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Global Registration of 3D Cerebral Vessels to Its 2D
Projections by a New Branch-and-Bound Algorithm

Kexue Fu, Yinlong Liu , and Manning Wang , Member, IEEE

Abstract—Endovascular interventions are usually guided by
intraoperative 2D images, which cannot fully reflect the 3D
structure of vessels and sometimes cause ambiguity. Registering
preoperative 3D images to intraoperative 2D images can help
eliminate this ambiguity. Most existing methods can only con-
verge to a local optimal solution. Similar to POSE [1], we
formulate the problem as 2D-3D point set registration, and
develop a fast and accurate global registration method. We pro-
pose a novel objective function using consensus set between the
3D points and the projection lines of the 2D points in the 3D
space, and introduce a new global optimal rotation search algo-
rithm. The translation search problem is tackled by synchronized
grid search in the translation space. Furthermore, we extend the
algorithm to register 3D vessels to its two projections, which only
increases the runtime slightly but improves the 3D registration
accuracy significantly. The proposed method is approximately
two times faster than POSE. Experiments on real data show
that the mean 3D rotation error is reduced from 5.55 degrees
of POSE to 1.62 degrees and the mean translation error is
reduced from 8.60 mm of POSE to 1.06 mm by the proposed
double-plane method.

Index Terms—Branch-and-bound, geometric bound, global
optimization, point set registration, vessel registration.

I. INTRODUCTION

CEREBROVASCULAR diseases are the leading cause of
disability and death worldwide [2]–[4]. With the devel-

opment of computers and medical imaging technology, many
cerebrovascular diseases are currently treated with endovas-
cular image-guided interventions (EIGIs) [5], [6], such as
ischaemic stroke, carotid and intracranial stenosis, intracra-
nial aneurysms, and so on. In EIGI, clinicians use catheters or
microcatheters to deliver drugs and devices along blood vessels
to designated locations. EIGI can help achieve less inva-
sive, more precise treatment, and leads to less complications
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and higher survival rate [7], [8]. Essentially, EIGI utilizes
intraoperative 2D images to guide the catheters. However, the
fusion of 2D and 3D anatomical information is an essential
part of EIGI [5]. In order to achieve this kind of information
fusion, clinicians should observe not only 2D images, but
also 3D images. Usually, the 3D images, such as Computed
Tomography Angiography (CTA), are acquired and displayed
to the clinicians just before the start of EIGI. The 2D images,
such as Digital Subtraction Angiography (DSA), are acquired
during EIGI. In traditional EIGI procedures, clinicians can
only cognitively fuse the 2D and 3D images in their mind,
but this process relies severely on the experience of clinicians.
Therefore, an automatic and accurate method to register the
2D and 3D images is highly demanded.

Registering 2D and 3D medical images is to estimate a
transformation of the 3D images to make it align with the
human body in the 2D imaging coordinate system when the
2D images are taken [9]. This is usually done by optimizing
an objective function defined on the 2D image plane. There
are many researches on 2D-3D medical image registration in
literature, and they can be roughly classified into two cate-
gories according to how the objective function is defined. The
first category maximizes the similarity between the original 2D
images and the 2D images generated from the 3D images by
Digital Radiography Reconstruction (DRR) [10]–[12]. These
methods are easy to fall into local optimal solution and suffer
from high computational cost [5]. The second category extracts
vessels from images and transform 2D-3D image registration
into the registration of point sets representing the vessel center-
lines [13]–[16], as illustrated in Fig. 1. Here, the 3D vessels
are assumed to experience only rigid transformation. Some
other vessels may experience fairly large non-rigid deforma-
tion between 2D and 3D images during registration [17], such
as vessels in heart and liver, but the non-rigid deformation of
cerebral vessels is small in EIGI because they are embedded in
brain that is fixed in the skull fairly steadily. Therefore, many
existing studies [12], [18], [19] assume rigid transformation
of the 3D vessels in registering 2D and 3D cerebral vessels
and we follow this assumption in this study. 2D-3D point
set registration is a fundamental problem in computer vision
but early methods can only converge to a local optimal solu-
tion. Several global 2D-3D point set registration approaches
have been proposed [20]–[22], but they are not efficient for
2D-3D vascular registration because of their problem formu-
lation, which parameterize the problem with the pose of the
2D imaging system. A new problem formulation that esti-
mates the rotation and translation of the 3D vessels is given
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Fig. 1. Illustration of registering 3D vessels to its one (top) or two (bottom)
projections. The objective is to find a rotation R and a translation t of the 3D
vessels so that its projection aligns with the vessels on one or two 2D planes.
The projection parameters are assumed to be known.

in POSE [1], and a Branch-and-Bound (BnB) based global
rotation search algorithm is proposed. Recently, deep learning
techniques have also been used to register 3D CT image to 2D
X-ray images [23], [24], but they have the problems of data
dependence and poor generalization ability.

