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Abstract

In many safety-critical computer vision applications, it is mostly desired to seek
the optimal solutions with provable guarantee in presence of noise and outliers,
since local optimums may lead to serious failures. Therefore, in this thesis,
globally optimal solutions for unit-norm constrained computer vision problems
are investigated. Specifically, the globally optimal solutions are provided by
the branch-and-bound algorithm, which is a deterministic global optimization
algorithm. Moreover, to obtain global optimums for unit-norm constrained
optimization problems, we explore the geometry of the unit-norm constraint and
introduce a general inequality for n-sphere.

Based on the introduced general inequality and the branch-and-bound algorithm,
three different unit-norm constrained computer vision tasks are studied to seek
globally optimal solutions in this thesis. Specifically,

1. Globally optimal solution for estimating vertical direction from the Atlanta
world. This work is about globally estimating the unique vertical direction
in Atlanta world. Compared with the state-of-the-art methods, it has
two advantages: (1) avoiding the curse of dimensionality in Atlanta world;
(2) avoiding manual adjustment of the number of horizontal directions.
Methodologically, the contributions are mainly as follows: (1) A novel
global searching method for estimating vertical direction is proposed. It is
different from conventional rotation search. Since the domain of the vertical
directions is inherently in the unit sphere, the proposed searching method
is more efficient in vertical direction estimation. (2) Three novel different
bounds for branch-and-bound algorithm are derived. To the best of our
knowledge, it is the first to propose such bounds in the unit sphere to the
structural world frame estimation problem.

2. Globally optimal solution for camera orientation estimation from 2D-3D
line feature correspondences. This work is concerned with the problem of
estimating camera orientation from a set of 2D /3D line correspondences,
which is a major part of the Perspective-n-Line (PnL) problem. The
RANSAC algorithm is the de facto standard for solving outlier-contaminated
PnL problems. However, RANSAC cannot produce a reasonable result
with a provable guarantee. Therefore, a PnL algorithm that could obtain
a certifiably optimal solution from outlier-contaminated data is highly
needed. We take a big step towards this goal. Specifically, we first decouple
camera orientation and position, then a globally optimal camera orientation
estimation algorithm is investigated.



Abstract

3. Globally optimal solution for camera relative pose estimation with known
vertical direction. Recently, there has been a surge of interest in using prior
gravity direction to solve traditional robot vision problems. However, most
of them focus on solving outlier-free problems. To obtain a robust solution
from outlier-contaminated inputs, we propose a globally optimal algorithm
for relative pose estimation with known gravity direction. The proposed
method employs the branch-and-bound algorithm to solve a consensus
maximization problem, and thus it is able to obtain the global solution with
a provable guarantee. The proposed algorithm has important potential to
be used in some safety-demand applications.
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Zusammenfassung

In vielen sicherheitskritischen Computer Vision Anwendungen ist es erwiinscht
nachweisbar optimale Losungen mit einer Optimalitatsgarantie bei vorhandenem
Rauschen und Ausreiflern in den Daten zu finden, da lokale Optima zu gravieren-
den Ausfillen fiihren kénnen. Deswegen, erforscht diese Dissertation global opti-
male Losungen fiir Unit-norm Constrained Computer Vision Probleme. Genauer
gesagt werden die global optimalen Losungen mithilfe eines Branch-and-Bound
Algorithmus, welcher ein deterministischer global optimaler Optimierungsalgo-
rithmus ist, gefunden. Des Weiteren, untersuchen wir die Geometrie der Einheit-
snormbeschrankung und stellen eine generelle Ungleichung fiir die n-Domaine
vor, um globale Optima fiir Einheitsnorm-beschréankte Optimierungsprobleme zu
erhalten.

Basierend auf der vorgestellten generellen Ungleichung und dem Branch-and-
Bound Algorithmus, werden in dieser Dissertation drei verschiedene Einheitsnorm-
beschrankte Computer Vision Aufgaben beziiglich global optimaler Losungen
untersucht. Insbesondere:

