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Abstract

Out-of-equilibrium quantum many-body systems exhibit a rich variety of behaviors. First we
study the propagation of quantum information in an isolated ergodic system using matrix product
states. Second we obtain steady states of boundary-driven dissipative systems using matrix
product states, and deduce an estimate of the diffusion coefficient. Third we present a strategy
to characterize the structure of many-body localized states using correlations and a graph-theory
approach.






Kurzfassung

Quanten-Vielteilchensysteme auflerhalb des Gleichgewichts weisen eine Vielzahl an Phanome-
nen auf. Zuerst untersuchen wir die Ausbreitung von Quanteninformation in einem isolierten er-
godischen System unter Verwendung von Matrixproduktzustinden. Dariiber hinaus analysieren
wir Diffusion in randgetriebenen dissipativen Systemen. Abschlieend prisentieren wir eine
Charakterisierung der Struktur von lokalisierten Vielteilchenzustinden unter Verwendung eines
graphentheoretischen Ansatzes.
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1 Introduction

“The behavior of large and complex aggregates of elementary particles, it turns out, is not to
be understood in terms of a simple extrapolation of the properties of a few particles” wrote
Anderson in his celebrated paper entitled “More is different” (1972) [3]. He argued that the
scale and the complexity of such large aggregates preclude the prediction of their properties by
direct applications of the laws of fundamental particles. Instead, he argued, complexity leads to
the emergence of entirely new fundamental laws.

Nevertheless, recent progress in experiments, in numerics, as well as in quantum information
theory, has rendered the project of “reconstructing” the behavior of matter from microscopic
consideration feasible in certain cases. In ground state physics, the invention of the density
matrix renormalization group algorithm [4] and subsequently of the tensor network formalism
has lead to tremendous progress. For one dimensional gapped systems [5], these methods al-
low for the representation of the ground state wave function on a classical computers with an
arbitrary precision. For example, the advent of such algorithms allowed to verify the Haldane
conjecture [6] — an intuition based on field theory considerations — which states that the spin-one
Heisenberg chain is gapped in the thermodynamic limit. Experimentally, the ever increasing
control has led to the possibility of creating artificial quantum systems. An early breakthrough
was made with the observation of the Bose-Einstein condensation in dilute gases [7, 8]. Since
then, guantum simulators have become a corner stone of modern experimental condensed matter
physics. Various technologies have been used to implement these artificial quantum systems,
including ultracold neutral atoms [9, 10], trapped ions [11] and quantum superconducting cir-
cuits [12]. The realization of such devices led to a shift in the relation between theoretical
and experimental condensed matter. In the past, theoretical physicists were constructing some
effective, simplified models to account for the low energy properties of matter, accessible in
experiments at low temperature. Such highly controllable experimental devices now allow ex-
perimental simulations of these systems. Not only these artificial quantum systems allow for the
realization of exotic phases of matter — such as the ones emerging in presence of an artificial
gauge field [13]- but they are able to simulate certain models in regimes that remain challenging
to address theoretically, such as the Bose-Hubbard model [14] or the Fermi-gas in the regime of
large scattering lengths [15]. Furthermore, these quantum simulators offer the ability to explore
a vast range of yet unexplored possibilities, and in turn stimulate theoretical endeavours.

This unprecedented level of control has allowed the realization of increasingly well isolated
quantum systems and led to a surge of interest in the field of out-of-equilibrium quantum physics.
One of the core questions could be summarised as follows: what are the possible behaviors of
isolated quantum systems as they evolve under their unitary quantum time evolution? This in-
quiry is relevant for the foundations of the laws of statistical physics, which are primary examples
of the kind of emergent fundamental laws dear to Anderson. In the past few decades, “contin-
uing the relentless campaign of physics to try to explain all phenomena from the Schrodinger
equation” [16], efforts have been made to recover the results of statistical physics from first prin-
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ciples. From our experience of everyday life, as well as from experimental results, one expects
that a system being initially out of equilibrium will eventually relax toward a state of thermal
equilibrium. This process is known as thermalization. Already in the early days of quantum
mechanics, von Neumann put forward an apparent conflict between the Schrodinger equation
and statistical physics, as the application of the Schrodinger equation does not automatically
lead to thermal equilibrium [17]. The eigenstate thermalization hypothesis (ETH) [18, 19] is
so far the most successful approach to resolve this paradox. Inspired by random matrix theory
considerations, the ETH essentially states that the eigenstates of generic quantum systems behave
as thermal ensemble for few body observables, explaining why local measurements agree with
the predictions of statistical physics.

Nevertheless, this idea does not exclude the possibility that some quantum systems can
escape such a mechanism, and therefore be able to avoid reaching thermal equilibrium. In
particular, ETH does not apply to systems which possess a large number of conserved quantities,
such as integrable systems [20-22] or localized systems. The latter were first introduced by
Anderson [23], who postulated that disordered non interacting systems would not thermalize
due to the localization in real space of their eigenstates. Recently, many-body localization
(MBL) [24], the interacting generalization of Anderson localization, has been proposed as
a more realistic exception to thermalization— as interactions are unavoidable in real systems.
A lot of efforts have been dedicated to the detection of MBL in experiments, especially in
artificial quantum systems. Local measurements in one dimension [25] as well as in two
dimensions [26, 27], have established the presence of a non ergodic behavior signalling MBL
physics.

While strong evidence suggests the existence of both the thermal phase (also called ergodic
phase), satisfying ETH, and the MBL phase, displaying localization in presence of interactions,
we do not have yet a full description of the phase transition taking place between these two states
of matter. The concept of phase transition is one of the most successful unifying framework in
many-body physics. It explains the abrupt changes in macroscopic behavior displayed at some
particular points by some systems under the continuous change of their defining parameters,
either in the Hamiltonian (interaction strength, disorder etc.), either in the external conditions
(pressure, temperature etc.). In the case of continuous phase transitions, where a distinct
phase exists at the critical point, a few relevant variables exhibit characteristic scaling relations,
allowing for the classification of a wide range of disparate phenomena into unifying universality
classes [28]. The ergodic/MBL phase transition is unusual as it happens at all energy levels, and
is not simply confined to the low energy region of the spectrum. It is called a dynamical phase
transition, since the dynamics of a quantum system is fully determined by all its eigenstates. In
addition to its fundamental importance, MBL has been proposed to store and protect information
in quantum devices [29, 30].

In recent years, theoretical progress has been made towards the understanding of the dy-
namics of out-of-equilibrium quantum systems. In particular, considerations based on random
circuits [31-34], complementing the existing tools of field theory [35,36], has allowed to iden-
tify simple behaviors at long times through the hydrodynamic picture. Nevertheless, a precise
microscopic description of these systems often remains elusive. In certain cases, the current ca-
pabilities of experimental quantum simulators far exceed what is possible to predict analytically
and numerically [26]. In particular, their simulation on classical computers is extremely diffi-

cult, due to the exponentially large in system size dimension of the associated Hilbert space. As



already mentioned, the tensor network formalism has allowed tremendous progress to be made
in the understanding of ground state physics. As the dimension of the Hilbert space in both cases
is identical, why can’t we straightforwardly use this approach to simulate out-of-equilibrium
quantum systems? To understand the source of the difficulty at hand, we need to introduce
the concept of quantum entanglement, often referred to as quantum information, which first
appeared in a thought experiment of Einstein, Podolsky and Rosen [37]. Two particles are said
to be entangled if one can not be described independently of the other, a situation which does not
occur in classical physics. The success of the tensor network formalism in ground state physics is
due to the relatively low entanglement carried by most eigenstates at low energies, which allows
to represent very efficiently the wave-function on a classical computer, using relatively few pa-
rameters compared to the full Hilbert space dimension. In contrast, out-of-equilibrium quantum
physics often involves highly entangled quantum states. The large amount of “information”
contained in these states prohibits a straightforward simulation using tensor network.

Nevertheless, one can wonder whether tensor networks can be pushed beyond their current
limitations. For example, when the wave function cannot be obtained exactly, can we make some
approximations in order to retain the correct physical behavior? Are there certain regimes where
these alogorithms remain usable to simulate out-of-equilibrium many-body quantum systems?
Can we learn more about the ergodic/MBL phase transition using these methods? In this thesis,
we shed light on these questions, as we explore the rich phenomenology of out-of-equilibrium
quantum many-body systems in one dimension using tensor networks.

This thesis starts, in Chapters 2, 3 and 4, by a review of results already contained in the
literature and which are necessary to the understanding of the dissertation. In Chapters 5, 6
and 7, we present our main results, some of which have already been published in Refs. [1,2].

To begin with, in Chapter 2, we review the eigenstate thermalization hypothesis. We show
how it naturally emerges as a generalization of random matrix theory (RMT) and why it implies
thermalization. In Chapter 3, we introduce a primary example of exception to thermalization,
many-body localization (MBL). We start by presenting its non interacting counterpart, Anderson
localization, and review how the phenomenology of MBL arises from the emergence conserved
quantities which are localized in real space. We also give an overview of the renormalization ap-
proaches aimed at explaining the transition between the many-body localized and thermal phases.
In Chapter 4, we give a concise but nevertheless self contained review of the matrix-product state
(MPS) formalism, a particular kind of tensor network theory suited for one dimensional systems.
We introduce the principles underlying the algorithms used in this work, and explain the most
currently used MPS algorithms, both to resolve eigenstates or to perform time evolution.

In Chapter 5, we explore the possibility of probing the propagation of quantum information
in isolated systems by using various MPS methods to calculate the so called out-of-time-order
correlator. We carefully benchmark the different approaches, and compare intermediary system
sizes with state of the art exact methods to identify the limitations of each MPS calculation. We
extend our MPS simulations to larger system sizes, and identify the features captured correctly
by each method. In Chapter 6, we show how the simulation boundary dissipative systems allows
us to estimate a particular transport coefficient, the diffusion coefficient. The method used
rests on the idea that the steady states of dissipative systems can be efficiently be represented
as matrix-product operators (MPO), the generalization of MPS to operators. We compare our
results with various other values obtained either analytically in the integrable case, with exact
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methods or with another well controlled MPS method. Finally, in Chapter 7, we demonstrate
how graph theory concepts can be used to understand some properties of the MBL phase, both in
the static and dynamic cases. As our graph theory approach is highly efficient, we demonstrate
its applicability to states obtained through MPS calculations. We also discuss their experimental
relevance.



2 Quantum thermalization: the eigenstates
thermalization hypothesis

The concept of thermalization — the process by which a system reaches the state of equilibrium
predicted by statistical physics — is central to this thesis. Although quantum thermalization was
first discussed by Schrodinger [38] and von Neumann [39], a new approach emerged in the end of
the 20th century [16, 18,19,40]. It consists in reproducing the prediction of the micro-canonical
ensemble by using the microscopic degrees of freedom, i.e. the Schrédinger equation. To
achieve this, the main idea is that the eigenstates of generic non integrable Hamiltonians behave
as statistical ensembles as far as few body observables are concerned. A precise mathematical
statement of this can be made through the eigenstates thermalization hypotesis (ETH), which is
a generalization of random matrix theory.

2.1 Elements of random matrix theory: some properties of the
Gaussian unitary ensemble

In the nineteen fifties, Wigner understood that explaining the energy spectrum of atomic nuclei
was impossible from exact calculations. However, he realized that within a small enough energy
window, where the density of states is constant, the energies of the nuclei would follow the
same distribution as the eigenvalues of a random matrix [41-43]. By doing so, not only he
was extremely successful in explaining experimental results, but he laid out the foundation of
random matrix theory (RMT), a formalism which has since proven useful to explain the behavior
of highly complex systems, such as in our case, quantum many-body systems described by
generic non integrable Hamiltonian, also called ergodic systems.

2.1.1 Definition

In order to understand thermalization, we need some properties of random matrix theory (RMT).
First we define the Gaussian unitary ensemble (GUE), which describe the most general probability
distribution for hermitian random matrices. These random matrices will serve as a model to
understand the Hamiltonian of ergodic systems. In order to obtain the properties of such an
ensemble, we must impose the natural condition that the probability distribution of the matrix
elements should not depend on the choice of basis. Therefore, the two following properties are
enough to fully define the GUE [44]:

1) The invariance of the ensemble under any unitary transformation:

H— U'HU 2.1)
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where UTU = 1.
2) The elements of the random matrix H;; are statistically independent fori < j.

It is remarkable that such minimal assumptions are enough to derive a probability distribution for
matrix elements which properties are useful to characterize a large number of physical systems.
Howeyver, in order to understand the mechanism of thermalization, we need to understand the
properties of the eigenstates of such random matrices.

2.1.2 The eigenstates of matrices sampled from the Gaussian unitary ensemble

In the spirit of the last section, we want to start from the definition of the GUE to derive a joint
probability distribution of the components of an eigenvector of a matrix sampled from the GUE.
In fact, this probability distribution will be valid only if the size of the matrix is large enough.

Let ¢ be an eigenvector of a matrix sampled form the GUE. Let us choose a particular basis
in which ¢ has components (1,2, ...,¥n). We are looking for the probability distribution
P, ¢, ...,¥n). However, due to the property 1) of the GUE, P should not depend on the
choice of basis. Therefore, for any unitary transformation U, we can write [40,45,46]:

P(Z Ui ) Usithis -5 ) UN,wl-) = PO Y2 yN) = f(YD. (22)

In the last equality, we have used the fact that a function that is symmetric under all unitary
transformations can only depend on the norm of the state. However the normalization of the
state implies:

N
P(%,Wz,---,lﬂN)“5(1—Z|lﬁi|2)- (2.3)
i=1

where the metric is given by D[y] = H,N dRe(y;)dIm(y;). That is to say that ¥ should be a
vector of norm one pointing in a random direction in the 2N-dimensional sphere. One should
note that in the reasoning above we have considered that the eigenvectors of a matrix sampled
from a GUE are completely independent of each other. This can not be true, since they need to
be orthogonal to each other. If the Hilbert space is large enough, we can relax the orthogonality
constraint, since random vectors will have a very large probability to be orthogonal to each other.

It is useful to derive the distribution of a finite number of components ¢, ...,¥;, [ < N. In
order to do so, we need to integrate (2.3) [45,46]:

N
P1¥2, .- Y1) ocf Dlyrsr, - YNIS(L= ) i), (2.4)
Yisl,-- YN i=1

Keeping in mind that the integration runs over 2(N — /) variables (taking into accounts the real
and the imaginary parts), we go to hyperspherical coordinates:

l
Py, ... x SQN = D) f dRRENDS (1= 3 |yl - R), 2:5)
R i=1
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where R? = Zfi ; |y;|> and S(2(N — 1)) is the surface of the 2(N — [)-dimensional sphere. After
integration, one obtains:

(N-I-1)

1
P Yo, ..., Y) (1 - wz) : (2.6)
1

i=

We are particularly interested in the results for one and two components. Using the fact that
(1 + x/n)" — ¢* when n — oo, the asymptotic value yields [45,46]:

N N2
P(i)Ns>1 = ;eXP(—NIwiIZ) and P, ¥ N>1 = ;exp(—NlW)exp(—lejF). 2.7)

This property allow us to derive several relations which will be useful in section 2.2:

W_AZ:ﬁ f |¢i|2exp(—1v|wi|2>@wi]=2nﬁ f r3exp(_m2)dr=l, (2.8)
n n Jo N

N2
vir = — f Witr; exp(=NIyil*) exp(=Ny; 1) DIy, ;1 = 0, 2.9)
=Y f Wil exp(=Nlwi P)Dlwi] = 27> f P exp(-Ndr = = (2.10)
JT T 0 ]\72

Therefore we obtain the following important relation:

2

i |* = 2|y ]2 2.11)

We are now equipped to understand the average value of hermitian operators under GUE
Hamiltonian. In turn, this will allow us to understand thermalization process.

2.2 The Structure of the matrix elements of hermitian operators
under the Gaussian unitary ensemble

Let O be an hermitian operator such that:

0= Zo,» 10 (il . (2.12)

Let |m) and |n) be two eigenstates of a Hamiltonian sampled from the GUE distribution,
with energies E,, and E,,. We would like to understand the behavior of the matrix elements
(m| O |n)y = >.i Oi(m|i)(i|n). For this purpose, it is useful to note that because of (2.8) and (2.9):

(mli)iln)y = y Omn0ij. (2.13)
where N is the dimension of the Hilbert space.

Hence we find:

— 1 _ —
(m|0|m)zﬁzi:0i =0 and (m|O|n) =0 form # n. (2.14)
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The fluctuations of the diagonal elements are the following:

= = 2 2 1 1—
2 ; ; 2
(mI O Im)? = m| O |m) = Z O (IGmli)F = )P ) = 5 Zoi = 0L @15)
where we have used (2.11) and (2.13).
Furthermore, for the variance of the off-diagonal correlations, one finds:
= 2 = 1 —=
[Km|O|n)?| = [{m|Oln)| = [(m|O|n)?| = N02, (2.16)

where we made use of the (approximate) independence of the eigenvectors and equation (2.8).

Therefore, to the leading order in the inverse of the Hilbert space dimension, if we write the

elements of O as [40]:
. _ 02
(m|O|n) = Obun + WR'"" (2.17)

with R, a random variable with zero mean and unit variance, then O has the correct mean and
variances calculated in equations (2.14), (2.15) and (2.16).

2.3 The eigenstate thermalization hypothesis

2.3.1 Thermalization in closed quantum system

Let us consider a quantum isolated system described by a Hamiltonian. We prepare a state |y/)
with total energy E. We can write the decomposition of |i) in the eigenbasis:

Yy =" wili). (2.18)

We now consider an observable O. It’s expectation value will evolve in time according to:

OY0) = ) WilP0i+ Yy BE0G|0] ), (2.19)

LJ,i#]

An observable is said to thermalize if after a time called the Thouless time tTy, it’s expectation
value relaxes toward the value predicted by the microcanonical statistical ensemble [16]:

A 1 A
Ohmicror: = 37 D, (mlOlm), (2.20)
E . €[E+OE]

where W is the number of energy levels between E and E + 0.
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2.3.2 From random matrix theory to thermalization

At first sight, it is not straightforward to see how to reconcile equations (2.19) and (2.20).
However, following the original insight of J.M. Deutsch presented into his seminal paper [18],
let us suppose that the Hamiltonian is a random matrix following GUE. We now from Sec. 2.2 that
the fluctuation of the diagonal elements of O will be suppressed in system size (see Eq. (2.15)).
Using (2.14), we can write:

Z i20; = 52 ly|? = 0. (2.21)

Therefore the late times expectation value do not depend on the initial state. Furthermore, since
the off-diagonal elements are suppressed exponentially in system size, the second term of the
sum (2.19) will not need an exponentially long time in system size to vanish.

However, this approach is not completely satisfying, since in practice both the thermaliza-
tion time and the thermal value of the operator depend on the temperature and are operator
dependent. Predictions of random matrix theory cannot account for these facts since the micro-
canonical average always correspond to infinite temperature average. Indeed, unlike in physical
Hamiltonians, the properties of eigenstate |m) do not depend on the position of its energy E,, in
the spectrum. The next section will introduce the eigenstate thermalization hypothesis (ETH) to
overcome this shortcoming.

2.3.3 The eigenstate thermalization hypothesis (ETH)

The ETH has been introduce by M. Srednicki [19], and can be seen as energy dependent version
of equation (2.17):

E,‘+Ej
AL El'+Ej S( 1) ) Ei+Ej
(i|01j) = go +exp| — fo JEi — Ej | Ry, (2.22)

2 2 2

where S(FE) is the statistical entropy at energy E, fo and go are smooth functions of their
argument—they depend on the operator O and g (E) must be equal to the microcanical ensemble
average at energy E—and R,,,, is a random variable such that R,,,,, = 0 and |R,,,|> = 0.

First, this ansatz explains the phenomena of thermalization for initial states which are "peaked"
in energy i.e. which overlap only with eigenstates which are close together in the spectrum. This
restriction does not need to concern us since most initial states of interest will have this property.
First, states sampled from a statistical ensemble will be peaked in energy, as well as states with
short range correlations (if the Hamiltonian is local).

To see why ETH explains thermalization, let us consider the following:

1 A ’ ’ A . 1 ! ’ « (Ej—E)t /. .
lim -f (OYt'ydt' = Z Wl 2(m|Om) + lim —f dt Z iy FimEG|0) ).
t—oo f o — t—oo f % e,
(2.23)
The second term vanishes and we are left in the same situation than in Eq. (2.21). Indeed, the

ETH guaranties that within a small energy window the diagonal elements of the operator do not
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change much. That is to say that within this window, the ETH reduces to RMT. Therefore we
can apply the same reasoning as before and write:

. 1 Lo ’ ’ 2 _ .
zlgglo?flo (0)(@)dr" = go(E); [ml” = (O)E,micros (2.24)

where E is as before the energy of the initial state [ (¢ = 0)).

We can look at the following fluctuations:
E,micro

1
o = lim 7 di(O(1)*) - (0)3

1 (! . X .
=1im = [ dt > yaiw; expli(E; — Ei + Ex = EDE) = OV picro

e tJo SR (2.25)
2 2 A 2 A 2 2 2
=2 > Wl KOy < 2max [nlOlmP* )" leal?lcml
n,m,m#¥n n,m,m#n

= 2max |(n|O|m)|* « exp(~S(E)).

Therefore, at almost every time the expectation value of the operator O is the same as the one
given by the canonical ensemble.

Of course, due to ensemble equivalence, all the results above can be extended to the canonical
ensemble.

