
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation

Designing Evolvable Web Services

Paul Schmiedmayer

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Designing Evolvable Web Services

Paul Schmiedmayer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Univer-
sität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Florian Matthes

Prüfende der Dissertation: 1. Prof. Dr. Bernd Brügge
2. Prof. Dr. Stefan Wagner

Die Dissertation wurde am 14.02.2022 bei der Technischen Universität München ein-
gereicht und durch die Fakultät für Informatik am 30.05.2022 angenommen.

Abstract

The development of distributed systems presents numerous challenges. Advance-
ments in web technologies have made web development a de-facto standard in dis-
tributed systems. Designing web services involves incorporating various middle-
ware- and protocol-types for inter-process communication. Deploying distributed
systems is influenced by deployment mechanisms and several architectural styles,
such as cloud- and fog-based architectures. Especially the rate of progress in these
technologies and execution environments has made maintenance and evolution of
web services a complicated endeavor.

The focus of this dissertation lies on a framework that enables developers to de-
sign evolvable web services. The framework consists of a web service metamodel
and the Apodini ecosystem to provide mechanisms and tools in three areas: web
service interface evolution, web service API evolution, and web service deployment
evolution. The metamodel builds the foundation to investigate web API change pat-
terns and deployment evolution-related challenges in the Web of Things, Function
as a Service, and observability domains.

The Apodini ecosystem provides an internal domain-specific language to en-
able web service interface type-independent development. It consists of three major
components. Interface Exporters enable an evolvable extension mechanism to sup-
port multiple web API types in the lifetime of a web service. Apodini Migrator
generates migration guides and stable client libraries to mitigate web service API
evolution. Apodini Deployer forms the basis for Deployment Providers that enable
constraint-based deployment mechanisms and web service partitioning for cloud-
and fog-based architectures.

The framework was empirically validated using a design science approach based
on single-case mechanism experiments. The extensibility of Apodini was proven by
using five web API types: gRPC, WebSocket, GraphQL, HTTP, and RESTful APIs.
The applicability of Apodini evolution mechanisms was demonstrated in five ex-
periments covering a wide range of application domains such as sports and health
science, mobile applications, smart city Internet of Things environments, and water
quality measurement systems.

v

Zusammenfassung

Die Entwicklung verteilter Systeme ist mit vielen Herausforderungen verbunden.
Fortschritte in Webtechnologien haben Webdienste zu einem De-facto-Standard in
verteilten Systemen gemacht. Das Entwerfen dieser Webdienste macht es notwen-
dig, eine Vielzahl von Middleware- und Protokolltypen für die prozessübergreifende
Kommunikation einzubeziehen. Die Bereitstellung dieser verteilten Systeme wird
durch die breite Auswahl an Bereitstellungsmechanismen und Architekturstilen,
wie cloud- und fogbasierte Architekturen, beeinflusst. Insbesondere die Geschwin-
digkeit, mit der Webtechnologien voranschreiten, hat die Wartung und Weiterent-
wicklung von Webdiensten zu einem komplexen Unterfangen gemacht.

Im Mittelpunkt dieser Dissertation steht eine Grundstruktur, die es Entwick-
lern ermöglicht, weiterentwickelbare Webdienste zu entwerfen. Sie besteht aus ei-
nem Webdienst-Metamodell und dem Apodini-Ökosystem, das Mechanismen und
Werkzeuge in drei Bereiche aufteilt: Webdienst-Schnittstellen-Evolution, Web-API-
Evolution und Webdienst-Bereitstellungs-Evolution. Das Webdienst-Metamodell bil-
det die Grundlage der Untersuchung von Web-API-Änderungsmustern und Her-
ausforderungen im Zusammenhang mit der Entwicklung von Webdiensten in den
Bereichen Web der Dinge, Function as a Service und Beobachtung von Webdiensten.

Das Apodini-Ökosystem bietet eine interne domänenspezifische Sprache, die ei-
ne von Webdienst-Schnittstellen unabhängige Entwicklung ermöglicht. Es besteht
aus drei Hauptkomponenten. Interface-Exporter ermöglichen einen Erweiterungs-
mechanismus zur Unterstützung mehrerer Web-API-Typen während der Lebens-
dauer eines Webdienstes. Apodini-Migratoren generieren automatisch Migrations-
Leitfäden und stabile Client-Bibliotheken, um die Änderungen von Webdienst-APIs
abzufangen. Apodini-Deployer bildet die Grundlage für Deployment-Provider, die
ein randbedingungsbasiertes Bereitstellen und ein Partitionieren von Webdiensten
für cloud- und fogbasierte Architekturen ermöglichen.

Apodini wurde empirisch mit einem Design-Science-Ansatz validiert, der auf
Einzelfall-Mechanismus-Experimenten basiert. Die Erweiterbarkeit von Apodini wur-
de anhand von fünf Web-API-Typen belegt: gRPC, WebSocket, GraphQL, HTTP und
RESTful-APIs. Die Anwendbarkeit der Apodini-Mechanismen wurde in fünf Expe-
rimenten bestätigt, die ein breites Spektrum von Anwendungsbereichen abdecken:
Sport- und Gesundheitswissenschaften, mobile Anwendungen, sowie Internet-der-
Dinge-Systeme für intelligente Städte und Wasserqualitätsmessung.

vii

Acknowledgements

First, I would like to express my deepest gratitude to Professor Bernd Brügge. His
enthusiasm for teaching and software engineering research is truly inspiring and
has motivated me throughout my time at the Technical University of Munich. I
am grateful for the countless possibilities he enabled during my studies and time
as a doctoral candidate. I can not imagine having a better supervisor and mentor.
Furthermore, I want to thank Professor Stefan Wagner, Professor Stephan Jonas, and
Professor Pramod Bhatotia for their input and encouragement for this dissertation.

I want to thank my colleagues for the great conversations we had along the way,
and the friendships we made that are here to last. I want to especially thank Lukas
Alperowitz and Dora Dzvonyar for giving me the opportunity to join the chair.
Thank you to Jan Philip Bernius, Dominic Henze, Nadine von Frankenberg und
Ludwigsdorff, and Lara Marie Reimer for their continuous support, the great times,
and the positive energy we shared. In addition, I want to thank Mariana Avezum,
Florian Bodlée, Jan Ole Johanßen, Marko Jovanović, Jens Klinker, Stephan Krusche,
Andreas Seitz, and all colleagues I had the pleasure to work with for the great col-
laborations we had throughout different projects and courses we organized. I am
also grateful for Helma Schneider and the system administrators at our chair, par-
ticularly Florian Angermeir, Matthias Linhuber, Vincent Picking, Robert Jandow,
Philipp Eichstetter, and the multimedia group for always being available and mak-
ing sure that everything is working and well organized.

I also want to thank all students that supported my research along the way. The
Apodini ecosystem would not be possible without the support of Andreas Bauer,
Eldi Cano, Lukas Kollmer, Paul Kraft, Max Obermeier, Mathias Quintero, Andre
Weinkötz, Philipp Zagar, and all Apodini contributors, including the members of
the Server-Side Swift practical course.

Last but not least, I want to thank my friends and family for their continuous
support. Your friendship, encouragement, and advice mean the world to me. This
dissertation would not have been possible without you.

ix

Contents

Abstract v

Zusammenfassung vii

Conventions xv

I Prelude 1

1 Introduction 3
1.1 Research Process and Research Goals 9

1.1.1 Design Problems . 13
1.1.2 Knowledge Questions . 14

1.2 Dissertation Organization . 16

2 Knowledge Context 21
2.1 Software Engineering . 21
2.2 Distributed Systems . 25

2.2.1 Web Service Interface Types . 27
2.2.2 Domain-Specific Languages for Web Services 31

II Problem Investigation 35

3 Web Service Interface Evolution 37
3.1 Related Work . 40

3.1.1 Service Definition Languages 40
3.1.2 Adapters . 42
3.1.3 Model-Based Approaches . 44

3.2 Web Service Interface Metamodel . 46
3.2.1 Web Service Interface Metamodel 47
3.2.2 Metamodel Conformant Web API Types 49

xi

4 Web Service API Evolution 55
4.1 Related Work . 58

4.1.1 Local API Evolution . 59
4.1.2 Web API Evolution Strategies 60
4.1.3 Web API Change Identification 61
4.1.4 Web API Evolution Migration 63
4.1.5 Protocol-Enabled API Evolution 64

4.2 Web Service API Change Classification 66
4.2.1 Web Service API Evolution Patterns 66
4.2.2 API Change Classifications Comparisons 68

5 Web Service Deployment Evolution 73
5.1 Web Service Deployment Evolution Domains 76

5.1.1 Cloud-Based Deployments . 77
5.1.2 Observability . 79
5.1.3 Web of Things . 80

5.2 Web Service Metadata Annotations . 83
5.2.1 Web Service Metadata Annotation Model 83
5.2.2 Web Service Metadata Annotation Domains 85

III Treatment Design 91

6 System Design 93
6.1 Design Goals . 95
6.2 Control Flow . 99

6.2.1 Interface Exporter . 99
6.2.2 Migrator . 100
6.2.3 Deployer . 101

6.3 Software Architecture . 103
6.3.1 Apodini . 103
6.3.2 Interface Exporter . 104
6.3.3 Migrator . 106
6.3.4 Deployer . 107

7 Object Design 109
7.1 Domain-Specific Language Components 110

7.1.1 Swift-based Apodini DSL Interface 112
7.1.2 Kotlin-based Apodini DSL Interface 114

7.2 Semantic Model . 115
7.3 Migration Guide . 117

xii

7.4 Deployment Structure . 121
7.5 Cross Deployment Node Communication 123

IV Treatment Validation 125

8 Apodini Interface Exporter 127
8.1 gRPC Interface Exporter . 129
8.2 WebSocket Interface Exporter . 134
8.3 GraphQL Interface Exporter . 138
8.4 HTTP Interface Exporter . 142
8.5 RESTful Interface Exporter . 147

8.5.1 OpenAPI Document Generation 153
8.6 Summary . 155

9 Web Service Instantiations 157
9.1 Basketball Player Health Monitoring System 159
9.2 Event Management Plattform . 162
9.3 Expense and Income Tracking Application 168

9.3.1 Localhost Deployment Provider 171
9.3.2 AWS Lambda Deployment Provider 172

9.4 Smart City IoT System . 175
9.5 Water Quality Measurement System 180
9.6 Summary . 185

V Epilog 187

10 Conclusion and Future Work 189

List of Figures 191

List of Tables 193

List of Listings 195

Bibliography 197

xiii

xiv

Conventions

This work was produced in conformance to the Code of Conduct for Safeguarding
Good Academic Practice and Procedures in Cases of Academic Misconduct at the Techni-
cal University of Munich [274] as well as the Technical University of Munich Citation
Guide [275]. Hyperlinks in footnotes were all last accessed on February 9, 2022.
The conventions are based on the conventions introduced in Continuous User Under-
standing in Software Evolution by Jan Ole Johanßen [144] and a dissertation template
provided by Jan Ole Johanßen.

