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Abstract

Graph neural networks (GNNs) have rapidly revolutionized the field of machine learn-
ing on graphs and are state of the art in many tasks such as node classification, link
prediction, and graph classification. Moreover, GNNs have been adopted in industry for
applications such as recommendation, drug discovery, or estimation of arrival time in
routing. In this thesis we look at GNNs from a perspective of adversarial robustness.
We generalize the notion of adversarial attacks — small perturbations to the input data
deliberately crafted to mislead a machine learning model — from traditional vector data
such as images to graphs. We present adversarial attack algorithms on GNNs that target
the training phase of the models, leading to drastically reduced performance after train-
ing on the poisoned data. In some cases, a small number of perturbations is sufficient
to degrade the performance of a state-of-the-art GNN below that of a simple classifier
that neglects graph information altogether. In addition to adversarial attacks, we also
focus on improving the robustness of GNNs against attacks. We propose robustness
certification procedures for perturbations of the node attributes as well as the graph
structure. These certificates guarantee that no perturbation within some constraints
can change the prediction of the model. Further, we use our certification in a robust
training procedure which strongly improves the GNN robustness. We further provide
retrospective insight and summarize the current state of the research field of studying
adversarial robustness of GNNs. Finally, we consider broader impact aspects of ML in
general and GNNs in particular, and highlight open questions for future research.
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Zusammenfassung

Graph-neuronale Netze (GNNs) haben das maschinelle Lernen (ML) auf Graphen in
den letzten Jahren rasant verandert. GNNs sind state of the art in vielen typischen Auf-
gaben fiir maschinelles Lernen auf Graphen wie der Klassifikation von Knoten, Kanten-
Vorhersage sowie Graph-Klassifikation. GNNs haben auch sehr schnell Eingang gefunden
zu Anwendungen in der Wirtschaft wie beispielsweise der Empfehlung von Inhalten, Ent-
deckung neuer Medikamente oder der Schitzung der Ankunftszeit bei Navigation. In
dieser Doktorarbeit werden GNNs aus der Perspektive der feindlichen (engl. adversarial)
Robustheit betrachtet. Das Konzept der feindlichen Angriffe (engl. adversarial attacks)
— kleiner Storungen in den Eingabedaten, die speziell darauf ausgerichtet sind, ein ML-
Modell zu tduschen — wird generalisiert von traditionellen unabhéngigen Datentypen
wie Bildern hin zu Graphen. Es werden Algorithmen fiir feindliche Angriffe auf GNNs
prasentiert, die die Lernphase des Modells adressieren und so zu drastischen Einbufien
in der Genauigkeit der Modelle fithren, die auf den vergifteten (engl. poisoned) Daten
trainiert wurden. In einigen Féllen reicht eine kleine Anzahl an Stérungen sogar aus,
um die Genauigkeit eines state of the art GNN-Modells so stark zu reduzieren, dass sie
unter der Genauigkeit eines einfachen Modells liegt, das die Graph-Struktur ignoriert.
Im zweiten Teil der Arbeit liegt der Fokus auf der Verbesserung der Robustheit von
GNNs gegeniiber Angriffen. Es werden Methoden fiir die mathematische Zertifizierung
der Robustheit von GNNs gegentiiber Storungen der Knoten-Attribute sowie der Graph-
Struktur selbst prasentiert. Diese Zertifikate garantieren, dass keine Stérung innerhalb
eines festgelegten Rahmens die Vorhersage des Modells verdndern kann. Zudem wird die
Zertifizierungs-Methode dazu genutzt, einen robusten Lernalgorithmus fiir GNNs zu en-
twickeln, der die Robustheit der finalen Modelle drastisch erhéht. Abschliefend wird der
derzeitige Stand der Forschung zu robusten GNNs zusammengefasst und offene Fragen
fiir zuktunftige Forschungsprojekte aufgezeigt.
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1 Introduction

Artificial intelligence (AI) is widely viewed as a key technology of our times. In fact,
the European Commission considers Al “as one of the most strategically important
technologies of the 21st century” [71]. AI startup funding has increased more than
50-fold between 2012 and 2020 [207]. Much of this surge in interest and applications
comes from recent improvements in machine learning, more specifically deep learning.
Machine learning is the study of computer programs which learn from experience (e.g.,
data) [157]. Deep learning is a subfield of machine learning and can be defined as
models which hierarchically learn complex representations based on simpler ones [86].
In the last decade, there have been several breakthroughs in deep learning such as
deep convolutional neural networks [e.g., 125, 204, 211, 100] for image recognition or
Transformers for natural language processing (NLP) [e.g., 62, 188, 33].

Due to the tremendous success of deep learning in recent years, it has found many
applications in science and industry. These include automatic machine translation [74],
recognition of e.g., plants [190] or bird species [233] on images, neural rendering of images
[214], medical image analysis [114], fluid simulation [222], or autonomous driving [90],
to name only a few.

More recently, deep learning has also lead to substantial improvements across tasks in
machine learning for graphs. These deep learning models are often referred to as graph
neural networks (GNNs) [e.g., 195, 89, 117, 84, 97, 119] and are the main subject of
study in this thesis.

1.1 Machine learning on graphs

Machine learning on graphs has a long-standing history and has roots in the field of graph
mining [39] and network science [11]. More recently, deep-learning-based approaches to
machine learning on graphs are also referred to as graph representation learning [98]. In
machine learning with graphs, we try to learn from patterns in graph-structured data
(such as social networks, Web graphs, supply networks, protein interaction graphs, ...)
to solve tasks such as node classification, where we predict a class label for each node in a
graph; community detection, where the task is to find densely connected groups of nodes
in an unsupervised way; link prediction, where we predict missing or potential future
edges; or graph classification, where a model predicts a class label to a graph as a whole.
See, e.g., Chapter 1 in [98] for an overview of these tasks. A key difference to ‘standard’
machine learning is that, on graphs, one of the fundamental assumptions, i.e., that all
samples are independent and identically distributed (i.i.d. assumption), does not hold. On
the other hand, this also enables us to leverage the information of a node’s neighborhood
to improve its prediction, something we cannot do in the traditional scenario.
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Traditional methods for machine learning on graphs follow similar approaches as their
non-graph counterparts before the advent of deep learning [98]. Typically, we first extract
a set of statistics or features from a given graph, e.g., occurrence counts of certain graph
motifs or the node degree distribution. Then, these features are used in traditional
downstream models such as logistic regression or kernel-based approaches. In Chapter
2 of [98], readers can find an overview of traditional graph ML models.

Graph neural networks (GNNs). In roughly the last five years, graph neural networks
(GNNs) have brought deep learning to the graph domain and rapidly set the state of
the art in many graph-related machine learning tasks [106], even though the general
GNN framework was developed already in the mid-to-late 2000s [89, 195]. From early
on, GNNs have also been considered to be useful building blocks to improve ML systems
in other fields such as reinforcement learning (RL) [e.g., 99, 256, 7] or computer vision
le.g., 48, 12, 186, 80]. In addition, GNNs have been applied to a variety of domains and
applications. A non-exhaustive list of examples includes traffic forecasting [241, 202, 138,
263, 95]; molecular property prediction [84, 121, 120, 118, 199, 223]; recommendation
in Web graphs [26, 252]; knowledge graphs [250, 229]; pharmacy and drug discovery
[109, 29, 113, 272]; travel time prediction in routing [61]; combinatorial optimization
[139, 37]; autonomous driving [63, 112]; and source code and programming languages
[102, 279, 76, 5]. Recently, Hu et al. [106] created the ‘Open Graph Benchmark’ (OGB),
which includes several real-world datasets from domains such as source code, molecules,
or citation graphs. It further includes different tasks such as node classification, link
prediction, or graph classification, and the graphs come in different scales of up to 100
million nodes. In Sections 2.1 to 2.3 we provide some background on machine learning
for graphs and GNNs.

1.2 Data corruptions

Real-world data is never perfect: sensors cannot measure physical quantities to arbitrary
precision; they could malfunction and record incorrect values. Humans can also be the
cause for imperfect data: they sometimes make mistakes when manually inserting data;
they do not always fill all the fields (e.g., leave some questions in a survey unanswered);
they could make a mistake recording the label of a data point; or they could even
deliberately create false or misleading data (e.g., by lying on a survey). Thus, any
algorithm learning from real-world data is exposed to some degree of data imperfection.
Often, this is not a problem, e.g., the sensor noise on daylight photos taken with modern
digital cameras is very small. In general, though, noisy or incomplete data can degrade
real-world performance of machine learning models.

Hendrycks and Dietterich [103] study the effect of typical data imperfections on nat-
ural images (e.g., out-of-focus or motion blur, brightness or contrast changes) on deep
learning models for image classification. They find that neural networks’ classification
performance drops substantially when adding data corruptions at levels where humans
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can typically still correctly classify the images. Thus, creating models which are robust
to real-world noise and corruptions is an active field of research.

Adversarial perturbations are worst-case data corruptions in the sense that small per-
turbations, often imperceptible to humans, completely alter a model’s prediction.

Deep neural networks are remarkably vulnerable to adversarial perturbations, i.e.,
small perturbations, imperceptible to humans, added to images to mislead a machine
learning model [e.g., 212, 88, 177, 192, 91, 179, 132, 170, 140, 162, 17, 38]. It is even
possible to create physical adversarial examples where, for instance, stickers attached to
a stop sign lead it to be classified as a different sign by a neural network [72], highlighting
the real-world harm that could be done by exploiting vulnerabilities in machine learning
models. Further, adversarial examples shine a spotlight on gaps in our understanding of
neural networks: neural networks are hypothesized to learn meaningful representations
that capture semantic understanding of the domain and task [134]. Adversarial examples
are counterexamples to this hypothesis: the semantic content of the samples is unchanged
but the network is fooled.

There are many possible reasons why adversarial examples could be created in the
real world: e.g., they could be used to fool a financial assessment system in order to be
granted a loan; to make fake or bot accounts look more natural so that they are not
blocked; or humans could try to protect their privacy from mass surveillance systems
by wearing ‘adversarial’ hats [123], glasses [203], or face stickers [96]. Thus, the study
of adversarial examples and potential defenses [e.g., 16, 53, 88, 180, 176, 248, 101, 156,
234, 51, 55, 194, 189, 146, 158] against them has become a very active field of research.

Adversarial robustness of GNNs. In this thesis we study the adversarial robustness
of graph neural networks. Before the initial study presented in this thesis, the robust-
ness of GNNs w.r.t. adversarial perturbations was not known. Because nodes are not
independent but connected to other nodes in graphs, adversarial attacks on GNNs bring
unique challenges and opportunities. For instance, we can attack a node’s prediction
without changing its features and by only perturbing nodes in its neighborhood; this
cannot be done on traditional independent data such as images. Moreover, we can in-
fluence a GNN’s prediction of a node by inserting or removing edges, which are discrete
operations as opposed to the typically continuous-valued adversarial perturbations on
images.

In addition, adversarial attacks on GNNs are highly relevant in practice: as GNNs
are rapidly adopted in industry [e.g., 252, 26|, their typical application domain are Web
graphs and social networks. Here, adversarial actors are omnipresent, and billions of
users are potentially affected by vulnerabilities. Thus, understanding and improving the
robustness of GNNs is important to ensure their safe application in the real world. For
a recent overview of GNN robustness we refer the reader to [94].
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Ch. Ref. Title Venue Project page
3 [273], Adversarial Attacks on Graph Neural Networks: KDD 2018, /nettack/
[275]  Perturbations and their Patterns TKDD 2020 /"

Adversarial Attacks on Graph Neural Networks

4 [276] via Meta Learning ICLR 2019  /gnn_meta_attack/
Certifiable Robustness and Robust Training

6 [277] for Graph Convolutional Networks KDD 2019 /robust_gen/

. [278] Certifiable Robustness of Graph Convolutio- KDD 2020 /robust_gen/

nal Networks under Structure Perturbations

Table 1.1: List of own publications which form the basis of this thesis. The project pages are
available at https://www.daml.in.tum.de/[project].

1.3 Contributions and outline

We first establish preliminaries and background information in Chapter 2. In Part II, we
present the first study of adversarial robustness of graph neural networks. We develop
different attack strategies such as edge manipulation or feature perturbation to change
a GNN’s prediction. At the same time, we explore ways to ensure that the adversarial
perturbations are subtle and hard to detect. We study both local attacks on individual
nodes as well as global attacks aiming to decrease the overall classification performance
of GNNs. In summary, the first two studies presented in this thesis establish that GNNs
are not robust w.r.t. adversarial perturbations and highlight the need to develop meth-
ods to improve GNN robustness. We investigate this in Part III, where we present two
more studies. In the first one we develop the first robustness certification technique for
message-passing GNNs w.r.t. perturbations of the node features. In addition, we use this
certification method to propose a robust training procedure for GNNs, which substan-
tially increases the robustness of GNNs. In the second study, we consider perturbations
of the graph structure and develop a robustness certification method for these attacks.
At the ends of Parts II and III, respectively, we offer retrospective insight regarding
the studies presented in this thesis and discuss how the research field of studying the
robustness of GNNs has evolved since our first study. Finally, in Part IV, we conclude
this thesis by highlighting open questions as suggestions for future research directions.

1.4 Own publications

Chapters 3, 4, 6 and 7 contain material previously published at international peer-
reviewed conferences. In Table 1.1 we provide references to these publications. At the
respective project pages we provide additional material such as code, presentation slides,
and posters. Pointers to the code implementations can be found in Appendix A.2

Besides these publications, the author was involved in a number of additional projects.
A full list of all publications with the author’s involvement during the period of his PhD
studies is provided in the following:
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2 Background

In this section we provide some background on the contents of this thesis. In order
to preserve the original storyline of the respective publications, we kept the background
sections of the publications in Chapters 3, 4, 6 and 7; thus, some parts might be repeated
in the later chapters. Readers are encouraged to skip these sections whenever they occur.

2.1 Graphs

We define an attributed graph as G = (V, €, X)), where V is the set of nodes, N = |V|
is the number of nodes in the graph, £ C V x V the set of edges, and X : V — D the
node attributes. In much of this thesis, we consider graphs where the node attributes
are binary feature vectors, i.e., we instantiate X' : V — {0,1}”, where D is the feature
dimension.

To work with and manipulate a graph for use in machine learning, we find it useful
to represent a graph as G = (A, X), where A € {0,1}V*¥ is the adjacency matrix
representing the connections, i.e., A;; = 1 iff (i,j) € £. In this thesis we consider
unweighted and undirected graphs only. X is the node attribute matrix, i.e., each row
X, € D contains the attribute vector of the corresponding node. Thus, X € DV,
e.g., X € {0, I}NXD in the case of binary feature vectors. Here, we assume w.l.o.g. an
arbitrary bijection of integer IDs to nodes in the graph.

The graphs we consider in this thesis, as defined above, are homogeneous. That
is, there is only a single type of nodes and edges in a graph. This is in contrast to
heterogeneous graphs, where there are different node types in a graph, e.g., users and
products in user-product graphs, or different edge types such as different atom bond
types in molecular graphs.

2.2 Transductive semi-supervised learning

The most important task we consider in this thesis is semi-supervised transductive node
classification in graphs [41]. In supervised learning, we learn a function f : X — ) from
datapoints to targets. That is, we need a set of labeled datapoints {(z;,v:)}Y, 2; €
X, y; € Y to approximate the true underlying mapping function. Commonly the targets
are either continuous-valued or categorical, corresponding to the tasks of regression and
classification, respectively.

In unsupervised learning, on the other hand, we only have access to a set of N data-
points {x;}}¥,, ¥; € X sampled from the distribution p(x). The goal is to find interest-
ing and/or useful structure in the data distribution (e.g., using K-means) or to learn a
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model that can (approximately) generate additional samples from p(z). Prominent and
recent examples for the latter generative perspective are generative adversarial networks
(GANS) [e.g., 87, 270, 45, 54, 9, 32] (Bojchevski et al. [28] propose a GAN specifically for
graphs), as well as language models in natural language processing (NLP), most notably
GPT-2 [188] and GPT-3 [33].

Semi-supervised learning sits between unsupervised and supervised learning. Here, we
have a set of N datapoints, and for a number L of these samples we know their true
targets. More formally, we can decompose the dataset V into the (non-overlapping)
labeled V;, and unlabeled parts Vy, ie., V = Vg UV, Vy NV, = 0. The unlabeled
datapoints are defined as Vy = {xz}fiL +1» Ti € X, and the labeled datapoints as
Ve = {(zi,y:)},, zi € X, yi € V. Typically, only a small fraction of data points
are labeled, i.e., L <« N. Put differently: we use information about p(x) (the data
distribution) to improve our model of p(y|z) (the mapping from data to targets). In
doing so we make a set of assumptions, most notably the cluster assumption [41], which
states that data points from the same cluster should belong to the same class y. An
illustrative example is to imagine learning an unsupervised model such as K-means. By
the clustering assumption, we can leverage the labeled datapoints to assign each unla-
beled datapoint the majority class for labeled datapoints in the same cluster. For more
details, we refer the reader to Chapter 1 of [41]. In Chapter 4 of the same book, the
authors further discuss scenarios in which semi-supervised learning can fail.

Transductive learning is the counterpart of inductive learning. In inductive learning,
we learn a function f : X — ) which can predict the target for any potential datapoint
x; € X. For example, an image classification model should be able to classify any picture,
even those that did not exist when we trained the model. In transductive learning, on
the other hand, we directly estimate the labels of a set of test datapoints Vy; this set
of datapoints is fixed, so we cannot classify additional datapoints after the model has
been trained [41]. This setting is typical in machine learning for graphs, where we often
assume the graph is fixed and want to classify the unlabeled nodes given a small set
of labeled nodes. We again refer to Chapter 1 of [41] for an excellent introduction to
transductive learning.

Node classification is a traditional application of semi-supervised transductive learning
and the main task considered in this thesis. For this task, we are provided a single
attributed graph G = (A, X)) as well as a subset V;, C V of labeled nodes, and want to
learn a function g : ¥V — C which maps each node v € V to one class in C. Typically,
models leverage the unlabeled nodes for learning under the homophily assumption that
nodes from the same class tend to connect more densely than nodes from different
classes [153]. A prominent recent class of models for node classification are graph neural
networks, which are briefly explained in the following section.

10
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2.3 Graph neural networks

The first graph neural networks (GNNs) date back to 2005 and the work of Gori et al.
[89], which was later refined by Scarselli et al. [195]. In 2017, GNNs had important
breakgthroughs in node classification [117, 97| and molecular property prediction [84].

General framework. In this thesis we focus on message-passing neural networks [84]
which can be formalized with the framework used by Hamilton [98]. In this framework, a
GNN alternates between feature processing on the node level and aggregation of neighbor
representations, followed by an element-wise activation function:

hY =z,
A = fD(R{-Y) foril=2,...,L
A = 5O (AGGREGATE(Z) ({ (Am,, ﬁg”)} v € N(u)U {u})) for i =2,...,L

where N (u) denotes the set of neighbors of node u, o the activation function at
layer I, and fU=1) . RPY 5 RPY some function, e.g., a linear mapping or a neural
network. L denotes the number of layers of the neural network (including the input
layer). AGGREGATE®(.) is the function that maps from the set of neighbors of node u
(including w itself) and their representation to the single vector representation of node u
for the next layer. Since at each layer we aggregate information from a node’s neighbors
to update its representation, a GNN as defined above with L layers has a receptive field
of L — 1. This means that we can compute the output representation of any node using
only the induced subgraph of its L — 1-hop neighborhood, i.e., the graph obtained when
only keeping nodes that can be reached within L — 1 hops as well as the edges between
the selected nodes. Next, we show how the graph neural network GCN instantiates this
framework.

Graph convolutional network (GCN) [117]. In GCN, fO(h{) is defined as fO (h{) :=
hq(Ll)T - WO ie. asimple linear map per layer. The aggregation function is defined as

AGGREGATE® ({ (Aw, ﬁg”)} v e N(w)U {u}) = Y ALhD+0, (21
veN (u)U{u}

where A = D"1/2AD~1/2 and b0 is a vector of learnable biases. Here, A=A+Tisa
modified adjacency matrix with and D;; = ; A;; the diagonal matrix of node degrees
of the modified graph. Equivalently, we can express the GCN forward pass in matrix
form:

HY =X
g% — gyt fori=2,....L
HO = 50 (Aﬁ‘” n b<l>) forl=2,... L

11
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In GCN, all layers’ activation functions except the last layer’s is the rectified linear unit,
ie., 00(Z;;) = ReLU(Z;;) = max {Z;;,0},2 <1 < L, and o(F)(-) = softmax(-).

Extensions. The framework above is a simplification of the message-passing neural
network framework introduced by Gilmer et al. [84]. Many other GNNs such as GAT
[224], GraphSAGE [97], (A)PPNP [119], SGC [236], PPRGo [26], and CLN [184], are
instantiations of the framework above. The general framework [84] also includes GNNs
which take into account attributes on the edges of the graph [e.g., 121, 118, 199, 223, 84],
which however is not necessary for the content of this thesis. Further, there are numerous
variants of GNNs such as position-aware GNNs [254], GNNs with hierarchical pooling of
the graph [253], or GNNs for causal inference [257]. In addition, some GNNs can scale
to massive graphs with billions of nodes [e.g., 26, 228, 252, 49]. GNNs have also been
extended to heterogeneous graphs [e.g., 269, 271, 196].

The aggregation functions of many GNNs effectively act as low-pass filters on the graph
structure [50, 269]. Thus, typical GNNs implicitly follow the homophily assumption that
nodes from the same class tend to connect more densely than nodes from different classes
[153]. Even more, pre-filtering the adjacency matrix with a low-pass filter [122] tends
to improve results of many GNNs on homophilic datasets. Chien et al. [50], Zhu et al.
[269] propose GNNs which are suited for non-homophilic datasets.

Another stream of work concerns itself with the theoretical expressivity of graph neural
networks [246, 164, 73, 31, 163, 151]. Xu et al. [246], for instance, show that message-
passing GNNs’ expressive power of detecting graph isomorphism is bounded by the
1-Weisfeiler-Lehman test [131].

Finally, we want to mention that we only consider graphs where both the structure and
the attributes are static and do not change over time. Dynamic GNNs [e.g., 191, 205, 243]
are GNN variants which take into account settings where the graph changes over time.
For a comprehensive overview on GNNs, we refer the reader to [240] or [238].

2.4 Adversarial attacks

Adversarial examples contain small, worst-case perturbations that mislead a machine
learning model while looking (almost) unchanged to a human [212]. Adversarial examples
have been studied since at least 2004 [57] and w.r.t. image data since at least 2006 [85].
However, in the latter work on images, the adversarial examples crafted by the method
create semantic ambiguity also for humans. This is in contrast with the adversarial
examples on deep neural networks typically studied since the work of [212] in 2013. A
remarkable feature of these adversarial examples is that they look indistinguishable to
the non-perturbed images for humans. Figure 2.1 shows an example of this: the left
image is classified correctly as “pig” by a deep neural network, while the right one —
indistinguishable from the left picture for a human — is labeled as “airliner” by the
model.

12
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“airliner”

Figure 2.1: An adversarial example. Figure from Madry and Schmidt [147].

2.4.1 Attack characteristics

Biggio and Roli [19] provide an overview of the different dimensions of adversarial attack
scenarios; we loosely follow their structure here.

Attacker’s goal. This encompasses which violation the attacker aims to cause (e.g.,
to obtain private data, to disrupt system operations or to stay undetected while ma-
nipulating certain predictions); the specificity of the attack, i.e., whether the goal is to
misclassify a specific target datapoint (referred to as local attacks in this thesis) or to
degrade the overall performance of a model (referred to as global attacks in this thesis);
and whether or not the desired misclassification error is specific, i.e., whether the goal
is to have a sample be misclassified as some specific target class (otherwise we call the
attack generic).

Attacker’s knowledge. Here we capture the attacker’s knowledge of the system under
attack, including the training data, the model architecture, the model parameters or
hyperparameters, the loss function, and the optimization algorithm. It is standard to
distinguish three cases: (i) white-box attacks in which the knowledge of the attacker is
unrestricted; (ii) grey-box attacks, where the attacker has some limited knowledge of
the system; and (iii) black-box attacks assuming no knowledge of the system.

Attacker’s capability. Here we describe the attacker’s power to manipulate the data.
An important distinction for this thesis is between poisoning (also known as causative)
attacks and evasion (also known as exploratory) attacks. In poisoning attacks, the
attacker can modify the training data of the machine learning model to some extent,
with the goal of leading to poor classification performance after training or to have
certain samples be misclassified by the trained model. Evasion attacks are the more
commonly studied case. Here, the attacker modifies samples from the test set in order
for them to be misclassified by a fixed, trained model.

Moreover, the attacker is typically limited in the amount of manipulation they can
perform, e.g., because they have limited access or because they need to avoid detection.
This is typically modeled by a constraint ensuring that a perturbed datapoint & is within
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a radius r around the original data point x, measured by some L, norm:
& —all, <r. (2.2)

Moreover, we often assume that within some small radius r the semantic meaning of a
data sample does not change and that (for images) the perturbations are imperceptible
to humans [212].

Attack strategy. This is the actual procedure how the attacker produces adversarial
examples. Given the attacker’s knowledge and capabilities, they optimize an objective
function which reflects their goal. In a white-box attack, for instance, the attacker could
optimize the opposite of the loss function £ used to train the model [88]:

max L(&,y) st ||z —x|, <7
xr

2.4.2 Improving robustness

A large number of methods to ‘defend’ neural networks against adversarial examples,
i.e., to improve the models’ robustness, exist. We can broadly group them into two
categories: methods to improve the empirical robustness and methods for improved
certified robustness. A detailed introduction to these is out of scope for this thesis; the
notes of lectures 9-14 by Li [135] are an excellent resource for interested readers.

Improving empirical robustness. Here, the goal is to improve the robustness of a model
in the sense of making it unlikely that an attack succeeds. Methods are typically based
on heuristics or ad-hoc approaches against specific attacks. They do not come with a
guarantee that they prevent all possible adversarial attacks within some allowed con-
straint set; nonetheless, they can lead to improved provable robustness properties. Still,
most empirical ‘defenses’ have later been broken by stronger attacks [133].

One notable method to improve empirical robustness is adversarial training [88].
While the model is being trained, we take the role of the adversary to find an adversarial
example of the training sample, and compute the loss on this perturbed example instead.
Adversarial training is an instance of the more general paradigm of robust training. In
robust training, instead of performing standard model training as

xvyeptrain

we minimize a robust loss, e.g., the worst-case loss

mgn E max L(x +€,y).
€l|p<r
m7y€Dtrain ” Hp_
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In practice, determining the worst perturbation, i.e., max¢|, <, L(x+e€,y) is intractable.
Instead, as a heuristic, we plug in some existing adversarial attack algorithm which
returns a perturbed training example &:

min Z L(Z,y).
,YEDtrain

Adversarial training is known as one of the few heuristic methods which consistently
lead to improved robustness of the trained model. One exception are graph neural
networks, where previous attempts at implementing adversarial training have been less
fruitful, as we will discuss in Chapter 5.

Adversarial training leads to classifiers which tend to be more robust, i.e., less af-
fected by adversarial examples. Another conceivable strategy could be to try to detect
adversarial examples. The motivation is that adversarial examples come from a different
distribution than the “natural” data; hence, we could try to detect adversarial exam-
ples via outlier detection or uncertainty estimation methods. However, this does not
appear to work in practice [133]. Even more, the uncertainty-based detection model can
itself be adversarially attacked [124]. In addition, Kopetzki et al. [124] argue that since
adversarial perturbations are imperceptible to humans and do not change the semantic
meaning of samples, we would intuitively expect machine learning classifiers to also be
robust or even invariant to these perturbations.

Provable robustness methods provide guarantees that the predicted class of a sample
does not change within a radius # measured by some norm. Thus, we can be certain that
there is no adversarial example in the vicinity of the respective sample and do not need
to worry that some stronger attack developed in the future may break our certificate.

Exact verification [e.g., 218], i.e., proving or disproving that the model’s prediction for
a sample does not change within some radius, is NP-hard in general [134]. Thus, this is
infeasible for large models.

Verification methods using convex relaxation [e.g., 234, 189], on the other hand, can
be run in polynomial time. The price we pay is that the methods cannot prove or
disprove robustness on all samples, i.e., sometimes it cannot make a decision. On the
other hand, if the verification states that the model is robust, we can be sure that there
are no adversarial examples. The methods we present in Part I1II fall into this category.

A third category which emerged relatively recently is randomized smoothing [53].
Here, we define the smoothed classifier to be the expected output of the model (called
the base classifier) under some noise distribution, e.g., Gaussian noise. This smoothed
classifier has provable Lipschitz-smoothness properties, which can be exploited to guar-
antee that a prediction cannot change within some radius. However, since we do not
have access to the smoothed classifier directly, we need to estimate it via Monte Carlo
samples; as a consequence, randomized smoothing leads to probabilistic certificates, i.e.,
guaranteed to hold with some high probability. A big advantage of randomized smooth-
ing methods is that they can be applied to any model. Hence, randomized smoothing
attracted a lot of attention recently, leading to many extensions of the method [e.g.,
193, 130, 126], including an extension to discrete data such as graphs [25].
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3 Adversarial Attacks on Graph Neural
Networks: Perturbations and their
Patterns

3.1 Introduction

One of the most frequently addressed tasks on graph data is node classification: given a
single large (attributed) graph and the class labels of a few nodes, the goal is to predict
the labels of the remaining nodes. For example, one might wish to classify the role
of a protein in a biological interaction graph [97], predict the customer type of users
in e-commerce networks [70], or assign scientific papers from a citation network into
topics [117].

While many classical approaches have been introduced in the past to tackle the node
classification problem [145, 41], the last years have seen a tremendous interest in methods
for deep learning on graphs [22, 161, 36]. Specifically, approaches from the class of graph
convolutional networks [117, 184] have achieved strong performance in many graph-
learning tasks including node classification.

The strength of these methods — beyond their non-linear, hierarchical nature — relies
on their use of the graphs’ relational information to perform classification: instead of
only considering the instances individually (nodes and their features), the relationships
between them are exploited as well (the edges). Put differently: the instances are not
treated independently; we deal with a certain form of non-i.i.d. data where network
effects such as homophily [145] support the classification.

However, there is one big caveat: Many researchers have noticed that deep learning
architectures for classical learning tasks can easily be fooled/attacked [212, 88] . Even
only slight, deliberate perturbations of an instance — also known as adversarial pertur-
bations/examples — can lead to wrong predictions. Such negative results significantly
hinder the applicability of these models, leading to unintuitive and unreliable results,
and they additionally open the door for attackers that can exploit these vulnerabilities.
Recent works show that graph neural networks are also vulnerable to adversarial at-
tacks [273, 276]. This is highly critical, since especially in domains where graph-based
learning is used (e.g. the web) adversaries are common and false data is easy to inject:
spammers add wrong information to social networks; fraudsters frequently manipulate
online reviews and product websites [104].

In this chapter, we propose a method to create adversarial examples for graph neural
networks. In addition, we take a step towards answering the question of what makes
adversarial attacks on graph neural networks so effective? Compared to adversarial
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Results for attacking GCN on Citeseer
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Figure 3.1: Small perturbations of the graph structure and node features lead to misclassifica-
tion of the target. (a) Attack overview; (b) accuracy degradation on CITESEER.
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attacks on deep networks for continuous, i.i.d. data (e.g., images), our work significantly
differs in various aspects.

3.1.1 Opportunities

(1) Since we are operating on an attributed graph, adversarial perturbations can man-
ifest in two different ways: by changing the nodes’ features or the graph structure.
Manipulating the graph, i.e., the dependency structure between instances, has not been
studied so far, but is a highly likely scenario in real-life. For example, one might add
or remove (fake) friendship relations to a social network. (2) While existing works were
limited to manipulating an instance itself to enforce its wrong prediction®, the relational
effects give us more power: by manipulating one instance, we might specifically misguide
the prediction for another instance. Again, this scenario is highly realistic. Think about
a fraudster who hijacks some accounts, which he then manipulates to enforce a wrong
prediction for another account they have not under control. Thus, in graph-based learn-
ing scenarios we can distinguish between (i) nodes which we aim to misclassify, called
targets, and (ii) nodes which we can directly manipulate, called attackers. Figure 3.1
illustrates the goal of our work and shows the result of our method on the CITESEER
network. Clearly, compared to classical attacks to learning models, graphs enable much
richer potential for perturbations. But likewise, constructing them is far more chal-
lenging. (3) Uncovering the underlying patterns of what makes our adversarial attacks
so harmful to graph neural networks is a major step towards detecting and preventing
attacks, a problem that has yet to be solved. In short, we leap towards making graph
neural networks safe for use in real-world applications.

'Due to the independence assumption, a misclassification for instance i can only be achieved by ma-
nipulating instance i itself for the commonly studied evasion (test-time) attacks. For the less studied
poisoning attacks we might have indirect influence.
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3.1.2 Challenges

(1) Unlike, e.g., images consisting of continuous features, the graph structure — and of-
ten also the nodes’ features — is discrete. Therefore, gradient based approaches [88, 155]
for finding perturbations are not suited. How to design efficient algorithms that are able
to find adversarial examples in a discrete domain? (2) Adversarial perturbations are
aimed to be unnoticeable (by humans). For images, one often enforces, e.g., a maximum
deviation per pixel value. How can we capture the notion of 'unnoticeable changes’ in a
(binary, attributed) graph? (3) Last, node classification is usually performed in a trans-
ductive learning setting. Here, the train and test data are used jointly to learn a new
classification model before the predictions are performed on the specific test data. This
means that the predominantly performed evasion attacks — where the parameters of
the classification model are assumed to be static — are not realistic. The model has to
be (re)trained on the manipulated data. Thus, graph-based learning in a transductive
setting is inherently related to the challenging poisoning/causative attacks [18].

3.1.3 Contributions

Given these challenges, we propose a principle for adversarial perturbations of attributed
graphs that aim to fool state-of-the art deep learning models for graphs. In particular,
we focus on semi-supervised classification models based on graph convolutions such as
GCN [117] and Column Network (CLN) [184] — but we will also showcase our method’s
potential on the unsupervised model DeepWalk [182]. By default, we assume an attacker
with knowledge about the full data (but only a small fraction of class labels), which can,
however, only manipulate parts of it. This assumption ensures reliable vulnerability
analysis in the worst case. But even when only parts of the data are known, our attacks
are still successful as shown by our experiments. Overall, our contributions are:

e Model: We propose a model for adversarial attacks on attributed graphs consid-
ering node classification. We introduce new types of attacks where we explicitly
distinguish between the attacker and the target nodes. Our attacks can manipu-
late the graph structure and node features while ensuring unnoticeable changes by
preserving important data characteristics (e.g., degree distribution, co-occurrence
of features).

o Algorithm: We develop an efficient algorithm NETTACK for computing these at-
tacks based on linearization ideas. Our method enables incremental computations
and exploits the graph’s sparsity for fast execution.

o FEzxperiments: We show that our model can dramatically worsen classification re-
sults for the target nodes by only requiring few changes to the graph. We further-
more show that these results transfer to other established models, hold for various
datasets, and even work when only parts of the data are observed. Overall, this
highlights the need to handle attacks to graph data.

e Patterns: For the first time, we present a study of the patterns of adversarial per-
turbations on graph neural networks. We identify statistically significant patterns
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in adversarial perturbations using hypothesis testing. We use these findings to
introduce FASTTACK, a highly scalable adversarial attack algorithm. FASTTACK
successfully exploits the patterns we identify using hypothesis testing to create
adversarial perturbations that are effective across models and datasets. This high-
lights the expressiveness and generality of the regularities we uncover in adversarial
perturbations and represents a first major step towards being able to detect and
prevent adversarial attacks on graph neural networks.

3.2 Preliminaries

We consider the task of (semi-supervised) node classification in a single large graph
having binary node features. Formally, let G = (A, X) be an attributed graph, where
A € {0,1}V*N is the adjacency matrix representing the connections and X € {0, 1}V*P
represents the nodes’ features. We denote with @, € {0,1}” the D-dim. feature vector
of node v. W.l.o.g. we assume the node-ids to be V = {1,..., N} and the feature-ids to
be F ={1,...,,D}.

Given a subset Vi, C V of labeled nodes, with class labels from C = {1,2,..., ¢k}, the
goal of node classification is to learn a function g : ¥V — C which maps each node v € V
to one class in C.2 Since the predictions are done for the given test instances, which
are already known before (and also used during) training, this corresponds to a typical
transductive learning scenario [41].

In this chapter, we focus on node classification employing graph convolution layers.
In particular, we will consider the well established work [117]. Here, the hidden layer
I+ 1 is defined as

H = o (ﬁ—%jﬁ—%ﬂmw(l)) , (3.1)

where A = A + Iy is the adjacency matrix of the (undirected) input graph G after
adding self-loops via the identity matrix Iy. W is the trainable weight matrix of
layer I, Dj; = >_; Aij, and o(-) is an activation function (usually ReLU). In the first
layer we have H(® = X, i.., using the nodes’ features as input. Since the latent
representations H are (recursively) relying on the neighboring ones (multiplication with

A), all instances are coupled together. Following the authors of [117], we consider GCN$s
with a single hidden layer:

Z = f4(A, X) = softmax (A o (AXW(U) W(2>) , (3.2)

where A = D 2 AD~3. The output z,. denotes the probability of assigning node v
to class c. Here, we use 6 to denote the set of all parameters, i.e., § = {W1 W@},
The optimal parameters 6 are then learned in a semi-supervised fashion by minimizing

2Please note the difference to (structured) learning settings where we have multiple but independent
graphs as training input with the goal to perform a prediction for each graph. Here, the prediction
is done per node (e.g. a person in a social network) — and especially we have dependencies between
the nodes/data instances via the edges.
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cross-entropy on the output of the labeled samples Vr, i.e., minimizing

LO;AX)==> Iz, , Z=[fAX) (3.3)

veEV]L

where ¢, is the given label of v from the training set. After training, Z denotes the class
probabilities for every instance in the graph.

3.3 Related work

In line with the focus of this chapter, we briefly describe deep learning methods for
graphs aiming to solve the node classification task.

3.3.1 Deep Learning for Graphs

Mainly two streams of research can be distinguished: (i) node embeddings [36, 182, 93, 22]
— that often operate in an unsupervised setting — and (ii) architectures employing
layers specifically designed for graphs [117, 184, 161]. In this chapter, we focus on the
second type of principles and additionally show that our adversarial attack transfers to
node embeddings as well. Regarding the developed layers, most works seek to adapt
conventional CNNs to the graph domain: called graph convolutional layers or neural
message passing [117, 59, 161, 184, 84]. Simply speaking, they reduce to some form of
aggregation over neighbors as seen in Eq. (3.2). A more general setting is described in
[84] and an overview of methods given in [161, 36].

3.3.2 Adversarial Attacks

Attacking machine learning models has a long history, with seminal works on, e.g., SVMs
or logistic regression [155]. In contrast to outliers, e.g. present in attributed graphs [21],
adversarial examples are created deliberately to mislead machine learning models and
often are designed to be unnoticeable. Recently, deep neural networks have shown to
be highly sensitive to these small adversarial perturbations to the data [212, 88]. Even
more, the adversarial examples generated for one model are often also harmful when
using another model: known as transferability [220]. Many tasks and models have been
shown to be sensitive to adversarial attacks; however, all assume the data instances to be
independent. Even [264], which considers relations between different tasks for multi-task
relationship learning, still deals with the classical scenario of i.i.d. instances within each
task. For interrelated data such as graphs, where the data instances (i.e., nodes) are not
treated independently, little work has been done yet.

