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Abstract

While self-supervised monocular depth estimation in
driving scenarios has achieved comparable performance to
supervised approaches, violations of the static world as-
sumption can still lead to erroneous depth predictions of
traffic participants, posing a potential safety issue. In this
paper, we present R4Dyn, a novel set of techniques to use
cost-efficient radar data on top of a self-supervised depth
estimation framework. In particular, we show how radar
can be used during training as weak supervision signal,
as well as an extra input to enhance the estimation robust-
ness at inference time. Since automotive radars are readily
available, this allows to collect training data from a variety
of existing vehicles. Moreover, by filtering and expanding
the signal to make it compatible with learning-based ap-
proaches, we address radar inherent issues, such as noise
and sparsity. With R4Dyn we are able to overcome a ma-
jor limitation of self-supervised depth estimation, i.e. the
prediction of traffic participants. We substantially improve
the estimation on dynamic objects, such as cars by 37% on
the challenging nuScenes dataset, hence demonstrating that
radar is a valuable additional sensor for monocular depth
estimation in autonomous vehicles.

1. Introduction
Depth estimation is a fundamental task for scene un-

derstanding in autonomous driving and robotics navigation.
While learning-based supervised approaches for monocular
depth have achieved strong performance in outdoor scenar-
ios [7, 2], the expensive LiDAR sensors required for su-
pervision are not readily available. Additionally, collecting
such ground truth data is challenging, and requires further
processing, as the raw LiDAR signal may not be sufficient.
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Monodepth2 R4Dyn [ours]

Figure 1. Example of depth prediction of our R4Dyn compared to
that of Monodepth2 [11], from the validation set of nuScenes [3].
This dynamic scene violates the static world assumption, pos-
ing a challenge for self-supervised approaches. The depth of the
safety critical oncoming traffic is severely underestimated by Mon-
odepth2, but correctly predicted by our R4Dyn.

Alternative methods exploit geometrical constraints on
stereo pairs or monocular videos to learn depth in a self-
supervised fashion. Image sequences offer the most inex-
pensive source of supervision for this task. However, these
approaches require to estimate the camera pose between
frames at training time [11], and suffer from inherent issues,
such as scale ambiguity and the tendency to incorrectly es-
timate the depth of dynamic objects.

Furthermore, self-supervised methods rely on the as-
sumption of a moving camera in a static world [30]. As
real-world street scenes are typically dynamic, this assump-
tion is often violated, leading to significantly wrong predic-
tions. This raises a variety of issues, such as the infinite
depth problem, where leading vehicles driving at the same
speed as the camera are predicted to be infinitely far away
(such as the horizon), due to their lack of relative motion
across frames. Several works addressed this problem ei-
ther by excluding from the loss computation those regions
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where no pixel variation is detected [11], or discarding from
the training set those frames with leading vehicles driv-
ing at a similar speed [13]. Others increase the complex-
ity by estimating the individual object’s motion [4] or the
scene flow [20]. However, existing methods that preserve
the model complexity [11, 13] fail to cope with oncoming
traffic, as can be seen in Figure 1. In this case, instead of
infinitely far, the estimated depth tends to be greatly un-
derestimated, since from the camera perspective its relative
motion across frames is larger than that of static objects.

Compared to LiDARs, radars are relatively inexpensive
range sensors, already integrated in a large number of mass
production vehicles [21, 23], to aid features such as adap-
tive cruise control. Nevertheless, radar popularity in the
learning-based autonomous driving domain is yet limited,
and has been explored mainly in the context of object detec-
tion [26, 17]. To this date and to the best of our knowledge,
only two works [21, 23] investigated the use of radar to
improve depth estimation, both proposing a multi-network
pipeline to incorporate radar data at inference time, while
using LiDAR-supervision during training, transforming the
task into sparse depth completion.

In this paper, we aim to bridge this gap and integrate
readily available radar sensors to improve self-supervised
monocular depth estimation. As radars are already very
common, our proposal allows to collect training data from a
wide range of existing vehicles, instead of a few prototypes.
Despite their inherent noise and sparsity, radars could pro-
vide enough information to mitigate the limitations of self-
supervised approaches, overcoming the need for LiDARs.
Towards this end, we propose a novel loss formulation to
complement self-supervised approaches, showing the ben-
efits of radar as additional weak supervision signal to im-
prove on dynamic objects. Moreover, we optionally inte-
grate radar data at inference time, transforming the task into
very sparse depth completion. We name our method R4Dyn
(Radar for Dynamic scenes), and the contributions of this
paper can be summarized as follows:

• We use radar to aid the prediction of dynamic objects
in self-supervised monocular depth estimation.

• To the best of our knowledge, this is the first monocu-
lar depth estimation work that exploits radar as super-
vision signal.

• We propose a technique to filter and expand radar de-
tections, and make radar compatible with learning-
based solutions.

• We provide extensive evaluations, including errors on
safety critical dynamic objects, on the challenging
nuScenes dataset [3], training various prior methods
under equivalent settings, hence creating a new bench-
mark, and easing the comparisons for future works.

2. Related Work
2.1. Supervised Monocular Depth Estimation

Estimating depth from a single color image is an ill-
posed problem, as there is an infinite number of 3D scenes
that can yield the same 2D projection. Nonetheless, tremen-
dous advances have been achieved since Eigen et al. [6] pio-
neered using CNN-based architectures and Laina et al. [19]
leveraged fully-convolutional networks with residual con-
nections [14] to predict dense depth maps from monocular
images. While most supervised works regressed directly to
the depth measurements of LiDAR sensors (as in KITTI [9])
or RGB-D cameras (as in NYU-Depth v2 [28]), Fu et al. [7]
formulated the task in an ordinal fashion.

2.1.1 Depth Completion with Radar

Despite a recently increasing interest in radar for object
detection [26, 17], to this date, only two works [21, 23]
used it for depth estimation. Both achieved substantial im-
provements by using it in a LiDAR-supervised setting with
a multi-stage architecture, with the first stage filtering the
radar signal and improving its quality. In particular, by in-
corporating the radar as additional input, they transformed
the depth estimation task into highly sparse depth comple-
tion. Lin et al. [21] were the first to use radar in this super-
vised context, where they followed a late-fusion approach to
account for the heterogeneity of input modalities. Long et
al. [23] proposed a sophisticated learning-based association
between the projected radar points and the RGB image.

Similarly to these pioneering works [21, 23], our method
also incorporates radar for depth estimation, but we follow
a novel idea: we focus on using radar to improve the esti-
mation of dynamic objects in a self-supervised setting, for
which we propose a specific loss function.

2.2. Self-Supervised Monocular Depth Estimation

Self-supervised methods overcome the need for ex-
pensive LiDAR data by leveraging view reconstruction
constraints, either via stereo pairs [8, 10] or monocular
videos [34, 11, 12]. The latter build on the motion parallax
induced by a moving camera in a static world [30]. Further-
more, these methods require to predict simultaneously the
depth and the camera pose transformation. Since the pio-
neering work on video-based training by Zhou et al. [34],
vast improvements have been achieved thanks to novel loss
terms [11], detail-preserving network architectures [12] and
the exploitation of cross-task dependencies [16, 13].

