Received: 27 September 2019 Revised: 1 April 2021 Accepted: 6 April 2021

DOLI: 10.1111/sjos.12531

ORIGINAL ARTICLE Scandinavian Journal of Statistics

Moment-based estimation for the multivariate
COGARCH(1,1) process

Thiago do Régo Sousa'® | Robert Stelzer?

ICenter for Mathematical Sciences,

Technical University of Munich, Abstract
Garching, Germany For the multivariate COGARCH process, we obtain
*Institute of Mathematical Finance, Ulm explicit expressions for the second-order structure of the

University, Ulm, German  q-
v Y “squared returns” process observed on an equidistant

Correspondence grid. Based on this, we present a generalized method
Thiago do Régo Sousa, Center for of moments estimator for its parameters. Under appro-
Mathematical Sciences, Technical

University of Munich, Boltzmannstr. 3,
85748 Garching, Germany. that the resulting estimator is consistent and asymptot-
Email: thiago.sousa@tum.de

priate moment and strong mixing conditions, we show

ically normal. Sufficient conditions for strong mixing,
stationarity and identifiability of the model parameters
are discussed in detail. We investigate the finite sample
behavior of the estimator in a simulation study.

KEYWORDS

estimation, generalized method of moments, Lévy process, model
identification, multivariate continuous time GARCH, second-order
moment structure

1 | INTRODUCTION

The modeling of financial data has received much attention over the last decades, where several
models have been proposed for capturing its “stylized facts.” Prominent models are the class of
ARCH (autoregressive conditionally heteroskedastic) and GARCH (generalized ARCH) processes
introduced in Bollerslev (1986) and Engle (1982). They are able to capture most of these stylized
facts of financial data (see Cont, 2001; Guillaume et al., 1997). A special feature of GARCH-like
processes is that they usually exhibit heavy tails even if the driving noise is light tailed, a feature
most other stochastic volatility models do not have (Fasen et al., 2006).
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In many financial applications, it is most natural to model the price evolution in continu-
ous time, especially when dealing with high-frequency data. The COGARCH process is a natural
generalization of the discrete time GARCH process to continuous time. It exhibits many “styl-
ized features” of financial time series and is well suited for modeling high-frequency data (see
Bayrac: & Unal, 2014; Bibbona & Negri, 2015; Haug et al., 2007; Kliippelberg et al., 2011; Maller
et al., 2008; Miiller, 2010).

In many cases one needs to model the joint price of several financial assets which exhibit a
nontrivial dependence structure and therefore, multivariate models are needed. The MUCOGA-
RCH process introduced in Stelzer (2010) is a multivariate extension of the COGARCH process.
It combines the features of the continuous time GARCH processes with the ones of the multivari-
ate BEKK GARCH process of Engle and Kroner (1995). It is a d—dimensional stochastic process
and it is defined as

t
G, = / VML, t>o0, (1)
0

where L is an R¢-valued Lévy process with nonzero Lévy measure and cadlag sample paths. The
matrix-valued volatility process (V;),cr+ depends on a parameter § € ® C R, itis predictable and
its randomness depends only on L. We assume that we have a sample of size n of the log-price
process (1) with true parameter 6, € ® observed on a fixed grid of size A > 0, and compute the
log returns

iA
Gi=/ v/dL, i=1, .. .n 2
(

i—1)A

Therefore, an important question is how to estimate the true parameter 6, based on obser-
vations (Gy) . In the univariate case, several methods have been proposed to estimate the
parameters of the COGARCH process (Bayrac: & Unal, 2014; Bibbona & Negri, 2015; do Régo
Sousa et al., 2019; Haug et al., 2007; Maller et al., 2008). All these methods rely on the
fact that the COGARCH process is, under certain regularity conditions, ergodic and strongly
mixing.

In the univariate case, Fasen (2010) proved geometric ergodicity results for the COGARCH
process (in fact, their results apply to a wider class of Lévy driven models). Recently, Stelzer and
Vestweber (2019) derived sufficient conditions for the existence of a unique stationary distribu-
tion, for the geometric ergodicity, and for the finiteness of moments of the stationary distribution
in the MUCOGARCH process. These results imply ergodicity and strong mixing of the log-price
process (G;);2, , thus paving the way for statistical inference. We will use their results to apply the
generalized method of moments (GMM) for estimating the parameters of the MUCOGARCH pro-
cess. To this end we compute the second-order structure of the squared returns in closed form,
under appropriate assumptions.

Consistency and asymptotic normality of the GMM estimator is obtained under standard
assumptions of strong mixing, existence of moments of the MUCOGARCH volatility process and
model identifiability. Thus we discuss sufficient conditions, easily checkable for given parameter
spaces ensuring strong mixing and existence of relevant moments.

The identifiability question is rather delicate, since the formulae for the second-order struc-
ture of the log-price returns involve operators which are not invertible and, therefore, the strategy
used for showing identifiability as used in the one-dimensional COGARCH process cannot be
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generalised. In the end we can establish identifiability conditions that are not overly restrictive
and easy to use.

Our paper is organized as follows. In Section 2, we fix the notation and briefly introduce
Lévy processes. In Section 3 we define the MUCOGARCH process, and obtain in Section 4 its
second-order structure. Section 5 introduces the GMM estimator and discusses sufficient condi-
tions for stationarity, strong mixing and identifiability of the model. In Section 6, we study the
finite sample behavior of the estimators in a simulation study. Finally, Section A presents the
proofs for the results of Sections 3 and 4.

2 | PRELIMINARIES
2.1 | Notation

Denote the set of nonnegative real numbers by R*. For z € C, R(z) and (z) denote the real and
imaginary part, respectively. We denote by M,,, 4(R), the set of real m x d matrices and write M;(R)
for My 4(R). The group of invertible d X d matrices is denoted by GL4(RR), the linear subspace of
symmetric matrices by Sy, the (closed) positive semi-definite cone by Sd+ and the (open) positive
definite cone by S'*. We write I, for the d X d identity matrix. The tensor (Kronecker) product
of two matrices A, B is written as A ® B. The vec operator denotes the well-known vectorization
operator that maps the set of d x d matrices to R* by stacking the columns of the matrices below
one another. Similarly, vech stacks the entries on and below the main diagonal of a square matrix.
For more information regarding the tensor product, vec and vech operators we refer to Bern-
stein (2009) and Horn and Johnson (1991). The spectrum of a square matrix is denoted by o(-).
Finally, A" denotes the transpose of a matrix A € M, 4(R) and Ay denotes the entry in the ith
line and jth column of A. Arbitrary norms of vectors or matrices are denoted by || - || in which
case it is irrelevant which particular norm is used. The norm || - ||, denotes the operator norm on
M (R) associated with the usual Euclidean norm. The symbol ¢ stands for any positive constant,
whose value may change from line to line, but is not of particular interest.

Additionally, we employ an intuitive notation with respect to (stochastic) integration with
matrix-valued integrators, referring to any of the standard texts (e.g., Protter, 2005) for a
comprehensive treatment of the theory of stochastic integration. Let (A;),cr+ in My, 4(R)
and (By);er+ in M, ,(R) be cadlag and adapted processes and (L;);cr+ in Mg, (R) be a semi-
martingale. We then denote by /0[ As_dLBs_ the matrix C; € M,,,,(R) which has ijth entry
Ei:l > fotAik,s—Blj,s—del,s- If (X;);cr+ is @ semimartingale in R™ and (Y;),cg+ one in R¢, then
the quadratic variation ([X, Y];),cr+ is defined as the finite variation process in M,, 4(R) with ijth
entry [X;,Y;];fort e R*,i=1, ... ,mandj=1, ... ,d. We also refer to lemma 2.2 in Behme (2012)
for a collection of basic properties related to integration with matrix-valued integrators. Lastly, let
Q : Mp(R) » Mz(R) be the linear map defined by

(QX)(k—l)d+l,(p—1)d+q = X(k—l)d+p,(l—1)d+q forall k,I,p,g=1, ... ,d,

which has the property that Q(vec(X)vec(Z)')=X®Z for all X,Z€S; (Pigorsch
& Stelzer, 2009b, theorem 4.3). Let K; be the commutation matrix characterized by
Kgvec(A)=vec(A") for all A € My(R) (see Magnus & Neudecker, 1979 for more details). Define
Q € Mg (R) as the matrix associated with the linear map vec o Qovec™! on RY and Kgq € Mg(R)
as the matrix associated with the linear map vec(Kgvec™ (x)) for x € R
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2.2 | Lévy processes

A Lévy process L= (L), eg+ in RY is characterized by its characteristic function in
Lévy-Khintchine form Ee/*L = exp{ty(u)} for t € R* with

. 1 i .
v = iy, u) = S(u, Tru) + /R ) (e — 1 — iQu, )1y ([IxID) vi(dx), u € RY,

where y; € RIT; € S:; and the Lévy measure vy is a nonzero measure on R4 satisfying
ve({0}) =0 and [fp, (IIXlI> A1) vi(dx) < co. We assume w.l.o.g. L to have cadlag paths. The dis-
continuous part of the quadratic variation of L is denoted by ([L,L]f)teR+ and it is also a
Lévy process. It has finite variation, zero drift and Lévy measure v, »(B) = fRdIB (2x®) v, (dx)
for all Borel sets B C S;. For more details on Lévy processes we refer to Applebaum (2009)
and Sato (1999).

3 | THE MUCOGARCH PROCESS

Throughout, we assume that all random variables and processes are defined on a given fil-
tered probability space (Q, F, P, (Fy)ier), With T = N in the discrete-time case and T = R* in the
continuous-time one. In the continuous-time setting, we assume the usual conditions (complete,
right-continuous filtration) to be satisfied. We can now recall the definition of the MUCOGARCH
process.