1. Eine global optimale Losung zu Abschéatzung der vertikalen Richtung aus
der Atlanta Welt. Diese Arbeit befasst sich mit der globalen Abschétzung
der eindeutigen vertikalen Richtung in der Atlanta Welt. Verglichen mit
anderen Methoden auf dem Stand der Technik gibt es zwei Vorteile: (1) Der
Fluch der Dimensionalitét in der Atlanta Welt und (2) manuelles Anpassen
der Anzahl der horizontalen Richtungen werden vermieden. Die Arbeit leis-
tet folgende Beitrage zur Forschung: (1) Eine neue globale Suchmethode zur
Abschitzung der vertikalen Richtung wird vorgeschlagen. Diese Suchmeth-
ode unterscheidet sich von konventionellen Rotationssuchen. Da die Doméane
der vertikalen Richtungen inhéarent die Einheitskugel ist, ist die vorgestellte
Suchmethode effizienter darin die vertikaler Richtung abzuschétzen. (2) Drei
neue unterschiedliche Branch-and-Bound Algorithmen werden abgeleitet.
Nach unserem besten Wissen ist dies der erste Vorschlag fiir derartige
Schranken in der Einheitskugel fiir das structural world frame estimation
Problem.

2. Eine global optimale Losung fiir die Abschétzung der Kameraorientierung
mithilfe von 2D-3D Linienkorrespondenzen. Diese Arbeit beschéaftigt sich
mit dem Problem der Abschitzung der Kameraorientierung mithilfe einer
Menge von 2D-3D Linienkorrespondenzen. Dies ist ein wesentlicher Teil
des Perspective-n-Line (PnL) Problems. Der RANSAC Algorithmus ist
die de facto Standardlosung fiir PnL. Probleme mit Ausreiflern. Allerd-
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Zusammenfassung

v

ings liefert RANSAC keine sinnvollen Ergebnisse mit nachweisbarer Op-
timalitatsgarantie. Deswegen besteht Bedarf fiir einen Pnl. Algorithmus,
welcher eine nachweisbar optimale Losung fiir Daten mit Ausreiflern erzielt.
Wir gehen einen grofien Schritt in Richtung dieses Ziels. Konkret entkoppeln
wir erst die Kameraorientierung und -position und ermitteln dann einen
Algorithmus zur global optimalen Abschéatzung der Kameraorientierung.

. Eine global optimale Losung fiir relative Kamerapositionsabschitzung mit

bekannter vertikaler Richtung. In letzter Zeit wuchs das Interesse daran
Vorwissen tiber die Gravitationsrichtung zu verwenden um traditionelle
Robot Vision Probleme zu losen. Allerdings liegt der Fokus der meisten
Methoden darauf ausreiflerfreie Probleme zu losen. Um robuste Losungen
von Inputdaten mit Ausreiffern zu erhalten, stellen wir einen global opti-
malen Algorithmus fiir relative Kamerapositionsabschatzung mit bekannter
Gravitationsrichtung vor. Die vorgeschlagene Methode verwendet den
Branch-and-Bound Algorithmus um ein consensus maximization Problem
zu 16sen und ist deshalb in der Lage eine global optimale Losung mit nach-
weisbarer Optimalitatsgarantie zu erzielen. Deshalb hat der vorgeschlagene
Algorithmus Potential zur Verwendung in sicherheitskritischen Anwendun-
gen.
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Chapter 1
Introduction

1.1 Safety-Critical Systems and Computer
Vision Algorithms

A safety-critical system(or life-critical system) [1-3] is a system whose failure or
malfunction may lead to consequences that are determined to be unacceptable [1].
For example, self-driving system [4,5] is a typical safety-critical system, because
if we cannot provide the safety guarantee for the system, it might lead to very
serious failures, even the death or serious injury to people [6,7]. According to
the news reports(see Fig. 1.1 [8]), as of Dec. 2021, there have been 10 verified
fatalities involving Tesla’s Autopilot, which is a famous self-driving system, and
we can see the details from this webpage!. Therefore, to meet the safety demand,
the safety-critical systems need extremely reliable solutions. Accordingly, the
optimization algorithms in safety-critical systems should provide the provably
optimal solutions with guarantees [9].

Figure 1.1: A Tesla electric car crashed into a highway barrier, California, on March
23, 2018 and investigators confirmed that Autopilot was partially to blame.

Computer vision, which is an important field of artificial intelligence (Al),
seeks to develop techniques to help computer systems derive meaningful infor-
mation from visual inputs [10,11]. Nowadays, computer vision techniques play
an increasingly important role in many modern tasks, such as intelligent traf-
fic systems [12,13], robot systems [14, 15], assisting in medical diagnosis and

https://www.tesladeaths.com/
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Chapter 1 Introduction

treatment [16-18]. Naturally, the computer vision techniques are also widely
applied in many safety-critical systems [5]. For example, there are many computer
vision algorithms have been proposed to solve various visual perception prob-
lems in self-driving systems [4,19], such as semantic segmentation [20], motion
estimation [11,21] and object detection [22,23].