2.2.1 Solutions to Self-supervised Inherent Issues

Scale ambiguity Since infinitely many 3D objects cor-
respond to the same 2D projection, video-based methods
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Figure 2. Overview of R4Dyn. The proposed approach incorporates radar as a weak supervision signal, and optionally as additional input.
R4Dyn extends a self-supervised framework by incorporating radar to improve on the depth estimation of dynamic objects.

can only predict depth up to an unknown scale factor.
Therefore, a plethora of works [34, 11, 4] rely on ground
truth (i.e. LiDAR) median-scaling at test time. Guizilini
et al. [12] targeted this issue by imposing a weak velocity
supervision on the estimated pose transformation, exploit-
ing the available odometry information, achieving scale-
awareness.

Dynamic scenes Another major limitation of video-
based approaches is due to the inherent static world as-
sumption. This is perpetually violated in driving scenarios,
leading to critically incorrect depth predictions of dynamic
objects (e.g. traffic participants). A typical failure case is
caused by leading vehicles driving at a similar speed as the
ego vehicle, thereby lacking relative motion across frames
and resulting in a significantly overestimated depth. Godard
et al. [11] addressed this problem with an auto-masking
loss to ignore pixels without relative motion. In contrast,
Guizilini et al. [13] proposed a workaround to detect and
discard training samples where this ”infinite depth prob-
lem” occurs, thereby keeping only uncomplicated frames,
albeit reducing the training data.

However, neither of the two [11, 13] accounted for on-
coming traffic, which leads to a significantly underesti-
mated depth, since its motion across frames is larger than
that of the static elements. This might be linked to the
popular KITTI depth benchmark [9] mostly lacking such
kind of safety critical dynamic scenes, widely available on
nuScenes [3]. Alternative solutions target dynamic scenes,
by increasing the model complexity and simultaneously
predicting depth, ego-pose, plus 3D motion of dynamic ob-
jects [4] or scene flow [33, 24, 15, 20].

Although methods learning scene flow in a self-
supervised fashion do not require expensive additional la-
bels, e.g. instance segmentation [4], they might suffer from
the same ambiguities of self-supervised depth estimation,
and require stereo vision [33, 24, 15].

Our proposed approach is substantially different from
previous works targeting dynamic scenes. We address this
problem by incorporating radar data, which has not been
explored before in this context.

3. Method
In this paper we incorporate radar data to enhance the

self-supervised depth prediction of dynamic scenes. An
overview of our method can be seen in Figure 2. We build
on top of a self-supervised framework which learns from
monocular videos, and uses the vehicle odometry (Sec-
tion 3.1), as in [12], for scale-awareness. Although radar
signals are highly sparse and noisy, they could provide
enough information to improve self-supervised methods.
So, we integrate radar data both during training to improve
the prediction of dynamic objects (Section 3.2.3), and infer-
ence to increase the overall robustness (Section 3.3).

Radar inherent issues Radar and LiDAR provide sig-
nificantly different signals: radar signals are noisy, sparse
and often lack elevation information. Radar detections pro-
jected to the image plane occupy a single pixel, leading
to a low density of ≈ 0.03%, compared to ≈ 1.63% of a
32-beam LiDAR [3]. Additionally, radar suffers from sev-
eral sources of noise (clutter), complicating its usage in
learning-based approaches. The major causes are multi-
path [23] and ”see-through” effects, due to the different
viewpoints [27], scene geometry and physical sensor prop-
erties, and not relatively simple Gaussian noise. Multi-path
effects alone affect about 35% of all points [23]. Moreover,
due to missing elevation information (e.g. in nuScenes [3]),
all detections lie in a plane parallel to the ground. This com-
plicates radar usability, requiring new techniques to make
it compatible with learning-based approaches and correctly
associate radar detections with image pixels. Therefore, we
tackle these issues by expanding the radar influence (Sec-
tion 3.2.1), and mitigating its noise (Section 3.2.2).



3.1. Self-Supervised Framework

The proposed method is built on top of a video-based
monocular depth approach, described in this Section. We
aim to simultaneously predict the depth D̂t of a target frame
and the pose transformations Tt→s between target It and
source frames Is∈{t−1,t+1}. Depth and pose estimates serve
to warp the source frames into a reconstructed target view,
from which an appearance-based error is computed from
the view reconstruction [34] and a Structural Similarity
(SSIM) [32] term, as in [11, 12].

Following [11], only the minimum reprojection error Lp
is considered, accounting for partial occlusions. Moreover,
pixels without relative motion across frames are masked
out [11]. An additional loss Ls encourages smoothness
whilst preserving edges [10]. Lp and Ls are computed at
each scale of the depth decoder, after upsampling to full
resolution [11].

As the radar provides absolute depth values, to use its
signal as weak supervision (Section 3.2.3), it is crucial to es-
timate depth at the right scale. However, as the learning ob-
jectives above only allow to predict depth up to an unknown
scale factor. We follow [12] to achieve scale-awareness with
a weak velocity supervision Lv on the pose transformation.

3.2. Weak Radar Supervision

In this work, we focus on dynamic objects, which em-
body safety critical failure cases of self-supervised monoc-
ular depth estimation. We aim to mitigate this issue, which
is visible in Figure 1, via a weak radar-based supervision.

input image accumulated radar w/ 2D boxes

duplicated and expanded radar radar filtering

t0 [t−3, t+3]

Dt0

Figure 3. Radar preparation for weak supervision, detail of the top
right portion of Figure 2. The signal is accumulated, then filtered
via 2D boxes, duplicated and expanded.

3.2.1 Addressing Radar Sparsity

To address radar high sparsity and make it suitable as su-
pervision signal, it is fundamental to expand its influence
over a larger portion of the image. In particular, as we fo-
cus on dynamic objects, we aim to expand the radar signal
across all object pixels, within their boundaries. At training
time, we overcome sparsity by incorporating the RGB im-
age context information, similarly to [29, 1], as well as 2D
bounding boxes.

Context-aware radar expansion We expand each radar
point to cover a larger area of the corresponding object. Ex-
panding it as much as possible, but constraining it within
the boundaries, and accounting for 3D shape variations re-
quire a precise mapping between the projected radar points
and the object pixels. Towards this end, during training, we
generate an association map around each radar point. We
exploit the idea of bilateral filtering [29], a common edge-
preserving image smoothing technique. In particular, we
link an image pixel p to a radar point r if p and r are spa-
tially close in the image space, within the same bounding
box, and have similar pixel intensities (i.e. I(p) ≈ I(r)).
This bilateral association map can be formalized as follows:

w(p, r) = exp

(
− (∆u)

2
+ (∆v)

2

2σ2
d

− ‖∆I‖
2
2

2σ2
r

)
(1)

where ∆u = (u − ur) and ∆v = (v − vr) are the pixel
distances, ∆I = I(u, v)− I(ur, vr) the difference of inten-
sities of a radar point pixel r = (ur, vr) and a neighboring
pixel p = (u, v), while σd and σr denote domain and range
smoothing parameters, respectively. Hence, the bilateral as-
sociationw(p, r) represents the probability of a pixel p to be
linked to a radar point r.

