, hence, yielding the smallest variance g
of the randomised residual lack-of-fit term €. Any such
model is linear in the unknown coefficients and, there-
fore, can be obtained by standard procedures which, for the
sake of completeness are repeated here (see [13] for further

details). In slightly generalizing eq. (6) we wish to

determine the matrix of coefficients b for several output

quantities mer = (r1,...,rp)r given the observation matrix
= 1 u u2 u -
14 rage s bag Mgy a
1 u u u2 u2 u
12 7327 2 Rys e ara’ TR
1
g —
2 2
o 1 Usg Moo sUqp Boperalgy Ugpe s = oo
for k observations of the vector u = (u1,...un), each

Yielding also the necessary observations for m, i.e. eq. (6)

is generalised to

r = ub+g (6a)




The least square estimates for b are

b= (uw 'u'm
5 B !(@—z)T(EWEJJ = %uz is assumed. We further have
E[b] = b, E[(m-x)] = E[e] = O and
(7)
sf=—"— (n-pTuTup
£ (k-n-1)

Later, we shall need also least square estimates for
welghted observations. In the statistical literature
weighting normally is used to discriminate observations
which are less "reliable" [12]. Here, we understand
welghting as having observed a particular observation
several times, i.e., if the weights pi fulfilling

k

L p; = 1 are introduced, the number of identical

; i
i=1
observations is k. = pi-k. With this in mind application

i
of the foregoing to weighted observations is straight
forward. Similar approximations may, of course, be
devised with respect to the parameter vector I.

The best approximation scheme for both types of variables,
however, depends on the context. While regression surfaces
might frequently be preferred for the description of the
dependence of g(u,ll) on N1 insofar as it introduces a
random model uncertainty factor which, in fact, augments
the dimension of U by one, interpolation surfaces appear

at first sight more suitable for the reliability part

since, if applied iteratively, the central knot-point




should finally coincide with the B-point and the distances

between knot-points are made "small" enough so that

the interpolation surface coincides with the Taylor
expansion in that point. Only then, optimal use of the
concepts of first-(second-) order reliability methods

can be made, in particular, the fact that at least
asymptotically only this point and its immediate vicinity
are of interest [14]. However, we shall see that there

can be better alternatives.

The selection of the knot-points for Il is primarily
determined by the range of values to be covered. The central
point Z*, in turn, might be selected to optimally fulfill

. . 3 *
certain performance criteria under the condition that U=u.

In many cases, especially if the failure probability has a
maximum at some value of I, this value ought to be taken
as the central point. It must be left to further problem
related studies to investigate appropriate methods for
determining optimal knot-points for I.

Before investigating approximation and knot-point selection
strategies any further it is necessary to point out that the physi-
cal and the reliability part generally need to be separated except
for simple problems. The physical part must be carried out in the
original x-space of basic uncertainty variables. Only then,
the calculation methods presently available can directly

be used. Results allow for immediate physical interpretations.



On the other hand, reliability calculations ought to be

made in the u-space of independent standard normal variables
for well-known reasons the most important of which will
shortly be explained. Thus, a probability distribution
transformation is required which uniquely maps X into U.
However, due to the generally non-linearity of this trans-
formation and dependencies among the original variables
physical interpretation of the results is seldomly retained
in the u-space but will be recovered if results in the

u-space are mapped back into the original space.

Knot-Point Selection and Approximation Strategies

In very few cases the analyst has almost no information

of the problem at hand. Then, he should plan the knot-points
such that a large range of values is covered by his first
"experiments". The same situation can also arise in system
analysis where the same uncertainty variable acts favourable
in one system component but unfavourably in another componen
Knot-points should, of course, be selected in the u-space
where the reliability considerations are carried aut - Thisg
space quite naturally has certain advantageous properties
i.e. rotability which says that the reliability properties
of any approximation will not be changed under rotations.
Furthermore, the reliability characteristics of a given
failure surface are mainly determined by its distance to the