In this article, we propose a novel global algorithm to regis-
ter 3D vessels to its one or two 2D projections. We utilize the
same problem formulation as in [1], but we propose a new 3D
geometric bound, which is tighter and more efficient than the
bound used in [1]. The algorithm guarantees global optimality
in searching 3D rotation by utilizing BnB and the proposed
bound, and synchronized multi-start grid search is utilized to
search the 3D translation efficiently. In addition, we develop
a two-step search method to register 3D vessels to its two
projections with a slight increase of time but a large improve-
ment of accuracy. Experiments on synthetic and real data show
that the proposed algorithm significantly outperforms state-of-
the-art local and global methods in terms of both speed and
accuracy.

II. RELATED WORK

Cerebral vessels experience little non-rigid deformation dur-
ing EIGI [5], so we only review the 2D-3D medical image
registration methods, in which the 3D images undergo rigid
transformation. These methods can be roughly divided into
three categories: intensity-based methods, centerline-based
methods and deep learning methods.

A. Intensity-Based 2D–3D Registration Methods

The intensity-based methods generate synthetic 2D pro-
jection images with respect to a rigid transformation
of the 3D image and measure the similarity between
the synthetic 2D image and the real 2D image, such
as [10]–[12], [18], [25], [26]. The Similarity Measures (SM)
often used are mutual information, cross correlation, pat-
tern intensity, gradient correlation and gradient difference.
Hipwell et al. analyzed six different SMs, and used gradi-
ent difference and pattern intensity to obtain the best results
of brain MRA and 2D-DSA registration [12]. Ruijters et al.
used the dot-product of the two images as the SM to regis-
ter the 2D distance transform of a projected skeleton of the
3D image with the 2D fluoroscopy image of vessels [25]. The
major problem of this approach is that DRR usually suffers
from high computational cost. Several intensity-based hybrid
methods have been proposed to avoid the high computational
cost of DDR. For example, Jomier et al. projected 3D vas-
cular centerline onto 2D-DSA, and smoothed the intensity
near the projection point in proportion to the correspond-
ing vascular radius [27]. The SM is the sum of the smooth
intensity weighted by the radius of the corresponding vessel.
Nevertheless, the intensity-based methods can only converge
to a local optimal solution, and the convergence basin is usu-
ally small, which affects the accuracy of theses methods and
makes them difficult to initialize.

B. Centerline-Based 2D–3D Registration Methods

The centerline-based methods represent the vessels with
centerline points and formulate the problem as 2D-3D point
set registration, which is then tackled by point set registra-
tion techniques, such as Iterative Closest Point (ICP) [28]
and probability distribution based methods [14]. For example,
Feldmar et al. used ICP to register 3D vessels from MRA to
2D vessels from X-ray [13]. Groher et al. proposed a two-step
optimization method based on a modified ICP framework to
register liver vessels from 3D CTA and 2D DSA images [29].
Similar to intensity-based approaches, ICP also only converges
to a local optimal solution and the convergence basin is small,
so a good initialization is needed to achieve accurate reg-
istration. The small convergence basin is mainly due to the
hard one-to-one point correspondence utilized in ICP, so soft
correspondence approaches, including one-to-many correspon-
dence explored in SoftPosit [16] or modeling the point set as
Gaussian Mixture Models (GMM) [14], are utilized to enlarge
the convergence basin. However, these methods are still locally
optimal, and it is difficult for them to find an acceptable
registration result without a good initialization.

To achieve global registration, Khoo and Kapoor modeled
2D-3D vessel registration as semidefinite programing that can
be globally solved [30]. However, global optimality can only
be achieved when the position of the points is noiseless, which
is unrealistic in real applications. Liu et al. proposed a BnB-
based method of 2D-3D point set registration, named POSE,
but they only register the 3D points to one 2D projection [1].
In addition, their geometric bound on the 2D plane is loose
and complex to calculate, which affects the efficiency of this
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method. There are some other works in the computer vision
field [20]–[22], but they formulate 2D-3D point set registration
as a camera pose estimation problem, and it is not efficient to
use them for 2D-3D vessel registration. The reason is that if we
want to cover the whole relative angle between the 3D points
and the 2D imaging device, we need to move the camera center
all around the 3D points, and the range of the translation that
needs to be searched is very large [1].