Pixel-radar association map Although this bilateral
confidence map preserves edges by design, it may still leak
small, nonzero values beyond object boundaries, leading
to undesirably smooth depth predictions. We avoid this by
clipping the heatmaps in proximity of the box edges. More-
over, w(p, r) could serve as per-pixel weight for the radar
supervision. However, this would put more emphasis on the
radar pixel r and result in uneven object depth maps. We ad-
dress this by transforming the confidence values w(p, r) in
a binary map. Considering the set of reliable detectionsRdf
(Section 3.2.2) and a threshold γ ∈ R, we compute:

W (p, r) =

1 if max
r∈Rdf

w(p, r) > γ

0 otherwise
(2)

so all relevant portions get the same amount of supervision.
Duplication To account for the missing elevation, as in

Figure 3 we copy each projected radar point r and its corre-
sponding depth along the vertical axis to the lower third and
middle of its bounding box. We leave out the upper half of
the box to consider depth variations within the boxes (e.g.
windshield of the car in the lower part of Figure 4).

Measurement Accumulation We also reduce sparsity
by accumulating measurements. To do so, we exploit radar
doppler information to compensate for ego- and target-
motion across samples, as proposed by [17]. Since the
doppler velocity is radial, it provides only a rough estimate
of the true velocity of the target, but it is a reasonable ap-
proximation considering the frame rate. Via duplication and
accumulation, we obtain a dense set of radar points Rd.



3.2.2 Addressing Radar Noise

Noise is another major radar issue to be reduced (Section 3).
Clutter removal We want to extract from Rd reliable

measurements Rdf for supervision. We do so by leverag-
ing 2D bounding boxes during training to filter out noisy
radar detections. Within each object in the image space,
radar detections closer to the sensor are likely to be reliable,
whereas points at higher distances often result from noise.
Hence, to obtain Rdf , we find the minimum depth dm per
bounding box bi and only keep detections within bi having
d < dm+β. The tolerance β allows to keep multiple points
in bi, and accounts for depth variations along 3D objects.

automaskinput image weak radar sup. [ours]

Figure 4. The automask [11] and our radar supervision mask. Red
pixels contribute to the loss Lp. The automask correctly masks
out the leading car (top), but not the oncoming one (bottom). Our
radar supervision Lr acts (green) successfully on both cars.

Object-focused filtering Radars without elevation infor-
mation (e.g. nuScenes [4]) provide only detections parallel
to the ground plane, thus, in the image, further points ap-
pear higher than closer ones, and within the same objects
are more likely to be noisy. Analogously, detections around
the box edges could be unreliable due to wide boxes or ”see-
through” effects. For these reasons, as shown in Figure 3,
we discard points in the upper 50% and outer 20% of bound-
ing boxes, as well as overlapping areas. Furthermore, it is
more intricate to assess radar detections reliability outside
object boxes, hence we discard all background radar points
to avoid erroneous supervision.

3.2.3 Training Objective for Dynamic Objects

Addressed noise and sparsity, the radar signal is suitable to
weakly supervise the depth prediction of dynamic objects.
We want to use it to adjust erroneous depth estimations via
a loss function. We define this weak radar supervision as:

Lr
(
D̂,D

)
=

1

N

∑
p∈I

∥∥∥D̂p −Dp

∥∥∥
1
�W (p, r) (3)

where � denotes the Hadamard product. Eq. 3 aims at fix-
ing the predicted depth D̂ towards the expanded target radar
measurements D, for each of the N image pixels p where
the binary association map W (p, r) (Eq. 2) is positive.

Depth gradient preservation The expanded measure-
ments D in Eq. 3 act as ground truth depth. We introduce
Ωj = [W (p, rj) = 1] as the area affected by the expanded
radar point rj ∈ Rdf . If D was constant within each Ωj ,
then Lr would shift the whole area to the same depth D.
This would not take into account depth variations within ob-
jects, such as the door panels or the windshield of the lower
car in Figure 4 being further than its front bumper. More-
over, although the depth of dynamic objects is often under-
or over-estimated by video-based self-supervised methods,
depth variations within objects are typically well predicted
(e.g. in Figure 1). For these reasons, we adapt the pseudo-
ground truth D to preserve depth variations. As shown in
Figure 5, we do so by computing ∆j = Dradar(rj)−D̂(rj)

as the difference between the prediction D̂(rj) and the mea-
surement Dradar(rj), only at each radar pixel rj ∈ Rdf .
We then generate the pseudo ground truth D(Ωj) by shift-
ing the prediction D̂(Ωj) by the same ∆j :

Dj(p) = D̂j(p) + ∆j (4)

where ∆j is computed at the radar pixel rj such that
arg maxr∈Rdf

w(p, rj).
The final objective function can thus be formulated as:

L = Lp + λ1Ls + λ2Lv + λ3Lr (5)

with λ1, λ2 and λ3 being balancing coefficients.
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binary mapping
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depth 
prediction
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Lr
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D̂(Ωj) D(Ωj)
rj

Ωj

D(rj)D̂(rj)

Figure 5. Depth gradient preserving mechanism. We compute ∆j

between prediction and radar detection, then adjust each pixel in
the prediction by ∆j , by enforcing a pseudo-ground truth during
training, thereby preserving the predicted gradient.

3.3. Sparse Depth Completion with Radar as Input

As radar sensors are readily available in a wide range of
mass-production vehicles [21, 23], a depth estimator could
exploit them at inference time, transforming the estimation
task in a very sparse depth completion problem. To do so,
we first need to mitigate radar inherent sparsity and noise
issues. We follow a similar approach as for using the signal
as weak supervision (Section 3.2), although we do not make
use of 2D bounding boxes at inference time, since extract-
ing them for the input would increase the runtime.

For sparsity, we apply the same measurement accumula-
tion technique described in Section 3.2.1 to obtain a denser
point cloud, aggregating the current and past radar frames.
For the noise, we adopt the same min-pooling approach as



Method Sup. Input AbsRel SqRel RMSE δ1 AbsRelC AbsRelV AbsRelN AbsRelP

Lin et al.‡ [21] GT ImR 0.1086 1.080 5.394 88.21 0.1907 0.2082 0.2088 0.2930

Struct2DepthK [4] Mi∗ Im 0.2195 3.799 8.441 73.23 0.3323 0.3516 0.3739 0.2993
PackNet-SfM [12] Mv Im 0.1567 2.440 7.230 82.64 0.1814 0.2382 0.2508 0.2473
Monodepth2‡ [11] M∗ Im 0.1398 1.911 6.825 84.82 0.1983 0.2110 0.2300 0.2572
baseline‡ [ours] Mv Im 0.1315 1.705 6.520 85.71 0.1862 0.2091 0.2254 0.2351
R4Dyn-L‡ [ours] Mvr Im 0.1296 1.658 6.536 85.76 0.1343 0.1618 0.1686 0.2231
R4Dyn-LI‡ [ours] Mvr ImR 0.1259 1.661 6.434 86.97 0.1250 0.1504 0.1589 0.2146

Table 1. Evaluation on the nuScenes [3] validation day-clear set. ‡ were pretrained on ImageNet [5], K also on KITTI [9]. Supervisions
(Sup.): GT: via LiDAR data, M: via monocular sequences, ∗: test-time median-scaling via LiDAR, i: instance masks, v: weak velocity,
r: weak radar. Inputs (In.): Im: RGB, ImR: RGB and radar. C, V, N and P for Cars, Vehicles, Non-parked vehicles and Pedestrians,
respectively. R4Dyn-L and R4Dyn-LI: proposed method with radar as L: weak supervision, I: input. Notation reused in other Tables.

in Section 3.2.2, but instead of exploiting 2D boxes, we
slide a fixed-size window across all projected radar points.