coordinate origin and, here, the region of greatest interest
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is where the failure surface is closest to the origin
because of the rotational symmetry of the multinormal
density. Therefore, it is assumed that a transformation
U=T(X) and its inverse §=T_1(g), e.g. according to [6]
is known. For the case of complete ignorance about the
region of interest a natural choice of the central point
is Eozg. Due to the rotational symmetry of the u-space
and the assumed complete disorienfation with respect to
the region of interest it is also natural to choose the
first set of additional knot-points to lie on a central
hypersphere (Figure 1). The radius R of the hypersphere
might be chosen such that it contains a certain proba-
bility p close to unity. We have R2 - F;;(p) with sz
the chi-suqared distribution with n degrges of freedgm
A possible thoice of points is also given in figure 1. The
quadrant for the interaction point may be selected at
random at this state. Oftenly, it is advisable first to
determine only knot-points sufficient for a plane response
surface and, then, if this plane is still uninformative
to proceed to quadratic interpolation surfaces.
In most other cases there is some information on the
region of interest. It may be derived from rules of thumb
Oor qualitative engineering judgement (or intuition) but
most frequently from simple idealizing models for the

physical context; for example, by simple equilibrium

considerations for structures, analytical linear-elasticity

models, simple rigide~plasticity models, etc. This model




should at least be as realistic as to include the variables

known to be important a priori and which have the same type

of sensitivity with respect to changes in the variables.

A further simplification might consist in assuming a simpli-
fied stochastic model, e.gq. X as a normal-lognormal vector
with the same first and second probabilistic moments. A first-
order reliability evaluation then will produce a first estimate
of the region of interest which simply is the B-point of the
elementary analysis. Figure 2 demonstrates the importance

of selecting a suitable starting point at an example typical
in complex structural analysis. It shows the state function

of an initially curved column under uncertain load U, and

with random yield strength U,. The problem is known to be
highly non-linear beyond a certain state. Any approximation
with knot-points around u=0 would be completely misleading.
Since the state function has a pole at T_1(u2)=c3, the B-point
of a plane or a quadratic failure surface derived from the
corresponding approximate state function fitted to points

near u=0 would even fall into a domain where the state function
is undefined. This example is also an indication that any
selection of points must observe possible physical constraints.
However, this is usually not easy to fulfill in practice.

Any such preliminary analysis frequently turns out to be very
useful since it localizes the region where further investi-
gations should be made. From now on, any further analysis

should be based on the desired stochastic model and the



complete physical model.

The first-order reliability method now would proceed
in further searching for the region of interest. Finally,
the failure surface g(x)=0 resp. g(T—1(3))=0 would be
linearized by a hyperplane perpendicular to the vector
spanning the shortest distance between g(T_1(g))=O (most
likely failure point) and the coordinate origin [1-6].
First probability estimates would be obtained by ¢ (-8)
if B is this shortest distance, i.e. B8=min{|| u||} for
{u:g(u)=0}. 1f g(T‘1(E))=O is twice differentiable in this
point, quadratic expansion forms can also be used at the
expense of some more effort yielding better failure
probability estimates [3,14]. Hence, the first-or second-
order reliability method is a response surface method with
either first-or second-order expansion surfaces fitted
to the failure surface in a point of greatest interest for
reliability. Some of the algorithms to find the most likely
failure point are, this is worth mentioning, direct analogue
to the method of steepest descent (ascent) in classical \6TA
response surface techniques where expansion points are sougt
such that the response attains some desired extremum.
Clearly, in order to make this procedure practical which
actally means rapidly converging, one has to require relatively
well-behaved state functions g(g'1(g)). Nevertheless, this
algorithm would represent a first possibility to approach

the reliability problem.



Occasionally, the gain in accuracy when proceeding towards

:1

the most likely failure point (the interesting region) becomes
less and less and will soon be dominated by the gain which

could be achieved by locally fitting quadratic forms. Note,
however, that the number of determinations of g(x) in each

step is approximately proportional to n in the linear response
surface case. Furthermore, all methods presently in use
first-order reliability methods or classical steepest ascent
(descent) response surface methods, appear to lack incorporation
of the information on g(x) gained in previous steps of the
iteration. This is certainly one of the important aspects

to be considered in complex problems where the calls for g(x)
must be kept at a minimum. In order to allow for early

truncation of the iteration we, therefore, propose, as a second
alternative, to use quadratic response surfaces at the very first
steps. One probably would select this alternative if one expects
convergence problems. In order to smooth the actual state function
but retain those points on g(gw1(g)) which actually have been
determined exactly, one now should apply Lagrangian inter-
polation surfaces. The first step is the selection of additional
knot-points in the u-space having distance A (1) to the central
point determined previously. A (1) generally should be chosen
rather large, about ‘A (1) =1, say (see figure 3 ). Then, the
corresponding knot-points in the x-space must be evaluated by