C. Learning-Based Methods

With the rapid development of deep learning, it is also used
in registering 2D and 3D medical images. Chou et al. trained
linear regressors to estimate the rigid transformation param-
eters of 3D image by minimizing the residual between its
DRR and X-ray image [23]. However, linear regressors can-
not effectively fit the highly nonlinear mapping from residual
to transformation parameters. Therefore, the initial transforma-
tion range is only within ±2◦ and ± 5cm. Liao et al. proposed
a deep neural network for tracking and triangulating interest
points to solve the problem of multiview 2D-3D registration,
but the trained network can only be used to solve the registra-
tion problem between lung CT image and X-ray image [24].
The best mean projected distance is 8.12mm, and the mean
target registration error is between 4mm and 10mm. In ves-
sel registration problem, we need new data sets to retrain the
network. Most importantly, this method cannot be used when
there is only one 2D image. Despite big success in many
image processing tasks, deep learning methods still have big
limitations in generalization, stability, and accuracy in 2D-3D
medical image registration.

Contribution: The main contribution of this article can be
summarized as follows.

1) We propose a new objective function and a new 3D geo-
metric bound for global 2D-3D point set registration under the
formulation of estimating the rigid transformation of the 3D
point set. Global optimal rotation search is achieved by uti-
lizing BnB optimization with the proposed bound, and global
translation search is performed by synchronized grid search
as in [1]. This method is faster than existing global method
because the 3D geometric bound is tighter and avoids the
repeated projection of 3D point on the 2D image plane.

2) We propose a novel two-step searching method to register
3D vessels to its two projections. It can achieve much higher
registration accuracy with very little computational overhead.
Experiments on both synthetic and real clinical cerebral EIGI
data show that our method is faster and more accurate than
existing local and global methods.

III. METHODS

A. Problem Formulation

As shown in Fig. 1, registration of 3D and 2D vessels is
defined as finding a rotation R and a translation t of the 3D
vessels so that its projections align with the 2D vessels on one
or two projection planes. We formulate the problem as 2D-3D
point set registration, where the point set are the centerline
points of the vessels. We start from the 2D-3D point set regis-
tration problem with a single 2D plane. Let X = {xi}M

i=1 and

Fig. 2. Illustration of the definition of the objective function for 2D-3D
point set registration problem. The objective is to find the best rotation R and
translation t to transform the 3D points (hollow black balls before transforma-
tion and solid black balls after transformation), so that they form the largest
consensus set with the projection lines connecting the projection center and
the 2D points (red balls).

Y = {yj}N
j=1 represent the 3D and 2D point sets, respectively,

where xi ∈ R3 , yj ∈ R2. M and N are the number of 3D and
2D points, respectively.

In this article, we use the objective function defined in the
3D space. As shown in Fig. 2, we connect the projection center
with each 2D point to form a set of projection lines, and count
the consensus pairs between these lines and the 3D points as
the objective function. Formally, our goal is to find the best
R ∈ SO(3) and t ∈ R3 that maximize

Q(R, t) =
M∑

i=1

max
j=1···N

⌊
Dist

(
R(xi − xo) + xo + t,−→yj

) ≤ εi
⌋

(1)

where xo ∈ R3 is a predefined rotation center, −→yj repre-
sents the projection line of yj, Dist(•, •) calculates line-point
distance, �•� returns 1 if the inner condition is true and 0
otherwise, and εi is the inlier threshold of the i-th 3D point.
In (1), a 3D point xi is first rotated by R and translated by t to
a new position, and then it is checked with every projection
line to see if a consensus pair can be formed.

Please note that we use different inlier thresholds for differ-
ent 3D points in (1), and the inlier threshold is calculated by

εi = ε2D

f
∗ ∣∣xz

i − Sz
∣∣ (2)

where |•| is absolute value function, xz
i is the z-axis coordinate

value of the original i-th 3D point after rotation, Sz is the
z-axis coordinate value of projection center, f is the distance
from projection center to the projection plane, and ε2D is the
inlier threshold on the 2D plane and it is the same for all the
3D points. The effect of using the inlier threshold calculated
by (2) is to use the same inlier threshold of distance on the
2D projection plane. Of course, it is possible to use the same
inlier threshold for all 3D points.