Definition1 (MUCOGARCH(1,1) - (Stelzer, 2010, definition 3.1)). Let L be an R¢-valued Lévy
process, A, B € My(R) and C € S}*. The process G = (G),cr+ solving

dG, = v}/*dL, 3)
V[ = C + Y[, (4)
dY, = (BY,_ + Y,_B")dt + AV,*d[L, LPV,/*A* (5)

with initial values G, in R? and Y, in S;(R) is called a MUCOGARCH(1,1) process. The pro-
cess Y = (Y;),cr+ is called a MUCOGARCH(1,1) volatility process. Hereafter we will always write
MUCOGARCH for short.

The interpretation of the model parameters Band C is the following. If 6(B) € {z € C : R(z) <
0}, the process V, as long as no jump occurs, “mean reverts” to the level C at matrix exponential
rate given by B. Since all jumps are positive semidefinite, C is not a mean level but, instead, a
lower bound for V.

By Stelzer (2010, Theorems 3.2 and 4.4), the MUCOGARCH process is well-defined, the solu-
tion (Y;),cgr+ is locally bounded and of finite variation. Additionally, the process (G;, Y;);cg+ and
its volatility process (Y;),cr+ are time homogeneous strong Markov processes on R9 x Sd+ and S:i",
respectively.

Since the price process (Gy);cRr+ in (3) is defined in terms of the Lévy process L and (Y)),er, ,
the existence of its moments is closely related to the existence of moments of L and the stationary
distribution of (Yy)cR, -



DO REGO SOUSA AND STELZER

5
Scandinavian Journal of Statistics—l—

Lemma 1. Suppose that E||Yy||? < oo and E||L,||? < o for some p > 1. Then:

(@) E||Y{||P < oo forallt € RY and t — E||Y;||P is locally bounded.
(b) E|G||* < o forallt € R* and t — E||G,||? is locally bounded.

4 | SECOND-ORDER STRUCTURE OF “SQUARED RETURNS”

In this section, we derive the second-order structure of the MUCOGARCH “squared returns” pro-
cess (G;G;);en defined in terms of (2), which will be used in Section 5 to estimate the parameters
A, B and C of the MUCOGARCH process. The proofs are postponed to Section Al. We group the
needed assumptions as follows.

Assumption a (Lévy process).

(3.1) ]ELl =0.
(32) var(L;) = (ow + o)y, with o > 0 and o > 0.

(a.3)
/ xxjx, ve(dx) =0, forall i,j,ke{1,...,d}.
]Rd

(a.4) E|Li||* < co.
(a.5) There exists a constant p;, > 0 such that

E[vec([L, L*1*), vec(IL, L*I*)* 12 = pr(Is> + Kq + vec(Ig)vec(Ia)*).

(a.6) E|IL|I® < co.

Assumption b (Parameters).

(b.1) A € GL4(R).
(b.2) The matrices B and C defined below satisfy ¢(13),6(C) € {z € C : R(z) < 0}.

B:=BQI+I®B+o0.(ARQA)
C . =BQQIp+1pQ B+ AR, (6)

where A =(AQA)RURA), R =pr(Q+ KygQ + 1), and Ky and Q as in Section 2.1.

Assumption c (MUCOGARCH volatility).

(c.1) (Yo)er, is a second-order stationary MUCOGARCH volatility process.
(c.2) (Yo)er, is a stationary MUCOGARCH volatility process and its stationary distribution
satisfies E|| Yp||* < oo.

Sufficient conditions for Assumption c are given in Stelzer (2010, theorem 4.5). Note that
(c.2) implies (c.1). We recall now the expressions for the second-order structure of the process
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Y and of the log-price returns process (G;);cy. First, for a second-order stationary R¢-valued
process, its autocovariance function acovy : R — My(R) is denoted by acovy(h) = cov (Xj, Xp) =
E (Xth) — E (Xo) EXo)* for h >0 and by acovx(h) = (acovx(—h))* for h < 0. For matrix-valued
processes (Z;);cRr, We Set aCovz = aCOVyec(2).

Proposition 1 (Stelzer, 2010, theorems 4.8, 4.11, corollary 4.19 and proposition 5.2). If Assump-
tions (a.1)-(a.5), (b.2) and (c.1) hold, then
E(vec(Yy)) = —o.B (A ® A)vec(C) 7

var(vec(Yp)) = var(vec(Vy)) = —=C™" [(6;C(B™' @ B~ A + AR) (vec(C) ® vec(C))
+(0L(A®A) ® Iz + AR) vec(C) ® E(vec(Yy))
+ (ol @ (AR A) + AR) E(vec(Yy)) ® Vec(C)]
acovy(h) = acovy (h) = e®var(vec(Yy))
E(Gy) =0
var(G,) = (o, + ow)AE(C + Yp)
acovg(h) =0 forall heZ\ {0}. (8)

Based on Lemma 1 and Proposition 1, we obtain now the second-order properties of the
MUCOGARCH process.

Lemma 2. If Assumptions a,b, and c hold, then

acovgg(h) = e*2' B (12 — e %) (o1, + ow)var(vec(Vy))

x (€ — Ip)(ow + op)(B) ! —2A®A4)) '], heN, ©)

E vec(G1Gy)vec(G1GY)* = Apr ((Q + KgQ + I2)(E vec(Vo)vec(Vp)™))

X (Iz2 + K)Q(D*)(Ig + Kq) + D + D, (10)

with,
D := (o + ow) (%((;L + ow)AZE vec(Vo)E vec(Vy)* + var(vec(vo))is> ) (11)
B =[BT (e”? = Ip) — IpA] [(ow + o)(B) ' —20(A® AN . (12)

Remark 1. If the Lévy process L has paths of finite variation, then Lemma 2 holds without the
moment assumptions (a.6) and (c.2). This is because expectations involving stochastic integrals
with finite variation Lévy integrators can be computed by using the compensation formula (see
Remark 4). In the following, we will define the moment-based estimator for MUCOGARCH pro-
cesses driven by general Lévy processes (without path restrictions). Only in Section 5.5 we will
give a consistency result that distinguishes between Lévy process with paths of finite and infinite
variation.

Next, we define an estimator for the parameters A, B, and C, which basically consists of
comparing the sample moments to the model moments.
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5 | MOMENT-BASED ESTIMATION OF THE MUCOGARCH
PROCESS

In this section, we consider the matrices Ay, By € My(R) and Cy € S:f from Definition 1 as
depending on a parameter § € ® C RY for q € N.

The data used for estimation is an equidistant sample of d-dimensional log-prices (Gy);_; as
defined in (2) with true parameter 6, € ®. We assume that the true o, ow, and p; as used in
Assumptions (a.2) and (a.5) are known. These assumptions are not very restrictive and are com-
parable to assuming iid standard normal noise in the discrete time multivariate GARCH process,
which is very common (Francq & Zakoian, 2019, eq. (10.6)).

51 | GMM estimator

In order to estimate the parameter 6, € ©, we compare the sample moments (based on a sample
of log-prices) to the model moments (based on the expressions (8), (9) and (10), provided they are
well defined). More specifically, based on the observations (Gy)!_, and a fixed r <n, the sample
moments are defined as

vec(G;G;)
n—-r n—-r
A vec(vec(G;GY)vec(G;GY)*
k=23 D=1¥ (vee(GiGyvec(GiG)) (13)
i=1 hi3 :

vec(vec(G;G})vec(Gi-G},,)*)

i+r

The used number of lags of the true autocovariance function r needs to be chosen in such a
way that the model parameters are identifiable and also to ensure a good fit of the autocovariance
structure to the data. For each 0 € O, let

Eqvec(G1GY)

K Egvec(vec(G1Gy)vec(G1GY)*)
0.r = X

. (14)
Egvec(vec(G,Gy)vec(G14,G,)*)

where the expectations are explicitly given by (8), (9), and (10) by replacing A, B, and C by Ay, By
and Cy, respectively. Then, the GMM estimator of 6, is given by

én = al‘g minge@ {(fcn,r - ke,r)TQ(lA{n,r - kb‘,r)} > (15)

where Q is a positive definite weight matrix. The matrix Q may be dependent on the data but
should converge in probability to a positive definite matrix of constants.

5.2 | Asymptotic properties: general case

Additionally to Assumptions a, b, and ¢ we need assumptions for proving consistency and
asymptotic normality of d,. These are mainly related to identifiability of the model parameters,
stationarity, strong mixing and existence of certain moments of (G;);cN-
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Assumption d (Parameter space and log-price process).

(d.1) The parameter space @ is a compact subset of RY.

(d.2) The true parameter 6y lies in the interior of ©.

(d.3) [Identifiability]. Let r > 1 be fixed. For any 8 # § € ® we have kg, # ks .
(d.4) The map 6 — (Ay, By, Cy) is continuously differentiable.

(d.5) The sequence (G)),cN is strictly stationary and exponentially a-mixing.

Assumption e (Moments).
(e.1) There exists a positive constant § > 0 such that E||G;||**® < .

Assumption e can be written in terms of moments of L and Y, (see Lemma 1). We are now
ready to state the strong consistency of the empirical moments in (13).

Lemma 3. [f Assumptions a, b, ¢ and (d.5) hold, then IAcn,, 3 kg, as n— oo.

Proof. 1t follows from (d.5) that the log-price process (Gi)cy is ergodic and since both
E|lvec(G1GY)|| and E||vec(G,Gy)vec(G11, Gy ,)*|| are finite (Lemma 1 with p=2 under (a.4) and
(c.1)), we can apply Birkhoff’s ergodic theorem (Krengel, 1985, theorem 4.4) to conclude the
result. n

Next, we state the weak consistency property of the GMM estimator.

Theorem 1. If Assumptions a,b, c, (d.1), (d.3)-(d.5) hold, then the GMM estimator defined in (15)
is weakly consistent.