To account for the fact that radar and camera are hetero-
geneous sensors, we apply separate encodings and merge
the features in a late fusion fashion, as in [21].

4. Experiments and Results
4.1. Experimental Setup

Dataset We conduct all experiments on the challenging
nuScenes dataset [3]. We selected it as it is the only avail-
able large-scale public dataset with the recording vehicle
fitted with a camera and an automotive radar. NuScenes
contains around 15h of driving data collected in Boston and
Singapore, including diverse traffic scenarios (e.g. both left
and right hand drive), with a plethora of dynamic scenes
(unlike KITTI [9]), making it difficult for self-supervised
depth estimation. As we are interested in sensor setups
readily available in production cars, we consider only data
from front-facing camera and radar. For training, we use
only scenes with good visibility (i.e. day-clear). This in-
cludes 15129 samples (with synced image, radar and Li-
DAR data) for the official training set and 6019 for the offi-
cial validation set (of which 4449 are day-clear).

Evaluation metrics We evaluated our models on the
standard depth estimation metrics and errors. As ground
truth we used single raw LiDAR scans up to a maximum
depth of 80 m. In particular, as this work focuses on dy-
namic objects, we are interested in the performance im-
provements on such objects. Towards this end, we also eval-
uated according to the semantic class: we exploited LiDAR
semantic segmentation annotations from [3] to distinguish
between classes, and computed the errors on the depth pre-
dictions at the corresponding LiDAR points. The evaluated
classes comprise Cars, Vehicles (e.g. Cars, Trucks, Buses,
Motorcycles, Bicycles), Non-parked Vehicles and Pedestri-
ans, thereby encompassing all traffic participants.

Network architecture The presented techniques for

processing and incorporating radar data for depth are not
tailored to a specific backbone architecture. We used the
small and effective ResNet-18-based [14] pose and depth
networks from [11]. The pose network comprised 13.0M
parameters, while the depth network 14.8M. With the radar
as input, an additional ResNet-18 encoder branch was used,
increasing the depth parameters by 1.1M.

ID Weak radar sup. AbsRel AbsRelC

L1 baseline 0.1315 0.1862
L2 L1 + Lr w/ raw pts 0.1766 0.4841
L3 L2 + filter pts w/ GT box 0.1323 0.1960
L4 L3 + bilateral expansion 0.1306 0.1551
L5 L4 + binary mapping 0.1297 0.1356
L6 L5 + depth gradient pres. 0.1296 0.1343
L7 L6 – GT + predicted box 0.1289 0.1343

Table 2. Weak radar supervision ablation, evaluated on the
nuScenes [3] day-clear validation set. The baseline L1 is defined
in Section 3.1. L3-L6 and L7 make use of 2D boxes from ground
truth annotations or an off-the-shelf detector [31], respectively. L6
is equivalent to R4Dyn-L, with image-only input (Im).

Implementation details Each training sample consisted
of a 576x320 resolution image triplet (t−1, t0, t+1), 4 radar
measurements at [t−3, t0] for the input, and 7 radar samples
for the supervision at training time at [t−3, t+3]. At infer-
ence time we used a single image at t0, and 4 radar mea-
surements at [t−3, t0]. Using the Adam optimizer [18] with
β1 = 0.9, β2 = 0.999, we trained with a batch size of 16
for a total of 40 epochs with initial learning rate 2× 10−4,
which was halved every 10 epochs. If enabled, we intro-
duced the radar supervision after 30 epochs, when the cor-
rect depth scale had already been learned, and set the learn-
ing rate to 1× 10−5, halved after 8 epochs. The loss bal-
ancing weights were set to λ1 = 1× 10−3, λ2 = 0.02,
λ3 = 0.2. During training, we applied random horizontal



flipping to the input data as well color jittering with bright-
ness, contrast, saturation ±0.2 and hue ±0.05 to the input
images. The window for filtering radar at inference time
was 320 pixels tall and 8 wide, with stride 3, while the tol-
erance β was 2m. Further details can be found in the sup-
plementary material. In the following, we refer to different
configurations of our method, namely R4Dyn-L, R4Dyn-
I, and R4Dyn-LI, with -L and -I denoting our weak radar
supervision and radar as input, respectively. We trained
all models using PyTorch on a single NVIDIA Tesla V100
32GB GPU. Inference of our full method (i.e. R4Dyn-LI)
takes 27ms on an NVIDIA GTX 1080 8GB GPU.

ID Input config. AbsRel AbsRelC

I1 RGB only 0.1315 0.1862
I2 I1 + 1 radar input 0.1357 0.1926
I3 I2 + Lr 0.1298 0.1319
I4 I3 + radar accum. 0.1301 0.1279
I5 I4 + doppler accum. 0.1273 0.1264
I6 I5 + filtered 0.1259 0.1250

Table 3. Pre-processing ablation for radar as input, evaluated on
the day-clear nuScenes [3] validation set. I1 is defined in Sec-
tion 3.1. I6 is equivalent to R4Dyn-LI, our full approach.

Prior works and baseline For a fair comparison, we re-
trained all methods on the same dataset split, using the same
image resolution, the official implementations and param-
eters, until convergence. For Struct2Depth [4] we started
from model weights pretrained on ImageNet [5] and then
KITTI [9] by the authors, which improved its convergence
over ImageNet-pretraining only. All methods except for
PackNet-SfM [12] used a ResNet-18 [14] backbone pre-
trained on ImageNet [5]. Our baseline is the self-supervised
image-only method described in Section 3.1, which in-
cludes the weak velocity supervision.

Radar % AbsRel AbsRelC AbsRelV AbsRelP

0 % 0.1315 0.1862 0.2091 0.2351
25 % 0.1309 0.1358 0.1672 0.2254
50 % 0.1261 0.1309 0.1553 0.2167

100 % 0.1259 0.1250 0.1504 0.2146

Table 4. Evaluation on the nuScenes [3] day-clear validation set.
Different amounts of radar points are shown, both for input and
weak supervision. 0% is the baseline, while 100% is R4Dyn-LI.
C, V and P stand for Cars, Vehicles and Pedestrians respectively.

4.2. Quantitative Results

Comparison with related methods Table 1 shows the
comparison between our R4Dyn and related approaches.