B. SO(3) Searching

We start by only considering rotation of the 3D points, and
the objective function (1) becomes

Q(R) =
M∑

i=1

max
j=1···N

⌊
Dist

(
R(xi − xo) + xo,

−→yj

) ≤ εi
⌋

(3)
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Algorithm 1: Global Optimal Pose Optimization in SO(3)

Input: 3D point set X , 2D point set Y , inlier threshold ε2D;
Output: optimal rotation R∗ with quality Q∗;

1 Calculate projection line
{−→yj

}
for each 2D point in Y;

2 Initialize priority queue q, B={[center : 0, 0, 0, ]size : 2π},
Q∗=0, R∗ = I;

3 Insert B with Q̄(B) into q;
4 while q is no empty do
5 Find priority cube B∗ to maximize Q̄

(
B∗)

in q;
6 Calculate r center of B∗;
7 Calculate Q(Rr);
8 if Qr > Q∗ then
9 Q∗ = Qr, R∗ = Rr;

10 end
11 if Q̄

(
B∗) = Q∗ then

12 R∗ = Rr;
13 return;
14 end

15 Subdivide B∗ into eight sub-cubes
{
Bd

}8

d=1
;

16 for each Bd do

17 Calculate Q̄
(
Bd

)
;

18 if Q̄
(
Bd

)
> Q∗ then

19 Insert Bd with priority Q̄
(
Bd

)
into q;

20 end
21 end
22 end

We use the angular-axis representation of rotation, where the
direction and norm of a rotation vector r represents the rota-
tion axis and the rotation angle, respectively. Rotation matrix
can be calculated from rotation vector through Rodrigues′s
formula [31]. Therefore, the whole rotation space can be
expressed as a ball centered at the origin with a radius π .
For the convenience of branching, we use a cube that has a
side length of 2π and encloses the ball as the search space of
rotation.

We use a typical BnB algorithm to find the globally optimal
rotation maximizing (3), which is outlined in Algorithm 1. As
a BnB-based algorithm, finding a proper upper bound Q̄(B)

is the key for Algorithm 1, where B is a cubic branch in the
rotation space and ∀R ∈ B,

max
R∈B

Q(R) ≤ Q̄(B) (4)

The quality of Q̄(B) determines the performance of the
algorithm and we need a Q̄(B) that is not only tight but also
easy to calculate.

Before deriving the novel bound, we will first introduce a
lemma given in [1] for completeness and easy understanding
of the new bound. This lemma gives the geometric bound of
a 3D point under an arbitrary rotation in a cubic branch in
the rotation space. As shown in Fig. 3(a), when a 3D point is
rotated by an arbitrary rotation, it falls on a sphere centered
at the rotation center, and when the rotation is confined in a
cubic branch of the rotation space, the rotated point is confined
in a small ball, which is called uncertainty ball.

Fig. 3. (a) 2D illustration of uncertainty ball. (b) Illustration of consensus pair
checking. When the distance between a projection line (green) and the center
of the uncertainty ball of a 3D point is no greater than the inlier threshold ε,
the projection line and the 3D point form a consensus pair.

Lemma 1: Given a 3D point x ∈ R3, the rotation center xo,
and a cubic rotation branch B, let p and q be the points at two
opposite corners of B, then the center of B is c = 0.5∗(p+q).
For ∀Ru ∈ B, xu = Ru(x − xo) + xo we have

‖xu − C‖ ≤ ξ (5)

This Lemma means the rotated point falls in a ball centered
at C with a radius of ξ , whose calculation method can be found
in [1]. Then we give the following lemma for the derivation
of the novel bound proposed in this article.

Given a 3D point x ∈ R3, the rotation center xo. For
∀Ru ∈ B we have

Ru(x − xo) + xo ∈ Ball (6)

where Ball represents the uncertainty ball in Fig. 3.
In the previous study [1], the uncertainty ball was projected

onto the 2D plane to search consensus pair with the 2D points,
which brought two disadvantages. First, as shown in [1], the
projection, which is an ellipse, is expanded to a circle that
encloses the ellipse as the new geometric bound for easier
consensus pair detection, but the expansion loosens the bound
because the circle is larger and may form more consensus pairs
with the 2D points on the projection plane. Second, as given
in [1], the calculation of both the projected ellipse and the
enclosing circle is fairly complicated, and the calculation must
be done for each 3D point. To avoid these two disadvantages,
we propose to calculate the upper bound in 3D space. As
illustrated in Fig. 3(b), we check whether a projection line
and the uncertainty ball of a rotated 3D point constitutes a
consensus pair, and then count the number of 3D points whose
uncertainty ball find a consensus line as the upper bound. The
upper bound is summarized as follows.
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For a rotation cube B with center rotation Rc, in the
parameter space of SO(3), we define the following function:

Q̄(B) =
M∑

i=1

max
j=1···N

⌊
Dist

(
Rc(xi − xo) + xo,

−→yj

) ≤ εi + ξi
⌋

(7)

where ξi is the radius of the uncertainty ball of xi under an
arbitrary rotation in B. We have the following theorem.