Proof. We check assumptions 1.1-1.3 in Matyas (1999) that ensure weak consistency of the GMM
estimator in (15). Assumption 1.1 is satisfied due to our identifiability condition (d.3). It follows
from (15) combined with Lemma 3 that

o A as.
sup||kn,r — ko.r — (keo,r — ko)l = llknr — kHO,r” -0, n- oo,
60

which is assumption 1.2 of Matyas (1999). Since the weight matrix Q in (15) is nonrandom, their
assumption 1.3 is automatically satisfied, completing the proof. (]

In order to prove asymptotic normality of the GMM estimator, we need some auxiliary results.

Lemmad. IfAssumptionsa,b, c,(d.1)and (d.4) hold, then the map © — kg, in(14)is continuously
differentiable.

Proof. The the map ©® — ky, depends on the moments given in (8), (9), and (10). These moments
are given in terms of products and Kronecker products involving the quantities Ay, A;l, By, B;l,
e™*Ps, a >0, Cy, Cy and C;". From (d.4) we obtain the continuous differentiability of By, B,",
Cp,C,' and A on ©. Leti€{l, ... , q} be fixed. According to (2.1) in Wilcox (1967), the matrix
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exponential is differentiable and

0 any _ _ / @B, (O g\ guByqy (16)
90; 0 00;

Using the definition of BBy in (6) combined with (d.1) and (d.4) gives

sup|| Bl <2 <SUP||BG||> all + o1 <sup||A9||2> < 0.
06 66 00

Additionally, an application of the chain rule to %Bg combined with (d.1) and (d.4) gives

sup9€®||0%ib’9|| < o0 and, therefore,

Y (I
00;

Thus, the continuous differentiability of the map in (16) follows by dominated convergence
with dominating function as in (17). Another application of the chain rule shows that the map
0 — kg, is continuously differentiable on ©. n

9 B,

sup EY)
i

66

< supelleul+uDIB, | <Sup
0O (4=

) , u€elo,al. (17)

Lemma 5. Assume that Assumptions a,b, c, (d.5) and (e.1) hold and let

%g, = EEF) + Y E{(FF,) + E(FWF],)"} (18)

+1
i=1

with F; = D; — kg, and D; as defined in (13). Then for r € Ny
N d
Vilknr = kg,r) = N(0,5,), n— co.

Proof. For the asymptotic normality of (13) we use the Cramér—Wold device and show that
1 n—-r d
ﬁ(;Z /I*Fi) = N(0,4*Zg,4), 1 — oo,
i=1

for all vectors A € R¥++Dd" Denote by a¢ the mixing coefficients of (G;);cn. Since each F; is a
measurable function of G, ... , Gi;, it follows from (d.5) and remark 1.8 of Bradley (2007) that
(A*F))ienN is a-mixing with mixing coefficients satisfying ar(n) < ag(n — (r + 1)) for all n>r + 2.
Therefore, ) (ap(n))7 < coforalle > 0. From (e.1) we obtain E[|4*F, [|**¢/4 < oo for some e >
0. Thus, the CLT for a-mixing sequences applies, see for example, Ibragimov and Linnik (1971,
theorem 18.5.3), so that

ﬁ(%Z ﬂ*Fi) SNO.O. n o,
i=1

where

{=E F'FiF{i+2) E AI'FF},A

1+i7
i=1

Since A*F1F; A = A"(F1Fy )" A we get (18) after rearranging the above equation. [



10 L. L. DO REGO SOUSA AND STELZER
Scandinavian Journal of Statistics

Theorem 2. Assume that Assumptions a,b, ¢, d, and (e.1) hold and that the matrix X in (18) is
positive definite. Then the GMM estimator defined in (15) is asymptotically normal with covariance
matrix

(Jo,) " o, (To,) " (19)

where Jp, = (Vokg, ) "Q(Vokg, ») and Tg, = (Vokg, »)T Qg Q(Voks, ).

Proof. We check assumptions 1.7-1.9 of theorem 1.2 in Matyas (1999). Since by Lemma 4 the
map 0 — kg, is continuously differentiable, their assumption 1.7 is valid. Now, for any sequence

~ ~ P
0, such that 6, - 6, as n — oo, it follows from the continuous mapping theorem by the conti-

R P
nuity of the map © — %kg,r in Lemma 4 that %(kw —kg,) = (kq, — %keo) as n — co. Therefore,
assumption 1.8 in Matyas (1999) is also satisfied. Since Lemma 5 implies assumption 1.9, we
conclude the result. =

Remark 2. In order to apply the results of Section 5.2 we need to check Assumption ¢, model
identifiability (d.3), strong mixing of the log-price returns sequence (d.5) and existence of certain
moments of its stationary distribution (Assumption e) . In Sections 5.3 and 5.4 we give sufficient
conditions for identifiability of the model parameters, strict stationarity and strong mixing. Then
we use these results to derive in Section 5.5 more palpable conditions under which Theorems 1
and 2 can be applied.

5.3 | Sufficient conditions for strict stationarity and strong mixing

Sufficient conditions for the existence of a unique stationary distribution of (Y;),cr+, geometric
ergodicity and for the finiteness of moments of order p of the stationary distribution have recently
been given in Stelzer and Vestweber (2019). We state these conditions in the next theorem, which
are conditions (i), (iv), and (v) of theorem 4.3 in Stelzer and Vestweber (2019).

Theorem 3 (Geometric Ergodicity - (Stelzer & Vestweber, 2019, theorem 4.3)). Let Y be a
MUCOGARCH volatility process which is u-irreducible with the support of u having nonempty
interior and aperiodic. Assume that one of the following conditions is satisfied:

(i) setting p=1 there exists E € S} such that

EB+B'E+0,AEA€ -SI7, (20)

(i) thereexist p €1, 00) and E € S| such that

/R <2p—1(1 + KE,AHJ’H%)p - 1) vi.(dy) + pKzp < 0, (21)
d
where
tr ((EB+B'E) X) tr (ATEAX)
Kep= max — and Ke4 = max —————=,
XeS! rx)=1 tr(EX) xeStreo=1 tr(EX)
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(i) there exist p € [1, 00) and E € S|* such that

_ —1
max {2P"%,1} Kz4 /IR d||y||§(1+||y||§Ka )" vi(dy) + K= < 0, (22)

where Kz p, K= 4 are as in (ii).

Then a unique stationary distribution for the MUCOGARCH volatility process Y exists, Y is
positive Harris recurrent, geometrically ergodic and its stationary distribution has a finite pth
moment.

A consequence of Theorem 3 is that the process Y is exponentially g-mixing. This implies
a-mixing of the log-price process as we state next. For more details on mixing conditions we refer
to Bradley (2007).

Corollary 1. IfYis strictly stationary and exponentially f-mixing, then the log-price process (G;);cN
is stationary, exponentially a-mixing, and as a consequence also ergodic.

Proof. Since Y is an exponentially f-mixing, homogeneous strong Markov process (Stelzer, 2010,
theorem 4.4), and driven only by the discrete part of the quadratic variation of L, the proof follows
by the same arguments as for theorem 3.4 in Haug et al. (2007). (]

Next, we state a result which gives sufficient conditions for the irreducibility of the MUCOG-
ARCH volatility process Y, which is one of the sufficient conditions for the geometric ergodicity
result in Theorem 3.

Theorem 4 (Irreducibility and Aperiodicity - (Stelzer, 2010, theorem 5.1 and corollary 5.2)).
Let Y be a MUCOGARCH volatility process driven by a Lévy process whose discrete part is a com-
pound Poisson process L with A € GLyz(R) and R(c(B)) < 0. If the jump distribution of L has a
non-trivial absolutely continuous component equivalent to the Lebesgue measure on R restricted to
an open neighborhood of zero, then Y is irreducible w.r.t. the Lebesgue measure restricted to an open
neighborhood of zero in Sd+ and aperiodic.

5.4 | Sufficient conditions for identifiability

In this Section we investigate the identifiability of the model parameters from the model moments,
that is, we investigate the injectivity of the map 6 — ky, on an appropriate compact set ®. Recall
that we can divide the this map into the composition of 8 — (Ag, By, Cy) > kg . Injectivity of 6 —
(Ag, By, Cy) holds if, for example, it simply maps the entries of 6 to the entries of the matrices
(Ap, By, Cy). Thus, we only need to investigate the injectivity of the map (Ag, By, Cp) — kyr. As
we will see, there will appear some restrictions on the matrices Ay, By, which are related to the
fact that we need to take the logarithm of a matrix exponential, and we need to ensure this is
well defined. We will omit 8 from the notation, except when explicitly needed. We start with the
identifiability of the matrix C.

Lemma 6. Assume that Assumptions (a.1)-(a.5), (b.2), and (c.1) hold and that o(B) C {z € C :
R(z) < 0}. If the matrices A and B are known, then E(G,G}) uniquely determines C.
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Proof. Since 6(BQI+1Q® B)=06(B)+06(B) C {z€ C : R(z) <0}, the matrix B I+IQ®B is
invertible. The rest of the proof follows by noting that from (7) and (8) it follows that

vec(C) = (o + ow) "A (BRI + I ® By Bvec(E(G,G))).
u
For the identification of the matrices A and B we need to use the second-order structure of
the squared returns process in Lemma 2. We first state three auxiliary results, which provide
conditions such that we can identify the components of the autocovariance function in (9).

Lemma 7. Assumethat B € My(R) is diagonalizablewith S € GL4(C) such that S*BS is diagonal.
If

% IA® Alls < ~2max{R(a(B))}, 23)
with
IXNls = 157 ® SHXS ® SHll2. X € Ma(R), S € GLg(C), 24)
then the matrix
(ow +0)(BY ! = 2(A® A)) (25)

is invertible.

Proof. From (Bernstein, 2009, fact 2.16.14), X~! + Y~! is nonsingular if and only if X + Y is non-
singular and X, Y are nonsingular. Setting X = Y = —%(A ® A) and using the definition

(op+ow)’

of Bin (6) we get

X4+Y=—1 <(B®I+I®B)+
(o1 + ow)

(oL — ow)

> (A®A)>.