(a) Given two images of a scene, one important task is to estimate the relative camera pose.

[ s 1 i
= = = == 7 — v
. ‘ 3 bt ;‘ - 1 ) y 4

e relative pose can be solved from the established correspondences according to epipolar

b) The relati be solved f the established d ding t ipol
geometry [11]. '+’ denotes the salient point feature. Green lines denote the feature
correspondences.

(c) In real applications, mismatches are not able to be avoided and they may bias the estimation
results significantly. '+’ denotes the salient point feature. Green lines denote the true
feature correspondences and red lines denote the mismatches.

Figure 1.2: Relative pose estimation in visual perception subsystem for self-driving
car. In real applications, extremely reliable visual perception algorithms
are highly needed to obtain the optimal solutions from the given outlier-
contaminated input data [24].

In order to explain the role of computer vision techniques in safety-critical
systems, we take the motion estimation in the self-driving system for example.
Specifically, a calibrated camera is mounted on a moving car and it will record
the visual images of environment surrounding the car. The task is to estimate
the relative pose of the moving camera and thereby the self relative motion of
the car from the images obtained by the calibrated camera. It is one of the
core parts for visual perception subsystem of the self-driving system [25]. It
should be mentioned that many high-level planning and decision in self-driving
system highly rely the information provided by visual perception subsystem. If
a bad motion estimation solution is given, the self-driving system may make a
inappropriate decision, which may lead to very serious failures [9]. Therefore, to
meet the safety demand, it is highly needed that the computer vision algorithms
should provide correct solutions with provable guarantee.



1.2 Robust Objective Functions

Typically, to estimate the relative pose from two given images, the first step
is to establish the correspondences of the salient features(e.g., keypoints) in
the two images(see Fig. 1.2). Once the correspondences are established, the
relative pose can be efficiently solved by classical computer vision algorithms,
such as 5-point algorithm and 8-point algorithm [11,26,27]. However, in real
applications, it is almost impossible to have the feature correspondences without
mismatches [28](see Fig. 1.2). Theoretically, the mismatches can be considered as
the infamous outliers in robust estimation problems [29-31]. It is well known that
even one outlier can bias the estimation results significantly [32,33]. To obtain
the robust solution in the presence of outliers, robust estimation algorithms
are needed to be explored. The de facto standard, which can return robust
solution from outlier-contaminated inputs, is to embed outlier-free algorithms
into RANSAC(RANdom SAmple consensus) framework [11,34]. Unfortunately,
RANSAC is a non-deterministic algorithm and it will provide a reasonable result
only with a certain probability [35]. In other words, RANSAC may provide an
unsatisfactory solution occasionally [29]. Consequently, the visual perception
subsystem may return incorrect information, which thereby may be a risk for the
self-driving system. Therefore, it is highly needed that the relative pose estimation
algorithm can exact the extremely reliable solution from the outlier-contaminated
correspondences. From the perspective of optimization, it is demanded to obtain
the optimal relative pose with provable guarantee [29].

In summary, the computer vision technologies are widely applied in safety-
critical systems, especially as the core parts in many visual perception subsystems,
which certainly need to provide safety guarantee. However, the existence of
outliers, which are almost unavoidable in real applications, will introduce the
risks to safety-critical systems. Unfortunately, traditional computer vision algo-
rithms usually cannot provide the correct solutions with provable guarantee from
outliers-contaminated inputs [29]. Therefore, in this thesis, we explore globally
optimal solutions to some computer vision problems for safety-critical applications.
Specifically, the globally optimal algorithm is deterministic global optimization
algorithm [36], which can provide the optimal solution with theoretical guarantees
that the reported solution is indeed the global one (the best one).

1.2 Robust Objective Functions

In practical computer vision applications, it is rare that the input measurements
are perfect. Noise and outliers are usually unavoidable and they are usually
everywhere [29]. In addition, the outlier may introduce serious risks to visual
perception system. A natural idea is to reject or remove all the outliers in
advance and then to estimate parameters [29,37]. However, it turns out the idea
is mathematically intractable. The authors in [30] point that even for a simple
linear instance of outlier rejection is inapproximable:
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In the worstcase, there exist no quasi-polynomial algorithm that can compute
(even an approzimate) solution to the outlier rejection problem. [30]

It is should be mentioned that this conclusion does not imply that we cannot
remove all the outliers. It emphasizes that removing all the outliers is inefficient,
i.e., it is time-consuming. Theoretically, removing outliers in advance is actually
as difficult as solving the original outlier-robust estimation problem [29,30].

