
Theoretical Computer Science 863 (2021) 102–119
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

New results for the k-secretary problem ✩

Susanne Albers, Leon Ladewig ∗

Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2020
Received in revised form 28 January 2021
Accepted 15 February 2021
Available online 17 February 2021
Communicated by G.F. Italiano

Keywords:
Online algorithms
Secretary problem
Random order model

Suppose that n items arrive online in random order and the goal is to select k of them
such that the expected sum of the selected items is maximized. The decision for any item
is irrevocable and must be made on arrival without knowing future items. This problem
is known as the k-secretary problem, which includes the classical secretary problem with
the special case k = 1. It is well-known that the latter problem can be solved by a simple
algorithm of competitive ratio 1/e which is optimal for n → ∞. Existing algorithms beating
the threshold of 1/e either rely on involved selection policies already for k = 2, or assume
that k is large.
In this paper we present results for the k-secretary problem, considering the interesting
and relevant case that k is small. We focus on simple selection algorithms, accompanied
by combinatorial analyses. As a main contribution we propose a natural deterministic
algorithm designed to have competitive ratios strictly greater than 1/e for small k ≥ 2.
This algorithm is hardly more complex than the elegant strategy for the classical secretary
problem, optimal for k = 1, and works for all k ≥ 1. We derive its competitive ratios for
k ≤ 100, ranging from 0.41 for k = 2 to 0.75 for k = 100.
Moreover, we consider an algorithm proposed earlier in the literature, for which no
rigorous analysis is known. We show that its competitive ratio is 0.4168 for k = 2, implying
that the previous analysis was not tight. Our analysis reveals a surprising combinatorial
property of this algorithm, which might be helpful to find a tight analysis for all k.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The secretary problem is a well-known problem in the field of optimal stopping theory and is defined as follows: Given a
sequence of n items which arrive online and in random order, select the maximum item. The decision to accept or reject an
item must be made immediately and irrevocably upon its arrival, especially without knowing future items. The statement of
the problem dates back to the 1960s and the optimal algorithm was published by Lindley [1] and Dynkin [2]. For discussions
on the origin of the problem, we refer to the survey by Ferguson [3].

In the past years, generalizations of the secretary problem involving selection of multiple items have become very popu-
lar. We consider one of the most canonical generalizations known as the k-secretary problem: Here, the algorithm is allowed
to choose k elements and the goal is to maximize the expected sum of accepted elements. Other objective functions, such
as maximizing the probability of accepting the k best [4,5] or general submodular functions [6], have been studied as well.

✩ Work supported by the European Research Council, Grant Agreement No. 691672. An earlier version of this paper has appeared in Proceedings of 30th
International Symposium on Algorithms and Computation (ISAAC 2019).

* Corresponding author.
E-mail addresses: albers@in.tum.de (S. Albers), leon.ladewig@tum.de (L. Ladewig).
https://doi.org/10.1016/j.tcs.2021.02.022
0304-3975/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2021.02.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.02.022&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:albers@in.tum.de
mailto:leon.ladewig@tum.de
https://doi.org/10.1016/j.tcs.2021.02.022
http://creativecommons.org/licenses/by/4.0/

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
Maximizing the sum of accepted items is closely related to the knapsack secretary problem [7–9]. If all items have unit weight
and thus the capacity constraint is a cardinality bound, the k-secretary problem arises. The matroid secretary problem, in-
troduced by Babaioff et al. [10], is a generalization where an algorithm must maintain a set of accepted items that form
an independent set of a given matroid. We refer the reader to [11–13] for recent work. If the matroid is k-uniform, again,
the k-secretary problem occurs. Another closely related problem was introduced by Buchbinder, Jain, and Singh [14]. In the
(J , K)-secretary problem, an algorithm has J choices and the objective is to maximize the number of selected items among
the K best. It can be shown that any monotone algorithm for the (k, k)-secretary problem corresponds to a k-secretary
algorithm of the same competitive ratio [14]. Here, an algorithm is monotone if for any pair of items, it accepts the better
item with higher probability. On the other side, any ordinal algorithm for k-secretary can be transformed to an algorithm for
the (k, k)-secretary problem while maintaining the competitive ratio [14]. Ordinal algorithms [15] decide based on the total
order of items only, rather than on their numeric values. In fact, most known and elegant algorithms for the k-secretary
problem are ordinal [1,2,8,16].

The large interest in generalizations of the classical secretary problem is motivated mainly by numerous applications in
online market design [10,16,17]. Apart from these applications, the secretary problem is the prototype of an online problem
analyzed in the random order model: An adversarial input order often rules out good (or even constant) competitive ratios
when considering online optimization problems without further constraints. By contrast, the assumption that the input is
ordered randomly improves the competitive ratios in many optimization problems. This includes packing problems [7,9,18],
scheduling problems [19], and graph problems [20,21]. Therefore, developing new techniques for secretary problems may,
more generally, yield relevant insights for this input model as well.

1.1. Previous work

The k-secretary problem was introduced by Kleinberg [16] in 2005. He presents a randomized algorithm attaining a com-
petitive ratio of 1 − 5/

√
k, which approaches 1 for k → ∞. Moreover, Kleinberg shows that any algorithm has a competitive

ratio of 1 − �(
√

1/k). Therefore, from an asymptotic point of view, the k-secretary problem is solved by Kleinberg’s result.
However, the main drawback can be seen in the fact that the competitive ratio is not defined for k ≤ 24 and breaks the
barrier of 1/e only if k ≥ 63 (see Fig. 2, p. 112).

In 2007 the problem was revisited by Babaioff et al. [8]. The authors propose two algorithms called virtual and op-

timistic and prove that both algorithms have a competitive ratio of at least 1/e for any k. While the analysis of virtual

is simple and tight, it takes much more effort to analyze optimistic [8,17]. The authors believe that their analysis for
optimistic is not tight for k ≥ 2.

Further indications for competitive ratios strictly greater than 1/e can be obtained from the framework of Buchbinder,
Jain, and Singh [14]. In this framework, optimal algorithms for (J , K)-secretary and other variants of the secretary problem
can be obtained using linear programming techniques. By numerical simulations for the (k, k)-secretary problem with n =
100, Buchbinder et al. obtained competitive ratios of 0.474, 0.565, and 0.612, for k = 2, 3, and 4, respectively. However,
deriving an algorithm from their framework requires a formal analysis of the corresponding LP in the limit of n → ∞,
which is not provided in the article [14, p. 192].

Chan, Chen, and Jiang [22] revisited the (J , K)-secretary problem and obtained several fundamental results. Notably,
they showed that optimal algorithms for the k-secretary problem require access to the numeric values of the items, which
complements the previous line of research in the ordinal model. Chan et al. demonstrate this by providing a 0.4920-
competitive algorithm for the 2-secretary problem which is based on an algorithm for the (2, 2)-secretary problem of
competitive ratio 0.4886. Still, a rigorous analysis for the general (J , K)-secretary problem revealing the numeric competitive
ratios is not known, even for J = K . Moreover, the resulting algorithms seem overly involved. This dims the prospect of
elegant k-secretary algorithms for k ≥ 3 obtained from this approach.

1.2. Our contribution

We study the k-secretary problem, the most natural and immediate generalization of the classical secretary problem.
While the extreme cases k = 1 and k → ∞ are well studied, hardly any results for small values of k ≥ 2 exist. We believe
that simple selection algorithms, performing well for small k, are interesting both from a theoretical point of view and for
practical settings. Moreover, the hope is that existing algorithms for related problems based on k-secretary algorithms can
be improved this way [14, p. 191]. We study ordinal, threshold-based algorithms in the style of [1,2].

As main contribution, we propose and analyze a simple deterministic algorithm single-ref. This algorithm uses a single
reference value as threshold for accepting items. To the best of our knowledge, this approach has not been explored for
the k-secretary problem so far, although this natural idea arises in algorithms for related problems [23]. As a strength of
our algorithm we see its simplicity: It is of plain combinatorial nature and can be fine-tuned using only two parameters. In
contrast, the optimal algorithms following theoretically from the (J , K)-secretary approach [22] involve k2 parameters and
the same number of different decision rules.

The analysis of single-ref crucially depends on the fact that items can be partitioned into two classes, which we will call
dominating and non-dominating. Both have certain properties on which we base our fully parameterized analysis. In Table 1,
we list the competitive ratios of single-ref for k ≤ 20 assuming n → ∞. While the competitive ratio for k = 1 is optimal,
103

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
Table 1
Competitive ratios α of single-ref for k ∈ [1..20].

k 1 2 3 4 5 6 7 8 9 10

α 1/e 0.41 0.44 0.47 0.49 0.51 0.53 0.54 0.55 0.56

k 11 12 13 14 15 16 17 18 19 20

α 0.57 0.58 0.59 0.59 0.60 0.60 0.61 0.62 0.62 0.63

we obtain a value significantly greater than 1/e already for k = 2. Furthermore, the competitive ratios are monotonically
increasing in the interval k ∈ [1..20], already breaking the threshold of 0.5 at k = 6. Numerical computations suggest that
this monotonicity holds for general k. See Fig. 2 (p. 112) for the competitive ratios up to k = 100 and a comparison with
Kleinberg’s algorithm [16]. Providing a closed formula for the competitive ratio for any value of k is one direction of future
work (see Section 6).