Taxonomies characterizing the attack have been introduced in [18, 178]. The two
dominant types of attacks are poisoning/causative attacks which target the training
data (specifically, the model’s training phase is performed after the attack) and eva-
sion/exploratory attacks which target the test data/application phase (here, the learned
model is assumed fixed). Deriving effective poisoning attacks is usually computationally
harder since also the subsequent learning of the model has to be considered. This
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categorization is not optimally suited for our setting. In particular, attacks on the test
data are causative as well since the test data is used while training the model (transduc-
tive, semi-supervised learning). Further, even when the model is fixed (evasion attack),
manipulating one instance might affect all others due to the relational effects imposed
by the graph structure. Our attacks are powerful even in the more challenging scenario
where the model is retrained.

3.3.3 Generating Adversarial Perturbations

While most works have focused on generating adversarial perturbations for evasion at-
tacks, poisoning attacks are far less studied [132, 155, 264] since they require to solve
a challenging bi-level optimization problem that considers learning the model. In gen-
eral, since finding adversarial perturbations often reduces to some non-convex (bi-level)
optimization problem, different approximate principles have been introduced. Indeed,
almost all works exploit the gradient or other moments of a given differentiable (surro-
gate) loss function to guide the search in the neighborhood of legitimate perturbations
[88, 92, 178, 132, 155]. For discrete data, where gradients are undefined, such an ap-
proach is suboptimal.

Hand in hand with the attacks, improving the robustness of machine learning models
has been studied — known as adversarial machine learning or robust machine learning.
Since this is out of the scope of this chapter, we do not discuss these approaches here.
Part III of this thesis deals with methods to improve GNN robustness.

3.3.4 Adversarial Attacks when Learning with Graphs

Works on adversarial attacks for graph learning tasks are sparse in general. For graph
clustering, the work [46] has measured the changes in the result when injecting noise to
a bi-partite graph that represent DNS queries. Though, they do not focus on generat-
ing attacks in a principled way. Our work [27] considered noise in the graph structure
to improve the robustness when performing spectral clustering. Similarly, to improve
robustness of collective classification via associative Markov networks, the work [219]
considers adversarial noise in the features. They only use label smoothness and assume
that the attacker can manipulate the features of every instance. After our initial study
[273], there have been some additional works on adversarial attacks on graphs. [56]
attack graph and node classification using reinforcement learning and evolutionary al-
gorithms. However, in contrast to this chapter, they do not consider poisoning attacks
or attributed graphs, do not evaluate their adversarial attacks on different models (i.e.,
transfer setting), and their attack on node classification only deletes edges (and does not
insert any). [276] use meta learning to perform structure (poisoning) attacks on graph
neural networks. They focus on global attacks, i.e., reducing the classification accuracy
of a model across the whole graph, while in this chapter the focus is on targeted at-
tacks on single nodes. [23] propose poisoning attacks on a different task: unsupervised
node representation learning (or node embeddings). They exploit perturbation theory
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to maximize the loss obtained after training DeepWalk. In this chapter, we focus on
semi-supervised learning.

3.4 Attack Model

Given the node classification setting as described in Sec. 3.2, our goal is to perform small
perturbations on the graph G = (A X)) leading to the graph G’ = (A’, X'),
such that the classification performance drops. Changes to A©), are called structure
attacks, while changes to X(©) are called feature attacks.

3.4.1 Target vs Attackers

Specifically, our goal is to attack a specific target node vy € V, i.e. we aim to change vy’s
prediction. Due to the non-i.i.d. nature of the data, vg’s outcome not only depends on
the node itself, but also on the other nodes in the graph. Thus, we are not limited to
perturbing vg but we can achieve our aim by changing other nodes as well. Indeed, this
reflects real world scenarios much better since it is likely that an attacker has access to a
few nodes only, and not to the entire data or vg itself. Therefore, besides the target node,
we introduce the attacker nodes A C V. The perturbations on G(©) are constrained to
these nodes, i.e., it must hold

azm#x)éueA ,od, A suecAvue A (3.4)

If the target vg € A, we call the attack an influencer attack, since vg gets not manip-
ulated directly, but only indirectly via some influencers. If {vg} = A, we call it a direct
attack.

To ensure that the attacker can not modify the graph completely, we further limit the
number of allowed changes by a budget A:

SN 29—+ 3 16 —dl, <A (3.5)

u<v

More advanced ideas will be discussed in Sec. 3.4.2. For now, we denote with 77 4 the
set of all graphs G’ that fulfill Eq. (3.4) and (3.5). Given this basic set-up, our problem
is defined as:

Problem 1. Given a graph G = (A(O), X(O)), a target node vg, and attacker nodes A.
Let coiq denote the class for vy based on the graph G© (predzcted or using some ground

truth). Determine
*

argmax maxInzy . —Inz; .
)

(A", X")ePO, ¢7Cold

subject to Z* = fg«(A', X') with 0 = arg meinL(H;A’,X')

That is, we aim to find a perturbed graph G’ that classifies vg as ¢yew and has maximal
‘distance’ (in terms of log-probabilities/logits) to c,q. Note that for the perturbed graph
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G’, the optimal parameters 0* are used, matching the transductive learning setting where
the model is learned on the given data. Therefore, we have a bi-level optimization
problem. As a simpler variant, one can also consider an evasion attack assuming the
parameters are static and learned based on the old graph, §* = arg ming L(#; A(®), X)),

3.4.2 Unnoticeable Perturbations

Typically, in an adversarial attack scenario, the attackers try to modify the input data
such that the changes are unnoticeable. Unlike to image data, where this can easily be
verified visually and by using simple constraints, in the graph setting this is much harder
mainly for two reasons: (i) the graph structure is discrete preventing to use infinitesimal
small changes, and (ii) sufficiently large graphs are not suitable for visual inspection.

How can we ensure unnoticeable perturbations in our setting? In particular, we argue
that only considering the budget A might not be enough. Especially if a large A is
required due to complicated data, we still want realistically looking perturbed graphs
G’'. Therefore, our core idea is to allow only those perturbations that preserve specific
inherent properties of the input graph.

3.4.2.1 Graph Structure Preserving Perturbations

Undoubtedly, the most prominent characteristic of the graph structure is its degree
distribution, which often resembles a power-law like shape in real networks. If two
networks show very different degree distributions, it is easy to tell them apart. Therefore,
we aim to only generate perturbations which follow similar power-law behavior as the
input.

For this purpose we refer to a statistical two-sample test for power-law distributions
[15]. That is, we estimate whether the two degree distributions of G(*) and G’ stem from
the same distribution or from individual ones, using a likelihood ratio test.

More precisely, the procedure is as follows: We first estimate the scaling parameter
a of the power-law distribution p(z) o =% referring to the degree distribution of G©)
(equivalently for G’). While there is no exact and closed-form solution to estimate « in
the case of discrete data, [52] derived an approximate expression, which for our purpose
of a graph G translates to

-1

d.;
ag~1+Dgl- | > 1ogd.7@1 (3.6)
d;€Dg min — 9

where dpi, denotes the minimum degree a node needs to have to be considered in the
power-law test and Dg = {d5 | v € V,dS > dpin} is the multiset containing the list of
node degrees, where dg; is the degree of node v in G. Using this, we get estimates for
the values a0y and ag. Similarly, we can estimate ccomp using the combined samples
Dcomb = DG(O) U DG"
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Given the scaling parameter «,, the log-likelihood for the samples D, can easily be
evaluated as®

I(Dz) = [Dy| - log ag + D] - g - 10g dinin — (0 + 1) _ logd; (3.7)
diE'Dz

Using these log-likelihood scores, we set up the significance test, estimating whether
the two samples Do) and D¢y come from the same power law distribution (null hy-
potheses Hy) as opposed to separate ones (Hj). That is, we formulate two competing
hypotheses

l(Ho) = Z(Dcomb) and l(Hl) = l(DG(o)) + Z(Dgl) (3.8)
Following the likelihood ratio test, the final test statistic is
A(GW,G") = =2-1(Ho) +2 - I(Hy). (3.9)

which for large sample sizes follows a x? distribution with one degree of freedom [15].

A typical p-value for rejecting the null hypothesis Hy (i.e. concluding that both samples
come from different distributions) is 0.05, i.e., statistically, in one out of twenty cases
we reject the null hypothesis although it holds (type I error). In our adversarial attack
scenario, however, we argue that a human trying to find out whether the data has been
manipulated would be far more conservative and ask the other way: Given that the
data was manipulated, what is the probability of the test falsely not rejecting the null
hypothesis (type II error).

While we cannot compute the type II error in our case easily, type I and II error
probabilities have an inverse relation in general. Thus, by selecting a very conservative p-
value corresponding to a high type I error, we can reduce the probability of a type II error.
We therefore set the critical p-value to 0.95, i.e., if we were to sample two degree sequences
from the same power law distribution, we were to reject the null hypothesis in 95% of
the times and could then investigate whether the data has been compromised based on
this initial suspicion. On the other hand, if our modified graph’s degree sequence passes
this very conservative test, we conclude that the changes to the degree distribution are
unnoticeable.

Using the above p-value in the x? distribution, we only accept perturbations G’ =
(A’, X') where the degree distribution fulfills

AGO, G < 7~ 0.004 (3.10)

3.4.2.2 Feature Statistics Preserving Perturbations

While the above principle could be applied to the nodes’ features as well (e.g., preserving
the distribution of feature occurrences), we argue that such a procedure is too limited.
In particular, such a test would not well reflect the correlation/co-occurrence of different

3due to a typing error, the ‘—’ before the last term was a ‘+’ in the originally published version [273].
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features: If two features have never occurred together in G(%), but they do once in G/, the
distribution of feature occurrences would still be very similar. Such a change, however,
is easily noticeable. Think, e.g., about two words which have never been used together
but are suddenly used in G’. Thus, we refer to a test based on feature co-occurrence.

Since designing a statistical test based on the co-occurrences requires to model the
joint distribution over features — intractable for correlated multivariate binary data
[160] — we refer to a deterministic test. In this regard, setting features to 0 is uncritical
since it does not introduce new co-occurrences. The question is: Which features of a
node u can be set to 1 to be regarded unnoticeable?

To answer this question, we consider a probabilistic random walker on the co-occurrence
graph C' = (F, E) of features from GO je., Fis the set of features and E C F x F
denotes which features have occurred together so far. We argue that adding a feature ¢ is
unnoticeable if the probability of reaching it by a random walker starting at the features
originally present for node u and performing one step is significantly large. Formally, let
Su = {J | Xu; # 0} be the set of all features originally present for node u. We consider
addition of feature ¢ ¢ S, to node u as unnoticeable if

. 1 1
p(z ‘ Su) = m Z df : Eij > 0. (311)
“jesy

where d; denotes the degree in the co-occurrence graph C. That is, given that the
probabilistic walker has started at any feature j € S,, after performing one step it
would reach the feature i at least with probability o. In our experiments we simply
picked o to be half of the maximal achievable probably, i.e., o = 0.5 - \Silul Zjesu 1/d;.

The above principle has two desirable effects: First, features ¢ which have co-occurred
with many of u’s features (i.e., in other nodes) have a high probability; they are less
noticeable when being added. Second, features ¢ that only co-occur with features j € 5,
that are not specific to the node u (e.g., features j which co-occur with almost every
other feature; stopwords) have low probability; adding i would be noticeable. Thus, we
obtain the desired result.

Using the above test, we only accept perturbations G’ = (A’, X’) where the feature
values fulfill

VueV:Vie Fial,=1=1i€8,Vp(ilSy) >0 (3.12)

In summary, to ensure unnoticeable perturbations, we update our problem definition
to:

Problem 2. Same as Problem 1 but replacing ngzl with the more restricted set 75&;34
of graphs that additionally preserve the degree distribution (Eq. 3.10) and feature co-
occurrence (Eq. 3.12).

3.5 Generating Adversarial Graphs

Solving Problem 1/2 is highly challenging. While (continuous) bi-level problems for
attacks have been addressed in the past by gradient computation based on first-order
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KKT conditions [155, 132], such a solution is not possible in our case due to the data’s
discreteness and the large number of parameters #. Therefore, we propose a sequential
approach, where we first attack a surrogate model, thus, leading to an attacked graph.
This graph is subsequently used to train the final model. Indeed, this approach can
directly be considered as a check for transferability since we do not specifically focus on
the used model but only on a surrogate one.

3.5.1 Surrogate Model

To obtain a tractable surrogate model that still captures the idea of graph convolutions,
we perform a linearization of the model from Eq. 3.2. That is, we replace the non-
linearity o(.) with a simple linear activation function, leading to:

Z' = softmax (A AxXw® W<2>) = softmax (A2 XW) (3.13)

Since W) and W) are (free) parameters to be learned, they can be absorbed into a
single matrix W € RP*K,

Since our goal is to maximize the difference in the log-probabilities of the target
vo (given a certain budget A), the instance-dependent normalization induced by the
softmax can be ignored. Thus, the log-probabilities can simply be reduced to AZXW.
Accordingly, given the trained surrogate model on the (uncorrupted) input data with
learned parameters W, we define the surrogate loss

Lo (A, X; W, ) = max [A2 XW],, . — [A2 X W],

C# Cold

(3.14)

Cold

and aim to solve argmax L (A’, X"; W v).
(A", X")ePS°,

While being much simpler, this problem is still intractable to solve exactly due to
the discrete domain and the constraints. Thus, in the following we introduce a scalable
greedy approximation scheme. For this, we define scoring functions that evaluate the
surrogate loss from Eq. (3.14) obtained after adding/removing a feature f = (u,i) or
edge e = (u,v) to an arbitrary graph G = (A, X):

Sstruct(e;Gav()) = Ls(Ala-X; W,Uo) (315)
3feat(f§G7 UO) = ﬁS(A,X/;W,'U()) (316)

where A’ := A+e (ie,a, =da,=1—ay) and X' := X + f (le, 2/, =1 — zy;).

v

3.5.2 Approximate Solution

Algorithm 1 shows the pseudo-code. In detail, following a locally optimal strategy, we
sequentially ‘manipulate’ the most promising element: either an entry from the adjacency

4Please note that by modifying a single element e = (u,v) we always change two entries, ay, and o,
of A since we are operating on an undirected graph.
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Algorithm 1: NETTACK: Adversarial attacks on graphs

Input: Graph G(© = (A© X)) target node vy, attacker nodes A, modification
budget A

Output: Modified Graph G’ = (A4’, X')

Train surrogate model on G(®) to obtain W ; // Eq. (3.13)

t+0;

while $|[A® — AO)| 4+ | X® — XO| < A do

Citruct + candidate_edge_perturbations(A(®), A) ;

e* = (u*,v*) « ar%max Sstruct (€ G, o) ;
e€Cstruct
Cieat + candidate_feature_perturbations(X (), A) ;
f* = (u*,i%) = argmax sgeat (f; G, v9) ;
fE€Ckeat
if sgpuct(e™; G ) > sfeat(f*;G(t),vo) then GU+D  GO) 4 ¢*
else GUHD @) £ f* .
t+—t+1;

return : G
// Train final graph model on the corrupted graph G

matrix or a feature entry (taking the constraints into account). That is, given the
current state of the graph G(t), we compute a candidate set Csiryct Of allowable elements
(u,v) whose change from 0 to 1 (or vice versa; hence the + sign in the pseudocode)
does not violate the constraints imposed by 75234. Among these elements we pick the
one which obtains the highest difference in the log-probabilities, indicated by the score
function Sggruct(€; GW®), vo). Similarly, we compute the candidate set Cieay and the score
function Sgeat (f; G(t), vg) for every allowable feature manipulation of feature i and node .
Whichever change obtains the higher score is picked and the graph accordingly updated
to GU*Y) . This process is repeated until the budget A has been exceeded.

To make Algorithm 1 tractable, two core aspects have to hold: (i) an efficient com-
putation of the score functions sstruct and Sgeat, and (ii) an efficient check which edges
and features are compliant with our constraints PA A thus, forming the sets Cgiruct and
Cleat- In the following, we describe these two parts in detail.

3.5.3 Fast Computation of Score Functions
3.5.3.1 Structural attacks

We start by describing how to compute sgruct- For this, we have to compute the class
prediction (in the surrogate model) of node vy after adding/removing an edge (m,n).
Since we are now optimizing w.r.t. A, the term XW in Eq. (3.14) is a constant — we
substitute it with C = XW e RV XK The log-probabilities of node vg are then given
by guo = [A%]y, - C € RY*K where [A2]v0 denotes a row vector. Thus, we only have to
inspect how this row vector changes to determine the optimal edge manipulation.
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Naively recomputing [A2],, for every element from the candidate set, though, is not
practicable. An important observation to alleviate this problem is that in the used
two-layer GCN the prediction for each node is influenced by its two-hop neighborhood
only. That is, the above row vector is zero for most of the elements. And even more
importantly, we can derive an incremental update — we don’t have to recompute the

updated [A2],, from scratch.

Theorem 1. Given an adjacency matriz A, and its corresponding matrices A, AQ, D.
Denote with A’ the adjacency matriz when adding or removing the element e = (m,n)

from A. It holds:

(A7 = = (Vo[ A — B — e 4 e 4
d,d!, dy dy . d!

_ Qumamu _|_ a"uwla’;n'u _ Qunlnu _|_ a{u'r];a"n'u) (3 17)
dm d, ’

m

where cj’, a', and @', are defined as (using the Iverson bracket 1):
dy = di +1[k € {m,n}] - (1 — 2" amn)
ay = ap + 1[{k, 1} = {m,n}]- (1 -2 ay)
Ay = ag + [{k, 1} = {m,n}]- (1 —2-ay)
Proof. Let S and S’ be defined as S = Z]kvzl % and S’ = Z]kvzl %% We have
k

d
[A}uv = \;ﬁ. Ifu 75 v, then

N ~ ~
(A2 = S [ Alwe[Algy = — D0 w1 g
; d\/dud,  dp\)dud, \/dud,

)
Having the above equation for A’ , we get

~ D ~ ~ ~ — ~
[A ]uv(M) - [AZ}uv( V dudv) =
Ay Quy Qyy  Guw '
[d& 7] [d; 719

/ /7 ! /
After replacing S’ — § = —%umfmy 4 Qumme _ Gunlne | Sun’ne jp the above equation, it is

dm , dn d,
straightforward to derive Eq. 3.17. Deriving this equation for the case v = v is similar.
Eq. 3.17 encompasses both cases. O

Eq. (3.17) enables us to update the entries in A? in constant time; and in a sparse
and incremental manner. Remember that all @y, @y, and al, are either 1 or 0, and
their corresponding matrices are sparse. Given this highly efficient update of [A?],, to

[A’ 2]UO, the updated log-probabilities and, thus, the final score according to Eq. (3.15)
can be easily computed.
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Figure 3.2: Average surrogate loss for increasing number of perturbations. Different variants
of our method on CORA-ML. Larger is better.
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3.5.3.2 Feature Attacks

The feature attacks are much easier to realize. Indeed, by fixing the class ¢ # cqq with
currently largest log-probability score [A2 X Wyc, the problem is linear in X and every
entry of X acts independently. Thus, to find the best node and feature (u*,i*) we only
need to compute the gradients

— 8 A2 A2
Toi = o (A” XWie — [A2 X W)iie,,) (3.18)

= [AQJvou ([W]zc - [W]icold)

and subsequently pick the one with the highest absolute value that points into an allow-
able direction (e.g., if the feature was 0, the gradient needs to point into the positives).
The value of the score function sg.,; for this best element is then simply obtained by
adding |Yy;| to the current value of the loss function:

,CS(A,X; W,Uo) + |Tm| . ]I[(Q cLus — 1) . Tm' < 0]
All this can be done in constant time per feature. The elements where the gradient

points outside the allowable direction should not be perturbed since they would only
hinder the attack — thus, the old score stays unchanged.
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3.5.4 Fast Computation of Candidate Sets

Last, we have to make sure that all perturbations are valid according to the constraints
75224. For this, we defined the sets Cgiruct and Cheat. Clearly, the constraints introduced
in Eq. 3.4 and 3.5 are easy to ensure. The budget constraint A is fulfilled by the
process of the greedy approach, while the elements which can be perturbed according
to Eq. 3.4 can be precomputed. Likewise, the node-feature combinations fulfilling the
co-occurrence test of Eq. 3.12 can be precomputed. Thus, the set Cte,; only needs to be
instantiated once.

The significance test for the degree distribution, however, does not allow such a pre-
computation since the underlying degree distribution dynamically changes. How can
we efficiently check whether a potential perturbation of the edge (m,n) still preserves a
similar degree distribution? Indeed, since the individual degrees only interact additively,
we can again derive a constant time incremental update of our test statistic A.

Theorem 2. Given graph G = (A, X) and the multiset Dg (see below Eq. 3.6). Denote
with RE = > d,epe 108 di the sum of log degrees. Let e = (m,n) be a candidate edge
perturbation, and d,, and d, the degrees of the nodes in G. For G' = G + e we have:

a, =1+n° [RG' — n°1og (dmin — %)] - (3.19)
1(D,,) =n‘loga,, +n‘ay, 10g dmin — (a,, +1) RY (3.20)

where
r=1-2"amy (3.21)

n® = ‘DG| + (H[dm +1—amn = dmin] +H[dn +1—amp = dmin]) Y
R = R® —1[dyn, > dumin] 108 dm + I[dm + 2 > dmin] log(dm + 2)
—1[dy, > dmin] logdy, + I[d,, + x > dmin] log(d,, + x).

Proof. Firstly, we show that if we incrementally compute n¢ according to the update
equation of Theorem 2, n¢ will be equal to |[Dg|. The term I[dy, + 1 — amn = dmin] -
will be activated (i.e., non-zero) only in two cases: 1) amn = 1 (le., G' = G — e),
and d,, = dpin, then £ < 0 and the update equation actually removes node m from
Dg. 2) amn = 0 (e, G = G +e), and dyy, = dppin — 1, then z > 0 and the update
equation actually adds node m to Dg. A similar argumentation is applicable for node
n. Accordingly, we have that n® = |D¢r|.

Similarly, one can show the valid incremental update for RS considering that only
nodes with degree larger than d;, are considered and that d,, + x is the new degree.
Having incremental updates for n¢ and RS, the updates for aer and [(Dgr) follow easily
from their definitions. O

G(”)’ where th) = G® te. Equiv-
alently we get incremental updates for {(Deomp) after an edge perturbation. Since all
r.h.s. of the equations above can be computed in constant time, also the test statistic

Given G, we can now incrementally compute /(D
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Class: neural networks Class: theory Class: probabilistic models

constrained unconstrained constrained unconstrained constrained unconstrained
probabilistic 25 efforts 2 driven 3 designer 0 difference 2 calls 1
probability 38 david 0 increase 8 assist 0 solve 3 chemical 0
bayesian 28 averages 2 heuristic 4  disjunctive 7 previously 12 unseen 1
inference 27 accomplished 3  approach 56 interface 1 control 16 corporation 3
probabilities 20 generality 1 describes 20 driven 3 reported 1 fourier 1
observations 9  expectation 10 performing 7 refinement 0 represents 8 expressed 2
estimation 35 specifications 0  allow 11  refines 0 steps 5 robots 0
distributions 21 family 10 functional 2  starts 1 allowing 7 achieving 0
independence 5 uncertain 3 11 3 restrict 0 task 17  difference 2
variant 9  observations 9 acquisition 1 management 0 expressed 2 requirement 1

Table 3.1: Top-10 feature perturbations per class on CORA-ML

A(G(O), th)) can be computed in constant time. Overall, the set of valid candidate edge
perturbations at iteration ¢ is Cgruet = {e=(m,n) | A(G©), Gg)) <1TA(m e Avn € A)}.
Since R can be incrementally updated to RG“™ once the best edge perturbation has
been performed, the full approach is highly efficient.

3.5.5 Complexity

The candidate set generation (i.e., which edges/features are allowed to change) and the
score functions can be incrementally computed and exploit the graph’s sparsity, thus,
ensuring scalability. The runtime complexity of the algorithm can easily be determined
as:

O(A - |A] - (N - thy, + D))

where th,, indicates the size of the two-hop neighborhood of the node vy during the run
of the algorithm.

In every of the A many iterations, each attacker evaluates the potential edge perturba-
tions (NN at most) and feature perturbations (D at most). For the former, this requires
to update the two-hop neighborhood of the target due to the two convolution layers.
Assuming the graph is sparse, thy, is much smaller than N. The feature perturbations
are done in constant time per feature. Since all constraints can be checked in constant
time they do not affect the complexity.

3.6 Experiments

We explore how our attacks affect the surrogate model, and evaluate transferability to
other models and for multiple datasets.

3.6.1 Setup

We use the well-known COrA-ML and CITESEER networks as in [22], and PoLBLOGS [1].
The dataset characteristics are shown in Table A.1 (c.f. appendix). We split the network
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in labeled (20%) and unlabeled nodes (80%). We further split the labeled nodes in equal
parts training and validation sets to train our surrogate model. That is, we remove the
labels from the validation set in the training procedure and use them as the stopping
criterion (i.e., stop when validation error increases). The labels of the unlabeled nodes
are never visible to the surrogate model during training.

We average over five different random initializations/ splits, where for each we perform
the following steps. We first train our surrogate model on the labeled data and among
all nodes from the test set that have been correctly classified, we select (i) the 10 nodes
with highest margin of classification, i.e., they are clearly correctly classified, (ii) the 10
nodes with lowest margin (but still correctly classified) and (iii) 20 more nodes randomly.
These will serve as the target nodes for our attacks.

Then, we corrupt the input graph using the model proposed in this chapter, called

NETTACK for direct attacks, and NETTACK-IN for influence attacks, respectively. For the
latter we pick as attackers the five neighboring nodes of the target that, if disconnected
from the target, would lead to the largest decrease of the surrogate loss. If the target has
less than five neighbors, we connect it to the nodes that lead to the strongest increase
in surrogate loss until it has five neighbors.
Since no other competitors exist, we compare against two baselines: (i) Fast Gradient
Sign Method (FGSM) [88] as a direct attack on vy (in our case also making sure that
the result is still binary). (ii) RND is an attack in which we modify the structure of the
graph. Given our target node vy, in each step we randomly sample nodes u for which
Cyy 7 €y and add the edge u, v to the graph structure, assuming unequal class labels are
hindering classification. Note that this means that (unlike NETTACK) RND has access
to all node labels, hence is a strong baseline.

3.6.2 Attacks on the Surrogate Model

We start by analyzing different variants of our method by inspecting their influence
on the surrogate model. In Fig. 3.2 (left) we plot the surrogate loss when performing
a specific number of perturbations. Note that once the surrogate loss is positive, we
realized a successful misclassification. We analyze NETTACK, and variants where we
only manipulate features or only the graph structure. As seen, perturbations in the
structure lead to a stronger change in the surrogate loss compared to feature attacks.
Still, combining both is the most powerful, only requiring around 3 changes to obtain a
misclassification. For comparison we have also added RND, which is clearly not able to
achieve good performance.

In Fig. 3.2 (right) we analyze our method when using a direct vs. influencer attack.
Clearly, direct attacks need fewer perturbations — still, influencer attacks are also pos-
sible, posing a high risk in real life scenarios. The figure also shows the result when not
using our constraints as proposed in Sec. 3.4.2, indicated by the name NETTACK-U. As
seen, even when using our constraints, the attack is still successful. Thus, unnoticeable
perturbations can be generated.

It is worth mentioning that the constraints are indeed necessary. Figure 3.3 shows the
test statistic A of the resulting graph with or without our constraints. As seen the con-
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Figure 3.5: Results on CORA-ML using different attack algorithms (perturbation budget A =
d + 2). Clean indicates the original data. Lower scores are better.

straint we impose has an effect on our attack; if not enforced, the power law distribution
of the corrupted graph becomes more and more dissimilar to the original graph’s. Sim-
ilarly, Table 3.1 illustrates the result for the feature perturbations. For CORA-ML, the
features correspond to the presence of words in the abstracts of papers. For each class
(i.e., set of nodes with same label), we plot the top-10 features that have been manipu-
lated by the techniques (these account for roughly 50% of all perturbations). Further,
we report for each feature its original occurrence within the class. We see that the used
features are indeed different — even more, the unconstrained version often uses words
which are ‘unlikely’ for the class (indicated by the small numbers). Using such words
can easily be noticed as manipulations, e.g., ‘david’ in neural networks or ‘chemical’ in
probabilistic models. Our constraint ensures that the changes are more subtle.

Overall, we conclude that attacking the features and structure simultaneously is very
powerful; and the introduced constraints do not hinder the attack while generating more
realistic perturbations. Direct attacks are clearly easier than influencer attacks.

3.6.3 Transferability of Attacks

After exploring how our attack affects the (fixed) surrogate model, we will now find out
whether our attacks are also successful on established deep learning models for graphs.
For this, we pursue the approach from before and use a budget of A = d,,, +2, where d,,
is the degree of the target node we currently attack. This is motivated by the observation
that high-degree nodes are more difficult to attack than low-degree ones. In the following

we always report the score X = 2 . —~— maXcc,, 2, . using the ground truth label
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CoORrA-ML CITESEER PorLBLOGS
GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk
Clean 0.90 0.82 0.84 0.88 0.71 0.76 0.94 0.82 0.93
NETTACK 0.01 0.16 0.02 0.02 0.20 0.01 0.06 0.46 0.06
FGSM 0.03 0.18 0.10 0.07 0.23 0.05 0.41 0.54 0.37
RND 0.61  0.52 0.46 0.60  0.52 0.38 0.36  0.54 0.30
NETTACK-IN  0.64 0.67 0.65 0.62 0.56 0.48 0.86 0.62 0.91

Table 3.2: Classification accuracy of classification models when trained on datasets poisoned
by different methods (perturbation budget A = d + 2). Smaller is better.

Cold Of the target. We call X the classification margin. The smaller X, the better. For
values smaller than 0, the targets get misclassified. Note that this could even happen
for the clean graph since the classification itself might not be perfect.

3.6.3.1 Evasion vs Poisoning Attack

In Figure 3.5a we evaluate NETTACK’s performance for two attack types: evasion attacks,
where the model parameters (here of GCN [117]) are kept fix based on the clean graph;
and poisoning attacks, where the model is retrained after the attack (averaged over 10
runs). In the plot, every dot represents one target node. As seen, direct attacks are
extremely successful — even for the challenging poisoning case almost every target gets
misclassified. We therefore conclude that our surrogate model and loss are a sufficient
approximation of the true loss on the non-linear model after re-training on the perturbed
data. Clearly, influencer attacks (shown right of the double-line) are harder but they
still work in both cases. Since poisoning attacks are in general harder and match better
the transductive learning scenario, we report in the following only these results.

3.6.3.2 Comparison

Figure 3.5b and 3.5¢ show that the corruptions generated by NETTACK transfer to dif-
ferent (semi-supervised) graph convolutional methods: GCN [117] and CLN [184]. Most
remarkably, even the unsupervised model DeepWalk (DW) [182] is strongly affected
by our perturbations (Figure 3.5d). Since DW only handles unattributed graphs, only
structural attacks were performed. Following [182], node classification is performed by
training a logistic regression on the learned embeddings. Overall, we see that direct
attacks pose a much harder problem than influencer attacks. In these plots, we also
compare against the two baselines RND and FGSM, both operating in the direct at-
tack setting. As shown, NETTACK outperforms both. Again note: All these results are
obtained using a challenging poisoning attack (i.e., retraining of the model).

In Table 3.2 we summarize the results for different datasets and classification models.
Here, we report the fraction of target nodes that get correctly classified. Our adversarial
perturbations on the surrogate model are transferable to all three models an on all
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[1;5]  [6:10] [11;20] [21;100]  [100; c0)

Clean Acc. 0.878 0.823 1.0 1.0 1.0
NETTACK 0.003 0.009 0.014 0.036 0.05

Table 3.3: Success rate of NETTACK for varying node degrees
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Figure 3.6: Attacks with limited knowledge about the data

datasets we evaluated. Not surprisingly, influencer attacks lead to a lower decrease in
performance compared to direct attacks.

We see that FGSM performs worse than NETTACK, and we argue that this comes
from the fact that gradient methods are not optimal for discrete data. Fig. 3.4 shows
why this is the case: we plot the loss resulting from extrapolating using the gradient
vs. the actual change in loss when changing an entry in A. Often the gradients do not
approximate the loss well — in the example depicted not even the sign of the changes
are the same. One key advantage of NETTACK is that we can precisely and efficiently
compute the change in L.

Last, in Table 3.3, we also analyze how the structure of the target, i.e., its degree,
affects the performance. As seen, high degree nodes are slightly harder to attack: they
have higher classification accuracy both in the clean graph and in the attacked graph.

3.6.3.3 Limited Knowledge

In the previous experiments, we have assumed full knowledge of the input graph (but
only a fraction of labels), which is a reasonable assumption for a worst-case attack. In
Fig. 3.6 we analyze the result when having limited knowledge: Given a target node vy,
we provide our model only subgraphs of increasing size relative to the size of CORA-
ML. We constructed these subgraphs by selecting nodes with increasing distance from
Vg, 1.e., we first selected 1-hop neighbors, then 2-hop neighbors and so on, until we have
reached the desired graph size. We then perturb the subgraphs using the attack strategy
proposed in this paper. These perturbations are then taken over to full graph, where
we train GCN. Note that NETTACK has always only seen the subgraph; and its surrogate
model is also only trained based on it.
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3.7 Patterns of Adversarial Attacks

Fig. 3.6 shows the result for a direct attack. As seen, even if only 10% of the graph
is observed, we can still significantly attack it. Clearly, if the attacker knows the full
graph, the fewest number of perturbations is required. For comparison we include the
RND attack, also only operating on the subgraphs. In Fig. 3.6 we see the influence
attack. Here we require more perturbations and 75% of the graph size for our attack to
succeed. Still, this experiment indicates that full knowledge is not required.

3.7 Patterns of Adversarial Attacks

Our experiments in the previous section (as well as the experiments in [276]) show that
adversarial attacks transfer from our surrogate model to different node classification
algorithms. However, it is yet unclear what makes these adversarial attacks harmful to
a variety of classification models. If we can find out what makes an edge insertion or
deletion a strong adversarial change, we can use this knowledge to detect adversarial
attacks and/or make graph neural networks more robust.

In this section we explore some patterns and regularities (e.g., when inserting an
edge, connect nodes from different classes) and perform hypothesis testing to determine
whether the patterns we identify are statistically significant. We focus on direct structure
attacks, i.e., allowing only edge insertions and deletions to the target node, since these
changes have the strongest effect on the classification (c.f. Fig. 3.2 and Table 3.2).

3.7.1 Statistical Analysis

In order to find patterns in structure attacks, we consider metrics based on the nodes
incident to the edges that are being inserted or removed by the attacker. We consider
two classes of metrics: (1) absolute metrics m(w) that capture network metrics such as
the node degree or centrality measures, and (2) relative metrics my,(w) that compare
both nodes incident to the perturbed edge (e.g., the difference of the degrees of both
nodes).

We consider our attacks to exhibit a pattern w.r.t. a metric m if its distribution among
the nodes incident to inserted /removed edges significantly differs from some baseline that
can be observed in the original (unperturbed) graph. An example (which we will test
later) could be that the adversary connects nodes from different classes more often than
the edges present in the original graph.

For our analysis, we uniformly sample n = 400 nodes Vs = {v1,...,v,} from the
graph and perform 5 direct structure perturbations per sampled node using NETTACK.
For absolute metrics m(w), the baseline is the distribution of the metric among the
sampled nodes Vg, which we then compare to the distribution of the nodes incident to
edges inserted/removed by the attacker. For relative metrics (e.g., whether two nodes
are from the same class) the baseline is the distribution among the neighbors of the
sampled nodes. More formally, for a relative metric m,, (w), the baseline is given by the
targets’ neighbors A (v;) as m D weN (v;) M (W)

The metrics for all targets nodes Vs, and nodes incident to inserted /removed edges can
be viewed as samples of underlying distributions. Hence, we use hypothesis testing to
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Figure 3.7: CDFs for distributions of different metrics when performing direct structure attacks
on COrRA-ML.

identify statistically significant deviations from the baseline. We use the nonparametric
Mann-Whitney U-test [150] since the underlying distributions differ for the metrics and
very rarely resemble a normal distribution (e.g., many properties on graphs follow a
powerlaw distribution). Let X be a random variable distributed according to the baseline
and Y a random variable describing the metric for inserted /removed edges. We formulate
the null hypothesis Hy : Pr[Y > X] ® 1 (® € {<,>}). When rejecting Hy on a
significance level & = 0.01, we conclude that Y is stochastically larger/smaller than X
to a significant extent.

Fig. 3.7 shows the results of our analysis for various metrics when attacking CORA-
ML (the insights from the other datasets are similar). One qualitative insight we can
draw from the figure is that the adversary tends to insert edges to nodes with a lower
(two-hop) degree than the nodes in Vs, which matches the results in [276]. The upper
row of Fig. 3.7 displays absolute metrics which are defined for a node v € V given an
adjacency matrix A:

_r+t__ 1 eg(v) — deg(w
asr(v) = v V)| wg;(v) | deg(v) — deg(w))|
e (3.22)
cle(v) = |

Zwel/\{v} pathy,;, (U7 w) ’

where we define the 2-hop node degree to be the sum of node degrees in a node’s two-
hop neighborhood and deg(v) is the degree of node v. The definition of the local degree
assortativity is taken from [215], where r is the graph’s degree assortativity as described
in [168]. The lower row in Fig. 3.7 shows relative metrics. For a node w and target v,
they can be formalized with an attribute matrix X, a vector y with true labels of all
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nodes, and a vector f,, with frequencies of all features among nodes assigned to the
target class v,:

T

Ly

Ly

simy(w) = |2y + xw|[1 — mgww ddule) = fmax(@n =20 Ol (3.23)
frq, (w) = max {@y —20,0}" fi, leq, (w) = [y, = yu] |
G || max {xy — 24,0} [|o Yo — = b

For all metrics in Fig. 3.7, the appropriate null hypothesis can be rejected (o = 0.01)
when comparing the metric among the nodes to which edges are inserted to the baseline.
However, we observe that finding significant patterns for the nodes incident to removed
edges is generally hard since these nodes are inherently restricted to the original neigh-
bors of the targets. For the metrics of removed edges, we can reject the null hypothesis
for (2-hop) degree, closeness centrality, and label equality.

Unsurprisingly, the seemingly most prominent pattern is the label equality: edges
are always inserted to nodes with a different label (and removed mostly between nodes
with the same label). However, this alone cannot explain the harmfulness of NETTACK’s
perturbations since the random baseline does exactly that but shows a much weaker effect
on the classification as NETTACK. Moreover, we found that when inserting adversarial
edges to a target node vy, the nodes the target is being connected to by the adversary
often (around 95% and 88% on CORA-ML and CITESEER, respectively) share the same
label (which is however different from the target node’s label).

3.7.2 Estimating the Importance of Patterns via Ranking

In the previous section we have analyzed the statistical significance of patterns in adver-
sarial attacks. In this section, we analyze the perturbations from a different perspective.
We use the fact that NETTACK assigns each (potential) perturbation a numerical score
indicating their adversarial harmfulness and aim to predict a potential perturbation’s
adversarial impact using a linear model based on the values of the metrics introduced
in the previous section. The rationale is that we can use these predictions to imitate
NETTACK and perform adversarial attacks to evaluate whether our patterns have suc-
cessfully captured what makes adversarial attacks harmful to graph neural networks.
More formally, the general idea to determine the importance of each pattern/metric
is the following: for a specific target node v, we characterize all N possible perturba-
tions via feature vectors m® ... mN). These vectors can be obtained by computing
all metrics for the nodes in the graph. Further, we use NETTACK to compute scores
s .. sM) for all perturbations as given by Eq. 3.15. The higher this score, the more
suitable a perturbation is expected to be for confusing a classifier. Hence, the setting
for our quantitative analysis is a classical supervised learning setting.