(a) False point correspondences (mismatches) can be con- (b) Epipolar geometry. R € SO(3)
sidered as outliers and usually cannot be avoidable. and t are to-be-solved relative
pose.

Figure 1.3: Epipolar geometry in relative pose estimation.

Since rejecting outliers is inapproximable, to obtain robust solution, the outliers
should be suppressed. Mathematically, the real input measurements {m,;}, can
be modeled as [38]

_ gt . . . .
m; =m; + k;, if m,; is an inlier
{ ‘ (1.1)

m; = o0;, if m; is an outlier

where m?" is a true measurement and K, is the inlier measurement noise [38]; o;
is an outlier, which may be arbitrarily far from the true measurement. Note that
0;, k; and m; are the same data structures.

For example, in relative pose estimation, let {p;, g;}}2, denote the keypoint
correspondences, which may include mismatches(see Fig. 1.3). R € SO(3) and ¢
are to-be-solved relative pose. According to epipolar geometry [11], the residue
for absolutely true correspondence is

ri (pi, @) = |pi [t]xRa;| = 0 (1.2)

where [t]« is the matrix representation of the cross product with ¢, and | - |
is absolute value function. In practical applications, given a reasonable inlier
threshold e, we can define

(1.3)

r; =|p! [t|xRg;| < e , correspondence {p;, q;} is inlier
r; =|p! [t|«Rg;| > ¢ , correspondence {p;, q;} is outlier
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Notably, the noise is usually modeled as additive white Gaussian noise [39,40].
M-estimation [41], which is generalizing maximum likelihood estimation, is usually
applied to suppress Gaussian noise and estimate the parameters [42].

M

minz,o(ri (pivqi)> (1-4>

=1

where p(-) is an M-estimator function. Typical M-estimators are shown in
Fig. 1.4 [43]. It is well known that, in Fig. 1.4(a), the least square estimator is
not robust to outliers. In contrast, the redescending estimators [44] (b) and (c)
are more robust to outliers.

residual residual

(a) Least square (b) German-McClure (c) Blake-Zisserman

Figure 1.4: Typical M-estimators. (a) Least square loss function p(z) = z2. (b)

2
2
German-McClure loss function p (z) = 1$+/ 5- (c) Blake-Zisserman loss
x
function p(z) = —log <e_x2 + 60), where ¢ is a to-be-tuned parameter.

Specifically, to suppress outliers, the robust M-estimators attempt to reduce
the influence of outliers. Therefore, the minimum solution of Eq. (1.4) is the
to-be-solved relative pose. In other words, relative pose estimation problem can
be modeled as a optimization problem, whose minimum solution is the optimal
relative pose. Unfortunately, the robust objective functions constructed by the
redescending estimators are usually non-convex, which means there are many
local optimums in solving robust objective functions [29]. The standard algorithm
to find the maximum likelihood estimation is iteratively reweighted least squares
(IRLS) [45,46]. However, IRLS only guarantees to find a local optimum [29,43],
which may be unacceptable in real applications.

In fact, there are two sub problems here: (a) which measurements are inliers?
(b) what are the to-be-estimated model parameters? If we can solve one sub
problem, then we can solve the other one. However, both sub problems are
unknown, which is a well-known chicken-and-egg problem [47]. Usually, expecta-
tion maximization(EM [48]) type algorithms are applied to solve chicken-and-egg
problems [49]. Specifically, the key idea of EM-type methods is that it starts
from an initial solution and solves the original problem by alternately solving
the two sub problems. Notably, IRLS can be considered as one of EM type
algorithms [50]. It starts from an initial model parameters (usually returned by
ordinary least square method) to determine which observations are inliers with a
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soft “weight”, then it alternatively solve “model parameters” and “weight of each
observations” problems until convergence. Theoretically, EM-type algorithms
are local methods, which guarantee to return a local optimum, which maybe an
unsatisfactory solution for real safety-critical applications [49,51]

Consensus Maximization. In addition to robust M-Estimators, there are
still many robust loss functions, which are able to suppress outliers. One of the
most widely applied robust objective functions is inlier set maximization [52, 53],
also known as consensus maximization [29,54]. Mathematically, we can think
that the consensus maximization applies the 0-1 loss function

o) = {1’ ol < e (15)

0, others

For example, in relative pose estimation, the objective function (i.e., inlier
maximization) can be formulated as

M
max Y _1(ri (pi,q;) < ¢) (1.6)
i=1
where I(+) is a indicator function, which returns 1 if the inner condition is true
and return 0 otherwise.