Eyzg(uk) which are used to determine mk:q(fk) for k=1 to

k=1+2n+n(n-=1) /2. The resulting quadratic interpolation surface




normally requires a non-linear transforamtion. It is no more

quadratic if transformed. Therefore, a new B-point u, (1) on

q(g"1(g))m0 must be found and a probability estimate

is obtained either by expanding a (E-1(E))w0 into a
plane 1l(u)=0 or into a quadratic g(u)=0 provided that
the transformation is continuously differentiable.
According to [3] the resulting quadratic must be brought
into one of the standard forms. Its probability content
can then be evaluated by one of the methods reviewed

in the same reference. If this probability is large a
particularly useful asymptotic formula given in [14]

is worth mentioning:

n—1 __1/2
P. = P(g(X)<0)%P(q(U)s0)~d(-B8) T (1-|8lk,)

t
i=1

:he Ki s are the principal curvatures < 1/8 of
9d9TUB(yu))=0 in the B-point. The formula describes the
gowTUYL probability of an approximating paraboloid with
TUFEL645n axis going through the B-point. The result is
interesting quite generally since it emphasizes the

dominance of the value of B, i.e. the region of interest

against other characteristics of the failure surface. Thus,

finding the most likely failure region is essential in

any analysis. In reducing the distances A in an appropriate

manner when applying this procedure iteratively one should

finally find the result of the first alternative. However,

one should have in mind that each iteration step now involves




approximately n2/2 instead of n calls of g(x) and, therefore,

the method might be inferior to the first alternative. An
intermediate procedure consists in starting with a plane
interpolation surface and adding consecutively quadratic
terms only for those variables which appear to be dominating
i.e. have largest sensitivity with respect to the failure
probability expressed by the direction cosine of the B-point
in that variable.

The third alternative combines the first steps of alter-
native ii. with a least-square fitting in the consecutive
steps for the search of the region of interest.

For k>1+2n+n(n-1) /2 the interpolation surface needs not

be any more a simple quadratic surface since more than the
necessary points are available. Higher-order polynomials
could in principle be used. Unfortunately, such polynomials
can oscillate considerably between points and thus being

a potential cause of non-convergence (local minima!) when
used later on. A perhaps better alternative to incorporate
more information on the shape of g(x) into approximation
surfaces is to perform a weighted linear or quadratic
regression analysis. Clearly, the weights in the least
square criterion should reflect both the value of g(ik)

and the distance of X, to 5*. For example, one could use

1
=7
(Jg(T "(U))|[+6)

1 1 2
pk = ﬁ exp [_ -2"19.]{” ]




in

: p [g(2 ' (w))-r (u) 1%+min

where N is a necessary normalizing factor such that the

pﬁ S sum up to unity, § a small positive number close to

zero and r(.) the response surface as given by eq.(6).

The only reason to introduce § is to avoid divisions

by zero. The first factor reflects the fact that only those

values of u, are of primary interest for which g(I—1{Ek))

is or is close to zero. The peak of weights for g(g_1{g))

close to zero can be made sharper in raising the first

factor to powers > 1. The second factor takes account of

the distance || Ekltand simply describes the decay of the

multinormal density function with distance from the origin.

Note that monotony of q(z_q(g)) in each of the components

of u is somehow a condition of this procedure to work.

A disadvantage is that it does not necessarily converge

to the asymptotically exact result as given in [14] although

the differences should, in practice, be negligible small.
The error term of the regression surface can or cannot

be included in the final probability analysis. Its mean and

variance can easily be estimated using the standard formulae

for e, =p, (g(T "(u)-r(u)), i.e. by T:{xtk)/in and

2

8 = (?{;P—T)z)/(xki—n—l). Due to the weighing € is a biased

estimator for E[e]. Also, the distribution function of &




is unknown. Nevertheless, since this lack-of-fit term

should be small it may without too large error be

assumed normally distributed.

The iteration for the search of the region of interest
can now be done in the usual way, i.e. finding the new
B-point on the regression surface in each step. In fact,
one could add only one new knot-point, the B-point of
the actual regression surface in each step having in
mind that the laborious part of the analysis is in the
mechanics. It appears though that no general rule can
be given how many new points to select in each step and
when to truncate the iteration. Obviously, the proposed
method is a method of linear to quadratic interpolation
with memory to find the region of interest yielding
probability estimates at each step in the iteration.
Quadratic interpolation should be faster convergent
than any linear interpolation scheme (e.g. method of
steepest descent, method of Lagrangian multipliers,

G =il

elementary iteration schemes based on x
etc.). The keeping of memory has its justification in

the fact that the majority of structural problems is
somehow well-behaved in that g(2_1(3)) is monotonic.