The fundamental idea is to train a linear model f(m | @) = 87'm to predict the pertur-
bations’ scores. When preprocessing the features to follow roughly equal distributions,
the relevance r; of metric ¢ is given as 0 < r; = % < 1. The goal is to identify the
metrics where r; is sufficiently different from 0, i.e., absolute values above some threshold
E.
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Figure 3.8: Distributions of relevant features before transformation.

Preprocessed Distributions of Features

L.
-2 0 2 -2 0 2 -2 -1 0 1
Node Degree 2-Hop Node Degree Local Degree Assortativity

-2 0 2 0 5 0 1 2
Number of Average Frequency of Additional Label Equality
Additional Features Features in Target Class

Figure 3.9: Result of Yeo-Johnson power transformation and standardization. Compared to
Fig. 3.8, the histograms resemble normal distributions much more.

3.7.2.1 Feature Preprocessing

Overall, we are considering almost two dozen metrics to characterize perturbations (see
Table B.1 in the appendix). However, they follow different families of distributions (e.g.,
powerlaw or normal distributions) and simple standardization to obtain distributions
with zero mean and unit variance is not sufficient. In order to interpret the weights of a
linear model in a useful way, we use the Yeo-Johnson power transformation (YJPT) [251].
This transformation depends on a parameter A to perform a nonlinear transformation
such that the data is roughly normally distributed [251].

For each metric independently, we use the YJPT and subsequent standardization
(with parameters p, o) yields roughly standard normally distributed data. In Fig. 3.9
we can see the effect of the YJPT. Especially for the distributions that follow a power
law (e.g., node degree), the processed distributions follow (almost) normal distributions.

42



3.7 Patterns of Adversarial Attacks

The advantage of this nonlinear data transformation is not only better interpretability
of the parameters of a linear model; also, such a model can be transferred to different
graphs where the metrics’ domains might be entirely different. When recomputing the
preprocessing parameters A, i, o for the a graph, the metrics still follow approximately
the same (standard normal) distributions.

3.7.2.2 Ranking of Scores

The supervised learning setting to predict scores for perturbations suggests conventional
linear regression. However, this is ill-suited for our problem, since we are generally only
interested in the few potential perturbations with the highest scores. Moreover, we are
not necessarily interested in the scores themselves but rather their order. Thus, we
rephrase the problem as identifying the (few) most promising perturbations. That is,
we want to learn to rank the perturbations according to their scores while the learned
model’s primary goal is to rank the most promising perturbations correctly.

We can achieve this by modifying the loss function while the model remains linear.
Instead of the (root) mean squared error, we use the loss introduced in [242] to perform
listwise ranking: in our case, the model is trained to predict scores for perturbations
such that they are ranked correctly (per target node v € Vg, we refer to this set of
perturbations as batch). Thus, the setup is the following: let M be a set of n batches
MO . M® with b; perturbations each. Further, let S be a set of these batches’
corresponding NETTACK scores sW_ ..., s for all perturbations. The vector () then
describes the ranks 0,...,b; — 1 for all scores within the batch i. Given the (linear)
model f(m|8), the loss £(0) is defined as follows (adapted from [242]):

o)== S aG) | £ —10g " exp(£") with f = f(mff({.) 1) (3.24)
i=1 \ j=0 k=j I

As shortly touched upon in [143], we introduce a quadratic position discount factor

d(y) = ﬁ As a result, the loss function is focused on predicting the ranks of the

most important perturbations correctly.

3.7.2.3 Relevance of Metrics for Structure Perturbations

We evaluate the relevance of the metrics by training linear ranking models on COrRA-ML,
CITESEER, POLBLOGS, and PUBMED. For each graph, we sample 300 target nodes at
random and compute the scores for all possible perturbations. We then train on pertur-
bations and their scores computed by NETTACK. Here we focus only on perturbations
that insert edges, since our statistical analysis indicates that these are most relevant.
Further, strong L1-regularization encourages sparsity in the parameters, leaving only the
few most relevant metrics with non-zero parameters.

The trained models’ parameters are listed in Table B.1 (in the appendix). Generally,
they are similar for the different graphs. Still, we find no more than half a dozen metrics
to be of major importance (i.e., with absolute value of the corresponding parameters
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Metric deg deg, asr add frq leq
Coefficient +0.0190 —0.2937 +40.0190 +0.1632 —0.2173 —0.2435

Table 3.4: Coeflicients of linear model for most relevant metrics when trained on COrRA-ML.

> 0). These metrics are listed in Table 3.4 — the coefficients of the linear model
are obtained when training on these metrics only. Especially note the strong linear
correlation between the degree and the 2-hop degree here, resulting in an unexpected
slightly positive coefficient for the degree. Surprisingly, all relative network metrics (e.g.,
the difference in node degree between a node and the target) are close to irrelevant. This
corresponds to our finding that there often exist few nodes to which a large share of edges
is inserted. This indicates that nodes to connect to depend on the adversary’s target
only to a small extent. Experiments on POLBLOGS (where no features are available)
show that NETTACK inserts edges to the same nodes almost for all targets. In principle,
a defender could use such nodes as ‘honeypots’ to identify adversaries trying to fool the
classification system.

Somewhat surprisingly, our analysis reveals that numerous computationally expensive
metrics (e.g., closeness centrality, PageRank) have only little relevance in predicting the
scores of perturbations. Thus, algorithms building on the patterns we have identified
may discard these metrics, improving their scalability at very little (expected) drop in
performance.

3.7.2.4 Relevance of Metrics for Feature Perturbations

As a proof of concept, we also explore training a linear model to predict the scores of
feature perturbations. When training with the perturbations to insert features, the most
promising features to insert are characterized by a relatively high overall frequency in the
dataset, a very low frequency when considering only the nodes with the same label as the
target, and a relatively high degree in the feature co-occurrence graph. When analyzing
perturbations to remove features, exactly the opposite can be observed. Again, these
findings are consistent across CORA-ML, CITESEER, and PUBMED.

3.8 Scalable Attacks using Patterns in Perturbations

In this section we evaluate the patterns identified in the previous section. That is, we
perform attacks using the linear model on the metrics identified as relevant. By being
merely based on NETTACK’s patterns and by eliminating the need to train any kind of
surrogate model, we expect to trade a slight decrease in effectiveness for a significant
improvement in runtime performance. Hence, we introduce FASTTACK.

Similarly to NETTACK, our scalable algorithm FASTTACK computes perturbations it-
eratively. Therefore, we can easily enforce the budget constraint (Eq. (3.5)) and restrict
the algorithm to only perform unnoticeable perturbations (Egs. (3.10) and (3.12)).
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The general idea of FASTTACK is to use a pre-trained model to rank perturbations
by their (predicted) impact on the classification of our surrogate model. We train the
linear model as described in Sec. 3.7.2, using only the metrics we identified as relevant
(see Table 3.4). Then, the algorithm iteratively chooses the best perturbation that still
fulfills all constraints.

FASTTACK has two phases: a setup and an attack phase. During setup, the prepro-
cessing parameters (YJPT + standardization) for the metrics are computed; while those
for absolute metrics can be computed directly, we sample a set of node pairs to estimate
the distribution of the relative metrics. Therefore, the setup phase only needs to be exe-
cuted once per graph no matter how many nodes are attacked. During the attack phase,
FASTTACK iteratively chooses the perturbation that maximizes its objective function
(see Sec. 3.8.1).

Eventually, we need to consider that FASTTACK does not have access to all true labels
while some metrics require labels for all nodes. Therefore, we use GCN (any other node
classification algorithm could be used) to predict labels from a small subset of labeled
nodes (note that this prediction can be done during the setup phase). When computing
metrics based on the nodes’ class memberships, we simply use class with the highest
(log) probability as predicted by GCN. However, when evaluating the label equality
between a node w and the target v, we use the softmax output vectors z,, and z,. With
2lz,, we approximate the probability that the w and v share the same label. Lastly,
all nodes FASTTACK connects the target to share the same (predicted) class label (as
pre-computed with GCN), and this class label is always different from the target’s class
label.

A summary of FASTTACK’s attack phase is depicted in Algorithm 4 in the appendix.

3.8.1 Adversarial Ratio

Up to this point, we have only evaluated how the most promising perturbations can
be identified; we have not yet considered whether the notion of the best perturbations
changes while modifying the graph. Indeed we notice that NETTACK’s perturbation
behavior changes over the course of the attack: when attacking a target node, NETTACK
tends to initially insert adversarial edges, remove benign edges as soon as the number
of perturbations equals the initial node degree, and afterwards only insert (adversarial)
edges (c.f. Fig. 3.10a).

Given a target node v with incident edges &,, we therefore define the adversarial
ratio as in Eq. 3.25 as the ratio of ‘adversarial’ edges &£, and ‘benign’ edges &, (where
E;NEF =0 and & UEN = &,). We refer to an adversarial edge as an edge that
benefits an adversary trying to confuse a classifier; likewise, a benign edge is beneficial
to the classifier. Naturally, an adversary aims to maximize this ratio — which can be
achieved by increasing the numerator (i.e., inserting an adversarial edge) or decreasing
the denominator (i.e., removing a benign edge).

However, in practice we cannot exactly compute the adversarial ratio since edges can-
not trivially be categorized as adversarial or benign. Hence, for an edge e, we introduce
the (estimated) adversarial probability p. € [0, 1] that indicates the probability of e (to

45
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be inserted or removed) being adversarial. Likewise, 1 — p, is the edge’s probability of
being benign. p. can be computed by making use of the model f(m |@) which predicts
the usefulness of perturbations (recall that each perturbation is coupled with a unique
edge). First, the model’s predicted scores for all perturbations are scaled into the range
[—1,+1]. Second, we use a rescaled sigmoid function o(z) = 1+ ——7 with £ = 9/2 (chosen
experimentally) to obtain what we refer to as the adversarial probability.

By introducing the sigmoid function as nonlinearity, we capture the intuition that a
high (low) score predicted by the model indicates a high (low) probability of the edge
being adversarial (benign). In practice, we found that the adversarial ratio £(v) of a
target v can be reasonably approximated as

£(v) = log 11 :51; log (1 + Zpe> —log (1 +y 1 —pe> =¢(&) (3.25)

ec&y ec&y

In the attack phase, FASTTACK iteratively (and greedily) chooses the edge e* from all
edges associated with perturbations as

e’ = arg max (& {e}) (3.26)

where @ is the symmetric difference, i.e., edge removal if the edge is present and oth-
erwise insertion. Fig. 3.10 shows that, indeed, the adversarial ratio helps to reasonably
approximate NETTACK’s behavior.

3.8.2 Complexity

When analyzing the theoretical runtime complexity of FASTTACK, we refer to N as
the number of nodes, M the number of edges, D the number of features, and A the
number of perturbations. The entire algorithm’s complexity is then given as O(M +
ND + Nlog(N)+ A). Here, the term O(M + ND) is caused by the setup phase and
the computation of the metrics for the target node. The term O(N log N) results from
sorting perturbations by their score. Eventually, each perturbation can be computed
in constant time as the adversarial ratio can be updated in constant time. Hence, the
attack itself only requires O(A) operations.

In most cases, however, graphs are sparse, i.e., M ~ N, just as the attribute matrices,

e., ND ~ N. Further, we normally consider A < N, hence a more suitable theoretical
runtime complexity of FASTTACK is simply given as O(N log N).

3.8.3 Experimental Evaluation

We want to explore the effectiveness of the identified patterns by comparing FASTTACK
to NETTACK and a random attack algorithm.

3.8.3.1 Effectiveness

At first, we evaluate FASTTACK’s behavior over the course of multiple edge perturbations.
For this, we use CORA-ML and split its nodes into 10% training, 10% validation, and
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3.8 Scalable Attacks using Patterns in Perturbations
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Figure 3.10: Degree of nodes with different initial degrees when attacked in COoRA-ML ((a)
and (b)), and average reduction of classification margin for different attacks (c).

80% test set. We then randomly sample 25 nodes from the test set which we attack with
FASTTACK, NETTACK, NETTACK-ONESHOT, and a random approach. Here, NETTACK-
ONESHOT is a modification of NETTACK which computes the scores for perturbations
only once at the beginning and chooses the perturbations with the highest scores for an
attack (while satisfying the same constraints as NETTACK and FASTTACK). In contrast
to all other algorithms, the random approach has access to all true labels and inserts
edges only between nodes with different label and removes edges only between nodes with
the same one (other works refer to this as “DICE” (delete internally, connect externally),
e.g., [276]). The model that FASTTACK uses for ranking perturbations is trained on 300
random nodes from the test set, disjoint from the attacked nodes.

We perform 20 perturbations for each target node and use GCN to predict the labels
of the attacked nodes after every perturbation. Fig. 3.10c displays the average classifi-
cation margins for the attacked nodes. While NETTACK leads (on average) to a stronger
decrease in classification margins in the first few perturbations, FASTTACK is almost as
strong with an increasing number of perturbations, and clearly stronger than the ran-
dom baseline. Generally, our scalable algorithm needs 1-2 perturbations more to lead
to misclassification (with significant margin). Surprisingly FASTTACK is able to surpass
NETTACK-ONESHOT in the long run (i.e., for A > 5). This highlights the effectiveness
of the adversarial ratio introduced above.

3.8.3.2 Transferability

In this section, we want to focus on FASTTACK’s ability to generalize to different deep
learning models for classification.

For this, we use CORA-ML, CITESEER, POLBLOGS, and PUBMED where we choose 5
different splits of nodes per graph (10% training, 10% validation, 80% test). For each
split, we choose 40 target nodes from the test set as described in Section 3.6 and attack
these using FASTTACK, NETTACK, and the random attack algorithm introduced above.
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CoORrA-ML CITESEER POLBLOGS PuBMED
GCN CLN DW GCN CLN DW GCN CLN DW GCN CLN DW
Clean 0.88 083 0.8 0.8 0.8 073 090 0.89 094 089 0.85 0.8

Random 071 073 041 069 076 044 0.40 0.53 0.29 0.68 0.79 0.42
Fastrack 0.41 0.62 0.35 0.34 0.59 0.36 043 0.70 0.58 0.53 0.78 0.56

NeTrTACK 0.056 035 0.15 0.07 039 016 0.16 052 026 000 0.55 0.16

Table 3.5: Classification accuracy of classification models when trained on datasets poisoned
by FASTTACK (perturbation budget A = d). Smaller is better.
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Figure 3.11: Results of poisoning attacks with perturbation budget A = d. Clean indicates the
original data. Lower scores are better.

In each attack, we perform A = d,, perturbations (as compared to A = d,, + 2 in
Section 3.6), where d,, is the degree of the respective target node.

For FASTTACK, we use the splits for CORA-ML and train 5 different linear models as
outlined in Sec. 3.7.2.2. To obtain a set of nodes for training, we use the test sets of
each split (separately) and uniformly sample 300 nodes (disjoint from the target nodes).
When attacking CORA-ML, we always use the model trained on the respective split. For
all other graphs, we use a transferred model, where we average the parameters of the
models trained on the different splits of CORA-ML, resulting in the parameter vector
listed in Table 3.4. By transferring the models trained on CORA-ML, we implicitly test
for transferability of the patterns we have identified.

Table 3.5 displays the results of this experiment when measuring the classification
accuracy among the target nodes for different deep learning models for classification.
While, not surprisingly, NETTACK leads to the strongest decrease in performance, FAST-
TACK is able to outperform the random approach (which has access to all class labels)
in most cases. On POLBLOGS, FASTTACK achieves weaker results than on the other
datasets. A likely cause is the model transferred from CORA-ML: while CORA-ML has
node attributes, POLBLOGS does not (and hence FASTTACK is missing values for these
metrics). Fig. 3.11 further highlights the effectiveness of FASTTACK — remember again
that the model used for ranking the perturbations is trained on an entirely different
graph. This highlights the meaningfulness of the patterns we identified.
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3.9 Conclusion

3.8.3.3 Runtime

After deriving the theoretical runtime com-
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TACK in terms of runtime, allowing it to scale Figure 3.12: Runtime comparison.

to much larger graphs — even though we in-

clude initial label training via GCN (prior to any perturbations) in the runtime analysis
of Fig. 3.12. The slope of the plots indicate that runtime performance of FASTTACK
itself is markedly faster than NETTACK. Most notably, FASTTACK is much more suitable
to attack large graphs and high-degree nodes. We conclude that, indeed, a slight drop
in effectiveness allows FASTTACK to be very scalable.

3.9 Conclusion

We presented a method for adversarial attacks to (attributed) graphs, specifically fo-
cusing on the task of node classification via graph convolutional networks. Our attacks
target the nodes’ features and the graph structure. Exploiting the relational nature of
the data, we proposed direct and influencer attacks. To ensure unnoticeable changes even
in a discrete, relational domain, we proposed to preserve the graph’s degree distribution
and feature co-occurrences. Our algorithm enables efficient perturbations in a discrete
domain. Based on our extensive experiments we can conclude that even the challeng-
ing poisoning attack is possible with our approach. The classification performance is
consistently reduced, even when only partial knowledge of the graph is available or the
attack is restricted to a few influencers. Even more, the attacks generalize to other node
classification models.

We further identify statistically significant patterns in the adversarial perturbations of
NETTACK. We exploit these to design FASTTACK — a highly scalable adversarial attack
algorithm. FASTTACK’s effectiveness in reducing the classification performance of graphs
it was not trained on highlights the meaningfulness of the patterns we dicovered. This
represents the first leap towards methods being able to detect and prevent adversarial
attacks on graph neural networks.

49



3 Adversarial Attacks on Graph Neural Networks: Perturbations and their Patterns

Retrospective

In this chapter we propose the first adversarial attack method for graph neural networks.
As we have shown and as confirmed by a number of later studies [e.g., 268, 69, 237] the
attack method is highly effective at reducing the performance of different GNNs and
even node embedding methods. In hindsight, we can identify a number of open ques-
tions, limitations, and potential improvements. While our attack method focuses on
poisoning attacks, it does not explicitly account for the bilevel nature of the correspond-
ing optimization problem. We address this limitation in our follow-up study, which we
present in the following chapter. Moreover, with the recent Open Graph Benchmark
(OGB) [106] we have much larger high-quality node classification datasets on which we
could evaluate our attack method. An aspect which has not been analyzed yet is that
the surrogate model used in this chapter is effectively a logistic regression model on the
node attributes smoothed via two message passing steps with A. Thus, the surrogate
model is convex (in the node attributes), which could be exploited by attack or defense
methods. Finally, the unnoticeability constraint we propose in addition to the budget
constraint is based on a global property of the graph (the degree distribution), while the
attack is local, i.e., targets individual nodes. How to develop unnoticeability constraints
on graphs which better fit the nature of the attacks is still an open question.
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4 Adversarial Attacks on Graph Neural
Networks via Meta Learning

4.1 Introduction

In the previous chapter we have shown that graph neural networks are vulnerable to
adversarial attacks both at test time (evasion) as well as training time (poisoning at-
tacks). A core strength of graph neural networks — exploiting the information in a
node’s neighborhood to improve classification — is also a major vulnerability: because of
these propagation effects, an attacker can change a single node’s prediction without even
changing any of its attributes or edges. This is because the foundational assumption that
all samples are independent of each other does not hold for node classification. Network
effects such as homophily [145] support the classification, while on the other hand they
enable indirect adversarial attacks.

The attack methods on node classification models presented in the previous chapter
existing attacks are local, that is, aim to provoke misclassification of a specific single node,
e.g., a person in a social network. In this chapter, we propose the first algorithm for
poisoning attacks that is able to compromise the global node classification performance of
a model, e.g., as measured by the classification accuracy on the whole test set. We show
that even under restrictive attack settings and without access to the target classifier, our
attacks can render it near-useless for use in production (i.e., on test data).

In contrast to the previous chapter, here we explicitly account for the bilevel nature
of poisoning attacks. We do so by basing our approach on the principle of meta learn-
ing, which has traditionally been used for hyperparameter optimization [14], or, more
recently, few-shot learning [77]. In essence, we turn the gradient-based optimization
procedure of deep learning models upside down and treat the input data — the graph at
hand — as a hyperparameter to learn.

4.2 Related Work

Adversarial attacks on machine learning models have been studied both in the machine
learning and security community and for many different model types [155]. It is impor-
tant to distinguish attacks from outliers; while the latter naturally occur in graphs [21],
adversarial examples are deliberately created with the goal to mislead machine learning
models and often designed to be unnoticeable. Deep neural networks are highly sensi-
tive to these small adversarial perturbations to the data [212, 88]. The vast majority of
attacks and defenses assume the data instances to be independent and continuous. This
assumption clearly does not hold for node classification and many other tasks on graphs.
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4 Adversarial Attacks on Graph Neural Networks via Meta Learning

Works on adversarial attacks for graph learning tasks are generally sparse. [46] have
measured the changes in the resulting graph clustering when injecting noise to a bi-
partite graph that represent DNS queries. However, their focus is not on generating
attacks in a principled way. [219] consider adversarial noise in the node features in order
to improve robustness of collective classification via associative Markov networks.

Only recently researchers have started to study adversarial attacks on deep learning
for graphs. Dai et al. [56] consider test-time (i.e., evasion) attacks on graph classification
(i.e., classification of graphs themselves) and node classification. However, they do not
consider poisoning (i.e., training-time) attacks or evaluate transferability of their attacks,
and restrict the attacks to edge deletions only. Moreover, they focus on targeted attacks,
i.e., attacks designed to change the prediction of a single node. Ziigner et al. [273]
consider both test-time and training-time attacks on node classification models. They
circumvent explicitly tackling the bilevel optimization problem underlying poisoning
attacks by performing their attacks based on a (static) surrogate model and evaluating
their impact by training a classifier on the data modified by their algorithm. In contrast
to [56], their attacks can both insert and remove edges, as well as modify node attributes
in the form of binary vectors. Again, their algorithm is suited only to targeted attacks
on single nodes; the problem of training-time attacks on the overall performance of
node classification models remains unexplored. Bojchevski and Giinnemann [23] propose
poisoning attacks on a different task: unsupervised node representation learning (or
node embeddings). They exploit perturbation theory to maximize the loss obtained
after training DeepWalk. In this chapter, we focus on semi-supervised learning.

Meta-learning [216, 167], or learning to learn, is the task of optimizing the learning
algorithm itself; e.g., by optimizing the hyperparameters [14], learning to update the
parameters of a neural network [197, 13], or the activation function of a model [2].
Gradient-based hyperparameter optimization works by differentiating the training phase
of a model to obtain the gradients w.r.t. the hyperparameters to optimize.

The key idea of this chapter is to use meta-learning for the opposite: modifying the
training data to worsen the performance after training (i.e., training-time or poisoning
attacks). [165] demonstrate that meta learning can indeed be used to create training-
time attacks on simple, linear classification models. On continuous data, they report
little success when attacking deep neural networks, and on discrete datasets, they do
not consider deep learning models or problems with more than two classes. Like most
works on adversarial attacks, they assume the data instances to be independent. In this
chapter, for the first time, we propose an algorithm for global attacks on (deep) node
classification models at training time. In contrast to [273], we explicitly tackle the bilevel
optimization problem of poisoning attacks using meta learning.

4.3 Problem Formulation
We consider the task of (semi-supervised) node classification. Given a single (attributed)

graph and a set of labeled nodes, the goal is to infer the class labels of the unlabeled
nodes. Formally, let G = (A, X) be an attributed graph with adjacency matrix A €
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4.3 Problem Formulation

{0,1}M*N and node attribute matrix X € RV*P where N is the number of nodes and
D the dimension of the node feature vectors. W.l.o.g., we assume the node IDs to be
Vv={1,...,N}.

Given the set of labeled nodes Vi, C V, where nodes are assigned exactly one class in
C = {c1,c2,...,cx }, the goal is to learn a function fp, which maps each node v € V to
exactly one of the K classes in C (or in a probabilistic formulation: to the K-simplex).
Note that this is an instance of transductive learning, since all test samples (i.e., the
unlabeled nodes) as well as their attributes and edges (but not their class labels!) are
known and used during training [41]. The parameters 6 of the function fy are generally
learned by minimizing a loss function Lipain (e.g., cross-entropy) on the labeled training
nodes:

0" = arg min Lipain(fo(G)), (4.1)
0

where we overload the notation of fy to indicate that we feed in the whole graph G.

4.3.1 Attack Model

Adversarial attacks are small deliberate perturbations of data samples in order to achieve
the outcome desired by the attacker when applied to the machine learning model at hand.
The attacker is constrained in the knowledge they have about the data and the model
they attack, as well as the adversarial perturbations they can perform.

Attacker’s goal. In our work, the attacker’s goal is to increase the misclassification rate
(i.e., one minus the accuracy) of a node classification algorithm achieved after training
on the data (i.e., graph) modified by our algorithm. In contrast to [273] and [56], our
algorithm is designed for global attacks reducing the overall classification performance
of a model. That is, the goal is to have the test samples classified as any class different
from the true class.

Attacker’s knowledge. The attacker can have different levels of knowledge about the
training data, i.e. the graph G, the target machine learning model M, and the trained
model parameters 6. In our work, we focus on limited-knowledge attacks where the
attacker has no knowledge about the classification model and its trained weights, but
the same knowledge about the data as the classifier. In other words, the attacker can
observe all nodes’ attributes, the graph structure, as well as the labels of the subset
V1, and uses a surrogate model to modify the data. Besides assuming knowledge about
the full data, we also perform experiments where only a subset of the data is given.
Afterwards, this modified data is used to train deep neural networks to degrade their
performance.

Attacker’s capability. In order to be effective and remain undiscovered, adversarial
attacks should be unnoticeable. To account for this, we largely follow the attacker capa-
bilities from Chapter Chapter 3. First, we impose a budget constraint A on the attacks,
i.e., limit the number of changes ||A — Ao < A (here we have 2A since we assume the
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graph to be symmetric). Furthermore, we make sure that no node becomes disconnected
(i.e. a singleton) during the attack. One of the most fundamental properties of a graph
is its degree distribution. Any significant changes to it are very likely to be noticed; to
prevent such large changes to the degree distribution, we employ [273]’s unnoticeability
constraint on the degree distribution. Essentially, it ensures that the graph’s degree
distribution can only marginally be modified by the attacker. The authors also derive
an efficient way to check for violations of the constraint so that it adds only minimal
computational overhead to the attacks. While in this chapter we focus on changing the
graph structure only, our algorithm can easily be adapted to change the node features as
well. We summarize all these constraints and denote the set of admissible perturbations
on the data as ®(G), where G is the graph at hand.

4.3.2 Overall Goal

Poisoning attacks can be mathematically formulated as a bilevel optimization problem:

min  La(fo-(G)) st 0 =argmin  Loain(fo(G)). (4.2)
Ged(G) 0

Ltk is the loss function the attacker aims to optimize. In our case of global and unspe-
cific (regarding the type of misclassification) attacks, the attacker tries to decrease the
generalization performance of the model on the unlabeled nodes. Since the test data’s
labels are not available, we cannot directly optimize this loss. One way to approach this
is to maximize the loss on the labeled (training) nodes Liyain, arguing that if a model
has a high training error, it is very likely to also generalize poorly (the opposite is not
true; when overfitting on the training data, a high generalization loss can correspond to
a low training loss). Thus, our first attack option is to choose Latk = —Lirain.

Recall that semi-supervised node classification is an instance of transductive learning;:
all data samples (i.e., nodes) and their attributes are known at training time (but not
all labels!). We can use this insight to obtain a second variant of L,. The attacker
can learn a model on the labeled data to estimate the labels C’U of the unlabeled nodes
Vo = V\Vr. The attacker can now perform self-learning, i.e. use these predicted labels
and compute the loss of a model on the unlabeled nodes, yielding our second option
Lotk = —Lselif Where Ly = L(Vy, C’U) Note that, at all times, only the labels of the
labeled nodes are used for training; Lge¢ is only used to estimate the generalization loss
after training. In our experimental evaluation, we compare both versions of L) outlined
above.

Importantly, notice the bilevel nature of the problem formulation in Eq. (4.2): the
attacker aims to maximize the classification loss achieved after optimizing the model
parameters on the modified (poisoned) graph G. Optimizing such a bilevel problem is
highly challenging by itself. Even worse, in our graph setting the data and the action
space of the attacker are discrete: the graph structure is A = {0, 1}V*¥  and the possible
actions are edge insertions and deletions. This makes the problem even more difficult
in two ways. First, the action space is vast; given a budget of A perturbations, the
number of possible attacks is, ignoring symmetry, (Zf) and thus in O(N?2); exhaustive
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search is clearly infeasible. Second, a discrete data domain means that we cannot use
gradient-based methods such as gradient descent to make small (real-valued) updates
on the data to optimize a loss.

4.4 Graph Structure Poisoning via Meta-Learning

4.4.1 Poisoning via Meta-gradients

In this chapter, we tackle the bilevel problem described in Eq. (4.2) using meta-gradients,
which have traditionally been used in meta-learning. The field of meta-learning (or
learning to learn) tries to make the process of learning machine learning models more
time and/or data efficient, e.g., by finding suitable hyperparameter configurations [14] or
initial weights that enable rapid adaptation to new tasks or domains in few-shot learning
[77].

Meta-gradients (e.g., gradients w.r.t. hyperparameters) are obtained by backpropa-
gating through the learning phase of a differentiable model (typically a neural network).
The core idea behind our adversarial attack algorithm is to treat the graph structure
matrix as a hyperparameter and compute the gradient of the attacker’s loss after
training with respect to it:

VI = Ve Lok (fo-(G)) st 0" = opte(Lirain(fo(G))), (4.3)

where opt(-) is a differentiable optimization procedure (e.g. gradient descent and its
stochastic variants) and Lipai, the training loss. Notice the similarity of the meta-
gradient to the bi-level formulation in Eq. (4.2); the meta-gradient indicates how the
attacker loss L, after training will change for small perturbations on the data, which
is exactly what a poisoning attacker needs to know.

As an illustration, consider an example where we instantiate opt with vanilla gradient
descent with learning rate « starting from some intial parameters 6y

9t+1 =0; — avatﬁtrain(fGt(G)) (4~4)

The attacker’s loss after training for T" steps is Lawk(fo,(G)). The meta-gradient can be
expressed by unrolling the training procedure:

V& = VaLan(for (G) = ViLan(for (G)) - Ve for (G) + Vo for (G) - Vabr] , where
(4.5)
Vabit1 = Vgl — avGVOtﬁtrain(th(G))

Note that the parameters 6; itself depend on the graph G (see Eq. 4.4); they are not
fized. Thus, the derivative w.r.t. the graph has to be taken into account, chaining back
until fy. Given this, the attacker can use the meta-gradient to perform a meta update
M on the data to minimize L):

G M (G (4.6)
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Algorithm 2: Poisoning attack on GNNs with meta gradients and self-training.

Input: Graph G = (A, X), modification budget A, number of training iterations T,
training class labels C,
Output: Modified graph G = (4, X)
f + train surrogate model on the input graph using known labels Cp;
Cu « predict labels of unlabeled nodes using é;
A« A
while |A — Aljy < 2A do
randomly initialize 6y;
fortin0...T—1do
L 0¢11 < step (Ot,V(;zﬁtram(fgt(A, X));Cr); // update e.g. via gradient
descent

// Compute meta gradient via backprop through the training procedure
Vz{()ta — VA['sclf(f@T (A7 X)v CU)7

S+ Vifi‘et*‘@ (—24+1); // Flip gradient sign of node pairs with edge
€' + maximum entry (u,v) in S that fulfills constraints ®(G);

| A « insert or remove edge ¢’ to/from /1;
G — (4, X);
return : G

The final poisoned data G®) is obtained after performing A meta updates. A straight-
forward way to instantiate M is (meta) gradient descent with some step size 8: M(G) =
G — BV GLawk(fo, (G)))-

It has to be noted that such a gradient-based update rule is neither possible nor well-
suited for problems with discrete data (such as graphs). Due to the discreteness, the
gradients are not defined. Thus, in our approach we simply relax the data’s discreteness
condition. However, we still perform discrete updates (actions) since the above simple
gradient update would lead to dense (and continuous) adjacency matrices; not desired
and not efficient to handle. Thus, in the following section, we propose a greedy approach
to preserve the data’s sparsity and discreteness.

4.4.2 Greedy Poisoning Attacks via Meta Gradients

We assume that the attacker does not have access to the target classifier’s parameters,
outputs, or even knowledge about its architecture; the attacker thus uses a surrogate
model to perform the poisoning attacks. Afterwards the poisoned data is used to train
deep learning models for node classification (e.g. a GCN) to evaluate the performance
degradation due to the attack. We use the same surrogate model as [273], which is a
linearized two-layer graph convolutional network:

fo(A, X) = softmax(A2XW), (4.7)

where A = D™YV2AD"Y2 A = A+ I, A is the adjacency matrix, X are the node
features, D the diagonal matrix of the node degrees, and § = {W} the set of learnable
parameters. In contrast to [273] we do not linearize the output (softmax) layer.
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4.4 Graph Structure Poisoning via Meta-Learning

Algorithm 3: GNN poisoning with approximate meta gradients, self-training.

Input: Graph G = (A, X), modification budget A, number of training iterations T,
gradient weighting A, training class labels C'r,

Output: Modified graph G = (4, X)

6 + train surrogate model on the input graph using known labels Cp;

Cu « predict labels of unlabeled nodes using é;

A« A

while |4 — Aljp < 2A do

randomly initialize 6y;

vmeta ¢ AV i Livain (foo (A; X); Cr) + (1 — NV 4 Lsere(fao (A; X); Cr)

fortin0...T—1do

011 < step (01, Vo, Locain(fo, (A, X)); CL); // update e.g. via gradient
descent
0441 + stop_gradient(6;,,) ; // no backprop through training

VIR = VR + AV 1 Livain(f5,,, (A, X);00) + (1 - MV i Lsae(f3,,, (4; X); Cy)

S VZ‘C“‘@ (=24 +1); // Flip gradient sign of node pairs with edge
€ + maximum entry (u,v) in S that fulfills constraints ®(G);

A < insert or remove edge e’ to/from A;

G« (A,X);

return : G

Note that we only perform changes to the graph structure A, hence we treat the node
attributes X as a constant during our attacks. For clarity, we replace G with A in the
meta gradient formulation.

We define a score function S : V xV — R that assigns each possible action a numerical
value indicating its (estimated) impact on the attacker objective L. Given the meta-
gradient for a node pair (u,v), we define S(u,v) = V. (=2 ay, + 1) where ay, is
the entry at position (u,v) in the adjacency matrix A. We essentially flip the sign of the
meta-gradients for connected node pairs as this yields the gradient for a change in the
negative direction (i.e., removing the edge).

We greedily pick the perturbation ¢’ = (u/,v") with the highest score one at a time

e = arg max S(u,v), (4.8)
e=(u,v): M(A,e)e®(G)

where M (A, e) € ®(G) ensures that we only perform changes compliant with our attack
constraints (e.g., unnoticeability). The meta update function M (A,e) inserts the edge
e = (i,7) by setting a;; = 1 if nodes (7,j) are currently not connected and otherwise
deletes the edge by setting a;; = 0. We show a summary of our algorithm in Alg. 2.

4.4.3 Approximating Meta-Gradients

Computing the meta gradients is expensive both from a computational and a memory
point-of-view. A simple first-order approximation is

VA = VaLa(for (A) & VaLaw(f3,(A) = ViLan(f5,(A) - Vafy, (A).  (4.9)
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4 Adversarial Attacks on Graph Neural Networks via Meta Learning

Cora-ML Citeseer
GCN CLN GCN CLN
Clean 16.6+0.3 17.3+0.3 28.5+1.0 28.3+0.8

A-Meta-Train 21.2+0.9 20.3+0.3 31.840.8 29.8+0.5
A-Meta-Self 21.8+0.7 18.9+0.3 28.6+0.4 28.5+0.4
A-Meta-Both  22.5+0.6 19.2+0.3 28.9+04 28.8+t0.4

Table 4.1: Misclassification rate (in %) for different meta-gradient heuristics with 5% perturbed
edges.

We denote by 6, the parameters at time t independent of the data A (and ét,l), ie.,
V 40; = 0; the gradient is thus not propagated through 6;. This corresponds to taking the
gradient of the attack loss L, w.r.t. the data, after training the model for T" steps. We
compare against this baseline in our experiments; as also done in [273]. However, unlike
the meta-gradient, this approximation completely disregards the training dynamics.

[171] propose a heuristic of the meta gradient in which they update the initial weights
fp on a line towards the local optimum 67 to achieve faster convergence in a multi-
task learning setting: Vg{;eta ~ Zle Vétﬁtmin( fét(A;X )). Again, they assume 6 to
be independent of 0,_1. While there is no direct connection to the formulation of the
meta gradient in Eq. (4.5), there is an intuition behind it: the heuristic meta gradient
is the direction, in which, on average, we have observed the strongest increase in the
training loss during the training procedure. The authors’ experimental evaluation further
indicates that this heuristic achieves similar results as the meta gradient while being
much more efficient to compute (see Sec. 4.4.4 for a discussion on complexity).

When we adapt this to our adversarial attack setting on graphs, we obtain erta =
Zthl V 4Ltrain(fg,(A; X)). We can view this as a heuristic of the meta gradient when
Lotk = —Lirain- Likewise, again taking the transductive learning setting into account,
we can use self-learning to estimate the loss on the unlabeled nodes, replacing Lipain by
Lserr- Indeed, we combine these two views

v%eta =~ EtT:l)\vAﬁtrain(fgt (A, X)) + (1 - )\)VA»Cself(fét (A7 X))a (4‘10)

where A can be used to weight the two objectives. This approximation has a much smaller
memory footprint than the exact meta gradient since we don’t have to store the whole
training trajectory 6, ...,07 in memory; additionally, there there are no second-order
derivatives to be computed. A summary of our algorithm can be found in Alg. 3.

4.4.4 Complexity analysis

In our attack we handle both edge insertions and deletions, i.e. each element in the
adjacency matrix A € {0,1}"*¥ can be changed. This means that without further
optimization, the (approximate) meta gradient for each node pair has to be computed,
leading to a baseline memory and computational complexity of O(N?). For the meta
gradient computation we additionally have to store the entire weight trajectory during
training, adding O(T - |f|) to the memory cost, where T' is the number of inner training
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4.5 Experiments

Cora-ML Citeseer Polblogs Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6+03  17.3+0.3 20.3+1.0 28.5+£09  28.3+0.9 34.8+1.4 6.4+0.6 7.6+0.5 5.3+0.5 7.4
DICE 18.04+0.4  18.0+0.2 22.840.3 28.9+03  29.1+03 39.1+0.4 11.2+11  11.2+08 10.2+0.6 5.0
First-order 17.2+03  17.6+0.2 20.7+0.2 28.3+03  28.4+0.3 34.0+0.3 7.8+0.9 7.6+0.5 7.9+0.6 7.1
Nettack* - - - 31.9403  30.2+0.4 41.2+0.4 - - - -
A-Meta-Train 21.8+0.9  20.5+0.3 25.0+0.6 31.9+07  30.1x05 32.7+05 11.9+28  12.9+25 5.8+0.2 4.7
A-Meta-Both 20.7+04  19.0+0.3 28.5+0.5 28.6+04  28.7+04 34.4+04 19.8+0.8  16.5+1.3 21.5+1.9 4.3
Meta-Train 22.0+12 21.7+04 26.1+0.6 30.3+1.0  29.0+0.6 36.0+0.2 16.3+2.9 18.7+2.3 14.5+4.2 3.2
Meta-Self 24.5+1.0 20.3+0.4 28.1+0.6 34.6+0.7 32.2+06 34.6x0.7 22.5+08 17.9+1.7 59.0+3.0 2.3

Meta w/ Oracle 21.0+0.5  21.6+0.3 27.8+0.7 34.2+09  32.9+0.6 36.1+0.7 25.6+1.9  19.1+1.4 52.3+2.8 2.0
* Did not finish within three days on Cora-ML and PoLBLoGs

Table 4.2: Misclassification rate (in %) with 5% perturbed edges.

steps and |#| the number of weights. Thus, memory complexity of our meta gradient
attack is O(N? + T - |0|). The second-order derivatives at each step 7 in the meta
gradient formulation can be computed in O(N?) using Hessian-vector products, leading
to a computational complexity of O(T - N?).

