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ABSTRACT

Introduction: Proteomic analysis has contributed significantly to the study of the neurodegenerative
disease amyotrophic lateral sclerosis (ALS). It has helped to define the pathological change common to
nearly all cases, namely intracellular aggregates of phosphorylated TDP-43, shifting the focus of
pathogenesis in ALS toward RNA biology. Proteomics has also uniquely underpinned the delineation
of disease mechanisms in model systems and has been central to recent advances in human ALS
biomarker development.

Areas covered: The contribution of proteomics to understanding the cellular pathological changes,
disease mechanisms, and biomarker development in ALS are covered.

Expert opinion: Proteomics has delivered unique insights into the pathogenesis of ALS and advanced
the goal of objective measurements of disease activity to improve therapeutic trials. Further develop-
ments in sensitivity and quantification are expected, with application to the presymptomatic phase of
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human disease offering the hope of prevention strategies.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenera-
tive disease that causes progressive weakness due to death of
ventral horn motor neurons within the spinal cord and pyra-
midal cells of the motor cortical areas [1]. ALS is aggressive,
leading to death within 3 years of symptom onset in most
cases, though its progression is highly variable [1]. Although
most cases of ALS are sporadic, around 10% of cases report
a family history; most of these, and a small proportion of
sporadic cases, are attributable to variants in one of
a handful of genes, though variants in over 40 genes have
been implicated in ALS [2]. Beyond monogenic causes, ALS
shows significant heritability in twin studies, and recent
research indicates an oligogenic contribution to ALS suscept-
ibility [3,4]. ALS has clinical and pathological overlap with
frontotemporal dementia (FTD) and shares genetic risk, pri-
marily through pleiotropic effects of hexanucleotide repeat
expansion in an intronic region of the C9orf72 gene, which
constitutes the most common monogenic cause of ALS [1,5].

The plethora of perturbations in intracellular pathways that
has been implicated through different monogenic causes of
ALS suggests that motor neuron degeneration occurs as the
result of the final common pathway of many upstream mole-
cular alterations such as defects in RNA processing, protein
homeostatic processes, oxidative stress, and cytoskeletal

perturbations [6,7]; epidemiological evidence suggests that
there may be a summation of insults that lead to catastrophic
neurodegeneration [8].

In common with other neurodegenerative diseases, neuro-
nal loss accompanied by insoluble protein inclusions are core
pathological features of ALS, occurring primarily in the motor
cortical regions, brainstem motor nuclei, and ventral horn of
the spinal cord [9]. Our knowledge of major aggregate com-
ponents owes much to proteomics: the identification of TDP-
43 as the major component of inclusions in over 95% of ALS
cases (excepting those with genetic ALS due to SODT or FUS
mutation) and 50% of FTD cases was achieved using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) of
urea-soluble brain fractions [9].

The consequences of this landmark finding shifted etiolo-
gical hypotheses of ALS toward mechanisms in which TDP-43
plays a central role, particularly relating to its functions in
transcription, translation, and splicing, the stress response,
mitochondrial function, and the inherent aggregation proper-
ties of TDP-43 that might contribute to non-cell autonomous
mechanisms of neurodegeneration [6]. It also led to the iden-
tification of mutations in TARDBP, encoding TDP-43, as a cause
of a small proportion of ALS cases, spawned novel ALS disease
models, and led to refocusing of biomarker study toward
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Article highlights

e Proteomics has contributed across the field of ALS in study of post
mortem tissue, disease models and identification of biomarkers

o |dentification of TDP-43 as the major aggregate component in 95% of
cases of ALS was brought about by proteomics as well as identifying
disease-specific truncation and posttranslational modification of TDP-
43

o Proteomics has helped delineate the effects of ALS-causing gene
mutations on protein interactions and in cellular and animal models

e Major advances in ALS biomarkers have come about through the
identification of chitinase protein alterations in cerebrospinal fluid of
ALS patients

e Future advances are likely to include spatial proteomic methods,
improvements in proteomic depth through data independent acquisi-
tion and through the study of ‘at-risk’ populations to understand early
events in ALS

measuring and characterizing full-length, truncated, and phos-
phorylated TDP-43 forms.

Whether ALS occurs through alterations in protein—protein
interactions leading to aberrant stress response, excitotoxicity,
decreases in protein degradation mechanisms leading to
aggregation, changes in axonal transport mechanisms or
gene splicing, or due to non-cell autonomous mechanisms -
as the major biological effector molecules, proteins are impli-
cated in every proposed pathological mechanisms in ALS [6].
Proteomics is therefore ideally placed to disentangle these
mechanisms by providing a platform to identify individual
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Figure 1. Insights into ALS pathophysiology from proteomics.
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protein or coordinated protein network changes [10] that
can be applied to tissue, disease models, and directly in ALS
patients.

This review highlights the contribution of proteomics to
the study of ALS, in pathological tissue specimens, in disease
models, and in the biomarker field (highlighted in Figure 1). It
also discusses the potential future contributions of proteomic
techniques at the leading edge.