The dissertation is written in an inclusive and gender-neutral writing style. We
use the singular gender-neutral personal pronoun ”they” and derivative forms such
as ”them”, ”their”, ”theirs”, and ”themselves” in this dissertation.

Titles of publications and referenced artifacts mentioned in the text are written
in italic font. Direct quotes are written in ”italic font surrounded by quotation marks”.
Introduced terms are written in a bold font. We use a monospace font to distin-
guish code fragments.

Multiplicity in UML models use a default value of 1 if no multiplicity is defined.
We understand that company names and product names mentioned in this dis-

sertation are registered trademarks and refer to further information using footnotes
if beneficial and omit trademark symbols.

Definitions are presented in a dark gray box with a full border:

Definition X – Definition Convention:
A defintion.

Research goals are highlighted using a box in the following style:

Goal Convention

Refinements of important extracts of text such as design problems and knowl-
edge questions are highlighted in the following style:

Refinement Convention

xv

Part I

Prelude

THE prelude introduces the research process and knowledge context of this
dissertation. Chapter 1 provides an introduction to web service evolution
and motivates the problem context. The chapter features foundational defi-

nitions for types of web service evolution and conflicting stakeholder goals related
to web service evolution.

Based on these insights, we present our research goals, design problems, and
knowledge questions according to the design science methodology detailed in De-
sign Science Methodology for Information Systems and Software Engineering by Roel J.
Wieringa [309]. The dissertation outline combining the software engineering ap-
proach defined in ISO/IEC/IEEE 12207 [15] and design science methodologies de-
fined by Wieringa [309] is detailed in Section 1.2.

Chapter 2 provides an overview of the knowledge context surrounding the re-
search described in this dissertation. The chapter provides an overview of the used
software engineering techniques and fundamental knowledge about distributed sys-
tems development.

1

2

Chapter 1

Introduction

Software engineering consists of rational-driven problem-solving processes that in-
corporate modeling and knowledge acquisition to deal with the complexity of de-
veloping software systems [62]. The processes are evolutionary as software has to
continuously adapt and evolve to incorporate changes in requirements, application
domains, and technologies during its lifetime [267]. Software evolution encom-
passes the challenges of adapting, extending, and maintaining a system’s capabili-
ties by incorporating changes that affect the software system [232, 267].

Lehman defines eight laws of software evolution that summarize the forces soft-
ware systems are exposed to and shape the evolutionary process of software en-
gineering [173]. The laws express the need for a software system to continuously
change if it should continue to stay useful, which results in an increased complexity
if it is not counteracted [171]. Service-oriented computing counteracts increasing
complexity by creating computational abstractions using services that are invocable
in a technology-neutral way, are loosely coupled, and location-transparent [56, 211].

Service-oriented architectures promote designing software systems around clear-
ly partitioned and abstracted resources, creating the concepts of service providers,
service clients, and service registries [89, 211]. Bogner et al. demonstrate that ser-
vice and microservice-based architectures both encourage the usage of principles
and design patterns beneficial to software maintainability and evolvability [46, 47,
48, 49, 50]. Enabled by web technologies, web services are a de-facto standard in
service-oriented architectures, offered using web-based middleware- and protocol-
types [19, 89]. The UDDI consortium defines web services as ”self-contained, modular
business applications that have open, Internet-oriented, standards-based interfaces” [283].

Web services provide several advantages when dealing with software evolution
as ”any changes to the service implementations that do not impact their interfaces are com-
pletely transparent to the overall system” [100], but also come with evolution-related
challenges ”due to the fundamentally distributed nature of serviceoriented systems” [100].

3

1 Introduction

We establish three main stakeholder groups interacting with web services to ex-
plore these challenges: web service developers, web service hosting providers, and
web service clients. Similar classifications in web service evolution research such
as the influence factors by Treiber et al. (hosting environment, consumer/service
integrator, developer, and provider) [279]; or the perspectives on web services by
Treiber et al. (provider, developer, service integrator, and user) [280] support our
classification. Bondel et al. also identify similar three main stakeholder groups for
web API management complemented with the end-user stakeholder group and ad-
dition stakeholder groups interacting with the API provider [51]. In addition to the
three stakeholder groups, web service evolution is also influenced by constraints,
functional and non-functional requirements such as scalability, observability, pri-
vacy, security, sustainability, and other aspects discussed in this dissertation.

Definition 1 – Web Service Developer:
A web service developer designs and builds web services. The web service de-
veloper is involved in all software engineering activities, from understanding
the problem domain, requirements elicitation, system design, implementation
to testing and deploying the web service.

A web service developer can have multiple specializations, such as a software
architect, requirements engineer, or security expert. While all these specialization
are essential in developing web services, the web service developer stakeholder en-
compasses all these specializations, clearly defining the boundaries to the other two
main stakeholder groups. For this dissertation, we use the terms web service devel-
oper and developer interchangeably.

While web services have been traditionally deployed on-premise, in the past
decade, emerging service models such as Software as a Service (SaaS), Platform as a
Service (PaaS), and Function as a Service (FaaS) do no longer require managing the
underlying hardware infrastructure, by taking advantage of the benefits of cloud
computing technologies like resource pooling [188, 209]. Virtual Machines (VMs),
container technologies, and orchestration tools build the backbone of modern de-
ployment strategies and abstract away hardware configurations [209, 210]. A web
service hosting provider supplies cloud deployment models as a service, so service
developers do not need to provide and maintain this infrastructure.

Definition 2 – Web Service Hosting Provider:
A web service hosting provider provides and maintains the infrastructure of
hosting the developed web service as defined by the web service deployment
structure.

4

1.0

For this dissertation, the terms web service hosting provider and hosting provi-
der are used interchangeably. The web service developer defines and evolves the
web service deployment structure in accordance with the deployment possibilities
of web service hosting providers and constraints defined by potential execution en-
vironments. A UML deployment diagram, e.g., a hardware/software mapping de-
veloped during system design, can express this deployment structure [62]. A hard-
ware/software mapping defines the responsibility of each hardware node or virtu-
alization of a hardware node and how the communication between these nodes is
realized [62]. As the communication between nodes incorporating software com-
ponents is essential during web service development, we extend the functionality
of a hardware/software mapping to define the middleware and protocol mapping
between the components. As a result, we rename the hardware/software map-
ping to an execution-environment/software/protocol mapping. This highlights the
importance of middleware- and protocol-types used to communicate between the
hardware-independent execution environments enabled by hardware virtualization
techniques.

Definition 3 – Deployment Structure:
A deployment structure defines the static and dynamic mapping of software
components to execution environments and can be described by execution-envi-
ronment/software/protocol mappings.

The deployment structure and documenting execution-environment/software/-
protocol mappings are evolving based on requirements such as scalability, compu-
tation power, energy, sustainability and other and deployment-related constraints.
Software architectures such as fog computing architectures require dynamic execu-
tion-environment/software/protocol mappings due to the need for ubiquitous, scal-
able, dynamically reconfigurable, and context-aware redeployments based on chang-
es in the execution environments [139]. Section 2.2 provides a historical overview
of distributed systems development leading up to edge and fog computing while
Chapter 5 provides in-depth insights into the problem context around web service
deployment evolution.

Definition 4 – Web Service Client:
A web service client discovers, consumes, and depends on the web service by
interacting with its interface. The client queries the service and might produce
content using web-based middleware- and protocol-types.

The web service client is the third stakeholder group we define interacting with
web services. In contrast to the web service developer and the web service host-
ing provider, the web service client only interacts with the web service using its

5

1 Introduction

interface and does not interact with the underlying models, source code, and ex-
ecutables. A web service interface defines the abstract definition of functionality
defining the interface between the web service and the web service client [19, 36].
The web service interface is instantiated using a web service application program-
ming interface (API) [19]. In contrast to the abstract definition of the web service
interface, we define a web service API as bound to specific web-based middleware-
and protocol-types.

Definition 5 – Web Service Evolution:
Web service evolution encompasses all modifications to the web service dur-
ing its lifetime ranging from changes to the source code, adding or removing
middleware- and protocol-types, changes to the deployment structures, and
changes to its web service interface.

All three stakeholders play an essential role when discussing web service evo-
lution. Web service evolution is induced by several forces, such as changes in the
problem domain, changes in requirements and constraints in multi-level feedback
systems offering user feedback, and automated collection of insights using moni-
toring techniques [173]. Monitoring system behavior is an established and decades-
old technique that enables developers to extract actionable insights gathered from
information collected about the monitored software system [264]. Collecting logs,
metrics, and traces provides indicators to continuously observe distributed systems
and are referred to as the three pillars of observability [268]. These tools help to pro-
vide feedback to the web service developer and enable evolving web services based
on actionable insights generated from the collected indicators.