For the meta gradient heuristics, the computational complexity is similar since we have
to evaluate the gradient w.r.t. the adjacency matrix at every training step. However,
the training trajectory of the weights does not have to be kept in memory, yielding a
memory complexity of O(N?). This is highly beneficial, as memory (especially on GPUs)
is limited.

The computational and memory complexity of our adversarial attacks implies that
(as-is) it can be executed for graphs with roughly 20K nodes using a commodity GPU.
The complexity, however, can be drastically reduced by pre-filtering the elements in the
adjacency matrix for which the (meta) gradient needs to be computed, since only a
fraction of entries in the adjacency matrix are promising candidate perturbations. We
leave such performance optimization for future work.

4.5 Experiments

Setup. We evaluate our approach on the well-known CITESEER [201], CORA-ML [152],
and PoLBLOGS [1] datasets; an overview is given in Table A.1. We split the datasets into
labeled (10%) and unlabeled (90%) nodes. The labels of the unlabeled nodes are never
visible to the attacker or the classifiers and are only used to evaluate the generalization
performance of the models.

We evaluate the transferability of adversarial attacks by training deep node classifi-
cation models on the modified (poisoned) data. For this purpose, we use Graph Con-
volutional Networks (GCN) [117] and Column Networks (CLN) [184]. Both are models
utilizing the message passing framework (a.k.a. graph convolution) and trained in a
semi-supervised way. We further evaluate the node classification performance achieved
by training a standard logistic regression model on the node embeddings learned by
DeepWalk [182]. DeepWalk itself is trained in an unsupervised way and without node
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4 Adversarial Attacks on Graph Neural Networks via Meta Learning
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attributes or graph convolutions; thus, this is arguably an even more difficult transfer
task.

We repeat all of our attacks on five different splits of labeled/unlabeled nodes and
train all target classifiers ten times per attack (using the split that was used to create
the attack). In our tables, the uncertainty indicates 95 % confidence intervals of the
mean obtained via bootstrapping. For our meta-gradient approaches, we compute the
meta-gradient V5L (fo, (A; X)) by using gradient descent with momentum for 100
iterations. We refer to our meta-gradient approach with self-training as Meta-Self and to
the variant without self-training as Meta-Train. Similarly, we refer to our approximations
as A-Meta-Self (with A=0), A-Meta-Train (A=1), and A-Meta-Both (A=0.5).

Comparing meta-gradient heuristics. First, we analyze the different meta gradient
heuristics described in Section 4.4.3. The results can be seen in Table 4.1. All principles
successfully increase the misclassification rate (i.e., 1 — accuracy on unlabeled nodes)
obtained on the test data, compared to the results obtained with the unperturbed graph.
Since A-Meta-Self consistently shows a weaker performance than A-Meta-Both, we do
not further consider A-Meta-Self in the following.

Comparison with competing methods. We compare our meta-gradient approach as
well as its approximations with various baselines and Nettack [273]. DICE [35] (‘delete
internally, connect externally’) is a baseline where, for each perturbation, we randomly
choose whether to insert or remove an edge. Edges are only removed between nodes from
the same class, and only inserted between nodes from different classes. This baseline has
all true class labels (train and test) available and thus more knowledge than all competing
methods. First-order refers to the approximation proposed by [77], i.e., ignoring all
second-order derivatives. Note that Nettack is not designed for global attacks. In order
to be able to compare to them, for each perturbation we randomly select one target node
from the unlabeled nodes and attack it using Nettack while considering all nodes in the
network. In this case, its time and memory complexity is O(N?) and thus it was not
feasible to run it on any but the sparsest dataset. Meta w/ Oracle corresponds to our
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4.5 Experiments

Cora-ML Citeseer
GCN CLN GCN CLN
Clean 16.6+0.3 17.3+0.3 28.5+0.8 28.3+0.8

A-Meta-Sub  21.4+0.7 22.4404 30.9+0.7 31.4+0.7
Meta-Sub 21.240.6 20.8+0.3 28.7+0.3 31.4%05

Figure 4.3: Poisoning results with limited knowledge about the graph (i.e., on a subgraph) after
10% changes.

Cora Citeseer PolBlogs Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6+0.3 17.340.3 20.340.9 28.5+0.8 28.3+0.8 34.8+1.3 6.4+05  7.6+05 5.340.5 3.0
A-Meta-Both 21.6+0.6 18.9+0.3 27.8+0.2 31.6+0.4 30.3+0.6 40.7+0.4 17.841.9 13.9+14 11.0+05 1.8
Meta-Self 29.7+22  20.1+04 31.5+1.2 29.9+0.7  32.7+0.8 45.6+0.7 174408 14.6+1.2 16.8+1.9 1.2

Table 4.3: Misclassification rate (in %) with 5% perturbed edges and only training the surrogate
model for T' = 10 iterations to obtain the (meta-) gradients.

meta-gradient approach when supplied with all true class labels on the test data — this
only serves as a reference point since it cannot be carried out in real scenarios where the
test nodes’ labels are unknown. For all methods, we enforce the unnoticeability constraint
introduced by [273], which ensures that the graph’s degree distribution changes only
slightly.

In Table 4.2 we see the misclassification rates (i.e., 1 - accuracy on unlabeled nodes)
achieved by changing 5% of Ercc edges according to the different methods (larger is
better, except for the average rank). That is, each method is allowed to modify 5%
of Ercc, i.e., the number of edges present in the graph before the attack. We present
similar tables for 1% and 10% changes in Appendix C. Our meta-gradient with self-
training (Meta-Self) produces the strongest drop in performance across all models and
datasets as indicated by the average rank. Changing only 5% of the edges leads to a
relative increase of up to 48% in the misclassification rate of GCN on CORA-ML.

Remarkably, our memory efficient meta-gradient approximations lead to strong in-
creases in misclassifications as well. They outperform both baselines and are in many
cases even on par with the more expensive meta-gradient. In Table 4.3 we can see that
using only T" = 10 training iterations of the surrogate models for computing the meta
gradient (or its approximations) can significantly hurt the performance across models
and datasets. Moreover, in Table C.1 in Appendix C we show that our heuristic is
successful at attacking PUBMED, a dataset with roughly 20K nodes.

In Fig. 4.1 we see the drop in classification performance of GCN on CORA-ML for
increasing numbers of edge insertions/deletions (similar plots for the remaining datasets
and models are provided in Appendix C). Meta-Self is even able to reduce the classifi-
cation accuracy below 50%. Fig. 4.2 shows the classification accuracy of GCN and CLN
as well as a baseline operating on the node attributes only, i.e., ignoring the graph. Not
surprisingly, deep models achieve higher accuracy than the baseline when trained on
the clean CITESEER graph — exploiting the network information improves classification.
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4 Adversarial Attacks on Graph Neural Networks via Meta Learning

wow Ci=Cj  CiFC
A 085 0.52 DEL 15.3 3.9
A 083 049 INS 9.4 71.4

Table 4.4: Accuracy of clean/ cor- Table 4.5: Share (%) of edge deletions (DEL) and

rupted graph and weights. insertions (INS) by Meta-Self.
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Figure 4.4: Analysis of adversarially inserted edges.

However, by only perturbing 5% of the edges, we obtain the opposite: GCN and CLN
perform worse than the baseline — the graph structure now hurts classification.

Impact of graph structure and trained weights. Another interesting property of our
attacks can be seen in Table 4.4, where W and W correspond to the weights trained on
the clean CORA-ML network A and a version A poisoned by our algorithm (here with
even 25 % modified edges), respectively. Note that the classification accuracy barely
changes when modifying the underlying network for a given set of trained weights; even
when applying the clean weights W on the highly corrupted A, the performance drops
only marginally. Likewise, even the clean graph A only leads to a low accuracy when
using it with the weights W. This result emphasizes the importance of the training
procedure for the performance of graph models and shows that our poisoning attack
works by derailing the training procedure from the start, i.e. leading to ‘bad’ weights.

Analysis of attacks. An interesting question to ask is why the adversarial changes
created by our meta-gradient approach are so destructive, and what patterns they follow.
If we can find out what makes an edge insertion or deletion a strong adversarial change,
we can circumvent expensive meta-gradient computations or even use this knowledge to
detect adversarial attacks.

In Fig. 4.4 we compare edges inserted by our meta-gradient approach to the edges
originally present in the CORA-ML network. Fig. 4.4 (a) shows the shortest path lengths
between nodes pairs before being connected by adversarially inserted edges vs. shortest
path lengths between all nodes in the original graph. In Fig. 4.4 (b) we compare the

62



4.5 Experiments

(U G =
INN = = (Clean
= \Y\ ¢ Meta-Self-U
. . = g Meta-Self
Figure 4.5: Change in accuracy of GCN < 60 -
. . -
on CITESEER with and with- 2
out enforcing unnoticeability con- < 50 - ,
. aN
straints (‘Meta-Self-U’). o ' ' {
1 5 10 15 25

Edges changed (%)

edge betweenness centrality (Cg) of adversarially inserted edges to the centrality of
edges present in the original graph. In (c¢) we see the node degree distributions of the
original graph and the node degrees of the nodes that are picked for adversarial edges.
For all three measures no clear distinction can be made. There is a slight tendency for
the algorithm to connect nodes that have higher-than-average shortest paths and low
degrees, though.

As we can see in Table 4.5, roughly 80% of our meta attack’s perturbations are edge
insertions (INS). As expected by the homophily assumption, in most cases edges inserted
connect nodes from different classes and edges deleted connect same-class nodes. How-
ever, as the comparison with the DICE baseline shows, this by itself can also not explain
the destructive performance of the meta-gradient.

Unnoticeability constraint. In all our experiments, we enforce the unnoticeability con-
straint on the degree distribution proposed by Ziigner et al. [273]. Singleton nodes are
never admissible, even when not enforcing unnoticeability. In Fig. 4.5 we show that
this constraint does not significantly limit the destructive performance of our attacks.
Thus we conclude that these constraints should always be enforced, since they improve
unnoticeability while at the same time our attacks remain effective.

Attacks with changes to the node features. While the focus of our work is poisoning
attacks by modifying the graph structure, our method can be applied to node feature
attacks as well. The most straightforward case is when the node features are binary,
since then we can use the same greedy algorithm as for the graph structure (ignoring
the degree distribution constraints). Among the datasets we evaluated, CITESEER has
binary node features, hence in Table 4.6 we display the results when attacking both
node features and graph structure (while the total number of perturbations stays the
same). We can observe that the impact of the combined attacks is slightly lower than
the structure-only attack. We attribute this to the fact that we assign the same ‘cost’ to
structure and feature changes, but arguably we expect a structure perturbation to have
a stronger effect on performance than a feature perturbation. Future work can provide a
framework where structure and feature changes impose a different ‘cost’ on the attacker.
When the node features are continuous, there also needs to be some tuning of the meta
step size and considerations whether multiple features per instance can be changed in a
single step.
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Citeseer
GCN CLN
Clean 28.54+0.9 28.3+0.8
Meta-Self with features | 37.2+1.1  34.2+0.7
Meta-Self 38.6+1.0 35.3+0.7

Table 4.6: Misclassification rate (in %) with 10% perturbations in edges / node features. For
Meta-Self with features, at each step the perturbation (edge or feature) is selected
that has the highest meta gradient score.

Limited knowledge about the graph structure. In the experiments described above,
the attacker has full knowledge about the graph structure and all node attributes (as
typical in a transductive setting). We also tested our algorithm on a sub-graph of CORA-
ML and CITESEER. That is, we select the 10% labeled nodes and randomly select
neighbors of these until we have a subgraph with number of nodes n = 0.3N. We run
our attacks on this small subgraph, and afterwards plug in the perturbations into the
original graphs to train GCN and CLN as before. Table 4.3 summarizes the results:
Even in this highly restricted setting, our attacks consistently increase misclassification
rate across datasets and models, highlighting the effectiveness of our method.

4.6 Conclusion

We propose an algorithm for training-time adversarial attacks on (attributed) graphs,
focusing on the task of node classification. We use meta-gradients to solve the bilevel
optimization problem underlying the challenging class of poisoning adversarial attacks.
Our experiments show that attacks created using our meta-gradient approach consis-
tently lead to a strong decrease in classification performance of graph convolutional
models and even transfer to unsupervised models. Remarkably, even small perturba-
tions to a graph based on our approach can lead to graph neural networks performing
worse than a baseline ignoring all relational information. We further propose approxi-
mations of the meta-gradients that are less expensive to compute and, in many cases,
have a similarly destructive impact on the training of node classification models.

Retrospective

This study presented above complements the one from Chapter 3 (i) by explicitly ad-
dressing the bilevel nature of poisoning attacks and (ii) by focusing on global attacks
on the overall performance of a GNN. Since we model the adjacency matrix as a dense
N x N matrix, scalability is a main limitation of the approach presented in this chapter.
Geisler et al. [81] present scalable attacks based on randomized block coordinate descent;
combining their attack with the one presented above could be an interesting direction
for future work. Moreover, the attack loss we use in this chapter is cross entropy; Geisler
et al. [81] show that this is a suboptimal choice for global attacks since the attacker tends
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4.6 Conclusion

to spend part of the budget on further attacking nodes which are already misclassified.
In this chapter we highlight some intriguing properties of our poisoning attacks. First,
the attacks have almost no effect on a model which was trained on a non-perturbed
graph. Second, a relatively small amount of perturbations is required to lead to worse
performance of a GNN than a linear structure-agnostic classifier. In [81], the authors
present a similar finding on large graphs where only around 2% of perturbed edges suffice
to reduce the GNN performance below an MLP on the node attributes. Later studies
[e.g., 260, 249, 111] proposed defenses against the attacks presented above, which effec-
tively aim to reverse the adversarial perturbations by filtering out edges between nodes
with very dissimilar attributes.
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5 Adversarial Attacks on GNNs:
Retrospective

The study presented in Chapter 3 was the first to investigate the adversarial robustness
properties of GNNs. It effectively kicked off a new research field, which presents us
with the unique opportunity to provide an overview on how this field developed in this
retrospective section. With the sheer amount and rate of new publications this section is
not intended to be exhaustive, but aims to show broader trends that have been happening
in the field. For more comprehensive surveys, see [209], [110], or the very recent book
chapter by Glinnemann [94]. The GNN robustness benchmark by Zheng et al. [266] is a
recent contribution aiming to improve reproducibility and comparability of attacks and
defenses on GNNs.

First and foremost, a variety of attack methods for ML on graphs have been proposed.
They differ not only in terms of the methodology used but also in which models and
tasks are tageted, their scalability, whether they are local or global attacks, and whether
they target the training phase (poisoning) or the inference phase (evasion).

Xu et al. [245] propose poisoning and evasion attacks based on projected gradient
descent. In [244], the authors propose a black-box attack method based on the graph
spectrum which does not need access to the model parameters or node labels. Dai
et al. [56]’s attack method is based on reinforcement learning and can be used to attack
graph as well as node classification models. In the case of node classification attacks,
their method is limited to remove edges from the graph. Recently, there have been fewer
works on GNN attacks on node classification without additional focus, e.g., on scalability
or specific application domains. Many recent studies also consider attacks in different
settings and tasks such as node embeddings, graph classification, or link prediction.
Moreover, there as a challenge on GNN robustness on a large real-world graph at KDD
2020 KDD Cup 2020'. This reflects a general shift towards more diverse and realistic
attack scenarios in recent years.

Scalability. Scalability has been a major limitation of many GNN attacks, especially
global ones. This is because we typically need to compute some score (e.g., based on
(meta-) gradients) w.r.t. all N x N entries of the adjacency matrix, which is typically in-
feasbile for graphs with roughly N > 20, 000 on current GPUs. This is much smaller than
most real-world graphs; most graphs in the recently published Open Graph Benchmark
(OGB) [106], which go up to 100M nodes. At the same time, scalable GNN attacks are
rare, and thus our knowledge of GNNs’ robustness behavior on large graphs is limited.

"https://www.biendata.xyz/competition/kddcup_2020_formal/
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5 Adversarial Attacks on GNNs: Retrospective

Further research in this direction would be important to improve our understanding and
guide researchers to develop more robust methods. In the following, we mention recent
scalable GNN attack methods.

Geisler et al. [81] propose a scalable global attack for GNNs based on projected block
coordinate descent, which is loosely based on [245]’s projected gradient descent attack.
This means that they only compute the gradient w.r.t. a small subset of adjacency
matrix entries; randomization of the selected entries ensures exploration and diversity of
the attacks. They show that GNNs on large graph datasets are remarkably nonrobust
to global attacks. While white-box attacks are useful to find out about the worst-case
behavior of a model, complete knowledge of the graph structure and all node features
is not very realistic. An open question for follow-up work is how to design reasonable
limitations of an attacker’s knowledge on large-scale datasets.

Feng et al. [75] partition the graph into subgraphs and optimize the attack via ADMM.
However, their surrogate model is only a single-layer linearized GCN, which limits the
expressivity of the attacks; further, their attack method is still O(N?).

Li et al. [136] propose a scalable local attack on the SGC [236] model, where they use
a heuristic to select only a small subset of nodes for the attack generation; this reduces
memory and computation times. Similarly, Wang et al. [230] propose a scalable local
attack which works by inserting adversarial nodes into the existing graph and connecting
them to the existing nodes. The existing nodes’ edges and features are not changed.

Tasks. After initial studies of GNN robustness on the task of node classification, re-
searchers also explored different graph ML tasks and specific application domains. These
include (i) node representation learning; (ii) graph classification; and, very recently (iii)
neural solvers for combinatorial optimization.

For (i) node representation learning, Bojchevski and Giinnemann [23] develop a poi-
soning attack on the DeepWalk [182] node embedding method, which exploits the graph
spectrum and leads to reduced usefulness of the learned embeddings for downstream
tasks such as node classification. Similarly, Sun et al. [210]’s attack targets DeepWalk
embeddings, whereas their attack is gradient-based. Chang et al. [40]’s attack also takes
into account node feature information. A typical downstream task of node representa-
tion models is link prediction. Chen et al. [44] specifically target this task by attacking
a graph autoencoder (GAE) [116] based on gradient information w.r.t. the adjacency
matrix. Lin et al. [141] propose a greedy attack on the SEAL GNN model for link pre-
diction [259]. One particular application of link prediction are knowledge graphs. Zhang
et al. [258] propose an adversarial attack to increase or decrease certain facts’ predicted
plausibility scores.

(ii) Graph classification is another typical task in ML for graphs. Here, instead
of predicting properties of individual nodes or edges, we aim to classify graphs as a
whole. Dai et al. [56] propse a reinforcement-learning-based attack on graph classification
models. Tang et al. [213]’s method attacks graph pooling models for graph prediction via
a surrogate model. Zhang et al. [262] propose backdoor attacks on graph classification
models, where goal is to have graphs classified a certain way when trigger subgraphs
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are added. At the same time the test accuracy of the model should not be affected. In
their recent study, Wan et al. [226] attack graph classification models using Bayesian
optimization and genetic algorithms.

Very recently, Geisler et al. [82] propose adversarial attacks on (iii) neural solvers for
combinatorial optimization [e.g., 200, 185], which are often based on GNN models. The
authors propose attacks for the SATisfiability (SAT) and traveling salesperson (TSP)
problems. This highlights the relevance and applicability of GNN robustness study to
diverse models, applications, and domains.

Another interesting case is the study of Hsieh and Li [105]’s method called NetFense.
The method is effectively an adversarial attack method based on Nettack whose goal is
to defend the GNN against privacy attacks. That is, they perturb the graph structure
in such a way that predicting certain private attributes becomes harder. They achieve
this by making changes to the input graph in order to make the output of a classifier
predicting the sensitive attribute as close as possible to a 50/50 prediction. At the same
time, their method aims to maintain the performance of the GNN in predicting the class
of the node.
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Part 11l

Robustness Certification of Graph
Neural Networks
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6 Certifiable Robustness and Robust
Training for Graph Convolutional
Networks

6.1 Introduction

As shown in Part II, graph neural network models for node classification are vulnerable
to adversarial attacks: Even only slight deliberate perturbations of the nodes’ features
or the graph structure can lead to completely wrong predictions. Such negative results
significantly hinder the applicability of these models. The results become unreliable and
such problems open the door for attackers that can exploit these vulnerabilities.

So far, no effective mechanisms are available, which (i) prevent that small changes
to the data lead to completely different predictions in a GNN, or (ii) that can verify
whether a given GNN is robust w.r.t. a specific perturbation model. This is critical, since
especially in domains where graph-based learning is used (e.g. the Web) adversaries are
omnipresent, e.g., manipulating online reviews and product websites [104]. One of the
core challenges is that in a GNN a node’s prediction is also affected when perturbing
other nodes in the graph — making the space of possible perturbations large. How to
make sure that small changes to the input data do not have a dramatic effect to a GNN?

In this chapter, we shed light on this problem by proposing the first method for
provable robustness of GNNs. More precisely, we focus on graph convolutional networks
and potential perturbations of the node attributes, where we provide:

1) Certificates: Given a trained GNN, we can give robustness certificates that state that
a node is robust w.r.t. a certain space of perturbations. If the certificate holds, it is
guaranteed that no perturbation (in the considered space) exists which will change the
node’s prediction. Furthermore, we also provide non-robustness certificates that, when
they hold, state whether a node is not robust; realized by providing an adversarial
example.

2) Robust Training: We propose a learning principle that improves the robustness of the
GNN (i.e., making it less sensitive to perturbations) while still ensuring high accuracy
for node classification. Specifically, we exploit the semi-supervised nature of the GNN
learning task, thus, taking also the unlabeled nodes into account.

In contrast to existing works on provable robustness for classical neural networks/ro-
bust training (e.g. [234, 189, 101]), we tackle various additional challenges: Being the
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first approach for graphs, we have to deal with perturbations of multiple instances simul-
taneously. For this, we introduce a novel space of perturbations where the perturbation
budget is constrained locally and globally. Moreover, since the considered data domains
are often discrete/binary attributes, we tackle challenging L constraints on the pertur-
bations. Lastly, we exploit a crucial aspect of semi-supervised learning by taking also
the unlabeled nodes into account for robust training.

The key idea we will exploit in our approach is to estimate the worst-case change in
the predictions obtained by the GNN under the space of perturbations. If the worst
possible change is small, the GNN is robust. Since, however, this worst-case cannot be
computed efficiently, we provide bounds on this value, providing conservative estimates.
More technically, we derive relaxations of the GNN and the perturbations space, enabling
efficient computation.

Besides the two core technical contributions mentioned above, we further perform
extensive experiments:

3) Ezperiments: We show on various graph datasets that GNNs trained in the traditional
way are not robust, i.e. only few of the nodes can be certified to be robust, respectively
many are certifiably non-robust even with small perturbation budgets. In contrast,
using our robust training we can dramatically improve robustness increasing it by in
some cases by factor of four.

Overall, using our method, significantly improves the reliability of GNNs, thus, being
highly beneficial when, e.g., using them in real production systems or scientific applica-
tions.

6.2 Related Work

The sensitivity of machine learning models w.r.t. adversarial perturbations has been
studied extensively [88] . Only recently, however, researchers have started to investigate
adversarial attacks on graph neural networks [273, 56, 276] and node embeddings [23].
All of these works focus on generating adversarial examples. In contrast, we provide
the first work to certify and improve the robustness of GNNs. As shown in [273], both
perturbations to the node attributes as well as the graph structure are harmful. In this
chapter, we focus on perturbations of the node attributes; structure perturbations are
studied in Chapter 7.

For ‘classical’ neural networks various heuristic approaches have been proposed to
improve the the robustness to adversarial examples [180]. However, such heuristics are
often broken by new attack methods, leading to an arms race. As an alternative, recent
works have considered certifiable robustness [234, 189, 101, 55] providing guarantees that
no perturbation w.r.t. a specific perturbation space will change an instance’s prediction.

For this chapter, specifically the class of methods based on convex relaxations are of
relevance [234, 189]. They construct a convex relaxation for computing a lower bound
on the worst-case margin achievable over all possible perturbations. This bound serves
as a certificate of robustness. Solving such convex optimization problems can often been
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done efficiently, and by exploiting duality it enables to even train a robust model [234].
As already mentioned, our work differs significantly from the existing methods since (i)
it considers the novel GNN domain with its relational dependencies, (ii) it handles a
discrete/binary data domain, while existing works have only handled continuous data;
thus also leading to very different constraints on the perturbations, and (iii) we propose
a novel robust training procedure which specifically exploits the semi-supervised learning
setting of GNN, i.e. using the unlabeled nodes as well.

6.3 Preliminaries

We consider the task of (semi-supervised) node classification in a single large graph
having binary node features. Let G = (A, X) be an attributed graph, where A €
{0, 1}V is the adjacency matrix and X € {0,1}V*P represents the nodes’ features.
W.l.o.g. we assume the node-ids to be V = {1,..., N}. Given a subset V1, C V of labeled
nodes, with class labels from C = {1,2,..., K}, the goal of node classification is to learn
a function f : V — C which maps each node v € V to one class in C. In this chapter, we
focus on node classification employing graph neural networks. In particular, we consider
graph convolutional networks where the latent representations H®) at layer [ are of the
form

HO — 50 (A(l_l)H(l_l)W(l_l) n bU—l)) for | =2,...,L (6.1)

where H) = X and with activation functions given by

O'(L) () — Softmax () , U(l) () = ReLU () fOI' l = 2, ceey L - ].

The output HISCL) denotes the probability of assigning node v to class ¢. The A(l) are the
message passing matrices that define how the activations are propagated in the network.
In GCN [117], for example, A(l) =.= A(L_l) = b_%fib_%, where A = A + Inyn
and D;; = Ej AU The WO and b0) are the trainable weights of the graph neural
network, usually simply learned by minimizing the cross-entropy loss on the given labeled
training nodes Vy,.

Notations: We denote with Aj(t) the l-hop neighborhood of a node t, i.e. all nodes
which are reachable with [ hops (or less) from node ¢, including the node t itself. Given a
matrix X, we denote its positive part with [X]; = max(X,0) where the max is applied
entry-wise. Similarly, the negative part is [X]- = —min(X,0), which are non-negative
numbers. All matrix norms || X ||, used in this chapter are meant to be entry-wise, i.e.
flattening X to a vector and applying the corresponding vector norm. We denote with
h(®) the dimensionality of the latent space in layer [, i.e. H® ¢ RN xhV) X;. denotes the
i-th row of a matrix X and X; its j-th column.

6.4 Certifying Robustness for Graph Convolutional Networks

Our first goal is to derive an efficient principle for robustness certificates. That is, given
an already trained GNN and a specific node ¢ under consideration (called target node),
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our goal is to provide a certificate which guarantees that the prediction made for node
t will not change even if the data gets perturbed (given a specific perturbation budget).
That is, if the certificate is provided, the prediction for this node is robust under any
admissible perturbations. Unlike existing works, we cannot restrict perturbations to the
instance itself due to the relational dependencies.

However, we can exploit one key insight: for a GNN with L layers, the output Ht(:L)
of node ¢ depends only on the nodes in its L — 1 hop neighborhood Np_1(t). Therefore,

instead of operating with Eq. (6.1), we can ‘slice’ the matrices X and A(l) at each step
to only contain the entries that are required to compute the output for the target node
t.1 This step drastically improves scalability — reducing not only the size of the neural
network but also the potential perturbations we have to consider later on. We define
the matrix slices for a given target t as follows:?

{0 _ 20 ;
A = ANLfl(t)aNLflJrl(t) for [ = 1, ,L - 1, X = XNL—l(t) (62)

where the set indexing corresponds to slicing the rows and columns of a matrix, i.e.,
A Na(t),N: (1) contains the rows corresponding to the two-hop neighbors of node ¢ and the
columns corresponding to its one-hop neighbors. As it becomes clear, for increasing [
(i.e., depth in the network), the slices of A(l) become smaller, and at the final step we
only need the target node’s one-hop neighbors.

Overall, we only need to consider the following sliced GNN:

Y = AV geDw - - forl=2,.... L (6.3)
240 :maX{I:IT(f;,O} for 1=2,.,L—1 (6.4)

and HY = X. Here, we replaced the ReLU activation by its analytical form, and we

denoted with H ® the input before applying the ReL'U, and with H @) the corresponding
(L)

(L
output. Note that the matrices are getting smaller in size — with H"  actually reducing
to a vector that represents the predicted log probabilities (logits) for node ¢t only. Note
that we also omitted the softmax activation function in the final layer L since for the

~ (L
final classification decision it is sufficient to consider the largest value of H ( ). Overall,

we denote the output of this sliced GNN as f;(X, A) = a%" € RX. Here 6 is the set
of all parameters, i.e., § = {W(‘), b},

6.4.1 Robustness Certificates for GNNs

Given this set-up, we are now ready to define our actual task: We aim to verify whether
no admissible perturbation changes the prediction of the target node ¢. Formally we aim
to solve:

!Note that the shapes of W and b do not change.
2To avoid clutter in the notation, since our method certifies robustness with respect to a specific node
t, we omit explicitly mentioning the target node ¢ in the following.
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Problem 3. Given a graph G, a target node t, and an GNN with parameters 0. Let
y* denote the class of node t (e.g. given by the ground truth or predicted). The worst
case margin between classes y* and y achievable under some set Xqu(X) of admissible
perturbations to the node attributes is given by

m!(y*,y) := minimize f{(X,A), — fi(X, A), (6.5)
X
subject to X € X, o(X)

If m*(y*,y) > 0 for all y # y*, the GNN is certifiably robust w.r.t. node t and X, q.

If the minimum in Eq. (6.5) is positive, it means that there exists no adversarial ex-
ample (within our defined admissible perturbations) that leads to the classifier changing
its prediction to the other class y — i.e. the logits of class y* are always larger than the
one of y.

Setting reasonable constraints to adversarial attacks is important to obtain certificates
that reflect realistic attacks. Works for classical neural networks have constrained the
adversarial examples to lie on a small e-ball around the original sample measured by,
e.g., the infinity-norm or L2-norm [234, 189, 55|, often e.g., ¢ < 0.1 This is clearly not
practical in our binary setting as an € < 1 would mean that no attribute can be changed.
To allow reasonable perturbations in a binary/discrete setting one has to allow much
larger changes than the e-balls considered so far.

Therefore, motivated by the existing works on adversarial attacks to graphs [273],
we consider a more realistic scenario: We define the set of admissible perturbations by
limiting the number of changes to the original attributes —i.e. we assume a perturbation
budget @ € N and measure the Ly norm in the change to X. It is important to note
that in a graph setting an adversary can attack the target node by also changing the
node attributes of its L — 1 hop neighborhood. Thus, @) acts as a global perturbation
budget.

However, since changing many attributes for a single node might not be desired, we
also allow to limit the number of perturbations locally —i.e. for each node in the L—1 hop
neighborhood we can consider a budget of ¢ € N. Overall, in this chapter we consider
admissible perturbations of the form:

Xyo(X) = {X | Xy € 0,3 A 1X - X[ < Q (6.6)

A ”Xn - XnHO S an S NL—I} .

Challenges There are two major obstacles preventing us from efficiently finding the
minimum in Eq. (6.5). First, our data domain is discrete, making optimization often
intractable. Second, our function (i.e., the GNN) f} is nonconvex due to the nonlinear
activation functions in the neural network. But there is hope: As we will show, we
can efficiently find lower bounds on the minimum of the original problem by performing
specific relaxations of (i) the neural network, and (ii) the data domain. This means
that if the lower bound is positive, we are certain that our classifier is robust w.r.t.
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the set of admissible perturbations. Remarkably, we will even see that our relaxation
has an optimal solution which is integral. That is, we obtain an optimal solution (i.e.
perturbation) which is binary — thus, we can effectively handle the discrete data domain.

6.4.2 Convex Relaxations

To make the objective function in Eq. (6.5)
convex, we have to find a convex relaxation
of the ReLLU activation function. While there
are many ways to achieve this, we follow the
approach of [234] in this chapter. The core

idea is (i) to treat the matrices H() and a /
in Egs. (6.3,6.4) no longer as deterministic but

as variables one can optimize over (besides op-

timizing over X) In this view, Egs. (6.3,6.4) ! | !
become constraints the variables have to ful- R 0 S

fill. Then, (ii) we relax the non-linear ReLU  Figure 6.1: Convex relaxation of ReLU
constraint of Eq. (6.4) by a set of convex ones.

In detail: Consider Eq. (6.4). Here, H 7(3 denotes the input to the ReLU activation
function. Let us assume we have given some lower bounds Rnlj and upper bounds ST(llj)
on this input based on the possible perturbations (in Section 6.4.5 we will discuss how
to find these bounds). We denote with Z() the set of all tuples (n,5) in layer I for which

the lower and upper bounds differ in their sign, i.e., RY <0< ng) We denote with L(rl)

nj

v I

and I(,Z) the tuples where both bounds are non-negative and non-positive, respectively.
Consider the case Z(): We relax Eq. (6.4) using a convex envelope:

B >a)  H >0
0 () _ p0Y < g0 (7 _ pO PO
H\) (s\) - R)) <s\) (1, - RY)) if (n, j) € 7O

The idea is illustrated in the figure on the right. Note that Hq(llj) is no longer the
deterministic output of the ReLLU given its input but it is a variable. For a given input,
the variable is constrained to lie on a vertical line above the input and below the upper
line of the envelope.

Accordingly, but more simply, for the cases ISFZ) and I(_l) we get:

7Y — gV

nj nj

it (n,)ez!)  amd  HY=0 if(nj)ez?
which are actually not relaxations but exact conditions. Overall, Eq. (6.4) has now been
replaced by a set of linear (i.e. convex) constraints. Together with the linear constraints

of Eq. (6.3) they determine the set of admissible H() and H © we can optimize over. We

denote the collection of these matrices that fulfill these constraints by Z; (X). Note
that this set depends on X since HY) = X.
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Overall, our problem becomes:

) (L)

A (L)
- H,

~ (L .
m'(y*,y) := minimize Hz(/ —c' H (6.7)
X,HM,I:I(‘)

subject to X € X, o(X) , [H('),IA{(')} € Z,0(X)

Here we introduced the constant vector ¢ = e, — e,, which is 1 at position y*, —1 at
y, and 0 else. This notation clearly shows that the objective function is a simple linear
function.

Corollary 1. The minimum in Eq. (6.7) is a lower bound on the minimum of the
problem in Eq. (6.5), i.e. m!(y*,y) < mt(y*,y).

Proof. Let X be the perturbation obtained by Problem 3, and [H), H (')]

ezact representations based on Eq. (6.3)+(6.4). By construction, [H (), I:I(‘)] € Z,0(X).
Since Eq. (6.7) optimizes over the full set Z, (X)) its minimum can not be larger. [

the resulting

From Corollary 1 it follows that if m?(y*,y) > 0 for all y # y*, the GNN is robust at
node t. Directly solving Eq. (6.7), however, is still intractable due to the discrete data
domain.

As one core contribution, we will show that we can find the optimal solution in a
tractable way. We proceed in two steps: (i) We first find a suitable continuous, convex
relaxation of the discrete domain of possible adversarial examples. (ii) We show that
the relaxed problem has an optimal solution which is integral; thus, by our specific
construction the solution is binary.

More precisely, we relax the set Xqu(X ) to:

A~ .

Ryo(X) ={X | Xoy e DUA X - X1 < Q (6.8)
A X = Xl < a ¥ € Npoa )

Note that the entries of X are now continuous between 0 and 1, and we have replaced
the Ly norm with the Li norm. This leads to:

(L)
y

t(y",y) == minimize A" — B = A" 09)

x,HO 7"

subject to X € /fqu(X) , [H('),IA{(')} X

€ Z40(X)

It is worth mentioning that Eq. (6.9) is a linear problem since besides the linear objec-
tive function also all constraints are linear. We provide the explicit form of this linear
program in the appendix. Accordingly, Eq. (6.9) can be solved optimally in a tractable
way. Since X, o(X) D X,o(X) , we trivially have m!(y*,y) < m!(y*,y). But even
more, we obtain:

Theorem 3. The minimum in Eq. (6.7) is equal to the minimum in Eq. (6.9), i.e.
m'(y*,y) = m'(y*, y).
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We will proof this theorem later (see Sec. 6.4.4) since it requires some further results.
In summary, using Theorem 3, we can indeed handle the discrete data domain/discrete
perturbations exactly and tractably by simply solving Eq. (6.9) instead of Eq. (6.7).

6.4.3 Efficient Lower Bounds via the Dual

In order to provide a robustness guarantee w.r.t. the perturbations on X , we have to
find the minimum of the linear program in Eq. (6.9) to ensure that we have covered
the worst case. While it is possible to solve linear programs ‘efficiently’ using highly
optimized linear program solvers, the potentially large number of variables in a GNN
makes this approach rather slow. As an alternative, we can consider the dual of the linear
program [234]. There, any dual-feasible solution is a lower bound on the minimum of
the primal problem. That is, if we find any dual-feasible solution for which the objective
function of the dual is positive, we know that the minimum of the primal problem has
to be positive as well, guaranteeing robustness of the GNN w.r.t. any perturbation in
the set.

Theorem 4. The dual of Eq. (6.9) is equivalent to:

. t s
X, ¢, Q ) 1
maximize gy q ( , 6,21, p (6.10)

subject to
QW ¢ [0, YNe-1PY for 1 =1 —1,..,2,
neRM peRy

where
SURY o B
ghol- ZZ;(MZ;I”) S0 Rl Rnl] [@njL ;1 3(+1p
- T [X 0]~ w)y g Znn Q-p
and

d) = _cecRF

o0 = A(l)Tq)(H'l)‘/V(l)—r e RWz-ilxh® foril=L—-1,..,1
0 if (n,7) € 7
(I,(l) _ (Apnj if ( ) S I( )
" 58 Ta0) O [40] o
sy (], -~ [#] #epet

forl=L—-1,...,2
Vg = max{Ang — (M + p), 0}
_ (0] . q_ X L] %
A= [@)] (- X +[@1)] - K
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The proof is given in the appendix. Note that parts of the dual problem in Theo-
rem 4 have a similar form to the problem in [234]. For instance, we can interpret this
dual problem as a backward pass on a GNN, where the D and &0 are the hidden
representations of the respective nodes in the graph. Crucially different, however, is
the propagation in the dual problem with the message passing matrices A coming from
the GNN formulation where neighboring nodes influence each other. Furthermore, our
novel perturbation constraints from Eq. (6.8) lead to the dual variables 1 and p, which
have their origin in the local (¢) and global (@) constraints, respectively. Note that, in
principle, our framework allows for different budgets ¢ per node. The term W has its
origin in the constraint X,,; € [0,1].