Theorem 1: For any cubic rotation branch B, ∀R ∈ B, we
define

max
R∈B

Q(R) ≤ Q̄(B). (8)

Proof: For any 3D point xi, the projection line −→yj of any
2D point yj, a rotation cube B with center rotation Rc, and
∀Ru ∈ B we define

(xi)u = Ru(xi − xo) + xo

(xi)c = Rc(xi − xo) + xo

From Lemma 1, we know that a point will fall within a
uncertainty ball after being rotated by an arbitrary rotation
Ru ∈ B. The distance from any point in the uncertainty ball
to the line −→yj must be greater than or equal to the distance
from the uncertainty ball to the line, as shown in Fig. 3.

Dist
(
(xi)c,

−→yj

) − ξi ≤ Dist
(
(xi)u,

−→yj

)

where Dist((xi)c,
−→yj ) − ξi equals the distance from the uncer-

tainty ball to −→yj . Furthermore, the objective function value of
any rotation Ru and the upper bound of a rotation cube B can
be expressed as follows:

Q(Ru) =
M∑

i=1

max
j=1···N

⌊
Dist

(
(xi)u,

−→yj

) ≤ εi
⌋

Q̄(B) =
M∑

i=1

max
j=1···N

⌊
Dist

(
(xi)c,

−→yj

) ≤ εi + ξi
⌋

∴ max
R∈B

Q(R) ≤ Q̄(B).

C. SE(3) Searching

We extend our method in SO(3) space to SE(3) space, which
is defined by (9). We adopt the synchronized multi-start grid
search scheme [1] in the translation space, which is much
more efficient than joint search of the rotation and transla-
tion. The whole process can be summarized as Algorithm 2
and Algorithm 3.

SE(3) =
{

T =
[

R t
0T 1

]
∈ R4×4

}
. (9)

D. Fast Double-Plane Registration Method

Our experiment shows that there is a large translation error
in the projection direction when registering 3D vessels to
one 2D projection, and the problem can be well addressed
by registering the 3D vessels to its two projections with
different projection directions. Here, we adopt a simple

Algorithm 2: Global Pose Optimization in SE(3)
Input: 3D point set X , 2D point set Y , inlier threshold ε2D,

translational cube V;
Output: optimal rotation R∗ and translation t∗ with quality E∗;

1 Subdivide V into {Vh}k
h=1 and the center of each cube {th}k

h=1;

2 Initialize
{
E∗

h

}k
h=1 = 0, E∗ = 0,

{
Ē(Bh, th)

}k
h=1 = M, global

upper bound Ê = M, {Bh}k
h=1 = {[center : 0, 0, 0], size : 2π},{

R∗
h

}k
h=1 = I, translation branch search flag {Fh}k

h=1=1, stop

flag {Sh}k
h=1=0;

3 Calculate projection line
{−→yj

}
for 2D point set Y;

4 Insert {Bh}k
h=1 with

{
Ē(Bh, th)

}k
h=1 into {qh}k

h=1;
5 while 1 do
6 for each center of translational cube do
7 if size(Bh) > 0 then
8 Input Ȳ , X , ε, th, Bh, Ê, E∗

h , E∗, R∗
h, Fh;

9 Go into Algorithm 3;
10 Output R∗

h, Bh, Sh, E∗
h , Ē(Bh, th), Fh;

11 end
12 if sum({Sh}k

h=1) > 0 then
13 Find where {Sh}k

h=1 == 1;
14 R∗ = R∗

h, t∗ = t∗h;
15 return;
16 end
17 Ê = max(

{
Ē(Bh, th)

}k
h=1);

18 E∗ = max(E∗
h);

19 end
20 end

Fig. 4. Illustration of two-step double-plane registration method.

two-step registration method. As shown in Fig. 4, we first run
Algorithm 2 to register the 3D vessels to its one projection
in the first step. We empirically find that after registering 3D
vessels to the first 2D projection plane, there may be a mod-
erate translation error in the 3D space along the projection
direction. This is because when the 3D vessels move slightly
away from its ground truth position along the projection direc-
tion, the value of the objective function, which is defined on
the base of consensus set, may keep unchanged. However, this
kind of translation may cause big projection error on the other
projection plane, as illustrated in Fig. 4. Therefore, the 3D
translation error can be effectively reduced by moving the
3D vessels along the projection direction of the first plane
and make its projection on the second plane align with the
2D vessels on it. This is achieved by a one dimensional grid
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Algorithm 3: Update a Solution in SO(3)