2.4 Entanglement of the states of ergodic Hamiltonians

We have seen in the previous section that the ETH is a generalization of an intuition derived
from RMT. Therefore it is natural to expect the eigenstates of ergodic Hamiltonian to be similar
to random states and therefore highly entangled. Indeed, a subsytem of size n embedded of a
random system of size N, with local Hilbert space dimension d, has for entanglement entropy
the so called “Page value” [47], if 1 < d" < d'N~"™", given by:

1
Spage = nIn(d) = Zd" . (2.26)

One can confirm this intuition by the following reasoning: if one split the system into two parts
A and B, B being much larger than A, then the reduced density of eigenstate i for the subsystem
A should be the thermal density matrix at temperature 7':

i = 5 P ) 2.27)
since all local operators would reach the expectation value of the canonical ensemble at tem-
perature T, with % = %. The entanglement of such a density matrix is proportional to the
area of system A. First let us look at the infinite temperature matrix po, = %f , where D is
the Hilbert space dimension. The entanglement entropy associated with this density matrix is
given by Se = In(D) = V In(d), where V is the volume. This idea can be generalized to other
temperatures as well. Indeed, since the subsystem is described by the canonical ensemble, the

entanglement entropy is equal to the physical entropy, which is an extensive quantity.
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3 Localized systems

In his original paper [23], Anderson noted that an Anderson insulator was a system where “the
approach to equilibrium is simply not possible”. However, in order to find a robust non integrable
exception to thermalization, one needs to make sure that localization is in some sense stable
against the addition of interactions, since they are hardly avoidable in real systems. Such a
phenomenon is called many-body localization (MBL).

In this chapter, we start by briefly reviewing Anderson localization in one dimension before
describing some of the key phenomenological aspects of MBL and the theoretical models aimed
at explaining them.

3.1 Anderson localization

3.1.1 Localization length: the Thouless formula

We consider the following one-dimensional tight binding model:

A= 3" ~tid+ 11+ 1i + 1) + puilixil G-

where ¢ is the hopping term and y; are random onsite chemical potential drawn from a uniform
disorder distribution: h; € [-W, W]. We will consider # = 1 in what follows. This model was
conjectured to be localized for any amount of disorder by Mott and Twose in Ref. [48]. This
means that the wave functions ¢ (x) obeys the following relationship:

W(x) oc /4, (3.2)

where ¢ is the localization length. A mathematical proof of this assertion [49] was given first in
a related model in Ref. [50] and in the actual model above in Ref. [51].

We are now going to derive a relation between the density of states and the localization length
—originally found by Thouless [52]- for Dirichlet (open) boundary conditions. More precisely
we will consider the problem for N-sites with boundary conditions 1//(1)\’ = 1//% 4 = 0. We
denote the eigenvalues of this problem {EiN ,i € [1, N]}. The eigenvectors have components
(:,l/f](E), .. .,;.//%(E)) where E € [E|, ..., Ex], with initial conditions L//{V = 1. We are then
going to add one more site (the new boundary condition is now lﬂxié = 0) and express tp]’\\,’ﬂ (E)
as a function of the ElN ’s. As we are going to show, the eigenvectors can be expressed as a
function of the eigenenergies, and their expression does not depends on system size. However,

the energies themself are system size dependant. We will therefore drop the upper index of the
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eigenvectors from now on.

The components i, (E) of the eigenvectors (E) are related by the following recursive
formula:

Yni1(E) = (Hn = EYWn(E) = Yp-1(E). (3.3)

Let us solve first the problem for one site. We obtain E 11 = u,. For two sites the problem reduces
to

Ya(E) = (1 — EW(E) = (E| - E). (34

At this point, we have found an expression for the eigenvectors ({1, ¥,) as a function of E, but
we do not know yet what values the energy is allowed to take. Note that we have not used
the boundary conditions yet, so the above relationship remains valid independently of system
size: as mentioned above, the expression of the components of the eigenvectors as function of
the energy do not depend on system size. The eigenenergies are to be found by considering
equation (3.3) at the last site of the chain. Indeed, we need to solve

(U3 — E)a — 1 = (3 — E)(E] — E) — 1 = 0. (3.5)

The energies of the system satisfy the above equation. The energies E f and E% are therefore the
roots of this polynomial of degree 2. We can carry on recursively this procedure until we arrive
to site N. The procedure is always the same: the eigenenergies are entirely determined by the
solution of the equation (3.3) at the last site of the system. The first N — 1 components of the
eigenvectors will be given by:

n-1

n(E) = Gy | |EX" - B, (3.6)

a=1

where C,, is an overall factorization constant. Using once again (3.3) at site N (and setting
Yn+1 = 0), we obtain a polynomial of degree N which roots are the energies of the system of
length N:

N-1 N-2
(v = B (B)=n-1(E) = Cn(un —E) | [(EY ' =E)—Cner | [(EY-E)=0. 37
a=1 a=1

Now we add one more site to the system. The ¢/ +; components of the eigenvectors is no longer
zero, and the equation (3.3) now reads:

UN1(E) = (uny — E)YN(E) =¥ n-1(E)

N-1 N-2 (38)
=Cn(un - E) [ [(EN ' =By - Oy | B2 - By =0
a=1 a=1

Since the roots of the polynomial of degree NN in the equation above are simply the eigenenergies
of the system of size N, we can write :

N
Un+1(E) = Cnat | |(EY - B). (3.9)

a=1
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We are now ready to express the localization length:

1 R s ) , /
o) :]\%gnooﬁln(lﬁNH(E))IIJI_I’{IWN(;IHQEQ—ED _fE, o(ENYIn(|E' = E]), (3.10)

N
where p(E) = hm Z 0(Ey — E). Equation (3.10) is called the Thouless formula [52], and is

extremely useful to detect localization in one dimensional systems.

3.1.2 Disordered spinless fermions in second quantization and the
Jordan-Wigner transformation

In one dimension, the Anderson localization Hamiltonian expressed in second quantization
reads:
A =) (afai +aj, a; + hiny), (3.11)
l
where a:.f, a; are the fermionic creation and destruction operators, and 7i; = d:.fdi. However, for
numerical simulations, it is convenient to map this free fermion model to a spin model. To this
aim one uses the Jordan-Wigner transformation [53]:

a; = (]—[ fr;)&;, (3.12)

k(i

af = (]—[ &;)ef;, (3.13)
k(i

A = % (I-05%). (3.14)

Applying this transformation to the Hamiltonian (3.11), one obtain, up to an irrelevant constant,
the XX model:

N hi

A=y (&xax 0707+ 50 ) (3.15)

3.2 Many-body localization

Many-body localization is the interacting generalization of the Anderson localized model. It
was first proposed by Basko, Aleiner and Altshuler [24]. They considered the effect of a weak
interaction in disordered fermions in the regime where all single particle eigenstates are localized.
They found that the wave-function is localized in Fock space for sufficiently low temperature.
These findings, based on analytical considerations, where later supported by numerics performed
by Oganeysan and Huse [54]. They investigated a disordered next nearest neighbor fermionic
chain and considered the spectral statistics of adjacent energy levels. The intuition behind the
choice of this quantity is that nearby energy levels are expected to be far apart in Fock space
(due to Fock space localization) and the spectrum should not display level repulsion, leading to
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a Poisson statistics. This study indicated the existence of an ergodic-MBL transition at finite
temperature. A very commonly studied model for MBL is the disordered XXZ spin-chain [55]:

Yy _ AXAX AYVAY AZAZ _l Z
H‘Z(O'ia'm+O'i0'i+1+AO'i0'i+1+ 20'1.), (3.16)

i

which can be mapped using the Jordan-Wigner tranformation to:

N o o . . 1\ (. 1
H= Zl: [a?aiﬂ + allai + hiii; + A (n,- - 5) (n,-+1 - 5)] . (3.17)
Note that Eq. (3.17) is nothing but the Hamiltonian of Eq. (3.11) with an additional interaction
term.

3.2.1 Local integrals of motions

Many-body localization (MBL) is understood in terms of local integrals of motion (LIOMs),
proposed for the first time in Ref. [56]. We start from the following hypothesis: applying local
perturbations to an MBL system only gives rise to local modifications of the eigenstates. That
is to say that the degrees of freedom located at a distance much larger than the many-body
localisation length & of the perturbation are only affected by it exponentially weakly. Let us
divide the system into a number of subsystems. In the first formulation of the LIOMs, the size
of the subsystems was taken to be much larger than the localization length £. However, we are
going to see that the reasoning remains valid even if one takes every subsystem to be only one
site. For every subsystem i, one can decompose the Hamiltonian as:

H=HL,~+HRi+Hi+Jint(HRi+HL,:) (318)

where the terms Hg, and Hy, represent the interaction between site i and the left and right part
of the system respectively. The eigenvalues of H; are labeled by an index S. Without interaction
(Jinr = 0), the eigenstates are simple product states of the eigenstates of the local operators:
|y, |8)ily)r,. With interactions, the eigenstates |«;, B;, ¥;) are given by:

lai, Bivi) = UL, Ur, 1)1, 1 BYilY)r, (3.19)

where ULl. and UR,~, are unitary rotations which only act on the degrees of freedom located at a
distance smaller than & from subsystem i.

The LIOM associated with subsystem i is defined as [56]:

=3 B0 e B yiden Bivil = ) BPg, (3.20)
B

ai i B

where P'é is the projector on the state |aBy);, which is an eigenstate of /; with eigenvalue S3.
The integrals of motions have important properties:

1) Since it is a linear combination of projectors on eigenstates, /; commutes with the Hamil-
tonian.



3.2. Many-body localization 17
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Figure 3.1 Ergodic eigenstates in the middle of the spectrum are highly entangled as they follow volume
law (panel a), while all eigenstates of MBL Hamiltonian follow are law (panel b).

2) Because of the locality of U, 1, and U R, » the sum of projectors becomes close to the identity
at a distance greater than & from site i.

3) The eigenvalue only depends on . Therefore, the eigenstates are highly degenerate.
Roughly, eigenstates with the same eigenvalue S are nearly identical at distance larger
than & from subsystem i.

4) If the same construction is carried out for all subsystems i, the eigenvalues of the integral
of motions completely characterize the eigenstates of the Hamiltonian, since every state is
characterized locally around subsystem i by [;

Since all the eigenstates of the Hamiltonian can be labeled by their eigenvalues with respect to
the integral of motions, the Hamiltonian can be written as a sum over the projectors P/’; [56]:

H=iZEZ%P;%+ZZE;fB,P;3 Pl+ > > Egy o PEPLPE, ... (3.21)
7

i=1 i#j BB’ i<j<kpB.B.B"

Roughly, E‘ can be seen at the energy associated with eigenvalue S of I; at site i, while ET
quantify the interaction between sites i and j. Due to the initial assumption about the local
effects of any perturbation (here the coupling with the left and the right), we expect that the
interactions between sites i and j are exponentially suppressed in the distance |i — j|.

The locality of U, 1, and U r; has also a far reaching consequence for the structure of the state.
Let us consider a cut at the right end of subsystem i. The correlations between the two parts
hence generated can only come from the vicinity of subsystem i. As this is valid for any cut
considered in the chain, the bipartite entanglement must be on average constant, provided that it
is measured sufficiently far from the boundaries [57]. The entanglement is then said to follow
area law [58], meaning that the entanglement between two parts of the system is proportional to
the area of the cut separating the two parts, as illustrated on Fig. 3.1.
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3.2.2 Spin one-half case: the I-bits

We now focus on the spin—% case, where the LIOMs take a particular elegant form [59]. We
show how to arrive to integrals of motions by a different route. For concreteness, let us start
from the following diagonal Hamiltonian:

IO s ,
Hing = 5 ) 0707, + ) o, (3.22)
i i

where h; € [-W, W]. The eigenstates are the product states in the o-*-basis. Now let us introduce
non diagonal terms in this Hamiltonian: H = Hgj,e + % (&f@'l{rl + &l.y 6'? +1)' There exists a
unitary U such that:

UAU" = Hyiag (3.23)

Since the 0% operators commute with H, rotating them with the same unitary transformation
will yield the integral of motions 72 of H:

2 =UoiUT (3.24)

These integral of motions correspond to the operators I; derived in the previous section, where
the subsystems in which the chain is devided are simply the individual sites. Indeed, one can
label the states of the previous section 8 = +1 such that 7%|8) = +1. Then the integral of
motions take the familiar form:

Tt = Z li, Bi = +1, viXai, Bi = +1,yil = |ai, Bi = =1, yiXai, Bi = =1, il (3.25)

ai,Yi

In the same way, we can define > = U&7”U". This set of # matrices constitutes a complete
operator basis. Therefore the 7¢ are simply the Pauli matrices in the basis which diagonalizes the
Hamiltonian. The LIOMs act on effective spins which are denoted localized-bits (abbreviated
[-bits) in opposition to the physical spins called p-bits [59]. Although such a transformation
could be in principle performed on any Hamiltonian, the unitary U is very special. Indeed, the
couplings it generates between degrees of freedom are exponentially suppressed with distance.
Therefore, it is said that U is a quasi-local unitary transformation. It follows that the T matrices
are themselves quasi local operators [57]:

&2 =vOs%+ Y VoW, (3.26)
n=1
(n) : (n) : ;
where O, has an operator support of 2n + 1 sites and V;" decays exponentially according

to [57]: .,
v~ eTe, (3.27)

where & is the MBL localization length. Since the Hamiltonian commutes with all the 7¢
matrices, it can be written as:

Y. 7 .22 AZ AT INFSF4
Hiy = Zl’liTi +ZJijTi Tj + Z Jijle- Tka + ... (328)
i i<j i<j<k

where one have added any required overall energy constant to make the Hamiltonian traceless. Up
to this constant, this is exactly the form we obtained previously in Eq. 3.21. Indeed, any traceless
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diagonal Hamiltonian can be written as a sum of &% Pauli strings. Because of the locality of the
transformation, we expect the interactions between the 1-bits to decay exponentially [57]:

Jij..x = Joexp(=|i — k|/«) (3.29)

where « is the length-scale quantifying this decay.
In ref. [60], the existence of the LIOMs has been proven under the assumption that there is no
level attraction . Note that this assumption is very natural, since random matrix usually display

level repulsion in the case of GUE statistics or neither repulsion nor attraction in the case of
poisson statistics.

3.2.3 Dynamical behavior of many-body localized systems

It has been shown numerically [61, 62] that the bipartite von Neumann entanglement entropy
grows logarithmically when starting from a product state in the p-bit basis. One can explain
this observation using the I-bits picture, by a mechanism called dephasing [57,63,64]. First, we
write the initial state in the 1-bits basis.

(=0 = > Altd, T T ) (3.30)

The time evolution will add a phase to each of these terms:

)y = e |y (¢ = 0))

— . Y -y PR RS AP Y S A4 z b4 b4
= Z A; exp zh,TLit lz J,JTl,iTz’it i Z ‘]Ule,iTZ,iT3,it +... |T1’l. T TN
i

i<j i<j<k

(3.31)

Because of this phase, entanglement is generated. In order to see how this phase leads to the
logarithmic growth, it is convenient to consider the effective magnetic field A; ;1. [57] felt by
spin located between sites i and i + x:

. .
hijivx = Jijiex + Jiivtiex T + oo (3.32)

Because all the couplings are proportional to Jy exp(—|i — k|/«), fli,i_'.x ~ Joexp(—x/&’), where
&’ is yet another lengthscale. Spins i and i + 1 become entangled when the phase of spin i
dependent on spin i + 1 is of order one [63]. This reasoning yields the following results:

Joexp(=x/&") ~ 1 = xem(t) ~ &' log(Jot) == S(t) o & log(Jot), (3.33)

where x.p is the length of the entangled portion of chain, and where we have used the fact that
the entanglement of the system is related to the length of the entangled region within the system.

3.2.4 Strong randomness renormalization group approaches to many-body
localization

In this section, we review the application of a particular type of renormalization group (RG)
which has been the main theoretical approach to describe the ergodic/MBL transition: the strong
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randomness RG. We start by quickly introducing the key ideas of this approach by giving an
example for ground state physics in a disordered spin chain. We discuss how to generalize this
method in order to target highly excited eigenstates of MBL Hamiltonians. Finally, we review
the conclusions of this approach regarding the nature of the ergodic/MBL phase transition.

Introduction to strong randomness renormalization group: the Dasgupta-Ma approach to
obtain the ground state

In 1980, Dasgupta and Ma introduced the first scheme of strong randomness RG [65]. This
approach rests on the assumption that the disorder play a key role in the physics of the system,
being dominant over thermal or quantum fluctuations [66]. The Hamiltonian considered is [65]:

H = Z K,S, S, . (3.34)

where S = (8%, 87, §¢) is the spin operator and K, are randomly distributed according to P(K),
0 < K < J, where J is said to be the renormalization group (RG) cutoff. The idea of the
renormalization group is to decimate the spin variable while transforming the distribution P(K).

The RG scheme starts with spins S; and S;; satisfying K = J. Consider
Hy=JS;-Sit1. (3.35)

The ground state of this Hamiltonian is a singlet |s) while the excited states are triplets |t). Now
we add left and right neighbors S;_; and S;. 1, and consider the perturbation:

V = Ki-1Si-1 - Si + Ki+1Si - Sisi (3.36)
The new ground state can be obtained through second order perturbation theory [65]:
I<t|V|S>|2 '
E = E +{s|Vls >+Z 5 = E kS Sin (3.37)

It is then possible to express the new distribution P(K, J — dJ) of the couplings K as a function
when the cut-off J is decreased by dJ. Noticing that the fraction of the spin eliminated is given
by 2dJP(J, J), the new probability distribution has to be normalized by 1 —2dJP(J, J):

dJ (foj dKdK,P(Ky, J)P(K3, J) [6(K — K') — 6(K — Ky) — (K — Kz)])

P(K.J —dJ) =
(K, J -dJ) 1—2dJP(J.7) *
P(K. T)

1-2dJP(J,J)

(3.38)

Real space renormalization group excited

In order to describe MBL, Pekker et al. introduced in [67] what they call the real space
renormalization group excited (RSRG-X), which is a generalization of the scheme of Dasgupta-
Ma for excited states. At each decimation step, instead of perturbatively finding the ground
state, they have the choice either to select the low energy or high energy manyfold, which are
separated by a large gap controlling the perturbation theory, so that any excited state can be
reached throughout the procedure.
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As pointed out in Ref. [57], this procedure is another way to arrive to the I-bit picture. Indeed,
the decimation groups spin together into an effective spin which is actually the 1-bit. When
selecting the low or high energy manyfold, the algorithm actually assigns a value 7° = 1 to the
1-bit.

Phenomenological strong randomness renormalization group approaches and quantum
avalanches

This kind of RG approaches focuses on the effect of rare thermal (or conducting) region on an
otherwise localized system, and usually involve a scenario called the quantum avalanche [68-70].
Let us first consider a thermal bath weakly coupled to an isolated spin. Provided that the coupling
is strong enough, the bath will thermalize the spin, and the resulting system will be well described
by a random matrix. Now suppose that we take an MBL system and that we extend it until we
reach the thermodynamic limit. In the process, some rare thermal region will appear, which
will thermalize the neighboring spins, creating a larger thermal region, which could in principle
thermalize the whole chain [70]. This reasoning, which is the essence of the quantum avalanche
scenario, seems to lead us to conclude that MBL can not be stable against the addition of small
thermal grains.

Nevertheless, another mechanism counterbalances the quantum avalanche and ensures the
stability of MBL in one dimension. Let us divide the system into localized (or isolating) regions
and thermal (or conducting) regions which act as a bath. A thermal region needs to be large
enough in order to thermalize an insulating one. Indeed, the coupling of the bath to an insulator
can be seen as a perturbation. If the scale of this perturbation is smaller than the level spacing
of the bath, then the coupled eigenstates can be obtained from perturbation theory and there
is no thermalization. Conversely, if the perturbation is much bigger than the level spacing,
perturbation theory is no longer valid. The energy levels hence hybridize, and the full system
becomes ergodic [70]. As the many-body level spacing becomes exponentially small with system
size, this explains why a bath needs to be large enough to thermalize an insulator. This can be
also obtained from the Fermi golden rule [71], and has been confirmed numerically [72]. The
interplay between these two effects are the subject of the type of phenomenological RG schemes
developed in recent years to explain the ergodic/MBL phase transition [68,73-77].

The assumptions we presented above— that the system is composed of mutliple thermal and
insulating regions (or “blocks”) — is at the heart of these RG approaches.The RG schemes are
usually governed by two variables [78]: the typical localization length ¢, and the fraction f of
the system which is thermal. In general, most of the RG schemes rest on two mechanisms: first
the inclusion of thermal blocks in insulating blocks causes the localization length to increase;
second, when the localization length is above a certain threshold, the critical localization length
(¢, the system becomes thermal, a process referred to as “quantum avalanche”.
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Figure 3.2 Schematic representation of the strong randomness RG scheme applied on MBL state close
to the transition. During the first step, where A = 1, the smallest I block is thermalized by two larger T
blocks. At the second step (A = 2) the only remaining I block is thermalized as well. At the end of the
procedure, one obtain a fully thermal state.

These mechanisms give rise to RG flow equations of the form:

de!

-1
_l - Cfé + PR (3-39)

These equations correspond to the RG flow of the Kosterlitz-Thouless (KT) transition [79]. As
KT transition are known to exhibit logarithmic corrections to finite size scaling, this scenario
would naturally explain the slow convergence of finite-size numerical studies [69].

Let us now turn to the “microscopic” details of the RG which lead to this type of behavior.
During the decimation procedure, instead of considering the strength of the bonds as cut-offs as
in the Dagupta-Ma calculation, these approaches define a cut-off A = min,/,,, with [,, being the
length of block n. The RG rules can be prescribed as follow [71,74]: find the smallest remaining
block of length A. Then decimate this block: if it is an insulating block surrounded by two
thermal block then it becomes an insulating block (“TIT — T”). Otherwise, if it is a thermal
block surrounded by two insulating blocks, then it becomes insulating (“ITI — I”). Of course,
during this process, the properties of the newly created blocks need to be updated correctly. For
example, in Ref. [74], the length of the block were added at each merger, leading to a complete
symmetry between the “ITI” and the “TIT” moves:

lﬁew = lrIl—l + lZ + lfz+l (3 41)
iro=1T  +1l 4T '
new n-1 n n+l

where IZ (resp. I1,,,) are the newly created blocks coming from the merger of blocks / fl 1> Ir,
11, (resp. [T 1L 1T ). It turns out that this is an oversimplification [75], which does not lead

to the expected RG scaling. However, equation (3.41) can be straightforwardly corrected [75]:

l]ieW = l}{t—l + a/lz + l:l+1’ 3 42
Liew = 1r_y + Bl + 1, G4
new - “‘n-1 n n+1°

where @ < 1 and 8 > 1. The idea is that when two insulating blocks absorb a thermal block, their
localization length increases, such that it becomes easier for two thermal block to thermalize
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them during a “TIT” move. Equivalently [68], one can keep track of the decay length { of each
thermal block (representing the typical decay length of the 1-bits), normalized in such a way
that if { reaches one, the quantum avalanche occurs. With this setting, during a “ITI” move,
the decay length of the newly formed insulating block will be smaller the larger the absorbed
thermal block is. These RG rules lead to a scaling of the form (3.40).