2. Proteomics of human tissue in ALS

Proteomic analysis of post mortem tissue from ALS patients
has driven progress in our understanding of underlying dis-
ease mechanisms. Studies using proteomic techniques to ana-
lyze human ALS tissue are summarized in Table 1. Although
protein aggregation has long been recognized as a core
pathological feature of ALS, it was not until the publication
in 2006 of LC-MS/MS analysis of urea soluble, detergent inso-
luble fractions from neuropathological tissue of patients with
ALS and FTD, that TDP-43 was the major aggregate compo-
nent in over 95% of ALS cases, including ubiquitinated, abnor-
mally truncated, and hyperphosphorylated TDP-43 species
[9,11]. Immunoblotting of urea-soluble fractions and immuno-
histochemistry indicates a pattern of full length and truncated
peptides that mostly represent C-terminal peptides at 20-35
kDa in brain tissue from ALS and FTD patients [12]; interest-
ingly, this is a much less consistent finding in spinal cord [13].
Subsequent work has utilized proteomics to further define the
nature of TDP-43 in aggregates.

. Alterations in mitochondrial and
" glycolysis proteins

Protein-protein interaction network
.* alterations for ALS genes:
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- SOD1
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Identification of co-aggregating
proteins
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Table 2. Endogenous TDP-43 truncation peptides identified in tissue proteomic studies in ALS. All peptides show the expected trypsin cleavage site after amino
acids lysine (K) or arginine (R) or chymotrypsin cleavage site after amino acids phenylalanine (F), tryptophan (W), and tyrosine (Y) and one nonspecific cleavage site

suggesting truncation. kDa — kilodaltons.

Study Molecular weight band (kDa)

Peptide sequence Amino acid residues Truncation site

23
23
23
26-28
26-28
23
23
15-20
30-35
30-35
23-25

Feneberg 2021 [20] Chymotrypsin

Nonaka 2009 [21] Trypsin

Kametani 2016 [19] Trypsin

23-25
Chymotrypsin
15-20
23-25

RGVRLVEGILHAPDAGWGNLVY 52-83 N-terminal
VQVKKDLKTGHSKGF 132-147 N-terminal
AFVTFADDQIAQSLCGEDLIIKGISVH 226-256 C-terminal
ISNAEPKHNSNRQLERSGRF 256-275 C-terminal
SNRQLERSGRF 265-275 C-terminal
MDVFIPKPFR 219-227 N-terminal
EDLIIK 247-251 N-terminal
NYPKDNK 75-84 N-terminal
LGLPWK 109-113 N-terminal
LMVQVK 131-136 N-terminal
GDVMDVFIPKPFR 215-226 N-terminal
FGGNPGGFGNQGGFGN 276-291 C-terminal
PGGFGNQGGFGNSR 280-293 N-terminal
LVEGILHAPDAGW 56-68 N-terminal
NYPKDNKRKM 76-85 N-terminal
KLPNSKQSQDEPL 176-188 N-terminal
GSASNAGSGSGFNGG 386-400 C-terminal

Three studies have used proteomic analysis to identify
endogenously truncated TDP-43 peptides by identifying semi-
tryptic or semi-chymotryptic N- and C-terminal TDP-43 pep-
tides (i.e. TDP-43 specific peptides with one non-enzymatically
digested terminus) in urea-soluble fractions from post mortem
tissue of patients with ALS or FTD by in-gel digestion of lower
molecular weight bands [19-21]. Most endogenous truncation
sites were found on the N-terminus of peptides, suggesting
the enrichment of C-terminal TDP-43 fragments, but also
C-terminal truncations were found, broadening the knowledge
of pathological processing of TDP-43 (Table 2).

Measurement of the ratio of C- to N-terminal peptides
using targeted proteomics appears relatively specific for ALS
compared with other neurodegenerative diseases, though
abnormal truncation of TDP-43 is also found in Alzheimer’s
disease cases accompanied by TDP-43 aggregation [22].
Although alterations in the C:N terminal peptide ratio are
not found in ALS spinal cord, concurring with immunoblot
findings [20], measurement of C:N terminal ratio appears to
be a promising approach for biomarker development. A recent
approach using aptamer enrichment prior to quantification to
increase the yield of TDP-43 peptides from post mortem tissue
might improve the sensitivity of targeted analysis of trunca-
tion peptides in biofluids, where such TDP-43 peptides are of
much lower abundance [23].

Proteomic analysis of post mortem tissue has also allowed
the identification of sites of post-translational modification of
proteins involved in ALS, specifically phosphorylation, acetyla-
tion, and ubiquitination of TDP-43 [19]. Although a robust
finding in tissue samples, it has so far not been possible to
reliably recapitulate disease-specific TDP-43 phosphorylation
in biofluids, limiting its application as a biomarker. Disease-
specific phosphorylation sites in neurofilament heavy chain
have also been sought in ALS, though phosphorylation
appears similar in ALS patients and controls [24].

