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Abstract— In the area of face completion, the missing infor-
mation within an occluded area is estimated, yielding a realistic
face of the same identity. In most previous works, the mask
describing the occluded region is known, limiting the scope of
application. To alleviate this limitation, we propose a coarse-to-
fine network trained as a conditional generative adversarial
network. While the coarse network predicts the mask and
generates a rough estimation of the semantic content, the
subsequent fine network refines the rough prediction into a re-
alistic and identity-persevering reconstruction. This is achieved
by incorporating adversarial loss and using features from a
pretrained face feature extractor. Unlike previous approaches,
we employ two parallel attention mechanisms: 1) a patch-
wise cross-attention module to substitute information within the
occluded patches with patches from the non-occluded region; 2)
a pixel-wise global self-attention to allow information exchange
within the entire feature map.

Our exhaustive analysis, including reconstruction quality and
face recognition metrics, shows that our approach outperforms
the state of the art in blind face completion, improving the
true positive identification rate at rank 1 on the MegaFace
benchmark from 36.55% to 42.48%. This represents a substan-
tial step towards closing the gap between occluded (29.34%)
and non-occluded faces (52.32%). In terms of reconstruction
quality, we obtain a structural similarity of 0.9639 compared
to 0.8526 and 0.9563 for occluded faces and the state of the
art, respectively. In addition to previous approaches, we provide
an in-depth analysis of the influence of the position, size, and
sparsity of the occlusion and use facial landmark prediction to
measure reconstruction quality.

I. INTRODUCTION

Nowadays, with the vast amount of images distributed over
the internet, images are edited more and more frequently.
This includes watermarks to protect ownership or text provid-
ing additional information to the image. Moreover, subtitles
in movies often occlude faces and mitigate face recognition
results. In addition to text occlusion, rectangular occlusions
are often used to mark areas of unwanted information (e.g.,
a foreground object or accessories like a face mask covering
parts of the face), which shall be removed to obtain a clear
view of the entire face.

After the occlusion removal, we expect the resulting face
to be realistic. For faces, this involves additional challenges
since details such as eye color and make-up must be con-
sistent within the face. While even recent approaches [31],
[36] struggle in this regard, our qualitative results in Fig. 1
(left) illustrate that our approach provides satisfying results.

With the help of image inpainting techniques [4], [6], [8],
[9], [14]–[17], [21], [26]–[31], [35], [36], which are adapted
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Fig. 1. Left: Qualitative results of our approach compared with BVMR [6]
for rectangular occlusion. Right: Robustness of a ResNet50-v2 [5] trained
for face recognition against rectangular occlusion with the occluded area in
relation to the image area a evaluated on MegaFace benchmark [13] with
1 M distractors.

to face completion [14], [35], [36], occluded faces with a
given mask can be reconstructed. However, most approaches
rely on information about which pixels to reconstruct in the
form of an additional mask at the input, thereby limiting
the scope of applicability and requiring the development of
blind face completion methods. Moreover, following a blind
approach, the network is not susceptible to errors occurring
during manual mask annotation.

An occluded face is prone to cause errors for face recog-
nition systems, as we show in Fig. 1 (right). The true
positive identification rate (TPIR) for non-occluded faces
of 52.32% substantially drops for an increasing area of
occlusion. However, we mitigate the drop in TPIR when
reconstructing the face using our approach as the TPIR
is on average 7.7% higher compared to occluded faces.
Simultaneously, the TPIR is identical for non-occluded faces
(a = 0), which proves that no unwanted artifacts deteriorate
the reconstruction. This clearly highlights the benefits of in-
corporating a face reconstruction module before recognizing
the face, which is in accordance with [19], [33].

To cope with the challenging task of reconstructing the
rich information within the human face in the presence of
occlusions with varying shape, position, size, color, and

Coarse Fine

Fig. 2. Overview of our approach to blind face completion. For an occluded
image I , the coarse network estimates a rough reconstruction Ic and a
mask M . In the fine network, Ic is refined using M providing the final
reconstructed image I f.978-1-6654-3176-7/21/$31.00 c©2021 IEEE
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form, we propose a coarse-to-fine network as depicted in
Fig. 2. While the coarse network creates a rough recon-
struction of the face, the fine network refines it with the
help of two parallel attention mechanisms. The latter enable
the network to search for similar patches within the non-
occluded face parts to substitute the occluded areas and
utilize global pixel-wise relationships within a face. Training
the coarse-to-fine network as part of a generative adversarial
network (GAN) allows the refined faces to become realistic,
whereas supervision by identity losses ensures that identity
information is preserved during the reconstruction.