Since B is diagonalizable, we can use Bernstein (2009, proposition 7.1.6) to obtain
BRI+I®B=(SQS)SBS@N(S'®Ss™,

which guarantees that B® I +I ® B is also diagonalizable. Now we rewrite the first equation on
p- 106 in Stelzer (2010) with the matrix B replaced by (BQ I +1 ® B) + @(A ® A) and apply
the Bauer-Fike Theorem (Horn & Johnson, 1991, theorem 6.3.2) to see that (23) implies that all
eigenvalues of (X + Y)(or + ow) are in {g € C : R(z) < 0} and, therefore, X + Y is invertible. =

Lemma 8. If A € My(R) is such that Aq ), ... ,Aq,j-1)=0 and Aq ) >0 for some je{1, ... ,dj,
then the map X — AXAT for X € Sy identifies A.

Proof. Assume first that A ;)>0. For each i€ {1, ... ,d}, let ¢; be the ith column unit vector in
R4 and define the matrix E®) = eiejT. The first line of the matrix AE® VAT is

(A(ZLD,A(Ll)A(z,l), e AQDAWD)- (26)
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Since Ag1,1y > 0, (26) allows us to identify first A; 1) and then Ay, ... ,Ag1). Now, for each
ke{2, ... ,d}, note that E&0 4 E® D is symmetric. Simple calculations reveal that the first line of
the matrix A(E®-R + E AT js

A1 HAQ K- Aa Ak T AaAc), - > AanAdk T AakAd))- (27)

Since Aq 1y > 0, we identify Aq k) from the first entry of (27). Now, since also A1, ... ,Aw@,1)
are already known, we can identify A ), ... ,Aw@x)-. Thus, all entries of A can be identified. The
cases A j) > 0 for some j > 1 follow similarly. L]

Lemma 9. Assume that the Assumptions a,b and c and the conditions of Lemma 8 hold,
that the matrix in (25) is invertible, that c(B) C {z€ C : —n < S(2)A < =, R() < 0} and that
var(vech(Vy)) is invertible. Define M = (e®*)~lacovy gg+(1). Then, acovy gg+(1) and acovy e (2)
uniquely identify B and M.

Proof. Since M is given in terms of B and acovy gg+(1), we only need to identify /. Observe that
we are using the vec operator only for convenience, as it interacts nicely with tensor products of
matrices and thus gives nicely looking formulae. However, the volatility and “squared returns”
processes take values in Sy which is a d(d + 1)/2-dimensional vector space, whereas the vec oper-
ator assumes values in a d?-dimensional vector space. Instead of using the vech operator and
cumbersome notation, we take an abstract point of view. The variance of a random element of Sy
is a symmetric positive semi-definite linear operator from Sy to itself. Likewise, the autocovari-
ance of G1 G| and G14, G, is a linear operator from Sy to itself. The condition that var(vech(V))
is invertible is equivalent to the invertibility of the linear operator, which is the variance of V.

Similarly all other d? x d?> matrices in
BB (1 — e7P2) (o + ow)var(vec(Vo))(e® * — Ip)[(ow + or)(B) ™ = 2((A ® A)*) 7],

are representing linear operators from Sy to itself. Under the assumptions made, the above prod-
uct involves only invertible linear operators. Hence acovy gg+(h) is invertible (over Sy) for every
h> 0. Thus,

e’ = acovy e+ (2)[acovy g (1] 7"

By the assumptions on the eigenvalues of /B there is a unique logarithm for e”2 (see Horn
& Johnson, 1991, section 6.4 or Schlemm & Stelzer, 2012, lemma 3.11), so BA and thus B is
identified. Finally, note that the matrices in the vec representations are uniquely identified by
the employed linear operators on S; due to (Pigorsch & Stelzer, 2009a, proposition 3.1) and
Lemma 8. [

Lemma 10 (Identifiability of A, B, and C). For all 6 € ©, assume the conditions of Lemma 9,
c(Bg) C {z€ C : R(z) <0} and that the entries of the matrices Ay and By satisfy: for some
k#£le{l, ... ,d}, Agne > 0, Ao #Aak,e and Bge = Bax.e. Then kg, uniquely identifies Ay,
Bg and Cg.

Proof. Recall that we omit  in the notation. Assume w.l.o.g that 6, = 1. Because of Lemma 6, we
only need to show the identification of A and B.
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Assume first that d = 2. Then the matrix B from (6) is

2By + A7 Bap +AanAay B +AanAaz) Al
Boy +AanAey  Bay +Beo +AcnAea) An2Aey Bz +AqAea)
Bay +AanAey AnaAey Bay +Boay +Aandes  Buo +AanAcy |
AL Boy +AenAey Boyy + ApnAey 2B + A7,

(28)
Using the entry at position (1, 4) and the fact that A(; 2) > 0 allow us to identify A ). Then, we use
the entry at position (2, 3) to identify A(,1). Now, we use the entries at positions (1, 2) and (2, 1)
together with the fact that A ;) # A1) and Ba 2y = By to write A1y = (Ba2y) — Bey)/(Aaz) —
Ae,1))- Similarly we use the entries at positions (3,4), (4, 3) to get A2 = (B4 — Bas)/(Aaz) —
A.1))- Now, since all the entries of A are known, we can use the entries at positions (1, 1), (1, 2)
and (2, 2) to identify the entries of B.
Now assume that d > 2. We assume w.l.o.g. that Ay 2) > 0, A1 2) # Az,1) and B 5) = A1) Write
the matrix /3 from (6) in the following block form:

BLL . pad)

B=BQRI+I®B+AQA=]| : - N (29)
p@n - pdd

where B% € My(R) foralli,j=1, ... ,d. First, we have that

Bao +AaAa AaAa AapAas - AaAwd
B2 — Aq2Aey Bua +AanAery AarAes - Aq2Aed (30)
AaA@ Aa2Ad2) AapAws - Baz tAa2Add

Since Aq 2) > 0 we can identify it from (30), because ng = Afl ,- Then we use the off-diagonal
entries of the matrix B1-? in (30) together with A( 5 to identify all the off-diagonal entries of the

matrix A. Next we identify the diagonal entries of A. It follows from (29) that

] . k=1 ...d 3D

k,k
BELZ; = Ba ) + AwkiAa),
= B + AkAcy

2,1)
Since Aq 2) — A1) # 0 and B 2) = B(2,1), the system of Equation (31) gives

(kk) (k)
Al = (B, =B/ (Aay —Aey). k=1, ....d.
Finally, since the matrix A is now completely known, we can use (29) to identify all entries of B.

]

In Lemma 10 we identify the matrices A and B only from B and, therefore, some mild restric-
tions on the off-diagonal entries of B appear. In order to avoid those restrictions, we could to take
the structure of E vec(vec(G,G7)vec(G,G7)*) in (10) into account when proving identifiability and
we expect that one can improve the identification results since more moment conditions are used.
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However, already in the two-dimensional case the results on identification conditions are quite
involved, and this has mainly to do with the fact that the linear operator (Q + K;Q + Iz2) at the
right-hand side of (10) is not one-to-one in the space of matrices of the form E vec(Vy)vec(Vy)*. In
the end, in order to use the moment conditions E vec(vec(G; Gy)vec(G1G7)*), we need to assume
that the matrices BQI+1® B and A ® A commute (see Do Régo Sousa, 2019, lemma 3.5.18).
Since commutativity is a quite strong condition, it seems highly preferable to work with the class
of MUCOGARCH processes, which are identifiable by Lemma 10. The exponential decay of the
autocovariance function of the model is still quite flexible, because of the interplay between the
matrices A and B (see (28), for instance).

5.5 | Asymptotic properties: general case revisited

Here, we combine the results of Sections 5.2-5.4 to give easily verifiable conditions under
which the GMM estimator 8,, will be consistent and asymptotically normal. We assume that the
parameter 6 contains the entries of the matrices (Ag, By, Cy) so that the map 6 — (Ay, By, Cp) is
automatically injective and continuously differentiable on ©.

First, we define

lxlls = 1S @ S™Oxll,, x € RY, S € GL4(C) (32)

X112

Kys = ax <—
xeSEIXl,=1 \ [[vec(X)|[s

) , S €GLyO). (33)

Consider now the following group of assumptions:

Assumption f (Parameter space). For all 8 € © it holds:

(f.1) The matrices By satisfy 6(By) C {z € C : R(z) < 0}.

(f.2) The matrix By satisfy 6(By) C {z € C : -7 < F(2)A < 7, R(z) < 0}.

(f.3) The matrix By € My(R) is diagonalizable with Sy € GL4(C) such that S;lBQSg is diagonal.

(f4) The entries of the matrices Ay and By satisty: forsome k #1le {1, ... ,d}, Akpe > 0, Ao #
Ao and B e = B(k)e-

(f.5) The matrix varg(vech(Vy)) is invertible.

(£.6) |%|||A9 ® Aglls, < —2max{R(c(By))} with Sy as in (f.3) and ||Ag ® Aglls, as in (24).

(£7) There exists 2y € S* such that, condition (20) holds with A, B replaced by Ay, By.

(£.8) m(4,0) < 0 where

m(p.0) = /R (@ aplivecty)lls, P = Vv (@) +2pmax(ReBp)),  (34)

as = [1SolI511S; M I5K2.8, [l Ag ® Aglls, With Ky p, as in (33), [[vec(yy*)|ls, as in (32) and Sy as
in (£.3).

Assumption g (MUCOGARCH process at 6,).