Looking beyond disease-associated protein inclusions,
unbiased analysis of post mortem brain and spinal cord
tissue has been employed to explore broader alterations in
the protein network occurring in ALS. Several studies have
incorporated analysis of brain tissue from patients with ALS

and TDP-43 FTD subtypes. A recent example used LC-MS/MS
analysis of brain tissue of patients with ALS (as well as FTD
subtypes) identified over 50 proteins enriched in the sarko-
syl-insoluble fractions of ALS brain, including a subset of 23
co-aggregating proteins that differentiated ALS from FTD
subtypes, such as the presence of Profilin 1, 26S proteaso-
mal subunit D2, and Tubulin alpha 4 A chain, among
others [11].

Network analysis of prefrontal cortex of ALS, ALS-FTD, and
FTD patients using weighted gene co-correlation network
analysis (WGCNA) has been used to identify coordinated
changes within the protein network in ALS and FTD [25].
This indicated relatively minor changes in pure ALS cases (as
would be expected given the lack of involvement of wider
frontal lobe areas in pure ALS), though a protein co-expression
modaule associated with immune system functioning was upre-
gulated in ALS. Further work to define disruptions at the
proteome level would benefit from the inclusion of additional
CNS tissue regions salient to ALS (such as the brainstem,
thalamus and spinal cord) in order to broaden the under-
standing of regional and mechanistic differences in these
overlapping conditions.

A small number of studies have used proteomics to exam-
ine spinal cord tissue. Recent studies have identified dysregu-
lation of mitochondrial proteins and those involved in
carbohydrate metabolism mRNA splicing and of the neurofila-
ment compartment as well as altered acetylation of glial fibril-
lary acidic protein (GFAP) [26-28]. Spinal cord lysates from
sporadic ALS patients and those carrying a SOD1, FUS, and
C9orf72 variants have been used to explore TDP-43 interacting
proteins, highlighting the role of TDP-43 in RNA processing
and translation, as well as suggesting greater overlap between
TDP-43 interactors in FUS and C9orf72 cases and TDP-43 inter-
actors in SOD1 and sporadic ALS cases than between these
pairings [29].

A small preliminary study employed matrix-assisted laser
desorption-ionization (MALDI) imaging to explore spatial
alterations in protein expression; due to technical limitations,
only a small number of proteins were identified, though
decreased levels of a truncated ubiquitin were observed in
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the ALS group [30]. Preliminary exploration of the feasibility of
using laser capture microdissection of motor neurons from
post mortem tissue has been explored as a means to study
the human motor neuron-specific proteome, though this has
not been applied successfully in comparative study [31].

Another relevant tissue with limited ALS proteomic studies
is muscle. While gene expression studies have used muscle
samples, only a few studies have focused on proteomics in
ALS muscle (Table 1). Given the intensified collection of post-
mortem muscle tissue within ALS biorepository efforts, future
studies to explore the proteome in different muscle tissue
types are warranted and may provide new mechanistic
insights into muscle degeneration that occurs during ALS
and potential new blood-based biomarkers released by
muscle.

3. Proteomic analysis of disease models in ALS

Proteomic techniques have featured in a vast number of
studies of cellular and animal models of ALS, contributing to
the major hypotheses of ALS pathogenesis.

3.1. Alterations in protein-protein interactions in ALS

Defining disease-related alterations in protein—protein interac-
tion networks is an essential aspect of understanding the
pathophysiological processes that lead to ALS, which has
relied heavily upon proteomics. These studies have focused
primarily on TDP-43, extending to other ALS-associated gene
mutations, using immunoprecipitation coupled with mass
spectrometry.

In addition to the aforementioned post mortem tissue study
of the TDP-43 interactome [29], tissue culture models have
examined the effect of ALS-causing A315T and M337V TDP-43
mutations using primary neuronal cultures [32] and cell lines
[33,34] in physiological conditions as well as following oxida-
tive stress, RNA depletion, and DNA damage [35,36]. In addi-
tion to highlighting the multifaceted interactions of TDP-43
with splicing and translation machinery, mitochondrial pro-
teins, and proteins involved in the stress response, this work
has indicated that the TDP-43 interactome is condition-
dependent and altered in the presence of TDP-43 mutations,
with effects on the cellular stress response, translation, and
exosome biogenesis pathways [32,33]. Analysis of the FUS
interactome has highlighted major overlap in the pathway
annotations of FUS and TDP-43 interactors around RNA meta-
bolism and splicing, stress granules, exosomes, and mitochon-
drial proteins [37,38], as well as its involvement in protein
degradation pathways [39].b

Proteomic approaches have studied the interactions of
other proteins implicated in ALS. Systematic analysis using
immunoprecipitation of Ubiquilin 2, FUS, Ataxin 2, C9orf72,
TDP-43, and Optineurin in N2a cells demonstrated common
interactors and overlapping functional annotations, particu-
larly in relation to DNA and RNA binding, ribosomal proteins,
and eukaryotic initiation factors for TDP-43, FUS, and Ataxin 2
interactors and protein homeostatic roles for Ubiquilin 2 and
Optineurin interactors [35]. The protein constituents and inter-
actors of SOD1 aggregates have also been probed using

proteomic techniques. Cytoskeletal proteins, particularly the
intermediate filament protein Vimentin, as well as GFAP and
neurofilament proteins, have been consistently identified in
native spinal cord detergent-insoluble fractions and whole
spinal cord lysate in SODT mouse models [40-42]. Other pro-
teins co-aggregating in SOD1 inclusions in the SOD1°93A
mouse model include proteins involved in glycolysis and mito-
chondrial pathways and chaperones [40], pathways overlap-
ping with those of proteins identified as co-aggregating with
TDP-43 in ALS brain tissue [11].