Our main contributions are summarized as follows:
• We propose a coarse-to-fine network embedded into a

GAN combined with two parallel attention modules to
ensure realistic reconstruction using the entire face’s
information.

• Our exhaustive analysis shows how shape, position,
size, and form of the occlusions affect face recognition
and reconstruction performance.

• We identify and investigate the trade-off between recon-
struction quality and recognition performance.

II. RELATED WORK

A. Image Inpainting

Most image inpainting methods incorporate a U-Net struc-
ture [6], [15]–[17], [28], [35], [36]. While there exist meth-
ods using convolutional neural networks (CNNs) [6], [15]–
[17] without GANs, the majority [4], [8], [9], [14], [21],
[26]–[31], [35], [36] employs the GAN-structure to obtain
a more realistic image. A crucial part for well-performing
image inpainting is increasing the receptive field of vanilla
convolutions to allow global information exchange. This can
be achieved via dilated convolutions [4], [9], [21], [29].
To compensate the sparse kernel of the dilated convolution,
Hui et al. [8] proposed the dense multi-scale fusion block
(DMFB), which contains multiple dilated convolutions with
different dilation rates in parallel. Another popular way
to increase the receptive field is to integrate an attention
mechanism [28]–[31].

B. Face Completion

Face inpainting (or completion) is considered one of the
most challenging image inpainting tasks, as the objective
of reconstruction not only focuses on realism but also on
maintaining the identity of the person. By employing a
symmetry-consistent CNN, Li et al. [14] transfer brightness-
adjusted information from one half-face to the other and
separately reconstruct pixels missing in both half-faces.
Zhang et al. [35] propose a domain embedded generative
model to guide the reconstruction using the mask, face part,
and facial landmark information. To allow the network to
capture the vast details for face recognition, Zhou et al. [36]
use a dual spatial attention module together with an oracle
supervision signal to learn the correlations between facial
textures at multiple scales efficiently. Jam et al. [11] focus
on high-resolution face inpainting leveraging symmetric skip
connections and a Wasserstein-Perceptual loss function.
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Fig. 3. Examples of occluded faces with different occlusions.

C. Blind Inpainting

In contrast to the default image inpainting task, for blind
inpainting, the occluded area is unknown and needs to be
estimated by the model. Liu et al. [16] use the residual
learning algorithm and leverage gradients to estimate the
details in the occluded regions. The VCNet [26] disentangles
mask prediction and robust inpainting, which are trained in
an adversarial manner. Hertz et al. [6] propose the blind
visual motif removal (BVMR) model, which uses a U-Net
architecture with three decoders to predict the reconstructed
image, mask, and motif. As an extension to BVMR, Cun et
al. [3] add a subsequent refinement network.

III. METHODOLOGY

A. Generating Occlusions

The task of our network is to remove occlusion and
reconstruct the hidden face areas. To consider a multitude
of occlusion types, we differ between form, color, size, and
position. Fig. 3 depicts two examples of our augmentation
scheme. We consider two geometric forms, a rectangle and
text. While a rectangle represents a closed surface, the
text illustrates an arbitrary shape with holes. To increase
generalization, we vary the aspect ratio of the rectangle
within [0.5; 2] and select a word from a list of 2048 English
words1. The color can be adjusted freely within the RGB
color space. For rectangles, the size represents its occlusion’s
area ratio a, whereas, for text occlusion, the size illustrates
the height ratio h to be independent of word length. In order
to evaluate the influence of the occlusions’ position on the
performance, we divide the face into four regions: 1) mouth;
2) nose; 3) eyes; 4) outside.

To obtain an occluded image I at the input of our network,
we synthetically generate a binary mask M gt with 1 denoting
areas affected by occlusion, which is applied on a ground-
truth image Igt:

I = (1−M gt)� Igt +M gt � c (1)

with � being the Hadamard product (including broadcasting)
and c the vector describing the occlusion’s color.