Moreover, we investigate the optimistic algorithm by Babaioff et al. [8] for the case k = 2. Although Chan et al. [22]
provided a strong algorithm for k = 2, we think studying this elegant algorithm is interesting for two reasons: First, a
tight analysis of optimistic is stated as open problem in [8]. Article [8] does not provide the proof of the (1/e)-bound and a
recent journal publication [24] (evolved from [8] and [10]) does not cover the optimistic algorithm at all. We make progress
in this problem by proving that its competitive ratio is exactly 0.4168 for k = 2, which significantly breaks the (1/e)-barrier.
Second, our proof reveals an interesting property of this algorithm, which we show in Lemma 7: The probability that
optimistic accepts the second best item is exactly the probability that the optimal algorithm for k = 1 accepts the best
item. A similar property might hold for k ≥ 3, which could be a key insight into the general case.

From a technical point of view, we analyze the algorithms using basic combinatorial constructs exclusively. This is in
contrast to previous approaches [14,22] which can only be analyzed using heavyweight linear programming techniques. The
combinatorial parts of our analysis are exact and hold for all n. In order to evaluate the competitive ratios numerically, we
find lower bounds that hold for sufficiently large n. Throughout the analyses of both algorithms, we associate probabilities
with sets of permutations (see Section 2.2). Hence, probability relations can be shown equivalently by set relations. This is
a simple but powerful technique which may be useful in the analysis of other optimization problems with random arrival
order as well.

2. Preliminaries

Let v1 > v2 > . . . > vn be the elements (also called items) of the input. Note that we can assume w.l.o.g. that all items
are distinct in the ordinal model. Therefore, we say that i is the rank of element vi . An input sequence is any permutation
of the list v1, . . . , vn . We denote the position of an element v in the input sequence π with posπ (v) ∈ {1, . . . , n} and write
pos(v) whenever the input sequence is clear from the context.

Given any input sequence, an algorithm can accept up to k items, where the decision whether to accept or reject an item
must be made immediately upon its arrival. Let ALG denote the sum of items accepted by the algorithm. The algorithm is α-
competitive if E [ALG] ≥ (α − o(1)) · OPT holds for all item sets, where the expectation is taken over the uniform distribution
of all n! input sequences. Throughout the paper, o(1) terms are asymptotic with respect to the number of items n and
OPT = ∑k

i=1 vi denotes the value of an optimal offline solution.

2.1. Notation

For a, b ∈ N with a ≤ b, we use the notation [a..b] to denote the set of integers {a, a + 1, . . . , b} and write [a] for [1..a].
The (half-)open integer intervals (a..b], [a..b), and (a..b) are defined accordingly. Further, we use the notation nk for the
falling factorial n!

(n−k)! .

2.2. Random permutations

We often use the following process to obtain a permutation drawn uniformly at random: Fix any order u1, u2, . . . , un of
positions. Then, draw the element for position u1 uniformly at random among all n elements, next the element for position
u2 among the remaining n − 1 elements, and so on.

Moreover, the uniform distribution of permutations allows us to prove probability relations using functions: Suppose that
pi is the probability that item vi is accepted in a random permutation. Then pi = |Pi |/n!, where Pi is the set of all input
sequences where vi is accepted. Thus, we can prove pi ≤ p j by finding an injective function f : Pi → P j and get pi = p j

if f is bijective. This technique turns out to be highly useful (e.g. in the proof of Lemma 7, which relates probabilities of
different algorithms).
104

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
2.3. Combinatorics

When analyzing random permutations, we often need to analyze the probability that K items in a sequence have a
certain property. This is described by the following random experiment which is a special case of the hypergeometric
distribution.

Fact 1. Suppose there are N balls in an urn from which M are blue and N − M red. The probability of drawing K blue balls without
replacement in a sequence of length K is h(N, M, K) := (M

K

)
/
(N

K

)
.

To simplify the binomial coefficients arising from h(N, M, K), we make use of three useful identities (see [25]) stated in
the following.

For integers l, m, n, w with l, m ≥ 0 and n ≥ w ≥ 0, it holds that

l∑
k=0

(
l − k

m

)(
w + k

n

)
=

(
l + w + 1

m + n + 1

)
. (R1)

The well-known symmetry property for binomial coefficients states that for any integers n, k with n ≥ 0,(
n

k

)
=

(
n

n − k

)
. (R2)

Finally, by the trinomial revision rule, for any integers m and k, and any real number r, it holds that(
r

m

)(
m

k

)
=

(
r

k

)(
r − k

m − k

)
. (R3)

2.4. Bounding sums by integrals

To bound sums over monotone increasing summands we make use of the following facts.

Fact 2. Let f : R≥0 →R≥0 and a, b ∈N. If f is

(A) monotonically decreasing, then
∫ b+1

a f (i) di ≤ ∑b
i=a f (i) ≤ ∫ b

a−1 f (i) di.

(B) monotonically increasing, then
∫ b

a−1 f (i) di ≤ ∑b
i=a f (i) ≤ ∫ b+1

a f (i) di.

3. Algorithms

In this section, we state our proposed algorithm single-ref and the optimistic algorithm by Babaioff et al. [8] and
compare both strategies. While both algorithms have an initial sampling phase in which the first t − 1 items are rejected,
the main difference is the policy for accepting items: Let s j be the j-th best item from the sampling.

Algorithm 1: single-ref.
Parameters : t ∈ (k..n − k] (sampling threshold),

r ∈ [k] (reference rank)
1 Sampling phase: Reject the first t − 1 items.
2 Let sr be the r-th best item from the sampling phase.
3 Selection phase: Choose the first k items better than sr .

Algorithm 2: optimistic [8].
Parameters : t ∈ (k..n − k] (sampling threshold)

1 Sampling phase: Reject the first t − 1 items.
2 Let s1 > . . . > sk be the k best items from the sampling phase.
3 Selection phase: As the j-th accepted item, choose the first item better than sk− j+1.

single-ref uses only item sr as reference element. In the selection phase, the algorithm accepts the first k elements
better than sr . Despite its simple structure, a challenging part in the analysis of single-ref is the dependence between both
parameters r and t .

optimistic uses the k best items from the sampling as reference elements. Right after the sampling phase, the first item
better than sk will be accepted. The following accepted items are chosen similarly, but with sk−1, sk−2, . . . , s1 as reference
105

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
items. Note that optimistic sticks to this order of reference elements, even if the first item already outperforms s1. Hence,
it is optimistic in the sense that it always expects high-value items in the future.

Note that in the case k = 1, both optimistic and single-ref become the optimal algorithm for the secretary problem
[1,2]: After rejecting the first t − 1 items, choose the first one better than the best from sampling. This strategy selects the
best item with probability t−1

n

∑n
i=t

1
i−1 .

From now on, let

pi := Pr [A accepts item vi] ,

where A is either single-ref or optimistic and i ∈ [n]. We further define

p(j)
i := Pr [A accepts item vi as the j-th item]

for i ∈ [n] and j ∈ [k]. Clearly, pi = ∑k
j=1 p(j)

i . Next, we define monotonicity of k-secretary algorithms and prove this prop-
erty for both algorithms.

Definition 1. An algorithm is called monotone if pi ≥ p j holds for any two items vi > v j .

Lemma 1. optimistic and single-ref are monotone.

Proof. We prove that pi ≥ pi+1 for all i ∈ [n − 1]. By the concept described in Section 2.2, it is sufficient to show that for
each input sequence where vi+1 is accepted, there exists a unique input sequence where vi is accepted.

Consider any input sequence π in which vi+1 is accepted. Let s j < vi+1 be the sampling item to which vi+1 is compared
(in case of single-ref, we have j = r). Since vi+1 is accepted, we have s j 	= vi . By swapping vi with vi+1, we obtain a new
permutation π ′ with the same reference element s j . This is obvious if vi is not in the sampling of π . Otherwise, note that
in the ordered sequences of sampling items from π and π ′ , both vi+1 and vi have the same position. This implies that s j
is the j-th best sampling item in π ′ . Further, item vi is at the former position of vi+1 in π ′ , thus both algorithms accept
vi at this position since vi > vi+1 > s j .

The claim follows by applying the inequality pi ≥ pi+1 iteratively. �
Due to the monotonicity property, the competitive ratios of both algorithms can be easily analyzed using the following

lemma.

Lemma 2. The competitive ratio of any monotone algorithm is (1/k)
∑k

i=1 pi .