To track evolution, changes in the source code should be traceable to changes
in functional or non-functional requirements or constraints. Requirements trace-
ability is a well-established research field in software engineering, establishing a
clear link between development artifacts and changes in requirements [116]. Trac-
ing non-functional requirements in web service evolution is challenging as they are
not contained in a single artifact but are distributed across different development
and deployment-related artifacts as the web services are evolving [246].

Changes and development in web technologies and middleware- and protocol-
types lead to web service evolution. Table 1.1 shows a small subset of modern and
historic web API types. The tabular overview highlights the rapidly moving de-
velopments of web API, middleware, and protocol types used in web development.
The advancements in web technologies and modern API types drive the adoption of
newer middleware- and protocol-types as demonstrated in Section 2.2.1 and Chap-
ter 3. This evolution force is amplified by the drive to continuously address new re-
quirements and constraints defined by the problem domains, implementation tools,

6

1.0

Name Year Transport Serialization Type

ONC RPC [4, 276] 1988 TCP, UDP XDR [2] RPC-based
CORBA 1991 TCP, IIOP GIOP RPC-based
SOAP 1998 HTTP XML RPC-based

REST [96] 2000 HTTP JSON, XML Resource-based
Apache Thrift [263] 2007 TCP, HTTP Binary, JSON RPC-based

gRPC 2010 HTTP/2 Protocol Buffers RPC-based
WebSocket [189] 2011 HTTP & TCP Binary Data Message-based

GraphQL 2015 HTTP JSON Message-based
JSON API 2015 HTTP JSON Message-based

Table 1.1: Selective overview of web API types, the year of their first release, and
a subset of transport protocols as well as serialization techniques that are typically
used when implementing a web service using the web API type. The last column
details the web service interface type the web API type can be classified into as
detailed in Section 2.2.1.

and programming languages. As developing web services is often strongly cou-
pled with the middleware- and protocol-types of web APIs, refactoring the source
code requires time and effort. We define this subset of web service evolution as web
service interface evolution.

Definition 6 – Web Service Interface Evolution:
Web service interface evolution encompasses the additions, removals, or evolu-
tion of web service API, middleware, or protocol types.

Chapter 3 further investigates web service evolution by developing a metamodel
to reason about web service evolution. The chapter also describes related work,
including existing tools to support binding to other web API implementations or
providing adapters mapping one web API type to another.

Web service API evolution is defined as a subset of web service evolution, fo-
cusing on web service APIs as contracts between web service developers and web
service clients.

Definition 7 – Web Service API Evolution:
Web service API evolution encompasses all additions, removals, or modifica-
tions to a web service API that can be categorized into breaking and non-breaking
changes specific for each web API type.

Web service API evolution only affects a single web service API. Most web ser-
vice API evolution use cases are manifested in additions, removals, or modifica-
tions to the web service API structure and can be divided into several change pat-
terns [177, 266]. Some changes such as removals and a subset of modifications to a

7

1 Introduction

web service API result in changes breaking the API contract between the web ser-
vice client and web service, resulting in breaking changes [313, 280]. Chapter 4
further investigates related work, including web service API change patterns and
categorizations, to showcase the challenges of web service API evolution for web
service clients and web service developers.

One additional aspect of web service evolution is the change to the deployment
structure of web services. While web services can be developed as monolithic appli-
cations, redesigning or partitioning them into smaller services enables a clearer de-
coupling of functionality and responsibility [198, 194]. Emerging deployment plat-
forms such as Functions as a Service (FaaS) execution environments further push
towards decomposing and partitioning web services into single-purpose stateless
functions [198, 145]. Platforms as a Service (PaaS), Software as a Service (SaaS),
or FaaS require web services to be packaged in deployable containers that can be
distributed to a wide variety of web service hosting providers. In addition, soft-
ware architectures based on edge and fog computing require dynamic execution-
environment/software/protocol mappings that adhere to non-functional require-
ments and execution-environment-specific constraints [139]. Evolving web services
to support new deployment structures, interoperability between hosting providers,
and dynamically changing execution environments challenges existing web service
development workflows. Chapter 5 further investigates tools and related work that
address web service deployment evolution in the context of cloud-based deploy-
ments, web service observability, and the Web of Things (WoT).

Definition 8 – Web Service Deployment Evolution:
Web service deployment evolution encompasses dynamic and static changes to
the deployment structure due to new requirements, constraints, and execution
environment changes.

To summarize, web service evolution poses several challenges that affect three
stakeholder groups: web service developers, web service hosting providers, and
web service clients. Advancements in web technologies drive the adoption of new
middleware- and protocol-types. Changes in the architectural styles and execution
environments affect web service developers and hosting providers. Changes to web
service interfaces and APIs impact clients consuming web services, relying on sta-
ble web service APIs. These stakeholder goals and their partially conflicting nature
demonstrate the challenges related to web service evolution. These challenges mo-
tivate the research project to investigate web service evolution further and develop
suitable treatments. Section 1.1 structures the design science project using research
goals, design problems, and research questions. Section 1.2 details the research ap-
proach to address these research goals and answer the research questions.

8

1.1 Research Process and Research Goals

1.1 Research Process and Research Goals

The dissertation structure is derived by combining the software engineering ap-
proach defined in ISO/IEC/IEEE 12207 [15] and design science methodologies de-
fined by Wieringa [309]. Wieringa’s design-cycle-based approach described in De-
sign Science Methodology for Information Systems and Software Engineering decomposes
research projects into three tasks: Problem investigation (Part II), treatment design
(Part III), and treatment validation (Part IV) [309]. Software engineering workflows,
artifacts, and methodologies defined by ISO/IEC/IEEE 12207 [15] are refined in
software engineering textbooks by Bernd Bruegge and Allen H. Dutoit [62], Ian
Sommerville [267], and Hans van Vliet [288] structure the treatment design, de-
velopment, testing, and validation of the developed treatment artifacts. Figure 1.1
details the typical structure of a design cycle, including the questions answered in
each of the parts of this dissertation.

Problem Investigation
What phenomena must  

be improved?

Treatment Design
Design one or more artifacts
that could treat the problem

Treatment Validation
Would these design  
treat the problem?

Figure 1.1: Design cycles are a subset of the engineering cycles presented in
Design Science Methodology for Information Systems and Software Engineering by
Wieringa [309]. Design cycles in design science research projects start with the prob-
lem investigation, leading up to the treatment design that is validated in the treat-
ment validation before the design cycles potentially start again [309].

This section introduces the research goals of the dissertation based on the goal
structure of design science research projects proposed by Wieringa shown in Fig-
ure 1.2. The following subsections present the hierarchical structure of stakeholder
goals, technical research goals, knowledge goals, and instrument design goals.

9

1 Introduction

Social Context

Research Goals

External

Stakeholder Goals

Technical Research

Goal

Knowledge

Goal

Instrument
Design Goal Design instruments

to investigate

Describe phenomena

to explain them

Improve the

performance

of artifacts

Figure 1.2: The goal structure and hierarchy according in design science projects
according to Wieringa [309]: The external stakeholder goals are addressed by high-
level technical research goals improving an artifact in a context. A knowledge goal
further investigates the interaction of the artifact with its context, describing its in-
ternal mechanisms, while an instrument design goal describe goals to develop re-
search instruments to provide insights to knowledge goal.

Stakeholder Goals

Wieringa notes that ”No goal exists in a normative vacuum, and the problem improvement
goal in turn often supports some higher-level stakeholder goals” [309].

Web Service Developer Stakeholder Goal:
Allow evolvability when developing and deploying web services.

Each web service stakeholder group is associated with a web service evolution-
related stakeholder goal. A web service developer wants to evolve a web service,
including its deployment structure, to deal with any change forces affecting the soft-
ware system as defined in the web service developer stakeholder goal.

Web Service Hosting Provider Stakeholder Goal:
Enable an insightful and dynamic deployment of web service in a variety of de-
ployment structures.

A web service hosting provider enables web service developers to deploy their
web services to the hosting provider’s platform. The hosting providers support
different models and architectures to host a variety of deployment structures. A
change in the web service deployment structure due to change forces impacting the

10

1.1 Research Process and Research Goals

web service should be supported by the web service hosting provider to retain cus-
tomers. It is essential to a web service developer to be able to evolve a web service
and a deployment structure as detailed in the web service developer stakeholder
goal. New additions to a web service are welcome as they increase the web service’s
functionality consumed by the web service client.

Web Service Client Stakeholder Goal:
Change and evolution stability when using web services.

While evolution is desirable for a web service developer to improve a web ser-
vice, change affecting the web API often results in significant refactoring for the web
service client. Therefore the goal of the web service client API stability while evolv-
ing the web service based on changes introduced by the web service developer.

Technical Research Goals

The overarching goal of design science projects is to improve the problem context
by addressing the stakeholder goals with artifacts interacting with the problem con-
text [309]. The problem context contains existing technologies to develop, evolve,
deploy, and consume web services, the stakeholders interacting with web services,
and existing business processes and techniques to enable web service evolution.
Therefore, this dissertation aims to improve how stakeholders develop, deploy, and
consume web services in the problem context of web service evolution. We de-
fine these goals as technical research goals to improve artifacts by enhancing their
context-specific problem-solving performance [309].

Technical Research Goal 1:
Design artifacts supporting web service API type agnostic development to en-
able web service interface evolution.

Technical Research Goal 2:
Design artifacts enabling web service client compatibility while supporting web
service API evolution.

Technical Research Goal 3:
Design artifacts supporting web service deployment evolution by supplying rel-
evant context for generating static and dynamic deployment structures.

Technical Research Goal 1 addresses web service interface evolution by devel-
oping and improving artifacts that enable developing web services independent
of web API types, including middleware- and protocol-types. Technical Research

11

1 Introduction

Goal 2 addresses web service API evolution incorporating the stakeholder goals
of stability for web service clients while also addressing the stakeholder goal of
web service developers to enable developing evolvable web services. Technical Re-
search Goal 3 addresses web service deployment evolution. Artifacts addressing
web service deployment evolution need to have insights into deployment-related
forces ranging from changes in requirements to changes in the deployment context
as further investigated in Chapter 5.