1https://raw.githubusercontent.com/sindresorhus/
mnemonic-words/master/words.json
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Fig. 4. Our approach to blind face reconstruction: A coarse-to-fine
generator reconstructs the occluded face I f,r and predicts the mask M .
To ensure a high degree of realism, a discriminator with adversarial loss
is employed together with pixel-wise L1 losses for guidance. A feature
extractor further allows losses to enforce similar identity features of the
reconstructed face I f,r and the ground-truth face Igt.

B. Network Architecture

Fig. 4 depicts an overview of our architecture, which
can be considered a conditional GAN. While the generator
tries to generate a face I f,r, which is indistinguishable from
Igt, the discriminator’s objective is to judge whether the
face is reconstructed (fake) or is real. By employing a
pretrained feature extractor, we not only obtain a feature
vector encoding the reconstructed face’s identity f f,r, but
also allow identity losses to ensure that the I f,r resembles
Igt with respect to its identity. In the following subsections,
the details are described.

1) Generator: Inspired by [3], [17], [29], we incorporate
a coarse-to-fine network as illustrated in Fig. 5. While the
coarse network yields a rough estimate Ic and generates a
binary mask M , the fine network refines the reconstructed
coarse face Ic,r yielding a face with a high degree of realism
and detail I f,r. Both networks follow the popular U-Net
architecture [24] with several adaptions for our task.

Similar to [6], we reconstruct the coarse and fine faces
using the predicted mask M :

I f,r = (1−M)� I +M � I f (2)

If we assume a reliable mask prediction M = M gt, we can
use Equation 1 to obtain:

I f,r = (1−M gt)� Igt +M gt � I f (3)

This shows that by splitting the task into mask prediction
and face reconstruction, we can incorporate the mask in the
reconstruction to ensure that pixels outside of the occlusion
remain untouched. We apply the reconstruction according to
Equation 2 after the coarse and the fine network.
Coarse Network. The input of our coarse network is an
occluded face I with a resolution of 112 × 112 × 3 pixels,
which is downsampled to a resolution of 28 × 28 using
convolutional layers with stride 2. With every reduction
of the resolution, we double the number of channels from
initially 64. After 6 convolutional layers with a 3× 3 kernel
we employ a DMFB [8] to capture information present at
multiple scales and different regions, followed by another
3× 3 convolution obtaining the latent feature map L.

We decode L using two (almost) identical branches in
parallel for the face Ic and mask M , respectively. For the
decoding, we utilize upsampling followed by the concate-
nation of the respective feature map from the encoder and
3 convolutional layers for every resolution. Unlike [6], we
incorporate nearest-neighbor interpolation together with a
convolution in order to reduce checkerboard artifacts induced
by transposed convolution [23]. Every branch is concluded
with a final convolutional layer to obtain the desired output
channels.

While we use the leaky rectified linear unit (ReLU) [18] as
an activation function in the encoder, we incorporate ReLU
in the decoder. To obtain the desired value range, we clip
the values after the last convolution for Ic and utilize the
sigmoid activation function in the last layer for M .
Fine Network. The fine network follows a similar U-Net
structure [24] as the coarse network. However, due to its
purpose of refining the rough prediction from the coarse
network, we added several modules, namely a cross-attention
and a self-attention module, to leverage similarity between
different patches within the face.

As in the coarse network, we use 3 × 3 convolutional
layers but downsample to a resolution of 56× 56. Since the
cross-attention module operates in a patch-wise manner and,
therefore, benefits from higher resolution, it is applied at a
resolution of 56×56. In contrast, the pixel-wise self-attention
is employed after another downsampling step at a resolution
of 28× 28. A DMFB follows both attention modules. After
another convolutional layer (and an upsampling block for
the self-attention), we concatenate the feature maps of both
attention branches and the feature map of the corresponding
resolution in the encoder. To obtain a resolution of 112×112
we apply another upsampling block as in the coarse network.
As in [29], we use the exponential linear unit (ELU) [2] in
the fine network as the activation function.