3.2. Posttranslational modifications

Abnormal ubiquitination and phosphorylation of aggregated
proteins is a core pathological feature of ALS. Proteomic ana-
lysis has provided a platform to study different posttransla-
tional modifications in disease models, specifically focusing on
TDP-43 and FUS in ALS, illustrating interplay between ubiqui-
tylation, phosphorylation, and acetylation, as well as the
importance of posttranslational modifications in the physiolo-
gical behavior of proteins implicated in ALS [43-45]. It has also
revealed a role of less common modifications such as citrulli-
nation in maintaining the physiological function of FUS and
TDP-43 and inhibit aggregation, eventually through
a decrease of binding to proteins relevant for stress granule
formation [46].

Posttranslational modification has also been studied using
proteomics of SOD1 aggregates from G93A and G37R mouse
models, though significant modifications were not identified
[41], at odds with earlier and more recent work demonstrating
ubiquitination and conjugation of short ubiquitin modifier
proteins (SUMOylation) to aggregated SOD1 protein [47,48],
likely reflecting the sensitivity of the mass spectrometry tech-
niques employed. More recently, non-enzymatic deamidation
of asparagine to aspartic acid within a proteasomally cleaved
SOD1 peptide has been identified in the CSF of the SOD71%%3A
rat model, with a corresponding deamidated peptide detected
in the CSF of human carriers (symptomatic and asymptomatic)
of ALS-causing SOD1 variants [49]. Such deamidation has been
shown to accelerate protein fibrillization [50], providing
a potential link to ALS pathogenesis of this common post-
translational modification.

3.3. Proteomics in models of C9orf72 ALS

Current leading hypotheses as to how hexanucleotide
repeat expansion in an intronic region of C9orf72 leads to
neuronal loss and TDP-43 accumulation center on three
potentially synergistic mechanisms: loss of function of
C90rf72 protein due to haploinsufficiency, toxicity due to
sense and antisense repeat RNA transcription products of
the GGGGCC repeat region, and toxicity due dipeptide
repeat proteins formed through repeat-associated non-AUG
translation [51]. Recent work has explored mechanisms of
toxicity of C9orf72 hexanucleotide repeat expansion using
proteomics, including the interactome of dipeptide repeat
proteins, with notably consistent enrichment of ribosomal
proteins across studies, as well as RNA splicing and mito-
chondrial proteins and proteins involved in autophagy and



proteasomal systems detected in the interactomes of the
toxic arginine-containing dipeptides [52-56]. Protein inter-
actors of repeat RNA transcripts have also been identified
using proteomics, with enrichment (perhaps unsurprisingly)
of proteins involved in RNA metabolism and containing RNA
recognition motifs [57].

Mass spectrometry has also delineated the interactome of
C90rf72 protein, demonstrating enrichment for autophagy
proteins, cytoskeletal components as well as ubiquilin 2 and
heterogeneous ribonucleoprotein A1 and A2/B1, proteins
implicated in ALS through rare genetic mutations and roles
in proteostasis, RNA processing, and stress granules; and sepa-
rately enrichment of mitochondrial proteins and chaperones,
providing convergence on TDP-43-associated disease altera-
tions [35,58-601.

3.4. Subcellular compartment alterations

Proteomic analysis of subcellular fractions has been applied
to cellular and ALS disease models based on SOD1 mutation
and overexpression, indicating significant alterations in the
proteome of cell lines, spinal cord and brain tissue of
rodents overexpressing wild-type and mutant SOD1, relating
to multiple pathways including mitochondria, metabolism,
and protein degradation and overlapping with proteomic
evidence from human tissue in sporadic ALS [26,61-65].
Alterations in the nucleocytoplasmic distribution of TDP-43
are a key histopathological feature of ALS, and nuclear pore
complex dysfunction has been observed in ALS models,
particularly relating to C9orf72 ALS [66]. Comparative pro-
teomic analysis of nuclear and cytoplasmic fractions from
a HEK293 (9orf72 hexanucleotide repeat model indicates
a shift in the distribution of proteins involved in RNA meta-
bolism and translation toward the cytoplasm [67].
Alterations in the nucleocytoplasmic distribution of RNA
processing and translation proteins are also observed fol-
lowing TDP-43 knock-down [68], while RNA transport path-
way alterations have been demonstrated  with
overexpression of mutant SOD1, though these alterations
are opposed to those observed in the C9orf72 model [69].