Knowledge Goals

Based on the technical research goals, we establish knowledge goals with the aim
”to describe phenomena and to explain them” [309]. Knowledge goals help validate the
technical research goals and artifacts developed to fulfill these goals.

Knowledge Goal 1:
Identify generalizations and specializations of different web service interface,
web service API, middleware, and protocol types.

Knowledge Goal 1 describes the goal to investigate different middleware- and
protocol-types to benefit the Technical Research Goal 1. Identifying generalizations
and specializations enables the design of artifacts to address web service evolution
by developing web services independent of these aspects.

Knowledge Goal 2:
Identify web service interface type-independent change patterns to enable web
service evolvability and change while providing stability to web service clients.

Knowledge Goal 2 addresses the conflicting stakeholder goals of web service
developers and web service clients regarding evolvability and stability. Designing
artifacts to tackle this discrepancy of goals requires an in-depth understanding of
possible change patterns. Knowledge Goal 2 addresses the need to evaluate the
artifacts developed as part of the Technical Research Goal 2.

Instrument Design Goals

Instrument design goals describe the intention to design research instruments to
answer knowledge questions [309].

Instrument Design Goal 1:
Develop a metamodel to inspect generalizations and specializations of middle-
ware, protocol, and deployment structures and processes.

Modeling is an expressive software engineering technique to inspect general-
izations and specializations such as the different middleware- and protocol-types

12

1.1 Research Process and Research Goals

described in Knowledge Goal 1. We use modeling to develop a research instrument
to answer Knowledge Goal 1 using a metamodel-based approach. This metamodel
allows us to investigate Knowledge Goal 1 and therefore shapes the artifacts envi-
sioned in Technical Research Goal 1.

1.1.1 Design Problems

This section presents design problems, describing problems ”to (re)design an artifact
so that it better contributes to the achievement of some goal” [309]. Our design problems
are presented based on a modified template by Wieringa, highlighting the problem
context, artifact, requirements, and stakeholder goals [309]. The problem context is
the design of web evolvable services. The artifacts in the design problems relate to
tools, instruments, and workflows used to develop, deploy, and consume web ser-
vices. As a result, the design problems are reduced to a combination of requirements
and stakeholder goals, describing functional and non-functional requirements.

Design Problem 1:
Develop all aspects of web services in a web service interface type, web API,
middleware, and protocol-independent description so that web service develop-
ers can support different web service interface types and web API types without
rearchitecting web services.

The first design problem addresses the web service developer stakeholder goal
to enable evolvability when developing web services. Design Problem 1 addresses
web service interface evolution based on the Technical Research Goal 1. The de-
sign problem builds the foundation for addressing the challenges of web service
evolution by describing the requirement of a web service description and develop-
ment tool independent of the web service interface, web API, and other API-related
implementation details. The web service description is one of the main challenges
addressed by the artifacts designed in Part III. Answering Knowledge Goal 1 as well
as the Instrument Design Goal 1 will provide a theoretical basis assisting in solving
Design Problem 1.

Design Problem 2:
Automatically detect and migrate backward-incompatible changes of web ser-
vice interfaces to enable web service client stability after modifications to the
web service interface.

The second design problem addresses the need for backward-compatibility when
web APIs evolve. This benefits the stability goal of web service clients while en-
abling evolvability for web service developers. The design problem describes the

13

1 Introduction

need to automatically detect and migrate backward-incompatible changes to guar-
antee the web service client-perceived stability. Addressing web service deploy-
ment evolution requires providing and interpreting deployment- and application
domain-related context and constraints.

Design Problem 3:
Develop a constraint-based service description so that web service developers
can dynamically deploy web services incorporating different deployment struc-
tures, processes, and runtime constraints.

Design Problem 3 describes the corresponding design problem to Technical Re-
search Goal 3. Investigating a constraint-based approach to generating a deploy-
ment structure enables the semi-automatic partitioning and deployment of web ser-
vices according to a wide variety of deployment structures ranging from monolithic
deployments to FaaS-based deployments. Requirements traceability and other an-
notations can be used as constraints to clarify possible deployment structures and
partitionings of web services as detailed in Chapter 5.

1.1.2 Knowledge Questions

Knowledge questions are actionable refinements of knowledge goals, similarly to
how design problems are actionable descriptions further defining and refining exist-
ing goals in design science projects [309]. The empirical knowledge questions build
the foundation of the problem investigation in Part II and the validation found in
Part IV. The knowledge questions are divided into three groups: Knowledge Ques-
tions 1 and 2 address web service interface evolution, Knowledge Questions 3 and 4
address web service API evolution, and Knowledge Questions 5 and 6 address web
service deployment evolution.

Knowledge Goal 1 defines the goal to find generalizations and specializations
of different middleware, protocol, and deployment structures and processes. The
knowledge goal translates into Knowledge Question 1.

Knowledge Question 1:
What are the similarities, patterns, and differences of web service interface-, web
service API-, middleware-, and protocol-types?

Chapter 3 picks up Knowledge Question 1 using the metamodel research instru-
ment set out in Instrument Design Goal 1. Part III presents the Apodini ecosys-
tem including the Apodini domain-specific language (DSL). Therefore Knowledge
Question 2 investigates the applicability and extensibility as validated in Part IV.

14

1.2 Dissertation Organization

Knowledge Question 2:
Does the Apodini DSL empower web service interface- and web API type-inde-
pendent web service development?

Knowledge Question 3 refines Knowledge Goal 2 concerning web API evolu-
tion. As defined by Technical Research Goal 2 and Design Problem 2, automatically
detecting and migrating backward-incompatible changes is a problem that should
be addressed by artifacts designed as part of this research project. To design these
artifacts, it is essential to answer Knowledge Question 3.

Knowledge Question 3:
What migration strategies can be used for different web API evolution change
types?

Chapter 4 provides an overview of web service API evolution patterns including
migration strategies addressing Knowledge Question 3. The different web service
API evolution patterns form the requirements for artifacts designed in Part III to au-
tomatically or semi-automatically migrate web API changes. These artifacts include
the creation of type-independent migration guides that are investigated in Part IV
using Knowledge Question 4.

Knowledge Question 4:
How do web API type-independent migration guides translate to client-side web
API-specific migration mechanisms?

Technical Research Goal 3 and Design Problem 3 concern web service deploy-
ment evolution. As noted in Technical Research Goal 3, tools to support web ser-
vice deployment evolution need to retrieve context to create deployment structures.
Therefore Knowledge Question 5 addresses the context collection further investi-
gated in Chapter 5. The Apodini Deployer artifact designed in Part III including the
Deployment Provider artifacts are validated in Part IV using Knowledge Question 6.

Knowledge Question 5:
How can artifacts collect requirements, constraints, and application domain and
deployment environment-specific information to address web service deploy-
ment evolution?

Knowledge Question 6:
How do Deployment Providers enable deployment evolution in different de-
ployment environments?

15

1 Introduction

1.2 Dissertation Organization

Prelude

The prelude serves as an introduction to the topics discussed in this dissertation.
Chapter 1 introduces the stakeholders, research process, research goals, design prob-
lems, and knowledge questions. Chapter 2 provides an overview of software en-
gineering methodologies applied in this dissertation and foundational knowledge
about distributed systems including web service interface types, web API types, and
service description languages used to develop web services.

Problem Investigation

The problem investigation investigates the three aspects of web service evolution.
Chapter 3 concerns web service interface evolution. The chapter provides an over-
view of different techniques ranging from service definition languages, adapter-
based approaches, and mode-based approaches of providing abstractions spanning
different web service interfaces and web API types. The web service interface meta-
model (Figure 3.1, page 48) contributes to structuring the concepts shared across
different web service interface and web API types and provides the foundation of
the Apodini DSL. Section 3.2.2 presents examples for each web service interface type
that conform to the metamodel. These conformances validate the applicability of the
metamodel and answer Knowledge Goal 1 and Knowledge Question 1.

Chapter 4 investigates web service API evolution. The chapter provides a litera-
ture review of web API evolution challenges and resolution strategies, investigating
Knowledge Goal 2. The chapter presents several related tools and techniques to
identify changes in web APIs and classify these changes. Techniques to address
API evolution are investigated by inspecting migration and protocol mechanisms
that mitigate breaking API changes. The presented related work provides input to
address Design Problem 2 when designing artifacts to address web API evolution.
Section 4.2 introduces a web API change classification based on the web service in-
terface metamodel introduced in Chapter 3. As demonstrated by the instantiated
artifacts, the classification contributes to identifying, classifying, and migrating web
API changes independent of the web service interface or web API type, addressing
Knowledge Question 3.

Chapter 5 investigates web service deployment evolution-related challenges. Sec-
tion 5.1 demonstrates several deployment-related challenges that web service de-
velopers and Deployment Providers need to consider when developing evolvable
web services. The problem investigation investigates challenges in modern cloud-
based FaaS-based deployments challenging traditional web service development.
The increasing usage of Web of Things and the overall importance of developing

16

1.2 Dissertation Organization

observable web services are investigated. The subsections in Section 5.1 all con-
tribute to further clarify application areas for Design Problem 3. Section 5.2 de-
scribes annotation-based approaches to provide metadata to web services, provid-
ing additional context when developing and deploying web services, investigating
Knowledge Question 5. These metadata annotation techniques build the foundation
of the artifacts designed to address Design Problem 3.

Treatment Design

According to Wieringa ”treatment is the interaction between the artifact and the problem
context” [309]. The treatment design of the dissertation uses the knowledge con-
text described in Chapter 2 and the Problem Investigation in Part II to design the
Apodini ecosystem, addressing the technical research goals and design problems.
As described in the Chapter 2, designing and specifying artifacts in the software
engineering life cycle is done during system design, and object design. Section 1.1
already provides tangible research goals reflecting requirements set for the software
systems developed in this dissertation. Therefore the treatment design part refines
these requirements by containing a system design and object chapter, documenting
the design decisions of the developed Apodini ecosystem using models and other
software engineering artifacts.