While on the first look, the above dual problem seems rather complicated, its specific
form makes it amenable for easy optimization. The variables €2, 1, p have only simple,
element-wise constraints (e.g., clipping between [0, 1]). All other terms are just determin-
istic assignments. Thus, straightforward optimization using (projected) gradient ascent
in combination with any modern automatic differentiation framework (e.g. TensorFlow,
PyTorch) is possible.

Furthermore, while in the above dual we need to optimize over n and p, it turns out
that we can simplify it even further: for any feasible €2, we get an optimal closed-form
solution for n, p.

Theorem 5. Given the dual problem from Theorem 4 and any dual-feasible value for
Q. For each node n € Ni_1, let S, be the set of dimensions d corresponding to the q
largest values from the vector A, (ties broken arbitrarily). Further, denote with o, =
minges, Ang the smallest of these values. The optimal p that mazimizes the dual is
the Q-th largest value from [Apalnen,_, des,- For later use we denote with Sg the set
of tuples (n,d) corresponding to these Q-largest values. Moreover, the optimal m, is

1, = max {0, 0, — p}.

The proof is given in the appendix. Using Theo. 5, we obtain an even more compact
dual where we only have to optimize over €. Importantly, the calculations done in
Theo. 5 are also available in many modern automatic differentiation frameworks (i.e.
we can back-propagate through them). Thus, we still get very efficient (and easy to
implement) optimization.

Default value As mentioned before, it is not required to solve the dual problem op-
timally. Any dual-feasible solution leads to a lower bound on the original problem.
Specifically, we can also just evaluate the function gf]’Q once given a single instantia-
tion for €. This makes the computation of robustness certificates extremely fast. For
example, adopting the result of [234], instead of optimizing over £ we can set it to
) =5 (s!) — R, (6.11)

nj nj J

which is dual-feasible, and still obtain strong robustness certificates. In our experimental
section, we compare the results obtained using this default value to results for optimizing
over 2. Note that using Theo. 5 we always ensure to use the optimal n, p w.r.t. €.
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6.4.4 Primal Solutions and Certificates

Based on the above results, we can now prove the following:
Corollary 2. Eq. (6.9) is an integral linear program with respect to the variables X.

The proof is given in the appendix. Using this result, it is now straightforward to
prove Theo. 3 from the beginning.

Proof. Since Eq. (6.9) has an optimal (thus, feasible) solution where X is integral, we
have X € )Eq,Q(X) and, thus, X has to be binary to be integral. Since in this case
the L1 constraints are equivalent to the Lo constraints, it follows that X € X(LQ(X )
Thus, this optimal solution of Eq. 6.9 is feasible for Eq. 6.7 as well. Together with

m'(y*,y) < m'(y*,y) it follows that m(y*,y) = m'(y*,y). O

In the proof of Corollary 2, we have seen that in the optimal solution, the set
{(n,d) € Sg | Apg > 0} =: P indicates those elements which are perturbed. That
is, we constructed the worst-case perturbation. Clearly, this mechanism can also be
used even if Q (and, thus, A) is not optimal: simply perturbing the elements in P.
In this case, of course, the primal solution might not be optimal and we cannot use it
for a robustness certificate. However, since the resulting perturbation is primal feasible
(regarding the set X, (X)), we can use it for our non-robustness certificate: After con-
structing the perturbation X based on P, we pass it through the exact GNN, i.e. we
evaluate Eq. (6.5). If the value is negative, we found a harmful perturbation, certifying
non-robustness.

In summary By considering the dual program, we obtain robustness certificates if the
obtained (dual) values are positive for every y # y*. In contrast, by constructing the pri-
mal feasible perturbation using P, we obtain non-robustness certificates if the obtained
(exact, primal) values are negative for one y # y*. For some nodes, neither of these
certificates can be given. We analyze this aspect in more detail in our experiments.

6.4.5 Activation Bounds

One crucial component of our method, the computation of the bounds R® and S® on
the activations in the relaxed GNN, remains to be defined. Again, existing bounds for
classical neural networks are not applicable since they neither consider Lg constraints nor
do they take neighboring instances into account. Obtaining good upper and lower bounds
is crucial to obtain robustness certificates, as tighter bounds lead to lower relaxation error
of the GNN activations.

While in Sec. 6.4.3, we relax the discreteness condition of the node attributes X in
the linear program, it turns out that for the bounds the binary nature of the data can
be exploited. More precisely, for every node m € N _s(t), we compute the upper bound
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Sg]) in the second layer for latent dimension j as

S (1) A - (2)
57(33 = sum_top_Q ([Amns,g»hne/\/’l(m),ie{l,...,q}) + H,,; (6.12)
A(Q) . Y (1) % (1)
S,.j; = i-th largest ((1 - X,) 0 [Wj Lr + X0 © [WJ }_)

Here, i-th_largest(-) denotes the selection of the i-th largest element from the correspond-
ing vector, and sum_top_Q(-) the sum of the @ largest elements from the corresponding
list. The first term of the sum in Eq. (6.12) is an upper bound on the change/increase in
the first hidden layer’s activations of node m and hidden dimension j for any admissible
perturbation on the attributes X . The second term are the hidden activations obtained
for the (un-perturbed) input X, i.e. Hfi; - AV xwO + b, In sum we have an
upper bound on the hidden activations in the first hidden layer for the perturbed input
X. Note that, reflecting the interdependence of nodes in the graph, the bounds of a
node m depend on the attributes of its neighbors n.
Likewise for the lower bound we use:

i (1) A . (2)
R,(sg = -sum_top_Q <[AmnRS"ij)i]nE/\/'l(m),ie{l,.“,q}> +H,,; (6.13)
Rffj)l = i-th_largest <Xn ® [ng)} +(1-Xn)0 [ng)} )
+ _

We need to compute the bounds for each node in the L — 2 hop neighborhood of the
target, i.e., for a GNN with a single hidden layer (L = 3) we have R(®), S®) ¢ RM()xA®)

Corollary 3. Egs. (6.12) and (6.13) are valid, and the tightest possible, lower/upper
bounds w.r.t. the set of admissible perturbations.

The proof is in the appendix. For the remaining layers, since the input to them is
no longer binary, we adapt the bounds proposed in [189]. Generalized to the GNN we
therefore obtain:

RO — 44 <R(l—1) [W(z—n} _ g(-1) [W(l—l)] )
+ -

forl=3,...,L —1.

Intuitively, for the upper bounds we assume that the activations in the previous layer
take their respective upper bound wherever we have positive weights, and their lower
bounds whenever we have negative weights (and the lower bounds are analogous to this).
While there exist more computationally involved algorithms to compute more accurate
bounds [234], we leave adaptation of such bounds to the graph domain for future work.

It is important to note that all bounds can be computed highly efficiently and one can
even back-propagate through them — important aspects for the robust training (Sec. 6.5).
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6 Certifiable Robustness and Robust Training for Graph Convolutional Networks

Specifically, one can compute Egs. (6.12) and (6.13) for all m € V (!) and all j together
in time O(h(® - (N - D + E - q)) where E is the number of edges in the graph. Note that

IA%LQJ) can be computed in time O(D) by unordered partial sorting; overall leading to the

complexity O(N -h(?) . D). Likewise the sum of top Q elements can be computed in time
O(N1(m) - q) for every 1 < j < h®) and m € V, together leading to O(E - ¢ - h?).

6.5 Robust Training of GNNs

While being able to certify robustness of a given GNN by itself is extremely valuable
for being able to trust the model’s output in real-world applications, it is also highly
desirable to train classifiers that are (certifiably) robust to adversarial attacks. In this
section we show how to use our findings from before to train robust GNNs.

Recall that the value of the dual g can be interpreted as a lower bound on the mar-
gin between the two considered classes. As a shortcut, we denote with pg(y, Q(')) =

[—g;Q (X’Ck’ﬂkﬂlgkgc the K-dimensional vector containing the (negative) dual

objective function values for any class k compared to the given class y, i.e. ¢F = e, — €.

That is, node ¢ with class y; is certifiably robust if p}, < 0 for all entries (except the
entry at y; which is always 0). Here, # denotes the parameters of the GNN.

First consider the training objective typically used to train GNNs for node classifica-
tion:

minimize £ ( fg(X,A),y;) , (6.14)
teVy

where L is the cross entropy function (operating on the logits) and Vp, the set of labeled
nodes in the graph. y; denotes the (known) class label of node t.

To improve robustness, in [234] (for classical neural networks) it has been proposed
to instead optimize

minimize Z L (ph(ys, ), y1) (6.15)

t,k
9’{9 }tevL,lgkgx tevy

which is an upper bound on the worst-case loss achievable. Note that we can omit
optimizing over € by setting it to Eq. (6.11). We refer to the loss function in Eq. (6.15)
as robust cross entropy loss.

One common issue with deep learning models is overconfidence [127], i.e., the models
predicting effectively a probability of 1 for one and 0 for the other classes. Applied
to Eq. (6.15), this means that the vector pg is pushed to contain very large negative
numbers: the predictions will not only be robust but also very certain even under the
worst perturbation. To facilitate true robustness and not false certainty in our model’s
predictions, we therefore propose an alternative robust loss that we refer to as robust
hinge loss:

Ly (p,y*) =) max{0,py + M} . (6.16)
k#£y*
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6.5 Robust Training of GNNs

This loss is positive if —pp, = gi o (X ,ck, Qk) < M; and zero otherwise. Put simply: If
the loss is zero, the node t is certifiably robust — in this case even guaranteeing a margin
of at least M to the decision boundary. Importantly, realizing even larger margins (for
the worst-case) is not ‘rewarded’.

We combine the robust hinge loss with standard cross entropy to obtain the following
robust optimization problem

%tzv Lar (Rh(wi ), w) + £ (f3(X, ) wi ) - (6.17)
eV

Note that the cross entropy term is operating on the ezract, non-relaxed GNN, which
is a strong advantage over the robust cross entropy loss that only uses the relazed GNN.
Thus, we are using the exact GNN model for the node predictions, while the relaxed
GNN is only used to ensure robustness. Effectively, if all nodes are robust, the term L
becomes zero, thus, reducing to the standard cross-entropy loss on the exact GNN (with
robustness guarantee).

Robustness in the semi-supervised setting While Eq. (6.17) improves the robustness
regarding the labeled nodes, we do not consider the given unlabeled nodes. How to
handle the semi-supervised setting which is prevalent in the graph domain, ensuring
also robustness for the unlabeled nodes? Note that for the unlabeled nodes, we do not
necessarily want robustness certificates with a very large margin (i.e., strongly negative
pg) since the classifier’s prediction may be wrong in the first place; this would mean that
we encourage the classifier to make very certain predictions even when the predictions
are wrong. Instead, we want to reflect in our model that some unlabeled nodes might
be close to the decision boundary and not make overconfident predictions in these cases.

Our robust hinge loss provides a natural way to incorporate these goals. By setting a
smaller margin My for the unlabeled nodes, we can train our classifier to be robust, but
does not encourage worst-case logit differences larger than the specified Ms. Importantly,
this does not mean that the classifier will be less certain in general, since the cross
entropy term is unchanged and if the classifier is already robust, the robust hinge loss
is 0. Overall:

rgglt;: L, (Ph(yr, Q%) y7) + L (fé(X, A),y,?‘> (6.18)
L

+ > L, (P 25), 1)
tEV\VL

where §; = argmaxy, f5(X, A)g is the predicted label for node t. Note again that the
unlabeled nodes are used for robustness purposes only — making it very different to the
principle of self-training (see below). Overall, Eq. (6.18) aims to correctly classify all
labeled nodes using the exact GNN, while making sure that every node has at least a
margin of M, from the decision boundary even under worst-case perturbations.
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6 Certifiable Robustness and Robust Training for Graph Convolutional Networks

Eq. (6.18) can be optimized as is. In practice, however, we proceed as follows: We
first train the GNN on the labeled nodes using Eq. (6.17) until convergence. Then we
train on all nodes using Eq. (6.18) until convergence.

Discussion Note that the above idea is not applicable to the robust cross entropy loss
from Eq. (6.15). One might argue that one could use a GNN trained using Eq. (6.15)
to compute predictions for all (or some of the) unlabeled nodes. Then, treating these
predictions as the correct (soft-)labels for the nodes and recursively apply the training.
This has two undesired effects: If the prediction is very uncertain (i.e. the soft-labels
are flat), Eq. (6.15) tries to find a GNN where the worst-case margin exactly matches
these uncertain labels (since this minimizes the cross-entropy). The GNN will be forced
to keep the prediction uncertain for such instances even if it could do better. On the
other hand, if the prediction is very certain (i.e. very peaky), Eq. (6.15) tries to make
sure that even in the worst-case the prediction has such high certainty — thus being
overconfident in the prediction (which might even be wrong in the first place). Indeed,
this case mimics the idea of self-training: In self-training, we first train our model on
the labeled nodes. Subsequently, we use the predicted classes of (some of ) the unlabeled
nodes, pretending these are their true labels; and continue training with them as well.
Self-training, however, serves an orthogonal purpose and, in principle, can be used with
any of the above models.

Summary When training the GNN, the lower and upper activation bounds are treated
as a function of 0, i.e. they are updated accordingly. While this can be done efficiently
as discussed in Sec. 6.4.5, it is still the least efficient part of our model and future work
might consider incremental computations. Overall, since the dual program in Theorem 4
and the upper/lower activations bounds are differentiable, we can train a robust GNN
with gradient descent and standard deep learning libraries. Note again that by setting €2
to its default value, we actually only have to optimize over 6 — like in standard training.
Furthermore, computing p}, for the default parameters has roughly the same cost as
evaluating a usual (sliced) GNN K many times, i.e., it is very efficient.

6.6 Experimental Evaluation

Our experimental contributions are twofold. (i) We evaluate the robustness of tradition-
ally trained GNNs using, and thus analyzing, our certification method. (ii) We show
that our robust training procedure can dramatically improve GNNs’ robustness while
sacrificing only minimal accuracy on the unlabeled nodes.

We evaluate our method on the widely used and publicly available datasets CORA-
ML[152], CITESEER[201], and PUBMED [201] (see Table A.1 for more information). For
every dataset, we allow local (i.e., per-node) changes to the node attributes amounting to
1% of the attribute dimension, i.e., ¢ = 0.01D. @ is analyzed in detail in the experiments
reflecting different perturbation spaces.
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We refer to the traditional training of GNNs as Cross Entropy (short CE), to the
robust variant of cross entropy as Robust Cross Entropy (RCE), and to our hinge loss
variants as Robust Hinge Loss (RH) and Robust Hinge Loss with Unlabeled (RH-U),
where the latter enforces a margin loss also on the unlabeled nodes. We set Mj, i.e., the
margin on the training nodes to log(0.9/0.1) and M5 to log(0.6/0.4) for the unlabeled
nodes (RH-U only). This means that we train the GNN to (correctly) classify the labeled
nodes with output probability of 90% in the worst case, and the unlabeled nodes with
60%, reflecting that we do not want our model to be overconfident on the unlabeled
nodes. Please note that we do not need to compare against graph adversarial attack
models such as [273] since our method gives provable guarantees on the robustness.

While our method can be used for any GNN of the form in Eq. (6.1), we study the
well-established GCN [117], which has shown to outperform many more complicated
models. Following [117], we consider GCNs with one hidden layer (i.e., L = 3), and
choose a latent dimensionality of 32. We split the datasets into 10% labeled and 90%
unlabeled nodes. See the appendix for further details.

6.6.1 Certificates: Robustness of GNNs

We first start to investigate our (non-)robustness certificates by analyzing GNNs trained
using standard cross entropy training. Figure 6.2 shows the main result: for varying @
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6 Certifiable Robustness and Robust Training for Graph Convolutional Networks

we report the percentage of nodes (train+test) which are certifiable robust/non-robust
on COorA-ML. We can make two important observations: (i) Our certificates are often
very tight. That is, the white area (nodes for which we cannot give any — robustness or
non-robustness — certificate) is rather small. Indeed, for any given @, at most 30% of the
nodes cannot be certified across all datasets and despite no robust training, highlighting
the tightness of our bounds and relaxations and the effectiveness of our certification
method. (ii) GNNs trained traditionally are only certifiably robust up to very small
perturbations. At Q = 12, less than 55% of the nodes are certifiably robust on CORA-
ML. In case of CITESEER even less than 20% (Table 6.1; training: CE). Even worse, at
this point already two thirds (for CITESEER) and a quarter (CORA-ML) of the nodes
are certifiably non-robust (i.e. we can find adversarial examples), confirming the issues
reported in [273]. PUBMED behaves similarly (as we will see later, e.g., in Table 6.1).
In our experiments, the labeled nodes are on average more robust than the unlabeled
nodes, which is not surprising given that the classifier was not trained using the labels
of the latter.

We also investigate what contributes to certain
nodes being more robust than others. In Figure
6.3 we see that neighborhood purity (i.e. the share
of nodes in a respective node’s two-hop neighbor-
hood that is assigned the same class by the clas-
sifier) plays an important role. On CORA-ML, al-
most all nodes that are certifiably robust above
@ > 50 have a neighborhood purity of at least 80%. | |
When analyzing the degree (Figure 6.4), it seems 0 5 10
that nodes with a medium degree are most robust. Dual-Primal Difference
While counterintuitive at first, having many neigh- Figure 6.5: Difference of primal and
bors also means a large surface for adversarial at- dual bounds.
tacks. Nodes with low degree, in contrast, might
be affected more strongly since each node in its neighborhood has a larger influence.

= () opt.
Default Q

Density

Tightness of lower bounds Next, we aim to analyze how tight our dual lower bounds
are, which we needed to obtain efficient certification. For this, we analyze (i) the value
of gq0(-) we obtain from our dual solution (either when optimizing over € are using
the default value), compared to (ii) the value of the primal solution we obtain using
our construction from Sec. 6.4.4. The smaller the difference, the better. As seen in
Figure 6.5, when optimizing over €2, for most of the nodes the gap is 0. Thus, indeed we
can often find the exact minimum of the primal via the dual. As expected, when using
the default value for €2 the difference between dual and primal is larger. Still, for most
nodes the difference is small. Indeed, and more importantly, when considering the actual
certificates (where we only need to verify whether the dual is positive; its actual value
is not important), the difference between optimizing © and its default value become
negligible: on CORA-ML, the average maximal @ for which we can certify robustness
drops by 0.54; CITESEER 0.18; PUBMED 2.3. This highlights that we can use the default
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Dataset  Training Avg. Max % Robust Acc. Acc.

Q robust Q=12 (labeled)  (unlabeled)
2 CE 6.77 0.17 1.00 0.67
7 RCE 18.62 0.58 0.99 0.69
& RH 15.51 0.54 0.99 0.68
O RH-U 18.48 0.76 0.99 0.68
§ CE 16.36 0.54 1.00 0.83
P RCE 38.58 0.77 1.00 0.83
= RH 32.49 0.74 1.00 0.83
O RH-U 35.58 0.91 1.00 0.83
q CE 5.82 0.15 0.99 0.86
= RCE 50.68 0.62 0.88 0.84
= RH 48.56 0.62 0.90 0.85
~ RH-U 47.56 0.63 0.90 0.86

Table 6.1: Robust training results. Our robust training methods significantly improve the ro-
bustness of GNNs while not sacrificing accuracy. Robust training was done for
@ = 12. Results are averaged over five random data splits.
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Figure 6.6: Robust training results (CORA- Figure 6.7: Robust training results (CITE-
ML). Dashed: no robust training. SEER). Dashed: no rob. training.

values of €2 to very efficiently certify many or even all nodes in a GNN. In all remaining
experiments we, thus, only operate with this default choice.

6.6.2 Robust Training of GNNs

Next, we analyze our robust training procedure. If not mentioned otherwise, we use
our robust hinge-loss including the unlabeled nodes RH-U and we robustify the models
with @ = 12 since for this value more than 50% of nodes across our datasets were not
certifiably robust (when using standard training).

Figure 6.6 and 6.7 show again the percentage of certified nodes w.r.t. a certain Q) —
now when using a robustly trained GCN. With dotted lines, we have plotted the curves
one obtains for the standard (non-robust) training — e.g. the dotted lines in Fig. 6.6
are the ones already seen in Fig. 6.2. As it becomes clear, with robust training, we can
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dramatically increase the number of nodes which are robust. Almost every node is robust
when considering the ) for which the model has been trained for. e.g., for CITESEER,
our method is able to quadruple the number of certifiable nodes for Q = 12. Put simply:
When performing an adversarial attack with Q < 12 on this model, it cannot do any
harm! Moreover the share of nodes that can be certified for any given @ has increased
significantly (even though we have not trained the model for @ > 12). Most remarkably,
nodes for which we certified non-robustness before become now certifiably robust (the
blue region above the gray lines).

Accuracy The increased robustness comes at almost no loss in classification accuracy
as Table 6.1 shows. There we report the results for all datasets and all training principles.
The last two columns show the accuracy obtained for node classification (for train and
test nodes separately). In some cases, our robust classifiers even outperform the non-
robust one on the unlabeled nodes. Interestingly, for PUBMED we see that the accuracy
on the labeled nodes drops to the accuracy on the unlabeled nodes. This indicates that
our method can even improve generalization.

Training principles Comparing the different robust training procedures (also given in
more detail in Figure 6.8), we see that RH-U achieves significantly higher robustness
when considering ) = 12. This is shown by the third-last column in the table, where
the percentage of nodes which are certifiably robust for @ = 12 (i.e., the @ the models
have been robustified for) is shown. The third column shows the largest @ for which
a node is still certifiably robust (averaged over all nodes). As shown, for all training
principles the average exceeds the value of 12.

Effect of training with () If we strongly increase the @) for which the classifier is trained
for, we only observe a small drop in the classification accuracy. E.g., training accuracy
drops from 99% to 87% when going from @Q = 12 to 48, while test accuracy stays almost
unchanged (68% vs. 66%) on CITESEER. We attribute this to the fact that the GNN
still uses the normal CE loss in addition to our robust hinge loss during training. Figure
6.10 shows the results for CORA-ML where we trained three models with different Q. To
clarify: We have to distinguish between the @ used for training a model (mentioned in
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the legend) and the @ we are computing certificates for (the x-axis). We see: (i) Clearly,
all trainings lead to significantly more robust models. Though, the larger @), the harder
it gets. (ii) Importantly, each model is the ‘winner in robustness’ when considering the
@ for which the model has been trained for.

Training Dynamics Lastly, we analyze the behavior when training a GCN using either
standard training or robust training with RH-U. In Figure 6.9 we monitor the worst-case
margin (averaged over a minibatch of nodes; separately for the labeled and unlabeled
nodes) obtained in each training iteration. As seen, with RH-U the worst-case margin
increases to the specified values M; /My — i.e., making them robust. In contrast, for
standard training the worst-case margin decreases. Specifically the unlabeled nodes
(which account to 90% of all nodes) are not robust.

Overall, all experiments show that our robust training is highly effective: robustness
is increased while the accuracy is still high.

6.7 Conclusion

We proposed the first approach for certifying robustness of GNNs, considering pertur-
bations of the node attributes under a challenging Ly perturbation budget and tackling
the discrete data domain. By relaxing the GNN and considering the dual, we realized
an efficient computation of our certificates — simultaneously our experiments have shown
that our certificates are tight since for most nodes a certificate can be given. We have
shown that traditional training of GNNs leads to non-robust models that can easily
be fooled. In contrast, using our novel (semi-supervised) robust training the resulting
GNNs are shown to be much more robust. All this is achieved with only a minor effect
on the classification accuracy. In the following chapter, we consider perturbations of the
graph structure.

91



6 Certifiable Robustness and Robust Training for Graph Convolutional Networks

Retrospective

In this chapter we present the first robustness certificates for message-passing GNNs,
along with a highly effective robust training procedure. While we show that standard
GCNs have very limited provable robustness properties, which are improved by our
robust training scheme, there are two important limitations of the approach presented in
this chapter. The fist one is that our certification and robust training procedure is limited
to GNNs with static aggregation weights and thus does not directly apply to models such
as GAT [224]. The second limitation is that our certificates are not applicable to graph
structure perturbations; we address this limitation in the following chapter. There,
we also intriguingly observe increased robustness to structure perturbations for models
trained with our robust training method for attribute robustness, which we discuss in
more detail in Chapter 8. Moreover, our certificates are limited to binary node attributes,
though an extension to continuous-valued attributes seems possible.

Another aspect to consider in practice is the need to set the local and global budgets
q and @ in advance before training. This could be difficult as it might not be clear to a
practitioner what magnitude of perturbations to expect.
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7 Certifiable Robustness of Graph
Convolutional Networks under Structure
Perturbations

7.1 Introduction

In Part IT we have established that graph neural networks are highly non-robust w.r.t.
adversarial attacks. In the previous chapter we presented the first method for robustness
certification and robust training for GNNs w.r.t. perturbations of the node attribute. So
far, there exist no effective robustness certification methods for the popular graph con-
volutional network (GCN) against perturbations of the graph structure. In this chapter,
for the first time we close this gap and present a technique for certified robustness of
GCN’s predictions.

In robustness certification for ‘traditional” data (i.e. images) it is sufficient to consider
the data instances individually and determine whether we can certify a robust prediction.
Robustness certification for graph neural networks is significantly more challenging since
we have to take into account all nodes that influence the target node’s prediction via
message passing. The approach presented in the previous chapter tackles such robustness
certification of graph convolutional networks — however, it only considers perturbations
to the node features.

In this chapter we address for the first time the even more challenging setting where
we assume the graph structure can be altered by an attacker. Specifically, we consider
the realistic case where the attacker is allowed to insert new edges. This scenario reflects
real-world conditions where new edges (corresponding to, e.g. links, likes, following, etc.)
are cheap and easy to inject. A certificate issued by our method states that a node’s
prediction could not have been altered by edges potentially inserted by an attacker.

From a technical view, we solve the following three challenges:

(1) Nonconvexity of the neural network. Neural networks are (in general) nonconvex
functions; therefore finding the optimal (i.e. worst-case) perturbation is intractable.

(2) Discreteness of the data. Since the adjacency matrix is binary, the number of
possible perturbations grows exponentially with the perturbation budget; therfore
enumerating and testing all admissible perturbations is intractable.

(3) Modification of the message passing scheme. While previous certificates deal
with what happens when the input to the (static) MPNN is modified, we aim to certify
robustness for cases when the graph structure — and therefore the way embeddings are

93



7 Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations

propagated — changes. From the perspective of an individual node, the computation
graph itself changes as the output is computed from a different set of nodes.

Indeed, challenge (1) is also encountered when certifying robustness in more traditional
scenarios. For this aspect, we thus largely follow the convex relaxation of GCN presented
by [277], which relies on a relaxation of the ReLU activation function introduced by [234].

Challenge (2), in contrast, requires special care: While [277] handles binary attribute
data by performing a continuous relaxation, we will show in Section 7.3.2 that a standard
continuous relaxation is not well-suited for perturbations of the graph structure. Instead,
one of our contributions is to show how to bypass the problem altogether by working
directly on the (continuous-valued) degree-normalized message passing matrix used by
GCN. To this end we carefully construct induced constraints on the normalized message
passing matrix from Lo constraints on the (binary) adjacency matrix.

Challenge (3) — how to deal with changes to the message passing matrix — is com-
pletely unstudied and therefore our second main contribution. The difficulty lies in the
fact that the message passing matrix (which becomes variable) is used at each layer — as
opposed to the input features, which appear only in the first layer of the neural network.
Thus, the ReLLU relaxations of [277, 234] no longer lead to convex (linear) constraints but
become nonconvex (details are discussed in Section 7.3.4). Indeed, we will show that the
problem can be expressed as a jointly constrained bilinear program — “one of the most
persistently difficult and recurrent nonconvex problems in mathematical programming”
[3]. To solve this challenging problem we propose a novel branch-and-bound algorithm
that effectively exploits key insights to obtain lower bounds on the worst-case change in a
node’s prediction. If positive, these lower bounds serve as robustness certificates, stating
that a node’s prediction does not change under any admissible set of perturbations.

Related Work GNNs are a fundamental part of the modern machine learning land-
scape and have been successfully used for a variety of tasks. However, GNNs are highly
sensitive to small adversarial perturbations [273, 56, 276]. While some (heuristic) de-
fenses exist [245, 69, 268], we can never assume attackers will not be able to break
them.Robustness certificates, on the other hand, provide provable guarantees that no
perturbation regarding a specific perturbation model will change the prediction of a
sample. Only a few robustness certificates for graphs have been developed. While [277]
can only handle perturbations to the node attributes, [24] is limited to a specific class of
graph-models based on PageRank, not covering the highly important principle of graph
convolutional networks. Our work closes this gap by providing the first robustness certifi-
cate for GCNs under structure perturbations. In concurrent work, [25] provide another
certification method for structure perturbations.

7.2 Preliminaries

We consider the task of (semi-supervised) node classification in a single large graph with
D-dimensional node features. Let G = (A, X) be an attributed, unweighted graph,
where A € {0, 1}V*V is the adjacency matrix and X € RV*P are the nodes’ features.
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W.lo.g. we assume the node-ids to be V = {1,..., N}. Given a subset V1, C V of labeled
nodes, with class labels from C = {1,2,..., K}, the goal is to assign each node in G to
one class in C. We focus on node classification employing graph neural networks. In
particular, we consider graph convolutional networks where the latent representations
H®O at layer [ are of the form

HO =50 (ﬁ(l)) , where (7.1)

Y — Agt-Dwi-1 4 -1 (7.2)

for 1 =2,...,L, where H® = X and activation functions given by
o) (1) = softmax (-), o (\) = ReLU ()

forl =2,...,L—1. Here, T (-) is a transformation that is applied to the adjacency matrix
in order to obtain the message passing matrix. This message passing matrix defines how
the activations are propagated in the network. In GCN [117], for example,

A:D_% (A+IN><N)D_%, and Dii:di:1+Z.Aij (73)
J

The W® and b are the trainable weights of the graph neural network (summarized as
0), typically learned by minimizing the cross-entropy loss on the given labeled training
nodes Vy,.

The output Héﬁ) is the probability of assigning node v to class ¢, and we denote the
logits (before applying softmax) as H o = fi(X, A indicating the dependency on X,
A, and 0.

Notations: We denote with A; the 1-hop neighborhood of a node t, i.e. all neighbors
of t and the node t itself (regarding the original, unperturbed graph). Given a matrix X,
we denote its positive part with [X ] = max(X,0) where the max is applied entry-wise.
Similarly, the negative part is [X]- = —min(X,0), which are non-negative numbers.

We denote with 2() the dimensionality of the latent space in layer [, i.e. H® e RN xR,

7.3 Robustness Certification for Graph Structure Perturbations

7.3.1 Problem Definition

To derive our robustness certificates, we first set up the optimization problem we aim to
solve. We assume that we are provided with an already trained GCN with weights 6 as
well as a (potentially corrupted) graph structure in form of an adjacency matrix A. The
true (unperturbed) graph structure A* is not known, but A is assumed to be reachable
from A* via an admissible set of perturbations.

We aim to certify robustness for a single target node ¢ at a time (called the target
node). Such certificate guarantees that the prediction made for node t cannot have been
altered by the attacker. In practice, predictions of nodes for which robustness cannot be
certified can be ignored or sent to an expert for verification.

Formally we aim to solve:
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7 Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations

Problem 4. Given a graph G with adjacency matriz A, a target node t, and a GCN
with parameters 0. Let y* denote the class of node t (ground truth or predicted). The
worst case margin between classes y* and y achievable under some set A(A) of admissible
perturbations to the graph structure is given by

m'(y",y) == minimize f(X, T (A)y — f5(X, T (A), (7.4)
subject to A € A(A)

If mt(y*,y) > 0 for all classes y # y*, the neural network is certifiably robust w.r.t. node
t and A.

If the minimum obtained from Eq. (7.4) is positive, it means that there exists no
adversarial example (within our defined admissible perturbations) that leads to the clas-
sifier changing its prediction to the other class y — i.e. the logit of class y* is always
larger than the one of y. Note that since we are interested in certifying an individual
target node t’s prediction, we omit ¢ in the following when it is clear from the context.

Roadmap Solving the above optimization problem is hard due to the three challenges
mentioned in the introduction. Nevertheless, as we will show in the following, we can
find lower bounds on the minimum of the original problem by (i) optimizing over the
continuous-valued message passing matrix A instead of the binary adjacency matrix
A; (ii) performing relaxations of the activation functions in the neural network; (iii)
expressing the problem as a jointly-constrained bilinear program and proposing a novel
branch-and-bound algorithm. Finally, if the lower bound is positive, the classifier is
robust w.r.t. admissible perturbations.

7.3.2 Optimization over the graph structure

In this section we address Challenge (2) — how to efficiently optimize over the discrete
graph structure — from the introduction.

First, it is important to set reasonable constraints to the perturbations the attacker
can perform such that resulting certificates reflect realistic attacks. For discrete data
(such as the graph structure A), a natural norm to measure ‘distance’ is the number
of perturbed elements, as measured by the non-convex Ly norm. Here we translate the
setup of [277], who introduce both local and global Lj constraints on the node attributes,
to graph structure perturbations.

More precisely, we allow the attacker to insert at most q; edges to any node ¢, and at
most @ € N edges across the whole graph. Formally, any admissible perturbed adjacency
matrix A must be in:

A(A) = {A e {0, 1} N A; < A; NA= AT
NIA— Ao <2Q (7.5)
A HAz‘—Az‘HOqu‘WSiSN}.
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Recall that we assume an attacker has potentially inserted edges to the (unknown)
original graph structure A* to produce A. This means that A* must be reachable
from A by removing edges. Hence in Eq. (7.5) we have the constraints Aij < Ajj in
the definition of the admissible perturbations on A. Note also that we consider only
undirected graphs, hence the constraint A= AT and 2@ in the constraint, even though
in principle our certification procedure also applies to directed graphs. We further assume
g; to be smaller then node i’s degree, in order to prevent singleton nodes.

One traditional approach (e.g. pursued by [277]) to optimize over a discrete variable
is to perform a continuous relaxation, i.e. constrain the entries to be in Aij € [0,1].
However, recall from Eq. (7.3) that GCN uses a degree-normalized message passing
matrix

1 . . .
. if Aj; =1Vi=
Ajj = did; Y .
0 else

(7.6)

contain nonconvex quadratic terms of the

1 1
The terms \/@ N VAT, A)- (14, Ajk)
form A;;j Ay, and therefore any optimization problem involving A in the objective func-
tion is not convex in the variables A” Thus, a simple continuous relaxation does not
lead to a tractable optimization problem.

As an alternative we propose to optimize over the (continuous-valued) degree-normalized
message-passing matrix (i.e. the matrix after having applied T') instead of the (binary)
adjacency matrix A. We denote the variable corresponding to the message-passing ma-
trix by A. This has the benefits of avoiding to optimize over a discrete variable as well as
bypassing the nonconvex degree-normalization procedure of GCN. That is, we replace
Eq. 7.4 by

mt(y*’ y) = mingnize fé(Xu A)y* - fg(Xv A)y (77)
subject to A € A(A).

Note that the neural network fg now directly takes as input the degree-normalized
message-passing matrix instead of the A, i.e., we have absorbed the degree-normalization
procedure into the optimization problem. However, we now have to carefully design
the set of admissible degree-normalized message passing matrices /l(A) based on the
perturbation budget and the graph at hand.

It is crucial that A(A) 2 T (A(A)). Here, T (A(A)) denotes the set of all degree-
normalized message-passing matrices that are produced from adjacency matrices in
A(A). In other words, any degree-normalized matrix that could be produced by first
performing discrete perturbations to A and then degree-normalizing the resulting binary
matrix A must be included in this new set of admissible matrices. In this case it follows
that m!(y*,y) < mi(y*,y), i.e., the optimum of our modified optimization problem in
Eq. (7.7) is a lower bound on the original problem’s optimal value. Thus if Eq. (7.7)
leads to a positive value, we have certificate.

Clearly, instantiating /l(A) with all matrices A € [0, 1]V*N fulfills this property;
however, it leads to a very loose approximation. Thus, we would also like A \ T (A
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to be as small as possible, meaning that any relaxations leading to A are as tight as
possible. In the following we derive induced constraints that give rise to a valid and tight
set of admissible message passing matrices A and are convex, thus enabling tractable
optimization.

7.3.2.1 Induced constraints on A

In this section we construct a set of constraints on the message-passing matrix A that
are induced by the local and global budgets on the change on the adjacency matrix (see
Eq. (7.5)) as well as the degree-normalization procedure of obtaining the message-passing
matrix in GCN (Eq. (7.3)). These constraints reflect necessary conditions every matrix
from 7 (A) fulfills; thus our search space over A can be restricted to a smaller domain.
To enable efficient optimization, we further require these constraints to be linear (resp.,
can be reformulated to a linear constraint) as well as are efficient to compute.

In the following we derive the constraints in detail since they are one core contribution
of our work. The eager reader might directly jump to Equation (7.11) for the final result.

For convenience we denote with r; the number of edges which have been removed from
the node i for an arbitrary perturbed matrix A € A. Note that 0 < r; < g;. We further
introduce D; C N as the set of edges being removed from node i (recall that N; are the
neighbors in the original graph including 7).

Element-wise bounds We can bound every element of A individually by L;; < Aij <
Ui;. For the lower bound we have (i) L;; = A;;, since the self loops in the preprocessing
procedure cannot be removed and dzin > d% (ii) everywhere else we have L;; = 0,
representing a potential deletion of the edge.

The upper bound is U;; = min{A;;, ((d; — g;)(d; — qj))_%} for i # j. The first term
within the min ensures that no edges are added in the certification procedure. This
technically means that, in the following, we only need to consider entries (i, j) for which
there exists an edge in A, leading to a sparse optimization problem. For the second
term, note that the degrees of all nodes can never increase and since they appear in the

denominator (see Eq. (7.6)), ((d; — q;)(d; — qj))_% is an upper bound on the individual
entries Aij. For U;; we use only the second term of the min.

Please note that from the above discussion we can also conclude that Aij = 0 if the
edge between ¢ and j is deleted and Aij > Aij else. While we cannot use this insight
immediately (since it forms a non-convex set), we will show in Section 7.3.4.3 how to
use it.

Row-wise bounds (I) The element-wise bounds do not take dependencies between
elements into account. Thus, it would, e.g., be possible to set for a single node ¢ all
non-diagonal Aij to 0; likely violating the local and global budget. To prevent this, we
now introduce constraints on specific row sums of A.
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For this we first rephrase the row sum as

. 1 1 1
;AU = ; \/W+di—n (7.8)
JENI\D;

When removing an edge from node i (i.e., increasing r;) we can observe two opposing
effects: the term in front of the sum increases; while the sum itself contains fewer
summands and, thus, decreases (assuming the other r; fixed). Thus, our general idea is
to upper /lower bound the value the sum can take for a fixed r;. Plugging this bound on
the sum in Eq. (7.8) leads to an upper/lower bound for a fixed r;, denoted by UV (r;)
and LI°Y(r;), respectively. Now, by simply evaluating U}V (r;) and L°¥(r;) for 0 <
r; < @; we can find the overall row-bound in an efficient way (e.g., for the lower bound

LIV = min,, LI°V(r;)).

(1) We start with the lower bound Lj* < >~ A, since the solution is easy to see.
For a fixed r;, the smallest possible sum is achieved by keeping those nodes which have
the largest degree. Clearly, we set r; = 0 since this leads to the smallest value. In short:
To obtain the lower bound on the sum, we simply sort the nodes based on their degree
in descending order and sum up the first d; — 1 —r; terms 1/ \/@ (—1 since the self-loops
is counted in d;).