Input: 3D point set X , set of projection lines
{−→y j

}
, inlier

threshold ε2D, center of each cube th, rotation cube set
Bh, upper bound of th → Ē(Bh, th), each upper bound
E∗

h , optimal upper bound E∗, optimal rotation R∗
h,

translation branch search flag Fh;
Output: optimal rotation R∗

h at th, rotation cube set Bh, stop
flag Sh, each upper bound E∗

h , upper bound of
th → Ē(Bh, th), translation branch search flag Fh;

1 Initialize Sh = 0, discard the upper bound less than E∗ in Bh;
2 if Bh is empty then
3 R∗

h = ∅, Bh = ∅, Ē(Bh, th) = 0, E∗
h = 0;

4 return;
5 end
6 Find highest priority cube B∗

h in Bh;
7 if Fh = 1 then
8 Calculate center r of B∗

h;
9 Calculate Q(Rr);

10 if Qr > E∗
h then

11 E∗
h = Qr, R∗

h = Rr;
12 end
13 if Ē(Bh, th) = E∗

h then
14 if Ē(Bh, th) = E∗ then
15 Sh = 1;
16 else
17 Fh = 0;
18 end
19 return;
20 end

21 Subdivide B∗
h into eight

{
Bd

h

}8

d=1
;

22 for each Bd
h do

23 Calculate Q̄
(
Bd

h

)
, insert Q̄

(
Bd

h

)
into Bh;

24 end
25 else
26 if Ē(Bh, th) = E∗ then
27 Sh = 1;
28 return;
29 end
30 end

search on the projection direction of the first plane in the sec-
ond step. Concretely, we select a one dimensional translation
search range along the projection direction of the first plane
and make the search range centered at the registered position
of the 3D vessels. In the search range, we sample h test posi-
tions with equal interval and move the 3D vessels to each
position. The same objective function as used in registering
to the first projection plane is evaluated at each test position
with respect to the second projection plane, and the test posi-
tion that results in the maximum objective function value is
retained as the result of the second step.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed
algorithms and compare them to state-of-the-art algorithms
using both synthetic and real clinical data. Our global
optimal single-plane 2D-3D point set registration algorithm
in the parameter space of SO(3) and SE(3) are denoted
as Our_SO3_S and Our_SE3_S, and they correspond to

Algorithm 1 and Algorithm 2, respectively. Our double-plane
2D-3D point set registration algorithm in the parameter space
of SE(3) is denoted as Our_SE3_D, which corresponds to the
process described in Section III-D.

In synthetic data experiment, we first compared Our_SO3_S
to two typical local methods, SoftPosit [16], GMM and
one recent global method POSO [1] on rotation search. In
this experiment, we focused on the global optimality and
speed of these methods. Then, we studied the robustness
of Our_SE3_S to different levels of noise, 2D and 3D out-
liers and compare it to SoftPosit, GMM and a recent global
method POSE [1]. Finally, we compared the performance of
Our_SE3_S and Our_SE3_D. In the real data experiment, we
compared SoftPosit, GMM, POSE, RANSAC, GOPAC [20],
Our_SE3_S and Our_SE3_D. We also compare a new double-
plane registration method which is obtained by combining
POSE with our fast double-plane registration method, and
denoted it as POSE+FD. A local refinement by GMM is per-
formed at the end of all global methods and its runtime is
added to the total runtime of every global method.

The codes of SoftPosit, GOPAC, POSO and POSE in
MATLAB are made available by the authors. GMM is an
extension of the 3D-3D point set registration algorithm [14],
and we implemented it for 2D-3D point set registration in
MATLAB. Our code was implemented in MATLAB2018b.
All experiments were run on a PC(Intel Core i7 − 7700K
CPU@4.20GHz ×8) with Ubuntu18.04 LTS operating system.