Chapter 6 addresses the system structure and interaction of the individual ar-
tifacts. System design incorporates the definition of subsystems based on design
goals and describes the control flow defining the interactions between the desired
subsystems [62]. We define four subsystems that are discussed in detail: the Apodini
DSL, the Interface Exporter subsystem, the Apodini Migrator subsystem, and the
Apodini Deployer subsystem. These subsystems contain individual artifacts that
address a part of the desired treatment described in this part of this dissertation.

Chapter 7 describes how the envisioned artifacts will be realized by specifying
the structure and interaction of source code entities such as classes, structures, and
algorithms [62]. The chapter presents the concrete instantiations of the artifacts, how
they work internally, the challenges of developing these artifacts, and why certain
development tradeoffs have been made. The object design introduces software li-
braries, internal and external domain-specific languages, and tools in the Apodini
ecosystem, designed to specify and develop web services while addressing the de-
sign problems and research goals presented in Chapter 1.

Treatment Validation

The fourth part of the dissertation validates the artifacts presented in the previous
sections: treatment validation. We present several single-case experiment mecha-
nisms highlighting the artifacts in several environments and problem contexts.

17

1 Introduction

Chapter 8 validates the web service interface and web API type-independent
development capabilities of the Apodini ecosystem. Five Interface Exporter in-
stantiations demonstrate the web service interface evolvability characteristics of the
Apodini DSL and the Interface Exporter subsystem. The gRPC Interface Exporter
demonstrates the applicability of the Apodini DSL and Interface Exporter mecha-
nisms to RPC-based APIs and all communication patterns in an Interface Exporter.
The WebSocket-, GraphQL-, and HTTP-based Interface Exporters detail the appli-
cability of the Apodini DSL to message-based web service API types. The RESTful
Interface Exporter demonstrates the applicability and extensibility of the Apodini
ecosystem to resource-based APIs.

Chapter 9 presents five application domains in which we have developed web
services demonstrating the different functionalities of the Apodini ecosystem and
the applicability to these domains. Section 9.1 demonstrates Apodini’s applicability
to the sport and health science domain using the basketball player health monitor-
ing system. The project is one of six projects in a project-based capstone course
that used Apodini during semester-long projects and provided feedback about the
Apodini DSL and related tools. Section 9.2 describes the event management plat-
form that validates the automatic generation of a migration guide by the Apodini
Migrator subsystem. Section 9.3 demonstrates a software system consisting of a
mobile application and a web service to document financial transactions. The sys-
tem demonstrates the functionality of the Apodini Deployer subsystem by auto-
matically partitioning the web service into subprocesses using the Localhost De-
ployment Provider and FaaS cloud functions using the AWS Lambda Deployment
Provider. The chapter also demonstrates two Internet of Things-based (IoT) projects
using WoT web services to control and manage the IoT devices in fog-based archi-
tectures: Section 9.4 describes a smart city IoT system and Section 9.5 a water quality
measurement system. The IoT Deployment Provider demonstrates the metadata an-
notation mechanisms enabling static configuration at deployment time and runtime
reconfigurations based on changes in the deployment environment. The water qual-
ity measurement system also demonstrates the usage of the observability extensions
of the Swift-based Apodini DSL.

Epilog

The epilog concludes this dissertation. Chapter 10 summarizes the research contri-
butions and details possibilities for future work.

18

1.2 Dissertation Organization

Treatment Design

Technical Research
Goal 1

Apodini  
Interface Exporter

Design Problem 1

Technical Research
Goal 2

Design Problem 2

Apodini  
Migrator

Technical Research
Goal 3

Design Problem 3

Apodini  
Deployer

Problem Investigation

Chapter 3: Web Service
Interface Evolution

Knowledge Question 1

Knowledge Goal 1

Instrument Design  
 Goal 1

Web Service
Metamodel

Chapter 4: Web Service
API Evolution

Web API 
Change Patterns

Knowledge Goal 2

Knowledge Question 3

Chapter 5: Web Service
Deployment Evolution

Web Service  
Metadata Annotations

Knowledge Question 5

Design Problem 3

Treatment Validation

Knowledge Question 2

Technical Research
Goal 1

Knowledge Question 4

Technical Research
Goal 2

Knowledge Question 6

Technical Research
Goal 3

Figure 1.3: Visual representation of the dissertation structure. The Problem Inves-
tigation addresses the knowledge goals, instrument design goals, and knowledge
questions by designing instruments and conceptual frameworks. The Treatment
Design demonstrates the flow of technical research goals to design problems that
are addressed by artifacts in the Apodini ecosystem. The Treatment Validation
demonstrates the system and answers several knowledge questions investigating
artifacts designed to address the technical research goals.

19

1 Introduction

20

Chapter 2

Knowledge Context

In addition to the problem context and the social context, design science research
is also embedded in a knowledge context [309]. Wieringa defines the knowledge
context based on Vincenti’s book ”What Engineers Know and How They Know It” [291]
as a collection of knowledge, ranging from common sense to scientific theories that
are useful to the design science research [309]. This chapter summarizes the foun-
dational knowledge from related research areas such as software engineering and
software evolution, distributed systems, and domain-specific languages.

2.1 Software Engineering

Margaret Heafield Hamilton first coined the term software engineering as a neces-
sity to create ”methods, standards, rules and tools for developing” [265] software and
embed into in the overall systems engineering process [68, 195]. The term grew
in popularity and was first used as a conference title by the NATO (North At-
lantic Treaty Organization) Software Engineering Conference chaired by Friedrich
L. Bauer in 1968 [196]. The need for the discipline arose from the software crisis, re-
sulting from computers becoming more powerful machines and incorporating com-
plex hardware architectures that required abstractions, programming concepts, and
software patterns [85]. Concepts like information hiding [213] and the benefits of
object-oriented programming and other advancements in programming languages
enabled reusable software architecture [256] and design patterns [109].

The ISO/IEC/IEEE 12207:2017 standard defines software engineering as the ”ap-
plication of a systematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of engineering to software” [15]. Build-
ing complex software systems requires several activities that build up the processes
of designing, implementing, and evolving software systems. The software life cy-
cle processes and activities are grouped into four process groups (agreement pro-
cesses, organizational project-enabling processes, technical management processes,

21

2 Knowledge Context

and technical processes), forming a ”set of interrelated or interacting activities that
transforms inputs into outputs” [15]. Software engineering mainly relates to the tech-
nical processes applied to transform the stakeholder goals into a software system,
product, or service [15].

The ISO/IEC/IEEE 12207 - Systems and software engineering – Software life cycle pro-
cesses [15] and IEEE 1074 - IEEE Standard for Developing a Software Project Life Cycle
Process [7] standards form the foundation of several software engineering textbooks
that elaborate on these activities, focusing on the technical processes, regrouping,
and restructuring activities and processes. This dissertation refers to textbooks such
as Object Oriented Software Engineering Using UML, Patterns, and Java by Bruegge
and Dutoit [62], Software Engineering: Principles and Practice by van Vliet [288], and
Software Engineering by Sommerville [267]. For instance, Bruegge and Dutoit de-
fine software engineering as a modeling, problem-solving, knowledge acquisition,
and rationale-driven activity composed of several software engineering develop-
ment activities [62]. Based on the ISO/IEC/IEEE 12207 technical processes, they
define six software engineering development activities to deal with the complexity
of developing a software system: requirements elicitation, analysis, system design,
object design, implementation, and testing [62]. Similar to the ISO/IEC/IEEE 12207
technical processes, Sommerville describes software engineering as ”an engineering
discipline that is concerned with all aspects of software production from initial conception to
operation and maintenance” [267]. Sommerville identifies common activities for a sys-
tematic approach to software engineering, the software process: software specifica-
tion, software development, software validation, and software evolution [267]. It is
important to note that these activities are independent of any life cycle model or se-
quence of processes in a life cycle model [15]. These activities are performed and or-
ganized based on the applied software life cycle model, project management activi-
ties, methodologies, and software process models used in software projects [62, 267].

Even though software maintenance and evolution were historically seen as sep-
arate software engineering activities, the ”distinction between development and main-
tenance is increasingly irrelevant” [267]. According to Lehman, software evolution
itself is not limited to a program statement level or a sequence of versions [172].
Software evolution considers the evolution of the processes and domains the soft-
ware is embedded in, the software evolution process itself, and the models used to
describe software evolution [172]. Agile software development practices embrace
the importance of evolution, change, and feedback by defining empirical processes
that determine short development cycles and feedback loops [156, 173, 254, 310].
The “Stairway to Heaven”[54, 203] model shows how continuous software engineer-
ing extends agile software development with the concepts of continuous integra-
tion and continuous deployment, leading up to the constant usage of feedback to
experiment and test what the stakeholders need [54, 203]. Fitzgerald and Stol de-

22

2.1 Software Engineering

fined ”Continuous *” [97] as a set of activities in continuous software engineering
that builds on top of the foundations of continuous improvement and innovation.
This strive for constant evolution increases the importance of tools, infrastructure,
and workflows that support these continuous activities [98].

In line with the focus on providing tools, infrastructure, and workflows to en-
able evolvable web services, we do not consider software maintenance or software
evolution a separate software lifecycle process or activity, but consider evolvabil-
ity a necessity for modern software systems. The following subsections provide an
overview of different software engineering activities and foundational knowledge
about software architectures.

Software Specification

According to Sommerville, requirements specification or requirements engineering
includes requirements elicitation and analysis, requirements specification, and re-
quirements validation [267]. Hull et al. define requirements engineering as ”the
subset of systems engineering concerned with discovering, developing, tracing, analyzing,
qualifying, communicating and managing requirements that define the system at succes-
sive levels of abstraction” [134]. Requirements can be divided into two categories:
functional requirements formalize the implementation-independent interactions of
the system with its environment, non-functional requirements further specify how
these interactions are performed [62]. Requirements can be part of several categories
such as functionality, usability, reliability, performance, and supportability defined
by the FURPS acronym originating from Hewlett-Packard (HP) [117, 118]. Software
quality models as defined in ISO/IEC 25010 [14] and the Quamoco quality model
presented by Wagner et al. [300] specify concepts and characteristics mainly focus-
ing on non-functional requirements [299].