Compared to other robust objective functions that utilize other robust loss
functions, consensus maximization is easier to use. Specifically, it can distinguish
inliers and outliers by the inlier threshold ¢ and maximizes the count of inlier
measurements. Therefore, consensus maximization has been very popular in
many computer vision problems due to its simplicity [29]. In this thesis, to obtain
the robust solution from outlier-contaminated inputs, we also use consensus
maximization to construct the robust objective functions.

Usually, consensus maximization is quite easy to be formulated in various
applications, however, it is non-smooth, which means it is difficult to obtain
its optimum by traditional gradient based optimization algorithms. To solve
consensus maximization, the de facto standard is RANSAC [29]. RANSAC is a
heuristic global optimization method and it is able to avoid being trapped in local
optimum. However, RANSAC can only provide a reasonable solution only with
a certain probability. Specifically, RANSAC repeatedly samples minimal /non-
minimal [55,56] subset and solves the candidate solutions from the sampled
subset. In the meantime, every candidate solution can be applied to calculate
the inlier number. RANSAC takes the best candidate solution, which obtains
maximum inlier number, as the final solution. Evidently, the randomized nature
of RANSAC does not provide an absolute certainty whether the obtained result
is a satisfactory solution [57].

1.3 Globally Optimal Solutions

For the computer vision algorithms in safety critical systems, the provable safety
guarantees are usually desired [9,58]. From the perspective of optimization,
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to ensure the safety guarantee is to obtain the global optimums with provable
guarantee. Being trapped in local optimums should be prohibited since the local
optimums may be an incorrect solution, which is unacceptable [59]. For example,
it is highly needed in self-driving cars to obtain the global optimal motion esti-
mation [52], since the local optimum may lead to a serious failure [9]. From view
of optimization, if the problem can be formulated as a convex problem, then the
only-one local optimum must be the global optimum [60]. Many classical local op-
timization methods are sufficient to obtain the optimal solution. However, in real
applications, noise and outliers are unavoidable. To suppress the corrupted data,
the robust non-convex objective functions should be formulated. Consequently,
there are usually many local optimums in the non-convex problems. If the initial
start point is not properly set, local optimization methods might be trapped in
the local optimums, which may lead to serious failures in some safety-critical
applications. Therefore, globally optimal algorithms are highly needed to find
the global solution to meet safety requirements in some applications. The whole
mind flow chart is shown as Fig. 1.5.

A\ 4

Unavoidable,

Noise and outliers |¢=—— i
Bad solutions

v

To suppress outliers r

Non-convex
—L Robust objective !

Local optimums

F 3

A A

To avoid local optimums —ant
=r Gloablly thlmal Global optimum

L solution

v

Figure 1.5: A flow chart for our motivation.

Notably, the globally optimal solutions in this thesis are usually meaning de-
terministic global optimization [61,62], which is different from non-deterministic
global optimization (e.g., multistart type methods [63] and genetic type algo-
rithms [64]). Typically, non-deterministic global optimization algorithms (e.g.,
RANSAC) can avoid being trapped in local optimums. But they will converge in
probability to the global optimum. Theoretically, only if the runtime is unlimited,
which is unrealistic, the probability that finding the globally optimal optimum by
non-deterministic global optimization algorithms can increase towards 100%. In
contrast, deterministic global optimization algorithms have a theoretical guarantee
of convergence to the globally optimal optimum.

In fact, due to the significance of global optimum in practical safety-critical
applications, obtaining the globally optimal solution has become a hot research
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topic in computer vision filed [29]. There have been many globally optimal
solutions are proposed in many visual perception applications. For example,
tracking objects [65], point set registration [66-68|, simultaneous camera pose
and feature correspondence [52,69], camera calibration [70,71] and event camera
motion estimation [72,73].

1.4 Unit-Norm Constrained Problems

Arguably, many computer vision algorithms are proposed to extract mathematical
information from the input measurements [74], such as target point location in
object tracking, rigid pose in target pose estimation, and weight parameters in
deep neural networks [75-77]. Roughly speaking, the mathematical information
that is expected to be estimated in various real applications should satisfy
some physical constraints. For example, there will be a reasonable range for
target location in object tracking. More strictly, there will be a famous epipolar
constraint in estimating relative pose from two-view images [11]. More generally,
if the mathematical information to be sought should satisfy some geometrical
constraints, which arise from the physical properties of the scene, these computer
vision problems are called geometric vision problems [58]. Typically, the geometric
vision problems are focused on exploring the fundamental geometrical constraints,
and they are a broad subclass of computer vision problems.