Proof. By monotonicity (Lemma 1) and by definition of the item set, both sequences p1, . . . , pk and v1, . . . , vk are sorted
decreasingly. Let OPT = ∑k

i=1 vi and E [A] be the expected sum of the items accepted by the monotone algorithm. Cheby-
shev’s sum inequality [25] states that if a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn , then

∑n
i=1 aibi ≥ (1/n)

(∑n
i=1 ai

) (∑n
i=1 bi

)
.

Applying this inequality yields

E [A] =
n∑

i=1

pi vi ≥
k∑

i=1

pi vi ≥ 1

k

(
k∑

i=1

vi

)(
k∑

i=1

pi

)
=

(
1

k

k∑
i=1

pi

)
OPT .

Note that the above inequalities are tight: Consider a set of items where the top k items are basically identical, and all
remaining items are close to zero. More formally, set vi = 1 − iε for i ∈ [1..k] and vi = iε for i ∈ (k..n], where ε → 0. Then,
the competitive ratio is exactly (1/k)

∑k
i=1 pi . �

The same argument is used in [14] to show that any monotone algorithm for (k, k)-secretary corresponds to an algorithm
for k-secretary of the same competitive ratio.

4. Analysis of SINGLE-REF

In this section we analyze our proposed algorithm single-ref. Recall that this algorithm uses sr , the r-th best sampling
item, as the threshold for accepting items. As implied by Lemma 2, only the k largest items v1, . . . , vk contribute to the
objective function. One essential idea of our approach is to separate the set of top-k items into two classes according to the
following definition.

Definition 2. We say that item vi is dominating if i ≤ r, and non-dominating if r + 1 ≤ i ≤ k.
106

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
Fig. 1. Event Ẽ j(z, i) considered in the proof of Lemma 3.

The crucial property of dominating items becomes clear in the following scenario: Assume that any dominating item v
occurs after the sampling phase. Since sr is the r-th best item from the sampling phase, it follows that v > sr . That is, each
dominating item outside the sampling beats the reference item. Therefore, there are only two situations when dominating
items are rejected: Either they appear before position t , or after k accepted items.

4.1. Dominating items

In Lemma 3 we compute the acceptance probability for dominating items. Since the algorithm cannot distinguish any
two dominating items, each dominating item has the same probability.

Lemma 3. Let vd be a dominating item and j ∈ [0..k). We have

p(j+1)

d = κτ

n

n∑
i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
,

where κ = (r − 1 + j) j and τ = (t − 1)r .

Proof. Let E j(z, i) be the event that single-ref accepts vd as (j + 1)-th item at position i = pos(vd) and sr has rank z (thus
sr = vz) in a random permutation. Note that there must be elements s1, . . . , sr−1 of rank smaller than z in the sampling.
Similarly, there must be j accepted elements a1, . . . , a j of rank smaller than z outside the sampling, but before position i.

The proof is in several steps. We first consider a stronger event Ẽ j(z, i). Later, we show how the probability of E j(z, i)
can be obtained from Ẽ j(z, i). In the end, the law of total probability yields p(j+1)

d .

Analysis of Ẽ j(z, i) Event Ẽ j(z, i) is defined as E j(z, i) with additional position constraints (see Fig. 1): Elements s1, . . . , sr

are in this order at the first r positions and elements a1, . . . , a j are in this order at the j positions immediately before vd .
Therefore, Ẽ j(z, i) holds if and only if the random input sequence satisfies the following conditions:

(i) pos(s�) = � for � ∈ [r], pos(am) = i − j + m − 1 for m ∈ [j], and pos(vd) = i.
(ii) Elements s1, . . . , sr−1 have rank smaller than z

(iii) Elements a1 . . . , a j have rank smaller than z
(iv) All remaining items at positions r + 1, . . . , i − j − 1 have rank greater than z.

As described in Section 2.2, we think of sequentially drawing the elements for the positions 1, . . . , r first, then i − j, . . . , i,
and finally r + 1, . . . , i − j − 1. The probability for (i) is

β :=
j+r∏
�=0

1

n − �
= 1

n j+r+1
,

since each item has the same probability to occur at each remaining position. In (ii), the r − 1 elements can be chosen out
of z − 2 remaining items of rank smaller than z (since vd is dominating and was already drawn). Therefore, we get a factor
of

(z−2
r−1

)
. After this step, there remain z − 2 − (r − 1) = z − r − 1 elements of rank smaller than z, so we get factor

(z−r−1
j

)
for step (iii).

Finally, the probability of (iv) can be formulated using Fact 1. Note that at this point, there remain n − (1 + r + j) items
and no item of rank greater than z has been drawn so far. In terms of the random experiment from Fact 1, we draw
K = i − j − r − 1 balls (items) from an urn of size N = n − (1 + r + j) where M = n − z balls are blue (rank greater than z).
Hence, the probability for (iv) is H := h(n − r − j − 1, n − z, i − j − r − 1). Therefore, we obtain

Pr
[

Ẽ j(z, i)
]

= β ·
(

z − 2

r − 1

)(
z − r − 1

j

)
· H .

This term can be simplified further by applying (R3) and (R2). Let R = z − 2, K = r − 1, and M = j + r − 1. It holds that
107

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
(
z − 2

r − 1

)(
z − r − 1

j

)
=

(
R

K

)(
R − K

M − K

)
(R3)=

(
R

M

)(
M

K

)
(R2)=

(
R

M

)(
M

M − K

)
=

(
z − 2

j + r − 1

)(
j + r − 1

j

)
.

Let κ = (j + r − 1) j , then
(j+r−1

j

) = κ/ j! and we get

Pr
[

Ẽ j(z, i)
]

= βκ

j! ·
(

z − 2

j + r − 1

)
· H .

Relating Ẽ j(z, i) to E j(z, i) In contrast to Ẽ j(z, i), in the event E j(z, i), the elements s1, . . . , sr can have any positions in
[t −1] and a1 . . . , a j can have any positions in [t..i). In the random order model, the probability of an event depends linearly
on the number of permutations for which the event happens. Hence, we can multiply the probability with corresponding
factors (t − 1)r =: τ and (i − t) j = (i−t

j

)
j! and get

Pr
[

E j(z, i)
] =

(
i − t

j

)
τ j! · Pr

[
Ẽ j(z, i)

]
.

Relating E j(z, i) to p(j+1)

d As the final step, we sum over all possible values for i and z to obtain p(j+1)

d . The position
i = pos(vd) ranges between t + j and n, while the reference rank z is between r + j + 1 (there are r − 1 sampling elements
and j + 1 accepted elements of rank less than z) and n. Thus we get:

p(j+1)

d =
n∑

i=t+ j

n∑
z=r+ j+1

Pr
[

E j(z, i)
]

= τ j!
n∑

i=t+ j

(
i − t

j

) n∑
z=r+ j+1

Pr
[

Ẽ j(z, i)
]

= βκτ

n∑
i=t+ j

(
i − t

j

) n∑
z=r+ j+1

(
z − 2

j + r − 1

)
· H

= βκτ

n∑
i=t+ j

(
i − t

j

)
1(n−r− j−1

i− j−r−1

) n∑
z=r+ j+1

(
z − 2

j + r − 1

)(
n − z

i − j − r − 1

)
. (1)

The sum over z in (1) can be resolved using (R1). Let L = n − r − j − 1, N = W = r + j − 1, and M = i − j − r − 1. In order
to apply (R1) we need to verify L, M ≥ 0 and N ≥ W ≥ 0. We can assume k ≤ n/2, since for k > n/2, there exists a trivial
(1/2)-competitive algorithm. Therefore, we have L = n − r − j − 1 ≥ n − k − (k − 1) − 1 = n − 2k ≥ 0. Further, i ≥ t + j, thus
i − j ≥ t ≥ k + 1 ≥ r + 1 which implies M ≥ 0. The condition N ≥ W ≥ 0 holds trivially. By (R1) we obtain

n∑
z=r+ j+1

(
z − 2

j + r − 1

)(
n − z

i − j − r − 1

)

=
n−r− j−1∑

z=0

(
r + j − 1 + z

j + r − 1

)(
n − r − j − 1 − z

i − j − r − 1

)

=
L∑

z=0

(
W + z

N

)(
L − z

M

)
=

(
L + W + 1

M + N + 1

)
=

(
n − 1

i − 1

)
. (2)

By inserting (2) into (1), we obtain the quotient of binomial coefficients
(n−1

i−1

)
/
(n−r− j−1

i− j−r−1

)
, which can be simplified further

using (R3) since(
n − 1

i − 1

)/(
n − 1 − (r + j)

i − 1 − (r + j)

)
=

(
n − 1

r + j

)/(
i − 1

r + j

)
= (n − 1)r+ j

(i − 1)r+ j
.