Incorporating attention modules is widely used in image
inpainting tasks in order to handle long-range dependencies
within images [28]–[31]. As depicted in Fig. 5, we fuse the
information of three branches: 1) the skip connection without
attention; 2) the patch-wise cross-attention; 3) the pixel-wise
self-attention.

The cross-attention module is designed to substitute the
occluded patches with patches from different face regions
while maintaining consistent and realistic values within the
patch. On the other hand, the global self-attention module
learns every pixel’s relationship within the image and thereby
allows reconstruction of face parts, which are unique within
the faces.

This parallel utilization of two attention modules similar
to [36] makes both modules complement each other. While
the cross-attention is most effective when transferring in-
formation from a similar face part (e.g., from left eye to
the right eye), the self-attention reconstructs unique face
parts leveraging global information (e.g., the nose). To fuse
the information of both attention modules and the skip
connection from the encoder, we use a 3 × 3 convolution
followed by a DMFB.
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Fig. 5. Architecture of the generator. The occluded face I first passes through the coarse network, which outputs a rough reconstruction of the image
Ic and a binary mask M . After reconstruction according to Equation 2, the reconstructed face Ic,r is further refined utilizing a parallel dual attention
structure in the fine network, which yields the final reconstructed face I f.

1x1 Convolution

argmax

L2-Normalization

Extract patches

Reconstruct patches

softmax

Reconstruction (Equation 2)

1x1 Convolution

L2-Normalization

Max Pooling

Fig. 6. Overview of the attention modules: While the patch-wise cross-
attention substitutes every patch within the occluded area with the most
similar patch of the non-occluded area, the global pixel-wise self-attention
allows unrestricted information exchange.

Patch-wise Cross-Attention. The details of the cross-
attention block [27]–[29] are depicted in Fig. 6 (left) with
its input being a 56 × 56 × 128 feature map X . We obtain
the query Q, key K, and value V after reducing the feature
map resolution to 56 × 56 × 64 with a 1 × 1 convolution
each. For K, we set all activations within the occluded area
to 0 by multiplying with 1 −M . In this way, we ensure
that only reliable information from the non-occluded area is
utilized. Then, we extract 552 = 3025 overlapping patches
of 2× 2 pixels and L2-normalize every patch separately. By
performing a convolution of the channel-wise L2-normalized
Q with the patches K as convolutional kernels, we obtain
a tensor R containing the cosine distance as a similarity
metric of the patches. Hence, at every position within 28×28
of R the 3025-dimensional vector depicts how similar the
corresponding patch is with Q. By applying argmax, we
receive a 28 × 28 matrix containing the index of the most
similar patch, which will later be used for reconstruction.

To reconstruct the feature map, we use the previously
computed positions and take 2 × 2 patches extracted from
V . We further ensure that the information is only substituted
within the occluded area by applying Equation 2, yielding
the 56 × 56 × 64 output Y of the cross-attention module.
In this way, the module is capable of transferring realistic
and detailed textures from the non-occluded to the occluded
area, while the information in the non-occluded area is left
untouched.
Pixel-wise Self-Attention. Similar to the cross-attention
module, the self-attention, as illustrated in Fig. 6 (right) [32],
uses 1 × 1 convolutions to reduce the number of channels

and obtain query Q, key K, and value V . Moreover, we
employ max pooling to reduce the resolution to 14× 14 for
K and V . Via matrix multiplication followed by a softmax
activation softmax

(
Q ·KT), we obtain the attention map

A. To compute the output feature map Y of the self-attention
module, we add the input X to the output of another 1× 1
convolution with A · V .

In this way, the module is capable of refining X with
pixel-wise information while maintaining faster convergence
due to the skip connection. In contrast to [36], we do not
restrict the attention area to the occluded area. Hence, our
self-attention is considered global.

2) Discriminator: Similar to other GAN approaches in
the domain of faces [4], [35], [36], we employ multiple
discriminators - a global discriminator combined with six
fully convolutional patch discriminators [10] focusing on
different face regions. The input of the global and one patch
discriminator consists of the entire face region 112 × 112
pixels, whereas the remaining patch discriminators contain
28 × 28 crops around the left/right eye, mouth, nose. As
depicted in Fig. 4, we concatenate the (cropped) generator’s
output I f,r with the (cropped) occluded face I , which eases
the discriminator to focus on the occluded regions. Moreover,
we propose to use another patch discriminator with the
concatenation of the left eye and the horizontally flipped
right eye as the input to ensure that eye colors are consistent,
which resulted in a critical issue in [31], [36].