(g.1) The MUCOGARCH volatility process Y is stationary, u-irreducible with the support of u
having nonempty interior and aperiodic.
(g.2) m(p,0) < 0 for some p > 4.
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Assumption (f.1)-(f.6) collect the needed identifiability assumptions from Section 5.4.
Assumption (f.7) is a sufficient condition under which we have uniqueness of the stationary dis-
tribution of Y and geometric ergodicity (Section 5.3). For the asymptotic results of the GMM
estimator in Theorems 1 and 2, we need to ensure E||Y,||? < oo for appropriate p> 1, and this
would require checking Assumptions 21 or 22 with p > 1. However, this imposes strong conditions
on the Lévy process (Stelzer & Vestweber, 2019, remark 4.4). Instead, we require diagonalizabil-
ity of the matrix By (f.3), which is not a very restrictive assumption, and check (34) to ensure
E||Ys|[P < oo (Stelzer, 2010, theorem 4.5), which is less restrictive.

In view of the above assumptions and the results of Sections 5.1-5.4 we have the following
consistency result.

Corollary 2 (Consistency of the GMM estimator - L has paths of infinite variation). Suppose
that assumptions a, b, (d.1), (f 1)-(f.8) and (g.1) hold. Then the GMM estimator defined in (15) is
weakly consistent.

If the paths of the driving Lévy process are of finite variation, we can relax even more the
conditions from Corollary 2. Before we state this result, we give the definition of asymptotic
second-order stationarity which will be used in its proof. A stochastic process X € Sy is said to be
asymptotically second-order stationary with mean y € R?’, variance X € S;Z and autocovariance
function f : R* — Mg (R) if it has finite second moments and

tlim EXy) = u, tlim var (vec (Xp)) = X2

lim suﬂg {llcov (vec (Xi1n) , vec (Xp)) — f(W)||} = 0.
® heR+

Corollary 3 (Consistency of the GMM estimator - L has paths of finite variation). Suppose that
assumptionsa, b, (d.1), (f.1), (f2), (fD-(f.7), (g.1) hold and that L has paths of finite variation. Then,
the GMM estimator defined in (15) is weakly consistent.

Proof. Let D € S:i“ be a constant matrix, and consider a MUCOGARCH process (Y;);cr+ Solv-
ing (5) have starting value D. Then, a combination of Assumptions (a.2), (a.5) with the fact that
the starting value D is nonrandom and the hypothesis imposed on the matrices By, By, Cy allow
us to apply theorem 4.20(ii) in Stelzer (2010) to conclude that the process (Y;),cg-+ is asymptoti-
cally second-order stationary. Additionally, Theorem 3(i) ensures that the process (Y;),cr+ has a
unique stationary distribution, is geometrically ergodic and its stationary distribution has finite
first moment, that is, E||Yy|| < oo. Since Y; € S;, and tr(Y'Y) (with tr denoting the usual trace
functional) defines a scalar product on Sy via tr(Y;Y;) = vec(Y;)*vec(Yy) it follows that

d d d
E[|Y:]I3 = tr(Y; Yy = vec(Yo)'vee(Yy) = ) BY, = ) var(Yey) + ) (EYyy)?
ij ij ij

= tr(var(Yy) + |[E(Y)Il5, t>0. (35)

Since both maps t — E||Y;|| and ¢t~ var(Y,) are continuous (Stelzer, 2010, equations (4.7) and
(4.16)), it follows from (35) that lim sup,ZO]EHYtll2 < 0. Since Theorem 3(i) implies convergence
of the transition probabilities in total variation, which in turns implies weak convergence (e.g.,

d
Klenke, 2013, exercise 13.2.2), we have that Y; — Y ast — oo, with Y, being the stationary version
of Y. Hence, we can use the continuous mapping theorem and (Billingsley, 2008, theorem 25.11)
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to conclude that || Yy||?> < 0. Finally, the result follows by an application of Lemma 1, Theorem 1,
Corollary 1 and Remark 4. m

Recall that for the asymptotic normality result, we need to ensure that the stationarity dis-
tribution of the MUCOGARCH volatility process has more than four moments (cf, (e.1)). This is
summarized in the next corollary.

Corollary 4 (Asymptotic normality of the GMM estimator). If Assumptions a, b, (d.1), (d.2),
(d.4), fand g hold, then the GMM estimator defined in (15) is asymptotically normal with covariance
matrix as in (19).

Proof. By the same arguments of (Stelzer, 2010, theorem 4.5) combined with (Lindner &
Maller, 2005, proposition 4.1) and (g.2), it follows that E|| Y|P < oo for some p > 4. The rest of the
proof is just an application of Theorem 2. L]

Remark 3. The advantage of Corollaries 2-4 is that Assumption f can be checked numerically
and Assumption g holds true if, for example, the Lévy process L is a compound Poisson process
with jump distribution having a density which is strictly positive around zero (see Theorem 4).

If (g.1) holds, the stationary distribution of Y is automatically a maximum irreducibility mea-
sure. All maximal irreducibility measures are equivalent and thus the support of the stationary
distribution has a support which has nonempty interior. The latter in turn implies that the vari-
ance has to be an invertible operator (noninvertibility is equivalent to the distribution being
concentrated on a proper linear subspace) which is (f.5) for 6,.

In the next section, we investigate the finite sample performance of the estimators in a
simulation study.

6 | SIMULATION STUDY

To assess the performance of the GMM estimator, we will focus on the MUCOGARCH model in
dimension d=2. We fix L, = L? + \/owW, for t € R* where L? is a bivariate compound Poisson
process (CPP), W is a standard bivariate Brownian motion, independent of L? and oy > 0 is fixed.
We choose L? as a CPP, since it allows to simulate the MUCOGARCH volatility process V exactly.
Thus, we only need to approximate the Brownian part of the (log) price process G in (1), which
is done by an Euler scheme. Setting L as a CPP is not a very crucial restriction, since for an
infinite activity Lévy process one would need to approximate it using only finitely many jumps.
For example by using a CPP for the big jumps component of L? and an appropriate Brownian
motion for its small jumps component (see Cohen & Rosinski, 2007). In applications, a CPP has
also been used in combination with the univariate COGARCH(1,1) process for modeling high
frequency data (see Miiller, 2010). The jump distribution of L? is chosen as N(0, 1/4I,) and the
jump rate is 4, so that var(L;) =2I, and

E[vec([L, L*1*), vec([L, L* )" 2 = 1/4(I4 + K + vec(Iy)vec(ly)*).

In this case, the chosen Lévy process L satisfies Assumptions a from Section 4 (with ¢, = 1 and
ow > 0). Based on the identification Lemma 10, we assume that the model is parameterized with
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0 =D, ... ,01), and the matrices Ay, By and Cy are defined as:

o g 0  g® o®  g®
Ae = , Be = and Cg = 5
03 9@ 0© 9 ® 10
with 8@ > 0 and 6® # 6. Thus, Assumptions (d.4) and (f.4) are automatically satisfied. The
data used for estimation is a sample of the log-price process G = (G;)_, as defined in (2) with true
parameter value 6, € ® C R1? observed on a fixed grid of size A = 0.1 (the grid size for the Euler

approximation of the Gaussian part is 0.01).
We experiment with two different settings, namely:

Example 1. We fix oy =1,

0.85 0.10 —-2.43 0.05 1 05
Ago = . Bgo = and Cgo = . (36)
-0.10 0.75 0.05 -242 0.5 1.5

Example 2. We fix oy = 0, Ag, and Cy, are as in Example 1 and

- < 243 0.05 ) | 7
4\ 005 -242

For the chosen Lévy process here, Assumption (g.1) is satisfied. In Example 1, 8, is chosen in
such a way that the asymptotic normality of §,, can be verified. Then, in Example 2 we rescale By,
from Example 1 in such a way that our sufficient conditions for weak consistency are satisfied,
but our sufficient conditions for asymptotic normality in Corollary 4 are not satisfied.

Due to the identifiability Lemma 10 we need to choose r > 2. For comparison purposes, we
perform the estimation for maximum lags r € {2, 5, 10} and sample sizes n € {1000, 10000, 100000}.
The computations are performed with the optim routine in combination with the
Nelder-Mead algorithm in R (R Core Team, 2017). Initial values for the estimation were found
by the DEopt im routine on a neighborhood around the true parameter 6,. Next, we only con-
sider estimators based on the identity matrix for the weight matrix Q in (15). Then, we study
a two step GMM estimator based on different weight functions. The results are based on 500
independent samples of MUCOGARCH returns.

In the following we report the finite sample results of the GMM for Examples 1 and 2.

6.1 | Simulation results for Example 1

We can check numerically that the matrices Ag,, By, and Ag, are such that Assumptions b and
(£.2)-(f.6) hold. Additionally, the eigenvalues of the matrix By, + BZO + oLAZOAgo are —4.067 and
—4.328, so it is negative definite and Assumptions (f.7) holds. For our choice of 6, we have that
By, is diagonalizable with By = Sy D, S;L)l, where

-0.671 -0.741 —-2.375 0
Se, = and Dy, = .
-0.741 0.671 0 —2.475
In addition, for p =4.001,

/Rz((l + ap, ||Vec(yy*)||SHO)P — Dvr(dy) + 2p max{R(c(By,))} = —0.024 < 0, (38)
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n=1000 n= 1000

ait ai2 a2t az2 b1 bi2 b22 cit o2 22 ait ai2 a21 a22 bi1 bi2 b22 cit ci2 22

n=10000 n= 10000

03- /\\ //\\ N
—~——Y Nl  ESeese -

ail ai2 a21 aze bi1 bi2 b22 cit iz 22 a1 ai2 a21 a22 bi1 bi2 b22 cit ci2 22

n =100000 n= 100000

ait al2 a2t a2 bl bi2 b2 it o2 o2 att ai2 a21 a2 bit bi2 b22 cit ci2 c22

FIGURE 1 Example 1: Estimated absolute bias (lhs) and SD (rhs) of én,. The colors green, blue, and red
correspond to r=2, 5, and 10, respectively [Color figure can be viewed at wileyonlinelibrary.com]

so (g.2) is also valid. Therefore, all assumptions for applying Corollary 4 can be verified, which
imply assumption e, and ensure asymptotic normality. We also note that the chosen parameters
are very close to not satisfying Assumption (38).