As software engineers need to understand the environment their system has to
operate in, techniques such as modeling help software engineers to represent and
understand systems [62]. During the analysis activity, developers transform the re-
quirements and context from the application domain to form ”a model of the system
that aims to be correct, complete, consistent, and unambiguous” [62]. The software speci-
fications created during requirements elicitation and analysis are subsequently used
in further activities to develop a system to satisfy the stakeholder goals.

Software Development

Defining the design goals of a project, describing the boundary use cases, and con-
structing the software architecture is done during the system design software devel-
opment activity [62]. System architects use requirements and the hardware archi-
tecture to formulate the software architecture, a design plan serving as a blueprint

23

2 Knowledge Context

during implementation [133]. A software architecture describes the system struc-
ture, including the composition of subsystems and software components and the
interaction among these components, such as protocols for communication [256]. A
software architectural style is a generalization, that defines element types and their
interactions with no specific application domain [133].

Developers define subsystem interfaces, the services they provide, as well as
the high-level behavior of a subsystem that are part of the software architecture
during the system design phase [62]. System design includes the design of persistent
data management, the mapping of subsystems to hardware, the choice of protocols
used to communicate between the hardware nodes, and the design of the global
control flow that impacts the interfaces of the subsystems [62]. During the object
design phase, developers refine and extend the interfaces to include parameters and
return types to construct the concrete Application Programmer Interface (API) and
ultimately map the models and specifications created during all previous activities
to code, forming the software system [62].

Software Verification & Validation

ISO/IEC/IEEE 12207 describes the verification process as a set of activities that ”pro-
vide objective evidence that a system or system element fulfils its specified requirements and
characteristics.” [15]. The standard defines the validation process as a way ”to provide
objective evidence that the system, when in use, fulfils its business or mission objectives and
stakeholder requirements” [15]. Software testing is a standard verification and valida-
tion activity to test software to reduce the risk of mistakes and verify and validate
specified requirements and goals [12]. ISO/IEC/IEEE 29119-1 describes test pro-
cesses and test sub-processes with different test levels or phases (e.g., component
testing, integration testing, system testing, acceptance testing) and test types (e.g.,
performance, security, functional, and usability testing) [12]. Sommerville divides
software testing into a three-stage testing process comprised of testing individual
components using unit tests, a multistage system testing process that increasingly
integrates components, and the final stage of testing performed by the customer
with real data [267]. Bruegge and Dutoit define several testing activities, including
test planning, usability testing, unit testing, integration testing, and system testing,
which is sub-divided into functional testing, performance testing, and acceptance
testing [62]. The instantiated artifacts presented in this dissertation use software
testing techniques and activities to verify the stakeholder and research goals.

24

2.2 Distributed Systems

2.2 Distributed Systems

In 1960 Joseph Carl Robnett Licklider described the vision of a man-computer sym-
biosis, including a network of thinking centers, storing information similar to physi-
cal libraries [178]. Paul Baran pointed out the need for a standardized message block
format and proposed to explore ”the possibilities of building a ’realtime’ data transmis-
sion system using store-and-forward techniques” [29] in the 1964 paper On Distributed
Communication Networks [29].

The Advanced Research Projects Agency Network (ARPANET) and the National
Physical Laboratory (NPL) network, which incorporated the concept of message
switching, manifested their vision [79, 238]. Licklider and Taylor envisioned a ge-
ographically distributed computer network including ”message processors [...] [that
are] interconnected to form a fast store-and-forward network” [179]. ARPANET initially
used the Network Control Program (NCP) to establish connections between hosts [70].
ARPANET showcased that such packet switching networks worked and could con-
nect several distributed computer networks [238].

On January 1, 1983 the usage of NCP in ARPANET was eventually replaced
by the Transmission Control Protocol (TCP) [226] and Internet Protocol (IP) [223]
(TCP/IP) protocol stack [224]. This network stack builds the foundation of the In-
ternet Protocol Suite that loosely incorporates five layers: the physical, data link,
network, transport, and application layer [115]. The Internet Protocol Suite relies
on a wide variety of mechanisms and protocols in the physical and data link layers
to transmit bits and frames between devices [115]. The network layer provides a
consistent network service that abstracts away characteristics of different links and
physical layers that can exist on a network [142]. The network address is the crucial
element that enables this functionality in the network layer [115]. The Internet Pro-
tocol, IPv4 [223] and nowadays increasingly IPv6 [82], provide IP addresses that are
used to route traffic from a source to a destination [223]. The transport layer of the
internet protocol suite is responsible for multiplexing multiple processes at a single
network-layer address, such as using port addresses [115]. This layer handles con-
nections, as well as flow and error control along the end-to-end connections [115].
The transport layer either uses the connection-oriented Transmission Control Proto-
col [71, 226] developed by Robert E. Kahn and colleagues to reliably deliver packets
in an ordered manner or the User Datagram Protocol (UDP) [222] for a connection-
less service that does not keep track of the order and delivery of packets [115]. The
application layer is responsible for providing sessions to the application and con-
verting network representations to representations in the application domain [115].
Services like Telnet [221], file transfer using the File Transfer Protocol (FTP) [220],
and email using the Simple Mail Transfer Protocol (SMTP) [225] are implemented
on the application layer, using TCP on the transport layer.

25

2 Knowledge Context

The switch from ARPANET to the TCP/IP protocol stack and the connection
of multiple TCP/IP based networks, enabled autonomous systems connected by
the Border Gateway Protocol (BGP) [181], lay the foundation of the modern inter-
net. Based on these developments, Tim Berners-Lee proposed the idea of using a
distributed hypertext system to manage information at the European Council for
Nuclear Research (CERN) in 1989 [41]. Berners-Lee’s concept eventually led to the
development of the Hypertext Transfer Protocol (HTTP) and paved the way to the
World-Wide Web (WWW), offering web services to clients [42]. While few creators
mainly dominated the first years of the WWW, the Web 2.0 that emerged in the early
2000s, encourages user-generated content and builds on the idea of public APIs to
extend, enrich, and consume existing web services [77]. These web services and
their corresponding web APIs build the foundation of modern distributed systems.
The Internet Protocol Suite and the Open Systems Interconnection (OSI) reference
model (ISO/IEC-7498-1 standard [142]) both describe layered architectural styles
that enable web service interconnection and interfaces [320]. In both models, the
application layer is the topmost layer that defines the mapping of network commu-
nication mechanisms to application-specific representations [115].

As noted in Chapter 1, web services have traditionally been deployed on-premise,
in the past decade, service models such as Software as a Service (SaaS) , Platform
as a Service (PaaS), and Function as a Service (FaaS) do no longer require manag-
ing the underlying hardware infrastructure, by taking advantage of the benefits of
cloud computing technologies like resource pooling [188, 209]. Virtual Machines
(VMs), container technologies, and orchestration tools form the backbone of mod-
ern deployment strategies [209, 210]. Nowadays, cluster management architectures
and new service models enable developers to abstract away hardware nodes when
deploying a system [209]. Virtualization clusters include service discovery and or-
chestration mechanisms that allow developers to monitor, scale, and balance the
load for different components of the systems at runtime [163].

With the growing role of IoT devices at the edge of the network, larger amounts
of data produced by IoT systems, as well as a shift from data consumers to data pro-
ducers, the bandwidth, computation power, and latency of cloud based systems are
becoming a bottleneck of traditional client-service architectures [257]. Edge com-
puting addresses these challenges by enabling computations in proximity to the
data sources by performing these on smartphones, gateways, micro data centers,
or cloudlets located at the edge of the network [257]. Going beyond the character-
istics of edge computing, fog computing enables ubiquitous, scalable, dynamically
reconfigurable, and context-aware access to smart and interconnected devices [139].
Heterogeneity of data acquired through multiple types of network communication
capabilities has to be processed while requiring the interoperability of different ser-
vices [139].

26

2.2 Distributed Systems

2.2.1 Web Service Interface Types

Web service interfaces are instantiated using web service APIs and provide a struc-
tured way to interact with web services. These web APIs behave like facades to
facilitate the communication on the application layer between distributed compo-
nents [78]. All web API types rely on passing packets between distributed instances
but can be broadly divided into three main web service interface types: remote pro-
cedure call-based APIs, message-based APIs, and resource-based APIs [78]. The
following section provides a historical overview of different web service interface
types, detailing the evolution of web service interface types and web API technolo-
gies over time.

Remote Procedure Call APIs

Remote procedure call (RPC) APIs enable the transfer of parameters across address
space boundaries, such as the execution on a remote machine, and passing results
back to the original address space [45]. RPC APIs differentiate themselves from
other web service interface types by reasoning about web services interfaces using
procedures encapsulated in packets containing procedure arguments and procedure
results [78]. Table 2.1 provides a historical overview of remote procedure call API
types and their origins as detailed in this section.

1974 • Procedure Call Protocol (PCP) [227]
1975 • Commentary on procedure calling as a network protocol [244]
1976 • A High-Level Framework for Network-Based Resource Sharing [307]
1981 • Bruce Jay Nelson: Remote Procedure Call [197]
1984 • Implementing Remote Procedure Calls [45]
1988 • Sun RPC, later Open Network Computing (ONC) RPC [3, 4, 269, 276]
1989 • Network File System (NFS) Protocol [5]
1991 • Common Object Request Broker Architecture (CORBA)1

1996 • Distributed Component Object Model (DCOM) 2

2007 • Apache Thrift [263]
2015 • gRPC3

Table 2.1: Historic overview of RPC-based API types and their origins.