3.5. Stress granules

Proteomic analysis of stress granule cores — membraneless
organelles comprising RNA and protein that form by
liquid-liquid phase separation in response to stress [70] -
indicates a major role for ALS-associated RNA-binding pro-
teins including TDP-43, FUS, and other heterogeneous
ribonucleoproteins (hnRNPs) in stress granule physiology
[71]; stress granule cores are proposed to act as a nidus for
TDP-43 aggregation [72]; time-series proteomic analysis of
stress granule disassembly indicates the importance of
altered SUMOylation in delaying stress granule disassembly
in a Drosophila C9orf72 ALS model [73]. Accordingly,
dipeptide repeat proteins have also separately been
found to interact with stress granule proteins [54].
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A recent study examining the Caprin-1 proteome in stress
granules identified a new hnRNP, SNRNP200, that was also
localized to cytoplasmic aggregates in ALS spinal cord [74].

4. Proteomics of biofluids and the search for ALS
biomarkers

Biofluid-based biomarkers present several potential opportu-
nities in ALS. Although for the most part, the diagnosis of ALS
is not difficult to achieve in the specialist clinic, sensitive and
specific biomarkers have long held promise as a means to
resolve diagnostically challenging ALS cases or enable earlier
nonspecialist diagnosis [75]. Identifying useful biomarkers that
fulfil this promise, however, has proven a major challenge. The
axonal cytoskeletal neurofilament proteins neurofilament light
chain (NFL) and phosphorylated neurofilament heavy chain
(pNFH) have long led on this front [76,77]. Although showing
promising specificity and sensitivity in retrospective and pro-
spective analysis [78-81], the fact that they are nonspecific
markers of axonal degeneration (i.e. are not ALS-specific) and
show relatively modest rises in slower-progressing, harder-to-
diagnose cases, has hampered their translation into clinical
use [82]. ALS has also so far been resistant to combinatorial
diagnostic approaches such as CSF Abeta/Tau ratio in
Alzheimer’s disease [83] or recently developed protein aggre-
gation-based assays such as RT-QuIC in prion diseases and
more recently synucleinopathies [84,85].

A more important role for ALS biomarkers lies in the mea-
surement of underlying disease activity and target engage-
ment in ALS, to support development of novel therapeutics.
Drug trials in ALS currently rely on clinical outcome measures,
primarily functional decline as measured by the revised ALS
functional rating scale (ALSFRS-R), a 48-point score that
declines through the course of the disease [86]. Clinical sta-
ging systems, decline in respiratory function, muscle strength
measures, and survival are also frequently employed [86]. All
of these measures accrue slowly over time, and most are
confounded by subjectivity or effort and consequently require
prolonged follow-up periods with large numbers of partici-
pants to measure change. Driven by the desire to detect
effects while maintaining relatively small sample size and
trial duration, these measures also promote a tendency to
limit trial eligibility to those in early disease stages or with
aggressive disease, in whom change is detectable over a short
timescale; consequently, this may limit the generalizability and
eventually access of patients with less aggressive disease to
effective treatment [87].

Biomarkers represent an opportunity to provide sensitive,
objective, rapidly changing measures that could reduce trial
duration and sample sizes, hastening the therapeutic devel-
opment process while reducing costs and broadening trial
inclusion and providing highly valuable information about
the underlying frequent failure of preclinically promising
drugs in clinical trials [88]. A number of studies have been
performed to evaluate specific proteins as pharmacody-
namic or prognostic biomarkers in ALS model systems or
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patient-derived samples [89-93]. Recent ALS clinical trials
have explored the use of protein biomarkers as pharmaco-
dynamic biomarkers of treatment effect or as inclusion cri-
teria and then monitoring of treatment effect during the
trial [94,95].

The application of proteomic technologies to cerebrospinal
fluid (CSF) and blood from ALS patients has been a staple of
efforts to identify potential ALS biomarkers over the last two
decades. Most proteomic studies have used CSF, due to its
proximity to the CNS cells affected by ALS [96]. The relatively
low content of highly abundant proteins compared to serum and
plasma, reducing the need for depletion methods or separation
approaches, and the lower risk of detecting signals of secondary
systemic metabolic alterations related to the disease (for exam-
ple malnutrition due to swallowing difficulties) are additional
advantages of studying CSF compared with serum or plasma,
though much of the CSF proteome is in fact blood-derived [97].
The obvious disadvantage is, of course, the relatively invasive
approach to CSF sampling when compared to blood.

Most  frequently, bottom-up  shotgun  proteomic
approaches have been employed, though over this time
much of the breadth of proteomic technology has been
applied at some point to the study of ALS. Reproducibility
has been an issue; despite alterations in over 500 proteins
detected over the course of CSF proteomic experiments, only
a handful have been demonstrated in two or more studies and
even fewer have survived external orthogonal validation tech-
niques [98]. Proteomic studies of human biofluid samples in
ALS are summarized in Table 3.

The first mass spectrometric study of CSF in ALS used Fourier
transform ion cyclotron resonance (FT-ICR) of tryptically
digested CSF samples from a small cohort of ALS patients and
healthy controls to produce a classifier based on the resulting
spectrograms [107]. Although this early foray into proteomics in
ALS identified no individual biomarker candidates, it represents
the first mass spectrometric analysis of ALS patient CSF and
foretold the later use of multiple proteomic features as the
basis for classification algorithms; similar machine learning
approaches have been utilized in more recent studies [108].