The use of regression surfaces (with or without error
term) might introduce a certain robustness of the
algorithm. The key problem here and for the earlier alter-

natives simply is a suitable selection of the central

starting point.



Knot-point selection in system analysis

The problem becomes even more involved if the response
surface technique has to be applied simultaneously to
various components of a system with given logical struc-
ture. Such components could, for example, be the elements
in a finite-element model for a complex structure.
Failure of the system could be defined by any element

or a given set of elements failing. For each element

a different state function and failure domain is formu-
lated, e.g. for the r-th element in a set of s elements
it is: F_ = {ge(gr(E);O)}. System failure is defined

as F = %QFvu which is the minimal cut set representation
of the failure event. In this case the procedure out-
lined before can, of course, be applied s-times, for
each individual element, respectively. The failure do-
mains would finally be replaced by equivalent half-
spaces and the system probability can be calculated in
the usual way [7, 15 ]. If this is not possible for com-
putational reasons the selection strategy for the knot-
points is of utmost importance since one set of knot-
points optimal for an initially "critical" component

may not be optimal for other components which might have
become critical if another set of knot-points had been
chosen. It should also be clear that, in general, it is

not immediately obvious which component or which component



of the basic variable vector plays the most important

role if there is any. In recognition of the fact that
the state function has to be known over a much larger
range of values of the uncertainty vector it is proposed
to start in a systematic manner as described at the be-

ginning of the last section.

In order to find the next central knot-point one can
make use of the equivalent plane concept as given in [15].
Therein, an equivalent hyperplane is defined as a plane
which cuts off the same probability content as the ori- |
ginal failure domain and has the same sensitivity against
(small) changes in the components of the uncertainty
vector U with respect to the failure probability. Clearly,
the point on that equivalent hyperplane with shortest
distance to the origin is such a new central knot-point.
If this concept is combined with the regression fitting
as outlined above sufficiently accurate results may be
expected already for the very first iterations. What

appears important to note is that the logical structure

of the system must be formulated beforehand.




Comments on possible reduction strategies

of the basic variable space

One of the most effective means to simplify the numerical
analysis is, of course, an early reduction of the space

of basic uncertainty variables. Unfortunately, very

little is known about objective criteria upon which such
reductions could be based so that several remarks must
suffice for the moment. They exclusively refer to insights
which can be gained in the reliability part, i.e. in the
u-space. Obviously, if certain variables in either of the
approximating surfaces have (almost) identical coefficien
in the linear terms in two consecutive iteration steps

and this remains so during the iteration, 9(2-1(3)) is
linear in these variables and nothing is gained by re-
peating the determination of the gradient of 9(2"1(3)) with
respect to these variables. Also, if the direction cosines
for some variables are small compared to others indicating
that the influence of variations in these variables on the
failure probabilities is small these variables can be
collected in one single variable Y = ZaiUi with mean

E[Y] = O and variance Var (Y] = Zaiz. This variable can
then be treated similar to the residual € in regression
surfaces. Note that this does not necessarily mean that

the calculations in the x-space are carried out for con-

stant values of these variables since the probability




distribution transformation may very well require changes

for dependent variables. What is kept constant is, in
fact, only the partial gradient for these variables in

the u-space. Certainly, these or other types of simpli-
fications normally should be checked at the end of the

iteration.



Summary and Conclusions

First- or second-order reliability methods need to be
combined with certain techniques in classical response
surface methodology if applied to complex structural
problems. A rigorous implementation of the first methodo-
logy which, in fact, can be interpreted as a special
version of the latter can numerically be no more feasible
since the region of interest, i.e. the most likely failure
point (s) can only be found iteratively with large nume-
rical effort if it can be found at all. It is therefore
proposed to determine the region of interest in first
approximation by use of simplified physical models and,
then, instead of using local expansion surfaces approxi-
fpeut the original state function by interpolation or
gbbropetter by weighted regression surfaces supported
brobo: appropriate number of knot-points. These surfaces
P98 Bare used in the reliability analysis allowing in
USFIU9] also considerations of multi-state componental
BEHI0iour. Second-order surfaces, at least in the domi-
nating variables, are recommended. Yet, much more experience
has still to be gained at practical examples since theo-.
retical considerations appear to be only of limited value.
It is hoped that the review of concepts and methods presented
herein will help in designing such examples in a somehow

structured manner.
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