Assuming that the ergodic/MBL transition is continuous, and using the usual RG argu-
ments [28], quantities which characterize the phase transition, such as the entanglement density,
are expected to follow a scaling hypothesis of the form [71, 80]:

A(LJV)~I£;A(6L5). (3.43)

In Ref. [80], the following bound for the critical was derived:

2

vz (3.44)

It supposes only the above scaling hypothesis and that at the transition point the variable A
experiences a jump.
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4 Matrix-product states

The matrix-product state (MPS) formalism was first proposed as an analytical tool, starting
in 1968 by Baxter [81], followed later by the realization that the ground state of the AKLT
model [82] could be expressed under trix-prodrm [83]. Later, the connection between MPS and
the density matrix renormalization group (DMRG) was first made by Ostlund and Rommer [84].
It is only in 2003 and 2004 that Vidal, Cirac, Verstraete and collaborators fully grasped the
importance of the variational power of MPS [85, 86]. It was realized that not only the MPS
variational class is extremely powerful to investigate ground state physics, but is also useful in
the field of quantum dynamics [87].

In this chapter, we give a brief introduction to the MPS formalism and present some key
algorithms used for finding ground states and performing time evolution. In particular, we give
a practical introduction to the concept of tangent space of the MPS manifold and provide a
derivation of the so-called time dependant variational principle (TDVP) [88].

4.1 The matrix-product state formalism

4.1.1 The matrix-product state ansatz

Any matrix M can be decomposed into matrices U,s and V according to:
M;; = Uijsjx Vi, 4.1)
where the matrix s is diagonal and the matrices U and V are isometries:
U'U=1and V'V =1. 4.2)

This decomposition is called the singular value decomposition (SVD). It can rewritten using the

graphical notation:

In this notation, the legs correspond to indices and contracted legs correspond to sum over the
corresponding indices. Let us consider the following quantum state:

Y= > Wprpw IP1 DN (4.4)
»PN

It can always be brought into the matrix-product state form, namely:

Lpix g2, uN
) = Z Z M MG MY i pay - o) 4.5)
P1,P2;--sPN H1,M25-- - UN —
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where M"Pi € CXi*Xi+! is the matrix corresponding to site i and to the local state |p;). Note
that, in the case of finite systems with open boundary conditions, M P! (resp. M™N-PN) are row
(resp. column) vectors of size y; (resp. yn-1) to make the wave function coefficients scalar.
The indices y; are called the virtual indices, while the indices p; are the physical indices since
they are identical with the indices found in the wave function tensor ¢, .., . In the graphical
notation we have:

Lpias2.p N.,pN _ 1 2 ... N
MlJl lMlJl’ﬁz o MﬂNilIv - (4.6)
M1, (s N

In order to go from (4.4) to (4.24), we start by considering the tensor ¢, . ,, as a matrix of
dimension 2 X 2571 ,1), (pa....pn)- Then one can perform a SVD as in (4.3) and identify the
matrix U as the tensor M "P1. The matrix s is then absorbed into V, and the process can continue
until all the tensors M“Pi are obtained. For the MPS representation to be exact, the required
bond dimension y; at site i is given by:

xi = min(d’, d-™), 4.7

where d is the local dimension of the Hilbert space. However, the advantage of the MPS becomes
apparent when truncation occurs, namely when the smallest singular values of the SVD (and
the corresponding columns/rows of the isometries) are discarded. When the discarded singular
values are sufficiently small, their contribution to the quantum state are negligible, and the MPS
is therefore a good approximation. In particular, the states following area law — where the
entanglement entropy grows proportionally to the area of the cut, and is therefore constant in one
dimension — can be arbitrarily well approximated with a finite bond dimension independent of
system size. We have seen in section 3.2.1 that entanglement in eigenstates of MBL Hamiltonians
follow area law. Furthermore, it has been proven in Ref. [5] that ground states of gapped one-
dimensional quantum systems follow area law.

Note that the procedure that we have just described — starting from the state expressed in the
full Hilbert space basis and convert it into a MPS — is impossible to carry out in practice for
large system sizes, due to the exponential large dimension of the Hilbert space. In the following
sections, we will review some efficient methods which were used in this work to obtain good
approximations of the quantum states of interest.

Finally, as states can be efficiently written as MPS, operators such as Hamiltonian can also
be efficiently represented as matrix-product operators (MPO). In general, an operator can be
expressed as:

A e DN G1s G e
O = OPVP2»PNALGSAN | py by, pNY D1 P25 - - -, PN

Lpiqiyy,2.P292 N,pNnan 4.8
Z W:ul W/Jl,ﬂZ o 'W,UNfl |p17p2’- '-’pN><pl5p2’- '-’pN| ( )
H1M25 - N —1

In the graphical notation, a MPO reads:

QP1:P2--5PN>41,42.-qN —
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4.1.2 Some properties of matrix-product states

The MPS representation is not unique. Indeed, if one call {Xi,..., X711} a set of invertible
matrices, with X; = Xy .1 = 1, the following transformation leaves the state invariant:

MbPi s XiMi’piX,:rll- (4.10)

This freedom in the representation of the state, referred as gauge freedom, can be used advanta-
geously. A MPS is in the left canonical form, and denoted A’ if:

4.11)

(4.12)

In particular, for a MPS in either canonical form, the expectation value of local operators can be
evaluated efficiently. For example, the expectation value of a single site operator O' is given by:

(4.13)

Indeed, one can write the wave-function in the mixed canonical form:

wy=" >, AN ARG LRPE L BNPN by s pNY . (4.14)
PlsessDN

When taking the overlap, the A tensors will give identity to the right and the B tensors to the
left, hence the result. Since all the local degrees of freedom at site i are contained in the tensors
B! and the singular values s'~!, one can express all the reduced density matrices in terms of the
MPS tensors. It is useful to introduce the one site wavefunction tensor:

The one site reduced density matrix can be expressed as:

Pl = D RPNl (4.16)
PisD;
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where:

(R)PirPi = 4.17)

This construction can be generalized to construct the n site wave function (from which one can
obtain the # site density matrix). In particular, if one traces out the part of the system on the left
of site 7, the reduced density matrix p’k will be:

2
PR = Z S ¥R Hi (R, il (4.18)
Hi

i+1,pi+ N,
where |ar, (i) = (W) = X piir pn Dptistsooin B;:;Hil' ) ..BuNpN |pit1s .. pn ). FromEq. (4.18),

itis clear that the states |ag, j) are the eigenvectors of the density matrix, and therefore the singu-
lar values squared st correspond to the eigenvalues of pr. The bipartite entanglement entropy
can be expressed as a function of the singular values. Indeed:

S i= ~Trple log(pl) = = Y sty . log(sh, ) (4.19)
Hi

Let us briefly review the process by which a MPS is brought into the left canonical form. Let
us suppose that the tensors A', . .., A”~! are already in the left canonical form, and that the tensor
B! is in the right canonical from. Then we perform the following operations:

where we have grouped the two left-most (resp. right-most) legs together and performed a SVD
on the hence obtained matrix. The legs where ungrouped at the end of the SVD. We have thus
obtained the tensor A’ in the left canonical form, and the tensor B'*! in the right canonical form.
At the next step, singular values s’ and the tensor B*! can be used in combination with M‘*2
in order to carry out the procedure further. At the end of this sweep, the full MPS will be in the
left canonical form.

4.2 Matrix-product state algorithms

4.2.1 The density matrix renormalization group

The idea behind the density matrix renormalization group (DMRG) is to find the ground state
by variationaly optimizing the MPS in order to minimize the energy of state [89]. Let us outline
the main steps of the algorithm. We start from a MPS in the right canonical form. One proceeds
by finding the two site wavefunction tensor:

Hoke) = T
| |
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which minimizes the overlap (| H |). This optimal two site wavefunction is obtained by finding

the ground state of the so called two site effective Hamiltonian at site i, H iﬁz, given by:
CII,

(4.22)

This step can be efficiently performed using the Lanczos Algorithm [90,91]. Then we perform
a SVD on the new two site wavefunction tensor according to Eq. (4.3). We obtain the updated
tensors A’,s' and B*! which can be then used to construct the effective Hamiltonian H ;}12 on the
next site. At the end of this sweep (a left-right sweep), the MPS is in the left canonical form. By
doing a right-left sweep, we get once again a MPS in the right canonical form. After a sufficient
number of sweeps, the MPS is a good approximation of the ground state.

4.2.2 Time evolving block decimation

The TEBD algorithm [85,87] is a powerful and simple tool to simulate the short time dynamics
of one-dimensional systems with short range interactions. Itis applicable to both the Schrédinger
and Heisenberg picture.

The key idea of the algorithm is to employ a Trotter decomposition of the time evolution
operator in such a way that only local time evolution operators occur. For example a nearest-
neighbor Hamiltonian is written as a sum over terms which involve only two neighboring sites:
H = i hii+1 where h; ;.1 is the part of H containing the interaction between sites i and i + 1.
Since only nearest neighbor terms do not commute, we decompose the Hamiltonian into a part
acting on the even bonds and a part acting on the odd bonds as H = Heven + Hoqq Where
Heyen = [1j h2j2j+1 and Hogqqa = [1j h2j+1,2j+2- In this way all the terms contained in Heyen
(resp. Hodq) commute with each other. We can now apply a Trotter decomposition at first order
for simplicity, although the implementation of any order is possible within this scheme. We
obtain for the time evolution operator:

U(dl») o e_i(Hodd"'Heven)dt
~ e_iHodddte_iHevendt + O(dtz)

— 1—[ e—ihz_j,z_j+1dt l_[ e—ih2j+1,2j+2dt + O(dtz).
J

J

(4.23)

Each term of the products in the third line of equation (4.23) can be written as a unitary gate
linking two adjacent sites. In order to evolve an MPS with a time step dr we apply a layer of
gates as shown in Fig. 4.1. It is then possible to re-express the time evolved state as an MPS of
higher bond-dimension.

After each application of a unitary gate, the MPS is optimized by applying a SVD and
truncating the smallest singular values, as in equation (4.20). This approximation is only valid
in a regime where the state is lowly entangled, limiting the use of the method to short times for
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‘

—iH,odt —iHa.dt
[e 2 ] [e 134 ] [eiledt] [eiH34dt]
—iHasdt
—iH,odt —iHa3,dt
[e e ] [e e ] [ —ingdtj [ —iH34dtj
[ [ [ [ ¢ ¢

e_iH23dt

I

a) b)

Figure 4.1 Schematic representation of the TEBD algorithm: a) Schrodinger representation, where A’ is
the tensor at site i of the MPS corresponding to the state that we wish to evolve, H;; denotes the gates of
the Hamiltonian between sites i and j and df is the time step; b) Heisenberg representation, where O’ is
the tensor at site i of the MPO corresponding to the operator that we wish to evolve.

ergodic systems. Moreover the truncation process renders the time-evolution non unitary and
does not preserve the norm of the state, the energy and other conserved quantities.

The TEBD algorithm is straightforwardly extended to the MPO-time evolution as illustrated
on Fig. 4.1b, by noting that in contrast with the MPS case the (adjoint) unitary time evolution
must be applied on the lower and upper legs of the MPO.

4.2.3 The time dependent variational principle using matrix-product states

The time dependent variational principle (TDVP) was first introduced by Dirac [92] for a general
variational manifold. The general idea is to project the Schrodinger equation on the variational
manifold of interest in such a way that the wave function after an infinitesimal time step does not
leave the manifold, yielding an approximate tractable time evolution.

It has been recently formulated using MPS with a fixed bond dimension as the variational
manifold [88,93] and is based on the concept of the tangent space of the MPS manifold [94]. The
algorithm is very similar to the density matrix renormalization group (DMRG) [84,95] and offers
several advantages with respect to the TEBD algorithm since it does not rely on truncation to
keep the wave function in the manifold M y(p s, of MPS with a given dimension y. Moreover it
is suitable to simulate Hamiltonians with long range interactions. To derive the TDVP algorithm,
we start from an MPS wave function Eq. (4.24) as a variational ansatz. However, we make every
tensor explicitly time dependent, i.e. Alilsi — AlUlsi (1),

After inserting this ansatz into the Schrodinger equation, we find: % = —iH|y[M])
where M denotes a point in the MPS manifold. The derivative of a MPS is given by:

dly[M]) Lpi § 2P N.p Lp 2p N.p
— = > D AMET MG MY M O M M

P1:P25--sPN H1M25-- s N -1
1, 2, N,
+ MM OM Y \pLpa, PN, (4.24)

H1,HM2 ° N-1
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where 0; M"Pi denotes the partial derivative of the tensor M%Pi. This can be expressed in the
graphical notation:

dwgw:.,....+...+-.----+...

0; M 4.25)

The set of tensors of the form (4.25) is called the tangent space of the MPS manifold at point M.

The goal of the TDVP approach is to find an expression for d; M*“Pi and to integrate the
resulting equation in order to time evolve the matrix-product state. Therefore we are looking for
a solution of the form:

D OMP )y, [ AMSPE(D}) = —iPrH Iy (IMSPH () = —il0[M]). (4.26)

i
where Pr is the projector on the tangent plane of | ({M kP ()})). This projection is necessary
to ensure that we obtain closed equations of motion in the tangent space so that the time evolved

MPS is confined to M r(ps,,. The new equations of motion obtained this way can be elegantly
integrated by means of a splitting method [88], as explained below.

The essential step in establishing the TDVP algorithm is to derive the projector. In order to
do so, it is convenient to work in the mixed canonical form:

|9[B]>=Z-~

In order to find the projector on the tangent space, we need to determine the sets of tensors T"’s.
Therefore we are looking for the minimum of || |8[B]) — |y) ||:

16) = minz: (016) + (yly) = (0ly) — (716) (4.27)

However, in the above expression, the term (8|6) contains L? terms. Indeed:

016y =... +

+ ... (4.28)

(4.29)
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This is possible because of the gauge freedom of the tangent space. Namely, the transformation:
T'— T'+ X"'B - A'X/, (4.30)
where the X’s are matrices, does not change the wavefunction.

Let us show explicitly that starting from an arbitrary vector in the tangent space (represented
by a set of A,B and T tensors), we can always find a set of matrices X’s which will satisfy the
condition (4.29). Let us first solve the equation for the first site:

Z A],ST(Tl,S _ A],le) — ZAI,STTI,S _ (Z A],AS‘TAl,S)Xl — O (431)

N N N

Using the fact that 3, A»TALS = 1, we obtain:

x! = Z AbstTLs (4.32)

N

Now let us suppose that X', ..., X'~! has been fixed. At site i, according to the gauge transfor-
mation (4.30) ,we need to solve the equation:

ZAi,ST(Ti,s + Xi—lBi,S _ Ai’SXi). (433)

N

Hence we obtain:
X' = ) AR 4 ARSI ghs (4.34)

N

Therefore one can indeed always satisfy the condition (4.29).

While minimizing (4.27), we need to impose the condition (4.29) as well as its conjugate.
Therefore, we need to employ the Lagrange multiplier technique. Let us express the terms
of (4.27) graphically:

OOy = (4.35)

(4.36)

and
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(4.37)

If we call M’ and G’ the tensors containing all the Lagrange multipliers corresponding
respectively to conditions (4.29) and its conjugate, we have the following Lagrangian:

(4.38)
(4.39)
- - - (4.40)
We solve this equation by contracting with the Al tensor:
(4.41)
(4.42)

Combining equation (4.25) and equation (4.26), it is not straightforward to relate the partial
derivative 9, M’ with the tensor T?, because we worked in the mixed canonical form in the tangent
space.
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The equation (4.26) can be solved approximately by performing a Trotter decomposition.
Indeed, one can time evolve A’ with the first term of (4.42) and s’ with the second term. One
obtain:

—i i
i Fig (4.43)

where:

(4.44)

In order to evolve the singular values, one writes:

(4.45)

(4.46)

where:

(4.47)

It is useful to define the one site effective Hamiltonian:
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(4.48)

(4.49)

We are now ready to formulate the TDVP algortihm. We start from a MPS in the right canonical
form, and perform a one site DMRG-like sweep. Instead of finding the ground state at each
step of the sweep, we integrate the TDVP equations (4.46) and (4.43). To this aim, the one site
wavefunction tensor is evolved according to @ (1 + dt/2) = exp(—iHéfﬁ ,d1/2)@' (1) using the
Lanczos algorithm [96]. Then we perform a SVD on the one site wavefunction. The U matrix
will be reshaped to be A (1 + dt/2), the V matrix is absorbed into B*! and the s matrix is evolved
according to s(t + dt/2) = exp(iHéff,Odt/Z)s(t). At the end of this left-right sweep, the MPS is
in the left canonical form and the wave function has been evolved by a time step dt/2. Then we
perform a right-left sweep in order to obtain once again a wave-function in the right canonical
form. The wave-function has been evolved by another time step d¢/2. This scheme corresponds
to a second order Trotterization of the time evolution.






37

5 Matrix-product state approaches to operator
spreading in non-integrable systems

Most of the content of this chapter can also be found in a previous publication of the author [1].
Text and figures have been adjusted to fit into the context of the thesis.

5.1 Introduction

The question of quantum thermalization in closed systems receives currently a considerable
amount of attention. This interest is partly due to the experimental progress leading to increas-
ingly well isolated experimental realizations of quantum many-body systems in ultracold atomic
gases in optical lattices [97]. Furthermore, we have seen in chapter 2 that this problem is central
for the understanding of the foundations of statistical physics [18,98—101]. While the eigenstate
thermalization hypothesis (ETH) [18,98—101] is a mathematical hypothesis explaining why local
observables assume values consistent with the micro-canonical ensemble at long times [102], it
can be useful to consider a more intuitive argument, namely that an ergodic system acts as its
own bath. In general, the unitary dynamics of isolated quantum systems precludes reaching a
maximally mixed state if the system is initialized in a pure state. However, when considering
only a small subsystem of the total system, the usual notion of thermodynamic equilibrium is
recovered, as the reduced density matrix becomes equal to the corresponding thermodynamic
density matrix [103, 104], as the rest of the system serves as a heat bath. The mechanism for this
thermalization process is the loss of local quantum information over time, which implies that the
full wave function of the initial state cannot be reconstructed from local measurements at long
times [105]. In consequence of this loss of local information, the system becomes increasingly
entangled, until the state of a subsystem reaches a maximally mixed state consistent with global
constraints [102, 106, 107]. A direct local probe of the loss of local quantum information can
be constructed by studying the spreading of initially local Heisenberg operators O;(r) which
become increasingly nonlocal over the course of time. The locality can be quantified by probing
the real space support of O;(¢) using the norm of the commutator with another local operator
\7, This quantity is now best known as the out-of-time-order correlator (OTOC) which was
introduced to study quantum chaos [108, 109], and to bound the spreading of information in
systems with short ranged interactions [110].

Certain universal properties of the OTOC can be well understood in random unitary cir-
cuits [31-34] where it is governed by hydrodynamic equations of motion. In these systems,
a light cone structure was identified with a broadening front arising from the diffusive nature
of the hydrodynamic equations. This diffusive behaviour has been found in numerically exact
calculations in a noisy spin system [ 1 1 1]. However, no exponential regime with a fixed Lyapunov
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exponent was found so far in such systems, nor in Hamiltonian systems with a small local Hilbert
space and continuous time [112].

While the OTOC is a powerful and universal theoretical tool, it is very difficult to calculate
in practice for generic quantum many-body systems, due to its operator nature. In the last few
years, several numerical methods for calculating the OTOC emerged: exact operator evolution
in the Heisenberg picture [113], matrix-product operators (MPO) evolution in the Heisenberg
picture [114,115] and an exact wave function technique in the Schrodinger picture [112]. In this
chapter, we will carefully compare these techniques and add two more MPS methods based on
a stochastic sampling of the OTOC in the Schrodinger picture using both time evolving block
decimation (TEBD) [85] and the time dependent variational principle (TDVP) using matrix-trix-
prodproduct states (MPS) [88,93], which is currently discussed as a candidate method to extract
late time hydrodynamic properties of quantum systems [116, 117]. While exact Schrodinger
evolution using quantum typicality is currently the best choice to obtain the exact OTOC for
Hilbert space dimensions of up to 10° even at late times [112], MPS techniques have been
recently presented as complementary approaches. In particular, MPO time evolution using
TEBD can be used to extract the tails of the OTOC at very long distances (see section 5.4.2).
Here, we investigate, how MPS based time evolution techniques such as TEBD and TDVP in the
Schrodinger picture compare to the method of MPO evolution.

This chapter is structured as follows: in section 5.2, we explain why the OTOC quantifies
the spreading of operators in non-integrable systems. In section 5.3, we describe the numerical
approaches we choose to simulate them using matrix-product states. Next, in section 5.4 we
compare the results obtained by the different methods, both for small and larger systems, and
assess to which extent our results can be trusted despite the low amount of entanglement included
in our MPS approximations.