Recall β = 1/n j+r+1, thus (n − 1)r+ j · β = 1/n. Together with (1) we get

p(j+1)

d = βκτ · (n − 1)r+ j
n∑

i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
= κτ

n

n∑
i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
, (3)

which concludes the proof. �

108

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
4.2. Non-dominating items

It remains to consider the acceptance probabilities of the non-dominating items vr+1, . . . , vk . Interestingly, these proba-
bilities can be related finally to those for dominating items. First, we obtain the following result.

Lemma 4. Let vr+i be a non-dominating item with i ∈ [k − r] and let j ∈ [i]. We have p(j)
r+i = p(i+1)

r+i .

Proof. We construct a bijective function f : P → Q where P (resp. Q) is the set of permutations where vr+i is the j-th
(resp. (i + 1)-th) accept.

Let π ∈ P . First, we argue that the algorithm accepts at least i + 1 elements in π . As vr+i is accepted, sr < vr+i and
thus all elements from the set S = {v1, . . . , vr+i} beat sr . Since sr is the r-th best element in the sampling, at most r − 1
elements from S can be part of the sampling. Consequently, at least r + i − (r − 1) = i + 1 elements from S , including vr+i ,
are accepted.

Now, let a1, . . . , ai+1 denote the first i + 1 accepts, where a j = vr+i . The function f can be defined as follows: Swap the
positions of a1, . . . , ai+1 in a cyclic shift, such that a j = vr+i is at the former position of ai+1. This yields a permutation
f (π) where vr+i is the (i + 1)-th accept. Note that f is bijective as the cyclic shift can be reversed. �

By the following lemma, the remaining probabilities can be related to corresponding probabilities for dominating items.

Lemma 5. Let vr+i be a non-dominating item with i ∈ [k − r] and let j ∈ [k − i]. Let vd be any dominating item. It holds that
p(i+ j)

r+i = p(i+ j)
d .

Proof. Again, we prove the claim by defining a bijective mapping f : P → Q where P is the set of permutations where
vr+i is the (i + j)-th accept and Q is the set of permutations where vd is the (i + j)-th accept. For any π ∈ P , let f (π) be
obtained from π by swapping vr+i with vd .

We first show that f : P → Q . To that end, consider any fixed π ∈ P . As vr+i is accepted, sr < vr+i . We can argue that
sr is the r-th best sampling element in f (π) as well: This holds clearly if no item is moved out of or into the sampling by
f . Otherwise, f moves vr+i into the sampling and vd outwards. But since sr < vr+i < vd , this does not change the role of
sr as the r-th best sampling element. Therefore, π and f (π) have the same reference element sr . Further, vd is accepted in
f (π) at the former position of vr+i . Finally, we observe that f is bijective, since vr+i and vd have unique ranks. �
4.3. Competitive ratio

The following main theorem states the exact competitive ratio of single-ref. By the results from Sections 4.1 and 4.2,
the final term only depends on the acceptance probabilities of dominating items.

Theorem 1. The competitive ratio of single-ref is

1

k

k∑
j=1

γ j · p(j)
1 where γ j =

{
r + 2 · (j − 1) if j ≤ k − r + 1

k else.

Proof. According to Lemma 2, the competitive ratio is given by

1

k

k∑
i=1

pi = 1

k

(
r∑

i=1

pi +
k−r∑
i=1

pr+i

)
, (4)

where we split the sum according to dominating and non-dominating items. By Lemma 3, p(j)
i = p(j)

1 holds for any domi-

nating item vi and j ∈ [k]. Recall that pi = ∑k
j=1 p(j)

i for all i ∈ [k]. Therefore,

r∑
i=1

pi = r
k∑

j=1

p(j)
i =

k∑
j=1

rp(j)
1 . (5)

Now, we consider the sum for non-dominating items. We have

k−r∑
i=1

pr+i =
k−r∑
i=1

k∑
j=1

p(j)
r+i =

k−r∑
i=1

i∑
j=1

p(j)
r+i +

k−r∑
i=1

k−i∑
j=1

p(i+ j)
r+i . (6)

Next, we simplify the second last sum of Equation (6). From Lemmas 4 and 5 it follows that
109

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
k−r∑
i=1

i∑
j=1

p(j)
r+i =

k−r∑
i=1

ip(i+1)
r+i =

k−r∑
i=1

ip(i+1)
1 =

k−r+1∑
j=1

(j − 1)p(j)
1 . (7)

The last sum in Equation (6) can be simplified using Lemma 5 followed by algebraic manipulations.

k−r∑
i=1

k−i∑
j=1

p(i+ j)
r+i =

k−r∑
i=1

k−i∑
j=1

p(i+ j)
1 =

k−r∑
i=1

k∑
j=i+1

p(j)
1 =

k−r+1∑
j=1

(j − 1)p(j)
1 +

k∑
j=k−r+2

(k − r)p(j)
1 . (8)

Combining Equations (4) to (8) yields the claim. �
4.4. Dominating items – asymptotic setting

As we have seen in Theorem 1, the competitive ratio mainly depends on the probabilities p(j)
1 . However, the term from

Equation (3) is cumbersome and hard to optimize over r and t . The goal of this subsection is to derive a lower bound for
p(j)

1 assuming that n is large enough. For this purpose, we assume t − 1 = cn for c ∈ (0, 1), i.e., the sampling length is some
constant c of the input length. Further, we assume that k ∈ o(n). We obtain the following lemma.

Lemma 6. Let j ∈ [0..k). For � ∈ [0.. j], define β� := (−1)�
(j
�

)
and α� := (j+r−1

�+r−1

)
. Assuming t − 1 = cn, it holds that

p(j+1)
1 ≥

⎧⎨
⎩c ·

(
ln 1

c −∑ j
�=1 β�

c�−1
�

)
− o(1) if r = 1

c
r−1 ·

(
1 − cr−1 ·∑ j

�=0 α�(1 − c) j−�c�
)

− o(1) if r ≥ 2.

Proof of Lemma 6. Let S := ∑n
i=t+ j

(i−t
j

) 1
(i−1)

r+ j be the sum from Equation (3). First, we obtain a lower bound for S using

(n − k)k < nk < nk and similar inequalities:

S =
n∑

i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
= 1

j!
n∑

i=t+ j

(i − t) j

(i − 1)r+ j
>

1

j!
n∑

i=t+ j

(i − t − j + 1) j

(i − 1)r+ j
= 1

j!
n−t− j+1∑

i=1

i j

(i + t + j − 2)r+ j

= 1

j!
m∑

i=1

f (i) , (9)

where we defined f (i) := i j/(i + y)r+ j with y := t + j −2 and m := n −t − j +1. Unfortunately, f is not necessarily monotone,
hence we cannot apply Fact 2 directly to bound S by a corresponding integral. However, f has a single maximum point
z = jy

r and is monotone increasing (resp. monotone decreasing) for i ≤ z (resp. i ≥ z). We prove this property in Lemma 10
in Appendix B. This allows to split S into two monotone parts.

m∑
i=1

f (i) =
�z�∑
i=1

f (i) +
m∑

i=�z�+1

f (i)

≥
�z�∫
0

f (i) di +
m+1∫

�z�+1

f (i) di Fact 2, Lemma 10B

=
m+1∫
0

f (i) di −
�z�+1∫
�z�

f (i) di

=
m+1∫
0

f (i) di − f (z) Lemma 10A . (10)

Therefore, if F is a function such that
∫ m+1

0 f (i) di = F (m + 1) − F (0), we obtain from Lemma 3, Inequality (10), and the
previous observation

p(j+1)
1 ≥ κτ

S >
κτ

(F (m + 1) − F (0)) − κτ
f (z) . (11)
n nj! nj!
110

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
We first argue that the term (κτ)/(nj!) · f (z) from Inequality (11) vanishes for n → ∞. It holds that κτ = (r + j − 1) j · (t −
1)r < (r + j) j · (t − 1)r . Moreover,

f (z) = z j

(z + y)r+ j
<

z j

yr+ j
=

(
jy
r

) j

yr+ j
=

(
j

r

) j

· 1

yr
<

j j

(t − 1)r · (1 − 1
t−1)r

,

where the last inequality follows from r ≥ 1 and yr ≥ (t − 2)r = (t − 1)r · (1 − 1
t−1)r . Therefore,

κτ

nj! f (z) <
(r + j) j · (t − 1)r

nj! · j j

(t − 1)r · (1 − 1
t−1)r

= (r j + j2)
j

j! · 1

n · (1 − 1
cn)r

= o(1) . (12)

In the remainder of the proof, we consider the cases r = 1 and r ≥ 2 separately. For both cases we use an appropriate
antiderivative F , where we prove F ′(i) = f (i) in Lemmas 11 and 12 in Appendix B.

Case r = 1 We observe first that in Equation (11), the factor κτ
nj! resolves to c as

κ · τ
nj! = (j + r − 1) j · (t − 1)r

nj! = j j · (t − 1)1

nj! = j! · (t − 1)

nj! = c .