A. Synthetic Data Experiments

1) Performance Analysis in SO(3): Twenty uniformly dis-
tributed random 3D points were generated in a cube of edge
size 100 centered at point (0, 0, 500). The projection plane
was placed at (0, 0, 1000), and the 3D points were projected
to the 2D plane to generate the 2D points. We rotated the
3D points in the range of [−180, 180] with an interval of
five degrees. For each rotation angle, we generated 50 rota-
tions around different randomly generated rotation axes and
registered the rotated 3D points to the 2D points with each
algorithm. For GMM, we experimented on two Gaussian ker-
nels with standard deviation of 5 and 10. For SoftPosit, we set
the maximum number of iterations to 100. We used an inlier
threshold ε2D = 1 for Our_SO3_S and set the inlier threshold
on the 2D plane of POSO as 1. In this synthetic experiment,
we knew the true one-to-one correspondence between the 3D
points and the 2D points, and we used mean projected distance
(mPD) [32] of corresponding points to evaluate different meth-
ods. For each algorithm, we recorded its average runtime and
success rate in 50 registrations under the same rotation angle
(but different, randomly generated rotation axes), where a reg-
istration is considered successful if the mPD is less than 1.
The success rate and average runtime are shown in Fig. 5 (a)
and (b), respectively. The two global methods, Our_SO3_S and
POSO, achieve 100% success rate at all rotation angles, but
Our_SO3_S is approximately three times faster than POSO.
Local methods can achieve 100% success rate only when the
rotation angle is very small. Fig. 5 (c) illustrates the evolu-
tion of the upper bound and the current best function value in
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Fig. 5. Results of rotation search experiment using synthetic data. (a) success rate with respect to rotation angle. (b) average runtime with respect to rotation
angle. (c) evolution of the upper bound Q̄ (green line) and the current best function value Q∗ (red line) with respect to iteration.

Fig. 6. Average runtime and success rate in 2D-3D point set registration using synthetic data. (a) noise experiment. (b) 2D outlier experiment. (c) 3D outlier
experiment.

one registration. In this case of registration, the number of 2D
points is 20, and the number of 3D points is 24, out of which
four 3D points are outliers. The upper bound starts from 24
and the current best value starts from zero, and they converge
at the value of 20, which is the size of the found largest con-
sensus set and also the number of true 2D-3D corresponding
point pairs. Our method obtained the global optimal solution
after about 800 iterations.

2) Performance Analysis in SE(3): 2D and 3D point sets
were first generated in a way similar to the previous section,
and the only difference is that a random translation in the range
of [−5, 5]3 is used to the 3D points before registration. Both
global methods, Our_SE3_S and POSE, were run by using 27
searching blocks obtained by equally dividing the translation
cube along each axis. We used an 2D inlier threshold ε2D = 5,
for POSE and Our_SE3_S, and the standard deviation of the
GMM algorithm was set to 10. The maximum iteration number
of SoftPosit was 100. A registration is considered successful
if the registered mPD (distance of corresponding points on the
2D plane) is less than 5.

For the noise experiment, Gaussian noise with standard
deviation of 0.5, 1.0, 1.5, 2.0 and 2.5 were added to each
coordinate of the 2D points, and for each noise level,
50 registrations with random relative rotation and translation
were executed. For a fair comparison, GMM repeated 100
times and SoftPosit repeated 150 times in registering each
pair of 2D and 3D points and returned the best result, so
that the total runtime of each method in registering a pair

of 2D and 3D points is approximately equal to the time
of running Our_SE3_S once. The average runtime and suc-
cess rate were shown in Fig. 6 (a). Both global algorithms
achieved 100% success rate, but Our_SE3_S is approximately
four times faster than POSE. On the contrary, local methods
resulted in much lower success rate with approximately equal
or longer running time.

For the 2D and 3D outlier experiments, Gaussian noise with
a standard deviation of 1 was added to the coordinates of the
inlier 2D points. Random outlier points were added to 2D
or 3D point set before registration, and the number of out-
lier points were 0.2, 0.4, 0.6, 0.8 and 1.0 times the inlier
points. For the 2D outlier experiment, SoftPosit and GMM
were run 400 and 200 times, respectively. For the 3D out-
lier experiments, SoftPosit and GMM were run 1800 and 600
times, respectively. The average runtime and success rate with
respective to outlier ratio of 2D and 3D outliers are shown
in Fig. 6(b) and (c), respectively. In both 2D and 3D outlier
experiments, the two global methods achieved 100% success
rate, and Our_SE3_S is much faster than POSE. The success
rate of the two local methods are low in 2D outlier experiment,
but fairly high in 3D outlier experiment.

3) Translation Error Analysis in Single and Double Planes:
We also used the same experimental setting as above. For
Our_SE3_D, in the second step of registering to the sec-
ond projection plane, the search range is [−5, 5] around the
registered position and the searching interval is 1. We com-
pare the 3D translation error of Our_SE3_S and Our_SE3_D.
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Fig. 7. 3D translation error of Our_SE3_S and Our_SE3_D registration. (a) noise experiment. (b) 2D outlier experiment. (c) 3D outlier experiment.

TABLE I
RESULTS OF 2D-3D REGISTRATION OF CEREBRAL VESSELS

The results are shown in Fig. 7. We can see that 3D trans-
lation error is greatly reduced by using the double-plane
registration method.