5.2 Measures of operators spreading in closed quantum systems:
the out-of-time-order correlator

5.2.1 the out-of-time-order correlator, a measure of the propagation of quantum
information

In ergodic isolated quantum systems, local operators in the Heisenberg picture typically spread
over the course of time in a sense that their supports in real space grows. Here we study this
spreading in a non-integrable spin-% chain of length L. In this case, the growth of the support
means that the expansion of an operator V;(¢) in the operator basis of strings of local Pauli
operators 0, i € {0,1,2,3} (69 = i):

0= D Vea0a @0 ® @ Fa, (5.1)
ay...ap €{0,1,2,3}

22 1

acquires increasingly long strings of non-identity Pauli operators [31, 33, 34]. The growing
complexity stems from the increasing nonlocality of the time evolution operator U (¢) and is also
related to the growth of the operator entanglement entropy [118—120]. In order to define the
latter quantity, it is useful to consider the operator as a state living in a larger Hilbert space. More
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Figure 5.1 Schematic representation of the spreading of the operator support of an operator V;(¢) initially
at position x = i as a function of time . When the operator support reaches the position j, the quantity

A 2
”[Wj, Vi (t)]HF starts to grow. The OTOC is therefore a measure of operator spreading in isolated quantum
systems.

precisely, if we decompose an operator O in terms of the elements of an orthonormal basis {|¢; )}
asO = 2ij Oij 19i) (¢;], we can then associate to this operator the state [¢5) = X5 O;j |4:)®| ;).
The bipartite entanglement entropy of |¢ ;) is called the operator entanglement entropy (assuming
proper normalization). Note that the calculation of the entanglement of MPOs is identical to
the MPS case: one has to find the singular values of the bond i of interest and as usual
NEEDW st. ln(st.) where s; are the singular values and S the entanglement.

The expansion in terms of Pauli string operators in Eq. (5.1) is a useful measure of operator
spreading but is computationally impractical due to the arising of an exponentially large number
of terms in the length of the chain. However, we note that in order to study the loss of locality
of quantum information, the most interesting information is contained in how the length of Pauli
strings grows over time. Therefore, we instead con51der commutators of the operator Vi (t) with

nontrivial (o € {x, y, z}) local Pauli operators (i.e. 0, = =i® 195, 01®- 1)
[V ob] = D va[6a ® e, @ @Fa,, 0% (5.2)
aj...ar,

This commutator is zero when the local Pauli operators &, on site j are identities for all
strings in the expansion V; (7). Generically, when the operator support of V,(t) reaches site j, its
expansion in terms of Pauli strings will contain terms not commuting with -,. This commutator
is therefore quantifying the operator spreading, as illustrated in Fig. 5.1.

However it is also an operator and is therefore usually reduced to its norm ” [Vi(t), %] ” For
computational simplicity, a standard choice for the norm is the normalized Frobenius norm given

= % Tr A" A, leading to the definition

Cij(t) = ||[WJ, Vi(0)] || (5.3)
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where Z is the dimension of the Hilbert space. We have chosen the normalization in order to
ensure that C;;(r) — 1 at long times in the case where W; and V; are hermitian operators, which
square to identity, such as Pauli operators.

5.2.2 The out-of-time-order correlator, a marker of quantum chaos

This quantity was originally proposed by Larkin and Ovchinniokv [108] in the context of
quantum chaos. They showed that in chaotic systems with a semiclassical limit this norm of
the commutator is connected to a Lyapunov exponent of the system and therefore effectively
quantifies its chaoticity. Using this quantity they discussed a quantum analogue of classical
chaos since in the semi-classical limit it quantifies the sensibility of classical trajectories to their
initial conditions for the choice WJ- = p and V; = £. This can be understood more intuitively by
observing that the OTOC measures the effect of an initial perturbation on the value at later times
of an operator located at some distance [109]. On the other hand, recent numerical studies of
quantum systems with a small local Hilbert space and for 31 sites showed that there is no regime
of exponential growth [112], a discrepancy to the semiclassical case [121], which has yet to be
fully understood.

The link between the OTOC and locality of the Hamiltonian was made a few years later
by Lieb and Robinson [110]. They realized that information in systems with short range
interactions can only spread within a light-cone with only exponentially suppressed leaking.
This is most effectively quantified by considering the spreading of initially local operators V;(z)
in the Heisenberg picture. More precisely:

lim Cijexp [u(v)t] =0, 5.4)

t—oo,|i—j|>vt

for velocities v > vy g, where vy g is called the Lieb-Robinson velocity. The function u(v) is
now referred to as velocity dependent Lyapunov exponent [122].

The OTOC has been the subject of a renewed interest in the past few years due the establishment
of a duality between some strongly correlated systems and black-holes and the proposal of exactly
solvable models to illustrate it [123]. Moreover the spreading of operators is directly connected
to the scrambling of local quantum information, since in chaotic systems at long times, initially
local operators lose their locality and become completely scrambled [109].

5.3 Numerical considerations: calculating the out-of-time-order
correlator with matrix-product states

If we restrict ourselves to hermitean unitary operators, which square to identity, such as Pauli
operators, the OTOC C;; can be expressed as:

Cj=1->—Tr (GOW V()W) (5.5)

2-Z
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Figure 5.2 Example of trace calculation with MPOs following equation (5.5), using four sites. The tensor
contraction gives the quantity Tr (\74(t)W1 V4(I)W1 )
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where Z = dim(H) is the dimension of the Hilbert space. The nontrivial part of the calculation
of this quantity consists of determining the correlation function

| IR
~Tr (VOW, Vi) W), (5.6)

which is exponentially expensive: for a spin—% system of size L, V;(¢) is represented by a matrix

in C2"*2" | Direct exact time evolution of the operator will therefore be very limited in system
size [113].

Alternatively the trace can be stochastically evaluated with typical, randomly chosen wave
functions due to quantum typicality. Although the time evolution will still be exponentially
expensive, larger system sizes can be achieved since a state has only 2© components. This
has been achieved using exact Krylov space time evolution [112, 124—127]. Here, instead of
operators, only wave functions are evolved in time by moving to the Schrodinger picture at the
price of performing the time evolution forward and backwards in time, yielding an overall scaling
of the method proportional to 2. This is so far the most powerful numerically exact method
to simulate the ergodic dynamics of small to intermediate system sizes up to arbitrary times and
used here as a benchmark. For details of the method, see Refs. [112, 124].

Another approach is to use Heisenberg propagation of a matrix-product operator (MPO)
representation [114, 115] of \7j(t) (see Fig. 4.1). To calculate C; ;, one can use equation (5.5).
We first evolve \7J using the setup of Fig.4.1b) with O/ = V and all the other operators O,
k # j set to identity. This way we obtain an MPO which tensors we denote as le(t), the index [
corresponding to the site of the tensor. We also write W; as a MPO (which means that we place
the operator W on site i and identities operators on every other site). The calculation of the trace
is then performed according to Fig. 5.2. This approach can seem to be limited to short times
due to the linear growth of the operator entanglement entropy [ 18] implying the necessity of an
exponentially large bond dimension for an exact representation of the Heisenberg operator.

It has been argued recently in Ref. [115] that this method is able to capture the early growth of
the OTOC even with low bond dimension based on the following observation: first the spreading
of quantum information is bounded by a light cone, implying that the operator entanglement
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of bipartitions with a cut outside of the light cone is small, thus leading to a small required
bond dimension. Therefore in the Heisenberg picture, only tensors inside the region where the
entanglement is high will be truncated within the TEBD scheme. Finally, it is assumed that the
effect of the truncation propagates as a light cone, meaning that the sites with low entanglement
should not be affected immediately by the effect of a truncation far away from them. In numerical
simulations, the convergence of the results with bond-dimension presented in Ref. [115] seems
to support this reasoning. Our benchmarks for small systems (Fig. 5.5), our comparison of the
contour lines of the OTOC obtained using MPO evolution to other methods (Fig. 5.9), as well
as our analysis of the convergence with bond dimension (Fig. 5.12) also provide further support
that MPO time evolution does indeed accurately capture the tail of the OTOC. We would like
to note that this MPO technique has been applied in the past to calculate operator spreading in
the one-dimensional Bose-Hubbard model in Ref. [114], where a discrepancy to the ballistic
spreading at early times for small bond dimensions was pointed out, which was attributed to the
truncation of the bond dimension.

Here, we propose a scheme based on the Schrodinger picture to MPS time evolution methods.
The trace in Eq. (5.6) is sampled stochastically over random product states |01, . . . 01 ), which is
reminiscent of minimally entangled typical thermal states (METTS) at infinite temperature [128]
(8 = 0). Additionally, we have the freedom to chose the basis such that the basis states are
eigenstates of the operator Wj, which we take for convenience to be Wj =07

1 N -
~ T (Ve Vine:) ~
1 Nstates . . (57)
(@ V&3 Vi) o) oy

N

2

Z - Rgtates

This way, we only have to propagate one wave function (i.e. |o7)) forward in time, apply V;,
and propagate back to ¢t = 0 for each initial state |07). The average is performed over nges initial
states, which are sampled uniformly from the local o, product state basis (subject to sector
constraints if required). From now on, we we will restrict ourselves to the case Vi(t) = é'f (1).
In order to evaluate equation (5.7), we use both the TEBD and the single site TDVP algorithms.
In Ref. [88], a two-site implementation of the TDVP algorithm was proposed. However, in our
case, this version of the algorithm would not be suitable for our purposes since it also relies on
truncation to keep the bound dimension of the MPS fixed, hence yielding a non unitary time
evolution and violating conservation of energy. However the single site algorithm does not allow
to increase dynamically the bond dimension. In order to address this problem, we initialize our
MPS as follows. First, we fill up the MPS with zeros in such a way that the product state, initially
of bond dimension one, acquires the desired bond dimension y. Second, we bring our inflated
product state in canonical (isometric) form following the usual sweeping procedure [87]. This
state is then a proper state and the single-site TDVP reproduces the correct time evolution. All
the results obtained with the TEBD algorithm presented in this chapter were performed with a
second order Trotter decomposition scheme. Unlike the TEBD algorithm, the TDVP algorithm
conserves energy even when the exact time evolution cannot be captured by the MPS. Moreover
all the conserved quantities, which do not cause an increase of bond dimension once applied to a
MPS, are respected. In other words, a quantity O commuting with the Hamiltonian is conserved
by TDVP if for all states |¢) expressible as a MPS of bond dimension y we can still express O |¢)
as a MPS of bond dimension y. In the case where all conserved quantities leave the manifold
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Figure 5.3 Example of calculation of time evolution necessary to obtain the OTOC with the MPS TDVP
method using equation (5.7). (a) represents the time evolution 17i(t) |o), while the tensor contraction (b)
represents the full out-of-order part of the correlator, up to the initial phase o*. These operation must be
averaged stochastically to give the correct result.

Mmeps,, invariant, TDVP appears well suited for the simulation of thermalization, since it is
believed that at long times the dynamics of the system is driven by hydrodynamical equations of
motion governed by conserved quantities [129—131]. Following this line of thought, TDVP has
recently been applied successfully in the context of thermalization [116]. However the accuracy
of results at long times is currently under debate [117]. It has also been used advantageously in
disordered systems [132]. The TDVP algorithm provides a unitary time evolution. This feature
will be of crucial importance when calculating OTOCs. In this work, we focus on short to
intermediate times and will not consider the question of the relevance of TDVP in the context of
hydrodymamics.

5.4 Results

We study a one dimensional quantum spin chain with short range interactions which has both
integrable and non-integrable points as a function of the field angle: the tilted field Ising model.
The Hamiltonian of the system is given by:

L
H=Y 1oios, + ) (ho] +heo?) (5.8)

We consider this model at a strongly nonintegrable point, with no other conservation laws besides
the global conservation of energy, which is exactly respected by our TDVP approach. Following
Ref. [106], we use the following parameters throughout this article: J, = 1, hy = (\/3 +1)/4 =
0.8090,h, = (V5 + 5)/8 = 0.9045.
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Figure 5.4 OTOCs for L = 21 obtained using a) ETE b) Schroedinger TDVP approach, sampling over 98
random product states and bond dimension y = 64.

5.4.1 Comparison of the methods with exact results

In order to explore the domain of validity of the different methods (MPS TDVP, MPS TEBD
and MPO TEBD), we compare the results for the OTOC with exact results obtained by Krylov
space based exact time evolution (ETE) for chains of L = 21 spins.

In Fig. 5.4, we show the exact results obtained using ETE on panel a) as well as the ones
obtained using the MPS TDVP approach, using y = 128. A clear causality structure is observed,
as explained in section 5.2.1 and illustrated on Fig. 5.1. We chose on purpose a relatively low
bond dimension of y = 64 (this is to be compared with the full bond dimension needed for
the MPS calculation to be exact: ymax = 1024), in order to identify the possible errors arising
from the approximation at hand. Despite the truncation occuring, the two light cones are barely
distinguishable to the naked eye.

In order to gain more insight into the qualitative errors occurring for all the appraoches
considered, we present in Fig. 5.5 a detailed comparison for a system of size L = 21 of the
OTOC Gy, = %ll [6’2‘ (1), aj] ||12V obtained from the four methods compared in this article. All
panels show the numerically exact result obtained from exact time evolution (ETE) as solid
lines, panel a) shows the TDVP result for the OTOC obtained from stochastic sampling of the
trace in Eq. (5.5) using 98 random product states, panel b) shows the same calculation but using
TEBD time evolution instead. In panel c), we show TEBD MPO evolution results, using a direct
evaluation of the trace. Here, all calculations where performed using a maximal bond dimension
of y = 64. Itis clear that at short times all three methods reproduce the exact result since there is
no significant truncation occurring. Interestingly, the TDVP results stay close to the exact result
for longer times than the OTOC obtained by TEBD.

Similarly to TDVP, the MPO evolution using TEBD captures very well the regime of low
values of the OTOC. Nevertheless the growth and saturation regime is not correctly reproduced
by any of the methods. With the Schrodinger approach the OTOC is systematically overestimated
while it saturates to an unphysical value in the case of the Heisenberg approach.
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Figure 5.5 Fixed space cuts of the OTOC Cy; = 1| [&g(t), aj] |I. obtained using different methods
compared to exact time evolution (ETE). a) TDVP with wave function time evolution, where the trace in
Eq. (5.5) is sampled using 98 random product states b) TEBD with wave function time evolution where
the trace is sampled using 98 random states (the errorbars represent the error coming from the stochastic
sampling) c) TEBD with operator time evolution (exact trace). All MPS calculations were performed
with a time step df = 0.01, bond dimension y = 64 and system size L = 21. The red dashed line is the
theoretical upper bound for the long time limit for completely scrambled operators.

In order to make these statements more precise, we investigate the error of the different
methods by considering the deviation from the exact result for L = 21. From Fig. 5.5, we
see that the discrepancy from the exact result is the largest at long times and long distances,
independently of the choice of the method. Therefore we illustrate the errors resulting from each
of the three methods at the longest spatial distance in our system from the origin at i = 4 by the
distance to the exact result |C§%5'(r) ~ Cf;S/ MPO (1) | in Fig. 5.6. Here Cid;s’ MPO (1) stands for the
OTOC calculated using either the MPS based methods with TEBD or TDVP time evolution or
by the direct MPO based approach. We have checked that similar results are obtained for other
distances.
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Figure 5.6 Deviation from the exact result using the three methods for the calculation of the OTOC for
the longest distance from site i = 4 to j = 21 as a function of time. Based on the results shown in Fig. 5.5
(Bond dimension y = 64, time step df = 0.01, system size L = 21 sites, the errorbars represent the error
coming from the stochastic sampling).

These results are explained as follows. While TEBD in the Schrodinger picture suffers from
the propagation of truncation errors since the wave function has to be propagated back to t = 0
after a measurement, TDVP profits from the preservation of unitarity by the method, leading to
a significantly smaller error compared to TEBD MPS. As for the Heisenberg picture, the low
value of operator entanglement at the front of the OTOC light cone allows the MPO TEBD
approach to capture the low values of the OTOC as explained in section 5.3. The systematic
underestimation of the OTOC saturation values is due to finite bond dimensions limiting the
captured operator entanglement. We note that similar results have been obtained in disordered
spin chains where it has been demonstrated that TDVP performs better than TEBD [133].

Convergence with bond dimension and comparison to exact results for TDVP MPS and
TEBD MPS

In any MPS calculation, the convergence of the results with the bond dimension is an essential
tool to assess the validity of the results. Here, we present an analysis of the convergence of the
OTOC results calculated by our stochastic TDVP and TEBD methods based on MPS. We also
analyze the convergence with the bond dimension of our TEBD MPO results.

In Fig. 5.7, for a system of size L = 21, we show the convergence of the OTOC Cy (1) with
bond dimension for the MPS time evolution methods that we compare in the main text (TDVP
and TEBD). Since both methods rely on a stochastic sampling of the trace in Eq. (5.5), we
eliminate the error induced by the stochastic sampling by selecting 5 random product states |y )
and then calculating the approximate OTOC €, = 1 — 5% 30_, (Wil 650536500 v
with MPS TDVP, MPS TEBD and ETE for different bond dimensions (always using the same
5 product states). We plot the error given by the difference to the exact result for these 5 states
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Figure 5.7 Comparison of the error |C{¥*!(r) - C;{'j?VP MPS| for TDVP MPS and TEBD MPS |Coeet(n) ~
CP;BD MPS| for different bond dimension y. The system sizes is L = 21, the time step is d¢ = 0.01.

(ICc fz)’lexw - Cisz)’lMpsl) for different bond dimensions between y = 16 to y = 128 in Fig. 5.7.

For clarity, we indicate the number of random product states included in this comparison in
parentheses (here by (5)). We observe a clear convergence of the results from MPS TDVP. For
MPS TEBD the error also decreases with the bond dimension, but stays always much larger than
the one of TDVP. This underlines the advantage of the conservation of unitarity by TDVP time
evolution.

5.4.2 Large systems and range of validity of the approximation

So far, we have presented results for systems small enough such that we could still compare to
numerically exact results obtained by ETE. In what follows, we investigate the performance of
these MPS and MPO methods for larger systems. We present in Fig. 5.8 the results for the OTOC
Cy () = || [6'4 (1), a'JZ.] ||12: as a function of time ¢ and distance j — 4 for a system of size L = 50
sites with bond dimension y = 64 for both MPO TEBD and MPS TDVP. Again, we chose the
position of the spreading operator 67 (¢) on the left of our chain with open boundaries instead of
on the center, since this allows for a better resolution of the tails of the right part of the OTOC
as discussed in Ref. [124].

For both methods, the time step d¢ has been decreased until convergence, and we found
that a significantly smaller time step for TDVP of d¢ = 0.005 was required compared to the
MPO TEBD time step of df = 0.01, since the splitting methods of TDVP and TEBD differ.
While in TEBD the exponential of the Hamiltonian is decomposed into two-site gates using a
Trotter decomposition, in TDVP the update of every tensor requires the integration of coupled
differential which are solved separately for every site i. In TEBD, only neighboring terms do not
commute, while in TDVP the differential equations involving tensors Agl]s" (t) at site i depend on
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Figure 5.8 OTOC C4 (1) = %II [fri (1), a']Z.] II% as a function of distance and time for MPS TDVP with
time step df = 0.005, bond dimension y = 64 and averaged over 387 random states a) and MPO TEBD
with time step df = 0.01 and bond dimension y = 128 b), both for system size L = 50. The full lines and
symbols correspond to contour lines obtained from the numerical solution of the equation C4 ;(¢) = 6 for
various thresholds 6, where j is the position of the constant operator in the chain. The contour lines given
by these solutions are denoted #(6, j). The errorbars are representing the error coming from the stochastic
sampling and are extracted using the bootstrap method.

the value of the tensors A,EII]Sj on all sites j. Therefore, a larger time step error can be expected
in TDVP due to a more severe approximation in the splitting method.

For this reason, the dependence of the error on the time step is more important and must be
checked carefully. Additionally, the stochastic sampling of the trace in Eq. (5.5) does not admit
importance sampling and is therefore costly, practically limiting the bond dimensions considered
here to y = 64. We evaluate the convergence in bond dimension of our results for both methods
in section 5.4.2. We find that we achieve convergence for low values of the OTOC, which is
consistent with the benchmarks shown in Fig. 5.5.

Here, we do not consider MPS TEBD results because of the inferior accuracy of this method
already identified for smaller systems as discussed in the previous section.

The representation of the results in Fig. 5.8 from the two methods on the same colorscale
illustrates the problem observed for smaller systems in Fig. 5.5 that MPO TEBD (right panel)
underestimates the saturation value of the OTOC, in agreement with recent results of Ref. [133],
while TDVP (left panel) reproduces the correct long time saturation value close to 1. Next,
we consider contour lines (solid lines in Fig. 5.8) #(6, j) of the OTOC obtained from numerical
solutions of the equation Cy4;(¢) = 6 for various thresholds. For very low thresholds, these
contours capture the behavior of the tail of the OTOC, where both methods yield consistent
results even at long times. At larger thresholds, the obtained contours are strikingly different:
while MPS TDVP yields approximately linear contour lines, close to a linear light cone, the
results obtained with MPO TEBD deviate strongly and yield a significantly slower information
spreading. Due to the problems identified for MPO TEBD closer to the saturation regime of the
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Figure 5.9 Contour lines obtained from the numerical solution of the equation Cy ;(t) = 6 for various
thresholds 6 and methods, where j is the site. These solutions are denoted #(6, j). The different methods
used are MPO TEBD, MPS TDVP and ETE. We fit the ETE data between the sites 4 and 21 with a power
law: f(x) = A(4 — x)* with x the distance and the fitting parameters: a)4 = 0.20, ¢ = 1.32, b)4 = 0.31,
u=121,¢c)d = 0.50, u = 1.12, d)A = 0.52, u = 1.14. The data comes from the same calculation as
Fig. 5.8 (MPS TDVP: bond dimension y = 64, time step df = 0.005, system size L = 50 sites, averaged
over 387 random states; MPO TEBD:bond dimension y = 128, time step d¢ = 0.01, system size L = 50
sites). The errorbars are obtained in the same way than in Fig. 5.8 a.

OTOC as discussed in 5.4.1, we attribute this behavior to the error caused by the insufficient
amount of operator entanglement included in our MPO approximation. The approximately
ballistically spreading information front obtained with our MPS TDVP approach appears to be a
qualitative improvement in comparison with MPO time evolution where the speed of information
propagation seems to be underestimated. However, although qualitatively interesting, these
results should not be trusted quantitatively at high thresholds since they are not converged in
bond dimension in this region of space-time.