Geometric vision problems

(1) Atlanta world frame (2) Camera orientation (3) Relative pose
estimation estimation estimation

Figure 1.6: Unit-norm constrained computer vision problem is a special geometric
vision problem. Three visual perception problems, which are investigated
in this thesis, are all unit-norm constrained problems.

In this thesis, we mainly focus on unit-norm constrained computer vision
problems, which are widely distributed in computer vision filed. Actually, we
can also think that the unit-norm constraint is a special geometric constraint,
since the unit-norm constraint can be considered as a unit sphere constraint. The
relationship is illustrated as Fig. 1.6. Unfortunately, geometric vision problems
are fulfilled with difficult optimization problems [58]. Notably, exactly solving
some of geometric vision problems(i.e., obtaining the global optimum) are even
inherently intractable [29]. For example, exactly solving consensus maximization
for robust linear model fitting is NP-hard [78]. More pessimistically, it shows
that solving consensus maximization for robust linear model fitting is impossible
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to approximate, in other words, there are no polynomial time algorithm that
computes an approximation solution efficiently [30, 78].

Although unit-norm constrained computer vision problems can be considered
as special geometric problems, they have many special properties. In this thesis,
we explore these special properties of the unit-norm constraint and propose
globally optimal solutions for some typical unit-norm constrained computer vision
problems. One thing should be mentioned is that the unit-norm constraint can
be considered that the solution domain of the optimization problem is in the
unit (hyper-)sphere, which is certainly non-convex (see Fig. 1.7). Therefore, an
optimization problem with unit-norm constraint should be non-convex problem(no
matter if the objective function is convex or not) [60]. Generally, solving a
non-convex problem is NP-hard [79]. However, fortunately, solving a specific
non-convex problem does not necessarily mean that it must be difficult [80].

/]

N

(a) convex region (b) non-convex region (¢) non-convex region

Figure 1.7: Unit-norm constraint is non-convex. The region is convex if the segment
between any two distinct points of the region is completely included in the
region. (a) and (b) are typical convex and non-convex region, respectively.
(c) Evidently, the unit-norm constraint(e.g., circle edge) is not convex.

Specifically, in this thesis, globally optimal solutions are explored for three
applications:(1) vertical frame direction estimation in Atlanta world; (2) absolute
camera orientation estimation from line correspondences; (3) relative pose estima-
tion with known gravity direction. They are all unit-norm constrained computer
vision problems, and they share many similar properties.

World frame estimation in Atlanta world [81]. In man-made environ-
ments, most of the objects and structures are usually organized in the form of
orthogonal and parallel planes. Atlanta world makes an assumption that the
man-made scene can be modeled by a horizontal plane (e.g., ground plane) and
many vertical planes (e.g., buildings and walls). The normals of the planes, which
are called world frames, can describe the scenes abstractly. In other words, one
vertical frame and multiple horizontal frames could represent Atlanta world. It
is a crucial step to estimate these vertical and horizontal frame directions in
computer vision applications, which is named Atlanta frame estimation. It could
be utilized as key modules for various high-level vision applications. Notably,
there is an interesting property that all horizontal frames are in a plane and the
vertical frame is parallel to the normal of the plane(see Fig. 1.8). In order to
estimate the world frames in Atlanta world, the unique vertical direction can be
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(a) Structural world (b) Depth image (c) Surface normal sphere

Figure 1.8: Atlanta frame estimation. According to Atlanta world assumption, one
vertical frame and many horizontal frames can represent the world. We
need to estimate the world frames from given inputs. For example, given
the depth images, the surface normals can be exacted and they can be
used to estimate the world frames.

estimated first. The vertical world frame direction is denoted as v = [vy, vy, v3]T
Naturally, it should satisfy

vES? (1.7)
where S? means 2-sphere in three-dimensional space. Specifically, ||v| = v} +

v3 + v3 = 1. Therefore, it is a typical unit-norm constrained problem. In fact, all
Atlanta world frames are all in the 2-sphere. Therefore, Atlanta frame estimation
is also a unit-norm constrained problem.

(R1)

Camera center
ZC

Figure 1.9: Absolute camera orientation estimation from line correspondences. It
is a major part of the famous PnL problem [59], which is determining
the relative position and orientation of a camera and an object from line
correspondences.
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Absolute camera orientation estimation from line correspondences [82].
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