Subsequent early proteomic biomarker studies in ALS moved
toward surface-enhanced laser desorption-ionization TOF
(SELDI-TOF) mass spectrometry analysis for top-down proteo-
mics of CSF from ALS patients [109-111]. Between these three
studies, some overlap was observed with lower levels of Cystatin-
C detected in all three (and validated using CSF immunoblot) as
well as decreases in Transthyretin in two studies. As the major
constituent of lower motor neuron Bunina body inclusions spe-
cific to ALS, Cystatin-C was of particular interest as a biomarker;
external validation however has subsequently proved contra-
dictory [112,113]. Additionally, in the most recent SELDI-TOF
study [111], incorporating samples from 100 ALS patients and
141 controls, levels of the acute phase protein C-reactive protein
(CRP) were found to be elevated in ALS with confirmatory
enzyme-linked immunosorbent assay (ELISA); although elevated
serum CRP has been associated with worse prognosis in ALS
patients, a recent ELISA validation of CSF CRP levels did not
confirm this finding [114-116].

Two CSF proteomic studies in ALS incorporated 2D gel
electrophoresis to identify differentially abundant proteins in

CSF pools from ALS patients and controls [117,118], with
subsequent matrix-assisted laser desorption-ionization mass
spectrometry or tandem MS identification of differentially
abundant protein spots including upregulation of Alpha-
1-antitrypsin precursor and Zn-alpha-2-glycoprotein, both
demonstrating sometimes contradictory alterations in other
proteomic and immunoassay studies [119-121].

More recent studies have employed LC-MS/MS of individual
or pooled CSF samples, with preanalytical abundant protein
depletion or prefractionation techniques to drive additional
proteomic depth and in some cases isobaric labeling to
enhance quantitative accuracy [28,108].

A major and consistent feature of recent LC-MS/MS proteo-
mic datasets has been the upregulation of a set of related glial
proteins involved in innate immunity, the chitinase proteins, in
ALS. The first recognition of coherent alterations in chitinase
proteins used LC-MS/MS of pooled CSF samples from ALS
patients and controls, identifying a striking upregulation of
the active chitinase Chitotriosidase 1 (CHIT1) alongside eleva-
tion of the two related inactive chitinase proteins Chitinase
3-like protein 1 (CHI3L1 or YKL-40) and Chitinase 3-like protein
2 (CHI3L2 or YKL-39) [122].

Though the authors were unable to orthogonally validate
CHI3L1, subsequent independent proteomic, immunoassay-
based, and enzyme activity studies have consistently indicated
marked elevation of CHIT1 and, to a lesser extent, CHI3L1 and
CHI3L2, in CSF (but not blood) from patients with ALS
[28,108,114,123-128].

Emerging literature in ALS indicates that CHIT1 is primar-
ily produced by microglia [98]; intrathecal injection of CHIT1
leads to microglial activation, astrogliosis, and loss of motor
neurons in rodents [129]. CHIT1 levels correlate with the
rate of functional decline in ALS, a proxy for the aggressive-
ness of disease as well as neurofilament levels [114,126-
128]. CHI3L1, on the other hand, is produced by a subset of
activated astrocytes and correlates more closely with the
burden of upper motor neuron pathology and cognitive
impairment in ALS [114,128]; correspondingly, while CHIT1
levels are markedly increased in ALS but more modestly so
in FTD, CHI3L1 levels show more modest elevation in ALS
and more pronounced elevation in FTD [123]. CHI3L1 is less
closely associated with disease progression, but is similarly
correlated with neurofilament levels when compared with
CHIT1; both CHIT1 and CHI3LT have shown inconsistent
associations with survival as well as inconsistent small long-
itudinal increases [114,124,127,128].

Overall, CHIT1 and CHI3L1 represent a recent major
success for proteomic biomarker discovery in ALS.
Although they do not outperform neurofilaments in terms
of prognostic or classifier performance, they represent dif-
ferent dimensions of the underlying disease process - spe-
cifically microglial and astrocytic activity — that represent
pathways potentially amenable to disease-modifying treat-
ments [114]. Chitinase proteins are therefore well-placed to
measure treatment response in these areas, though it
should be noted that common CHIT1 and CHI3L1 poly-
morphisms leading to alterations in expression are recog-
nized (though do not appear to slow the progression of
ALS) [123,130].
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More recent analyses have used isobaric labeling with
prefractionation to improve proteomic depth in CSF to
quantification of almost 2000 proteins [28,131], identifying
upregulation of the proteins Ubiquitin C-terminal hydrolase
L1, Mictrotubule-associated protein 2, and Glycoprotein
NMB in ALS patients in addition to neurofilament and chit-
inase proteins, validated within-cohort using targeted pro-
teomics and subsequently using single molecule array
(SIMOA), as well as comparing CSF findings with post mor-
tem tissue [28,131]. The comparison of protein level changes
in CSF and tissue contributes to the understanding of the
origin of alterations of the CSF proteome. The upregulation
of neurofilaments in CSF but lower levels in spinal cord
tissue is in agreement with the release of neurofilaments
into the extracellular space by degenerating axons. In con-
trast, neuroinflammatory proteins such as chitinases,
Glycoprotein NMB, and Macrophage-capping protein are
increased in both, indicating elevated tissue expression dur-
ing disease [28].