(2) For the upper bound Zj Aij < UV, we need to find an upper bound for the
sum. Clearly, in such a scenario r; > 0 since then the fractions get larger. However, we
cannot simply set every r; = ¢; since this would violate the overall budget constraint.
The question is now twofold: how to select the terms/nodes to remove from the sum, and
how to spend the remaining budget to increase the remaining terms? Clearly, we select
the smallest r; summands (corresponding to the neighbors with largest degree) to drop
from the sum. For the remaining nodes M, we have to solve the following optimization
problem:

max S s.t. Z r; < B (7.9)
rAEM S VA T jem

where B is the remaining budget one can spend. Note that we cannot assume that the
remaining budget is simply @ — r;. The reason is that a single edge removal (i.e. one
‘unit’ from Q) can lead to two neighbors’ degrees reducing by one, if these neighbors
are connected by this edge. Thus, in the worst case, if all neighbors are connected with
each other, we can effectively spend twice the remaining removal budget to increase the
rj. Therefore we denote the number of neighbors of 7 that are connected to each other
as N from which 7™ = min{Q — 7;, [N °™|} can become disconnected using the
remaining budget, leading to a total remaining budget to increase r; of B = 2 - robs 4
(Q — 1y — 1),

As it turns out, we can solve the optimization problem (7.9) exactly using a greedy
approach: We maximize the term by sorting the neighbors N; by their degree in ascend-
ing order, and, starting with the lowest degree, use all available budget g; to reduce the
neighbors’ degrees, until the budget B is depleted. This is a valid upper bound on the
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sum because h(z) = f,a: >0, € Nis a monotomcally decreasing function whose

1 1
,%— — > s fforu€N>l

already is, the more effect has increasing 7; on

second derivative is positive everywhere, i.e.
1

3T
increasing it even further. Thus, the strategy outlined above is guaranteed to maximize

(7.9).

Put simply: the larger the term

Complexity analysis Both bounds require sorting the neighbors based on their degree,
which can be done once. We have to compute g; many terms UV (r;) and L°V(r;).
Each term, however, can be computed incrementally based on the previous 7; (since
one only iterates over more elements in the sorted list). Thus, to compute all terms,
we have to iterate through all neighbors at most once. Thus the overall complexity is

O(INillog [Ni| + INi]) = O(di log di)

Row-wise bounds (II) (1) So far we have defined lower and upper bounds on the
row sum ), AU of node 7. We additionally define constraints on the L; norm of the
difference between the perturbed message-passing matrix A and the original message-
passing matrix A: Zj |AU 2]‘ < UF°V. This covers the case where large positive
and large negative changes mostly cancel each other out, such that the lower and upper
bounds on the row sum are not violated even though the perturbed message-passing
matrix is substantially different.

Again, we denote the set of nodes Whose edges to ¢ are removed by D;. For any term
7 € D; the absolute change is \Aij z]] = A;; since it corresponds to a removed edge.
For any node j € N;\D; (which also includes the node i itself) the absolute change is at
most 9;; = U;;j — Aij. Assuming that all terms not removed take their maximum value,
we aim to solve the following optimization problem:

urev = max Z A+ Z dij (7.10)

J€ED; JEN\D;
=Y i+ max Z Ay - 6y
JEN; JED; JED;

= Z(Sz]—l—maxz2 AU Ui,
JjeN; D j€D;
s.t. |Dz’ < q;

Hence we sort all neighbors of node ¢ by their value 2 - Aij — U;; and choose the largest
g; values to obtain U™,

(2) Another measure to avoid cancelling positive and negative changes to T (A) is to
constrain the total change in the negative direction. That is, we consider only the change
regarding edge removal — effectively discarding from Eq. (7.10) the change in positive
direction (i.e. the d;; terms):

> Ay T(A)y] <AT=max Y Ay st Dil<aq,

J#i b jep;
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The solution D; is simply the set of the g; neighbors with lowest degree, which are
allowed to be disconnected from i (i.e., doing so does not lead to singleton nodes).

Complexity analysis: Like before, the dominating complexity is sorting the neighbors,
leading to O(d;logd;).

Global bounds Besides entry-wise and row-wise constraints we can also make use of
global constraints on A.

(1) An upper bound Uglob on the L; difference of A and A can be obtained in a similar
fashion as the row-wise bound (Eq. 7.10). Formally we want to solve

Uglob—max Z T(A Z ij

1<J 1<J
(i,4)€D (4,5)¢D
= Zéij +mgx Z 2-T(A); —
i<j i<y
(i,9)€D
st. D] <Q

where D represents the set of removed edges (this set does not include the self-loops
since they cannot be removed). As before, the optimal solution is obtained by selecting
the @ entries (4, j) with largest values 2 -7 (A);; — Uj; (excl. diagonal terms).

(2) We can also compute an upper bound A o, 0N the negative change analogously
to A;. That is,

Z {Az‘j - Az‘j} < Agiob = = max Z T(A)y, st|D<@
1<j h 1<J
(i,7)€D

which is maximized by setting D to the @ largest values T (A), 2 1<J.
Complexity analysis: The bounds can again be computed based on sorting; now based
on the full edge set. This leads to O(Elog E), where E is the number of edges in A.

Summary The intersection of the (linear) induced constraints defined above describes
a convex set A(A) of admissible perturbed message-passing matrices A.

AA) = {Ac[0,1)VN | A= AT A Vi,j: Lij < A <U;y;
A Vi : Lgow < ZA” < Uirow A Vi : Z |AU — AZ]| < Uirow

j j
A Vi Z [Aij — Azgi| < A7 (7.11)
i#i -
AN LA — Ayl < Ugiob /\Z[Aij—fiij}_SAglob}
1<J 1<J

By construction of the set A(A) it holds:
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(a) Standard branching as in [3]. (b) Improved branching for graph certificates.

Figure 7.1: Overview of the branching step in the first iteration on dimension j
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Theorem 6. 7 (A(A)) C A(A), i.e. for A € A(A) we have T(A) € A(A).

From Theorem 6 it follows that the optimal solution of Eq. (7.7) leads to a valid lower
bound on the original problem in Eq. (7.4).

7.3.3 Relaxation of the neural network

The above constraints can be computed efficiently and form a convex set, thus the
constraint in Equation (7.7) can be efficiently handled. Still, however, the objective
function, which is based on the original neural network fy, is challenging due to the
nonlinearities (see Challenge (1) mentioned in the introduction). Here we follow the
relaxation approach described in [234, 277]. Under this relaxation, the output H of the
ReLU activation function in Eq. (7.1) is no longer deterministic but instead treated as
a variable (like A) with the following constraints:

H) >0, H> Hﬁfj)

m{) (sl - R)) <s\) (A, - RY) if (n,j) e 7O

nj nj J

(7.12)

Here, SSJ) and jo) are upper and lower bounds on the pre-ReLLU activation H Ef]) (which
we describe shortly). Z() is the set of tuples (n, j) for which Sg]) and RSJ) have different

signs. Analogously, IJ(FI) and I(_l) respectively consist of tuples (n,j) for which the lower
and upper bounds are both positive / negative. For L(rl) and T we have the following
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constraints on H T(llj)

l

HY) =AY it(m,jye1l H

nj nj

) _ ; )
;=0 1if (n,j) € Z- (7.13)

We denote the set of hidden activations compliant with the above constraints as Z(A).

Computation of Sfll]) and jo) For the convex relaxation described above we need valid
lower and upper bounds on the pre-RelLU activations in the graph neural network. In
contrast to [277], who make heavy use of the given (static) graph structure, in our case
the graph structure itself changes. Instead we use the following upper and lower bounds
(inspired by [189] for standard neural networks):

sy [S(l—l)w(l—l)} ~L [R(l—nw(l—l)} + b1
+

RY =L, {R(l—l)w(l—l)} U {S(l—l)w(l—l)} +p-b

_l’_
for2<i<L

where S0 = R = X and U, L are the element-wise lower and upper bounds on the
message passing matrix (see Sec. 7.3.2.1).

7.3.4 Jointly Constrained Bilinear Program

Using the relaxation from Section 7.3.3 and the constraints on the message passing
matrix from Section 7.3.2 we can rephrase the objective function in Eq. 7.7 as

(L) L) (L)

A, -H,=H" = AHFIWE D p-D'¢

where ¢ = ey« — e, is a K-dimensional constant vector with value 1 at y*, -1 at y, and

0 else. Since (LD ¢ is constant this leads to the overall problem:

mt(y*uy) = mlplmlze AtH(Lil)W(Lfl)c
A HO

subject to H) € Z(A), A € A(A)

Note that in the objective function we have the term A, HE=D and thus we have a
bilinear objective function.

7.3.4.1 Canonical form

We will bring the above problem in a canonical form to simplify further analysis. From
now on we consider the special case of a GCN with two message passing steps (i.e.,
L = 3), and subsequently show how to generalize to L > 3. First, as a shorthand, we
define the vector w = W®e¢ € R and the matrix

w? o ... oT
T T ... T
pegMlxviae _ | O W 0
of Wt
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where 0 is a h(?-dimensional vector of zeros. Next, we denote with H\(,z(); € RV -h

the result of flattening the matrix H? into a vector.! Finally, we introduce another
variable z € RV = PH‘Egg With this, the above problem can equivalently be written
as R
minimize A;z
AzH® (7.14)
subject to H?) € Z(A), A e A(A), = PH?)

vec

Note that all constraints are linear since the constraints on H®?) (see Eqs. (7.12, 7.13))

relate to the value of ) = AXW®) + bM) (see Eq. (7.2), recall that HY) = X),
which is linear in A. Furthermore, we can easily add the following constraint to the
problem without changing its solution: (A, z) € Q where

Q={(An2): Ly <Ay <Uy,m; <z < Mj1<j<|N|} (7.15)

forms a simple rectangular constraint on the variables (see Figure 7.1a). Here, L and U
are the familiar entry-wise box constraints on A, and m and M are bounds on z which,
e.g., can be obtained via standard interval arithmetic from the bounds on H®?):

m = [R@)L [w]y — [s@)} [wl_, M = [s@)} | lwl [R@)L [w]_

+
So far, it seems that this new constraint adds no benefit — but it indeed now opens the
door for solving the problem: Using the above reformulation, we can apply the principle
proposed in [3] for solving so-called jointly constrained bilinear optimization problems.

7.3.4.2 Branch-and-bound algorithm

In the following we give an overview of the branch-and-bound algorithm we employ to
solve the bilinear program in Eq. (7.14). We refer the interested reader to [3] for more
details on the procedure and convergence proofs.

The idea is twofold: (1) We use the convex envelope? of the objective function to
compute lower bounds on a rectangular domain over A; and z. That is, instead of
minimizing the objective in Eq. (7.14) we are minimizing

[Nl
Z max{mjAtj + Lthj — Ltjmj, MjAt]‘ + Uthj — Utij},
j=1

1We slightly abuse the notation here. H actually has a shape of RV*A® | For the objective function,

however, we only need the elements from Ny, i.e. we can slice H to a smaller matrix. Equivalently
we can slice A; to have shape RWil . This step also leads to more efficient computation. Indeed,
we can start our overall procedure by slicing A into shape M(2> X /\/’;2)7 where M(Q) are the two-hop
neighbors of ¢, since t’s prediction does not depend on any other nodes for L = 3.

2The convex envolope of a function f on a domain € is the pointwise supremum of all convex functions
that underestimate f over Q [3]. It can be efficiently computed for the scalar product of two d-
dimensional vectors as in our objective function.
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Dataset o) % Cert. % Cert. % Certi- Dataset 0 % Cert. % Cert. % Certi-
) 9 Robust Nonrobust fiable o Robust Nonrobust  fiable
1 1 88.4 7.2 95.6 1 1 96.2 2.6 98.8
CITESEER 5 3 78.8 11.8 90.6 CITESEER 5 3 83.4 7.4 90.8
10 5 73.0 12.8 85.8 10 5 76.4 10.4 86.8
1 1 80.8 11.6 92.4 1 1 87.8 5.6 93.4
CorA-ML 5 3 56.2 21.2 77.4 CorRA-ML 5 3 57.2 15.2 72.4
10 5 43.8 29.0 72.8 10 5 47.0 22.6 69.6
1 1 78.8 9.2 88.0 1 1 89.4 4.8 94.2
PUuBMED 5 3 58.2 14.8 73.0 PuBMED 5 3 72.8 10.6 83.4
10 5 49.0 18.4 67.4 10 5 63.2 14.4 77.6

(a) Certification results for standard GCN. (b) Results for GCN with robust training proposed
in [277).

Table 7.1: Robustness certification results. Our method can certify a large percentage of the
nodes.

When using this objective function in Eq. (7.14), we (i) obtain a convex problem, more
precisely even an LP, which is extremely efficient to solve; and (ii) we obtain a lower
bound v on the global optimum v* of the original problem on the hyperrectangle €.

(2) This brings us to the second idea: We use a branch-and-bound procedure to
recursively subdivide the rectangular domain. (a) We initialize the branch-and-bound
procedure (i.e., k = 1) with the initial hyperrectangle 2 = QM and solve the problem
using an off-the-shelf LP solver to obtain a lower bound v (along with the optimal
solution (A,gl), z(D)). The tuple (QW, vV} is added to the list £ of (yet to be branched)
rectangles.

(b) In the branching step, i.e., in iteration k, we select the tuple from £ with the
smallest lower bound for branching (recall that our goal is to solve a minimization
problem). The branching is illustrated in Figure 7.1. We choose a dimension j to split

(see Appendix E.1 on how we choose j) and divide ’around’ the optimal solution that
(1)
J

the subregions Q§-2’1), 952’2), 95.2’3), and Q§2’4) where the optimal solution (Agjl), z](-l)) is
indicated by the black dot. We solve these 4 problems, obtain 4 new tuples, and add
them to £. Since dividing the domain €2 into smaller sub-rectangles leads to tighter
convex envelopes, we have v*t1) > (k) (see Fig. 7.2), so that for k — oo we recover
the global solution. While (theoretically) this might require infinitely many iterations,

in practice this is not a concern as we will discuss next along with further improvement.

was obtained on the overall rectangle. Figure 7.1 illustrates how we divide €2 into

Moreover note that with the above procedure we also easily get u}(t)per bounds as a
by-product. Every time we solve an LP we use its optimal solution (Atk), z(k)) and plug
it into the original Eq. (7.14). This leads to an upper bound. The upper bound V() in
iteration k is then the minimum of all upper bounds obtained so far.
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7.3.4.3 Improvements for Graph Certificates

It is crucial to observe that we are actually not interested in finding the global solution
of Eq. (7.14), but we are only interested in its sign (positive or negative). Since in each
iteration of the above approach we obtain increasingly accurate upper and lower bounds
on the global solution, we can perform an early stopping. We can stop (i) if the lower
bound is positive, v*¥) > 0. In this case we have successfully certified robustness. We
can also stop (ii) if the upper bound is negative, V() < 0. In this case we are certain
that we cannot certify robustness for this instance. Note that (ii) does not imply that
the classifier is not robust; it only means that no robustness guarantee can be made. In
Fig. 7.2 we show a real-world example of this early stopping.

We further improve the procedure by exploiting knowledge about the graph domain,
which we visualize in Fig. 7.1b. More precisely, when we branch on Atj and we find that
the parent problem’s optimal value for Atj is smaller than the original value T(A)tj, we
§k+1,l) and
Qg.kHA). This reflects the fact that we can only decrease values in 7 (A) by removing the
corresponding edge (see element-wise bounds in Sec. 7.3.2.1). While we cannot encode
this efficiently into the original bilinear problem, we can exploit this fact during the
branch step. Note that the two sub-rectangles collapse into lines on the border of Q;k).
Since the convex envelope is exact on the border of the rectangle, this not only leads
to faster optimization but also tighter lower bounds on the original problem’s global

optimum.

set both the upper and lower bounds on Atj to zero for the sub-rectangles Q2

7.3.4.4 Generalizing to L > 3

Our robustness certificates can be generalized to arbitrary number of message-passing
steps. To this end we first observe that for 2 < [ < L the constraints in the ReLU convex
relaxation are no longer linear. For instance in the constraint

O _ AW =D 4 plt-1)

HO > H
we have the bilinear term AH =1, which is not convex. One solution is to use the
reformulation-linearization technique Qualizza et al. [187] to define a new variable H ()
and use the entry-wise lower and upper bounds on A and H®Y to derive upper and
lower bounds on H® using interval arithmetic. This leads to the constraints being linear
again and we can apply our improved branch and bound procedure from above.

7.3.4.5 Alternative solution approaches

A bilinear program (BLP) is a special case of a quadratic program (QP). However,
expressing a BLP as a QP leads to a matrix @ with zero diagonal, hence cannot be
positive semidefinite and therefore the QP is not convex. Semidefinite relaxations such
as in [189], where Q is replaced by a psd matrix, do not apply either due to the zero
diagonal on Q.
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Figure 7.3: Comparison of our branch-and-bound (B&B) algorithm with a reformulation-
linearization (RLT) baseline.

Dataset: Cora-ML CITESEER PUBMED
.. Robust Robust Robust
Rob. Training  None GON ED Atk. B&B None GON ED Atk. B&B None GON ED Atk. B&B

% Cert. robust ~ 56.2 57.2 554 558 56.6 788 83.4 780 792 798 582 72.8 604 612 60.4

Table 7.2: Results for employing various training schemes: standard training, robust training
as in [277], ED (edge dropout with p = 0.2), ED with edges found by adversarial
attacks, ED with edges found by B&B. (g, Q) = (3, 5).

Another relaxation approach for nonconvex QPs, resp. BLPs, is the reformulation-
linearization technique (RLT) [187]. Since RLT performs a relaxation on the original
BLP, the result serves as a lower bound on the BLP’s optimal value. We derived the
RLT for our problem and compare with this alternative in our experiments.

Summary We have rephrased our problem of certifying robustness of GCN under per-
turbation of the graph structure as a jointly constrained bilinear program (see Eq. (7.14)).
While the BLP is not convex, we can use the branch-and-bound framework to get in-
creasingly accurate lower and upper bounds on the global optimum. Our improved
branch-and-bound algorithm, combined with early stopping when either the upper or
lower bound crosses zero, leads to an efficient procedure for robustness certification.

7.4 Experiments

We evaluate our robustness certification method on the publicly available and widely
used datasets CITESEER[201], COrRA-ML[152], and PUBMED[201]. See Table A.1 for
more information on the datasets. On each dataset we train a GCN with two message-
passing steps (i.e. L = 3) with hidden dimension 32, using 10% of the labels during
training. We provide further details on our experimental setup and hyperparameters in
App. E.2.
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7 Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations

Robustness certificates We first present our results on our core contribution: the first
method for certified robustness of GCN under perturbations of the graph structure.
To evaluate our method on different severities of perturbations we use three different
local (g) and global (Q) perturbation budgets (q,Q): (1,1), (3,5), and (5,10). Recall
that our method can certify robustness, but not non-robustness. Obtaining the true
number of non-robust nodes requires a brute-force search over the set of all possible
perturbations and is therefore intractable for all above cases except (1,1). However, we
obtain an estimate (lower bound) on the number of non-robust nodes by also performing
gradient-based adversarial attacks with these budgets. We therefore report the share of
nodes certified robust by our method, the share of nodes certified non-robust by the
adversarial attack, and the total share of certified nodes, which is the sum of the former
two. The gap to 100% are nodes for which no certificate can be given.

In Table 7.1a we present our results on standard GCN. We see the general trend
that increasing the perturbation budget leads to the fraction of certifiably robust nodes
decreasing, while on the other hand the share of non-robust nodes increases. Somewhat
surprisingly, on all datasets, more than 5% of the nodes can change their predicted class
label even when only a single edge removed, indicating that standard GCN is highly
nonrobust. For the perturbation budget of (3,5), we can certify as robust more than
half of the nodes on each of the datasets, while the share of nonrobust nodes increases
significantly.

In Table 7.1b we see the results of certifying GCN trained for robustness against at-
tribute perturbations proposed in [277]. A striking difference is that on every dataset
and every budget, we have more certifiably robust nodes and less nonrobust nodes com-
pared to standard GCN. For PUBMED and a budget (5,10) we can even certify more
than 25% (rel.) additional nodes as robust while having more than 20% (rel.) fewer
nonrobust nodes. This result is remarkable since it suggests that robust training on a
different objective (robustness to attribute perturbations) also has a beneficial effect on
the robustness w.r.t. graph structure perturbations. Our method is the first that enables
us to draw such conclusions based on robustness certification. Observe the high share
of overall certifiable nodes; thus, for the vast majority of nodes we have a clear decision
(robust/not robust). The cases in which no decision can be made can either be due
to the relaxation in the certification method or the fact that we only have a heuristic
adversarial attack (except for the budget (1,1), where we compute the exact numbers
by exhaustive search). On CORA-ML we also analyzed a budget of (10,20): in such a
setting still around 41% of the nodes can be certified as robust.

Comparison to linear relaxation We further compare our branch-and-bound (B&B)
algorithm to a relaxation via reformulation-linearization (RLT) of the bilinear program
(see [187] for details on the relaxation). While the latter only requires solving a single
linear program, its optimal solution is necessarily a lower bound on our solution obtained
via B&B. In Fig. 7.3 we compare the share of successful robustness certifications for
our B&B algorithm and the RLT relaxation. As expected, on every dataset and for
every budget our B&B approach outperforms the baseline. Even more, the gap widens
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Figure 7.4: Analysis of the branch-and-bound procedure on the Cora-ML dataset. For (b)
and (c) we have (q,Q) = (3,5).

for increasing budgets, e.g. for CORA-ML and budgets (3,5) and (5,10) our method
certifies more than twice as many nodes as the baseline. In conclusion, we find that our
proposed B&B algorithm has substantial advantages over the linear relaxation of the
bilinear program.

Other types of robust training Adversarial training, i.e. including adversarially per-
turbed examples into the training, is a standard defense against attacks [88]. In our set-
ting, this corresponds to randomly dropping edges during training. To evaluate whether
this leads to improved robustness we test a range of adversarial training techniques in
Table 7.2. ED corresponds to edge dropout, i.e. randomly dropping edges (with p = 0.2)
at each training iterations. Atk. is similar to ED but we drop out edges proportional
to how often they were removed by adversarial attacks. In B&B we drop out edges
proportional to how often they were set to zero in the optimal solutions obtained by
B&B. We see that none of the robust training procedures consistently improve upon
standard training, except the robust training for robustness w.r.t. feature perturbations
proposed in [277]. Hence, we conclude that standard adversarial training does not lead
to higher robustness. Note that this finding is in line with [56], who also observe only
a minimal positive effect on robustness via edge dropout. Future work could explore
training methods making direct use of the robustness goal (i.e. similar to [277]); however
due to the branch-and-bound procedure for obtaining certificates, this approach is much
more challenging.

Analysis of B&B In Fig. 7.4 we present insights into the optimization procedure of
our branch-and-bound algorithm. In Fig. 7.4a we can see that most instances terminate
within the first few iterations of our branch-and-bound procedure (note that the y-axis
starts at 40%; we force termination after 250 iterations). Recall that our algorithm
terminates at iteration k if either the lower bound v(*) is positive (recall Fig. 7.2 for an
example), leading to a robustness certificate, or that the upper bound V*) is negative,
meaning that we are certain that no certificate can be given. Furthermore, for increasing
budgets, our procedure tends to require more iterations to converge. This can be ex-
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7 Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations

plained by the fact that the domain 2 becomes larger for increasing budgets. Therefore
we need more subdivision steps to achieve the accuracy required to make a decision.

Fig. 7.4b shows the relationship between the logit difference before the attack and the
average number of iterations until convergence. Recall that the logit difference is the
difference of the largest log-probability assigned by the classifier minus the second-largest
log-probability. Therefore it indicates how confidently a node is classified in its current
class. In the figure we can see that for nodes with a very large logit difference converge
after very few iterations. This is because they are so confidently classified that our
method terminates very quickly. Similarly, nodes that have a small logit difference (i.e.,
less confidently classified) require, on average, relatively few steps until termination. An
explanation is that it is easy to change these nodes’ classification. Nodes with a medium
logit difference require the most iterations (on average), since for thes instances neither
the lower nor upper bounds change their sign early in the procedure. Still, even for these
cases, the average number of iterations to terminate is only around 50, meaning that
our overall algorithm is very efficient.

In Fig. 7.4c we see how the time required to solve one problem instance (i.e., one
iteration in our B&B procedure) relates to the number of twohop neighbors (i.e., nodes
reachable within two or less hops) of the target node. Note that the median time required
for solving is about 75 ms, and less than 5% of instances require more than one second
to solve. The quadratic trend comes from the fact that the off-the-shelf LP solver we
use does not fully support sparse variable matrices as we have in our problems — with
full sparse support the solve time scales linearly in the number of edges in the twohop
neighborhood. Even with this setup, the median total time until convergence is well
below one second (ca. 820 ms), hence our procedure can be used to efficiently certify
large numbers of nodes.

7.5 Conclusion

In this work we present the first method for certifiable robustness on GCN under struc-
ture perturbations. We show how to frame this problem as a jointly-constrained bilinear
program, and propose a branch-and-bound procedure that makes use of knowledge about
the graph domain. Our procedure decomposes the original problem into sub-problems,
which are in turn linear programs and can be solved using highly optimized off-the-shelf
solvers. Our certification method outperforms a reformulation-linearization baseline by
a large margin and is able to certify a large fraction of the nodes.

Retrospective

The approach in this chapter is a natural extension of the attribute robustness certificates
presented in Chapter 6. However, because of the products of the decision variables (the
entries in the preprocessed adjacency matrix) the optimization problem is non-convex,
making this setting much more challenging to handle. This leads to some limitations of
the approach. First, we can only handle edges that were inserted by a potential adversary.
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7.5 Conclusion

Extending the work to include edges removed by an adversary is very challenging because
we cannot limit the optimization problem to the L-hop neighborhood of the node in
question. This is similar to the limitation of Bojchevski et al. [27], where they assume
that there are only edges which were added by some data corruptions and do not handle
potentially dropped edges, and is further in line with the limitation of the later work by
Schuchardt et al. [198]. Another limitation of our work is that because of the series of
relaxations and carefully chosen constraints on the optimization problem, the approach
is specific to the GCN model and cannot easily be extended or modified to other GNN
architectures. Finally, since we need to solve multiple linear programs in the customized
branch-and-bound scheme, there is no obvious way to integrate the certificates into the
training procedure in an end-to-end fashion similar to the approach in Chapter 6.
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8 Improving GNN Robustness:
Retrospective

To reduce the potential harm of adversarial attacks on GNNs, researchers have proposed
a wide range of methods aimed at improving models’ robustness in recent years. Here,
we group them broadly following the categorization from Section 2.4.2.

8.1 Heuristic methods

Heuristic methods attempt to improve the empirical robustness of ML models but do
not come with mathematical or statistical guarantees of robustness. Still, we can use
empirical robustness against adversarial attacks as well as model-agnostic provable ro-
bustness methods such as randomized smoothing to evaluate upper and lower bounds
on the model robustness, respectively.

We can further split heuristic methods for GNN robustness into two main groups:
structure-cleaning approaches and robust GNN models. We further summarize
findings of applying robust training methods such as adversarial training to GNNs
below.

Structure-cleaning approaches process the (potentially perturbed) graph with the goal
of removing or mitigating the effect of adversarially inserted or removed edges. Entezari
et al. [69] observe that Nettack’s perturbations mostly affect the high-rank spectrum
of a graph. As a defense, they preprocess the graph via the singular value decomposi-
tion (SVD) and only retain some small number of low-rank components. This leads to
drastically increased robustness against Nettack’s local attacks. On global attacks, how-
ever, Geisler et al. [83] report much smaller empirical robustness gains and even reduced
provable robustness with the SVD preprocessing. This highlights a major drawback of
empirical robustness methods: they may perform well against existing strong attacks,
but can fail against attacks that were not considered in the design or that were later
developed. Moreover, a limitation of the SVD preprocessing is that the resulting graph
is not sparse, i.e., needs O(N?) memory. This leads to the SVD defense not scaling to
graphs much larger than N = 20,000 nodes on commodity GPUs.

Wu et al. [237] propose a method that removes edges where the nodes’ feature vectors
are very dissimilar as measured by the Jaccard index (also known as intersection over
union (IoU)). They argue that these edges are likely to stem from an attacker, as in
homophilic datasets connected nodes tend to be similar. Their defense increases empiri-
cal robustness against local gradient-based attacks and Nettack. In the study of Geisler
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et al. [83], robustness gains for global attacks and provable robustness are relatively
minor.

Xu et al. [249] propose a structure-cleaning approach that uses bi-level optimiza-
tion. Their method is effectively a reverse version of the meta-learning-based attacks
we present in Chapter 4. A key difference is that they average the (approximate) meta-
gradients over k different training/validation splits of the labeled data. Further, they
propose a more efficient variant where the graph structure modification has low-rank
structure. The authors report substantial robustness gains against global poisoning at-
tacks by our meta-gradient attack. However, the authors did not study adaptive attacks
which also take into account their specific defense. Further, the authors show that their
method can be used to improve node classification results.

Elinas et al. [67] propose structure learning on GNNs via variational inference. They
learn one parameter for each entry in the adjacency matrix, that is, each pair of nodes.
The original graph serves as the prior over the adjacency matrix. The likelihood of the
model is the expected cross-entropy classification loss. The authors report improved
robustness to the poisoning attacks by Bojchevski and Giinnemann [23]. Because they
explicitly parameterize each adjacency matrix entry, their method scales in O(N?) and
can therefore not scale to large graphs.

Zhang and Zitnik [260)’s GNNGUARD method prunes edges between nodes with dis-
similar features or representations and increases the weight between similar nodes. In
contrast to the Jaccard-based defense above, the method is applied to each layer of the
GNN, so effectively we have a different graph structure per layer of the GNN. Thus, this
method not purely preprocessing-based as it can update the graph structure also at test
time. They report strong robustness improvements against global poisoning attacks by
our proposed meta-gradient attack.

Jin et al. [111] propose Pro-GNN, a method that learns a ‘cleaned’ adjacency matrix
along with the GNN parameters during training. Their loss function encourages sparsity
and low rank of the learned adjacency matrix as well as feature smoothness, i.e., similar
features of connected nodes. Thus, this method combines the findings by Entezari et al.
[69])’s SVD low-rank preprocessing as well as Wu et al. [237]’s Jaccard feature-smoothness
preprocessing. A major drawback is scalability, as the method learns a dense N X
N adjacency matrix. The method further has some resemblance of works refining or
learning from scratch an adjacency matrix with the goal of improving some downstream
prediction task such as node classification [78, 47, 255], time series forecasting [115, 4,
241, 202], or anomaly detection [60].

Robust GNNs. Another stream of work aims to improve GNN robustness by modifying
the GNN models themselves, e.g., by modifying the neighborhood aggregation function
of a GNN. Zhu et al. [268] propose a robust GCN variant which parameterize nodes’
representations as a Gaussian distribution with a mean vector and diagonal covariance
matrix. In their aggregation function, they reduce the weight of neighbors with high
variance, arguing that high variance corresponds to high uncertainty assigned by the
model. They report improved robustness against local attacks by Nettack or RL-S2V
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[56]. Later studies [260, 83] report results on global attacks, where this robust GCN
variant did not lead to substantial gains in empirical or provable robustness. Wu et al.
[239] propose the Graph Information Bottleneck (GIB), an instantiation of the Informa-
tion Bottleneck (IB) [217] principle for graphs. The authors report that a GNN based
on the GIB principle is more robust to local evasion and poisoning attacks by Nettack.
Zheng et al. [266] report improved robustness on some dataset-model combinations by
introducing layer normalization [10].

Geisler et al. [83] propose a robust aggregation function called Soft Medoid which
attempts to filter outliers. The argument is that the most severe attacks insert edges to
a graph, leading to additional neighbors in the nearby nodes’ message passing aggrega-
tion. They observe that these adversarially inserted neighbors tend to have very different
features or latent representations than the ‘clean’ neighbors (corroborating findings re-
ported by earlier works mentioned above). Hence, they propose an aggregation function
inspired by robust statistics, which aims to reduce the effect of outliers. The main
drawback of their aggregation function is that it scales quadratically with the number
of neighbors of a node. They address this shortcoming in a follow-up work [81], where
they propose the Soft Median aggregation function which scales linearly in the number
of neighbors of a node. Interestingly, for both the Soft Medoid and the Soft Median, the
authors observe no substantial robustness improvement based on the robust aggregation
functions alone. Only after adding the GDC preprocessing proposed by Klicpera et al.
[122] they report strong empirical and provable robustness gains on global and local
evasion attacks. They argue that since many nodes have a very low degree in real-world
power law graphs, a robust aggregation function is unable to detect and filter outliers
for these nodes. The GDC preprocessing acts as a low-pass filter densifying connections
to low-degree nodes, enabling robustness gains from the proposed aggregation functions.
Further, the authors report that the GDC preprocessing alone does not yield meaningful
robustness improvements.

Robust training is a heuristic approach that aims to find more robust models by mod-
ifying the training procedure, e.g., by optimizing some alternative loss function that
encourages robustness. The most well-known example is adversarial training (see Sec-
tion 2.4.2), where at each training step we first construct an adversarial example via
some attack method and then optimize the loss on this perturbed example instead. This
procedure has shown consistent and meaningful robustness improvements for image clas-
sification, so a natural idea is to generalize it to GNNs.

Xu et al. [245, 247] investigate adversarial training and report increased robustness.
However, as Pfeifle [183] studied in his thesis, the improved robustness does overwhelm-
ingly not stem from the robust training procedure. Instead, the self-training component,
which is part of their robust training procedure, is responsible for virtually all robust-
ness improvement. In self-training, we treat the predictions of the trained classifier as
ground-truth labels and continue training on these.

In our work [278] presented in Chapter 7 we investigate several robust training schemes:
randomly dropping edges during training; removing edges based on adversarial attacks;
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removing edges based on the certification procedure; and training with the robust train-
ing procedure for improved feature robustness [277] introduced in Chapter 6. We found
no improved robustness for all except the last robust training procedure and conclude
that, somewhat surprisingly, the robust training procedure for feature robustness im-
proves resilience to structure attacks. However, similar to Xu et al. [245)’s method, this
training procedure also includes a self-training phase. In light of the findings by Pfeifle
[183] that self-training itself can substantially improve robustness, an interesting follow-
up study would be to find out how the robustness gains we report in Chapters 6 and 7
stem from self-training and the robust training itself, respectively.

In their work on randomized smoothing for discrete data (such as graphs), Bojchevski
et al. [25] also experiment with robust training. Here, they add random perturbations
to the graph structure during training with the goal of obtaining a model which is more
robust to the perturbations of randomized smoothing. This would lead to higher certified
robustness of the trained model. However, the authors report that this robust training
procedure did not improve certified robustness in a meaningful way.

A counterexample to this general struggle to find effective structure-based robust
training techniques for GNNs is the work of Tang et al. [213]. They study the task of
graph classification and report improved robustness stemming from adversarial training
of the model. An important difference between [213] and the other ones mentioned
above is that for graph classification the individual samples are independent, i.e., do not
influence each other. Thus, from this perspective, graph classification is more similar to
tasks such as image classification, and this might explain why adversarial training can
improve robustness here.

In their GNN robustness benchmark Zheng et al. [266], the authors report improved
robustness on some dataset and model combinations for adversarial training. Here, the
adversarial training consists of injecting adversarial nodes into the graph at each epoch.
Studying these instances and their commonalities could lead to a better understanding
of robust training for GNNs.

In summary, robust training for GNNs remains largely unsolved. This is intriguing
since for images adversarial training is a simple and effective heuristic method leading
to substantial gains in certified and empirical robustness. Developing methods or GNN
models for which robust training is effective is therefore a very important and potentially
fruitful direction for future research.

8.2 Provable robustness

While most of the proposed approaches improving GNN robustness are of heuristic na-
ture, there has also been progress in provable robustness for GNNs besides the robustness
certificates based on convex relaxation for attribute and structure robustness presented
in Chapters 6 and 7.

Wang et al. [231] propose a robust aggregation function, similar in spirit to the ones
presented in [83, 81, 260], which reduces the edge strength at each layer between nodes
with dissimilar representations. The authors exploit the Lipschitz smoothness [232]
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of the resulting GNN to derive upper bounds on the change in the output given a
feature or structure perturbation. An interesting question for future studies could be to
evaluate whether the models presented in [83, 81, 260] also admit tractable computation
of lower bounds on the Lipschitz constants. This would allow us to compute robustness
guarantees for the otherwise heuristic approaches presented in the mentioned studies.

Another stream of research considers randomized smoothing [53] and how to efficiently
and effectively map it to the discrete graph domain. Jia et al. [108] propose randomized
smoothing for community detection in graphs. However, their method does not exploit
the sparsity present in real-world graphs and therefore lacks scalability. Bojchevski
et al. [25] address this shortcoming by proposing sparsity-aware randomized smoothing
for discrete data, which they also apply to graphs and GNNs. Their approach has been
used by several follow-up studies [e.g., 83, 81] to evaluate the provable robustness of
different models and defenses. Wang et al. [227] prove tightness of their randomized
smoothing certificates for GNNs. This means that without further assumptions on the
model, for any perturbation radius larger than the certified radius there exists at least
one adversarial example.

Schuchardt et al. [198] propose collective certificates for adversarial attacks on graph.
Their method assumes we have some base certificates per node, e.g., obtained from meth-
ods such as [277, 278, 25]. The important observation is that these base certificates hold
individually per node. In practice, an adversary has to choose how to spend their budget
to perturb individual nodes. The authors explicitly model this decision problem of the
adversary to derive certificates saying that on the whole graph, at most K nodes’ predic-
tions can in the worst case be changed by the adversary with some perturbation limit.
Thus, this method leverages local robustness certificates to prove robustness against
global attacks. One limitation is that since the model exploits locality in GNN computa-
tions, their collective certificates do not work against adversarial attacks inserting edges
to the graph.
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9 Conclusion

In this thesis we presented four studies of GNN robustness — two studies in Part II
concerned with establishing that GNNs are nonrobust, and two further studies in Part I11
whose goal is to improve GNN robustness. In addition, we provide retrospective insight
at the end of the respective parts and embed the studies into the broader research
context.

In this chapter we conclude the thesis by highlighting properties beyond model robust-
ness which are important for safe practical application of GNNs. We explore broader
impact aspects of ML in general and GNNs in particular, and close this thesis by posing
open research questions for future work.

9.1 Beyond robustness of GNNs

Robustness to noise and adversaries is ony one key property for MLL models in practical
applications. Two additional properties are calibrated uncertainty and privacy.

Calibrated uncertainty estimates enable us to ignore a model’s prediction if it indicates
high uncertainty. In other words: we know when not to trust a model’s prediction,
e.g., because it is presented a sample that does not match the training distribution.
Uncertainty estimation for models dealing with i.i.d. data (e.g., images) is a very active
field of research with many recent and traditional studies [e.g., 43, 42, 128, 20, 79, 142,
6, 148, 149].

There are also a number of recent works on uncertainty estimation for graph ML meth-
ods. We can group them into Bayesian neural network approaches [e.g., 261, 174, 175],
graph Gaussian processes [e.g., 169, 30, 267, 144] and, most recently, models predicting
the parameters of the conjugate prior of the target distribution (e.g., a Dirichlet distri-
bution instead of a categorical distribution in the case of classification) [206, 265]. To
date, these studies are orthogonal to the work on studying GNN robustness. Thus, an
interesting opportunity for follow-up research is to study the robustness of uncertainty-
based GNNs or whether uncertainty can be used to detect adversarial attacks. Such a
study has recently been proposed for traditional i.i.d. data [124] with the finding that
Dirichlet-based uncertainty estimation models are not robust.