With β� = (−1)�
(j
�

)
for 1 ≤ � ≤ j and

F (i) = ln(i + y) −
j∑

�=1

β�

�
·
(

y

i + y

)�

,

it holds that

F (m + 1) − F (0)

=
⎛
⎝ln(m + 1 + y) −

j∑
�=1

β�

�
·
(

y

m + 1 + y

)�
⎞
⎠−

⎛
⎝ln y −

j∑
�=1

β�

�

⎞
⎠

= ln

(
m + 1 + y

y

)
−

j∑
�=1

β�

�
·
((

y

m + 1 + y

)�

− 1

)

= ln

(
n

y

)
−

j∑
�=1

β�

�
·
((y

n

)� − 1

)

= ln
1

c
−

⎛
⎝ j∑

�=1

β�

�
·
(

c� − 1
)⎞⎠− o(1) ,

where we used m + 1 + y = n and y = t − j − 2 = cn − j − 1. Combining with Inequality (11) yields the claim for r = 1.

Case r ≥ 2 Define α� = (j+r−1
�+r−1

)
for 0 ≤ � ≤ j and let

F (i) = −
∑ j

�=0 α�i j−� y�

α0(r − 1)(i + y)r+ j−1
.

Further, let G(i) = −α0 · (r − 1) · F (i). Since α0 = (j+r−1
r−1

) = κ/ j! and τ/n = (t − 1)r/n = c · (t − 2)r−1, we have

κτ

nj! (F (m + 1) − F (0)) = c

r − 1
· (t − 2)r−1 · (G(0) − G(m + 1)) . (13)

Now, it holds that

G(0) =
∑ j

�=0 α� · 0 j−� · y�

yr+ j−1
= α j · y j

yr+ j−1
= 1

yr−1 = 1

(t + j − 2)r−1 (14)

and further
111

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
Fig. 2. Comparison of our algorithm single-ref and the algorithm by Kleinberg [16].

(t − 2)r−1 · G(0) ≥ (t − r)r−1

(t + j − 2)r−1 =
(

1 − j + r − 2

t + j − 2

)r−1

= 1 − o(1) . (15)

Finally, we analyze the term (t − 2)r−1 · G(m + 1). Using m = n − t − j + 1 and y = t + j − 2 = cn + j − 1, we obtain

(t − 2)r−1 · G(m + 1) = (t − 2)r−1 ·
∑ j

�=0 α� · (m + 1) j−� · y�

(m + 1 + y)r+ j−1

≤ (t − 2)r−1 ·
∑ j

�=0 α� · (n · (1 − c) + 1) j−� · (cn + j − 1)�

nr+ j−1

≤ (t − 2)r−1 ·
(∑ j

�=0 α� · (n · (1 − c)) j−� · (cn)�
)

nr+ j−1
+ o(1)

< (t − 1)r−1 ·
(∑ j

�=0 α� · n j−� · (1 − c) j−� · c�n�
)

nr+ j−1
+ o(1)

= cr−1 ·
⎛
⎝ j∑

�=0

α� · (1 − c) j−� · c�

⎞
⎠+ o(1) . (16)

Combining Equations (11) to (13), (15) and (16) concludes the proof. �
4.5. Competitive ratio – asymptotic setting

The competitive ratio of single-ref in the asymptotic setting n → ∞ can be evaluated using Lemma 6 in combination
with Theorem 1. For k ∈ [1..100], we optimized the resulting objective function over r and c numerically. As shown in Fig. 2,
single-ref reaches competitive ratios of up to 0.75 and outperforms the algorithm by Kleinberg [16] on this interval. The
optimal parameters for k ∈ [1..100] and the resulting competitive ratios can be found in Table A.2 of Appendix A.

5. OPTIMISTIC for k = 2

Let A2 denote the optimistic algorithm with k = 2 and parameters r, t in the following. To analyze the relevant proba-
bilities p1 and p2, we again relate these probabilities to corresponding sets (see Section 2.2). For i ∈ {1, 2}, let Pi be the set
of permutations in which A2 accepts vi .

5.1. Acceptance probability of v2

In Lemma 7, we show a surprising relation between optimistic for k = 2 and single-ref for k = r = 1: Assuming that
both algorithms have the same sampling length of t − 1, the probability that optimistic accepts v2 is exactly the probability
that single-ref accepts v1. The proof uses a sophistically tailored bijection between two respective sets of permutations.

Lemma 7. Let A1 be the single-ref algorithm with parameters k = r = 1 and t. It holds that Pr [A2 accepts v2] = Pr [A1 accepts v1].

Proof. Let � be the set of all n! permutations and Q 1 ⊂ � be the set of permutations where A1 accepts v1. We prove the
claim by constructing a bijective function f : � \ P2 → � \ Q 1.

We first investigate the two complementary sets � \ P2 and � \ Q 1. The set � \ P2 contains the permutations where v2
is not accepted by A2. This occurs in exactly one of three cases: v2 is in the sampling, v2 comes behind the first accept
112

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
and v1 is in the sampling (then A2 will reject all following elements), or v2 comes behind two elements accepted by A2.
Similarly, � \ Q 1 contains the permutations where v1 is not accepted by A1. In these permutations, v1 is either in the
sampling, or behind the first accepted element.

Now, fix any π ∈ � \ P2. To define f (π), we distinguish five cases (A)-(E) based on the position of v2 in π and the
accepted elements of A2 on input π .

(A) v2 is in the sampling. We obtain f (π) from π by swapping v1 with v2. In f (π), item v1 is in the sampling and cannot
be accepted by A1.

(B) v2 comes behind the first accept and v1 is in the sampling. Then, we have an accepted element a1 with s2 < a1 < v2.
To obtain f (π), we swap v1 with a1 and afterwards v1 with v2:

Since a1 > s2, item a1 is the best element in the sampling of f (π). Particularly, the second best element s2 of the
sampling is maintained in this case. This fact will be important later. Since v2 is in front of v1 in f (π), algorithm A1
accepts v2 in f (π).

(C) v2 comes behind two accepts and v1 is the first accept. Then, there must be another accept a2 between v1 and v2. We
obtain f (π) by swapping v1 with a2. Since a2 > s1, algorithm A1 accepts a2 in f (π).

(D) v2 comes behind two accepts and v1 is the second accept. Here, we define f (π) such that v1 is swapped with v2. A1
accepts v2 in f (π).

(E) v2 comes behind two accepts and v1 is not accepted. Set f (π) = π in this case. Since there is at least one item better
than s1 before v1 in f (π), algorithm A1 cannot select v1 in f (π).

In order to show the bijectivity of f , we have to argue carefully following the definition of f in the different cases. Let
C = {A, B, C, D, E} represent the set of cases (A)-(E).

f is injective Let π1, π2 ∈ � \ P2 with π1 	= π2. We have to show f (π1) 	= f (π2). Let X, Y ∈ C be such that π1 and π2
satisfy the conditions of case X and Y , respectively.

First, we consider the situation where π1 and π2 are mapped by f according to the same case X = Y . In all cases, the
operation defined by f involves v1, v2, and possibly a further accepted element. All of these elements can be retrieved
given any permutation f (π): Items v1 and v2 have a unique rank, item a1 from case B is the maximum element in the
sampling, and item a2 from case C is the first item after the sampling better than s1. Hence, f (π1) = f (π2) implies π1 = π2,
which is equivalent to the claim we wanted to show.

It remains to consider all pairs of cases where X 	= Y .

X = A, Y ∈ {B, C, D, E}. Since item v1 is moved into the sampling in case (A) and to some position after the sampling in
all remaining cases (B)-(E), we immediately get f (π1) 	= f (π2).

X = E , Y ∈ {C, D}. Assume f (π1) = f (π2) for contradiction. In all cases (C)-(E), the function f maintains the items in the
sampling phase. Particularly, π1 and π2 must have the same two best elements s1, s2. The construction in case (E)
ensures that A2 would accept two elements in f (π1) before position min{pos f (π1)(v1), pos f (π1)(v2)}, while there
is only one such accept in f (π2). This contradicts f (π1) = f (π2).
113

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
X = B , Y ∈ {D, E}. Assume f (π1) = f (π2) for contradiction. In all three cases (B),(D),(E), the function f maintains the
second best sampling item s2. Similar to the previous case, we get a contradiction as there is no element before
v2 better than s2 in f (π1), while f (π2) has at least one such item. Thus, f (π1) 	= f (π2).

X = C , Y ∈ {B, D}. By construction, item v1 is before v2 in f (π1), while the relative order of v1 and v2 in f (π2) is the
other way round. Therefore, f (π1) 	= f (π2).

f is surjective Let π ′ ∈ � \ Q 1. We show that there is π ∈ � \ P2 with f (π) = π ′ .
The obvious case is when v1 is in the sampling of π ′ , then π can be obtained from case (A). If v1 is not in the sampling

of π ′ , there must be an element before v1 that A1 accepts. Consequently, A2 would accept at least one element before
v1 in π ′ as well. Furthermore, it follows that v2 is not in the sampling either, as otherwise v1 would be accepted by A1.
Therefore, considering A2 on input π ′ , item v2 can be the first or second accept, or can follow two accepts.