These experiments show that our Our_SE3_S is several
times faster than POSE, which demonstrate the higher effi-
ciency of the proposed bound. The comparison between
Our_SE3_S and Our_SE3_D shows that the proposed double
plane registration method can effectively reduce 3D transla-
tion error. In addition, the experiments show that the proposed
methods are robust to noise and outliers.

B. Real Data Experiments

We experimented on the cerebral vessel dataset provided
in [33], in which one 3D-DSA and two 2D-DSA images of
ten patients were provided and the projection parameters and

the gold standard registrations were given. In cerebral vascu-
lar procedures, the multi-angle 2D-DSA images are taken by
a C-arm [34], which is a C-shaped X-ray imaging device that
can rotate around the patient’s head. We used the method given
in [1] to extract centerline points from the original 2D-DSA
and 3D-DSA images, and in the last step we used k-means
clustering method [35], [36] to cluster 2D point set and 3D
point set to 90 points and 60 points, respectively. We followed
the method in [1], and generated a random translation in the
cube of [−20, 20]3 mm and a random rotation in the range
of [−10◦, 10◦]. We used an inlier threshold ε2D = 20 pix-
els for POSE, POSE + FD, Our_SE3_S, and Our_SE3_D. In
the second step of registering to the second projection plane,
the search range is [−20, 20] mm around the registered posi-
tion and the searching interval is 0.5mm for POSE+FD and
Our_SE3_D. The standard deviation of the GMM was set to
2 pixels. RANSAC repeated 20,000 times, GMM repeated
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Fig. 8. Visualization of results of case No. 6. The top and the bottom rows are the first and the second projection plane, respectively. Black and green points
represent 2D vessel points and projection of 3D vessel points, respectively.

5 times and SoftPosit repeated 10 times so that their total
runtime is longer than the proposed methods for each case.
Random initialization of translation and rotation in the trans-
lation and rotation ranges were used in each run of these two
local methods. For GOPAC, we configure the angular toler-
ance θ by calculating the tangent value of the inlier threshold
ε2D corresponding to the angle, and set the maximum running
time to 50s.

We ran 10 repeated experiments for each case. The 3D
rotation and translation error, the mean target registration
error (mTRE) [32] of corresponding 3D vessel points, the
mPD (we use KNN search to find the nearest point as the
corresponding point on the 2D image plane), and the run-
time of each case are shown in Table I. After registration
with RANSAC, SoftPosit, GMM and GOPAC, there are still
large average rotation error and average translation error.
The proposed single-plane method Our_SE3_S is faster than
POSE. However, the 3D translation error and mTRE of both
methods are large. Our_SE3_D reduces the translation error,
the rotation error and the mTRE, and P-value of paired
t-test shows that the improvement is statistically significant.
Sometimes Our_SE3_D even takes less time than Our_SE3_S,
because Our_SE3_D provides a better initial solution for
local refinement, which makes the algorithm converge faster.

The experimental results show that after combining with our
double-plane registration method, POSE + FD does not sig-
nificantly increase the registration time of the original method,
but can effectively reduce the registration error. POSE + FD
and Our_SE3_D are comparable in accuracy, but Our_SE3_D
is approximately 50% faster. The translation and rotation error
in 3D space for the local methods are very large in most
cases. In addition, mPD of all eight methods are similar, which
indicates that it is not a reliable accuracy measurement in reg-
istering 3D vessels to one projection. An illustrative case is
shown in Fig. 8.

V. CONCLUSION

In this article, we propose an efficient global algorithm to
solve the 2D-3D vessel registration problem. We first introduce
a fast optimal rotation search algorithm for 2D-3D point set
registration based on BnB and a novel geometric bound. Then
we solve the SE(3) search problem by utilizing synchronized
grid search in the translation space. We utilize similar algo-
rithm architecture with POSE [1] for both the SO(3) search
and the SE(3) search problem, but our novel bound makes the
proposed method approximately two times faster than POSE.
In addition, we develop a two-step scheme to register a 3D
point set to its two 2D projections, which slightly increase
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the runtime but greatly improve the 3D registration accuracy.
This technique can be utilized to both POSE and our proposed
SE(3) search algorithm, and experiments on real data shows
that this two-step technique helps reduce the 3D rotation error
from about five degrees to less than 2 degrees, and reduce the
3D translation error from about eight millimeters to about one
millimeter. For deformable registration between 3D and 2D
vessels, the proposed method can be used for initial coarse
registration. Experiments on both synthetic and real clinical
data show that the proposed method significantly outperformed
state-of-the-art local and global methods.
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