All global and patch discriminator types use four 3 × 3
convolutions with leaky ReLU [18] activation - the former
two with stride 2 - to reduce the resolution to 28 × 28 × 1
and 7 × 7 × 1, respectively. While the global discriminator
utilizes a fully connected layer followed by a sigmoid
activation, the patch discriminators employ the pixel-wise
sigmoid and use the average probability as patch probability.
We dispense with normalization layers as their removal in-
creases performance and reduces computational complexity
in various related tasks, including image inpainting [29],
super-resolution [25], and deblurring [20].

3) Feature Extractor: In order to obtain a well generaliz-
ing face feature extractor, we incorporate a ResNet50-v2 ar-
chitecture [5] with a 256-dimensional bottleneck layer. Since
we pretrain the feature extractor on the VGGFace2 dataset
[1], the network is concluded with a 8631-dimensional logits
layer.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on January 25,2022 at 12:55:57 UTC from IEEE Xplore.  Restrictions apply. 



C. Loss Functions

Our model is trained by a weighted sum LG of several
losses, which are described in the following:

LG =λm
pixL

m
pix + λocc

pixL occ
pix + λnocc

pix L nocc
pix +

λper
id L per

id + λstyle
id L style

id + λG
advL

G
adv

(4)

where λ(·)(·) are scalars to balance the losses.
1) Pixel-wise Similarity Loss Lpix : Predicting a reliable

mask is crucial for an overall robust reconstruction as it
ensures that only occluded pixels are changed (c.f. Equa-
tion 3). Since the mask is binary, we can interpret the mask
prediction as a binary pixel-wise classification and therefore
use binary cross-entropy loss:

L m
pix = − 1

1122

1122∑
i=1

M i
gt logM

i + (1−M i
gt) log(1−M i),

(5)
where M i

gt and M i denote the i-th pixel of M gt and M ,
respectively.

As the purpose of the coarse network, in contrast to
the fine network, is to generate a rough prediction of the
occluded area, we incorporate pixel-wise L1 losses for the
occluded L occ

pix and non-occluded area L nocc
pix to allow an

individual weighting:

L occ
pix =

‖(Ic − Igt)�M gt‖1
‖M gt‖1

(6)

L nocc
pix =

‖(Ic − Igt)� (1−M gt)‖1
‖1−M gt‖1

(7)

The normalization is essential as otherwise, the area of
occlusion affects the relevance of the loss.

2) Identity Loss Lid : In addition to pixel-wise losses, we
further employ identity losses to capture perceptual similari-
ties. We achieve this with the perceptual loss [12], which
computes similarity for high-level feature maps extracted
from a pretrained face feature extractor. The perceptual loss
is defined as follows for a given image Ii at multiple depths
of the feature extractor D:

L per (Ii,D) =
∑
d∈D

1

N (Ψd(Igt))
‖Ψd(Ii)−Ψd(Igt)‖1

(8)
with Ψd(Ii) being the feature map at depth d for Ii as
input and N (Ψd(Igt)) denotes the number of elements in
Ψd(Igt).

As in [15], we use the perceptual loss to compute the
L1 distances for I f and I f,r, and utilize high-level se-
mantic information after the first ResNet block and low-
level feature information after the third ResNet block D =
{’block1’; ’block3’}, which results in:

L per
id = L per (I f,D) + L per (I f,r,D) (9)

In addition to L per
id , we incorporate the style loss L style

id
[12], in which every feature map Ψd(Ii) in Equation 8 is
replaced by its Gram matrix. For a given feature map Ψd(Ii)
with resolution W ×H×C, we first reshape it into a matrix

Φd(Ii) of size WH × C. Then the corresponding Gram
matrix is computed as follows:

G (Ψd(Ii))) =
Φd(Ii)

TΦd(Ii)

N (Ψd(Ii))
(10)