If v2 is the first accept of A2, the desired π can be constructed according to case (B). Similarly, the situation where v2
is the second accept of A2 corresponds to case (D). Finally, consider the case where v2 follows two accepted elements. If
v1 is the second accept, π ′ was obtained from case (C), and if v1 is not accepted from case (E). Note that v1 cannot be the
first accept of A2, as otherwise A1 would also accept v1 which would contradict π ′ ∈ � \ Q 1. �
5.2. Acceptance probability of v1

In this part, we prove p1 = p2 + δ for δ > 0. First, we observe that P2 can be related to a set P ′
1 ⊂ P1 of equal cardinality.

Lemma 8. Let P ′
1 = {π ∈ P1 | posπ (v2) < t ⇒A2 accepts v1 as the first item}. It holds that

∣∣P ′
1

∣∣ = |P2|.

Proof. Let f be the function that swaps v1 with v2 in a given input sequence. We first prove that f (π) ∈ P ′
1 holds for each

π ∈ P2 and thus f : P2 → P ′
1.

Let π ∈ P2. In f (π), algorithm A2 accepts v1 at position pos f (π)(v1) = posπ (v2), as v1 > v2. So far we showed f (π) ∈
P1. If pos f (π)(v2) ≥ t , there is nothing to show. Assuming that pos f (π)(v2) < t , it follows that v1 is the best element in
the sampling of π . Since no item (particularly not v2) beats v1, but v2 is accepted by A2 in π , we get that v2 is the first
accept in π . Hence, v1 is the first accept in f (π) and therefore f (π) ∈ P ′

1.
Clearly, f is injective. To prove surjectivity, let π ′ ∈ P ′

1 and let π the permutation obtained from π ′ by swapping (back)
v1 with v2. If posπ ′(v2) < t , by definition of P ′

1 we know that v1 is the first accept in π ′ , implying that no item before
posπ ′ (v1) = posπ (v2) is accepted by A2. In the case posπ ′(v2) ≥ t , since posπ ′ (v1) ≥ t , the smallest rank in the sampling
of π ′ is 3 or greater. Therefore, v2 is accepted if at most one item before v2 is accepted. This holds for π , as posπ (v2) =
posπ ′ (v1). �

From |P1| = ∣∣P ′
1

∣∣ + ∣∣P1 \ P ′
1

∣∣ = |P2| +
∣∣P1 \ P ′

1

∣∣ we get p1 = p2 + δ, where δ = ∣∣P1 \ P ′
1

∣∣/n!. That is, δ is the probability
that a random permutation is element of

∣∣P1 \ P ′
1

∣∣. We analyze this event in Lemma 9 using a similar counting argument
as in the proof of Lemma 3.

Lemma 9. Let δ = Pr
[
π ∈ P1 \ P ′

1

]
where π is drawn uniformly at random from the set of all permutations and P ′

1 is defined as in
Lemma 8. It holds that δ = t−1

n
t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1)

.

Proof. The set P1 \ P ′
1 contains exactly those permutations where v2 is in the sampling and A2 accepts v1 as the second

item. Hence, s1 = v2, and there exists an accepted item vx before v1.
Let z ≥ 3 be the rank of s2 = vz and x ∈ [3..z) be the rank of the first accepted element vx . Let π be drawn uniformly at

random. Consider the following sequence of random events.

(i) pos(vx) = i for i ∈ [t..n)

(ii) pos(v1) = � for � ∈ (i..n]
(iii) pos(v2) ≤ t − 1
(iv) pos(s2) ≤ t − 1
(v) All items with positions in [i − 1] \ {pos(s2), pos(v2)} have ranks greater than z.

The above conditions exactly characterize the event π ∈ P1 \ P ′
1 (see also Fig. 3): They ensure that the best two sampling

elements are s1 = v2 and s2 and fix the positions of vx and v1 to be i and �, respectively. Further, all elements before
position i except from s1 and s2 must have ranks greater than z, such that in fact s1 and s2 are the best two elements
in the sampling and no item before vx is selected by A2. Note that we do not need an extra event ensuring that v1 gets
accepted if it comes after the first accept: Since the second accept must beat s1 = v2, the only item with this property is
v1.

The probability for the first four parts (i-iv) is β := 1
n

1
n−1

t−1
n−2

t−2
n−3 . For event (v), we need the probability that the next

i − 3 items, drawn from the set of n − 4 remaining items, all have rank greater than z. As no item from {vz+1, . . . , vn} was
114

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
Fig. 3. Event π ∈ P1 \ P ′
1 considered in Lemma 9.

drawn so far, n − z items of rank greater than z remain. Therefore, by Fact 1 the probability for step (v) is h(n −4, n − z, i −3).
By the law of total probability we obtain finally

δ =
n−1∑
i=t

n∑
�=i+1

n∑
z=3

z−1∑
x=3

β · h(n − 4,n − z, i − 3) = β

n−1∑
i=t

(n − i)
1(n−4

i−3

) n∑
z=3

(z − 3)

(
n − z

i − 3

)
. (17)

The last term can be simplified further. First, we eliminate the sum over z by applying (R1):

n∑
z=3

(z − 3)

(
n − z

i − 3

)
=

n−3∑
z=0

(
z

1

)(
n − 3 − z

i − 3

)
=

(
n − 2

i − 1

)
. (18)

Using Equation (18) in Equation (17) yields

δ = β

n−1∑
i=t

(n − i)

(n−2
i−1

)
(n−4

i−3

) = β

n−1∑
i=t

(n − i)
(n − 3)(n − 2)

(i − 2)(i − 1)

and the claim follows by resubstituting β . �
5.3. Competitive ratio

Finally we can state the competitive ratio of optimistic in the case k = 2. Again, we consider the asymptotic setting
where n → ∞ and t − 1 = cn for some constant c ∈ (0, 1).

Theorem 2. optimistic is 0.4168-competitive for k = 2 assuming t − 1 = cn for c = 0.3521.

Proof. By the relation between optimistic and single-ref proven in Lemma 7 and by Lemma 3, we obtain p2 =
t−1

n

∑n
i=t

1
i−1 . As proven in Lemma 6, this term approaches c ln(1/c) in the asymptotic setting. Further, in Section 5.2 we

showed p1 = p2 + δ where δ = t−1
n

t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1)

. The term
∑n−1

i=t
n−i

(i−2)(i−1)
is bounded asymptotically from above and

below by 1
c − ln 1

c − 1 (see Lemma 13 of Appendix C for a proof). Further, t−1
n

t−2
n−1 = c2 − 1−c

n−1 = c2 − o(1). According to
Lemma 2, the competitive ratio is

1

2
(p1 + p2) = 1

2
(p2 + δ + p2) = c ln

1

c
+ c2

2

(
1

c
− ln

1

c
− 1

)
.

The optimal choice for c is around c∗ = 0.3521 < 1/e, which gives a competitive ratio of 0.4168. �
6. Conclusion and future work

In this work, we investigated two algorithms for the k-secretary problem with a focus on small values for k ≥ 2. We
introduced and analyzed the algorithm single-ref. For any value of k, the competitive ratio of single-ref can be obtained
by numerical optimization. Further, we provided a tight analysis of the optimistic algorithm [8] in the case k = 2.

We see various directions of future work. For single-ref, it remains to find the right dependency between the parameters
r, c, and k in general and, if possible, to find a closed formula for the competitive ratio for any value of k. optimistic seems
a promising and elegant algorithm, however no tight analysis for general k ≥ 3 is known so far. For k = 2, we identified a
key property in Lemma 7. Similar properties may hold in the general case.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
115

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
Appendix A. Optimal parameters for SINGLE-REF

Table A.2
Optimal parameters and corresponding competitive ratios (c.r.) of single-ref for k ∈ [1..100]. For readability, the numeric values are truncated after the
fourth decimal place.

k r c c.r.

1 1 0.3678 0.3678
2 1 0.2545 0.4119
3 2 0.3475 0.4449
4 2 0.2928 0.4785
5 2 0.2525 0.4999
6 2 0.2217 0.5148
7 3 0.2800 0.5308
8 3 0.2549 0.5453
9 3 0.2338 0.5567
10 3 0.2159 0.5660
11 4 0.2570 0.5740
12 4 0.2410 0.5834
13 4 0.2267 0.5914
14 4 0.2140 0.5983
15 4 0.2026 0.6043
16 4 0.1924 0.6096
17 5 0.2231 0.6155
18 5 0.2133 0.6211
19 5 0.2042 0.6261
20 5 0.1959 0.6306
21 5 0.1882 0.6347
22 5 0.1811 0.6384
23 6 0.2054 0.6426
24 6 0.1985 0.6465
25 6 0.1919 0.6502
26 6 0.1858 0.6535
27 6 0.1800 0.6566
28 6 0.1746 0.6595
29 7 0.1947 0.6625
30 7 0.1893 0.6655
31 7 0.1842 0.6684
32 7 0.1793 0.6711
33 7 0.1747 0.6736
34 7 0.1703 0.6760

k r c c.r.