We report alternative solutions for dynamic objects, such as
Struct2Depth [4] and Monodepth2 [11], as well as another
method using radar for depth, i.e. the LiDAR-supervised
work by Lin et al. [21]. Our R4Dyn-L and R4Dyn-LI out-
performed the strong baseline across the board, by a signif-
icant margin. Remarkably, the error on Cars dropped by
a substantial 33% with R4Dyn-LI, showing the benefit of
radar for estimating the depth of dynamic objects. Our ap-
proach largely improved over Monodepth2 [11], on which
our baseline builds upon. As can also be seen in Figure 4,
the automask from Monodepth2 [11] was not able to cope
with oncoming traffic, occurring frequently in the nuScenes
dataset. This led to a large error on Cars and other traf-
fic participants. Our R4Dyn-L and R4Dyn-LI reduced it by
32% and 37% respectively.

Method all clear rain night

Lin et al. [21] 0.126 0.109 0.145 0.248
Struct2Depth [4] 0.238 0.220 0.271 0.336
PackNet-SfM [12] 0.168 0.157 0.177 0.262
Monodepth2 [11] 0.161 0.140 0.193 0.287
baseline [ours] 0.146 0.132 0.166 0.242
R4Dyn-L [ours] 0.147 0.130 0.164 0.273
R4Dyn-LI [ours] 0.137 0.126 0.146 0.219

Table 5. Evaluation of AbsRel to generalize on adverse and unseen
conditions of the validation set of nuScenes [3]. All methods were
trained on day-clear (clear).

Struct2Depth [4], despite being additionally pretrained
on KITTI [9] and its individual motion predictions, pro-
duced the worst estimations, with large inconsistencies (Ab-
sRel std. 0.1511). Our R4Dyn-LI outputs were far more
consistent (std. 0.079). We attribute this difference to the
superiority of radar over instance masks as weak supervi-
sion, as well as to Struct2Depth [4] not fully solving the
infinite depth problem (e.g. in Figure 6). The sophisticated
PackNet architecture [12] was not able to deliver satisfac-
tory results, which could be due to the larger model size
(129M instead of 15M for ResNet-18), and the relatively
small dataset. This motivated using ResNet [14] as back-
bone. Furthermore, the LiDAR-supervised work by Lin
et al. [21], with radar as input, performed better than ours
overall, albeit worse on safety critical traffic participants,
such as by 53% on Cars. This could be due to the spar-
sity of the LiDAR from which it learned. Overall, Table 1
demonstrates the benefit of radar for monocular depth es-
timation, as it can substantially improve the predictions of
safety critical dynamic objects, both as weak supervision
with R4Dyn-L and as input with R4Dyn-LI.

Weak Radar supervision ablation study Table 2 shows
the impact of the various components of our weak radar su-
pervision. Throughout the table, errors do not decrease with



Input Image (Im) Lin et al. → GT-sup. Struct2Depth → Mi* Monodepth2 → M* R4Dyn [ours] → MvrGround Truth (GT)

Figure 6. Qualitative results from related works on the nuScenes [3] validation set. Next to each method name we indicate its supervision.

the introduction of each and every feature, thereby confirm-
ing that the radar signal necessitates to be filtered (row L3)
and expanded (L4) before it can positively contribute over
the baseline (L1), while simply integrating the raw points
(L2) increased the errors. With L7, we show that 2D bound-
ing boxes can be extracted via an off-the-shelf detector, such
as Scaled-YOLOv4 [31] trained on MS COCO [22], remov-
ing the need for ground truth annotations. L7 improved
over L6 (which used ground truth boxes), presumably due
to the nuScenes [3] boxes being oversized (used in L3 to
L6). Overall, Table 2 confirms the importance of our modi-
fications to use radar as weak supervision.

Radar as input ablation study Table 3 reports various
configurations for using radar as input, again motivating the
expansion (I4 and I5) and filtering (I6) of the radar signal.
In fact, simply adding a single radar sweep in input (I2) did
not outperform the baseline (I1).

Variable amount of radar signal In Table 4 we show
how the output quality changed by excluding a variable
amount of radar detections from the dataset. Already 25%
of the radar detections brought a large improvement over
the baseline (0%), overall as well as on safety critical traffic
participants. Once again, this shows the benefit of radar for
depth estimation, despite its inherent noise and sparsity. In
particular, adding more detections (filtered and expanded),
systematically reduced all the errors. Moreover, consider-
ing the rapid progressing of sensor technology [25], higher
resolution (e.g. 200%, 400%) and less noisy automotive
radar sensors might be available in the future, which would
further increase the gap to the RGB-only baseline.

Generalization to unseen adverse conditions Table 5
reports AbsRel of our R4Dyn and related methods on diffi-
cult unseen conditions. This shows the ability of each to
generalize to different data distributions. Our R4Dyn-LI

outperformed all self- and weakly-supervised approaches in
all conditions. Compared to the LiDAR-supervised work by
Lin et al. [21], R4Dyn-LI performs similarly in rain and sig-
nificantly better in night scenes, reiterating the effectiveness
and robustness of our techniques.

4.3. Qualitative Results

Qualitative results in Figure 6 confirm the findings of
our experiments, showing the superiority of our R4Dyn in
estimating the depth of traffic participants. In particular,
Struct2Depth [4] had frequent issues with leading vehicles
(first 3 scenes), and added a halo effect to the oncoming
car in the fourth scene. Monodepth2 [11] was able to cor-
rectly estimate leading vehicles, thanks to its automask, but
not oncoming traffic (as seen in Figure 1 and inspected in
Figure 4), which resulted in severe underestimations (first,
second and fourth scene). The LiDAR-supervised work by
Lin et al. [21] correctly estimated the overall depth, but
missed most details, delivering blurred outputs. Instead, our
R4Dyn could accurately estimate all challenging dynamic
scenes, preserving sharp details.

5. Conclusion
In this paper we proposed R4Dyn, a set of techniques

to integrate radar into a self-supervised monocular depth
estimation framework. Extensive experiments showed the
benefit of using radar both during training as weak super-
vision, and at inference time as added input. Our method
substantially improved on the prediction of safety critical
traffic participants over all related works. Therefore, R4Dyn
constitutes a valuable step towards robust depth estimation.
Additionally, the inexpensive and readily available setup re-
quired, allows to collect training data from a variety of exist-
ing vehicles, removing the need for expensive LiDAR data.



A. Supplementary Material
In this Section we include further details and additional

results computed from the same models reported in the main
manuscript.

A.1. LiDAR and Radar

In Figure 7 we show the significant difference between
LiDAR and radar signals. As described in Section 3, due to
the physical properties of the sensor, radar signals are noisy,
sparse and often 1-dimensional. The complex multi-path
noise can be seen affecting the two points marked by arrows
in the Figure. Despite their mutual distance of 5.2 meters,
the points are projected onto the same foreground object in
the image space. This once again shows the importance of
our modifications to handle radar data for weak supervision
(Section 3.2.3).

Figure 7. LiDAR (left) and radar (right) signals from nuScenes [3].
The two radar measurements marked by arrows are 5.2 meters
apart, due to multi-path effects.