We investigate the behavior of the bias and standard deviation in Figure 1, where we excluded
those paths for which the algorithm did not converge successfully (around 10 percent of the paths
of length n=1000 and less than 3% for larger n). Figure 1 show the estimated absolute values
of the bias and SD for different lags r and varying n. As expected, they decay when n increases.
Additionally, the results favor the choice of maximum lag r = 10, which is already expected since
using more lags of the autocovariance function usually helps to give a better fit. It is also worth
noting that the estimation of the parameters in the matrix By, is more difficult than the other
parameters, specially for n € {1000, 10000}.

Figures 2 and 3 assess asymptotic normality though normal QQ-plots. Based on the previous
findings we fix r = 10, since it gave the best results. This might have to do with the fact that using
just a few lags for the autocovariance function (=2 or r = 5) are not sufficient for a good fit. Here
we do not exclude those paths for which the algorithm did not converge (these are denoted by
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FIGURE 2 Example 1: Normal QQ-plots of én,m for 0, as in (37). The red dots are values for which the
algorithm did not converge [Color figure can be viewed at wileyonlinelibrary.com]

large red points in the normal QQ-plots in Figures 2 and 3). These plots are clearly in line with
the asymptotic normality of the estimators. It is worth noting that the tails corresponding to the
estimates of By, deviate from the ones of a normal distribution for values of n € {1000, 10000},
but they get closer to a normal distribution for n=100000. The tails of the plots for A,;,, in
Figure 2 is not close to a normal (although the plots show its convergence). This is maybe due to
identifiability condition in Lemma 10 which requires A 1y9 > 0 but Az,1)9, = 0.1 is very close to
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FIGURE 3 Example 1: Normal QQ-plots of 8, ,, for 6, as in (37). The red dots are values for which the
algorithm did not converge [Color figure can be viewed at wileyonlinelibrary.com]

the boundary. For n=1000, there are very large negative outliers for the estimates of By, which
affects the bias substantially.

6.2 | Simulation results for Example 2

In this section we analyze the behavior of the GMM estimator when the consistency conditions
are valid, but we cannot check the conditions for asymptotic normality. Here, we have o(By, /4 +
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FIGURE 4 Example 2: Estimated bias and SD of 8,, . The colors green, blue and red correspond to r =2, 5
and 10, respectively [Color figure can be viewed at wileyonlinelibrary.com]

BZO /4 + oLAZOAgo) = {-0.594, -0.619} € (—0,0) + iR. Thus, Corollary 3 applies and gives weak
consistency of the GMM estimator. On the other hand, for p =4.001 the integral in (38) is 14.22 > 0,
and thus, we cannot apply Corollary 4 to ensure asymptotic normality.

The results for Example 2 are given in Figures 4-6. The estimation of the entries of B, does
not seem to be substantially more difficult than the entries of Ag, and Cj,, as observed in the
previous example. Also, the estimated bias and SD decreases in general as n grows, showing con-
sistency of the estimators. Also, the convergence rate seems slow and, therefore, probably smaller
than n'/? (the asymptotic normality rate from Theorem 2). The QQ-plots for the estimation of the
parameters A1), Cq1,1), and C(, 1y also show some deviation from the normal distribution.

7 | REAL DATA ANALYSIS

In this Section, we fit the MUCOGARCH model to 5 minutes log-returns of stock prices corre-
sponding to the SAP SE and Siemens AG companies (the data was obtained from the Refinitiv
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FIGURE 5 Example 2: Normal QQ-plots of 8, ,, for 6, as in (37). The red dots are values for which the
algorithm did not converge [Color figure can be viewed at wileyonlinelibrary.com]

EIKON system). For both datasets we have excluded overnight returns. The resulting bivariate
dataset has a total length of 12,135 (from June 30, 2020 to December 15, 2020) and is shown in
Figure 7.

Based on the sample autocorrelation function of the squared log-returns we decided to use
15 lags to estimate a bivariate MUCOGARCH model. Before moving to the estimation step,
we re-scaled the data multiplying it by 1000 for numerical reasons. Since the GMM algorithm
from (15) requires a starting value, we first fit a one-dimensional COGARCH to each dataset
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FIGURE 6 Example 2: Normal QQ-plots of 8, ,, for 8, as in (37). The red dots are values for which the
algorithm did not converged [Color figure can be viewed at wileyonlinelibrary.com]

with the algorithm described in (Haug et al., 2007, algorithm 1) and used them to construct
the corresponding two-dimensional MUCOGARCH describing two independent log-return price
process. This will be a MUCOGARCH process whose parameters A, B,and C are diagonal matri-
ces and the driving Lévy process has independent components (Stelzer, 2010, example 4.2). To
construct a second step GMM estimator, we use the estimated parameters from the first step to
estimate a weight matrix to replace Q in (15). Indeed, as explained in Matyas (1999, section 1.3.3),
and given a consistent estimator 290 of X4, an asymptotically more efficient estimator can be
constructed as
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AG (right) exchange rates [Color figure can be viewed at wileyonlinelibrary.com]

9512) = arg minge@ {(i%n,r - ke,r)Tié’O(l%n,r - kH,r)} . (39)

Given a bivariate dataset of log-price returns of size n following a MUCOGARCH model, we
can see from (18) that a natural estimator for Xy, is

1y 5 -
ZpM = _2 (D - kn,r)(Dt - kn,r)
n =

S

M=

Il
—

{®: =T D = ks + Dusi = kn)*De =k | MEN,  (40)

+
S|

t=1 i

where we truncated the infinity sum in (18). The above estimator is a symmetric matrix, regardless
of the values chosen for M and n. As done in the proof of Lemma 3, sufficient conditions for it to
be consistent are assumptions a, b, ¢, and (d.5). On the other hand, we cannot guarantee that it is
going to be positive semi-definite, which is a condition required to use it as a weight matrix in the
estimator from (39). One way around it is to use the simpler estimator (as in Stelzer et al., 2015,
section 4.1) of Xy, which ignores the second summation on the rhs of (40), namely,

i(basmCOV) _1 Z (Dt = ku)(Dy = kny), MEN, (41)
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TABLE 1 Estimated bias and std of 9,,,, (1 step GMM) and 953, the 2 step GMM with three different
weighting matrices, namely: basicCOV from (41), fullCOV from (40) with M =10 and diagCOV, a diagonal
weighting matrix formed with the diagonal entries of (41)

Estimated Bias - GMM

True Value 1 step 2 step (BasicCOV) 2 step (M =10) 2 step (diagCOV)
6w 0.442 —0.024 —0.094 —0.055 —-0.073
0@ 0.259 0.016 —0.026 0.040 —0.034
6® 0.054 0.086 0.120 0.121 0.100
6@ 0.194 0.164 0.170 0.151 0.169
6® —0.146 0.010 0.014 —0.043 0.031
6©® —-0.014 —0.085 —-0.076 —-0.091 —-0.072
67 —0.080 -0.081 —0.077 —-0.162 —0.058
6® 0.257 0.091 0.129 0.248 0.083
6 —0.134 0.147 0.148 0.176 0.148
610 0.070 0.136 0.157 0.315 0.137

Estimated Std - GMM

True Value 1 step 2 step (BasicCOV) 2 step (M =10) 2 step (diagCOV)
6w 0.442 0.101 0.084 0.207 0.100
6@ 0.259 0.123 0.112 0.261 0.112
6® 0.054 0.088 0.086 0.169 0.093
6@ 0.194 0.109 0.108 0.193 0.110
6® —0.146 0.080 0.091 0.402 0.067
0©® —-0.014 0.073 0.081 0.398 0.065
67 —0.080 0.072 0.085 0.650 0.062
6® 0.257 0.112 0.113 0.909 0.168
6® -0.134 0.093 0.101 0.645 0.139
619 0.070 0.091 0.103 1.137 0.126

The resulting estimators when applying the two-step GMM with (41) for the bivariate dataset
of 5-min log-returns are given by:

0.442 0.259 —-0.146 -0.014 0.257 -0.134
, B and C= . (42
0.054 0.054 —-0.014 —-0.080 —-0.134  0.070

The parameters of the Levy process were chosen to be the same from example 1 as they allow
us to check consistency and asymptotic normality conditions. According to Corollary 3, the esti-
mated parameters given in (42) describe a MUCOGARCH model for which the GMM estimators
is consistent. For the asymptotic normality, we need to verify assumption (f.8), which requires
computing m(p, ) with 6, replaced by a vector formed with the entries of the matrices in (42).
This computation results in 2.98, and therefore (f.8) is violated, and we cannot ensure asymptotic
normality.
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To assess performance of the GMM estimator used to estimate the MUCOGARCH model for
real data, we perform a simulation study using the values from (42) as 6. The results are reported
in Table 1 and referred by basicCOV. We also compare it with the first step GMM and two other
two-step GMM estimators: one using £, 5 from (40) with M = 10 as a weight matrix and another
which uses a weighing diagonal matrix formed with the diagonal of £, /. These are referred in
Table 1 as fullCOV and diagCOV, respectively. Using fullCOV did not improved the estimates
when compared with basicCOV and diagCOV, and that might be to do with the fact that invert-
ing the estimated covariance matrix gave several warnings during the estimation. The estimator
based on diagCOV was somehow similar to the one-step GMM, giving smaller bias and std for
the parameters 8©® — 6®, which correspond to the matrix B. The fact that the two-step GMM did
not improved the first step GMM results, might be because the sample size n used to estimate the
covariance matrix is too small.