Privacy is another key requirement for real-world use of machine learning. Privacy
violations include that an attacker can infer facts about members of the population,
about members of the training set, or about the model parameters [58]. A widely used
method to prevent an attacker from gaining knowledge about (potentially sensitive)
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attributes of members of the training set is differential privacy (DP) [64]. In DP, the goal
is that the model produces very similar output when any individual sample is included
in the training set or not. Thus, DP addresses the paradox of learning nothing about the
individual training samples while learning useful information about the training dataset
as a whole [65]. Hence, privacy of ML models has an inherent connection to adversarial
robustness.

Privacy in ML for graphs is particularly relevant because of the interdependence of
nodes. Similar to the influence attacks from Chapter 3, it is possible to infer (potentially
sensitive) attributes about a node by knowing its neighbors’ features. Ellers et al. [68]
show that it is possible to recover a deleted nodes’ neighbors, raising concerns that
simply deleting nodes is not enough to erase their information. Other recent studies
consider differentially private GNNs [172, 235, 137]. Studying the intersection of privacy
and robustness of GNNs is a promising direction for future research.

9.2 Broader impact

As machine learning expands into more and more areas of professional and private life,
it is important to consider potential unwanted side effects of the models we use. Most of
these are shared between ‘standard’ ML and graph ML, while there are some potential
impacts specific to the latter.

Regarding fairness and bias aspects of ML in general, Mehrabi et al. [154] present
a comprehensive survey. For instance, ML models can disadvantage certain societal
groups, e.g., when used to decide whether to grant a person a loan. In addition, models
can pick up biases that exist in the data used to train the model, as Vestby and Vestby
[225] point out: an example they provide is predictive policing, i.e., deciding to send
police patrols to areas where we expect certain crimes to be committed. A model could
be trained on historical crime data, so we would tend to send more police to areas where
many crimes happen. The key issue is that the historical crime data is based on crimes
that were actually reported, and more police presence tends to lead to a higher share
of crimes being discovered. Hence, the historical data is biased to contain more crimes
in regions where police presence is high, and learning an ML model on this data can
further increase this tendency even though the crime rate could be similarly high in
other regions where they simply are not detected because of low police presence [225].

Another broader impact concern is mass surveillance of public spaces. Deep learning
enables accurate facial recognition and thus makes it possible to track when people are
where and with whom. Wohile there are benefits of such systems, e.g., detecting or
prosecuting crime, the potential adverse effects of mass surveillance on people’s freedom
are substantial.

More specific to graph ML and very closely related to GNNs is the issue of algorithmic
content recommendation. Since the goal of content recommendation on the Web is
typically to increase the engagement with the site and the time spent on it (leading
to increased ad revenue), presenting people with content (e.g., websites or posts) they
agree with and/or connect with on an emotional level can lead to the desired outcome.

122



9.3 Open questions

However, this may create or facilitate echo chambers, filter bubbles [181], polarization
[208], and radicalization [221, 166]. It is worth noting that there is an ongoing debate
on how pervasive these problems are in the real world [e.g., 129, 34, 159] Nevertheless,
this shows that is important to ensure that the goal the ML model aims to achieve is
well-aligned with our overall goals in society.

An aspect closely related to this thesis is that adversaries could exploit vulnerabilities
of ML systems to their benefit. One example could be to have a fraudulent website (i.e.,
a node in the Web graph) be classified as trustworthy by a search engine’s classifica-
tion model by exploiting its vulnerabilities, e.g., by inserting carefully chosen links or
modifying the website text accordingly. This could lead to thousands of people to be
defrauded of money or to their computers to be infected with malware. The methods
presented in Part III are contributions to mitigate such unwanted side effects in graph
ML.

9.3 Open questions

We can identify a number of interesting and relevant open questions arising from this
thesis. The first one is whether and how it is possible to identify the root cause of
adversarial non-robustness. In the case of image classification, Ilyas et al. [107] present
evidence that neural networks tend to focus on patterns in the data which are highly
predictive yet brittle and incomprehensible to humans. Still, we do not have a full
understanding why these non-robust features exist and how to ensure that models do
not take them into account. In addition, there is no comparable study of adversarial
examples in the graph domain. One potential reason for this is that it is difficult to
visualize and characterize what kind of features and patterns a classifier focuses on.

Another open question which is more specific to GNNs is how to enable robust training
for robustness under structure perturbations. As highlighted in Chapter 8, previous
attempts were not successful or inconclusive, and thus we lack one of the most successful
techniques to improve robustness from the i.i.d. setting.

Finally, as briefly mentioned in Section 9.1, properties such as privacy and calibration
are also very important for safe practical application of GNNs in the real world. The
space of how to combine the study of robust GNNs with privacy and calibration is
underexplored, which makes it a fruitful area for future research.

123






Bibliography

[1] Adamic, L. A. and Glance, N. (2005). The political blogosphere and the 2004 U.S.
election: Divided they blog. In Proceedings of the 3rd International Workshop on Link
Discovery, pages 36—43. ACM Press.

[2] Agostinelli, F., Hoffman, M. D., Sadowski, P. J., and Baldi, P. (2015). Learning
Activation Functions to Improve Deep Neural Networks. In International Conference
on Learning Representations (ICLR; Workshop Track).

[3] Al-Khayyal, F. A. and Falk, J. E. (1983). Jointly Constrained Biconvex Program-
ming. Mathematics of Operations Research, 8(2):273-286.

[4] Alet, F., Weng, E., Lozano-Pérez, T., and Kaelbling, L. P. (2019). Neural Relational
Inference with Fast Modular Meta-learning. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.

[5] Allamanis, M., Brockschmidt, M., and Khademi, M. (2018). Learning to Represent
Programs with Graphs. In International Conference on Learning Representations
(ICLR).

[6] Amini, A., Schwarting, W., Soleimany, A., and Rus, D. (2020). Deep Evidential
Regression. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin,
H., editors, Advances in Neural Information Processing Systems, volume 33. Curran
Associates, Inc.

[7] Ammanabrolu, P. and O., R. M. (2019). Playing Text-Adventure Games with Graph-
Based Deep Reinforcement Learning. In Proceedings of NAACL-HLT 2019.

[8] Angriman, E., van der Grinten, A., Bojchevski, A., Ziigner, D., Giinnemann, S.,
and Meyerhenke, H. (2020). Group Centrality Maximization for Large-scale Graphs.
In 2020 Proceedings of the Twenty-Second Workshop on Algorithm Engineering and
Ezxperiments (ALENEX), pages 56—-69. STAM.

[9] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein Generative Adver-
sarial Networks. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th

International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 214-223. PMLR.

[10] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv
preprint arXiv:1607.06450.

125



9 Conclusion

[11] Barabdsi, A.-L. and Pésfai, M. (2016). Network Science. Cambridge University
Press, Cambridge, United Kingdom.

[12] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C.,
Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston,
V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y., and
Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks.
arXiv:1806.01261 [cs, stat].

[13] Bengio, S., Bengio, Y., Cloutier, J., and Gescei, J. (2013). On the optimization of
a synaptic learning rule. In Optimality in Biological and Artificial Networks?, pages
281-303. Routledge.

[14] Bengio, Y. (2000). Gradient-Based Optimization of Hyperparameters. Neural Com-
putation, 12(8):1889-1900.

[15] Bessi, A. (2015). Two samples test for discrete power-law distributions.
arXiv:1503.00643 [physics, stat].

[16] Biggio, B., Corona, 1., Fumera, G., Giacinto, G., and Roli, F. (2011). Bagging Clas-
sifiers for Fighting Poisoning Attacks in Adversarial Classification Tasks. In Sansone,
C., Kittler, J., and Roli, F., editors, Multiple Classifier Systems, volume 6713, pages
350-359. Springer Berlin Heidelberg, Berlin, Heidelberg.

[17] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndi¢, N., Laskov, P., Giacinto,
G., and Roli, F. (2013). Evasion attacks against machine learning at test time. In
Blockeel, H., Kersting, K., Nijssen, S., and Zelezny, F., editors, Machine Learning
and Knowledge Discovery in Databases, pages 387—402, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[18] Biggio, B., Fumera, G., and Roli, F. (2014). Security Evaluation of Pattern
Classifiers under Attack. IEEE Transactions on Knowledge and Data Engineering,
26(4):984-996.

[19] Biggio, B. and Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 84:317-331.

[20] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight
Uncertainty in Neural Network. In Bach, F. and Blei, D., editors, Proceedings of
the 82nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 1613-1622. PMLR.

[21] Bojchevski, A. and Giinnemann, S. (2018a). Bayesian Robust Attributed Graph
Clustering: Joint Learning of Partial Anomalies and Group Structure. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32.

126



9.3 Open questions

[22] Bojchevski, A. and Giinnemann, S. (2018b). Deep Gaussian Embedding of Graphs:
Unsupervised Inductive Learning via Ranking. In International Conference on Learn-
ing Representations (ICLR).

[23] Bojchevski, A. and Ginnemann, S. (2019a). Adversarial Attacks on Node Em-
beddings via Graph Poisoning. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 695-704. PMLR.

[24] Bojchevski, A. and Giinnemann, S. (2019b). Certifiable Robustness to Graph Per-
turbations. In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox,
E., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

[25] Bojchevski, A., Klicpera, J., and Giinnemann, S. (2020a). Efficient Robustness
Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs,
Images and More. In III, H. D. and Singh, A., editors, Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1003-1013. PMLR.

[26] Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais, M., Rézemberczki,
B., Lukasik, M., and Giinnemann, S. (2020b). Scaling Graph Neural Networks with
Approximate PageRank. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery € Data Mining, KDD ’20, pages 24642473,
Virtual Event, CA, USA. ACM.

[27] Bojchevski, A., Matkovic, Y., and Giinnemann, S. (2017). Robust Spectral Clus-
tering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings.
In Proceedings of the 28rd ACM SIGKDD International Conference on Knowledge
Discovery € Data Mining, KDD 17, pages 737746, Halifax, NS, Canada. ACM.

[28] Bojchevski, A., Shchur, O., Ziigner, D., and Giinnemann, S. (2018). NetGAN:
Generating Graphs via Random Walks. In Dy, J. and Krause, A., editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 610-619. PMLR.

[29] Bongini, P., Bianchini, M., and Scarselli, F. (2021). Molecular generative Graph
Neural Networks for Drug Discovery. Neurocomputing, 450:242—252.

[30] Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P., Deisenroth, M., and
Durrande, N. (2021). Matérn Gaussian Processes on Graphs. In Banerjee, A. and
Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial

Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research,
pages 2593-2601. PMLR.

[31] Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M. (2021). Improving
Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

127



9 Conclusion

[32] Brock, A., Donahue, J., and Simonyan, K. (2019). Large Scale GAN Training
for High Fidelity Natural Image Synthesis. In International Conference on Learning
Representations (ICLR).

[33] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language Models
are Few-Shot Learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33.
Curran Associates, Inc.

[34] Bruns, A. (2019). Filter bubble. Internet Policy Review, 8(4).

[35] Cai, D., Shao, Z., He, X., Yan, X., and Han, J. (2005). Mining Hidden Community
in Heterogeneous Social Networks. In Proceedings of the 3rd International Workshop
on Link Discovery, LinkKDD ’05, pages 58—65. ACM.

[36] Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A Comprehensive Survey of
Graph Embedding: Problems, Techniques and Applications. IFEE Transactions on
Knowledge and Data Engineering, 30(9):1616-1637.

[37] Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C., and Velickovi¢, P.
(2021). Combinatorial Optimization and Reasoning with Graph Neural Networks. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
pages 4348-4355, Montreal, Canada. International Joint Conferences on Artificial In-
telligence Organization.

[38] Carlini, N. and Wagner, D. (2017). Towards Evaluating the Robustness of Neural
Networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39-57, San
Jose, CA, USA. IEEE.

[39] Chakrabarti, D. and Faloutsos, C. (2006). Graph mining: Laws, generators, and
algorithms. ACM Computing Surveys, 38(1):2.

[40] Chang, H., Rong, Y., Xu, T., Huang, W., Zhang, H., Cui, P., Zhu, W., and Huang,
J. (2020). A restricted black-box adversarial framework towards attacking graph em-
bedding models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3389-3396.

[41] Chapelle, O., Scholkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning.
Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass.

[42] Charpentier, B., Borchert, O., Ziigner, D., Geisler, S., and Giinnemann, S. (2022).
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponen-

tial Family Distributions. In International Conference on Learning Representations
(ICLR).

128



9.3 Open questions

[43] Charpentier, B., Ziigner, D., and Giinnemann, S. (2020). Posterior Network: Un-
certainty Estimation without OOD Samples via Density-Based Pseudo-Counts. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Ad-
vances in Neural Information Processing Systems, volume 33. Curran Associates, Inc.

[44] Chen, J., Lin, X., Shi, Z., and Liu, Y. (2020a). Link Prediction Adversarial Attack
Via Iterative Gradient Attack. IEEE Transactions on Computational Social Systems,
7(4):1081-1094.

[45] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.
(2016). InfoGAN: Interpretable Representation Learning by Information Maximizing
Generative Adversarial Nets. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, 1., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc.

[46] Chen, Y., Nadji, Y., Kountouras, A., Monrose, F., Perdisci, R., Antonakakis, M.,
and Vasiloglou, N. (2017). Practical Attacks Against Graph-based Clustering. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 1125-1142, New York, NY, USA. Association for Computing
Machinery.

[47] Chen, Y., Wu, L., and Zaki, M. (2020b). Iterative Deep Graph Learning for Graph
Neural Networks: Better and Robust Node Embeddings. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in Neural Information
Processing Systems, volume 33. Curran Associates, Inc.

[48] Chen, Z.-M., Wei, X.-S., Wang, P., and Guo, Y. (2019). Multi-label image recogni-
tion with graph convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5177-5186.

[49] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. (2019). Cluster-
GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Net-
works. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery € Data Mining, KDD ’19, pages 257-266, Anchorage, AK, USA. ACM.

[50] Chien, E., Peng, J., Li, P., and Milenkovic, O. (2021). Adaptive Universal Gen-
eralized PageRank Graph Neural Network. In International Conference on Learning
Representations (ICLR).

[51] Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. (2017). Parseval
Networks: Improving Robustness to Adversarial Examples. In Precup, D. and Teh,
Y. W., editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 854-863. PMLR.

[52] Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-Law Distributions
in Empirical Data. SIAM Review, 51(4):661-703.

129



9 Conclusion

[53] Cohen, J., Rosenfeld, E., and Kolter, Z. (2019). Certified Adversarial Robustness via
Randomized Smoothing. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 1310-1320. PMLR.

[54] Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and
Bharath, A. A. (2018). Generative adversarial networks: An overview. [EEE Sig-
nal Processing Magazine, 35(1):53-65.

[55] Croce, F., Andriushchenko, M., and Hein, M. (2019). Provable Robustness of ReLU
networks via Maximization of Linear Regions. In Chaudhuri, K. and Sugiyama, M.,
editors, Proceedings of the Twenty-Second International Conference on Artificial Intel-

ligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages
2057-2066. PMLR.

[56] Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and Song, L. (2018).
Adversarial Attack on Graph Structured Data. In Dy, J. and Krause, A., editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1115-1124. PMLR.

[57] Dalvi, N., Domingos, P., Mausam, Sanghai, S., and Verma, D. (2004). Adversarial
Classification. In Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’04, pages 99-108, Seattle, WA, USA.
ACM.

[58] De Cristofaro, E. (2021). A critical overview of privacy in machine learning. IEEE
Security and Privacy, 19(4):19-27.

[59] Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.

[60] Deng, A. and Hooi, B. (2021). Graph neural network-based anomaly detection in
multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 4027-4035.

[61] Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., Nunkesser,
M., Lee, S., Guo, X., Wiltshire, B., Battaglia, P. W., Gupta, V., Li, A., Xu, Z.,
Sanchez-Gonzalez, A., Li, Y., and Velickovic, P. (2021). ETA Prediction with Graph
Neural Networks in Google Maps. In Demartini, G., Zuccon, G., Culpepper, J. S.,
Huang, Z., and Tong, H., editors, CIKM ’21: The 30th ACM International Conference
on Information and Knowledge Management, Virtual Event, Queensland, Australia,
November 1 - 5, 2021, pages 3767-3776. ACM.

[62] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Burstein, J., Do-
ran, C., and Solorio, T., editors, Proceedings of the 2019 Conference of the North

130



9.3 Open questions

American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, pages 4171-4186. Association for Computa-
tional Linguistics.

[63] Diehl, F., Brunner, T., Le, M. T., and Knoll, A. (2019). Graph Neural Networks
for Modelling Traffic Participant Interaction. In 2019 IEEFE Intelligent Vehicles Sym-
posium (IV), pages 695-701, Paris, France. IEEE.

[64] Dwork, C. (2008). Differential Privacy: A Survey of Results. In Agrawal, M., Du,
D., Duan, Z., and Li, A., editors, Theory and Applications of Models of Computation,
pages 1-19, Berlin, Heidelberg. Springer Berlin Heidelberg.

[65] Dwork, C. and Roth, A. (2013). The Algorithmic Foundations of Differential Pri-
vacy. Foundations and Trends®) in Theoretical Computer Science, 9(3-4):211-407.

[66] Elflein, S., Charpentier, B., Ziigner, D., and Giinnemann, S. (2021). On Out-of-
distribution Detection with Energy-based Models. In ICML Workshop on Uncertainty
& Robustness in Deep Learning.

[67] Elinas, P., Bonilla, E. V., and Tiao, L. (2020). Variational Inference for Graph
Convolutional Networks in the Absence of Graph Data and Adversarial Settings. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances
in Neural Information Processing Systems, volume 33. Curran Associates, Inc.

[68] Ellers, M., Cochez, M., Schumacher, T., Strohmaier, M., and Lemmerich, F. (2019).
Privacy attacks on network embeddings. arXiv preprint arXiw:1912.10979.

[69] Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., and Papalexakis, E. E. (2020).
All You Need Is Low (Rank): Defending Against Adversarial Attacks on Graphs.
In Proceedings of the 13th International Conference on Web Search and Data Min-
ing, WSDM 20, pages 169-177, New York, NY, USA. Association for Computing
Machinery.

[70] Eswaran, D., Ginnemann, S., Faloutsos, C., Makhija, D., and Kumar, M.
(2017). ZooBP: Belief propagation for heterogeneous networks. Proc. VLDB Endow.,
10(5):625-636.

[71] Executive Agency for Small and Medium sized Enterprises. (2020). Artificial In-
telligence: Critical Industrial Applications : Report on Market Analysis of Prioritised
Value Chains, the Most Critical AI Applications and the Conditions for AI Rollout.
Publications Office, LU.

[72] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash,
A., Kohno, T., and Song, D. (2018). Robust physical-world attacks on deep learning
visual classification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1625-1634.

131



9 Conclusion

[73] Faber, L., Martinkus, K., Papp, P. A., and Wattenhofer, R. (2021). DropGNN:
Random Dropouts Increase the Expressiveness of Graph Neural Networks. In Ranzato,
M., Beygelzimer, A., Nguyen, K., Liang, P., Vaughan, J., and Dauphin, Y., editors,
Advances in Neural Information Processing Systems, volume 34. Curran Associates,
Inc.

[74] Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., Baines, M.,
Celebi, O., Wenzek, G., Chaudhary, V., et al. (2021). Beyond english-centric multi-
lingual machine translation. Journal of Machine Learning Research, 22(107):1-48.

[75] Feng, B., Wang, Y., Li, X., and Ding, Y. (2020). Scalable Adversarial At-
tack on Graph Neural Networks with Alternating Direction Method of Multipliers.
arXiv:2009.10233 [cs, stat].

[76] Fernandes, P., Allamanis, M., and Brockschmidt, M. (2019). Structured Neural
Summarization. In International Conference on Learning Representations (ICLR).

[77] Finn, C., Abbeel, P., and Levine, S. (2017). Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In Precup, D. and Teh, Y. W., editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1126-1135. PMLR.

[78] Franceschi, L., Niepert, M., Pontil, M., and He, X. (2019). Learning Discrete Struc-
tures for Graph Neural Networks. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 1972-1982. PMLR.

[79] Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning. In Balcan, M. F. and Weinberger, K. Q.,
editors, Proceedings of The 33rd International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research, pages 1050-1059. PMLR.

[80] Gao, J., Zhang, T., and Xu, C. (2019). Graph convolutional tracking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4649-4659.

[81] Geisler, S., Schmidt, T., Sirin, H., Ziigner, D., and Giinnemann, S. (2021a). Robust-
ness of Graph Neural Networks at Scale. In Ranzato, M., Beygelzimer, A., Nguyen,
K., Liang, P., Vaughan, J., and Dauphin, Y., editors, Advances in Neural Information
Processing Systems, volume 34. Curran Associates, Inc.

[82] Geisler, S., Sommer, J., Schuchardt, J., Bojchevski, A., and Giinnemann, S. (2021b).
Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Ro-
bustness. arXiv:2110.10942 [cs].

[83] Geisler, S., Zuigner, D., and Giilnnemann, S. (2020). Reliable Graph Neural Networks
via Robust Aggregation. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,

132



9.3 Open questions

and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33.
Curran Associates, Inc.

[84] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neu-
ral Message Passing for Quantum Chemistry. In Precup, D. and Teh, Y. W., editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 1263-1272. PMLR.

[85] Globerson, A. and Roweis, S. (2006). Nightmare at Test Time: Robust Learning
by Feature Deletion. In Cohen, W. and Moore, A., editors, Proceedings of the 23rd
International Conference on Machine Learning, ICML 06, pages 353-360. Association
for Computing Machinery.

[86] Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

[87] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems, volume 27. Curran Associates, Inc.

[88] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and Harness-
ing Adversarial Examples. In International Conference on Learning Representations
(ICLR).

[89] Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for learning in
graph domains. In Proceedings. 2005 IEEFE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729-734, Montreal, Que., Canada. IEEE.

[90] Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu, G. (2020). A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics, 37(3):362-386.

[91] Grosse, K., Papernot, N., Manoharan, P., Backes, M., and McDaniel, P. (2016).
Adversarial Perturbations Against Deep Neural Networks for Malware Classification.
arXiv:1606.04435 [cs].

[92] Grosse, K., Papernot, N., Manoharan, P., Backes, M., and McDaniel, P. (2017).
Adversarial Examples for Malware Detection. In Foley, S. N., Gollmann, D., and
Snekkenes, E., editors, Computer Security — ESORICS 2017, pages 62-79, Cham.
Springer International Publishing.

[93] Grover, A. and Leskovec, J. (2016). Node2vec: Scalable Feature Learning for Net-
works. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’16, pages 855864, San Francisco, California,
USA. ACM.

[94] Giinnemann, S. (2022). Graph Neural Networks: Adversarial Robustness. In Wu,
L., Cui, P., Pei, J., and Zhao, L., editors, Graph Neural Networks: Foundations,
Frontiers, and Applications, chapter 8, pages 149-176. Springer, Singapore.

133



9 Conclusion

[95] Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. (2019). Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 922-929.

[96] Guo, Y., Wei, X., Wang, G., and Zhang, B. (2021). Meaningful Adversarial Stickers
for Face Recognition in Physical World. arXiv:2104.06728 [cs].

[97] Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive Representation Learn-
ing on Large Graphs. In Guyon, 1., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

[98] Hamilton, W. L. (2020). Graph Representation Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 14(3):1-1509.

[99] Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee, K. R., Tenenbaum, J.,
and Battaglia, P. W. (2018). Relational inductive bias for physical construction in
humans and machines. In Kalish, C., Rau, M. A., Zhu, X. J., and Rogers, T. T.,
editors, Proceedings of the 40th Annual Meeting of the Cognitive Science Society,
CogSci 2018, Madison, WI, USA, July 25-28, 2018. cognitivesciencesociety.org.

[100] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7T70-778.

[101] Hein, M. and Andriushchenko, M. (2017). Formal Guarantees on the Robustness of
a Classifier against Adversarial Manipulation. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc.

[102] Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and Bieber, D. (2020).
Global Relational Models of Source Code. In International Conference on Learning
Representations.

[103] Hendrycks, D. and Dietterich, T. (2019). Benchmarking Neural Network Robust-
ness to Common Corruptions and Perturbations. In International Conference on
Learning Representations.

[104] Hooi, B., Shah, N., Beutel, A., Glinnemann, S., Akoglu, L., Kumar, M., Makhija,
D., and Faloutsos, C. (2016). BIRDNEST: Bayesian Inference for Ratings-Fraud
Detection. In Proceedings of the 2016 SIAM International Conference on Data Mining,
pages 495-503. Society for Industrial and Applied Mathematics.

[105] Hsieh, I.-C. and Li, C.-T. (2021). NetFense: Adversarial Defenses against Privacy
Attacks on Neural Networks for Graph Data. IEEFE Transactions on Knowledge and
Data Engineering, pages 1-1.

134



9.3 Open questions

[106] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec,
J. (2020). Open Graph Benchmark: Datasets for Machine Learning on Graphs. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances
in Neural Information Processing Systems, volume 33. Curran Associates, Inc.

[107] Tlyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. (2019).
Adversarial Examples Are Not Bugs, They Are Features. In Wallach, H., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc.

[108] Jia, J., Wang, B., Cao, X., and Gong, N. Z. (2020). Certified robustness of commu-
nity detection against adversarial structural perturbation via randomized smoothing.
In Proceedings of The Web Conference 2020, pages 2718-2724.

[109] Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang, Z., Shen, C., Cao,
D., Wu, J., and Hou, T. (2021). Could graph neural networks learn better molecular
representation for drug discovery? A comparison study of descriptor-based and graph-
based models. Journal of Cheminformatics, 13(1):12.

[110] Jin, W., Li, Y., Xu, H., Wang, Y., Ji, S., Aggarwal, C., and Tang, J. (2021).
Adversarial Attacks and Defenses on Graphs. SIGKDD Explor. Newsl., 22(2):19-34.

[111] Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J. (2020). Graph Struc-
ture Learning for Robust Graph Neural Networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery € Data Mining, KDD
20, pages 66—74, Virtual Event, CA, USA. ACM.

[112] Jo, E., Sunwoo, M., and Lee, M. (2021). Vehicle Trajectory Prediction Using
Hierarchical Graph Neural Network for Considering Interaction among Multimodal
Maneuvers. Sensors, 21(16):5354.

[113] Junying Li, Deng Cai, X. H. (2017). Learning Graph-Level Representation for
Drug Discoveryk. arXiv preprint arXiw:1709.03741.

[114] Ker, J., Wang, L., Rao, J., and Lim, T. (2017). Deep learning applications in
medical image analysis. IEEFE access : practical innovations, open solutions, 6:9375—
9389.

[115] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). Neural Rela-
tional Inference for Interacting Systems. In Dy, J. and Krause, A., editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2688-2697. PMLR.

[116] Kipf, T. N. and Welling, M. (2016). Variational Graph Auto-Encoders. NIPS
Workshop on Bayesian Deep Learning.

[117] Kipf, T. N. and Welling, M. (2017). Semi-Supervised Classification with Graph
Convolutional Networks. In International Conference on Learning Representations
(ICLR).

135



9 Conclusion

[118] Klicpera, J., Becker, F., and Giinnemann, S. (2021). GemNet: Universal Di-
rectional Graph Neural Networks for Molecules. In Ranzato, M., Beygelzimer, A.,
Nguyen, K., Liang, P., Vaughan, J., and Dauphin, Y., editors, Advances in Neural
Information Processing Systems, volume 34. Curran Associates, Inc.

[119] Klicpera, J., Bojchevski, A., and Giinnemann, S. (2019a). Predict then Propagate:
Graph Neural Networks meet Personalized PageRank. In International Conference on
Learning Representations (ICLR).

[120] Klicpera, J., Giri, S., Margraf, J. T., and Glinnemann, S. (2020a). Fast and
Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules. In

NeurIPS-W.

[121] Klicpera, J., Gro8, J., and Giinnemann, S. (2020b). Directional Message Pass-
ing for Molecular Graphs. In International Conference on Learning Representations
(ICLR).

[122] Klicpera, J., Weiflenberger, S., and Giinnemann, S. (2019b). Diffusion Improves
Graph Learning. In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

[123] Komkov, S. and Petiushko, A. (2019). AdvHat: Real-world adversarial attack on
ArcFace Face ID system. arXiv preprint arXiv:1908.08705.

[124] Kopetzki, A.-K., Charpentier, B., Ziigner, D., Giri, S., and Giinnemann, S. (2021).
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based
Models Reliable? In Meila, M. and Zhang, T., editors, Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 5707-5718. PMLR.

[125] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. In Pereira, F., Burges, C. J. C., Bottou, L.,
and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc.

[126] Kumar, A. and Goldstein, T. (2021). Center Smoothing: Certified Robustness for
Networks with Structured Outputs. In Ranzato, M., Beygelzimer, A., Nguyen, K.,
Liang, P., Vaughan, J., and Dauphin, Y., editors, Advances in Neural Information
Processing Systems, volume 34. Curran Associates, Inc.

[127] Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017a). Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles. In Guyon, 1., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc.

136



9.3 Open questions

[128] Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017b). Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles. In Guyon, 1., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc.

[129] Ledwich, M. and Zaitsev, A. (2020). Algorithmic extremism: Examining
YouTube’s rabbit hole of radicalization. First Monday.

[130] Lee, G.-H., Yuan, Y., Chang, S., and Jaakkola, T. (2019). Tight Certificates of Ad-
versarial Robustness for Randomly Smoothed Classifiers. In Wallach, H., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc.

[131] Leman, A. and Weisfeiler, B. (1968). A reduction of a graph to a canonical form
and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya,
2(9):12-16.

[132] Li, B., Wang, Y., Singh, A., and Vorobeychik, Y. (2016). Data Poisoning Attacks
on Factorization-Based Collaborative Filtering. In Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc.

[133] Li, J. (2019a). Lecture notes of lecture 10: “Empirical defenses for adversarial
examples” of the course “Robustness in Machine Learning” (Stanford CSE 599-M).

[134] Li, J. (2019Db). Lecture notes of lecture 9: “Introduction to Adversarial Examples”
of the course“Robustness in Machine Learning” (Stanford CSE 599-M).

[135] Li, J. (2019¢c). Lecture notes of the course “Robustness in Machine Learning”
(Stanford CSE 599-M).

[136] Li, J., Xie, T., Liang, C., Xie, F., He, X., and Zheng, Z. (2021a). Adversarial Attack
on Large Scale Graph. IFEFE Transactions on Knowledge and Data Engineering, pages
1-1.

[137] Li, K., Luo, G., Ye, Y., Li, W., Ji, S., and Cai, Z. (2021b). Adversarial Privacy-
Preserving Graph Embedding Against Inference Attack. IEEE Internet of Things
Journal, 8(8):6904-6915.

[138] Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2018a). Diffusion Convolutional Recurrent
Neural Network: Data-Driven Traffic Forecasting. In International Conference on
Learning Representations (ICLR).

[139] Li, Z., Chen, Q., and Koltun, V. (2018b). Combinatorial Optimization with
Graph Convolutional Networks and Guided Tree Search. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc.

137



9 Conclusion

[140] Liang, B., Li, H., Su, M., Bian, P., Li, X., and Shi, W. (2018). Deep text classi-
fication can be fooled. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAT’18, pages 4208-4215, Stockholm, Sweden. AAAI Press.

[141] Lin, W., Ji, S., and Li, B. (2020). Adversarial Attacks on Link Prediction Al-
gorithms Based on Graph Neural Networks. In Proceedings of the 15th ACM Asia

Conference on Computer and Communications Security, pages 370-380, Taipei Tai-
wan. ACM.

[142] Liu, J., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T., and Lakshminarayanan,
B. (2020a). Simple and Principled Uncertainty Estimation with Deterministic Deep
Learning via Distance Awareness. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M. F., and Lin, H., editors, Advances in Neural Information Processing Systems,
volume 33. Curran Associates, Inc.

[143] Liu, T.-Y. (2011). Learning to Rank for Information Retrieval. Springer, Berlin
Heidelberg New York.

[144] Liu, Z.-Y., Li, S.-Y., Chen, S., Hu, Y., and Huang, S.-J. (2020b). Uncertainty
Aware Graph Gaussian Process for Semi-Supervised Learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 4957-4964.

[145] London, B. and Getoor, L. (2015). Collective Classification of Network Data.
In Aggarwal, C. C., editor, Data Classification: Algorithms and Applications, pages
399-416. CRC Press, London, England.

[146] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards
Deep Learning Models Resistant to Adversarial Attacks. In International Conference
on Learning Representations (ICLR).

[147] Madry, A. and Schmidt, L. (2018). A Brief Introduction to Adversarial Examples.

[148] Malinin, A. and Gales, M. (2018). Predictive Uncertainty Estimation via Prior
Networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

[149] Malinin, A. and Gales, M. (2019). Reverse KL-Divergence Training of Prior Net-
works: Improved Uncertainty and Adversarial Robustness. In Wallach, H., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc.

[150] Mann, H. B. and Whitney, D. R. (1947). On a Test of Whether one of Two Ran-
dom Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics, 18(1):50-60.

138



9.3 Open questions

[151] Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. (2019). Provably
Powerful Graph Networks. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

[152] McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K. (2000). Automating
the Construction of Internet Portals with Machine Learning. Information Retrieval,
3(2):127-163.

[153] McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds of a Feather:
Homophily in Social Networks. Annual Review of Sociology, 27(1):415-444.

[154] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A
survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR),
54(6):1-35.

[155] Mei, S. and Zhu, X. (2015). Using Machine Teaching to Identify Optimal Training-
Set Attacks on Machine Learners. In Proceedings of the AAAI Conference on Artificial
Intelligence, AAAT’15, pages 2871-2877, Austin, Texas. AAAI Press.

[156] Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. (2017). On Detecting
Adversarial Perturbations. In International Conference on Learning Representations

(ICLR). OpenReview.net.

[157] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Series in Computer
Science. McGraw-Hill, New York.

[158] Miyato, T., Maeda, S.-I., Koyama, M., and Ishii, S. (2019). Virtual Adversarial
Training: A Regularization Method for Supervised and Semi-Supervised Learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8):1979-1993.

[159] Moeller, J., Helberger, N., et al. (2018). Beyond the filter bubble: Concepts,
myths, evidence and issues for future debates.

[160] Mohamed Mohamed El-Sayed, A. (2016). Modeling Multivariate Correlated Bi-
nary Data. American Journal of Theoretical and Applied Statistics, 5(4):225.

[161] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M.
(2017). Geometric Deep Learning on Graphs and Manifolds Using Mixture Model
CNNs. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5425-5434, Honolulu, HI. IEEE.

[162] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). DeepFool: A Simple
and Accurate Method to Fool Deep Neural Networks. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2574-2582, Las Vegas, NV,
USA. IEEE.

139



9 Conclusion

[163] Morris, C., Fey, M., and Kriege, N. (2021). The Power of the Weisfeiler-Leman
Algorithm for Machine Learning with Graphs. In Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelligence, pages 4543-4550, Montreal,
Canada. International Joint Conferences on Artificial Intelligence Organization.

[164] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G.,
and Grohe, M. (2019). Weisfeiler and Leman Go Neural: Higher-Order Graph Neural
Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4602-4609.

[165] Munoz-Gonzélez, L., Biggio, B., Demontis, A., Paudice, A., Wongrassamee, V.,
Lupu, E. C., and Roli, F. (2017). Towards poisoning of deep learning algorithms with
back-gradient optimization. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 27-38.

[166] Munn, L. (2019). Alt-right pipeline: Individual journeys to extremism online. First
Monday.

[167] Naik, D. and Mammone, R. (1992). Meta-Neural Networks that Learn by Learning.
In IJCNN International Joint Conference on Neural Networks, volume 1, pages 437—
442, Baltimore, MD, USA. TIEEE.

[168] Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E,
67(2):026126.

[169] Ng, Y. C., Colombo, N., and Silva, R. (2018). Bayesian Semi-supervised Learning
with Graph Gaussian Processes. In Bengio, S., Wallach, H., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.

[170] Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 427-436.

[171] Nichol, A., Achiam, J., and Schulman, J. (2018). On First-Order Meta-Learning
Algorithms. arXiv:1805.02999 [cs].

[172] Olatunji, I. E., Funke, T., and Khosla, M. (2021). Releasing Graph Neural Net-
works with Differential Privacy Guarantees. arXiv:2109.08907 [cs].

[173] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab /
Stanford InfoLab.

[174] Pal, S., Regol, F., and Coates, M. (2019a). Bayesian graph convolutional neural
networks using node copying. In Proc. Workshop on Learning and Reasoning with
Graph-Structured Data at Int. Conf. Machine Learning.

140



9.3 Open questions

[175] Pal, S., Regol, F., and Coates, M. (2019b). Bayesian graph convolutional neural
networks using non-parametric graph learning. arXiv preprint arXiv:1910.12132.

[176] Papernot, N. and McDaniel, P. (2017). Extending Defensive Distillation.

[177] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
(2017). Practical Black-Box Attacks against Machine Learning. In Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security, pages
506-519, Abu Dhabi United Arab Emirates. ACM.

[178] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami, A.
(2016a). The Limitations of Deep Learning in Adversarial Settings. In 2016 IEEE Fu-

ropean Symposium on Security and Privacy (EuroS€P), pages 372-387, Saarbrucken.
IEEE.

[179] Papernot, N., McDaniel, P., Swami, A., and Harang, R. (2016b). Crafting adver-
sarial input sequences for recurrent neural networks. In MILCOM 2016 - 2016 IEEFE
Military Communications Conference, pages 49-54, Baltimore, MD, USA. IEEE Press.

[180] Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. (2016¢). Distillation
as a Defense to Adversarial Perturbations Against Deep Neural Networks. In 2016
IEEE Symposium on Security and Privacy (SP), pages 582597, San Jose, CA. IEEE.

[181] Pariser, E. (2011). The Filter Bubble: What the Internet Is Hiding from You.
Viking, London.

[182] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). DeepWalk: Online Learning
of Social Representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery € Data Mining, KDD ’14, pages 701-710, New
York, New York, USA. ACM.

[183] Pfeifle, T. (2021). Adversarial Training for Graph Neural Networks. Master thesis,
Technical University of Munich.

[184] Pham, T., Tran, T., Phung, D., and Venkatesh, S. (2017). Column Networks
for Collective Classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

[185] Prates, M., Avelar, P. H., Lemos, H., Lamb, L. C., and Vardi, M. Y. (2019).
Learning to solve np-complete problems: A graph neural network for decision tsp.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4731-4738.

[186] Qi, M., Li, W., Yang, Z., Wang, Y., and Luo, J. (2019). Attentive relational
networks for mapping images to scene graphs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3957-3966.

141



9 Conclusion

[187] Qualizza, A., Belotti, P., and Margot, F. (2012). Linear Programming Relaxations
of Quadratically Constrained Quadratic Programs. In Lee, J. and Leyffer, S., editors,

Mixed Integer Nonlinear Programming, volume 154, pages 407-426. Springer New
York, New York, NY.

[188] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, L., et al. (2019).
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

[189] Raghunathan, A., Steinhardt, J., and Liang, P. S. (2018). Semidefinite relax-
ations for certifying robustness to adversarial examples. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc.

[190] Reyes, A. K., Caicedo, J. C., and Camargo, J. E. (2015). Fine-tuning Deep Con-
volutional Networks for Plant Recognition. CLEF (Working Notes), 1391:467-475.

[191] Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., and Bronstein, M.
(2020). Temporal Graph Networks for Deep Learning on Dynamic Graphs. In ICML
Workshop on Graph Representation Learning.