35 7 0.1662 0.6782
36 8 0.1830 0.6805
37 8 0.1788 0.6829
38 8 0.1748 0.6851
39 8 0.1710 0.6873
40 8 0.1673 0.6893
41 8 0.1638 0.6912
42 8 0.1605 0.6930
43 9 0.1750 0.6948
44 9 0.1716 0.6968
45 9 0.1683 0.6986
46 9 0.1651 0.7004
47 9 0.1621 0.7021
48 9 0.1592 0.7037
49 9 0.1563 0.7052
50 9 0.1536 0.7067
51 10 0.1662 0.7082
52 10 0.1635 0.7098
53 10 0.1608 0.7113
54 10 0.1582 0.7127
55 10 0.1557 0.7141
56 10 0.1532 0.7155
57 10 0.1509 0.7168
58 10 0.1486 0.7180
59 11 0.1597 0.7193
60 11 0.1574 0.7206
61 11 0.1551 0.7219
62 11 0.1529 0.7231
63 11 0.1508 0.7243
64 11 0.1487 0.7255
65 11 0.1467 0.7266
66 11 0.1447 0.7277
67 11 0.1428 0.7287
68 12 0.1527 0.7298

k r c c.r.

69 12 0.1508 0.7309
70 12 0.1489 0.7320
71 12 0.1470 0.7330
72 12 0.1452 0.7340
73 12 0.1434 0.7350
74 12 0.1417 0.7360
75 12 0.1400 0.7369
76 12 0.1384 0.7378
77 13 0.1473 0.7387
78 13 0.1456 0.7397
79 13 0.1440 0.7406
80 13 0.1424 0.7415
81 13 0.1408 0.7424
82 13 0.1393 0.7433
83 13 0.1378 0.7441
84 13 0.1363 0.7449
85 13 0.1349 0.7457
86 14 0.1429 0.7465
87 14 0.1415 0.7473
88 14 0.1400 0.7482
89 14 0.1386 0.7490
90 14 0.1372 0.7497
91 14 0.1359 0.7505
92 14 0.1346 0.7512
93 14 0.1333 0.7520
94 14 0.1320 0.7527
95 14 0.1307 0.7534
96 15 0.1381 0.7541
97 15 0.1368 0.7548
98 15 0.1356 0.7555
99 15 0.1343 0.7562
100 15 0.1331 0.7569

Appendix B. Omitted proofs for SINGLE-REF

Lemma 10. Let f : R≥0 → R≥0 with f (i) = i j/(i + y)r+ j and constants j ≥ 0, r ≥ 1, and y > 0. Define z = jy
r . The function f has

the following properties:

(A) f has a global maximum point at z,
(B) f is monotonically increasing on [0, z] and monotonically decreasing on [z, ∞).

Proof. Let g(i) = i j and h(i) = (i + y)r+ j , thus f (i) = g(i)/h(i). For the first derivative of f we obtain f ′(i) = g′(i)h(i)−g(i)h′(i)
h(i)2 .

Since h(i)2 is non-negative for all i ≥ 0, we have

f ′(i) ≥ 0 ⇔ g′(i)h(i) ≥ g(i)h′(i)

⇔ ji j−1(i + y)r+ j ≥ i j(r + j)(i + y)r+ j−1

⇔ j(i + y) ≥ i(r + j)

⇔ z ≥ i .

Hence, f is monotonically increasing on [0, z] and monotonically decreasing on [z, ∞). An analogous calculus shows f ′(i) =
0 if and only if i = z. Therefore, z is a global maximum point. �
Lemma 11. Let f : R → R with f (i) = i j/(i + y)r+ j and constants j ≥ 0, r = 1, and y > 0. The following function F fulfills F ′(i) =
f (i):
116

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
F (i) = ln(i + y) −
j∑

�=1

β�

�
·
(

y

i + y

)�

,

where β� = (−1)�
(j
�

)
for 1 ≤ � ≤ j.

Proof. We have

F ′(i) = 1

i + y
−

j∑
�=1

β�

�
· � ·

(
y

i + y

)�−1

·
(

− y

(i + y)2

)

= 1

i + y
+

j∑
�=1

β� · y�

(i + y)�+1

=
j∑

�=0

β� · y�

(i + y)�+1

=
j∑

�=0

(−1)�
(

j

�

)
· y�

(i + y)�+1

= 1

(i + y) j+1
·

j∑
�=0

(
j

�

)
· (−y)� · (i + y) j−�

= i j

(i + y) j+1
,

where the last inequality follows from the binomial theorem: For all a, b, n ∈ Z it holds that (a + b)n = ∑n
k=0

(n
k

)
akbn−k . �

Lemma 12. Let f : R → R with f (i) = i j/(i + y)r+ j and constants j ≥ 0, r ≥ 2, and y > 0. The following function F fulfills F ′(i) =
f (i):

F (i) = −
∑ j

�=0 α�i j−� y�

α0(r − 1)(i + y)r+ j−1
,

where α� = (j+r−1
�+r−1

)
for 0 ≤ � ≤ j.

Proof. Let G(i) = −
∑ j

�=0 α� · i j−� · y� and H(i) = α0 · (r − 1) · (i + y)r+ j−1 be the numerator and denominator of F (i),
respectively. We derive the first derivatives G ′(i) = −

∑ j
�=0 α� · i j−�−1 · y� · (j − �) and H ′(i) = α0 · (r − 1) · (r + j − 1) · (i +

y)r+ j−2 = H(i) · r+ j−1
i+y . Therefore,

F ′(i) = G ′(i) · H(i) − G(i) · H ′(i)

H(i)2

= G ′(i) − G(i) · r+ j−1
i+y

H(i)

= G ′(i) · (i + y) − G(i) · (r + j − 1)

α0 · (r − 1) · (i + y)r+ j
.

Hence, the claim follows if we can show

G ′(i) · (i + y) − G(i) · (r + j − 1) = i j · α0 · (r − 1) . (B.1)

To show Equation (B.1), we observe

G ′(i) · (i + y) − G(i) · (r + j − 1)

= −
⎛
⎝ j∑

�=0

α� · i j−�−1 · y� · (j − �)

⎞
⎠ · (i + y) +

⎛
⎝ j∑

�=0

α� · i j−� · y�

⎞
⎠ · (r + j − 1)
117

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
= −
⎛
⎝ j∑

�=0

α� · i j−� · y� · (j − �)

⎞
⎠−

⎛
⎝ j∑

�=0

α� · i j−�−1 · y�+1 · (j − �)

⎞
⎠

+
⎛
⎝ j∑

�=0

α� · i j−� · y� · (r + j − 1)

⎞
⎠

=
⎛
⎝ j∑

�=0

α� · i j−� · y� · (r − 1 + �)

⎞
⎠−

⎛
⎝ j∑

�=0

α� · i j−�−1 · y�+1 · (j − �)

⎞
⎠ .

Let S1 and S2 be the first and the second sum in the last expression, respectively. Note that S1 can be rewritten as follows

S1 = α0 · i j · (r − 1) +
j∑

�=1

α� · i j−� · y� · (r − 1 + �)

= α0 · i j · (r − 1) +
j∑

�=1

α�−1 · i j−� · y� · (j − � + 1)

= α0 · i j · (r − 1) + S2 ,

where we used the fact that α�

α�−1
= j−�+1

�+r−1 for 1 ≤ � ≤ j for the second equality. This proves Equation (B.1) and concludes
the proof of the lemma. �
Appendix C. Omitted proofs for OPTIMISTIC

Lemma 13. Assuming t − 1 = cn for c ∈ (0, 1), it holds that

1

c
− ln

1

c
− 1 − o(1) ≤

n−1∑
i=t

n − i

(i − 2)(i − 1)
≤ 1

c
− ln

1

c
− 1 + o(1) .

Proof. The lower and upper bounds follow basically from Fact 2A. For the lower bound, note that (n − i)/i2 decreases
monotonically in i. Therefore,

n−1∑
i=t

n − i

(i − 2)(i − 1)
>

n−1∑
i=t

n − i

i2
≥

n∫
t

n − i

i2
di = ln

t

n
+ n

t
− 1 > ln

t − 1

n
+ n

t − 1
· t − 1

t
− 1

= 1

c
− ln

1

c
− 1 − 1

ct︸︷︷︸
=o(1)

.