8 | CONCLUSION

We obtained explicit expressions for the MUCOGARCH moments which allowed us to investigate
the theoretical and practical issues when applying a method of moment estimation for its parame-
ters. We have also obtained easy to check conditions for consistency and asymptotic normality for
the estimator in MUCOGARCH models driven by some classes of Lévy Processes. A simulation
experiment and a real data application show very satisfactory behavior of the estimator.

On the other hand, it still remains to study if it is possible to relax some moment condi-
tions, specially for infinite variation Lévy processes as in Corollary 2, or some restrictions on the
parameter space, for example, invertibility assumptions.

When applying the GMM method with an estimated optimal weight matrix, some issues arose
when inverting the estimated covariance matrix. Lastly, it would be interesting in future work to
compare the performance of the full MUCOGARCH model studied in this paper to seemingly less
flexible models such as continuous time constant conditional correlation GARCH models (the
variances would be modelled by d univariate COGARCH models and they would be combined
with the help of a constant correlation matrix), where issues like parameter redundancy should
be much nicer behaved.
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APPENDIX A. PROOFS

Auxiliary results
Several results related to the algebra of multivariate stochastic integrals will be used here, for
which we refer to lemma 2.1 in Behme (2012). Furthermore, we need the following.

Fact 1 ((Stelzer, 2010, lemma 6.9) with drift). Assume that (X;),cg+ is an adapted cadlag
M,(R)-valued process satistying E(]|X;||) < o for all t € R*, t — E(||X;]]) is locally bounded and
(Lo)ier, isan R9-valued Lévy process of finite variation with E(||L;]|) < co. Then

A A
IE/ XS_dLS=/ EX;-)E(L,)ds.
0 0

Fact 2. Let (A);er+ in Mpe(R), (B),er+ in My 2(R) be adapted caglad processes satisfying
EAIB:|l < oo for all t € R*, t — E||A]|||B:|| is locally bounded and (Lo)er, be an R? valued
Levy process satisfying assumption 5.2 in Stelzer (2010). Then,

t t
E / Asd(vec([L, L]5))Bs = (ow + GL)/ E[Asvec(Iq)Bs]ds.
0 0

Proof. First notice that vec([L, L],) is an R -valued Lévy process with finite variation. Then it
follows from Fact 1 that

t t
vec <E / Asd(vec([L,L]s))Bs> =E / (B; ® Ay)d(vec([L, L1;)
0

0
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t t
= / E(Bs ® Ag)E(vec([L, L]1))ds = (ow + O'L)/ E(Bs ® As)vec(Ig)ds
0 0
t
= (ow + o)vec </ E(ASIdBS)dS> ,
0

so the result follows by an application of vec™!. L]

Proof of Lemma 1. 1t follows from (Stelzer, 2010, proposition 4.7) (with k= p) that E|| Y]]’ < o
for all t € R* and t — [E||Y;||? is locally bounded. Then an application of Protter (2005, theorem
66 of ch. 5) together with the fact that E||L; ||* < oo and the definition of (Vier, in (4) gives for

allt>0
¢ 2p t ¢
E|G|? = E / VAL < c/ E||V/?||12ds < c/ E||C + Y,_|Pds.
0 0 0 -
Lemma 11. Assume that Assumptions (a.1)-(a.4), b and (c.2) hold. Then,
cov(vec(Yn), vec(G1GY)) = cov(vec(Ya), vec(GaG)))
= var(vec(Vo))(e” * — Ig)l(ow + o1)(B) ' —2(A®A))'], A0 (A1)

Proof. Since (a.4), (a.1), and (c.1) hold, we can apply Lemma 1 with p =2 to conclude that both
[lvec(Ya)ll and |G, G7|| are square integrable random variables and thus, the covariance at the left
hand side of (A1) is finite. Integration by parts formula (Stelzer, 2010, p. 111) gives

A A A
GAG: = / VYdLG: + / G, dL: VY + / VIPAIL L* V% i= Ay + A% + Ca. (A2)
0 0 0

It follows from Lemma 1(a) and (b) with p =2 together with the Cauchy-Schwarz inequality
that

t t
/ E(|VY? (11| Gs-|12)*ds < / (BNV_I2)* (EIGs_[12) 2 ds < o, (A3)
0 0

where the finiteness is due to the fact that the integrand is locally bounded, and thus, also bounded
on (0, t). Therefore (A;),cr-+ is @ martingale and A, € L? for all ¢t > 0. Thus, the integration by parts

formula, the formula d(vec(Ay))* = AL} (Gi. ® VSI/ 2) (lemma 2.1(vi) in Behme, 2012) imply

cov(vec(Ya), vec(Aa))

= E (vec(Ya)(vec(Aa))") — E(vec(Ya)E(vec(Aa))®

A A
=E < / vec(Y;_)d(vec(Ay))" + / dvec(Ys)(vec(As))* + [vec(Y), (vec(A))*] A> -0
0 0

A
=0+E / dvec(Y;)(vec(A,-))" + E([vec(Y), (vec(A))*]a). (A4)
0
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The first expectation in (A4) vanishes since

A
/ Elvec(Ya)IIGs. 21V 12ds
0
A
= / (E|[vec(Y;)IH 2B G |3 /4E| V2|13 4ds < oo,
0

by the generalized Holder inequality with (1/2+1/4+1/4=1) (see e.g., Kufner et al., 1977,
theorem 2.1), Lemma 1 and the fact that Loer, is an L?-martingale. Let C:=BRI+I®B)
and recall from p. 84 in Stelzer (2010) that

dvec(Y;) = Cvec(Yy_)ds + (A @ A)(V/? @ V/Hdvec((L, L1D). (A5)

Using (A5), the bilinearity of the quadratic covariation process, (Behme, 2012, eq. (2.1)),
Lemma 1, Facts 1, (a.3), (A3) and the It6 isometry we obtain

[vec(Y), (vec(A))*]a

[ / Cvec(Y,_)ds + / AQ AV @ V/Hdvec(L,L1D), / dL*(G:. 1/2)]
0 A
/ A®AV> @ V/*)dlvec(IL, LI®), L*Ii(Gi- ® Vi/?). (A6)

Recall that for arbitrary matrices M € My, ,(R) and N € M;;(R) it holds ||A ® B||> = ||All2||Bl|2
(Bernstein, 2009, fact 9.9.61). This together with the Holder inequality with (3/4 + 1/4 = 1) and
Lemma 1 with p =4 gives

A
/ ENVY @ VLG ® Vi/?)|»ds = / ENV 113 11Gel2ds
0

0
= / : ||V, |} 1G5 |I2ds < / ’ ENVi- ID¥*EGL|I5"*ds < co.
0 0
Thus, applying expectations at both sides of (A6) gives
E[vec(Y), (vec(A))*]a = 0. (A7)
Let [ :=E vec(Y;)(vec(As))* and notice that it follows from Lemma 1 and the
Cauchy-Schwarz inequality that E||L|| < co and s + E||L]| is locally bounded. Use (A5), (A7),

the compensation formula (Bernstein, 2009, proposition 7.1.9), E vec(Vs)vec(As_) = L, the 1t
isometry and (a.2) to get

A
lA=E/ dvec(Y;)(vec(As-))*
0

A
=K / [C‘vec(Ys_)ds+(A R A)(V? @ VId(vec((L, L1Y)| (vec(As.))*
0

A
C / E vec(Y;_)(vec(A,_))*ds
0
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A
+o1 / E[(A ® A)(V./* ® Vi/*)vec(ly)(vec(A,-))* Ids
0
A
=(C+o0.(ARA) / lds. (A8)
0

Solving the matrix-valued integral equation in (A8) and using that A, =0 implies I, =0, gives
I;=0 for all s >0 (see Haug et al. 2007). Thus, it follows from (A4) to (A8) that

cov(vec(Ya),vec(An)) =0, (A9)

and, as a consequence cov(vec(Yy), Vec(AZ)) =0.LetV,_ := Vsl_/2 ® VSI_/ 2, Then,

A A
vec(Cp) =/ Vs_dvec([L, L*]s) =/ V,_dvec([L, L*]?)
0 0

A A A
+ow / (V2 @ VI vec(ly)ds = / V,_dvec([L, L*?) + ow / vec(V,_)ds.
0 0 0
(A10)

Using the compensation formula, Fact 1 and the stationarity of (Vs),er, we get

A A
E / V,_dvec([L,L*],) = (ow + o1) / E Vs_vec(Iy)ds = A(ow + o)E vec(Vy).  (A11)
0 0

Additionally, it follows from Lemma 1 that E||vec(V;)vec(Ya)*|| < oo for all s >0 and thats —
E|lvec(Vs)vec(Ya)*|| is locally bounded. Then,

A A
E < / vec(V,_)ds (vec(YA))*> = / E vec(Vi_)(vec(Yr))*ds
0 0
A
= Avec(C)(E vec(Yy))" + / E vec(Y;)(vec(Ya))*ds.
0

Now it follows from the invertibility of (A ® A) and from the second equation following (3.5)
in Stelzer (2010) that

A
/ Vy_dvec([L,L*]?)
0
A
=(AQA)! (VGC(YA) —vec(Yy) — / BRI+I® B)Vec(Ys_)ds> . (A12)
0
The representation in (A12) gives

A
E [</ vs_dvec([L,L*]?)> (Vec(YA))*]
0

A
=E [(A ®A)! <Vec(YA) — vec(Yy) — / BRI+I® B)Vec(YS_)ds> (vec(YA))*]
0
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=AQA)! []E vec(Ya)(vec(Ya))* — E vec(Yy)(vec(Ya))*

A
- BRI+I® B)/ E vec(Ys_)(Vec(YA))*ds] . (A13)
0

Using the definition of C, in (A2), together with (A10), (A11), and (A13) gives
cov(vec(Cyp),vec(Yy)) = (A Q@ A)~! [E vec(Ya)(vec(Ya))* — E vec(Yy)(vec(Ya))*