The overall style loss L style
id is computed analogously to

Equation 9.
3) Adversarial Loss Ladv : To ensure a realistic recon-

struction, we use the mean adversarial loss of all seven dis-
criminators introduced in section III-B.2, which are denoted
by Di(·). The adversarial loss for the generator is defined as
follows:

L G
adv = −1

7

7∑
i=1

log (Di(Ci(I f,r)⊕ Ci(I))) (11)

with Ci (·) being a function to crop the patch corresponding
to the respective discriminator and ⊕ denoting a concatena-
tion along the channel axis. To train the discriminators to
distinguish I f,r from Igt, we optimize the following loss:

L D
adv = −1

7

7∑
i=1

log (1−Di(Ci(I f,r)⊕ Ci(I)))+

log (Di(Ci(Igt)⊕ Ci(I)))

(12)

IV. RESULTS

A. Training Details
We train our feature extractor separately on the VGGFace2

dataset [1], which comprises 3.1 M images of 8631 iden-
tities, with softmax cross-entropy loss for 20 epochs. As
preprocessing, we align all faces using their facial landmarks
predicted by the MTCNN [34] and crop them to 112× 112
pixels.

During training, we generate occlusions according to
section III-A with random form, color, and position. We
randomize the area and height ratio within the following
intervals a ∈ [0.01; 0.15] and h ∈ [0.05; 0.5], respectively.
Moreover, we apply horizontal flipping and align the faces
as during pretraining of the feature extractor.

Training our network is divided into two steps. First, we
train the coarse network for one epoch with ADAM optimizer
and a learning rate of 2·10−4 to obtain a rough reconstruction
but already an accurate estimation of the mask, which is
decisive for a stable GAN training afterwards. As losses,
we only consider pixel-wise similarity losses with λocc

pix = 3
and λm

pix = λnocc
pix = 1 to make the coarse net focus on the

occluded region. Next, we load the weights from the coarse
network and continue training the whole network. While we
set the learning rate of the untrained weights to 10−4, the
learning rate of the pretrained weights in the coarse network
is 5 · 10−5. As typical for GANs, we train the generator
and the discriminator in an alternating manner for 5 epochs.
We reduce the learning rate by a factor of 10 every epoch,
use a batch size of 8 and use the following loss factors to
balance the losses similar to [15]: λm

pix = 10, λocc
pix = 3,

λnocc
pix = 1, λper

id = 0.1, λstyle
id = 240, and λG

adv = 1. All other
hyperparameters and the generation of occlusion are identical
as during pretraining of the coarse network.
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TABLE I
COMPARISON OF OUR APPROACH FOR DIFFERENT CONFIGURATIONS WITH SEVERAL BASELINES. FACE RECOGNITION PERFORMANCE IS EVALUATED

USING TPIR AT RANK 1 [%] ON THE MEGAFACE BENCHMARK [13] WITH D = 1 M AND ACCURACY [%] ON THE LFW BENCHMARK [7], WHEREAS

RECONSTRUCTION QUALITY IS MEASURED VIA PSNR AND SSIM ON MEGAFACE. ALL METRICS ARE AVERAGED OVER ALL FOUR POSITIONS, THREE

SIZES (C.F. FIG. 3) AND FOR RANDOM COLOR. ∗ DEPICTS THAT L OCC
PIX WAS COMPUTED ALSO ON IF .

Losses Attention MegaFace D = 1M LFW PSNR SSIM

L per
id L style

id L occ
pix & L nocc

pix Self Cross non-occluded Rectangle Text Avg Rectangle Text Avg Avg avg

ResNet-50 52.32 29.81 28.88 29.34 97.65 97.18 97.41 20.42 0.8526
ResNet-50-occ 54.40 42.38 44.66 43.52 98.85 99.05 98.95
BVMR [6] 52.32 29.48 43.61 36.55 97.75 99.04 98.40 35.18 0.9563
Coarse Network 52.32 31.63 44.89 38.26 97.95 99.08 98.52 36.30 0.9622
√ √ √ √ √