The results displayed in Fig. 5.8 can only be compared qualitatively, therefore we proceed
by extracting the contours ¢(6, j) of the OTOC for various values of the threshold and plot the
results from MPS TDVP and MPO TEBD in the same figure panel for a direct quantitative
comparison. In addition to the MPS results for L = 50 also the exact results for L = 21 are
shown in Fig. 5.9. This is an important comparison, since results in other systems demonstrate
that for short enough times, the OTOC does essentially not show any finite size effects [112, 124].
The contours obtained with ETE and MPS/MPO methods for different system sizes are therefore
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expected to coincide for short times and the contours at low thresholds should not depend on
system size.

For very small thresholds (6 = 107> and 6 = 1073), see Figs. 5.9a and 5.9b, the contours
obtained with MPO TEBD and MPS TDVP indeed match the exact results, in accordance with
results of Fig. 5.5, confirming our expectations. However, some differences start to appear at
higher thresholds (¢ = 0.1 and 6 = 0.2), see Figs. 5.9a and 5.9b, which can be expected from
our study of convergence in bond dimension (see section 5.4.2). We note that our MPS TDVP
seems to yield a contour slightly closer to the exact result.

For small thresholds, it was previously observed in generic spin systems that the contours of
the OTOC assume a power law shape with exponents close to unity [112]. Therefore, we attempt
power law fits to our numerically exact contours from ETE, yielding excellent fits. The fits are
shown as gray dashed lines in Fig. 5.9, and should be understood as an extrapolation of the
shape of the light cone from the L = 21 results. For small thresholds (6 = 107), the MPS/MPO
approaches reproduce the extrapolated contours with very high accuracy, confirming the power
law fit from the smaller system size and consistency with the exact result. For = 1073, the two
approximated approaches are still in quite good agreement with the fit of the ETE, although some
differences arise at later times. At higher thresholds, the difference is even more significant,
since already short times results do not agree. This confirms our overall observation that the
MPS approaches considered here reproduce the tail of the OTOC with good accuracy, while the
growth and saturation regimes are not well captured.

Convergence with bond dimension for larger systems in TDVP MPS
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Figure 5.10 Convergence in bond-dimension of fixed space cuts of the OTOC C‘(‘ljs)(t) =1-

2~]T > ,1<5= L Wl 7% (t)o-jz. opt (t)o-}z. |1 ) obtained with Schrodinger TDVP with the same 15 randomly chosen
initial product states |y ) for bond dimension y = 64 and y = 32 for time step dr = 0.01, and system
size L = 50.
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Figure 5.11 Convergence in bond-dimension of fixed space cuts of the OTOC Cil].) (t) obtained with
Schrédinger TDVP for only one random initial product state for bond dimension y = 64 and y = 32 and
using a time step dr = 0.01 for a system of size L = 50. The worst and best converged initial states of the
ones used in Fig. 5.10 are displayed in order to demonstrate the difference in convergence depending on
the initial state.

For larger system sizes, it is difficult to obtain exact results for the OTOC as a benchmark.
Therefore, a careful analysis of the dependence of the results on the bond dimension is crucial to
identify the domain of validity of the methods. As we are unable to perform the simulation with
a bond dimension sufficient to capture the growth entanglement which would manifest itself with
the exact time evolution, we identify the regimes where increasing the bond dimension leaves
the results invariant.

In the case of the TDVP MPS approach, we compare cuts C (115) () of the approximate OTOC
using 15 random initial product states in the o, basis for several fixed distances. Note the same
initial states are chosen for both bond dimensions in order to eliminate the importance of statistical
errors in this comparison as explained above. For converged results within this approach, the
mean and the error (calculated using bootstrap sampling) obtained for different bond dimension
results should perfectly agree. In Fig. 5.10, we show the approximate OTOC C (115) (t) for y =32
and y = 64 together with the errorbars of the OTOC (shaded region for y = 64 and errorbars for

= 32), yielding very good agreement of the results for low thresholds. At larger thresholds,
the discrepancy between the two bond dimension results becomes significant as expected.

We find that the convergence in bond dimension depends significantly on the initial state
and therefore we repeat this analysis for approximate OTOCs C(l)(t) using only single random
product states and different bond dimensions in Fig.5.11. From the 15 product states included
in Fig. 5.10, we select the states with the best and worst convergence in bond dimensions to
illustrate these state to state differences. Overall convergence is only achieved only for low values
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of the OTOC:s, confirming the observation that the tail of the OTOC is reproduced accurately,
while values at larger thresholds are not converged.

Convergence with bond dimension for larger systems in TEBD MPO

In the case of the MPO TEBD approach, the study of the convergence in bond dimension is
facilitated by the absence of stochastic sampling. The spacio-temporal dependency of the effect
of bond dimension can be analyzed by directly looking at extracted contour lines #(6, j) of the
OTOC obtained from numerical solutions of the equation Cy ;(¢) = 6 for various thresholds and
bond dimensions. We present the result of this approach in Fig. 5.12.
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Figure 5.12 Convergence with bond dimension y of the contours lines of the OTOCs calculated with
MPO TEBD. We represent the numerical solution of the equation C4 ;(¢) = 6 for various thresholds 6
and bond dimension (y = 64 and y = 128) for system size L = 50 sites and time step dt = 0.01. j is the
site of the light cone for different thresholds 8 (see Fig. 5.9).

The contours obtained with different bond dimension coincide very well for small thresholds
(up to & = 1073). However a difference between y = 64 and y = 128 appears already for
6 = 1072 at times ¢ = 30, which we attribute to the insufficient representation of the operator
entanglement of the operator in an MPO with y = 64. The difference is even more striking for
6 = 0.1, where the results are not converged and do not show the expected asymptotic behavior
of a linear light cone. The breakdown appears earlier for the lowest bond-dimension as expected.
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5.4.3 Discussion

In the previous section, we provided numerical evidence that the two different methods shared the
same area of validity, namely the region of space-time where the operator entanglement entropy
is low. At first sight, this statement might seem intuitive, since MPS generally can represent
relatively low entangled states which follow area low. However, the situation is different here, as
during time evolution, operator entanglement deep into the light cone is very high. Furthermore,
in the Schrodinger picture, the wave-function get rapidly entangled, as entanglement grows
linearly in erogdic systems [31]. Therefore our results contain meaningful information about the
propagation of errors in the methods at hand.

In Ref. [115], an argument is provided to show that the initial growth of the OTOC is correctly
captured by the MPO evolution technique. The reasoning goes as follows: due to the Lieb-
Robinson bound (5.4), the unitary time evolution acts as the unity operator in the region where
the effect of the operator V;(¢) did not yet propagate. When the effect of V;(¢) starts to appear
(at the intersection of the dotted line and of the cone in Fig. 5.1), the operator entanglement is
still very low, and a very small bond-dimension is sufficient to capture the growth of the OTOC.
While this argument is giving an elegant interpretation of the results, we note that it has been
put into question [78]. Indeed, although it is clear that only a low bond-dimension is needed to
faithfully represents the operator near the onset of the light-cone, it is hard to establish a priori
that this region is unaffected the severe truncation occuring deep inside the light-cone. For
example, some non local effect could appear [1 14]. However, our careful numerical verifications
indicate that this is the case in practice: the truncation errors propagate slowly enough so that
they do not interfere with the boundary of the light cone.

In the case of the Schrodinger time evolution, the situation is slightly more complicated. When
performing the forward time evolution, it is clear that the approximation made by the TDVP
algorithm yields a state very different from the correct one. In particular, the entanglement
entropy of this state is bounded by log( y). The next step (see Fig. 5.3), is to apply to operator
0'5, which can be seen as a perturbation, and perform the backward time evolution. Note that
if we were to apply the identity operator instead, the backward time evolution would yield the
correct result, namely the final state would be identical to the initial state, and the OTOC would
be exactly zero everywhere. Our results indicate that far from the perturbation, at the other end
of the chain, the unitary evolution is exactly canceled by its conjugate. For example, up to times
20, the OTOC at site 45 is vanishing (see Fig. 5.8,panel b). Finally, since the initial growth
of the OTOC is correctly reproduced by our method, we conclude that the propagation of the
perturbation is correctly captured by the TDVP approximation, even with low bond dimension.

We note the the agreement for low threshold of the OTOC of the results obtained with
both methods is a further evidence of the correctness of our results (see Fig. 5.9), since the
approximations made in both cases are completely different.

5.5 Conclusion

We have compared different MPS approaches to study information scrambling in a generic
spin chain based on both matrix-product states (MPS) and matrix-product operators (MPO) and
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compared the results to an unbiased and numerically exact technique (ETE). For the calculation
of the out-of-time-order correlators (OTOCs) in the Schrodinger picture based on MPS, we have
shown that the use of a unitary time evolution method (TDVP) yields a significant improvement
over the non-unitary truncation used in the time evolving block decimation (TEBD) algorithm.
Furthermore we found that both MPO TEBD and MPS TDVP reproduce the tail of the OTOCs
even at long times for low enough thresholds, while the growth and saturation regime suffers
from truncation errors. The obtained shape of the light cone in large systems at low thresholds is
in quantitative agreement with the ETE results at short times for smaller system size. Moreover
they also match the extrapolated exact result even at late time. For larger thresholds, closer to the
information front, a discrepancy from exact results is observed, which we attribute to insufficient
convergence of both MPO TEBD and MPS TDVP results with bond dimension. However,
our TDVP MPS approach still yields a qualitatively correct ballistic propagation of information
in contrast with the results obtained with MPO TEBD where after significant truncation the
spreading of information appears to halt, making the result unphysical. We also note that the
asymptotic saturation value of the OTOC is correctly reproduced in our TDVP MPS approach,
while strong truncation effects in the MPO TEBD approach lead to a severe underestimation of
the saturation value.

We conclude that both MPS techniques in the Heisenberg and Schrodinger picture yield
consistent results for the tails of the OTOC and their performance is comparable. However, the
MPS TDVP approach comes at the price of introducing a stochastic sampling of the OTOC using
random product states making it computationally much more expensive. An interesting future
direction would be to apply our wave function approach to calculate the OTOCs in many-body
localized system to evaluate whether the logarithmic growth of entanglement allow us to gather
reliable results in a broader region of space-time and calculate the contours OTOCs at larger
thresholds.
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6 Probing diffusion in boundary-driven
dissipative systems

6.1 Introduction

In the previous chapter we have explored the propagation of information in a quantum system
using various matrix-product states (MPS) approaches. However, in general, these methods
seem to be unable to reliably reach the long time limit [117]. Therefore, they fail to capture
all characteristics of the dynamics of the system, such as transport coefficients of conserved
quantities [117].

Transport properties are among the most experimentally studied characteristics of materials,
allowing to classify various states of matter. In particular, identifying the possible universality
classes emerging from transport in strongly behaviornteracting systems is the subject of very
active research [134]. Many different quantities can be examined, such as heat [135], elec-
tric [136] and spin [137] conductivities. Although transport is described by phenomenological
hydrodynamic theories at long times [35, 36], it is challenging to simulate starting from mi-
croscopic models. For example, transport coeflicients can be obtained using the Green-Kubo
formula, which requires the calculation of autocorrelation functions, and is usually limited to
small system sizes [ 138]. Strongly interacting one-dimensional systems exhibit a large variety of
transport properties of their conserved quantities, including ballistic, diffusive and subdiffusive
transport. Generic non integrable systems are believed to exhibit diffusive transport [138, 139].
Spin transport can be probed experimentally on quantum magnets using various techniques such
as muon spin relaxation [140, 141] or nuclear magnetic resonance [142]. Furthermore, trans-
port has an important role to play in understanding the ergodic/many-body localization phase
transition, as the critical point might be characterized by subdiffusive transport [137].

In this chapter, we explore the potential of a MPS-based approach originally proposed in
Ref. [143], aiming at obtaining diffusion coefficients of one-dimensional systems. Namely, we
simulate boundary-driven diffusive systems. We time evolve the system until it reaches the
steady state, and deduce the diffusion coefficient from the current measured in this state. We
compare our results to those of other methods, and conclude on the validity of the approach.
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6.2 Probing transport properties using equilibrium steady states

6.2.1 The setup

Although we are ultimately interested in the transport properties of closed quantum system, we
proceed by coupling our one dimensional chain with a bath acting only at the boundaries, such
that it induces transport. The idea behind this procedure is that for a large enough system, at
long times, the dynamics in the bulk will be approximately unitary, and the transport properties
can be read directly from the current induced.

The non-unitary time evolution of the open system of interest is governed by a master equation
of the form [144]:
dp

. N r .
i L(p) =ilp, H1 + Lp(p) = ilp, H] + 5 Zk:[Lkp, L1+ [Li, pL}1, 6.1

where the superoperator £ is called the Linbladian, and can be decomposed into unitary and a
non-unitary part L which generally involves Linblad operators L;. Note that in this chapter,
we only consider baths acting at the boundaries of the system. It was conjectured in Ref. [143]
that the steady states of such Lindbladians are unique and can be faithfully represented as a
matrix-product operator (MPO) of low bond dimension. This claim was further justified in
Ref. [145] using linear response theory (see also section 6.2.3).

By recasting the density matrix as a state p — |p), the time evolution is then given by:

lp(1)) = exp(L1)|p(t = 0)). (6.2)

At the exception of the steady state which has eigenvalue 0, the eigenvalues of the superoperator
£ have a negative real part. Therefore, when performing the time evolution under the master
equation (6.2), at sufficiently long times, the state will reach the steady state p.. This is
analogous to an imaginary time evolution simulation in the unitary case, where ps plays the
role of the “ground state” of the Lindbladian.

The expectation of on operator O with respect to the steady state is as usual as given by:

(0)p,, = Tr(pes0). (6.3)

6.2.2 Obtaining the diffusion coefficient from the non-equilibrium steady state

We are interested in the transport of a conserved quantity O of a Hamiltonian 4, i.e. [H, Q] = 0.
We define the local charges ¢; such that O = ¥; §;. The current operator J; at site i is related to
the local charges by:

dg; ara 1 2 2

% = ilgi, H] = Ji = Ji-1. ©.4)

We expect that in the bulk of our system the expectation value of the current with respect to
the steady state is independent of the site i where it is measured:

J = Ui (6.5)
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In order to characterize the transport properties of our system, we relate the current to the
driving field ¢ (which could be for example the magnetization density or chemical potential) [ 143,
145]:

J=rVe). (6.6)

In the case of diffusion, the diffusion coefficient D is defined as [145]:
j=—-DV¢. 6.7)
In practice, in order to eliminate boundary effects, the the gradient can be expressed as [143]:

¢(N — Np) — ¢(Np + 1)

Vo = ,
¢ N-N,

(6.8)

where N, > 1 are the number of spins at the boundaries not taken into account.

6.2.3 Lindbladian perturbation theory and linear response theory

The usefulness of the method presented above rests on the assumption that the steady state can
be expressed as a matrix-product operator with low bond dimension, as elaborated in the next
section. In order to justify this hypothesis, one can use perturbation theory [145].

Let us start from a Lindbladian £, with unique steady state pp which is known exactly. We
perturb £ and obtain:
L="Lo+ply, (6.9)

with u is a small parameter quantifying the extend of the perturbation. We look for the steady
state under the form:

P = po+ 1pi, (6.10)
where the higher order terms can be discarded provided that u is small enough. We have:

Lp=u(Lipo+ Lop1) + 0>, (6.11)

where we have kept only the linear order terms and used the fact that £op = 0. Therefore:

A

Lipo=-Lop:. (6.12)
Note that one can formally write [145]:
p1=-Ly' Lipo (6.13)

which has a unique solution as long as £; p is orthogonal to pg.! We can now write the linear
response equation for p; by starting from the Linblad equation for pg + pp;:

d(po + up1)

< = u(Lipo+ Lop1). (6.14)

!Indeed, since by hypothesis pg is the only eigenstate of £, with zero eigenvalue, one can invert £ restricted to
the subspace of vectors orthogonal to pg.
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Using dd% =0, we arrive to [145]:

der _
dr

The solution of the above equation is given by [135, 145]:

(Lipo+ Lop1). (6.15)

r
p1(t) = f e LoD £ podr. (6.16)
0
The steady state of £ is therefore given by:
P = po + llf L7 £ podr = po - ,uf L7 £opidr., (6.17)
0 0

Note that in the spin diffusion case that we consider section 6.4, the steady state of £ is
proportional to the identity, i.e. pg oc 1. Therefore, for traceless operators, only the correction
term contributes to the expectation value. Since by assumption u is small, the new steady state
P should be lowly entangled and is expected to be well approximated by a MPO with relatively
low bond dimension.

6.2.4 Matrix-product state implementation

In oder to use MPS methods to simulate non-unitary dynamics, we represent the density matrix
as a state: p = ;i pi;|0){j| = Xi; pij|idlj). This is implemented in practice by representing
the density matrix as a MPO, and transforming this MPO into a MPS by grouping together the
physical indices of the : W;”\7 — W:&Eﬁff)- We can then apply the standard time evolving
block decimation (TEBD), explained in detail in section 4.2.2. Indeed, for a system with nearest
neighbor interactions, the exponentiation of the Lindbladian factorizes into two site terms,
allowing for the application of the usual Trotter decomposition. All the results presented in this

chapter were obtained with time step df = 0.1. The resulting scheme is illustrated in Fig. 6.1.

This method is expected to work when the targeted steady state is well described by linear
response theory (see section 6.2.3). In this regime, the steady state is close to the infinite temper-
ature density matrix, which is exactly represented as a MPO of bond dimension one. Therefore
the steady state is expected to carry few operator entanglement and to be well approximated by
a MPO with low bond dimension [ 143, 145].

In order to reach the steady state in reasonable time, following Ref. [146], we start by doing
the time evolution with relatively low bond dimension, in order to arrive “in the neighborhood”
of the steady state . We check that the truncation error during the time evolution stays relatively
small (in practice, below 107). We eventually reach the a fix point of the Linblad equation
restricted to this MPS manifold with low bond dimension. The state thus obtained is already a
good approximation of the steady state. Then we increase the bond dimension until we eventually
reach convergence. As some light truncation occurs during the time evolution, the trace of the
density matrix is not exactly conserved. This can be easily fixed by renormalizing the MPS. In
practice, it is easier to compute the expectation value in the following way:

Tr(ps0)

6.18
Trpw (6.18)

(OYp, Mps =
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Figure 6.1 Example of two TEBD time steps applied to the density matrix expressed as a matrix-product

state for a system size of 4 sites. The bath is coupled at most with the two left-most and righ-most sites
of the chain, while the time evolution is unitary in the bulk.

The trace of a density matrix expressed as a MPS is calculated by taking the expectation value
(pmps|1), where |1) is the identity matrix expressed as a state.

6.3 Energy transport

6.3.1 Two spin bath

In order to induce energy current in our system, we couple the two left-most sites with a bath of
temperature 77 and the two right-most sites with another bath of temperature 75.

To this aim, we wish to construct a two sites Lindblad operator L r which has for steady
state [ 143, 147]:

pB,T = eXp(—=ph1,2), (6.19)

where £, is the Hamiltonian restricted to the two sites considered and 8 = kg;T Furtheremore,
we wish Lp 7 to have eigenvalues —1 associated with all its non steady eigenstates.

Note that if 77 = T, = T, it has been shown numerically [148] that the steady state of the
Lindbladian is very close to a thermal state with a temperature close to T, therefore carrying few
operator entanglement. Introducing a temperature difference AT = 72 —T'1 is to be seen as a
perturbation in the framework of linear response theory presented in section 6.2.3.

In order to find an expression for Lp 7, we first diagonalize pp r:
ppr =Viav, (6.20)

where d is a diagonal matrix with diagonal elements dy, d1, d, d3. Next we look for the operator

Lg? such that:

L3%(d) =0. (6.21)
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1 2

To this aim, it is useful to introduce the Q-basis. If we denote 0* = ¢, 0! = 0%, 02 = o,
o? = o7, then all two sites superoperators can be expressed as a linear combination of the
following operators 2 [143, 147]:

1
Q" = Zo-"‘ ® o™, n=n|+np. (6.22)

‘We have:
d = Q% + C,Q' + C,O% + G5, (6.23)

with C() = do+d1 +d2+d3, C = do—d'l +d2—d3, Cy = do+d1 —dz—d3, Cy = do—d1 —d2+d3.
Then the only non zero elements of L(Ij;aTg are given by:

Ly mm =—Lm=1,...,15, (6.24)
ia G .
(Ly%)j0 = Ff) j=1,4,5. (6.25)

In order to go back to the physical basis, it is useful to consider:

1

Tr(pprQ") = ) pmTHQ"Q") = Pn = > CuTr(viQrvan), (6.26)
m m

where we have used the fact that 4Tr(Q" Q™) = 6,, ,. Therefore we have [143, 147]:

Lp1 = RILGER, Ry = 4Te(V Q" VQM). (6.27)

6.3.2 Diffusion in the tilted field Ising model

We consider the tilted field Ising model:
N-1 N N
A= 8585 +g. > 8 +g. ) & (6.28)
i i i

with the following parameters: g, = 1.4 and g, = 0.9045. This is the model studied in the
previous chapter. In addition to being strongly chaotic for these parameters, it has been shown
to display energy diffusion for these parameters [106].