A.2. Self-supervised Framework

In the following, we further specify the loss functions
described in Section 3.1. The photometric loss is a combi-
nation of L1-loss and SSIM [32], as in [10]:

L1(It, Ît) =
∥∥∥It − Ît∥∥∥

1

LSSIM = 1− SSIM
(
It, Ît

)
pe
(
It, Ît

)
= (1− α)L1(It, Ît) +

α

2
LSSIM(It, Ît)

(6)

where α = 0.85 balances between the L1 and the SSIM
term. Additionally, as in [11], we only consider the mini-
mum reprojection error to account for partial occlusions:

Lp
(
It, Îs→t

)
= min

s
pe
(
It, Îs→t

)
. (7)

Furthermore, we follow [11] by automatically mask-
ing out pixels which do not change appearance in between
frames:

Ma = min
s
Lp (It, Is) > min

s
Lp
(
It, Îs→t

)
. (8)

Hence, the photometric loss is only considered in regions
where Ma = 1. Moreover, to encourage local smoothness

while preserving edges we use a specific term from [10]:

Ls (It, d
∗
t ) =

1

N

∑
p∈N

∑
i∈x,y

|∂id∗t (p)| e−|∂iIt| (9)

where |·| denotes the element-wise absolute value, ∂x and
∂y are gradients in x- and y-direction, and d∗t = d∗t /d

∗
t the

mean-normalized inverse of the depth prediction.
As described in Section 3.1, we follow [12] with a weak

velocity supervision Lv for scale-awareness:

Lv
(
t̂t→s, tt→s

)
=
∣∣∣‖t̂t→s‖2 − ‖tt→s‖2∣∣∣ (10)

where t̂t→s and tt→s are the predicted and ground truth
pose translations respectively, easily obtainable from read-
ily available velocity information (e.g. via odometry).

Input Image (Im) L1 (baseline)

L2 L3 L6 (R4Dyn-L)

Ground Truth (GT)

Figure 8. Qualitative comparison complementing the ablation
study on the weak radar supervision (Table 2).

Input Image (Im) Ground Truth (GT) I1 (baseline)

I2 I4 I6 (R4Dyn-LI)

Figure 9. Qualitative comparison complementing the ablation
study on the pre-processing for radar as additional input (Table 3).

A.3. Radar Accumulation

The accumulation of multiple radar measurements de-
scribed in Section 3.2.1 is performed by mapping points
from time t − τ to t, as proposed by [17]. Specifically, the
ego- and target-motion compensation across multiple mea-
surements is done considering the doppler velocity as:

xt = xt−τ + ∆dx,t + vx,t−τ ·∆τ
yt = yt−τ + ∆dy,t + vy,t−τ ·∆τ
zt = zt−τ + ∆dz,t

(11)

where xt, yt and zt denote the estimated target location at
time t, ∆d the ego pose transformation between measure-
ments, and v the measured doppler velocity of the target.



A.4. Additional Implementation Details

As we focus on safety critical dynamic objects (e.g. traf-
fic participants), when filtering the radar signal to use it
as weak supervision (Section 3.2), we only consider 2D
bounding boxes of the following classes of nuScenes [3]:
Vehicles (including all sub-classes) and Pedestrians (includ-
ing all sub-classes). As nuScenes provides only 3D bound-
ing boxes, we obtained 2D boxes by considering the top,
left, bottom, and right extremes of the projected 3D boxes.
Furthermore, as we want to expand the radar signal over
the objects, the binary association mask from Equation 2
should vary in size depending on the object, e.g. larger
for a bus, than for a pedestrian. Additionally, we con-
sider as most reliable detections those projected in the lower
center of a bounding box. Towards this end, we set the
smoothing parameter σd according to the bounding box
dimensions, hence accounting for the object size: we set

Method all clear rain night

Cars

Lin et al. [21] 0.217 0.191 0.225 0.433
Struct2Depth [4] 0.346 0.332 0.320 0.535
PackNet-SfM [12] 0.219 0.181 0.270 0.449
Monodepth2 [11] 0.232 0.199 0.261 0.486
baseline [ours] 0.212 0.186 0.240 0.391
R4Dyn-L [ours] 0.164 0.134 0.219 0.311
R4Dyn-LI [ours] 0.140 0.125 0.171 0.204

Vehicles

Lin et al. [21] 0.229 0.208 0.233 0.428
Struct2Depth [4] 0.361 0.352 0.335 0.535
PackNet-SfM [12] 0.259 0.238 0.274 0.440
Monodepth2 [11] 0.240 0.211 0.270 0.483
baseline [ours] 0.231 0.209 0.259 0.384
R4Dyn-L [ours] 0.182 0.162 0.220 0.308
R4Dyn-LI [ours] 0.159 0.150 0.176 0.200

Pedestrians

Lin et al. [21] 0.292 0.293 0.254 0.401
Struct2Depth [4] 0.298 0.299 0.276 0.367
PackNet-SfM [12] 0.252 0.247 0.284 0.355
Monodepth2 [11] 0.258 0.257 0.253 0.317
baseline [ours] 0.238 0.235 0.244 0.348
R4Dyn-L [ours] 0.229 0.223 0.255 0.409
R4Dyn-LI [ours] 0.218 0.215 0.234 0.332

Table 6. Evaluation of AbsRel on Cars, Vehicles and Pedestrians
under adverse conditions of the validation set of nuScenes [3]. All
methods were trained only on scenes with day-clear (clear) condi-
tions. This Table complements Table 5, therefore shows the ability
of each method to generalize to unseen settings.

σd,x = c · s · bbw/2 and σd,y = c · s · bbh/2, where bbw and
bbh are the box width and height, and c is a constant scale
factor set to 1.5. Moreover, s is a scale factor that depends
on the position of the considered radar point with respect to
the bounding box: s = δside/(bbw/2) · δtop/bbh, with δside
and δtop being the minimum distance of the radar point from
the bounding box side and top edges respectively. The range
smoothing parameter is fixed to σr = 1× 10−5.

For prior works, as mentioned in Section 4.1, we used
the original implementation and parameters, adapted as fol-
lows to accomodate the different dataset (i.e. nuScenes [3]).
We trained Monodepth2 [11] for 40 epochs, which is
the same as our R4Dyn. PackNet-SfM [12] was trained
for a total of 200 epochs due its to slow convergence,
and Struct2Depth [4] was trained for 75 epochs after
the full KITTI [9] training performed by the authors.
For fairness when comparing with other approaches, for
Struct2Depth [4] we used the motion model (denoted by
the authors with an M), but not their online refinement (in-
dicated with an R). To ensure fair comparability with other
methods, for the work of Lin et al. [21] we only used radar
measurements from the past and present, but not from the
future, which were used in the original implementation.
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Figure 10. The histogram shows a class-wise evaluation of our
R4Dyn and Monodepth2 [11] on the nuScenes day-clear valida-
tion set [3]. Other includes all remaining classes, that are not traf-
fic participants, and NP indicates Non-Parked Cars or Vehicles.
Lower absolute relative (AbsRel) error is better.