4.1. Extracellular vesicle proteomics - a window on
intracellular processes in ALS

Extracellular vesicles (EVs) are 50-200 nm structures, including
exosomes and microvesicles, released by virtually all cells,
including neurons and glia of the central nervous system
[132]. Alterations in EV biogenesis pathways have been iden-
tified in cellular models of genetic ALS and implicated as
a potential vector for the intercellular spread of toxic oligo-
mers of TDP-43 [32,133]. EVs are also an attractive target for
biomarker discovery efforts due to their intracellular origin,
potentially opening a window on mechanisms of dis-
ease [134].

However, the low number of EVs in CSF, combined with
the contribution of multiple CNS cell types and the use of
MS-incompatible isolation techniques (such as those invol-
ving polyethylene glycol based precipitation), poses major
challenges to the application of proteomic approaches
[134]. Research in this field applying mass spectrometry
approaches to CSF EVs for biomarker discovery in ALS has
so far been very limited, including one targeted proteomic
study measuring relative exosomal TDP-43 levels, which did
not differ between ALS patients and controls [135], and two
small shotgun proteomic studies, which identified
decreased proteasomal and proteasome-like proteins in
ALS [136], a pathway previously implicated through post
mortem analysis of spinal cord tissue; and increased levels
of the nucleolar protein Novel INHAT repressor [137], both
of which await external verification.

An alluring means to simplify access to CNS biomarkers has
emerged through the analysis of CNS-derived EVs extracted
from serum by immunoprecipitation of EVs carrying the neu-
ronal lineage marker L1CAM [138]. This method has been used
in targeted biomarker development approaches in Alzheimer’s
disease and Parkinson’s disease [139,140]. Whether EVs iso-
lated in this way truly represent a pool of CNS origin is hotly
debated, in part due to expression of L1CAM beyond the CNS
and some evidence indicating that most serum L1CAM is
a cleaved ectodomain [141]. Further work to delineate their

origin and identify more robust means of extracting a relevant
EV population using proteomics would be highly valuable.
Ultimately, a combination of proteomics and transcriptomics
of EVs may provide the optimal ALS-specific biomarker.

4.2. CSF proteomics in the presymptomatic period

The identification of highly penetrant ALS-causing genetic
variants, particularly C9orf72 hexanucleotide repeat expansion
and mutations in SODT, in upwards of 10% of ALS patients has
spawned a cohort of first degree relatives of ALS gene carriers
with known high risk of carrying a developing ALS [5].
Evidence from neurophysiological studies and measurement
of neurofilament and chitinase proteins in asymptomatic gene
carriers suggests that significant neurodegeneration and
microglial activation is detectable only months before symp-
tom onset [125,142-144]. Studying gene carriers during the
period before onset of neurodegeneration therefore offers an
opportunity to define early events preceding neurodegenera-
tion, identify biomarkers that might predict the onset of symp-
toms, or measure presymptomatic therapeutic response,
thereby enabling treatment prior to the onset of symp-
toms [145].

To date, only one proteomic study has addressed this, com-
paring 14 asymptomatic carriers of SODT and C9orf72 mutations
with controls and ALS patients using isobaric tag labeled, pre-
fractionated LC-MS/MS approach [28]. Despite quantifying 1929
proteins, no proteins with significantly differing levels between
gene carriers and non-carriers were identified, perhaps attribu-
table to the relatively small asymptomatic carrier group and the
mixture of underlying gene mutations reflecting multiple path-
way alterations upstream of motor neuron degeneration [28].

4.3. Blood proteomics

Relatively few studies have examined the serum, plasma, or
peripheral blood mononuclear cell (PBMC) proteome in ALS.
Recent studies have used isobaric labeling of brain tissue
alongside plasma samples in order to improve the relevance
of the identified proteome and circumvent the problems of
highly abundant proteins suppressing signal from more low
abundance, potentially more interesting, proteins [146,147].
Consistent themes indicate alterations in complement pro-
teins and apolipoproteins, though reproducibility of individual
findings has been lacking [146-152].

4.4. Proteomics transcending biofluid, pathology and
disease model boundaries

Modern bioinformatic and proteomic techniques offer the cap-
ability to link alterations in the tissue, model, and biofluid pro-
teomes. Proteomic biofluid studies in ALS have generally detected
changes presumed to reflect downstream consequences of neu-
rodegeneration, such as the leakage of neurofilament proteins
from damaged neurons, activation of glial cells, the effects of
synaptic loss, or altered extracellular matrix regulation
[28,108,124]. A handful of studies have attempted to bridge this
gap using pathway analysis [108], network analysis [153], or direct
comparison of post mortem tissue and biofluid proteomic changes



[28,154]. These have identified a degree of overlap between net-
work-level changes in the CSF proteome with RNA processing,
cellular stress, and metabolic pathways identified in ALS models.
Detecting clear perturbations of these pathways in the biofluid
proteome that could find clinical use has not yet occurred.