In 1974 the Stanford Research Institute (SRI), represented by Jon Postel and Jim
White, published Request for Comments (RFC) 674 announcing the Procedure Call
Protocol (PCP) documents. RFC 674 details first approaches to remote procedure

1CORBA version 1.0 can be found at https://www.omg.org/spec/CORBA/1.0/.
2Microsoft released a beta version of DCOM for Windows 95 in 1996: https://news.microsoft.com/

1996/09/18/microsoft-releases-beta-version-of-dcom-for-windows-95/#Microsoft.
3Google open-sourced gRPC in 2015: https://developers.googleblog.com/2015/02/

introducing-grpc-new-open-source-http2.html.

27

https://www.omg.org/spec/CORBA/1.0/
https://news.microsoft.com/1996/09/18/microsoft-releases-beta-version-of-dcom-for-windows-95/#Microsoft
https://news.microsoft.com/1996/09/18/microsoft-releases-beta-version-of-dcom-for-windows-95/#Microsoft
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html

2 Knowledge Context

calls by referencing documentation on how to share resources and establish pro-
cedure calling interfaces instantiated for ARPANET [227]. The PCP documents
sparked discussions about designing distributed systems and remote procedure
calling as manifested in RFC 684, detailing several weaknesses of PCP and the un-
derlying mechanisms [244]. Richard Schantz suggests that remote procedure calling
is more related to inter-process communication (IPC) rather than local procedure
calls, detailing weaknesses such as the lack of long-term concurrent executions and
recovery in case of a component malfunction [244]. With the need to standardize re-
mote procedure calls in ARPANET that included 75 host installations in 1976, RFC
707 detailes a ”network-wide protocol for invoking arbitrary named functions in a remote
process” [307] based on an inter-process communication facility [305]. The High-
Level Framework for Network-Based Resource Sharing [305] provides an application-
independent protocol providing programmers access to remote resources using a
request-response protocol [305, 307]. James E. White of the Augmentation Research
Center at the SRI further extends the presented Distributed Programming System
(DPS) ”and standardizes other common forms of process interaction to provide a more pow-
erful and comprehensive distributed programming system” [306], laying the foundation
for further research about remote procedure calls.

In 1981 Bruce Nelson’s dissertation defined essential properties of remote proce-
dure call mechanisms, building one of the first formal definitions of remote proce-
dure calls: ”uniform call semantics, binding and configuration, strong typechecking, pa-
rameter functionality, and concurrency and exception control” [197]. Birrell and Nelson
further explain the structure of RPC mechanisms and implementing RPC services
in their paper Implementing Remote Procedure Calls [45]. Their paper describes a typ-
ical implementation for modern RPC middleware- and protocol-type containing a
client stub transmitting call packets. The process includes a way to identify the re-
mote procedure and arguments that invokes the procedure implemented based on
a service stub on the remote instance and returns a packet with the results back to
the client stub that is mapped to a format the client can interpret [45].

As shown in Table 2.1, many different RPC middleware- and protocol-types have
been developed and used to communicate in distributed systems and create web
services. Sun’s Remote Procedure Call messaging protocol documented in RFC 1050
and 1057 in 1988 is designed independent of the transport protocol and in its first
version was implemented to be able to use both the TCP/IP and the UDP/IP pro-
tocol stacks [3, 4]. Sun RPC and the Sun Network Filesystem (NFS) also use RPC
mechanisms to communicate with remote instances; both use the External Data Rep-
resentation (XDR) to encode data and describe data formats across distributed and
heterogeneous instances [2, 5]. The second version of Sun RPC, now named Open
Network Computing (ONC) RPC, was released in 1995 and further developed un-
til its current version in 2009 [269, 276]. Remote function calls, an object-oriented

28

2.2 Distributed Systems

approach of RPC, was instantiated with Java Remote Method Invocation (RMI) as
”a robust and effective way to build distributed applications in which all the participating
programs are written in Java” [120]. The Common Object Request Broker Architec-
ture (CORBA)4, and the Distributed Component Object Model (DCOM)5 are further
examples of RPC-based middleware- and protocol-types. CORBA offers discovery
mechanisms and an Interface Definition Language (IDL), named CORBA IDL, used
for defining the contractual interfaces of a CORBA component independent of a
programming language [205].

After message-based and resource-based API types gained traction in the last 20
years, various modern RPC web API types such as Apache Thrift and gRPC revived
RPC frameworks for usage in web services offered by large tech companies develop-
ing the RPC frameworks: gRPC and Apache Thrift [138, 263]. Apache Thrift was de-
veloped at Facebook, first described in a white paper in 2007, and a successor to the
internal Pillar RPC framework developed at Caltech and Facebook [263]. Apache
Thrift is a framework and code generation tool enabling developers to build RPC
connections between distributed components [263]. Apache Thrift allows develop-
ers to express interfaces in an RPC-specific interface definition language, enabling
flexibility in the choice of the underlying transport mechanism (e.g., HTTP, files on
disk, or sockets) and transport representation (e.g., XML, ASCII text, or binary rep-
resentations) [263]. Similar to Apache Thrift, Google open-sourced gRPC6 in 2015
as a successor to the internally used Stubby RPC framework reaching version 1.0
in 20167. gRPC is a cross-platform RPC framework that is part of the Cloud Native
Computing Foundation (CNCF) using HTTP/2 as the wire transport protocol and
Protocol Buffers as the interface definition language and high-performance, binary
serialization format [138].

Message-Based APIs

Deriving a web service API from signatures of remote procedures introduces web
API evolution-related challenges due to the resulting changes in the client code, re-
quiring careful planning and additional collaboration between web service clients
and web service developers [78]. Daigneau defines message-based APIs as inter-
faces that do not tie messages to specific procedures, but use self-descriptive mes-
sages sent to Uniform Resource Identifiers (URIs) where ”a web service deserializes
and inspects the message, then selects an appropriate procedure (i.e., handler) to process
the request” [78]. The term message-based APIs is ”derived from the emphasis that is

4The CORBA specification can be found at https://www.omg.org/spec/CORBA.
5The DCOM specification can be found at https://docs.microsoft.com/en-us/openspecs/windows

protocols/ms-dcom.
6The gRPC open-source project can be found at https://github.com/grpc/grpc.
7Blog post announcing gRPC version 1.0: https://cloud.google.com/blog/products/gcp/

grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments.

29

https://www.omg.org/spec/CORBA
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom
https://github.com/grpc/grpc
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments

2 Knowledge Context

placed on message design” [78] that the involved stakeholders agree on and are often
expressed in various interface definition languages [78].

As noted in RFC 684-Commentary on procedure calling as a network protocol, RPC
mechanisms have limitations that can be addressed with message-based APIs such
as longer-running tasks or queued operations that can be better modeled with mes-
sage-based APIs [244]. Message passing as a concept for inter-process communi-
cation on a local machine is a decades-old technique that message passing extends
by routing messages in a network between distributed nodes [25]. A message in
message-based APIs, as well as when using message passing, is a ”logical unit of
information exchange between processes [and] queued as necessary in the sending node,
in transit, and in the receiving node” [25]. An example of a web service technology
enabling message-based web service APIs is the WebSocket protocol, which web
browsers provide as a built-in functionality offering a TCP message-based bidirec-
tional communication with web services [189].

Another example is the Simple Object Access Protocol (SOAP). Even though
SOAP defines an XML-based RPC mechanism and protocol (XML-RPC), its under-
lying mechanism conforms to the criteria defining message-based APIs according to
Daigneau [78, 311]. Version 1.2 of the specification refers to SOAP as an ”an extensible
messaging framework providing a message construct that can be exchanged over a variety
of underlying protocols” [191]. The SOAP design goals are simplicity and extensibil-
ity, focusing on the core message exchange using the Extensible Markup Language
(XML) for serialization and supporting a wide variety of transport protocols includ-
ing HTTP messages [191, 311]. Similar to RPC-based APIs, message-based APIs
such as SOAP often use service descriptors instantiated using interface definition
languages such as the Web Services Description Language (WSDL) and Web Appli-
cation Description Language (WADL) to describe the web API and allow clients to
generate client stubs to communicate with the web service [78]. The following sub-
section about domain-specific languages for web services provides a more detailed
overview of mechanisms used for service descriptors and different instantiations
using IDLs.

Created in 2012 and open-sourced in 2015, GraphQL is a message-based API
middleware allowing clients to query and modify data using an execution engine
hosted on a web service [93]. Message-based web APIs such as GraphQL rely on
HTTP to express the functionality of the web API and transfer data over HTTP be-
tween web services and clients [219]. In accordance with the definition of a message-
based API mentioned above, GraphQL APIs typically only offer a single HTTP end-
point, which dispatches requests to Handlers (most often GraphQL resolvers) that
query or modify data to produce a response that is then aggregated and returned to
the client [219].

30

2.2 Distributed Systems

Resource APIs

Most web services require application-domain-specific APIs that intreact with data
using create, read, update, or delete (CRUD) operations [78]. Resource APIs map
these concepts of the application domain to resources, standardized resource inter-
actions mapped to URIs, resource representations, and HTTP methods expressing
operations performed on these resources [78, 131]. Typical resource representations
include XML and JSON as well as HTTP status codes to represent resources and the
success or failure of an operation [78].

Defined by Roy Fielding in 2000, the Representational State Transfer (REST) ar-
chitectural style constrains the exchange of resources, mostly implemented using
HTTP messages, by offering no IDL and using Hypermedia As The Engine Of Ap-
plication State (HATEOAS) to link resources [96]. The REST architectural style lever-
ages application layer protocols such as HTTP as a foundation to transfer data and
to define the semantic of a web API [78, 96]. Resource-based APIs as defined by
Daigneau can adhere to the more strict REST constraints defined by Fielding, which
are described in more detail in Part II: client-server, stateless, cache, uniform inter-
face, layered system, and optionally code-on-demand [96].