A
- B®®I+I®B) (/ E Vec(YS_)(vec(YA))*ds>]
0

A

+ Aoy vec(C)(E vec(Yy))* + ow / E vec(Ys-)(vec(Ya))*ds
0

— A(ow + o1)E vec(Vy)E(vec(Ya))*

A
=[owlp —(AQRA) ' (BRI+I1Q B)] / E vec(Ys)(vec(Ya))“ds
0

+ (A ® A)~! [var(vec(Yy)) — cov(vec(Yp), vec(Ya))] — Acrvec(C)E(vec(Yp))*
— A(ow + o1)E vec(Yy)E(vec(Yy))*,

where the last equality follows from Vo=C+Y, and the stationarity of (Y)ser,. Using (7) it
follows first that

A A
/ E vec(Y;)(vec(Ya))*ds = / B A var(vec(Yy))ds + AE vec(Yo)E(vec(Yp))*
0 0

= B71(eP? — Ip)var(vec(Yy)) + AE vec(Yy)E(vec(Yy))*,  (Al4)
and second that
var(vec(Yy)) — cov(vec(Yp), vec(Ya)) = —(e%2 — I2)var(vec(Yy)). (A15)

Substituting BQ I+ 1 Q® B= B —o(A® A), using (Al4), (Al5), (6) and the formula for
E vec(Yy) in (7) gives
cov(vec(Cp),vec(Ya))

= lowle —(A®A) ' (B -0, (AQA))| [B'("”* — Ip)var(vec(Yy))
+ AE Vec(YO)E(vec(YO))*]
—(A® A) 1P = Ip)var(vec(Yy)) — Acpvec(C)E(vec(Yo))*
— A(ow + o1)E vec(Yy)E(vec(Yy))*

= [(ow + o0)B™! = 2(A ® A)7'| (€”* — I)var(vec(Yy))
- [(A® A)' BE vec(Yy) + ovec(C)| AE(vec(Yy))*

= [(ow + o1)B™! = 2(A ® A)7'| (€”* — I)var(vec(Yy))
- [(A®A) ' B(-o. B (A ® A)vec(C)) + o vec(C)] AE(vec(Yp))*

= [(ow + o1)B™! = 2(A ® A)7'] (€”* — Iz)var(vec(Yp)). (A16)
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Finally, the result of the Lemma follows from (A2), (A9), (A16) and the fact that
cov(vec(Ya), vec(GAG ) = (cov(vec(GAG ), vec(Ya))* = (cov(vec(Cp), vec(Ya)))*.
Proof of Lemma 2
(i) The proof of Lemma 2 (i) follows directly from Lemma 11 combined with (5.7) in
Stelzer (2010).

(i) Denoting by || - || the Frobenius norm we have by Lemma 1(b) with p=2

E|lvec(G1G))vec(G1Gy)* ||» = E|lvec(G1G))|3 = E||IG:iG; ||
= tr(GlG’{GlGT) = ]E”Ch”;t < 0.

Let as := vec(G,G}), s € [0, A] and use the integration by parts formula to write

A A
asa, = / as_d(as) + / dag(a;_) +[a,a"]a
0 0

A £
= </ das(a?—)>
0

hence we only need to prove that the random variables

A
+/ das(as_) + [a,a"]a, (A17)
0

A
/ dag(ai) and [a,a*]a,
0

have finite expectations and compute them in closed form. From (A2), lemma 2.1(vi) in
Behme (2012) and the symmetry of (V;),er, it follows that

da; = d(vec(G;G)))

t t
:d<vec </ Vsl_/zdLst_+/ GS_dLjVSI_/2+/ V/2d[L, L*); 1/2>>
0 0 0
t
=d</ (Gs- @ VM/*)dL, +/(V1_/2®G )dLs +/(V1/2 V% dvec((L, L*]s)>
0

= (G- @V + V> ®G)dL + (V> @ V/Hdvec(L, L*]), t>0. (A18)

By the submultiplicative property of |||, the generalized Holder inequality with
(1/4+1/4+1/2=1) we have

A A
/ E[|G,. ® V2|2 llas.|12ds = / EJIG,. |21V 2 lIvee(Gy_ G2 12ds
0 0
A 1 A
- / E||G,_ IV 12116, G 2ds < / ENGo_ S EIVe_ ) EIIG,_ 15 2ds, (A19)
0 0

which is finite by Lemma 1 with p = 4. Additionally, similar calculations and Lemma 1 with p =2
shows that E(|V? @ V2 |I)llas- |2 < ENVs-I)Y2(E|IGs-|1$)'/? < oo for all s>0 and the map
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s+ E(|| v/?® 1/ 2 I2]las=|I2) is locally bounded. Thus it follows from (A18), the It6 isometry, the
fact that [L, L*]; = [L,L*]? + 0,4t and fact 2 that

A
E / day(a)
0

A A
=IE< / Go-® V2 +V? ® G,) dLyat_ + / V"> ® v;/*)d (vee([L. L*1)ai.)
0

A
= (o1 + ow) ( / E ((Vl_/ ’® l/z)vec(Id)aS_> ds>
0

A
= (op + ow) / E(vec(Vs_)a;_)ds. (A20)
0

It follows from (5.6) in Stelzer (2010) that

A A
/ Ea;_ds = / (vec((or + ow)SEVy))*ds = %(O’L + ow)A%E vec(Vy)*. (A21)
0 0

Since we assumed here that all hypothesis for using Lemma 11 are valid, we can use (A1) with
A =sto get

A
/ cov(vec(Y;_), a;_)ds
0
A
= var(vec(Yy)) < / (s - Idz)ds> [(ow + o0)(B) ™" = 2(A ® A)") ']
0
= var(vec(Yy))B, (A22)

where B is defined in (12). Using (A20), (c.1) (A21), and (A22) gives
A A A
/ E vec(V;_ )a;_ds = / cov(vec(Vs ), as_)ds + (IE vec(Vy)) E(a;_)ds
0 0 0

A A
= / cov(vec(Y;s-), as_)ds + (E vec(Vy)) / E(a;_)ds
0 0

= %(O‘L + ow)AZE vec(Vy)Evec(Vo)* + var(vec(Yy))B

= (o1 + ow)™'D, (A23)

12 1/2

where D is defined in (11). Let f; := (Gs- Q V! 1/2 ® Gs_),s > 0 and recall Vy,_ =
VS1 /2, Using (A2), lemma 2.1(vi) in Behme (2012) and the symmetry of V, 1/2 gives

®

[a,a*]a

= [Vec </ Vsl_/zdLst_+/ GS_dLg‘VSl_/2+/ V2L, L7 1/2> ,
0 0 0
<Vec < / V/2dLGE + / G,_dL:V}* + / Vsl_/zd[L,L*]SVSI_/Z)> ]
0 0 0 A
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= [/.fs_dLs+/.vs_dvec([L,L*]s),/.dLg‘fs*_ +/.d(vec([L,L*]s)*)v_
0 0 0 0

A

A A
=/ ﬁ_d[L,L*]&fS"‘_+/ fs—d[L,vec([L, L*1)*1sVs-
0 0

A A
+/ Vs_d[vec([L,L*]),L*]&fS*_+/ Vs_d[vec([L, L*]),vec([L, L*])*]Vs-
0 0

=Lh+L+1;+ 14 (A24)

By Lemma 1 with p =2 and similar calculations as in (A19) it follows that E||V,_||||fi-]] < o

for all s> 0 and the map s +— E||Vs_||||fs-|| is locally bounded. Thus, it follows from (a.3) that
we have EI, = EI; = 0. Now, Lemma 1 gives E||V;_||> < oo for all s > 0 and local boundedness of

the map s — [E||V,_||. Using the second-order stationarity of (Vs)ser, in (c.1), the compensation
formula and the formulas at p. 108 in Stelzer (2010)

A
]EI4 =E </ vs_d[VeC([L, L*])’ VeC([L, L*])*]vs_>
0
A
= ]E </ Vs_d[VeC([L, L*]D), (VeC([L, L*]b))*]va_>
0
A
= / E (Vs—prlle + Kq + vec(Ig)vec(ly)*1Vs-) ds
0
A
= pL / (Q + KdQ + IdZ)E(VeC(VS)VeC(VS)*)dS
0

= Apr(Q + K4Q + I2)E vec(Vy)vec(Vy)*. (A25)

To compute EI; we will need the following matrix identity, which is based on Fact 7.4.30 (xiv)
in Bernstein (2009). Let A € My 1(R) and B, B> € My 4(R) be symmetric matrices. Then,

AQB+BRAA®B+BR®A) = (A® B+ KA ® B))A® B+ Ki(AQ B)*
= (I + K9)(A ® B)(A* @ B)I + Kyq) = (I + K9)Q vec(AA*)vec(BA)(I + Ky). (A26)

Write by : = E vec(G;G})vec(V;)*, which is finite by Lemma 1 with p = 2. Using the compen-
sation formula, (A26) and the definition of f; gives

E </0Afs_d[L,L*]&fs*_>

A
= (or + UW)/ E(ffsHds
0
A
= (o1 + ow) / EG,- @ V> + V> ® G, )G @ V> + V> @ G )ds
0
A
= (op + oW)/ (I + K3)Qbs(I + Ky)ds
0

A
= (o + ow)I + K3)Q </ bSdS> I+ Ky). (A27)
0
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Finally, it follows from (A23) that

A A
/ bids = / E vec(Vy)ai_ds = (o1 + ow) 'D. (A28)
0 0

The result now is a direct consequence of (A17), (A23), (A24), (A25), (A27), and (A23).

Remark 4. An inspection of the proofs of Lemmas 2 and 11 shows that the moment assumptions
(a.6) and (c.2) are only needed to compute expectations of stochastic integrals with the integrator
L.If L has paths of finite variation, these expectations can be computed by using the compensation
formulas given in Facts 1 and 2 without (a.6) and (c.2).