52.32 37.18 47.50 42.34 98.61 99.19 98.90 36.69 0.9638√ √ √ √
52.32 37.43 47.53 42.48 98.60 99.17 98.89 36.68 0.9639√ √ √ √
52.32 36.98 47.35 42.17 98.62 99.23 98.93 36.68 0.9634√ √ √
52.32 36.53 47.24 41.89 98.56 99.20 98.88 36.48 0.9632√ √

*
√ √

52.32 37.09 47.43 42.26 98.64 99.22 98.93 37.39 0.9662√ √ √
52.32 35.05 46.91 40.98 98.44 99.17 98.80 36.53 0.9628√ √ √
52.32 37.19 47.42 42.31 98.64 99.21 98.92 36.61 0.9635

B. Benchmark Details

We evaluate face recognition performance using the
synthetically-occluded MegaFace benchmark [13] to com-
pute closed-set face identification performance and the pop-
ular Labeled Faces in the Wild (LFW) benchmark [7] for
face verification:

For the MegaFace benchmark, the gallery is formed of 80
identities taken from FaceScrub dataset [22] with approx-
imately 50 images each, and D = 1M distractor images
of 690 k identities. In the evaluation, every gallery image is
matched with the remaining gallery and a predefined number
of up to D = 1M distractors. In this way, we not only
obtain the TPIR at different ranks but also for a different
number of distractors. In contrast to the original benchmark,
we synthetically occlude the gallery images as described in
section III-A. We evaluate for different sizes and forms and
ensure that the benchmark is deterministic even if the color
is randomized. By only occluding the gallery image, we
increase the difficulty as the distractors remain untouched.
The occluded gallery images are publicly available2.

The LFW benchmark comprises 6 k face pairs, in which
we occlude both faces in a similar way. Hence, in the case
of the occlusion of eyes, both faces of a pair have one eye
occluded yet not necessarily the same one.

In addition to face recognition performance, we compute
the peak signal-to-noise ratio (PSNR) and the structural
similarity (SSIM) to measure reconstruction quality and
extract 196 facial landmarks using3 to measure how accurate
the facial landmarks were reconstructed.

C. Baselines

We compare our approach to the BVMR model, for which
we use the best parameters as mentioned by the authors [6]
and train on the same dataset with the same augmentation as
our model. Moreover, we train another ResNet-50 (denoted

2https://github.com/stefhoer/C2FDAN
3https://github.com/deepinsight/insightface/tree/

master/alignment/coordinateReg

by ResNet-50-occ) as our face extractor, however, with oc-
clusion as data augmentation. Even though the latter does not
reconstruct the faces and, therefore, cannot be considered a
face completion method, we want to compare ourselves with
a rather straightforward method in terms of face recognition
performance.

D. Ablation Study

Table I depicts the results of our approach for different
configurations in comparison with the baselines. First, we
clearly observe that occluded faces severely affect face recog-
nition performance, with the TPIR at rank 1 on MegaFace
dropping 52.32% to 29.34% and the accuracy on LFW from
99.40% to 97.18%. In comparison with the state-of-the-art
in blind face completion, we see that even our pretrained
coarse network outperforms BVMR model on all metrics
even though it has only about 1/4 of its parameters (4.1 M
compared to 20.5 M). Since both are trained with pixel-wise
losses only, we believe that this improvement is mainly due
to the addition of the DMFB.

By adding another refinement network to the coarse net-
work, we boost the performance by a considerable amount.
In our ablation study, we observe a trade-off between face
recognition and reconstruction performance. While our ap-
proach without L style

id achieves the best face recognition
performance on MegaFace benchmark, computing L occ

pix also
on the output image of the fine network I f achieves the
overall best PSNR and SSIM values at the cost of lower
face recognition accuracy. Moreover, we conclude that the
parallel attention structure in the fine network with cross and
self-attention is superior to using only one attention mech-
anism. Even though self-attention is crucial to the overall
performance, the addition of cross-attention still improves
the performance.