5. Expert opinion

Proteomic analysis has cut across the field of ALS research. It
has redefined our understanding of the molecular histopatho-
logical hallmarks of ALS and diverted the course of scientific
study accordingly [9]. As outlined herein, proteomics has also
highlighted pathophysiological mechanisms of ALS, including
alterations in protein—protein interaction networks brought
about by ALS-associated genetic variants, the importance of
proteins implicated in ALS in the cellular stress response, and
widespread changes in nuclear and cytoplasmic proteomes.
Recent proteomic studies have identified major biomarkers
capable of quantifying different dimensions of the disease
and linked findings from disease models and post mortem
tissue with alterations in the protein network in patient CSF.

Many techniques have been utilized, including a range of
preanalytical methods, ionization and separation methods, mass
spectrometers, and bioinformatic approaches [155]. Within the
field of mechanistic study, proteomics has provided highly valu-
able insights into the consequences of ALS gene mutations and
pathways involved in ALS, though interpretation is necessarily
tempered by the types of model used, particularly in relation to
overexpression models and the use of SOD7 mutation-based
models, which, given the pathological differences between
SOD1 and other familial and sporadic ALS forms, may not be
a faithful reflection of upstream biological differences leading to
sporadic ALS [156]. Given alterations in gene transcription, trans-
lation, and metabolic pathways in ALS, it would be well-suited to
multi-omic analysis, integrating proteomic, transcriptomic and
metabolomic datasets together, which has been thus far limited
in ALS [157,158].

Proteomics of pathological tissue and disease models
stands to benefit from spatial proteomic techniques such as
MALDI imaging, which have so far found limited use in ALS
research [30,159,160], in order to resolve compartmentalized
aspects of ALS pathology. Techniques to separate tissues and
enhance the purity of in vitro models, such as laser capture
micro-dissection and fluorescence-activated cell sorting
(FACS), offer additional means to decipher changes occurring
within individual cell types and their relative contribution to
the disease process [161], which could in future be further
enhanced by nascent single cell proteomics [162]; newer tech-
niques such as MALDI-2 mass spectrometry promise subcellu-
lar compartment resolution [159]. Newer technologies that use
multiplex immunofluorescence microscopy data from up to 40
different proteins could also enable spatial resolution of many
proteins within the same tissue sample [163].

Within the biomarker field [,], reproducibility of proteomic
discoveries has been a major problem, driven in part by the
issues of inconsistent preanalytical sample handling, the sto-
chastic nature of data dependent acquisition (DDA) proteomic
pipelines and the heterogeneity of the disease [164,165]. In
the last decade, however, consistent signals in the chitinase
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proteins have been demonstrated initially in proteomic and
subsequently immunoassay studies [114,122-124,126].
Elevated levels of neurofilament proteins, initially identified
in candidate-driven immunoassay studies, have also been
identified with increasing consistency in recent proteomic
studies, particularly Neurofilament medium polypeptide,
which has so far been neglected by target-driven studies
[28,108,131]. Chitinase proteins, particularly Chitotriosidase 1,
represent a major success for proteomic biomarker develop-
ment and are now front-running ALS biomarkers; though they
have not improved upon the classifier or prognostic perfor-
mance of neurofilament proteins, they encapsulate alternative
dimensions of the disease process so might find use in drug
trials targeting glial mechanisms or through the eventual
advent of personalized treatment of ALS. Identifying ALS-
specific biomarkers, such as those based on disease-
associated truncated or posttranslationally modified forms of
TDP-43, remains a major challenge to which targeted proteo-
mic methodologies could offer solutions in future [12].

The multiplex nature and absolute quantitative capabilities
of targeted mass spectrometry, protein arrays, and aptamer-
based proteomics would also be highly suitable for a panel
approach to biochemical diagnosis of ALS, though a suitable
set of proteins remains elusive [23,166,167].

Defining the biochemical landscape in the preclinical per-
iod in ALS gene carriers is a major challenge that looms large
[145]. Antisense oligonucleotide therapies targeting the com-
mon gene mutations in ALS have reached the clinical trial
arena in symptomatic patients [94]. Asymptomatic gene car-
riers probably have the most potential to benefit from these
treatments, but the unpredictable age of onset, even in
genetic cases, high costs, and the invasiveness of intrathecal
treatment are major barriers to use in this group [145].
Proteomics is ideally placed to identify biomarkers of treat-
ment response or predict symptom onset that could help to
remove this barrier by enabling better timing and monitoring
of treatment. Detecting subtle proteomic changes in this
group, though, will require major improvements in proteomic
depth, quantitative accuracy, and large longitudinal cohorts.
Some of this may occur by improving the relevance of the
proteome of study, for example using analysis of CSF or
neuronal-derived serum EVs, or through advances in proteo-
mic approaches such as data independent acquisition meth-
odologies, which have been seldom used in the ALS field to-
date.

The goals of ALS biomarker studies are to provide insights
into disease mechanisms and biomarkers that are useful in
drug development and clinical trials. Continued studies that
incorporate biomarkers in ALS drug development programs
and clinical trials will generate the data necessary for regula-
tory agencies to accept biomarkers in their decision-making
processes regarding new treatments for ALS.
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