A.5. Additional Results

A.5.1 Qualitative Ablation Studies

In Figures 8 and 9 we show highlights of the qualitative re-
sults of our ablation studies on the weak radar supervision
and additional radar input, respectively. These complement
the quantitative results reported in Tables 2 and 3 with the
sample being the same as the first one in Figure 6 for con-
sistency. In the Figures, it can be seen how our image-only
baseline (L1 and I1) performs similarly to Monodepth2 [11]
on which it is based. Then, in Figure 8, adding a weak
supervision by raw radar points (L2) deteriorated the esti-
mations due to the considerable amount of noise caused by



Cl. Method Sup. Input AbsRel SqRel RMSE RMSElog δ1 δ2 δ3
C

ar
s

Lin et al. [21] GT ImR 0.1907 2.399 6.922 0.2460 75.71 91.02 96.06
Struct2Depth [4] M∗ Im 0.3323 7.436 9.353 0.3307 57.38 80.54 89.98
PackNet-SfM [12] Mv Im 0.1814 1.936 6.313 0.2341 72.88 91.02 96.46
Monodepth2 [11] M∗ Im 0.1983 2.100 6.635 0.2509 68.23 88.76 94.81
baseline [ours] Mv Im 0.1862 2.115 6.735 0.2495 70.41 87.96 94.41
R4Dyn-L [ours] Mvr Im 0.1343 1.481 5.713 0.1913 81.45 94.02 97.32
R4Dyn-LI [ours] Mvr ImR 0.1250 1.371 5.395 0.1813 84.14 94.38 97.43

N
P

-C
ar

s

Lin et al. [21] GT ImR 0.1898 2.485 6.793 0.2418 77.15 90.69 95.65
Struct2Depth [4] M∗ Im 0.3703 9.063 10.05 0.3472 54.42 78.15 88.35
PackNet-SfM [12] Mv Im 0.1902 2.050 6.397 0.2394 70.56 90.35 96.20
Monodepth2 [11] M∗ Im 0.2130 2.368 6.905 0.2624 65.05 87.03 93.97
baseline [ours] Mv Im 0.1862 2.115 6.735 0.2495 70.41 87.96 94.41
R4Dyn-L [ours] Mvr Im 0.1356 1.518 5.651 0.1894 80.92 93.56 97.16
R4Dyn-LI [ours] Mvr ImR 0.1274 1.399 5.302 0.1793 83.80 94.01 97.43

B
us

es

Lin et al. [21] GT ImR 0.2330 3.336 8.456 0.2728 65.46 85.48 93.44
Struct2Depth [4] M∗ Im 0.3962 7.487 12.11 0.4057 41.22 69.19 85.83
PackNet-SfM [12] Mv Im 0.3434 7.328 11.60 0.3662 52.96 77.66 88.94
Monodepth2 [11] M∗ Im 0.2442 4.518 9.781 0.3007 63.13 83.44 91.84
baseline [ours] Mv Im 0.2547 4.614 9.586 0.3080 62.85 82.28 91.73
R4Dyn-L [ours] Mvr Im 0.2187 3.950 8.719 0.2779 68.08 85.45 93.14
R4Dyn-LI [ours] Mvr ImR 0.2055 3.706 8.316 0.2600 70.35 86.28 93.46

Tr
uc

ks

Lin et al. [21] GT ImR 0.2356 3.248 8.410 0.2829 63.70 83.46 92.67
Struct2Depth [4] M∗ Im 0.3711 7.153 12.26 0.4027 45.32 71.41 84.74
PackNet-SfM [12] Mv Im 0.3472 6.561 11.48 0.3758 49.82 75.84 87.82
Monodepth2 [11] M∗ Im 0.2659 5.330 10.42 0.3221 60.76 81.03 91.48
baseline [ours] Mv Im 0.2751 4.782 10.25 0.3340 55.26 80.55 90.05
R4Dyn-L [ours] Mvr Im 0.2457 4.184 9.739 0.3077 58.71 83.26 92.09
R4Dyn-LI [ours] Mvr ImR 0.2369 4.219 9.493 0.2997 63.17 82.85 92.64

M
ot

or
cy

cl
es

Lin et al. [21] GT ImR 0.2529 3.473 8.292 0.2757 62.84 84.27 93.50
Struct2Depth [4] M∗ Im 0.2328 3.110 8.026 0.2854 58.39 82.58 90.00
PackNet-SfM [12] Mv Im 0.2007 2.575 7.062 0.2529 67.38 88.33 93.28
Monodepth2 [11] M∗ Im 0.1900 2.457 6.693 0.2409 72.86 89.33 93.23
baseline [ours] Mv Im 0.1849 2.481 6.856 0.2486 72.11 89.26 92.93
R4Dyn-L [ours] Mvr Im 0.1833 2.534 6.885 0.2496 69.71 89.43 93.05
R4Dyn-LI [ours] Mvr ImR 0.1730 2.401 6.519 0.2389 75.26 89.56 92.64

Table 7. Class(Cl.)-wise evaluation on the main individual Vehicle classes on the nuScenes [3] day-clear validation set. NP stands for
Non-Parked. Table to be considered in conjunction with Table 8.

multi-path effects [23], resulting in an overestimated set of
pixels around the horizon line, which is the image location
where most radar detections lie on (as can be seen in Fig-
ure 8). As reported in Table 2, filtering the radar points (L3)
led to a significant improvement in the estimations, which
then improved further with our R4Dyn-L (L6), e.g. for the
leading vehicle in the image.

For the input ablation (Figure 9), a single frame of radar
input measurements (I2) did not improve the predictions,
while the weak radar supervision and accumulating multi-

ple radar measurements (I4) eliminate the severe underesti-
mation, but delivers artifacts on the shape of vehicles (e.g.
oncoming van), which are improved by R4Dyn-LI (I6).

A.5.2 Class-wise Comparison with Related Works

Additionally to the absolute relative error (AbsRel) on ob-
ject classes Cars, Vehicles, Non-parked Vehicles and Pedes-
trians reported in Table 1, we provide extensive class-wise
results in Tables 7 and 8. Moreover, we plot a compari-



Cl. Method Sup. Input AbsRel SqRel RMSE RMSElog δ1 δ2 δ3
Ve
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Lin et al. [21] GT ImR 0.2082 2.637 7.400 0.2668 73.08 88.99 95.08
Struct2Depth [4] M∗ Im 0.3516 7.179 10.13 0.3612 54.53 79.25 89.63
PackNet-SfM [12] Mv Im 0.2382 3.393 7.927 0.2885 67.48 87.71 94.14
Monodepth2 [11] M∗ Im 0.2110 2.809 7.617 0.2726 68.89 87.85 94.50
baseline [ours] Mv Im 0.2091 2.680 7.597 0.2775 67.91 87.33 93.91
R4Dyn-L [ours] Mvr Im 0.1618 2.047 6.681 0.2273 77.16 92.72 96.76
R4Dyn-LI [ours] Mvr ImR 0.1504 1.922 6.371 0.2188 80.51 92.77 96.75