The upper bound follows likewise. Observe that

n−1∑
i=t

n − i

(i − 2)(i − 1)
<

n∑
i=t

n − i

(i − 2)2
<

n∑
i=t−2

n − i

i2
=

(
n∑

i=t

n − i

i2

)
+ ξ ,

where

ξ = n − (t − 2)

(t − 2)2
+ n − (t − 1)

(t − 1)2
= o(1) .

Since n+2−i
i2 decreases monotonically in i, we obtain

(
n∑

i=t

n − i

i2

)
+ ξ ≤

⎛
⎝ n∫

n − i

i2
di

⎞
⎠ + ξ = ln

t − 1

n
+ n

t − 1
− 1 + ξ = 1

c
− ln

1

c
− 1 + ξ . �
t−1

118

S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
References

[1] D.V. Lindley, Dynamic programming and decision theory, Appl. Stat. (1961) 39–51.
[2] E.B. Dynkin, The optimum choice of the instant for stopping a Markov process, Sov. Math. 4 (1963) 627–629.
[3] T.S. Ferguson, Who solved the secretary problem?, Stat. Sci. 4 (3) (1989) 282–289.
[4] P. Freeman, The secretary problem and its extensions: a review, Int. Stat. Rev. (1983) 189–206.
[5] M. Ajtai, N. Megiddo, O. Waarts, Improved algorithms and analysis for secretary problems and generalizations, SIAM J. Discrete Math. 14 (1) (2001)

1–27.
[6] T. Kesselheim, A. Tönnis, Submodular secretary problems: cardinality, matching, and linear constraints, in: Proc. 20th International Workshop on Ap-

proximation Algorithms for Combinatorial Optimization Problems and 21st International Workshop on Randomization and Computation, APPROX/RAN-
DOM, 2017, 16.

[7] T. Kesselheim, K. Radke, A. Tönnis, B. Vöcking, Primal beats dual on online packing LPs in the random-order model, in: Proc. 46th Annual ACM
Symposium on Theory of Computing, STOC, 2014, pp. 303–312.

[8] M. Babaioff, N. Immorlica, D. Kempe, R. Kleinberg, A knapsack secretary problem with applications, in: Proc. 10th International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems and 11th International Workshop on Randomization and Computation, APPROX/RANDOM,
2007, pp. 16–28.

[9] S. Albers, A. Khan, L. Ladewig, Improved online algorithms for knapsack and GAP in the random order model, in: Proc. 22nd International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems and 23rd International Workshop on Randomization and Computation,
APPROX/RANDOM, 2019, 22.

[10] M. Babaioff, N. Immorlica, R. Kleinberg, Matroids, secretary problems, and online mechanisms, in: Proc. 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, 2007, pp. 434–443.

[11] O. Lachish, O(log log rank) competitive ratio for the matroid secretary problem, in: Proc. 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, 2014, pp. 326–335.

[12] M. Feldman, O. Svensson, R. Zenklusen, A simple O(log log(rank))-competitive algorithm for the matroid secretary problem, in: Proc. 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, 2015, pp. 1189–1201.

[13] M. Feldman, O. Svensson, R. Zenklusen, A framework for the secretary problem on the intersection of matroids, in: Proc. 29th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2018, pp. 735–752.

[14] N. Buchbinder, K. Jain, M. Singh, Secretary problems via linear programming, Math. Oper. Res. 39 (1) (2014) 190–206.
[15] M. Hoefer, B. Kodric, Combinatorial secretary problems with ordinal information, in: 44th International Colloquium on Automata, Languages, and

Programming, ICALP, 2017, 133.
[16] R.D. Kleinberg, A multiple-choice secretary algorithm with applications to online auctions, in: Proc. 16th Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA, 2005, pp. 630–631.
[17] M. Babaioff, N. Immorlica, D. Kempe, R. Kleinberg, Online auctions and generalized secretary problems, ACM SIGecom Exch. 7 (2) (2008).
[18] C. Kenyon, Best-fit bin-packing with random order, in: Proc. 7th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 1996, pp. 359–364.
[19] O. Göbel, T. Kesselheim, A. Tönnis, Online appointment scheduling in the random order model, in: Proc. 23rd Annual European Symposium on Algo-

rithms, ESA, 2015, pp. 680–692.
[20] M. Mahdian, Q. Yan, Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs, in: Proc. 43rd ACM Sympo-

sium on Theory of Computing, STOC, 2011, pp. 597–606.
[21] B. Bahmani, A. Mehta, R. Motwani, A 1.43-competitive online graph edge coloring algorithm in the random order arrival model, in: Proc. 21st Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA, 2010, pp. 31–39.
[22] T.H. Chan, F. Chen, S.H. Jiang, Revealing optimal thresholds for generalized secretary problem via continuous LP: impacts on online K-item auction and

bipartite K-matching with random arrival order, in: Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2015, pp. 1169–1188.
[23] S. Agrawal, Z. Wang, Y. Ye, A dynamic near-optimal algorithm for online linear programming, Oper. Res. 62 (4) (2014) 876–890.
[24] M. Babaioff, N. Immorlica, D. Kempe, R. Kleinberg, Matroid secretary problems, J. ACM 65 (6) (2018) 35.
[25] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics - a Foundation for Computer Science, 2nd ed., Addison-Wesley, 1994.
119

http://refhub.elsevier.com/S0304-3975(21)00112-2/bibD6A09BCD6B08C0404C08389284578FFCs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib5E2C18600CE61829A075DE405812502Cs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib9C4260B7E08193E8BBC70C334E45003Bs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib2F764619A9513BE0909F0644B462CE7As1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibE52471E534E1B219142B8574014F02D9s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibE52471E534E1B219142B8574014F02D9s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib9F1816F43176B7AA3478861C7E0788B0s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib9F1816F43176B7AA3478861C7E0788B0s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib9F1816F43176B7AA3478861C7E0788B0s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib87148DCF3089ABC1F6D248C9E70E3A6As1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib87148DCF3089ABC1F6D248C9E70E3A6As1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib77A0E23957EA64D16CF1927CA9151FF5s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib77A0E23957EA64D16CF1927CA9151FF5s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib77A0E23957EA64D16CF1927CA9151FF5s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib10E6CB9459807FD200E07E542E924BE3s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib10E6CB9459807FD200E07E542E924BE3s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib10E6CB9459807FD200E07E542E924BE3s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib95C4E1D3419F331D6744FEAEC0CFF7D2s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib95C4E1D3419F331D6744FEAEC0CFF7D2s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib0D8EBBFD315F45C2E45523F0677264FCs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib0D8EBBFD315F45C2E45523F0677264FCs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibC96C7C6B35C5CE18F96D7784CD020B26s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibC96C7C6B35C5CE18F96D7784CD020B26s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibE9CCE9D3B68E71B85B8B4369616F6C3Cs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibE9CCE9D3B68E71B85B8B4369616F6C3Cs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibB0674F88F1EEFBA631F8E9F6531DEAEEs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib8AB3FDB585D3A7F28786A0C343839D3Cs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib8AB3FDB585D3A7F28786A0C343839D3Cs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib38B5111D129294F3F8D73CF3E077BA03s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib38B5111D129294F3F8D73CF3E077BA03s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib09FEC07DE1CF8837D56FDD640054D494s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibA2432227434DB5740A625521CA560039s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib346490D7E0BF29CD8E99DCE144CF5650s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib346490D7E0BF29CD8E99DCE144CF5650s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib3EFB7EC45B9B849E77124A2DCAD843D3s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib3EFB7EC45B9B849E77124A2DCAD843D3s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibF7D82465AF6946332554184912C0368Ds1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bibF7D82465AF6946332554184912C0368Ds1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib591F477D809106FF4925310FFACB5EFEs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib591F477D809106FF4925310FFACB5EFEs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib10189E597852E1A24907E81E2EE0D70Cs1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib1426B31B026381A61CBE444931CA75D1s1
http://refhub.elsevier.com/S0304-3975(21)00112-2/bib0CACF137C175AB8A0DD4904B6893A2EAs1

	New results for the k-secretary problem
	1 Introduction
	1.1 Previous work
	1.2 Our contribution

	2 Preliminaries
	2.1 Notation
	2.2 Random permutations
	2.3 Combinatorics
	2.4 Bounding sums by integrals

	3 Algorithms
	4 Analysis of SINGLE-REF
	4.1 Dominating items
	4.2 Non-dominating items
	4.3 Competitive ratio
	4.4 Dominating items -- asymptotic setting
	4.5 Competitive ratio -- asymptotic setting

	5 OPTIMISTIC for k=2
	5.1 Acceptance probability of v2
	5.2 Acceptance probability of v1
	5.3 Competitive ratio

	6 Conclusion and future work
	Declaration of competing interest
	Appendix A Optimal parameters for SINGLE-REF
	Appendix B Omitted proofs for SINGLE-REF
	Appendix C Omitted proofs for OPTIMISTIC
	References