The energy current of this model is given by:

Ji = he(82 8 - 8787 ). (6.29)

We show on Fig. 6.2 that the current as a function of system size behaves indeed diffusively, that
isto say j o %
The diffusion coefficient is then given by:

(J(N — Np)
€1+Ng — €EN-Ng

D=- (6.30)

2We choose the following convention: n =0 — (n; =0,np =0),n=1->(n =0np=1)....,n=4 - (n| =
Inp=0)...
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Figure 6.2 Energy current j as a function of system size L for the titled field Ising model (Eq. (6.28))
with g, = 1.4 and g, = 0.9045. The dotted line are the fits of log(L) = C + log(j/w)®, where we find
a = —0.9975, in accordance with the expectation of a diffusive behavior.

where €; denotes the local energy at site i and i + 1, i.e. €; = (h;;+1)-

This model has been investigated in Ref. [149], using the so-called diffusion assisted oper-
ator evolution (DAOE). In this work, the diffusion coeflicient is extracted from the correlation
functions C(t) = Tr(qie‘l“""ﬂfyt q;)/Z, where g; are the charge operators, in this case the local
energy h; 1, Lunitary is the unitary Liouvillian operator and Z is the Hilbert space dimension.
In general, this time evolution is impossible to carry out exactly, as entanglement would grow
linearly. Nevertheless, only the Pauli strings of length one contribute to the correlation C ().
DAOE proceeds by adding a diffusion term to Lyyjtary Which decreases the weight of the long
Pauli string, as they are unlikely to get shorter in time, and eventually contribute to C(¢). Using
DAQOE, the diffusion coefficient was estimated to Dygng = 1.4. DAOE is believed to be a con-
trolled method, as the coupling with the environment is progressively decreased until the results
obtained converge toward a well defined value.
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Figure 6.3 Obtained diffusion coefficient for the tilted field Ising model as function of system size. The
4 leftmost and rightmost sites has been excluded from the calculation in order to exclude the boundary
effects. The dotted black line represents the diffusion coefficient obtained using the DOAE method. The
results were obtained using bond dimension up to ymax = 700. Inset: diffusion coefficient as a function
of the inverse system size. Inset: diffusion coefficient as a function of %

6.4 Spin transport

In order to probe spin transport in a chain of L sites, we wish to introduce a spin current
throughout the system. To this aim, we pump charges at the boundaries by driving the system
with the following Lindblad operators:

Ly =~1+uS, Ly =+1—-puSy, Ly =+/1—uS;, Ly = /1 + uS] (6.31)

where S* = §* +i$8¥ and ™ = §¥ — iS¥ are the raising and lowering operators. For non-zero
imbalance u between the left and the right ends of the chain, the steady state corresponding to
this driving will have a non-zero spin current. All the results presented in this chapter were
obtained with u = 0.01.

1
Note that for u = 0, —IlL is a steady state of the Lindbladian. Indeed, the action of the

baths on the Pauli matrices are: Ly () = Lp(0) = -T'c*, Ly (0¥) = Lr(c?¥) = -To?,
Lr(0?) = Lr(o?) =-2Ic%*and Ly (1) = =Ly (1) = 2T'uo*, where L; and Lg are the left
and right one spin bath respectively. The linear response of section 6.2.3 framework applies

1
with Lo = L(u=0) and uLy = L(u = 0) — L(u) [145]. Furthermore, provided that 2—115 is the

unique steady state of £y = L(u = 0), £(u) admits a unique steady state which can be formally
expressed using equation (6.13) since we have £ (1) = 0.

In Ref. [145], under the assumptions that the dynamics in the bulk is unitary, and that some
simple corrections are sufficient to describe the dynamics at the boundaries, a relationship was
derived between the unitary diffusion coefficient D¢q (obtained from the Green-Kubo formalism)
and the diffusion coefficient obtained with this method. Note that the diffusion coefficient is
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calculated there without the finite size effect correction, i.e. N, = 0 in equation (6.30), as they
should be negligible in the thermodynamic limit. Furthermore, as (S} )., — (S})p, ® 24, the
diffusion coeflicient is simply expressed as D = (j)/2N u. Under these various assumptions, an
analytical expression was derived:

Deq Deq
D= . ~ Deq(l - 2FL). (6.32)
+3rL

It was further postulated that in general, one should expect:

a/(F))

~ I (6.33)

D:Deq(l

where « is an unknown function and [* is an hydrodynamical length-scale. One important
prediction of equation (6.33) is that the deviations between D and Deq should be suppressed in
L, so that in the thermodynamic limit, they become identical.

Nevertheless, in practice we have only access to finite systems. In the next sections, we show
the dependance of the results with the coupling with the bath I for the system sizes we are able
to simulate in a reasonable computation time.

6.4.1 The integrable XXZ model

We investigate the integrable XXZ model:

A= (S585, + 8282, + ASESE, ). (6.34)
i

Starting from the continuity equation:

ds? . A - oA Ay Ay A
= iISE L H = i = i = (8780, - 87S5,) - (S5.87 - SL.8). (639)
we identify the current j;:
Ji = Sj‘Si.yH - Si.ij‘H. (6.36)
The diffusion coefficient is then given by:
()N = Np)

D= (6.37)

) <ST+NB )= <S]ZV—NB )

It is worthwhile to consider the conversion between spin units and Pauli units. The model (6.34)
often written in term of Pauli matrices [145]:

A =40 = ) 6757, + 0767, + AGToT, . (6.38)
i
The current is defined as:
ito% A = jl - Ji_,. (6.39)
and we obtain:
ji’ = 2(6’,’-‘6’1¥+1 - &l.yé'm). (6.40)
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Therefore the diffusion coefficient D’ expressed in Pauli units is related to the diffusion coefficient
D in spin units by the following relation:

UYN-No) __, GHIN-Np)

Z Z

D' =-— = —
<O-T+NB> - <O-§V—N3> <Sl'+NB> - <SN—NB>

=4D. (6.41)

In Fig. 6.4, we present the current as a function of system size for different couplings with the
environment I', at the point A = 1.5, for which this chain is diffusive [145, 150]. Independently
of the coupling with the bath I', the current obeys the power law j o« % characteristic of the
diffusive behavior.

r=1
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Figure 6.4 Steady state current j divided by the imbalance u as a function of system size, for different
couplings with the environement I'. The dotted line are the fits of log(L) = C +log(j/u)®, where we find
ar=1 = —1.0447 ar=16 = —1.0381,ar=4 = —1.039, ar-4 = —1.0287 in accordance with the expectation
of a diffusive behavior.

In Fig. 6.5, we show the diffusion coefficient as a function of systems size for different coupling
v for A = 1.5. As this system is integrable, its dynamics and in particular its transport properties
can be tackled using the generalized hydrodynamic (GHD) approach [151, 152], which gives
information about the long wave-length, long time dynamics of such systems [150]. It rests
on the assumption that the system is described locally by a generalized Gibbs ensemble— an
extension of the usual Gibbs ensemble which takes into account the extensively many conserved
quantities of integrable systems. It also postulates that the parameters of this generalized Gibbs
ensemble vary smoothly.

The diffusion coefficient obtained using this approach [150] for A = 1.5 is D = 0.95. Using
the simulation of boundary-dissipative systems, the estimate closest to this value we can find
is D = 0.58 for I' = 4, which is also consistent with the value found in Ref. [145] using the
same MPS method. The significant difference between the analytics and the numerics can
be explained by the fact that the bath we add to the system breaks integrability and therefore
changes the dynamics of the system. We note however the strong dependence with y, and the non
monotonicity of D(I'), which seems to indicate than the assumptions used to derived Eq. (6.33)
in Ref. [145] might not be always valid.
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Figure 6.5 Diffusion coefficient as a function of the system size L for different system sizes. The results
were obtained using bond dimension up to ymax = 220. The length of error bar is given by the maximum
difference between the diffusion coefficient obtained for the central site with the diffusion coefficient
obtained for any other site. The prediction of the method are in clear disagreement with the theoretical
predictions of Ref. [150]: D = 0.95.

6.4.2 The XX ladder

We study the XX ladder. The legs of the ladder are labeled by index a = 1,2 while the rungs of
the ladder are denoted by the usual site index i = 1, ..., L. The Hamiltonian reads:

H=))" (S;fasg;lﬂ + 81 8la T D S8 Sglsig). (6.42)
4 a 1

The local conserved quantity is in this case Sfl + S’izz = §;. The second sum of (6.42) commutes
with g7, therefore we are left with:

fi = Z (S‘lfag?;l,a - §Za§f+l,a) : (6.43)

a

In Fig. 6.6, we show the diffusion coefficient obtained as a function of system size for different
coupling with the bath for different parameters J (the coupling between the rungs of the ladder).
This model was investigated using Lanczos exact time evolution [ 138]. The diffusion coefficient
was extracted using the Green-Kubo formula. The value found for J = 1.0 was 1.0 while for
J = 1.5 it was 0.55. Using the DAOE method, very close estimates were found: for J = 1.0,
Dpaog ~ 0.98 [149] and for J = 1.5, Dpaog ~ 0.53 [153]. In both cases, our simulations seem
to asymptotically converge in system size towards a value close to these results.
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Figure 6.6 Obtained diffusion coefficient for the XX ladder as a function of system size, for different
couplings with the environment I'. The two leftmost and rightmost sites where excluded to avoid boundary
effects. Panel a: J=1.0, Panel b: J=1.5. The black dotted line represents the diffusion coefficient obtained
using exact methods in Ref. [138], while the gray dotted line correspond to the value of D using
DAOE [153]. The results were obtained using bond dimension up to ymax = 300

6.5 Conclusion

We have examined different systems using the method introduced in Ref. [143], that we have
compared with other approaches. We have seen that in the integrable case it yields results
incompatible with theoretical calculations presented in Ref. [150]. In other models, it gives esti-
mates of the diffusion coefficient D close to the one obtained with other numerical calculations,
using completely different assumptions. However, we have shown that the diffusion coefficient
obtained depends on the coupling with the environment. Although this dependance has been
conjectured to vanish in the thermodynamic limit, one can in practice only access finite system
sizes. Furthermore, the polynomial convergence time in systems size [154] limits the extend
of the simulations. While the precise dependance of D with respect to the couplings has been
calculated exactly in one particular exactly solvable case, it would be desirable to obtain a more
general relationship.
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7 ldentifying correlation clusters in many body
localized systems

Most of the content of this chapter can also be found in a previous publication of the author [2].
Text and figures have been adjusted to fit into the context of the thesis.

7.1 Introduction

Initiated by the seminal work of Anderson [155], many-body localization (MBL) is now under-
stood as a dynamical quantum phase of matter [24, | 56]—defined by the properties of its highly
excited many-body eigenstates. In particular, the entanglement of eigenstates in the MBL phase
has been found to obey an area law even at finite energy densities [157-159] and to violate
the eigenstate thermalization hypothesis [18, 19], due to the existence of quasi-local conserved
quantities [56,60, 159-161]. The concept of MBL has since proven central to the understanding
of several aspects of non-equilibrium physics. For instance, MBL is essential to stabilise various
emergent Floquet phases of matter, such as discrete time crystals [162, 163].

The study of MBL has been driven by large scale numerics and experimental advances in
the control of isolated quantum systems. These efforts have identified characteristic proper-
ties of MBL, such as the unbounded logarithmic growth of entanglement following a global
quench [61, 63, 164-167] —which distinguishes it from Anderson localization (AL) where the
entanglement saturates— and the presence of an eigenstates transition to an ergodic phase at
finite disorder strengths [54,55, 168—171]. A slow growth of entanglement-related quantities
has since been observed experimentally for small system sizes in Rydberg atomic systems and
in superconducting circuits [172, 173]. However, extracting the entanglement entropy experi-
mentally generically requires high fidelity measurements of a number of non-local observables
that scale exponentially with system size. This makes experimental measurements of the en-
tanglement entropy prohibitively difficult for large systems. In cold atom setups, large systems
and long times can be reached, even in 2D, and clear signals of MBL has been detected in local
measurements [25-27].

In spite of the recent progress, the MBL transition is still not fully understood. While we have
powerful numerical and analytical techniques that allow us to investigate the slightly entangled
eigenstates deep in the MBL phase [60, 160, 174—177], the transition to the ergodic phase is much
harder to study. Phenomenological renormalization group (RG) approaches have emerged as
promising theoretical description of the transition [68,73-77]. Although the assumptions behind
the various models differ, most of them describe the MBL transition in term of the proliferation
of “thermal blocks” versus “insulating blocks”, i.e., regions of the spin chain that look locally
thermal or fully localized, respectively. However, the interpretation of these approaches rest
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Figure 7.1 Schematic description of our graph theory approach using an example of the mutual information
matrix M;;. The full graph has zero modularity (see Eq. (7.13)). We then successively remove the weakest
edges until the graph is broken into a larger number of clusters. These steps where a new clustering is
obtained are saved and are indicated by a ring around them and the value of their modularity is given.
In this example we find a very low modularity of Q = —0.00023 for the first clustering, indicating no
community structure. The next new clustering occurs after removing several bonds (not all shown) and
has a relatively high modularity of 0.32, which turns out to be the highest obtained for this example. We
identify this clustering as the physical one and is indicated by a green ring in the figure. The next steps
of the decomposition yields four clusters with a modularity of Q = 0.23, smaller than in the last step,
indicating community structure of a lower quality. The rest of the procedure was not represented here,
but the modularity was decreasing at each new step.

on phenomenological assumptions which could bias the results. Indeed, most models assume
that each of these blocks is local, although the existence of sparse thermal blocks spanning the
whole chain has also been suggested [76]. These RG studies suggest that the MBL transition is
of Kosterlitz-Thouless (KT) type with a delocalization mechanism called avalanche instability,
also sometimes referred as quantum avalanche [68,69].

Since RG approaches provide a clear mechanism for the transition and allow for a prediction
of a scaling behavior close to the transition, it is desirable to have a clear prescription in order to
identify these “blocks” from states obtained numerically or experimentally. The first numerical
validation of this picture in a microscopic model has been provided in Ref. [178], where it
was proposed to identify these “blocks” by finding what they denote as entanglement clusters.
These are clusters of spins that are more strongly entangled with each other than the rest of the
system. A numerical investigation using exact diagonalization for small systems revealed that
the average block size of these entanglement clusters is indeed consistent with the RG analysis of
the transition. Entanglement entropy is paramount for this approach, but it is costly to calculate
both numerically and from experimental measurements.

Motivated by that work, we propose an approach in which we identify these structures in
MBL systems in a scalable way that is relevant for efficient matrix-product state (MPS) based
simulations and accessible in experiments. We are focusing on the XXZ spin-chain in the
presence of a disordered z-directed field defined by the Hamiltonian

A= —JZ (8385, + 8787, + AS8% + 7). (7.1)

The disordered field A; is sampled uniformly from the interval [-W, W], where W > 0 controls
the strength of the disorder. We consider the Anderson insulator at A = 0 as well as the
Heisenberg model at A = 1, which is believed to exhibit an MBL transition at W¢ estimated
between 2.7 and 3.8 [55, 168,171, 179-181].
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In this chapter, we present practical tools to efficiently identify the ergodic clusters within
MBL eigenstates using pairwise correlations by applying methods originally developed in the
context of graph theory [182—-185]. We validate our approach in two ways: First, we show that
the two site mutual information (TSMI) is a useful proxy for analysing the structure of MBL
eigenstates. Second, we demonstrate in Sec. 7.7 that our clustering algorithm applied during
time evolution—using the TSMI as well as the pairwise connected correlation functions in the o,
basis—indicates the logarithmic spreading of entanglement.

7.2 From correlations to graph theory

The quantum mutual information of two subsystems A and B is a correlation measure defined
as:

I(A;B) = S(A) + S(B) — S(AU B), (7.2)

where S(A) = —Tr[palog(pa)] is the von Neumann entanglement entropy for the subsystem
A. The TSMI corresponds to the case where subsystems A and B each consist of a single site,
and in this case we denote it /(i; j) for two sites i and j. The TSMI captures the classical and
quantum correlations between two sites, and has already been shown to be a relevant probe of
localization [186]. In particular, spatial fluctuations in the TSMI grow logarithmically under
non-equilibrium dynamics, mirroring the entanglement entropy [186]. Another useful quantity
to study quantum correlations is the (connected) correlation function C (04, Op) of two operators
O4 and Ogp:

C(04,0p) = (0408 — (O2)Op) (7.3)

where (O) denotes the expectation value of the operator O. Although TSMI takes into account
all pairwise correlations [187, 188], it is less accessible in experiments than certain correlation
functions. In this chapter we introduce tools borrowed from the field of graph theory to extract
what we call correlation clusters, in analogy to Ref. [178]. This provides an efficient method
for studying of correlations in MBL systems. Graph theory has been used in the past to detect
quantum phase transition in equilibirum settings [189—191]. Recently, another work identified
the so called “ergodic bubbles” (i.e. regions of space where the expectation values of local
operators look thermal) using neural networks techniques [192].

Our starting point is to construct a matrix M;; containing the correlations between site i and
j, and to interpret it as an adjacency matrix for a weighted graph as illustrated in Fig. 7.1.
The vertices of this graph are the lattice sites of our system and the bonds connecting them are
weighted by the matrix element M;; between that pair. Our goal to find the correlation clusters
in the state translates to finding “communities” within this graph. We consider M;; = I(i; j) in
the case of eigenstates, to which we add M;; = C(67, (AT]Z.) for dynamics.

The task of finding communities has received considerable attention in the field of graph
theory [182—185]. This is usually achieved by splitting the graph into disjoint sets of vertices
which we refer to as clusters. A given decomposition of a graph into clusters is referred to as a
clustering. The goal is to find a clustering that is optimal by some well-defined measure, in our
case the modularity, which will be the subject of the next section.
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7.3 The modularity, a quality measure of the partition of a graph

We would like to have a quantity enabling us to judge the quality of a graph clustering in order to
compare different clusterings. The procedure by which we obtain a limited number a promising
clusterings will be described in the next section. In order to achieve this, a naive trial would be
evaluate the fraction of weighted edges connecting vertices belonging to the same community
over the sum of all weights. If M is the adjency matrix, and ¢; the community in which vertex i
belongs to, this ratio can be expressed as:

1
R=5- Z]: M;;6(ci c)) (7.4)

where m = %Zij M;; and 6(c;, cj) ensures that vertex i and j are in the same community.
Although any good clustering of a given graph should yield a high value of R, this quantity can
not be useful to gather information about the community structure. Indeed considering only
one community containing all the vertices would result in a maximal value of R = 1 [182]. In
order to overcome this limitation, the formula of R has been modified by following the idea that
a random graph is not expected to present a community structure. A good measure of quality
would be obtained when comparing the fraction of weights belonging to the same community
to the one we would have if the weights had been assigned randomly. This translate into the
following expression for the modularity [182, 184, 185] of a graph partition:

0=- > (Mi - Py) 6(cirey) (7.5)

" 2m

ij
where P;; is the expected adjency matrix of the random graph which shares the same structural
properties as the original graph of interest without presenting the same community structure.
This random graph is also sometimes called the “Null model”. In order to determine the matrix P,
we must first specify a choice for the null model. Let us define the degrees k;: k; = k; = }.; M;;.
Since the null model has to be similar to the original graph, we impose that the vertex of the
random graph has to have the same degrees than the original one, that is to say:

ZMU :ZP,, = k;. (7.6)
J J

In other words, every vertex of the null model shares as much weight with the rest of the system
than the graph of interest, although the connections between vertices are assigned randomly.

On average, the vertex i and j will be connected by a edge of weight P;; = % [185], where
m = 1 3. My, yielding [184]:
1 kikj
0=75-> (Mij - %) 5(cinc)). (1.7)

ij

where 6(c;, ¢j) is 1 if sites i and j are connected for the given clustering and 0 if they are not.
We can see that this measure solves the issue initially encountered since the partition containing
all vertices have a zero modularity. A value of modularity close to zero means that the partition
is not better than a random one while a value close to one indicate a strong community structure.
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7.4 Scaling of the modularity with system size

For a system where the optimal decomposition yields N clusters, the modularity can be written

in the following way [193]:
N 4 \2
=) ——|=—= 7.8
0 Zlm (2m) (7.8)

where the sum runs over the clusters. In the formula above, d; denotes the total degree of nodes
in the cluster i: d; = }; k;j6(c;, ¢;) in the notation of the main text, ¢; is the number of edges in
cluster i and m is, as in the main text, the total number of edges. Defining (e¢) = % >.iei and
(d) = % X.; d; we obtain:

N d2
0=) 9 ) (7.9

We now introduce the quantity (¢°“"), which is the average weight going out of each cluster:

(1) = ZZM”(I 8(ciy¢j)- (7.10)

Using the fact that (d) = (2e) + (¢°“') and m = %N(d), we obtain:

- 2
((2e + €)%y
0= ; %(2(«3) + <e()ut>) N2(2(e) + (eoury)? (7.11)

Finally, noting that the number of clusters N is proportional to the system size, we recover the
scaling of the main text:

{e) 1 ((2e + e°41)?)
(e) +(eou1)/2 N (2(e) + (et1))?

0= (7.12)

7.5 Correlation clusters

7.5.1 A graph theory algorithm to obtain correlation clusters

Inspired by the well established Girvan-Newman approach [182, 184], we propose the following
three steps procedure, shown schematically in Fig. 7.1, for finding the optimal clustering from
the correlation matrix M;;:

1. Successively remove the weakest bonds of the graph.

2. When the removal of a bond results in two parts of the graph becoming disconnected, we
store the new clustering. This clustering corresponds to the set of clusters, where a cluster
contains sites that are connected to each other.
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3. Repeating steps 1 and 2 appropriately, we eventually end up with a completely disconnected
graph, and have stored a sequence of different clusterings. For each of these stored
clustering we then compute the modularity:

=ﬁ 2m

0=~ Z(Mij—@)a(c,-,cj), (7.13)

i

where k; = X ; M;j, and m = %Zij M;;. The delta function 6(c;, ¢j) is 1 if sites i and j
are connected for the given clustering and 0 if they are not. The modularity takes values
Q € [-1/2,1] and quantifies how good the clustering is, with close to 1 corresponding to
a good clustering, or “community structure”. We select the correct clustering as the one
with the highest modularity.

The first step differs from the original Girvan-Newman approach. While in our case, we are
guided by the physical intuition that two correlation clusters are only connected by weak bonds,
Girvan and Newman use a quantity called edge-betweeness to assess which bonds are most likely
to link separated communities [183].