When comparing our approach to directly extracting fea-
tures by a ResNet trained with occlusion (ResNet-50-occ),
we observe that the face recognition performance is, on
average, slightly superior to our approach caused by the
improved performance for rectangles occlusion. This is since
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Fig. 7. Overview of the robustness of our method and the baselines in terms of rank, number of distractors D, size, and position on the MegaFace
benchmark [13].

the feature extractor learned which information to rely on as
it was exposed to occlusion during training. For the facial
reconstruction, though, the feature extractor is presented
with a reconstructed image. Since, in this case, the feature
extractor was never trained with occlusion, it assumes that
every pixel contains the correct information, neglecting that
previously occluded (and therefore reconstructed) pixels are
not equally reliable as non-occluded (and therefore ideally
untouched) pixels. For text occlusion, our approach outper-
forms ResNet-50-occ, indicating that our approach achieves
satisfying performance in reconstructing sparse occlusions,
which are sparse and can span the whole image. Moreover,
compared to ResNet-50-occ, our approach has the added
benefit of generating a reconstructed face.

Overall, we observe that we can close the gap between oc-
cluded and non-occluded faces by a substantial amount while
maintaining identical performance on non-occluded faces,
ensuring that the reconstruction of non-occluded faces does
not induce unwanted artifacts and they remain untouched.

E. Detailed analysis

In the following, we evaluate face recognition and re-
construction performance on the MegaFace benchmark de-
pending on D, ranks, size, and position by comparing our
best model (c.f. Table I without L style

id ) with BVMR [6]
and ResNet-50-occ (only face recognition). The analysis is
depicted in Fig. 7 and Fig. 8.
Rank and Number of Distractors D. The graphs depicting
the TPIR in terms of rank and D (first two columns in Fig. 7)
confirm the results averaged over the size from Table I. While
our approach outperforms BVMR for text and rectangular
occlusion, we achieve superior results compared to ResNet-
50-occ only for text occlusion. In terms of reconstruction
quality (last column in Fig. 7), the larger gap between our
approach and BVMR for rectangular occlusions compared to
text occlusions indicates that our approach is more viable.

Note that ResNet-50-occ does not perform any reconstruc-
tion. These findings are consistent for all ranks and D.
Influence of Size and Position. As expected, increased
height ratio h or area ratio a leads to worse TPIR. We
believe that it is difficult to draw conclusions from the text
occlusion in terms of position as the inherent randomness in
word length causes occlusions applied outside of the face
to also cover significant parts of the faces (c.f. Fig. 3).
For rectangular occlusion, we observe that the TPIR is
highest when occlusions occur outside of the face. Due to
the worse SSIM compared to other face parts, the good
TPIR is not caused by a realistic reconstruction but rather
by being unaffected by occlusions outside the face. The
best reconstruction and recognition within the faces are for
occlusions around the eye. This indicates that our architecture
successfully transfers information from the left to the right
eye and vice versa due to the cross-attention module and the
additional discriminator for the eyes. The worst recognition is
obtained for the nose occlusion as it covers the largest area
of useful information within the face, whereas the mouth
occlusion leads to the overall worst SSIM since the network
does not know whether the mouth is open or closed when it
is entirely covered by occlusion.
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Fig. 8. Effect of occlusion and reconstruction on the accuracy of facial
landmark prediction on the LFW dataset [7].
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Reconstruction Quality. Fig. 1 (left) depicts qualitative
results when reconstructing rectangular occlusions around
the eyes. Compared to BVMR [6], our approach yields
realistic sharp results. Moreover, as opposed to [31], [36],
our results have consistent make-up and eye color.

We further analyze the accuracy of facial landmark pre-
diction on the LFW dataset. For that, we take the landmarks
of the non-occluded faces as ground truth and compute the
mean squared error (MSE) normalized by the intra-ocular
distance. As illustrated in Fig. 8, using our reconstruction
substantially boosts the quality of facial landmark prediction.

V. CONCLUSION

In this paper, we present a novel approach for blind face
reconstruction utilizing a coarse-to-fine network. Combining
a parallel structure of two attention modules with adversarial
loss allows the network to combine global information to
yield a realistic face with sharp details. Moreover, we ensure
that the face’s identity is preserved by supervising the
training with features from a pretrained face feature extractor.
Our exhaustive analysis encompassing reconstruction quality
and recognition accuracy metrics reveals the trade-off be-
tween the two. Moreover, we demonstrate that our approach
outperforms the baseline for different positions, sizes, and
shapes of occlusions.
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