[192] Sabour, S., Cao, Y., Faghri, F., and Fleet, D. J. (2016). Adversarial Manipulation
of Deep Representations. In International Conference on Learning Representations
(ICLR).

[193] Salman, H., Li, J., Razenshteyn, 1., Zhang, P., Zhang, H., Bubeck, S., and Yang,
G. (2019). Provably Robust Deep Learning via Adversarially Trained Smoothed Clas-
sifiers. In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

[194] Sankaranarayanan, S., Jain, A., Chellappa, R., and Lim, S. N. (2018). Regularizing
Deep Networks Using Efficient Layerwise Adversarial Training. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

[195] Scarselli, F., Gori, M., Ah Chung Tsoi, Hagenbuchner, M., and Monfardini, G.
(2009). The Graph Neural Network Model. IEEE Transactions on Neural Networks,
20(1):61-80.

[196] Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and Welling,
M. (2018). Modeling Relational Data with Graph Convolutional Networks. In
Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tor-
dai, A., and Alam, M., editors, The Semantic Web, volume 10843, pages 593-607.
Springer International Publishing, Cham.

[197] Schmidhuber, J. (1992). Learning to Control Fast-Weight Memories: An Alterna-
tive to Dynamic Recurrent Networks. Neural Computation, 4(1):131-139.

142



9.3 Open questions

[198] Schuchardt, J., Bojchevski, A., Klicpera, J., and Giinnemann, S. (2021). Collec-
tive robustness certificates. In International Conference on Learning Representations

(ICLR).

[199] Schiitt, K., Kindermans, P.-J., Sauceda Felix, H. E., Chmiela, S., Tkatchenko,
A., and Miiller, K.-R. (2017). SchNet: A Continuous-Filter Convolutional Neural
Network for Modeling Quantum Interactions. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc.

[200] Selsam, D., Lamm, M., Biinz, B., Liang, P., de Moura, L., and Dill, D. L. (2019).
Learning a SAT Solver from Single-Bit Supervision. In International Conference on
Learning Representations (ICLR).

[201] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T.
(2008). Collective Classification in Network Data. AI Magazine, 29(3):93.

[202] Shang, C., Chen, J., and Bi, J. (2021). Discrete Graph Structure Learning for
Forecasting Multiple Time Series. In International Conference on Learning Represen-
tations (ICLR).

[203] Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. (2016). Accessorize to a
crime: Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of

the 2016 Acm Sigsac Conference on Computer and Communications Security, pages
1528-1540.

[204] Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv:1409.1556 [cs].

[205] Skarding, J., Gabrys, B., and Musial, K. (2021). Foundations and Modeling of
Dynamic Networks Using Dynamic Graph Neural Networks: A Survey. IEEE Access,
9:79143-79168.

[206] Stadler, M., Charpentier, B., Geisler, S., Ziigner, D., and Giinnemann, S. (2021).
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification.
In Ranzato, M., Beygelzimer, A., Nguyen, K., Liang, P., Vaughan, J., and Dauphin,
Y., editors, Advances in Neural Information Processing Systems, volume 34. Curran
Associates, Inc.

[207] Statista  (2021). Global Al  funding by quarter 2011-2021.
https://www.statista.com /statistics /943151 /ai-funding-worldwide-by-quarter/.

[208] Stroud, N. J. (2008). Media use and political predispositions: Revisiting the con-
cept of selective exposure. Political Behavior, 30(3):341-366.

[209] Sun, L., Dou, Y., Yang, C., Wang, J., Yu, P. S., He, L., and Li, B. (2018a). Adver-
sarial Attack and Defense on Graph Data: A Survey. arXiv preprint arXiv:1812.10528.

143



9 Conclusion

[210] Sun, M., Tang, J., Li, H., Li, B., Xiao, C., Chen, Y., and Song, D. (2018b). Data
Poisoning Attack against Unsupervised Node Embedding Methods. arXiv:1810.12881
[cs, stat].

[211] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1-9.

[212] Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I. J.,
and Fergus, R. (2014). Intriguing properties of neural networks. In International
Conference on Learning Representations (ICLR).

[213] Tang, H., Ma, G., Chen, Y., Guo, L., Wang, W., Zeng, B., and Zhan, L. (2020).
Adversarial Attack on Hierarchical Graph Pooling Neural Networks. arXiv:2005.11560
[cs, stat].

[214] Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K.,
Martin-Brualla, R., Simon, T., Saragih, J., NieSner, M., et al. (2020). State of the art
on neural rendering. In Computer Graphics Forum, volume 39, pages 701-727. Wiley
Online Library.

[215] Thedchanamoorthy, G., Piraveenan, M., Kasthuriratna, D., and Senanayake, U.
(2014). Node Assortativity in Complex Networks: An Alternative Approach. Procedia
Computer Science, 29:2449-2461.

[216] Thrun, S. and Pratt, L. (1998). Learning to Learn: Introduction and Overview. In
Thrun, S. and Pratt, L., editors, Learning to Learn, pages 3—17. Springer US, Boston,
MA.

[217] Tishby, N., Pereira, F. C., and Bialek, W. (1999). The information bottleneck
method. In Proc. of the 37-Th Annual Allerton Conference on Communication, Con-
trol and Computing, pages 368-377.

[218] Tjeng, V., Xiao, K. Y., and Tedrake, R. (2019). Evaluating Robustness of Neural
Networks with Mixed Integer Programming. In International Conference on Learning
Representations (ICLR).

[219] Torkamani, M. and Lowd, D. (2013). Convex Adversarial Collective Classification.
In Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International Con-

ference on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 642-650. PMLR.

[220] Tramer, F., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel, P. (2017).
The space of transferable adversarial examples.

[221] Tufekei, Z. (2018). Opinion — YouTube, the Great Radicalizer. The New York
Times.

144



9.3 Open questions

[222] Ummenhofer, B., Prantl, L., Thuerey, N., and Koltun, V. (2019). Lagrangian fluid
simulation with continuous convolutions. In International Conference on Learning
Representations (ICLR).

[223] Unke, O. T. and Meuwly, M. (2019). PhysNet: A Neural Network for Predicting
Energies, Forces, Dipole Moments, and Partial Charges. Journal of Chemical Theory
and Computation, 15(6):3678-3693.

[224] Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2018). Graph Attention Networks. In International Conference on Learning Repre-
sentations (ICLR).

[225] Vestby, A. and Vestby, J. (2021). Machine learning and the police: Asking the
right questions. Policing: A Journal of Policy and Practice, 15(1):44-58.

[226] Wan, X., Kenlay, H., Ru, B., Blaas, A., Osborne, M., and Dong, X. (2021). Ad-
versarial Attacks on Graph Classifiers via Bayesian Optimisation. In Ranzato, M.,
Beygelzimer, A., Nguyen, K., Liang, P., Vaughan, J., and Dauphin, Y., editors, Ad-
vances in Neural Information Processing Systems, volume 34. Curran Associates, Inc.

[227] Wang, B., Jia, J., Cao, X., and Gong, N. Z. (2021a). Certified Robustness of
Graph Neural Networks against Adversarial Structural Perturbation. In Proceedings
of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 21, pages 1645-1653, Virtual Event, Singapore. ACM.

[228] Wang, H., He, M., Wei, Z., Wang, S., Yuan, Y., Du, X., and Wen, J.-R. (2021D).
Approximate Graph Propagation. In Proceedings of the 27th ACM SIGKDD Inter-
national Conference on Knowledge Discovery € Data Mining, KDD 21, pages 1686—
1696, Virtual Event, Singapore. ACM.

[229] Wang, H., Ren, H., and Leskovec, J. (2021c). Relational Message Passing for
Knowledge Graph Completion. In Proceedings of the 27th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pages 1697-1707. ACM.

[230] Wang, J., Luo, M., Suya, F., Li, J., Yang, Z., and Zheng, Q. (2020a). Scalable at-
tack on graph data by injecting vicious nodes. Data Mining and Knowledge Discovery,
34(5):1363-1389.

[231] Wang, Y., Liu, S., Yoon, M., Lamba, H., Wang, W., Faloutsos, C., and Hooi, B.
(2020b). Provably Robust Node Classification via Low-Pass Message Passing. In 2020
IEEE International Conference on Data Mining (ICDM), pages 621-630. IEEE.

[232] Weaver, N. (1999). Lipschitz Algebras. WORLD SCIENTIFIC.

[233] Wei, X.-S., Xie, C.-W., Wu, J., and Shen, C. (2018). Mask-CNN: Localizing
parts and selecting descriptors for fine-grained bird species categorization. Pattern
Recognition, 76:704-714.

145



9 Conclusion

[234] Wong, E. and Kolter, Z. (2018). Provable Defenses against Adversarial Exam-
ples via the Convex Outer Adversarial Polytope. In Dy, J. and Krause, A., editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5286-5295. PMLR.

[235] Wu, C., Wu, F., Cao, Y., Huang, Y., and Xie, X. (2021a). FedGNN: Federated
Graph Neural Network for Privacy-Preserving Recommendation. arXiv:2102.04925

[cs].

[236] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019a).
Simplifying Graph Convolutional Networks. In Chaudhuri, K. and Salakhutdinov,
R., editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 6861-6871. PMLR.

[237] Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., and Zhu, L. (2019b).
Adversarial Examples for Graph Data: Deep Insights into Attack and Defense. In
Proceedings of the Twenty-Fighth International Joint Conference on Artificial Intelli-
gence, pages 4816-4823, Macao, China. International Joint Conferences on Artificial
Intelligence Organization.

[238] Wu, L., Cui, P., Jian, P., and Lian, Z., editors (2022). Graph Neural Networks:

Foundations, Frontiers, and Applications. Springer, Singapore.

[239] Wu, T., Ren, H., Li, P., and Leskovec, J. (2020a). Graph Information Bottleneck.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors,
Advances in Neural Information Processing Systems, volume 33. Curran Associates,
Inc.

[240] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021b). A Compre-
hensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 32(1):4-24.

[241] Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and Zhang, C. (2020b). Con-
necting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery € Data Mining, KDD ’20, pages 753-763, Virtual Event, CA, USA. ACM.

[242] Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. (2008). Listwise Approach to
Learning to Rank: Theory and Algorithm. In McCallum, A. and Roweis, S., editors,
Proceedings of the 25th International Conference on Machine Learning, ICML 08,
pages 1192-1199. Association for Computing Machinery.

[243] Xu, d., Rruan, C., Korpeoglu, E., Kumar, S., and Achan, K. (2020a). Inductive
representation learning on temporal graphs. In International Conference on Learning
Representations (ICLR).

146



9.3 Open questions

[244] Xu, J., Sun, Y., Jiang, X., Wang, Y., Yang, Y., Wang, C., and Lu, J. (2021a).
Blindfolded Attackers Still Threatening: Strict Black-Box Adversarial Attacks on
Graphs. arXiw:2012.06757 [cs].

[245] Xu, K., Chen, H., Liu, S., Chen, P.-Y., Weng, T.-W., Hong, M., and Lin, X.
(2019a). Topology Attack and Defense for Graph Neural Networks: An Optimization
Perspective. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IJCAI’19, pages 3961-3967, Macao, China. AAAI Press.

[246] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019b). How Powerful are Graph
Neural Networks? In International Conference on Learning Representations (ICLR).

[247] Xu, K., Liu, S., Chen, P.-Y., Sun, M., Ding, C., Kailkhura, B., and Lin, X. (2020D).
Towards an Efficient and General Framework of Robust Training for Graph Neural
Networks. In ICASSP 2020-2020 IEEFE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8479-8483. IEEE.

[248] Xu, W., Evans, D., and Qi, Y. (2018). Feature squeezing: Detecting adversarial
examples in deep neural networks. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society.

[249] Xu, Z., Du, B., and Tong, H. (2021b). Graph Sanitation with Application to Node
Classification. arXiv:2105.09384 [cs].

[250] Yasunaga, M., Ren, H., Bosselut, A., Liang, P., and Leskovec, J. (2021). QA-GNN:
Reasoning with Language Models and Knowledge Graphs for Question Answering. In
North American Chapter of the Association for Computational Linguistics, NAACL
2021.

[251] Yeo, I.-K. and Johnson, R. A. (2000). A New Family of Power Transformations to
Improve Normality or Symmetry. Biometrika, 87(4):954-959.

[252] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J.
(2018a). Graph Convolutional Neural Networks for Web-Scale Recommender Systems.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pages 974-983, London, United Kingdom. ACM.

[253] Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. (2018b). Hi-
erarchical Graph Representation Learning with Differentiable Pooling. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc.

[254] You, J., Ying, R., and Leskovec, J. (2019). Position-aware Graph Neural Net-
works. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 7134-7143. PMLR.

147



9 Conclusion

[255] Yu, D., Zhang, R., Jiang, Z., Wu, Y., and Yang, Y. (2020). Graph-revised convo-
lutional network. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 378-393. Springer.

[256] Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., Tuyls,
K., Reichert, D., Lillicrap, T., Lockhart, E., Shanahan, M., Langston, V., Pascanu, R.,
Botvinick, M., Vinyals, O., and Battaglia, P. (2018). Relational Deep Reinforcement
Learning. arXiv:1806.01830 [cs, stat].

[257] Zecevié, M., Dhami, D. S., Velickovi¢, P., and Kersting, K. (2021). Relating Graph
Neural Networks to Structural Causal Models. arXiv:2109.04173 [cs, stat].

[258] Zhang, H., Zheng, T., Gao, J., Miao, C., Su, L., Li, Y., and Ren, K. (2019a).
Data Poisoning Attack against Knowledge Graph Embedding. In Proceedings of the
Twenty-Fighth International Joint Conference on Artificial Intelligence, pages 4853—
4859, Macao, China. International Joint Conferences on Artificial Intelligence Orga-
nization.

[259] Zhang, M. and Chen, Y. (2018). Link Prediction Based on Graph Neural Networks.
In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R., editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc.

[260] Zhang, X. and Zitnik, M. (2020). GNNGuard: Defending Graph Neural Networks
against Adversarial Attacks. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M. F., and Lin, H., editors, Advances in Neural Information Processing Systems,
volume 33. Curran Associates, Inc.

[261] Zhang, Y., Pal, S., Coates, M., and Ustebay, D. (2019b). Bayesian graph convolu-
tional neural networks for semi-supervised classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 5829-5836.

[262] Zhang, Z., Jia, J., Wang, B., and Gong, N. Z. (2021). Backdoor Attacks to Graph
Neural Networks. In Proceedings of the 26th ACM Symposium on Access Control
Models and Technologies, pages 15-26, Virtual Event Spain. ACM.

263| Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., and Li, H.
g g g g
(2020a). T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction.
IEEE Transactions on Intelligent Transportation Systems, 21(9):3848-3858.

[264] Zhao, M., An, B., Yu, Y., Liu, S., and Pan, S. (2018). Data Poisoning Attacks
on Multi-Task Relationship Learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32.

[265] Zhao, X., Chen, F., Hu, S., and Cho, J.-H. (2020b). Uncertainty Aware Semi-
Supervised Learning on Graph Data. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing Sys-
tems, volume 33. Curran Associates, Inc.

148



9.3 Open questions

[266] Zheng, Q., Zou, X., Dong, Y., Cen, Y., Yin, D., Xu, J., Yang, Y., and Tang, J.
(2021). Graph Robustness Benchmark: Benchmarking the Adversarial Robustness
of Graph Machine Learning. In Advances in Neural Information Processing Systems,
Datasets and Benchmarks Track, volume 34. Curran Associates, Inc.

[267] Zhi, Y.-C., Ng, Y. C., and Dong, X. (2020). Gaussian Processes on Graphs via
Spectral Kernel Learning. arXivw:2006.07361 [cs, eess, stat].

[268] Zhu, D., Zhang, Z., Cui, P., and Zhu, W. (2019a). Robust Graph Convolutional
Networks Against Adversarial Attacks. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages
1399-1407, Anchorage, AK, USA. ACM.

[269] Zhu, J., Rossi, R. A., Rao, A., Mai, T., Lipka, N., Ahmed, N. K., and Koutra,
D. (2021). Graph Neural Networks with Heterophily. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 11168-11176.

[270] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. In Computer Vision
(ICCV), 2017 IEEE International Conference On.

[271] Zhu, S., Zhou, C., Pan, S., Zhu, X., and Wang, B. (2019b). Relation Structure-
Aware Heterogeneous Graph Neural Network. In 2019 IEEFE International Conference
on Data Mining (ICDM), pages 1534-1539, Beijing, China. IEEE.

[272] Zitnik, M., Agrawal, M., and Leskovec, J. (2018). Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics (Ozford, England),
34(13):1457-1466.

[273] Zigner, D., Akbarnejad, A., and Gilinnemann, S. (2018). Adversarial Attacks
on Neural Networks for Graph Data. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, KDD ’18, pages
2847-2856. ACM.

[274] Zigner, D., Aubet, F.-X., Satorras, V. G., Januschowski, T., Giinnemann, S., and
Gasthaus, J. (2021a). A Study of Joint Graph Inference and Forecasting. In ICML
Time Series Workshop.

[275] Zigner, D., Borchert, O., Akbarnejad, A., and Giinnemann, S. (2020). Adver-
sarial Attacks on Graph Neural Networks: Perturbations and Their Patterns. ACM
Transactions on Knowledge Discovery from Data, 14(5).

[276] Zigner, D. and Giinnemann, S. (2019a). Adversarial Attacks on Graph Neural
Networks via Meta Learning. In International Conference on Learning Representations

(ICLR).

[277] Ziigner, D. and Giinnemann, S. (2019b). Certifiable Robustness and Robust Train-
ing for Graph Convolutional Networks. In Proceedings of the 25th ACM SIGKDD

149



9 Conclusion

International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages
246-256. ACM.

[278] Ziigner, D. and Giinnemann, S. (2020). Certifiable Robustness of Graph Convo-
lutional Networks under Structure Perturbations. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery € Data Mining, KDD
’20, pages 1656-1665. ACM.

[279] Zigner, D., Kirschstein, T., Catasta, M., Leskovec, J., and Giinnemann, S.
(2021b). Language-Agnostic Representation Learning of Source Code from Structure
and Context. In International Conference on Learning Representations (ICLR).

150



A Data and Code

A.1 Datasets

In Table A.1 we show the details of the different datasets used throughout this thesis.
We use the largest connected component (LCC) of each graph.

Dataset Nicc ELcc

D K Ref.

Cora-ML 2,810 7,981 2,879 7
CITESEER 2,110 3,757 3,703 6 [201]
2
3

PoLBrLoGgs 1,222 16,714
PUBMED 19,717 44,324

500

[152, 22]

[1]
201]

Table A.1: Dataset statistics.

A.2 Code

The code implementations of the methods described in this thesis are publicly available.
The respective URLSs to the repositories of the papers are displayed in Table A.2.

Ch. Ref. Title Project page Repository

T R e GO NN et

4 [276] éi(ivls';:?;ileitrﬁfgs on Graph Neural Networks /gnn_meta_attack/ /gnn-meta-attack/

ol e Tt R TS ) o

T Networks andr Sttctune Perturbations /00staen/  Jrobust-gen-strueture/
Table A.2: List of own publications which form the basis of this thesis with links to the re-

spective code repositories. The project pages are available at https://www.daml.
in.tum.de/[project]. The repositories are available at https://github.com/

danielzuegner/ [repository].
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B Adversarial Attacks on Graph Neural
Networks: Perturbations and their

Patterns
Metric Cora-ML  CITESEER PoLBLOoGS PUBMED
Node Degree +0.0081 +0.0011 —0.7901 —0.0004
2-Hop Node Degree —0.2976 —0.1589 —0.1455 —0.1505
Local Degree Assortativity +0.0040 +0.2401 +0.0016 —0.0050
Node Betweenness Centrality —0.0509 —0.0003 +0.0002 +0.1042
PageRank Score +0.0067 +0.0077 —0.0007 +0.0054
Closeness Centrality —0.0069 +0.0023 —0.0052 —0.0332
Relative Node Degree +0.0060 —0.0009 —0.0003 —0.0002
Relative 2-Hop Node Degree —0.0025 —0.0001 —0.0002 —0.0169
Relative Node Betweenness Centrality +0.0002 —0.0002 +0.0001 —0.0016
Relative PageRank Score +0.0036 +0.0036 +0.0001 +0.0284
Relative Closeness Centrality —0.0053 +0.0006 —0.0037 —0.0011
Relative Local Degree Assortativity —0.0003 —0.0002 +0.0037 —0.0020
Attribute Similarity —0.0052 —0.0014 0 +0.0056
Mean TFIDF of Shared Features +0.0128 —0.0006 0 +0.0007
Number of Shared Features —0.0057 +0.0185 0 +0.0060
Number of Additional Features +0.1470 +0.2826 0 +0.2236
Average Frequency of Additional Features in Target Class —0.2052 —0.1683 0 —0.2763
Label Equality —0.2319 —0.1126 —0.0487 —0.1390

Table B.1: Parameters of linear ranking models when trained on different graphs with strong
L1-regularization.

We define all metrics we analyzed for Fasttack given a graph G = (A, X) with set of
nodes V, node labels y. Further, let v,w € V be the target node of an attack, and any
other node, respectively. We use P(v,w) as the set of all shortest paths between nodes
v and w, and P.(u|v,w) as the set of all shortest paths between v and w containing
u. Additionally, path,;, (v, w) yields the length of the shortest path between v and w.
Lastly, r is given as the degree assortativity of G as in [168]. The absolute metrics
are given as follows where the local degree assortativity is taken from [215] and the
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PageRank score from [173]:

deg(w Z (g

degy(w) = deg

Z deg(u

ueN (w)

r+1 uen(w) | deg(w) — deg(u)]

asr(w) =

vi N (w)]

[Pe(w | u, 1)

bwl) = D 2 TpGn)

ueV\{w} teV\{w,u}

1

pgr(w) = = Y per(u)

IV (w)]| N )

V-1

ZuEV\{w} pathmin(wv U)

cle(w) =

Further, the relative metrics and feature metrics depend on t as the TFIDF scores for all
features and f as the frequencies of all features among nodes sharing the target node’s

label. They are then defined as follows:

deg rel, (w) = deg(w) — deg(v)

degq rel, (w

btw( ) — btw(v)
= pgr(w) — pgr(v)
_ de(w) — lew)
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Algorithm 4: FASTTACK: Scalable adversarial attack on graphs (summary)

Input: Graph G = (A, X), target node vg, modification budget A, class predictions Y,
model f(m|8)
Output: Modified Graph G' = (A’, X)

E;,Sr + valid_edge_insertions_and scores (A, X, Y, vy, f);
E;,S; + sort_descending (E;, Sy);
ER, Sr < valid_edge_removals_and scores (A, X, Y, v, f);
ER, Sp < sort_ascending (Fg, Sg);
// Er and ER are ordered sets of edges to insert and remove; sorted by
the scores S; and Sy
pr,Pr < 0; // Pointers to the next best adversarial insertion/removal
an <= D _scs, 53 // Numerator of adversarial ratio
aq ZSESR 1—s;// Denominator of adversarial ratio
A+ A;
while 1|A’ — A| < A do
if &(an + Stpr],aqa + 1 — Silp1]) > &' (an, — Srlpr],ad — 1 + Sg[pr]) then
// Next perturbation is insertion
e <+ Er[py] a,, < an + Srlpi] aly < aq +1— Sr[p1] pr<pr+1
else
// Next perturbation is removal
| e < ERg[pr] ay, < an — Sg[PR] ay < aq— 14+ Sr[pr] pPr<pr+1

if degree_test_allows_perturbation (A’, e) then
an < a, aq < al E;
A’ + flip edge (A, €)
else
L // Degree constraint prevents perturbation, try next one

return : (A", X)
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In this section we present additional results of our experiments. In Table C.1 we see that
our heuristic is successful at attacking PUBMED. Tables C.2 and C.3 show misclassifi-
cation rates with 1% and 10% perturbed edges, respectively. Figures C.1 through C.8
show how the models’ classification accuracies change for different attacks and datasets.

Pubmed
GCN CLN DeepWalk
Clean 13.8+0.3 159405 21.8+0.1
DICE 15.3+0.1 16.6+04 25.140.1
A-Meta-Self | 16.44+0.2 16.4+04 27.4+£0.2

Table C.1: Misclassification rate (in %) with 5% perturbed edges on PUBMED when training the
surrogate model for T' = 30 iterations to compute the approximate meta gradients.

Cora Citeseer PolBlogs Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6£0.3 17.3+£0.3 203+09 |285+0.8 283+0.8 348+13 6.4+0.5 7.6£0.5 53+£0.5 6.3
DICE 16.6+0.3 17.6+02 20.1+02 |284+03 284+03 359403 | 7.7+£09 85+06 74+1.0 4.8
First-order 166+0.3 173+0.1 202+0.2 |2824+0.3 283+04 349+04 7.0+£08 7.7+£0.5 85+1.6 5.7
Nettack* - - - 29.0+04 28.6+04 364+04 - - - -
A-Meta-Train 16.3+£04 182£0.2 206+0.3 |29.1+05 28.6+0.5 347+05 89+£29 102+1.9 50+£0.2 4.7
A-Meta-Both 174+04 176+02 21.6+03 |285+04 283+0.5 346403 |13.7+16 104+12 75+06 3.6
Meta-Train 16.2+0.3 18.0+0.3 206+£04 |283+0.5 281+0.6 353+0.3 94+11 103417 73+£25 4.8
Meta-Self 170+04 1794+0.2 21.1+03 |292+05 29.0+04 352+£03 |114+04 10.7+1.7 6.6+1.4 2.7
Meta with Oracle | 16.2+£0.3 182+0.2 20.5+0.3 |30.1+0.5 295+0.5 348+03 | 13611 105+1.2 6.0+0.7 3.5
* Did not finish within three days on Cora-ML and PoLBLOGS

Table C.2: Misclassification rate (in %) with 1% perturbed edges.

Cora Citeseer PolBlogs Avg.
Attack GCN CLN DeepWalk GCN CLN DeepWalk GCN CLN DeepWalk rank
Clean 16.6£0.3 173+£0.3 203+1.0 |285+0.8 283+0.8 348+13 6.4+0.5 7.6£0.5 53+£0.5 7.5
DICE 195+05 19.1+02 262+03 |29.7+03 299+03 41.2+03 | 144+08 143+06 1294+0.3 4.9
First-order 176 +0.5 1794+0.2 21.5+£0.2 |2824+0.3 287+04 324+04 77+£06 76+£03 8.2+0.6 7.1
Nettack* - - - - - - - - - -
A-Meta-Train 281+1.1 23.6%+04 336=£07 |343+11 31.3£06 321+£05 128+1.6 18.2+2.6 6.9+0.2 4.9
A-Meta-Both 246+1.0 20.0+0.3 348+06 |29.1+05 292+04 33.6+04 |227+0.7 223+09 263+1.0 4.8
Meta-Train 373+14 249+£05 344+16 |31.8+£1.0 29.9+0.7 36.0£02 |28.7+£3.6 329+1.6 73.7£3.9 2.6
Meta-Self 345+£09 229+06 370£1.0 |386+£1.0 353+£07 360+£12 |261+£06 23.5+£09 60.7+£2.7 2.8
Meta with Oracle | 34.8£1.5 252+04 44.0+£09 |40.1+1.2 372+09 372406 |289+04 258+09 671+£24 1.4

* Did not finish within three days for any dataset.

Table C.3: Misclassification rate (in %) with 10% perturbed edges.
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Training for Graph Convolutional
Networks

Implementation Details We perform the robust training using stochastic gradient de-
scent with mini-batches and Adam Optimizer. For this we randomly sample in each
iteration 20 nodes from the labeled nodes (for RH-U from all nodes) and compute the
nodes’ twohop neighbors. We then slice the adjacency and attribute matrices appropri-
ately and compute the lower/upper activation bounds for all nodes in the batch. We use
dropout of 0.5, Ly regularization with strength le — 5, learning rate of 0.001. We use
Tensorflow 1.12 and train on NVIDIA GTX 1080 Ti.

D.1 Proofs

We reformulate the problem in Eq. (6.9) as the linear program below.

minimize cTI:I(L)subject to (D.1)
X HO H ¢

A"l = AV gowo 4 b 1=2 ... L = U+ ¢ RNL-xh®
H) <1 = et e RNi-xh
H.) >0 = e~ € RNp-1xh
Hr(z? < an + €nj =" e RN-1xh
HE) > an - énj =7 € RNL?th(l)
Zénqu Vn e Np—1 - n e RN

J
Zénj <Q =peR

n?j

H)=01=2...,L-1,(n,j) ez
(0

HY =AY 1=2,... . L-1,(nj) e
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H)>01=2...,L-1,(nj) eIV = 70 ¢ RNz-xh®

HY) > 8% 1=2,...,L-1,(n,j) e T = 10 ¢ RNE-1xh®
W () pO W (g0 _ pO D AL _ixh®

H\) (s\) - R))) < s\ (f, - R). = A0 g RV

1=2,...,L—1,(n,j)ez®

Note that X = H®: moreover the Hfl? =0 and Hfl? = ﬂ(l)

from the optimization. X, p, and 7 are only defined for (n,j)€Z®; we keep the matrix
notation for simplicity.

can be simply eliminated

Proof of Theorem 4. Applying standard duality construction, the (non-simplified!) dual
problem of the above linear program is

L—-1 L—1
) g() R T & (1) p (1
maxz Z )\anannj — Z 1T+
1=2 (n,j)ez® 1=1
+) X, [’y;j — 'ﬁ{,] —e"—q¢> mn—Qp subject to
n,j n
oW =— @) =0 for 1 =2,...L,(n,j) € T
a0 = AV DWW OT, for 1 =2,...L,(n,j) € I
o) = ;8" — 1 for 1 =2,...L,(n,j) € TV
AVT W OT _ 0 o {Sm _ R(l)}
EPONENO) for | =2,...L,(n,7) € Z®
AVTeQwWOT — o+ _ - LAty (D.2)
P+ N >+ Ny Vg (D.3)

ANToe e,y v, mp >0

As done in [234] we can exploit complementarity of the ReLLU constraints corresponding
to HO > 0 and HO > A"
write

to eliminate 7, p, and A from the problem. For this we

{Sm _ R(l)} oA = [ AU)T(I,UH)W(DTL _ [,;f_,(n}

7O 4,0 = [A(Z)T(I,(Hl)w(l)q _ [,i,(l)}

_l’_

where we have defined &) := A(l)TQ(lH)W(l)T. Given the non-negativity of the dual-

variables, it becomes apparent that 7() and () “share” the negative part of 0. Thus,
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nj nj

we define new variables Qg]) € [0, 1] such that ng]) =V [ST:)(Z)} . Combining this with

the constraint @gj) = Anjsfjj? — ,ugj) we can rephrase to get
!

) S50 (40 W [0
30 — ST @], —al [#h]
U [‘f’(lﬂ (Y — R

n n +

nj nj

Similarly, by complementarity of the constraints, we know that only one of s:j and
Enj and only one of 'y:[j and 7,,; can be positive. From Eq. (D.2) we can therefore see
that 5;5- and ’y:j need to “share” the positive part of the left hand side in Eq. (D.2)
(since all variables are > 0); similarly €nj and Vnj share the negative part. We denote

this (unknown) share by a new variable f3,,; € [0, 1] and get

= s [#1)] = (= ) [8]
= bni [ "ﬂ} ’ Tng = (1= Bnj) [‘:T-’%)]f

Putting this into Eq. (D.3) we can now see that
M +p> (1= Ba)| @] V1<n<Np1,1<j<h®),

from which we can get

Buy2 1= L 5> 0 i, (D.4)
| n]
to replace the constraint in Eq. (D.3). Now we can simplify the following term from the
dual objective

an [fy;] — ’y;[]} — 5;} = —(i?'illj)XnJ + B ® (I)X — Bnj [ gzﬂ+
= —ig])Xm — Ay, Bn; where
A= [@;?L (1= Xg) + 8] Xoa
1

In the definition of A,; we essentially have a case distinction: if @2] is positive, we
know that increasing the .Value of the corresponding primal variable X4 will improve
the primal objective. If X4 is already 1, however, we set the value of A,; to zero by
multiplying by 1 — X g (similarly for the case when 'i)gj) is negative). This effectively
enforces the 0 < X < 1 constraint on the perturbations.

Plugging all terms defined above into our dual objective we get

L-1 S(Z)R(l) t41) L—1

° T+

ey S [#] et
1=2 (n,j)ez® nj =1

_Tr[X H( ]—\\A@B\h—q Znn Q-p
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Notice that Tr {X o } don Do ®,;X,;. Since A >0 and 8 > 0 we could safely

write ||A ® B||1. By observing that A > 0 for all entries we see that to maximize the
objective, we will set § to a value as small as is admissible. This means we can replace Eq.

(D.4) with f = max {1 — l’gﬁﬁ 0}. Thus, we have now eliminated all dual variables

except 2, p, and n,. Finally, we define W,,; := A,;f,; = max{A,; — (n, + p),0},
which finalizes the proof. O

Proof of Theorem 5. Given a fixed €2, the dual function g o reduces to —[|¥[[y — ¢ -
> Mn — Q- p+const with the term ¥, ; = max {A,4 — (nn + p),0} and A, constant.
Noticing that ¥,; > 0, we see that maximizing the dual is equivalent to minimizing

Jmin h(p,7,) = max{Ang— (mn+p),0} +q- Znn+Q p
n2 n,d

Observe that we can equivalently rephrase this as

in U
pmin  H(pma, U Z nd + 4 ZnnJrQ p

5t.Upg > Apg — M — p

Here we have replaced max{A,q — (1, +p),0} in h(p, n,) with a new variable U,,4 with
the constraints U,q > 0 and Uy,g > A,g—1np —p (foreach 1 <n < Np_1,1<d < h(l)).
Since we are minimizing, the optimal values w.r.t. h'(p,n,,U) and h(p,n,) will be the
same.

Finding the minimum of 2/(+) is a linear program. Thus, we can again form its dual
(denoting the dual variables as ,q):

max ¢ (na) E ALdCnd
and>0

st g <1, Zand <Q ) aa<qV¥n
d

An optimal solution of this dual can be seen and computed easily. Since all A,4 are
nonnegative, we simply set those ay,q to 1 corresponding to the largest values of A,
— additionally taking the two other constraints into account: The third constraint tells
us that the row sums of the a matrix can be at most ¢, hence we can only set the aug
corresponding to the ¢ largest A4 to 1 for each row to maximize the objective. The
second constraint means that we can set at most ) entries a,4 to 1. So among the
set of all ¢q largest A,; of the rows we select again the Q) largest A,4 and set their
corresponding a,q to 1'. Observe that this is precisely the selection process described
in the main text for Thm. 5. That is, an optimal solution of the dual can be found by
setting a,g = 1 & (n,d) € Sg.

'W.lo.g. we assume Q < |Nz_1|- ¢ here; otherwise we simply select all of the g largest A,4 per row
(which is equivalent to choosing Q = |[N1_1| - q)

162



D.1 Proofs

We now prove that the variables p and 7, as described in the main text (along with
U,q = max{A,q — 1, — p,0}) correspond to an optimal solution of their respective
problem. For this we show that the Karush-Kuhn-Tucker (KKT) conditions hold —
using the above constructed solution for a,4. (1) Dual and primal feasibility hold by
construction. (2) Next, we check complementary slackness

and(And —Nn —pP— Und) =0 (D5)

If a,g > 0 it must hold that the second term is 0. In this case we know that A,q > 17, +p
and thus U,,g = A,q — 1 — p, which means the term is always 0. When the second term
in Eq. (D.5) is nonzero, ay,q must be 0. This is given since when A, g < 1, + p + Ung
it is smaller than the smallest A, for which a,,q is set to 1 and therefore a,,q = 0. (3)
Finally we show that VoL(0,a) = Vg3 , ;Una +q- 3,0 + Q- p+ >, 4 0na(Ana —
M — p — Upg) = 0 for 0 = {Upq, My, p}. Consider first p: V,L(0,a) = Q — Zn,d Qng =0
since we set exactly @@ many a,g to 1 (and the rest to 0); m, follows analogously.
Vu,,L(0,a) =1y, ,~0(1 — ang) = 0 holds since when ayg =0, Apg — ny — p < 0 which
means that U, 4 must be 0 because of its constraints. Thus, all KKT conditions hold. [

Proof of Corollary 2. Assume we are given the optimal values for 2. We can then
compute the optimal values of p and 1 as described in Theorem 5. Recall from the
proof of Thm. 4 that the A, denote the improvement in the primal function objective
when changing the attribute X 4. As shown in the proof of Thm. 5 with the optimal
ang we exactly choose the values A,,; that lead to the largest improvement of the
objective function — and we trivially observed «,q = 1 for those elements. Thus, an
optimal solution can be obtained by perturbing the attribute entries X .4 from the set
P :={(n,d)|ans = 1,A,q > 0}, i.e., setting them to 1 — X ha. Thus, by construction we
found an optimal solution which is integral, making the original linear program integral
w.r.t. the attributes X,q. By construction of ayg the set P = {(n,d) € Sq | Ang >
0}. O

(2 .

Proof of Corollary 5. Using Eq. (6.3), the (un-perturbed) H,,; is Ag,lL)Xng) + bgl) =

Yondod ASZLX ndWCEjl) —|—b§1) which is simply a linear sum in X ,,4. Clearly, for maximizing
fI(Q) one should only perturb X ,,g if (A(l) M) g positive and X g = 0) or (A(l) Wéjl)

mj> mn dj mn
. . . . . (2 >
is negative and X ,4 = 1). Thus, the maximal increase of H @ based on X,,4 one can

mj
achieve is Ai,}bq)l : Wd(jl) if the first condition holds, —Ai,lw)l : Wd(jl) if the second holds, and
(M

1) ]
mn

([Wd(jl)]Jr (1= Xna) + W)= X )

which matches the terms in Eq. (6.12). To obtain the maximal overall increase in H 5,23,

and, thus, an upper bound, one simply picks the largest elements that still adhere to
the budget constraints (Q,q). Obviously, since this is an admissible perturbation, this
upper bound is tight. The proof for the lower bound is accordingly. ]

0 else. This can compactly be written as A
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E Certifiable Robustness of Graph
Convolutional Networks under Structure
Perturbations

E.1 Splitting and Branching Procedure

We follow Al-Khayyal and Falk [3]’s suggested procedures for splitting and branching.
That is, for deciding on a problem to branch on, we choose the problem with the smallest
lower bound among all open problems. To determine a dimension for the split, we
choose the dimension for which the convex envelope has the largest difference to the
corresponding value in the optimal solution, i.e. where the approximation is the coarsest.
We refer the interested reader to [3] for more details.

E.2 Experimental setup

For all experiments we use Python 3.6.8. For the GCN training we use the hyperparam-
eters shown in Table E.1. For the robust training procedure proposed in [277] we use a
local budget ¢ = 0.01D and global budget Q = 12, and a batch size of 8 (as suggested
by the authors), and train for 1000 epochs. We use NVIDIA (R) GTX 1080 GPUs with
11 GB VRAM and use PyTorch 1.0.1. For all datasets we sample 500 nodes uniformly
across the graph and certify robustness on this representative subset.

We use the IBM CPLEX solver! for all linear programs, though any optimizer can be
used. We further use CVXPY as the interface to Python. We run the solver on a single
core on an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz. We abort our branch and
bound procedure after 250 iterations and treat the instance as not certifiable.

Thttps://en.wikipedia.org/wiki/CPLEX

Hyperparameter  Value

Learning rate 0.01
Hidden size 32
Hidden layers 1
Dropout 0.5
Training epochs 350
Training set size  10%
Weight decay 0.0001

Table E.1: Hyperparameter configuration
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