7.5.2 Comparison between “entanglement clusters” and “correlation clusters”

In Ref. [178], the authors introduce a procedure aimed at finding “entanglement clusters”. Their
algorithm is based on the normalized mutual information of subsystem A and B defined as:

I(A; B)

(A;B) = ———,
14 B) min(na, ng)

(7.14)
where n4 and np are the number of sites contained in subsystems A and B respectively, and
I(A; B) is the mutual information defined in equation (7.2). The idea behind this algorithm
is to successively split the system into bipartitions, in such a way that the normalized mutual
information between the splitted parts is minimal at each step. Furthermore, only the “periodic
partions” are considered: for example if one wishes to decompose the subsystem containing
sites (2,3,5,8,9), the partitioning (9,2,3) (5,8) would be considered, while (3,8) (2,5,9) would
not. An example of such a partitioning procedure is shown in Fig. 7.2. First, the normalized
mutual information between all the bipartitions which respect the ordering of the spins (with
periodic boundary conditions) is calculated. The bipartition displaying the lowest normalized
mutual information is selected. The procedure then apply to each of the subsystem hence
selected. This procedure reveals the structure of the state until all sites are isolated from each
other. Nevertheless, in order to select the optimal “entanglement cluster”, the decomposition
stops once the maximal normalized mutual information obtained is higher than the one found in
the first step. In the example of Fig. 7.2, the procedure would stop after the first decomposition,
yielding only two clusters. In Fig. 7.2, we show the clustering of a typical MBL eigenstate
using the approach of Ref. [178] (left panel) and compare it to our approach (right panel). The
similarities between the “entanglement clustering” and the “correlation clustering” are striking.
The successive decompositions of the system are almost identical. A similar degree of similarity
between both approaches for the MBL states was found in all the examples that we examined.
Furthermore, in this particular example, both approaches select the same clustering as optimal.
This is often the case, although some minor differences can be sometimes observed. In general,
we find that a clustering with a high modularity corresponds to successive bipartitions with low
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Figure 7.2 Comparison between a typical example of clustering obtained by applying the “entanglement
clustering” procedure (left) and the “correlation clustering” (right) applied to the same state. The state
chosen to apply these two procedures is an excited eigenstate of the Hamiltonian (7.1) for L = 12, W =5
and A = 1. On the left panel, we show the tree structure resulting from the entanglement clustering,
where the sites belonging to the same cluster are listed between parentheses, while the internal mutual
information can be read in the line below between the arrow. For example, the two first lines should be
read as follows: the system containing sites (4,5, 6,7, 8,9, 10, 11, 0, 1, 2, 3) splits up into the clusters (4
,5,6,7,8,9)and (10, 11, 0, 1, 2, 3), with associated normalized mutual information is equal to 0.0019.

On the right panel, we show the dendrogram resulting from the correlation clustering procedure: the sites
between parentheses belong to the same cluster, while the number on the left of the arrow corresponds to
the modularity Q. A dotted arrow indicates that we have omitted to represent one or several intermediary
steps.

normalized mutual information. Conversely, when a clustering involves bipartitions which split
two parts with high normalized mutual information, the associated modularity is usually low.
While so far we have only considered a particular example of decomposition, in the next section,
we will look at the average number of clusters, and show that we find results similar to Ref. [178].

7.6 Correlation clusters in eigenstates

We will now focus on the clustering in mid-spectrum eigenstates for the Hamiltonian Eq. (7.1)
for different values of the disorder strength. We analyse the structure of the optimal clustering
for the eigenstates across the MBL-ergodic phase transition, using the TSMI to define the graph
M;;. It has been shown in earlier studies that the number of entanglement clusters can be taken
as a relevant scaling parameters for the MBL transition [178]. In order to validate our graph
clustering approach, we perform a similar scaling analysis. However, we can not directly apply
our graph theory approach on the ergodic side of the phase transition. Indeed, if the system
is ergodic, then we would expect the mutual information to be uniform on average between all
pairs of sites [186]. In this case, the optimal clustering is a single cluster containing all sites.
However, the algorithm presented in section 7.5.1 will instead choose a clustering with very low
modularity. In order to analyze the phase transition, we need to fist detect the ergodic states,
and each time we do, bypass the graph theory algorithm. We present two different strategies to
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Figure 7.3 Detection of the ergodic/MBL phase transition using entanglement entropy: we measure the
maximum entanglement entropy for each state obtained using full diagonalization of the XXZ Hamilto-
nian. We identify ergodic states when the maximum entanglement entropy is greater than 60% of the
page value. a) Average maximum entanglement as a function of disorder for different system sizes. b)
Ratio of ergodic states detected pergodic as a function of disoder W.

achieve this: one based on bipartite entanglement entropy and the other entirely based on graph
theory. Both approaches give the same results. In both cases, we select 50 eigenstates from the
middle of the spectrum of 700 disorder configurations and then apply the algorithm outlined in
the previous section to extract the average number of clusters in the optimal clustering, while
applying the “ergodic filters” described in the two following sections.

7.6.1 Exploring the many-body localized phase transition based on graph theory
and entanglement entropy

As we have seen in section 2.4, ergodic eigenstates are characterized by very high von Neumann
entanglement entropy, following volume law. Deep into the ergodic phase, their maximum
entanglement entropy (reached in the middle of the chain) is slightly lower than the page
value [47], due to finite size corrections [58, 194]. Therefore, detecting the ergodic eigenstates
based on entanglement entropy is very natural. Based on this considerations, when the maximum
entanglement entropy is greater than a significant fraction @ of the Page value [47] (in practice
a = 60%), we bypass our algorithm and select the whole system as a cluster. In Fig. 7.3, we
show the average maximum of entanglement entropy in the chain, as well as the ratio of ergodic
states detected following this scheme. At low disorder (W = 1), all the states are ergodic,
while pergodic goes to zero for W > 4. In Fig. 7.4, we present the average number of clusters
divided by system size n/L, obtained using the entanglement criterion that we just presented to
detect the ergodic states exhibiting a single cluster. The critical disorder W, is located at the
crossing of the curves at W = 3.8, in agreement with Ref. [ 178] (see inset of Fig. 7.6). The data
collapses convincingly with scaling n/L = f((W — W,)L'"") with parameter v = 1.26, taken
from Ref. [178]. It was pointed out that this scaling is consistent with theoretical studies, where
a Harris-type bound on the exponents has been derived [80]. We find that the scaling does not
depends on the fraction « of the page value used to set the entanglement threshold. Note that
although bipartite entanglement entropy is extremely challenging to measure in experiment, it
is easily accessible both in ED calculations as well as in MPS calculations (see section 4.1.2 for
details about obtaining bipartite entanglement using MPS).
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Figure 7.4 Scaling collapse of the average number of clusters n divided by system size as a function of the
disorder obtained using our modified Girvan-Newman approach. For the collapse, the disorder strength
was rescaled to take the form (W — W)LY with W, = 3.8 and v = 1.26. An eigenstate with bipartite
entanglement entropy in the middle of the chain bigger than 0.6 times the page value was considered to be
ergodic and therefore was counted as one cluster, idepedently of the result of the graph theory approach.
Inset: average number of clusters n divided by system size as a function of disorder strength W

7.6.2 Exploring the many-body localized phase transition based only on graph
theory

We have confirmed in the last section the relevance of the graph theory approach for understanding
the MBL phase transition. However, it is desirable to detect the phase transition purely from
graph theory considerations. Since the quality of the community structure is low in the ergodic
phase (see Fig. 7.5, panel a), and higher in the MBL phase, a first idea would be to choose
a modularity threshold Oy, below which the state is considered ergodic. However, since our
numerics are performed on finite system sizes up to L = 16, the modularity will be affected by
finite size effects that we must take into account in Q. To understand these effects we consider
states deep in the MBL phase where we can make statements about the optimal clustering. In
particular, MBL eigentates are simultaneous eigenstates of an extensive number of exponentially
localized [-bits with a characteristic localization length [56]. This means that the structure of
the clustering should be independent of systems size, so long as it is sufficiently large compared
to the localization length. As explained in section 7.4, this actually results in a system size
dependence of the modularity for similar clusterings. To account for this we use the system size
dependent threshold

(L) = a(1-2), (7.15)

where @ € [0, 1]. In practice we obtain the coefficient a by fitting Q(W = 6, L), where W = 6 is
the maximum disorder strength considered in our scaling analysis and is located deep within the
MBL phase. In the main text, we present results for the overall cutoff parameter « = 0.3. We
show in Appendix 8 that as long as a gives the correct clustering behavior deep in the MBL and
ergodic phases, the scaling collapse is not sensitive to the specific choice of this coefficient. We
decide to bypass the graph theory algorithm by setting a threshold Qy, below which the states
yielding a modularity Q < Qy, are considered as ergodic.
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Figure 7.5 Detection of the ergodic/MBL phase transition using entanglement entropy: when Qy, =
a(l —a/L) with @ = 0.3 and a = 3.59, the state is considered as fully ergodic. a) Average modularity
as a function of disorder for different system sizes. b) Ratio pergodic Of the ergodic states as a function of
disorder W.

We present in the panel a of Fig. 7.5 the modularity as a function of disorder. As expected, the
modularity depends strongly on system size deep in the MBL phase, while it is almost system
size independent in the ergodic phase. Furthermore, in panel b of Fig. 7.5, we show the ratio
Pergodic Of the number of ergodic states divided by the total number of states calculated with ED.
The behavior is almost the same as in the case of the entanglement criterion of the last section.
The average number of correlation clusters n as a function of disorder is shown in Fig. 7.6 for
different system sizes. As in the case of the entanglement criterion of the last section, we identify
the critical disorder strength W, at the crossing of the curves and obtain W = 3.8, in agreement
with Ref. [178] (see inset of Fig. 7.6). The data collapses convincingly with the same scaling as
before.
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Figure 7.6 Scaling collapse of the average number of clusters n divided by system size as a function of the
disorder obtained using our modified Girvan-Newman approach. For the collapse, the disorder strength
was rescaled to take the form (W — W)L with W, = 3.8 and v = 1.26. When the modularity was
lower than Qy, = a(1 — a/L) with @ = 0.3 and a = 3.59, the state was considered as fully ergodic and
made of only one cluster. The coefficient a has been fitted to take into account the finite size effects at
W = 6, according to the finite size scaling: O = g — ¢ of the average modularity Q; obtained for system
size L. Inset: average number of clusters n divided by system size as a function of disorder strength W.

7.6.3 Variational methods for obtaining highly excited states of many-body
localized Hamiltonians

We have seen in section 3.2.1 that all the eigenstates of a MBL Hamiltonian follow area law.
Therefore, there exist a efficient representation of these states with a MPS of finite bond dimen-
sion.

In order to target directly the excited states, one approach consits in minimizing the variance,
that is (H — Etarget)z, which can be efficiently represented as as a MPO, and where Egge is the
eigenenergy of the eigenstate that we wish to obtain. This method as been applied with success
in some cases [195], however in the MBL case, the exponentially small in system size level
spacing renders this approach impractical. Indeed, taking the square of the Hamiltonian further
reduces the level spacing.

Another straight forward idea is to modify the DMRG sweep by finding at each step the eigen-
state of the effective Hamiltonian (4.22) closest to the energy Eiarge instead of the ground state.
However, this approach fails dramatically [174], as the algorithm tends to select superpositions
of several eigenstates in the nearby energy of Eyge;. The so-called exact state DMRG (ES-
DMRG) [175] circumvents this problem. During the sweep ngweep, at each site i, one finds the
eigenstates which corresponding eigenvalue E:lsweep is the closest to the energy El.n_svlveep obtained
at the last step of the algorithm. The algorithm progressively converges as all the energies Eln
tend to be equal to an energy of the Hamiltonian for ngyeep large enough.

sweep
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However, this approach still relies on targeting energies, which due to the small level spacing,
could easily lead to a superposition of states in nearby energies. DMRG-X, a conceptually related
approach, aims at converging toward a l-bit configuration instead of toward a given energy. One
initiate the algorithm with a random product state. The convergence in 1-bit configuration is
achieved by finding the eigenstate of the effective Hamiltonian maximizing the overlap:

(7.16)

where G)g is the two site wavefunction tensor of the current state of the algorithm while @é is
the eigenstate if the effective Hamiltonian H g ,. Note that this algorithm is almost identical to

ES-DMRG, at the exception that the overlap (7.16) is minimized instead of IE?SW“p - E?_‘W{Rpl.
Although at each step the algorithm maximize the “local overlap”, it does not necessarly converges
towards the eigenstate which has the largest overlap with the initial state. In order to be able to use
somewhat larger bond-dimensions, once the algorithm has sufficiently converged (meaning that
the energy of the state does not change significantly between two different steps of the sweep),
one can use a shift-inverse method to find a few eigenstates of the effective Hamiltonian around
the targeted energy, and to select the eigenstate which minimize the overlap (7.16). The effective
Hamiltonian can be represented as a sparse matrix, avoiding a costly exact diagonalization.

Algorithm 1 The ES-DMRG algorithm

I: Ngweep = 0

2 El « Etarget + 10€cony

3: E® « Eprger

4 E « Etarget

5: while |E"sveer — Elsweep-1] > e, do

6: Nsweep <~ Nsweep T 1

7: for i=1,2,...,L-2,L-1,L-2,...,2,1do

8: Get H.g

9: Diagonalize H.g, and find the eigenstate v;, Hegv; = ejv; , such that |e; — E| is
10: minimum > Alternatively, apply the Lanczos algorithm to (Heg — E)?
11: ®12J+1<—vj and E « ¢;
12 Perform SVD
13: end for

14: Elsweep « F
15: end while

7.6.4 Structure of individual eigenstates obtained via matrix-product states

After focussing on the average number of clusters, we will now investigate the structure of
individual eigenstates using the clustering algorithms. The TSMI matrix M;; is shown in
Fig. 7.7 for a single mid-spectrum eigenstates in an L = 50 system with disorder strength
W = 12-obtained using DMRG-X [174]-and compared against the bipartite von Neumann
entanglement entropy for cuts along different bonds. Here we can see that the localized state is
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Algorithm 2 The DMRG-X algorithm

1 Y — Winit > Initialize the algorithm with a random product state in;;
2 E — Winitl H|Yinit)

3: while [(¢/|H?|) — (W|H|¥)?| > €cony doO
4 for i=1,2,...,L-2,L-1,L-2,...,2,1do
5 Get Hog
6: Get ©7 |
7 if E is still varying significantly then
8 Diagonalize H.g, and find the eigenstate v;, Hegv; = E;v; , such that [(v; |®ii+1 K
9: is maximum (see Eq. (7.16))
10: else
11: if The variation of E is smaller than a certain threshold then
12: Apply a shift inverse Lanczos to Heg, finding the n eigenstates closest to E,
13: and find the eigenstate v;, Hegv; = E;v; , such that |<Vj|®?,i+1>|2 is maximum
14: (see Eq. (7.16))
15: end if
16: end if
17: E « ¢
18: ®i,i+1 —V;
19: Perform SVD
20: end for

21: end while

decomposed into a sequence of small clusters (red boxes) and there are only weak off-diagonal
(long-range) correlations in the matrix. However, we observe several examples of clusters that
contain sites that are not nearest neighbors, a phenomenon which, following Ref. [178], we
refer as “leapfrogging” (green and yellow boxes). Ideally, we would like to be able to average
over many eigenstates obtained by MPS methods on the MBL side of the transition, and to
therefore extrapolate its scaling. However, given the current state of algorithms, we find this
goal impossible to achieve due to the bias in the sampling of the states [196].

A few comments are in order: First, the clustering algorithm is a numerically very inexpensive
procedure which is easily scalable, since only two-sites correlations need to be computed,
allowing us to apply it to state in the MPS form.

Second, there is a clear agreement between the strong correlations and the increase in en-
tanglement, as it can be seen by comparing the TSMI matrix with the bipartite von Neumann
entanglement entropy (see Fig. 7.7). Indeed, two local communities are in general separated by
a local minimum of bipartite entanglement entropy, but not all local minima of entanglement
entropy signal a separation between two communities, as it is the case for example between sites
19 and 20 in Fig. 7.7. Moreover, entanglement entropy is unable to detect non-local clusters,
i.e.“leapfrogging”, which we detect with our graph theory approach, for example at site 36 in
Fig. 7.7. Therefore our approach give us different insights about the structure of the state than
the one provided by the bipartite entanglement entropy alone. This brings us to our third point,
namely that our approach does not rest on a priori physical assumptions, such as locality of
the clusters for example. Indeed, the graph theory algorithm does not know about the spatial
arrangements of the sites, since its only input is the TSMI matrix. However we note that in all
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cases we considered, the clusters were still relatively local and did not extend throughout the
system, in accordance with the results of Ref. [178].

Figure 7.7 Example of the mutual information matrix and the associated communities (correlation
clusters) of an eigenstate of a MBL hamiltonian obtained using the DMRG-X algorithm [174]. This
disorder strength is W = 12, the system size is L = 50. On the top panel, we plot the mutual information
matrix. We draw boxes around the matrix elements belonging to the same “correlation cluster”. We use
a red box when a cluster is connected (i.e. no leapfrogging), while we use orange and green boxes for
the two disconnected clusters. On the bottom panel, we present the bipartite entanglement entropy as a
function of sites. The boundary between two clusters is signaled by a vertical red line. Inset we show the
graph corresponding to the optimal clustering. The dashed red line separates the first and last site of the
chain.
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Figure 7.8 Example of the mutual information matrix and the associated communities (correlation
clusters) of an eigenstate of a MBL hamiltonian obtained using the DMRG-X algorithm [174]. This
disorder strength is W = 12, the system size is L = 50, as in Fig. 7.7. This state is typical of the results we
obtained using MPS methods: all the clusters are local. As before, clusters are separated by local minima
of bipartite entropy. However, we see once again a local minimum of entanglement entropy between sites
26 and 27, with still a quite high entanglement, which does not indicate the a cluster separation.

7.7 Non-equilibrium dynamics

7.7.1 Setup

‘We now turn to the behavior under non-equilibrium dynamics in the localized phase and compare
AL and MBL systems. We now consider a global quantum quench protocol, starting from an
initial Néel state |--- T/T| ---), and time evolve using the Hamiltonian Eq. (7.1) with A = 1
(MBL) or A = 0 (AL), with periodic boundary conditions. We can then analyse the correlations
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as a function of time and identify the time dependence of the correlation clusters. We compare

results obtained using the TSMI, M;; = I(i : j), and the correlation functions, M;; = C(55,07%).
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Figure 7.9 Cluster decomposition for different times obtained for an initial Neel state, time evolved with
the Hamiltonian (7.1) with periodic boundary conditions for disorder strength W = 8 and L = 14. Panels
aandds = 10; panelsbandet = 103; panels cand f'¢ = 107. Panels a, b and c: M;; =1(@ : j). Panels d,
eand f: M;; = C(67, 6';).

We first look at the behavior of a single characteristic disorder realisation. In Fig. 7.9 shows
snapshots of the evolution of the clustering during the time evolution, both using the correlation
functions in the o basis and the TSMI. We present t = 10, = 10° and r = 107. At short
times, correlations start to build up locally, resulting in the formation of three large clusters. At
intermediary times these blocks start to break up as correlation become more non local. Inter
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cluster correlations (corresponding to “off-diagonal” elements on the correlation matrix) are
more important resulting in a decrease of modularity. At long times, this process continues to
unfold, with a further fragmentation of the cluster structure. However we note that, despite longer
range correlations, a clear cluster structure is present, and the correlations are not completely
scrambled. The remaining clusters are strongly reminiscent of the cluster structure at early
times. Moreover, the inter-cluster interactions is more pronounced in the case of the correlation
functions than in the case of the TSMI.

7.7.3 Disorder average graph theory quantities
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Figure 7.10 Average length of the clusters (panels a) and b)) and average modularity (panels c) and d)) as
a function of time for different system sizes, with disorder strength W = 8, for both an Anderson localized
(AL) (A = 0) and MBL Hamilonian (A = 1). We start from a Néel state, simulate a quench using exact
time evolution (ETE) and apply our graph theory approach to the TSMI matrix (panels a) and c¢)) and
to the pairwise correlation functions in the o, basis (panels b) and d)). The fitting parameters are the
following: panel ¢) MBL: a = 3.69, AL: a = 3.63; panel d) MBL: a = 3.76, AL: a = 3.77.

Fig. 7.10 a and b show the numerical results for the average cluster length / as a function of
time. When using M;; = I(i : j), [ stays approximately constant throughout time, both in the
interacting and non interacting cases. In contrast, when using M;; = C(57%, &JZ.), [ decreases in
the MBL case while it stays constant in the AL case.

In order to understand these results better and to be able to distinguish further MBL from AL
using graph theory, we show the numerical results for the average modularity as a function of
time on Fig. 7.10 panels b) and d). The offset of the modularity has been shifted so that the
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Figure 7.11 ((Xz)) for W = 8 for various system sizes. The MBL case is shown in dashed line while the
AL case is plotted in full lines. All the curves for the AL case are superimposed. This demonstrate that the
pairwise correlations in the o, basis are sufficient to probe the logarithmic propagation of information.

values for different system sizes coincide at short times. Indeed it is shown in section 7.4 that
the modularity scales with the system size as Q ~ g — aL~! for comparable clusters. The value
of a is found by fitting the data at short times and we find it to be roughly the same for both
AL and MBL. In the non interacting case, the modularity Q stays constant throughout the time
evolution. On the contrary, Q decreases in the interacting case.

7.7.4 Information propagation using pairwise correlation in the o, basis

In Ref. [186], it was shown that one can use the TSMI to detect the MBL phase. More precisely,
one has to monitor the following quantity during a global quench:

2

TS WIOE DIFING (7.17)
J J

where 1;(t) = 1(0; j)(z). The MBL phase is characterized by a logarithmic growth of ((XIZ)),
since this quantity measures the spreading of information in the system. This is explained by the
fact that two separate portions of the system need a time exponential with their distance to get
entangled.