N
P

-V
eh

ic
le

s

Lin et al. [21] GT ImR 0.2088 2.892 7.396 0.2597 74.98 89.46 94.96
Struct2Depth [4] M∗ Im 0.3739 8.440 10.58 0.3643 53.17 77.87 88.58
PackNet-SfM [12] Mv Im 0.2508 3.699 8.044 0.2923 66.24 86.47 93.39
Monodepth2 [11] M∗ Im 0.2300 3.372 7.917 0.2815 66.25 86.16 93.29
baseline [ours] Mv Im 0.2254 3.219 7.885 0.2880 66.67 84.78 92.27
R4Dyn-L [ours] Mvr Im 0.1686 2.461 6.728 0.2268 77.86 91.87 95.97
R4Dyn-LI [ours] Mvr ImR 0.1589 2.311 6.375 0.2162 80.86 92.61 96.16

Pe
de

st
ri

an
s

Lin et al. [21] GT ImR 0.2930 4.496 9.507 0.2966 59.51 84.11 93.09
Struct2Depth [4] M∗ Im 0.2993 5.489 11.48 0.3714 49.37 74.98 87.35
PackNet-SfM [12] Mv Im 0.2473 4.171 9.301 0.2987 61.93 86.17 92.33
Monodepth2 [11] M∗ Im 0.2572 4.420 9.831 0.3087 61.46 86.04 91.88
baseline [ours] Mv Im 0.2351 4.004 9.117 0.2961 66.20 86.37 92.08
R4Dyn-L [ours] Mvr Im 0.2231 3.670 8.806 0.2853 66.90 87.00 92.42
R4Dyn-LI [ours] Mvr ImR 0.2146 3.613 8.560 0.2763 70.74 86.73 92.41

O
bj

ec
ts

Lin et al. [21] GT ImR 0.2227 2.767 7.319 0.2735 72.33 88.68 95.10
Struct2Depth [4] M∗ Im 0.3400 6.552 9.726 0.3543 56.16 80.38 90.92
PackNet-SfM [12] Mv Im 0.2383 3.405 7.757 0.2861 69.02 88.50 94.75
Monodepth2 [11] M∗ Im 0.2123 2.832 7.592 0.2700 70.11 89.14 95.37
baseline [ours] Mv Im 0.2032 2.548 7.278 0.2693 70.90 88.97 95.11
R4Dyn-L [ours] Mvr Im 0.1631 1.997 6.522 0.2279 78.42 93.22 97.16
R4Dyn-LI [ours] Mvr ImR 0.1551 2.020 6.367 0.2222 81.20 92.73 97.09

O
th

er

Lin et al. [21] GT ImR 0.0781 0.693 4.268 0.1542 93.07 97.35 98.73
Struct2Depth [4] M∗ Im 0.1873 3.254 6.823 0.2645 78.61 90.80 95.42
PackNet-SfM [12] Mv Im 0.1141 1.723 5.777 0.2051 88.68 95.54 97.70
Monodepth2 [11] M∗ Im 0.1117 1.344 5.354 0.1913 89.50 96.54 98.15
baseline [ours] Mv Im 0.1010 1.207 5.223 0.1916 90.73 96.32 97.97
R4Dyn-L [ours] Mvr Im 0.1036 1.194 5.290 0.1931 90.20 96.21 97.93
R4Dyn-LI [ours] Mvr ImR 0.1003 1.197 5.190 0.1886 91.13 96.41 98.00

Table 8. Class(Cl.)-wise evaluation on Vehicles (includes all individual classes from Table 7, plus Bicylces, Construction Vehicles and
Emergency Vehicles), Non-Parked Vehicles, Pedestrians, Objects (all object classes together) and Other (pixels that do not correspond to
objects) on the nuScenes [3] day-clear validation set. Table to be considered in conjunction with Table 7.

son between Monodepth2 [11] and our R4Dyn in Figure 10
across the various classes. From the Figure, it can be seen
that our approach outperformed Monodepth2 on every ob-
ject class by a significant margin, which was especially
large for the most dynamic ones, namely Cars, Vehicles
and their Non-Parked (NP) variants. Considering Tables 7
and 8, the LiDAR-supervised work by Lin et al. [21], which
uses radar as input, was able to deliver superior estimates
on non-object classes, denoted as Other (e.g. Driveable

Surface and Vegetation). Nevertheless, our R4Dyn could
obtain significantly lower errors and better scores on all ob-
ject classes, except for Trucks, probably due to trucks being
often static in urban areas (e.g. for loading and for deliv-
eries), such as in the nuScenes dataset [3]. The results re-
emphasize and confirm the effectiveness and the robustness
of our approach across various safety critical dynamic ob-
jects, as well as the benefit of using radar sensors for depth
estimation, especially as weak supervision.



A.5.3 Class-wise Comparison on Adverse Conditions

In Table 6 we provide class-wise results of ours and related
methods under adverse weather settings. As for Table 5,
which reports general errors in the same weather conditions,
all approaches were trained on day-clear scenes (indicated
as clear in the Table), therefore the values represent the abil-
ity of each method to generalize to rather different inputs.
In particular, in Table 6 we provide AbsRel errors on safety
critical traffic participants: Cars, Vehicles and Pedestrians.
For these classes, our R4Dyn-LI was able to outperform re-
lated methods by a significant margin, under most settings.
Again, we attribute this to the benefit of radar and the effec-
tiveness of our techniques to incorporate it.

Method Supervision Input AbsRel

Monodepth2 [11] nuScenes: M* Im 0.1162
R4Dyn [ours] nuScenes: Mvr ImΨ 0.1028

Table 9. Transfer comparison to the KITTI validation set of models
trained on nuScenes. Ψ indicates LiDAR sub-sampled like a radar.

A.5.4 Transfer Comparison: nuScenes→ KITTI

As written in Section 4.1, we used the nuScenes dataset [3]
throughout our experiments, as it is to the best of our knowl-
edge the only public dataset with data from a camera, an au-
tomotive radar, and a LiDAR to evaluate. On the other hand,
the popular KITTI dataset [9] does not provide radar signals
and has only limited dynamic scenes, which are the focus
of our work. Nevertheless, radar sparsity and missing ele-
vation can be simulated by sub-sampling a LiDAR signal,
albeit leaving behind the highly complex radar noise mod-
elling [23], as done also by Lin et al. [21]. Towards this end,
we transferred our R4Dyn and Monodepth2 [11] models to
the validation set of KITTI, without any fine-tuning, after
training them on nuScenes [3]. We achieved this by crop-
ping the KITTI images to the nuScenes format, and down-
sampled the KITTI LiDAR to mimic the nuScenes radar:
we kept only points within the radar field of view and sub-
sampled them to reach the same low density (Section 3.2.1).

ground truth Monodepth2 R4Dyn [ours]

Figure 11. Qualitative example from a transfer from nuScenes to
KITTI, without any fine-tuning of our R4Dyn, compared to Mon-
odepth2 [11].

We provide the results of these experiments in Table 9,
showing the generalization capability on significantly dif-

ferent data. Our R4Dyn outperforms Monodepth2 in this
challenging transfer task. Qualitative results in Figure 11
confirm this and present similar outcomes to those seen in
Figure 6, with Monodepth2 underestimating the depth of
the oncoming vehicle. Despite the large domain gap and
limited dynamic scenes (i.e. our focus), our 11.5% improve-
ment on KITTI is substantial, again showing the effective-
ness of our techniques to use radar in input and as weak
supervision.
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