To demonstrate this, we perform ETE with the Hamiltonian (7.1) with open boundary condi-
tions and calculate the following disorder averaged quantity:

2

<<X§>>:Z @550 - Z jC@s 550 (7.18)
: :

J

This quantity also exhibits logarithmic growth.
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7.7.5 Interpretation

These observations can be explained as follows: at very short times (of the order of }), correlation
clusters appear similarly for both AL and MBL. Due to dephasing in the MBL case, these clusters
interact exponentially slowly with separation between them, leading to a slow decrease of the
modularity until it reaches a minimum set by the system size. Over time, the correlations induced
by this long-range dephasing will build up until they are comparable to the weakest correlations
within a given cluster. At this point, those most weakly correlated sites in the cluster will be
excluded in favour of forming a stronger, smaller cluster, as can be seen in the example presented
in Fig. 7.9 in the appendix. This lead to a decrease of the average cluster length as a function of
time in the interacting case, which is more pronounced with the pairwise correlations in the o*
basis. This is consistent with the fact that at early times, the average length of the clusters are
identical for MBL and AL, while at later times, due to the dephasing of the I-bits, it becomes
smaller for MBL. Nonetheless, due to the presence of I-bits in the MBL system, for the system
sizes and timescales accessible to us, these clusters are robust, as the modularity stays relatively
high and the clustering at long times is still reminiscent of the structure found at early times.

The effect induced by the dephasing of the 1-bits are more pronounced with the correlation
functions than for the TSMI. This difference of behavior stems from the lack of transport in
MBL [197], which implies that off-diagonal correlation functions cannot build up beyond the
localization length. Thus, for our charge conserving model, only the o-* component contributes
to the growth of the TSMI at long times. Numerical evidence for the spreading of correlation
functions in the o, basis is presented in appendix 7.7.4. As a consequence, when using the
TSMI, the information contained in the 0% correlation functions is washed out by all the other
correlations, which necessarily decay for sufficiently large distances. This leads to more robust
clusters which interact less strongly with each other. This is in line with findings of previous
works [198-200], which have shown that quantities based on these correlators, in particular
certain types quantum Fisher information, can probe the logarithmic growth of entanglement in
MBL systems.

These findings show that it is advantageous to consider the o component in this context.
In particular, the diagonal o* correlations are accessible in existing quantum gas microscope
experiments [25,201,202] and thus our technique can be directly be applied in such settings.

7.8 Conclusion

In this chapter, we have shown how to efficiently investigate the structure of MBL states using
pairwise correlation functions and TSMI. We focused on two applications. First, we provide new
numerical techniques for probing the structure of MBL eigenstates, scalable to large systems,
particularly relevant for states obtained by MPS methods. Second, we show that our approach
can provide a characterization of dynamics in the MBL phase. We have demonstrated that our
clustering procedure yields results physically consistent with previously known results. When
looking at the eigenstates, the scaling of the length of the clusters found in previous works [178]
has been recovered. When looking at the dynamics, our results were consistent with the dephasing
process between distant 1-bits which is observed in other quantities such as the entanglement
entropy or the quantum Fisher information. Moreover, we found that the quality of the clustering
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at late times was still high, a fact which underlines the relevance of the clustering in the time
evolution of MBL systems, for it is the persistence of these relatively well separated clusters
which prevents full thermalization of the state and keeps the saturation of entanglement entropy
well below the Page value.

More broadly, we have demonstrated the possibility of probing the structure of quantum
states based solely on pairwise correlations using a graph theory approach. Our approach
is well suited to experiments, where correlations in the diagonal o basis are typically easy
to measure. Furthermore, our approach is agnostic to the structure or dimensionality of the
underlying Hamiltonian or dynamics. It would therefore be exciting to test this approach in the
task of distinguishing MBL systems from Anderson localized in experiments in both one and
two dimensional setups.



87

8 Summary and outlook

In this thesis, we have explored different strategies to simulate out-of-equilibrium quantum
many-body systems on classical computers. We have seen that the large entanglement generated
by the dynamics is a hurdle to the study of such systems, but it is not the only one.

We started this thesis by giving an overview of some aspects of the current understanding of
out-of-equilibrium physics in one dimension. First, we have seen in chapter 2 that the excited
eigenstates of ergodic Hamiltonians behave like random vectors in the Hilbert space, a fact that
can be understood from random matrix theory and which implies that they are highly entangled.
In chapter 3, we discussed many-body localization (MBL). In particular, we highlighted how
the emergence of quasi-local conserved quantities, called the local integral of motions or [-bits,
allows these systems to escape thermalization in one dimension, and causes all eigenstates to
follow area low. In chapter 4, we reviewed some of the most common matrix-product state
(MPS) methods used for obtaining eigenstates and for performing time evolution.

In chapter 5, we used various MPS methods to simulate the propagation of information in
an isolated ergodic system. We circumvented the problem of the large amount of entanglement
generated during quantum time evolution by using on one hand the time dependent variational
principle (TDVP) with MPS algorithm, which conserves the energy and the unitarity of time
evolution, thus providing a useful low entangled approximation, and on the other hand by using
MPO time evolution. By comparing our results to large scale exact time evolution simulations,
we were able to provide convincing evidence that both of these methods were able to capture the
low operator entanglement regime of the out-of-time-order correlators (OTOCs). These results
demonstrate the possibility to calculate these quantities at longer time and with larger system
sizes than normally possible with MPS.

In chapter 6, we were able to give an estimate of the diffusion coefficient of some non integrable
one dimensional models. To do so, we induced a current by introducing some dissipation at the
boundaries. Although open quantum systems are generally even more challenging to simulate
than closed ones, we were able to reach steady states which carry few operator entanglement. The
method takes advantage of the fact that at long times, the density matrix of thermalizing systems
usually carries little operator entanglement, as is exemplified by the infinite temperature density
matrix which is a product operator. Our benchmarks show that the simulation of boundary
dissipative systems can be useful to understand diffusion physics. It is particularly interesting
to compare these results with the dissipation assisted operator evolution (DAOE) method, since
both techniques can probe similar system sizes and rest on completely different approximations
and assumptions.

Finally, in chapter 7, we explored the connexion between graph theory and quantum infor-
mation in MBL systems. For these kind of systems which do not exhibit thermalization, the
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amount of entanglement contained in the eigenstates is not an insurmountable obstacle, as they
admit a faithful MPS representation with relatively low bond dimension. However, calculating
multipartite entanglement remains challenging, and we devised a strategy based on the pairwise
correlations in order to identify correlation clusters in the states. Furthermore, the logarithmi-
cally slow growth of entanglement— one of the hallmarks of MBL —is notably difficult to measure
in experiments. Our approach allows for the characterization of MBL dynamics directly from
the accessible pairwise correlations, circumventing the difficulty of calculating the entanglement
entropy and is directly relevant for currently available experimental devices. In particular, we
propose to use existing quantum gas microscopes to directly study the dynamics of correlation
clusters in cold atom systems.

Despite the progress being made in the last few years, out-of-equilibrium many-body physics is
still a relatively new area of research and it is likely that many interesting phenomena are still to be
discovered. The recent progress in experiments open exciting new possibilities [25-27,203-205]
and are motivating an increasingly large body of theoretical works. Furthermore, quantum
dynamics could well be among of the first applications of digital quantum computers, which are
emerging nowadays as a promising new technology. Indeed, quantum time evolution is relatively
straightforward as it can be achieved by the application of unitary gates, precisely the task for
which these quantum computers are designed [173,206].

The work presented in this thesis suggests some promising research directions. While we
are able to describe the onset of information propagation, it would be desirable to formulate a
numerical approach able to systematically reach the hydrodynamic regime of ergodic systems,
starting from the microscopic degrees of freedom. Since we were able to simulate some aspects
of ergodic systems with some reasonable classical computation resources in chapters 5 and 6,
this program seems all the more feasible. This direction is the subject of active research, leading
in recent years to an increasing number of new promising numerical methods [149,207-209].

Furthermore, while MBL eigenstates are slightly entangled, they remain difficult to capture
with MPS due to the exponentially small many-body level spacing in the middle of the spectrum.
Finding a truly reliable MPS algorithm able to resolve individual states is still a significant
challenge. It would allow for the simulation of the MBL phase for much larger system sizes,
hence yielding information about the influence of finite size effects. Furthermore, one could
also approach the ergodic/MBL critical point from the MBL side.
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Appendix

A. Scaling with different modularity thresholds

In the main text, we present the scaling collapse of the number of clusters divided by system
size. When the modularity obtained for one clustering is smaller than Qg (L) = a(1 —a/L), we
bypass our algorithm and consider that the state is fully ergodic and therefore made of a single
cluster. In Figs. 8.1 and 8.2, we show that the scaling collapse is not sensitive to the value of
the coeflicient @, as long as « is such that the modularity of almost all eigenstates deep in the
ergodic (resp. MBL) phase is below (resp. above) Qm(L).
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Figure 8.1 Scaling collapse of the average number of clusters n divided by system size as a function of
the disorder obtained using our modified Girvan-Newman approach and @ = 0.25. The parameters used
for the scaling collapse are the same as in the main text. Inset: average number of clusters n divided by

system size as a function of disorder strength W.

B. Scaling collapse of the number of clusters using the pairwise

correlation functions in the o< basis

In the main text, we present in Fig. 7.6 a scaling collapse of the averaged number of clusters
divided by system size for which we used the TSMI of the eigenstates as the adjency matrix
in our graph theory approach. We show in Fig. 8.3 that the same approach using the pairwise
correlation functions in the 0% basis yields the same scaling collapse. In order to ensure that all
states deep in the MBL phase are identified as such, we need to choose a smaller coefficient «
for QO (see Eq. (7.15)). Here we choose a = 0.15.
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Figure 8.2 Scaling collapse of the average number of clusters n divided by system size as a function of
the disorder obtained using our modified Girvan-Newman approach and @ = 0.4. The parameters used
for the scaling collapse are the same as in the main text. Inset: average number of clusters n divided by
system size as a function of disorder strength W.
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Figure 8.3 Scaling collapse of the average number of clusters n divided by system size as a function of
the disorder obtained using our modified Girvan-Newman approach applied to the pairwise correlation
functions in the 0% basis, @ = 0.15 and a = 3.01. The parameters used for the scaling collapse are the
same as in the main text. Inset: average number of clusters n divided by system size as a function of

disorder strength W.
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dr = 0.01, system size L = 21 sites, the errorbars represent the error coming
from the stochastic sampling). . . . . . ... .. ... ... . ... ...
Comparison of the error |C e"a‘C‘(t) C, TDVP MPS| for TDVP MPS and TEBD MPS

ICC"“Ct(t) CT}JEBD MPS| for dlfferent bond dimension y. The system sizes is
L= 21 the time step isdr=0.01. ... ... ..
OTOC Cy(1) = 5 || [é'j (1), O'j] ||12V as a function of distance and time for MPS
TDVP with time step d¢ = 0.005, bond dimension y = 64 and averaged over 387
random states a) and MPO TEBD with time step df = 0.01 and bond dimension
x = 128 b), both for system size L = 50. The full lines and symbols correspond
to contour lines obtained from the numerical solution of the equation Cy () = 6
for various thresholds 6, where j is the position of the constant operator in
the chain. The contour lines given by these solutions are denoted 7(6, j). The
errorbars are representing the error coming from the stochastic sampling and are
extracted using the bootstrap method. . . . . . ... ... ... ... ... ..
Contour lines obtained from the numerical solution of the equation Cy ; (¢) = 6 for
various thresholds # and methods, where j is the site. These solutions are denoted
t(6, j). The different methods used are MPO TEBD, MPS TDVP and ETE. We
fit the ETE data between the sites 4 and 21 with a power law: f(x) = A1(4 — x)#
with x the distance and the fitting parameters: a)4 = 0.20, u = 1.32,b)4 = 0.31,
u=121,¢)1 =0.50, u = 1.12, d)A = 0.52, u = 1.14. The data comes from
the same calculation as Fig. 5.8 (MPS TDVP: bond dimension y = 64, time step
dr = 0.005, system size L = 50 sites, averaged over 387 random states; MPO
TEBD:bond dimension y = 128, time step df = 0.01, system size L = 50 sites).
The errorbars are obtained in the same way than in Fig. 5.8a. . . . . . ... ..
Convergence in bond-dimension of fixed space cuts of the OTOC C(ls)(t) =

l-573 15 Z | Wkl &Z (t)O' oy (t)a' [k ) obtained with Schrodinger TDVP with
the same 15 randomly chosen 1n1t1a1 product states | ) for bond dimension
x = 64 and y = 32 for time step df = 0.01, and system size L =50. . . .. ..
Convergence in bond-dimension of fixed space cuts of the OTOC C (lj)(t) ob-

tained with Schrodinger TDVP for only one random initial product state for bond
dimension y = 64 and y = 32 and using a time step df = 0.01 for a system
of size L = 50. The worst and best converged initial states of the ones used
in Fig. 5.10 are displayed in order to demonstrate the difference in convergence
depending on the initial state. . . . . . . . .. ... ...
Convergence with bond dimension y of the contours lines of the OTOCs cal-
culated with MPO TEBD. We represent the numerical solution of the equation
Cy4,(t) = 6 for various thresholds 6 and bond dimension (y = 64 and y = 128)
for system size L = 50 sites and time step df = 0.01. j is the site of the light
cone for different thresholds 6 (see Fig. 5.9). . . . . . .. ... ... ... ...

Example of two TEBD time steps applied to the density matrix expressed as a
matrix-product state for a system size of 4 sites. The bath is coupled at most
with the two left-most and righ-most sites of the chain, while the time evolution
isunitaryinthebulk. . . . .. ... ... . L o
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7.1

Energy current j as a function of system size L for the titled field Ising model
(Eq. (6.28)) with g, = 1.4 and g, = 0.9045. The dotted line are the fits of
log(L) = C + log(j/u)®, where we find @ = —0.9975, in accordance with the
expectation of a diffusive behavior. . . . . ... .. ... ... ... L.

Obtained diffusion coefficient for the tilted field Ising model as function of system
size. The 4 leftmost and rightmost sites has been excluded from the calculation
in order to exclude the boundary effects. The dotted black line represents
the diffusion coeflicient obtained using the DOAE method. The results were
obtained using bond dimension up to ymax = 700. Inset: diffusion coeflicient
as a function of the inverse system size. Inset: diffusion coeflicient as a function
of L. o

Steady state current j divided by the imbalance u as a function of system
size, for different couplings with the environement I'. The dotted line are the
fits of log(L) = C + log(j/w)®, where we find ar=; = —1.0447 ar=16 =
—1.0381,ar=4 = —1.039, ar-4 = —1.0287 in accordance with the expectation
of adiffusive behavior. . . . . . ... ... o oL

Diffusion coefficient as a function of the system size L for different system sizes.
The results were obtained using bond dimension up to ymax = 220. The length
of error bar is given by the maximum difference between the diffusion coefficient
obtained for the central site with the diffusion coefficient obtained for any other
site. The prediction of the method are in clear disagreement with the theoretical
predictions of Ref. [150]: D =0.95. . .. ... ... ... .. .........

Obtained diffusion coefficient for the XX ladder as a function of system size,
for different couplings with the environment I'. The two leftmost and rightmost
sites where excluded to avoid boundary effects. Panel a: J=1.0, Panel b: J=1.5.
The black dotted line represents the diffusion coefficient obtained using exact
methods in Ref. [138], while the gray dotted line correspond to the value of
D using DAOE [153]. The results were obtained using bond dimension up to
xmax =300 . e

Schematic description of our graph theory approach using an example of the mu-
tual information matrix M;;. The full graph has zero modularity (see Eq. (7.13)).
We then successively remove the weakest edges until the graph is broken into a
larger number of clusters. These steps where a new clustering is obtained are
saved and are indicated by a ring around them and the value of their modularity
is given. In this example we find a very low modularity of 0 = —0.00023 for
the first clustering, indicating no community structure. The next new clustering
occurs after removing several bonds (not all shown) and has a relatively high
modularity of 0.32, which turns out to be the highest obtained for this example.
We identify this clustering as the physical one and is indicated by a green ring
in the figure. The next steps of the decomposition yields four clusters with a
modularity of Q = 0.23, smaller than in the last step, indicating community
structure of a lower quality. The rest of the procedure was not represented here,
but the modularity was decreasing ateachnew step. . . . . . .. .. ... ...
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Comparison between a typical example of clustering obtained by applying
the “entanglement clustering” procedure (left) and the “correlation clustering”
(right) applied to the same state. The state chosen to apply these two proce-
dures is an excited eigenstate of the Hamiltonian (7.1) for L = 12, W = 5 and
A = 1. On the left panel, we show the tree structure resulting from the en-
tanglement clustering, where the sites belonging to the same cluster are listed
between parentheses, while the internal mutual information can be read in the
line below between the arrow. For example, the two first lines should be read
as follows: the system containing sites (4, 5, 6, 7, 8,9, 10, 11, 0, 1, 2, 3) splits
up into the clusters (4, 5, 6, 7, 8, 9) and (10, 11, 0, 1, 2, 3), with associated
normalized mutual information is equal to 0.0019. On the right panel, we show
the dendrogram resulting from the correlation clustering procedure: the sites
between parentheses belong to the same cluster, while the number on the left of
the arrow corresponds to the modularity Q. A dotted arrow indicates that we
have omitted to represent one or several intermediary steps. . . . . . ... ...

Detection of the ergodic/MBL phase transition using entanglement entropy: we
measure the maximum entanglement entropy for each state obtained using full
diagonalization of the XXZ Hamiltonian. We identify ergodic states when the
maximum entanglement entropy is greater than 60% of the page value. a)
Average maximum entanglement as a function of disorder for different system
sizes. b) Ratio of ergodic states detected pergodic s a function of disoder W.

Scaling collapse of the average number of clusters n divided by system size as a
function of the disorder obtained using our modified Girvan-Newman approach.
For the collapse, the disorder strength was rescaled to take the form (W — W)LY
with W, = 3.8 and v = 1.26. An eigenstate with bipartite entanglement entropy
in the middle of the chain bigger than 0.6 times the page value was considered
to be ergodic and therefore was counted as one cluster, idepedently of the result
of the graph theory approach. Inset: average number of clusters n divided by
system size as a function of disorder strength W . . . . . .. ... ... ...

Detection of the ergodic/MBL phase transition using entanglement entropy:
when Oy = a(l — a/L) with @ = 0.3 and a = 3.59, the state is considered
as fully ergodic. a) Average modularity as a function of disorder for different
system sizes. b) Ratio pergodic Of the ergodic states as a function of disorder W. .

Scaling collapse of the average number of clusters n divided by system size as a
function of the disorder obtained using our modified Girvan-Newman approach.
For the collapse, the disorder strength was rescaled to take the form (W —W,)L!/”
with W, = 3.8 and v = 1.26. When the modularity was lower than Qg =
a(l—a/L) with @ = 0.3 and a = 3.59, the state was considered as fully ergodic
and made of only one cluster. The coefficient a has been fitted to take into
account the finite size effects at W = 6, according to the finite size scaling:
Qr = q — { of the average modularity Q; obtained for system size L. Inset:
average number of clusters n divided by system size as a function of disorder
strength W. . . . o L e e
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8.1

8.2

Example of the mutual information matrix and the associated communities (cor-
relation clusters) of an eigenstate of a MBL hamiltonian obtained using the
DMRG-X algorithm [174]. This disorder strength is W = 12, the system size
is L = 50. On the top panel, we plot the mutual information matrix. We draw
boxes around the matrix elements belonging to the same ““correlation cluster”.
We use a red box when a cluster is connected (i.e. no leapfrogging), while we
use orange and green boxes for the two disconnected clusters. On the bottom
panel, we present the bipartite entanglement entropy as a function of sites. The
boundary between two clusters is signaled by a vertical red line. Inset we show
the graph corresponding to the optimal clustering. The dashed red line separates
the first and last site of the chain. . . . . . .. .. ... ... ... oL

Example of the mutual information matrix and the associated communities (cor-
relation clusters) of an eigenstate of a MBL hamiltonian obtained using the
DMRG-X algorithm [174]. This disorder strength is W = 12, the system size
is L = 50, as in Fig. 7.7. This state is typical of the results we obtained using
MPS methods: all the clusters are local. As before, clusters are separated by
local minima of bipartite entropy. However, we see once again a local mini-
mum of entanglement entropy between sites 26 and 27, with still a quite high
entanglement, which does not indicate the a cluster separation. . . . . . .. ..

Cluster decomposition for different times obtained for an initial Neel state,
time evolved with the Hamiltonian (7.1) with periodic boundary conditions for
disorder strength W = 8 and L = 14. Panels a and d = 10; panels b and e
t=10% panels c and f ¢ = 107. Panels a, b and c: M;; = 1@ : j). Panels d, e
and f: Mij = C(@'lz, @'JZ) .............................
Average length of the clusters (panels a) and b)) and average modularity (panels
¢) and d)) as a function of time for different system sizes, with disorder strength
W = 8, for both an Anderson localized (AL) (A = 0) and MBL Hamilonian
(A = 1). We start from a Néel state, simulate a quench using exact time evolution
(ETE) and apply our graph theory approach to the TSMI matrix (panels a) and
¢)) and to the pairwise correlation functions in the o, basis (panels b) and d)).
The fitting parameters are the following: panel c) MBL: a = 3.69, AL: a = 3.63;
paneld) MBL: a =3.76, AL: a =3.77. . .. ... ... ... ... .

{((Xz)) for W = 8 for various system sizes. The MBL case is shown in dashed
line while the AL case is plotted in full lines. All the curves for the AL case are
superimposed. This demonstrate that the pairwise correlations in the o, basis
are sufficient to probe the logarithmic propagation of information. . . . . . ..

Scaling collapse of the average number of clusters n divided by system size as a
function of the disorder obtained using our modified Girvan-Newman approach
and @ = 0.25. The parameters used for the scaling collapse are the same as in
the main text. Inset: average number of clusters n divided by system size as a
function of disorder strength W. . . . .. ... ... ... ... ... ...,

Scaling collapse of the average number of clusters n divided by system size as a
function of the disorder obtained using our modified Girvan-Newman approach
and @ = 0.4. The parameters used for the scaling collapse are the same as in
the main text. Inset: average number of clusters n divided by system size as a
function of disorder strength W. . . . .. ... ... ... ... ... .....
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8.3 Scaling collapse of the average number of clusters n divided by system size as a
function of the disorder obtained using our modified Girvan-Newman approach
applied to the pairwise correlation functions in the o* basis, @ = 0.15 and
a = 3.01. The parameters used for the scaling collapse are the same as in the
main text. Inset: average number of clusters n divided by system size as a
function of disorder strength W. . . . .. ... ... ... ... ... ...,
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