Less strict HTTP- and JSON-based specifications, such as JSON-API8, provide
a further example of resource based web service interface types. Interface def-
inition languages like OpenAPI9 and the RESTful Service Description Language
(RSDL) [239] allow developers to provide service descriptions of resource-based
APIs and are further described in the following section.

2.2.2 Domain-Specific Languages for Web Services

General-purpose programming languages are Turing-complete computer languages
with different abstraction levels used to implement procedures that can, e.g., be
compiled or interpreted [293]. Program comprehension is a research field that inves-
tigates the understanding of source code by seeing code as an artifact that machines
and programmers consume [60]. As von Mayrhauser and Vans state that ”Program
understanding is a major factor in providing effective software maintenance and enabling
successful evolution of computer systems” [297]. In particular, adapting, perfecting,
and correcting a software system requires a developer to have a mental model of
the system, including the source code, the software architecture, requirements of
the system, and suiting context in the problem domain [297]. Concepts such as
declarative programming and domain-specific languages aim to increase program
comprehension by providing a limited expressiveness by focusing on a domain that
can be fluently and expressively described [107].

8The JSON-API specification is available at https://jsonapi.org/format/1.0.
9The OpenAPI specification is available at https://swagger.io/specification.

31

https://jsonapi.org/format/1.0
https://swagger.io/specification

2 Knowledge Context

In contrast to general-purpose programming languages, Domain-Specific Lan-
guages (DSLs) target a specific problem area, focusing their syntax and semantics to
that problem domain and hiding the complexity of the solution domain [111]. Mar-
tin Fowler defines a domain-specific language as ”a computer programming language
of limited expressiveness focused on a particular domain” [107]. In addition to program-
ming, domain-specific languages can also be used to describe software from other
viewpoints, such as Domain-Specific Modeling Languages (DSMLs) used in Model-
Driven Development (MDD) [157]. External or standalone DSLs express an aspect
of a software system using a custom syntax or language such as XML or JSON that is
different from the primary programming language used to implement the software
system [107]. Definition 9 defines externals DSLs for the scope of this dissertation
based on definitions provided by Fowler [107] and Verna [290]:

Definition 9 – External Domain-Specific Language:
External domain-specific languages are autonomous languages that use a cus-
tom syntax to express domain-specific information.

In contrast to external DSLs, internal or embedded DSL are represented in general-
purpose programming languages used to implement the software system and bene-
fit from features found in integrated development environments such as code com-
pletion and compiler-level features such as type checking for strongly-typed lan-
guages [107, 290]. Definition 10 defines internal DSLs for the scope of this disserta-
tion based on definitions provided by Fowler [107] and Verna [290]:

Definition 10 – Internal Domain-Specific Language:
Internal domain-specific languages stylize features of general-purpose program-
ming languages to offer fluent domain-specific interfaces.

The increase in software complexity, in particular in distributed systems, has
led to an increasing number of domain-specific languages [157]. While general-
purpose programming languages are used mostly to express the functionality of
web services, domain-specific languages are used in more specialized categories
to build, describe, orchestrate, choreograph, and model web services [157]. The
HyperText Markup Language (HTML) and Cascading Style Sheets (CSS) are ex-
amples of domain-specific languages to express the layout and style of websites,
while the Structured Query Language (SQL) is a domain-specific language used to
write database queries [107, 111]. The Web Services Description Language (WSDL)
and other interface definition languages described in the following subsection are
domain-specific languages used to specify, describe, and document web service
APIs [192]. DSLs like the Web Services Business Process Execution Language (WS-
BPEL), originating from the Web Services Flow Language (WSFL) [175], can build

32

2.2 Distributed Systems

on top of interface definition languages to describe processes involving multiple
web services [19, 147]. Similarly, the Web Services Conversation Language (WSCL)
builds on top of the WSDL to define the choreography of interactions between ser-
vices as transitions and conversations [28]. As noted in Chapter 1, web service
clients interact with web services using their interfaces. Therefore, interface defi-
nition languages are especially interesting when further discussing web service in-
terface evolution in Chapter 3 as well as web service API evolution in Chapter 4.

Interface Defintion Languages

Daigneau notes that ”A Service Contract can be thought of as an agreement that specifies
how clients and services may interact” [78]. These contracts can be made implicitly by
using predefined specifications, such as the HTTP specification providing a uniform
interface for RESTful APIs, or explicitly by using specifications defined using inter-
face definition languages [78]. Interface definition languages allow to specify the
interface syntax of an API, excluding semantics, ordering, and other non-functional
constraints [19, 272]. Using IDLs to describe web services also implicitly includes
constraints resulting from the middleware- and protocol-types defined or express-
ible with the IDL that must be known to the web service client or tools to generate
client stubs [19]. Properly specified interfaces that are complete and neutral enable
interoperability and portability of web services but lack implementation-specific de-
tails about the inner workings of the web service that can differ between different
implementations of the same web service interface [272].

RPC APIs use IDLs to express procedures, arguments, and return types that can
be used to generate client and service stubs, e.g., Apache Thrift uses the Thrift IDL
to express interfaces [263] and gRPC uses the Protocol Buffer IDL [138]. Similarly,
middleware types like CORBA use the Object Management Group (OMG) IDL to
specify the CORBA interface of services and generate client and code stubs that can
be used as a starting point of an implementation, and abstract away the network
and serialization logic [205].

The Web Services Description Language (WSDL), standardized by the World
Wide Web Consortium (W3C), is a commonly used XML-based interface definition
language with version 2.0 being released in 2007 [192]. WSDL uses operations to ex-
pose the functionality of a web service while ”an XML Schema defines the structure, the
containers, and the types that are represented in the messages used for interacting with that
service” [36]. In contrast to most IDLs, WSDL does not rely on an implicit mapping
to a middleware or protocol type but features an abstract definition of interfaces
(port types in WSDL 1.1) consisting of different operations that exchange input, out-
put, and faults using types (messages using types in WSDL 1.1) defined in the XML
Schema [19, 75, 192]. These abstract interfaces and operations are instantiated using
multiple transmission protocol bindings, while types are mapped to message format

33

2 Knowledge Context

bindings that specify the concrete service aspects of the abstract definitions [19, 192].
In the WSDL, IDL services describe the interface of a web service using endpoints
(ports in WSDL 1.1) that map bindings associated with abstract interfaces to a net-
work address to fully describe the web service [192]. Moving from WSDL 1.1 to
WSDL 2.0 added support for all HTTP methods and reorganized and renamed sev-
eral aspects of WSDL 1.1 to simplify the specification of web services while still
being criticized for being overly complex because ”it is not meant to be directly created
or read by humans” [78] but to be used with specialized tools and IDEs [78]. In sum-
mary, the WSDL can be used as a traditional service description language and input
to generate service and client stubs while keeping the non-functional concerns, ser-
vice semantics, and implementation details out of the WSDL specifications [19].

The Web Application Description Language (WADL) [125], OpenAPI, and REST-
ful Service Description Language (RSDL) [239] focus on providing an IDL for REST-
ful and HTTP message based web services even though REST specifies no need for
an IDL due to its uniform interface, e.g., using the HTTP protocol and links [78, 96].
The Web Application Description Language features XML-based textual documen-
tations and specifications of HTTP-based web services, including the definition of
resources, requests, and responses [125]. An OpenAPI document10 features similar
descriptions for RESTful APIs to document requests, responses, and exchanged data
types to document, generate client or web service stubs, or test the web service API.
The RESTful Service Description Language (RSDL) provides an XML schema for
documenting RESTful APIs by taking ”a purist hypermedia-driven approach to REST
design, requiring that a service have a single entry point, and focusing the design on re-
sources, links, and media types” [239].

10The OpenAPI specification can be found at https://swagger.io/specification/.

34

https://swagger.io/specification/

Part II

Problem Investigation

TTH problem context of a design science project contains existing software,
processes, methods, and other related artifacts [309]. Wieringa states that
”It is the interaction between the artifact and a problem context that contributes to

solving a problem” [309]. Therefore, it is essential to investigate and understand the
problem context that contains existing software, methods, processes, and techniques
used when dealing with the evolution of web services.

The problem investigation part is divided into three chapters.
Chapter 3 investigates web service interface evolution and the impacts on web ser-
vice development, including the design of a web service UML metamodel.
Chapter 4 addresses web service API evolution by providing insights into the chal-
lenge, classifications, and current treatments of API evolution in general and web
API evolution in specific.
Chapter 5 describes current challenges and approaches to deal with web service
deployment evolution including metadata-based annotation models.

35

36

Chapter 3

Web Service Interface Evolution

Web service interface evolution is a subset of web service evolution. Web service
interface evolution is concerned with the instantiation of the web service interface
using web API types and the evolution of web service technologies during the life-
time of a web service:

Web Service Interface Evolution (Definition 6)
Web service interface evolution encompasses the additions, removals, or evolu-
tion of web service API, middleware, or protocol types.

Web service interface evolution is distinct from web service API evolution (Def-
inition 7, page 7). In contrast to web service interface evolution, web service API
evolution is concerned with how the evolution of the web service interface itself is
manifested in different web API types and how this evolution affects web service
clients consuming the service using a specific API type. These web API types can be
grouped into three web service interface types: remote procedure call-based APIs,
message-based APIs, and resource-based APIs [78]. Section 2.2.1 provides a detailed
historical overview of web API, middleware, and protocol types from all three web
service interface types.

Incorporating the wide range of web API types challenges system designers.
Modern computing architectures such as cloud, edge, and fog computing often
include a broad set of heterogeneous components with different interface require-
ments [188, 139]. Chen and Kazman introduce the classification of edge-dominant
systems as ”one that depends crucially on the inputs and resources of its users for its
success” [72]. Edge-dominant systems, such as Wikipedia, Facebook, Twitter, or
Youtube, can be described by the Metropolis structure and held together by a core
software that provides services using different web APIs that are offered to devel-
opers, consumers, and producers [31]. The Metropolis structure has several impli-
cations on the software architecture, such as high modularity of the core and the
requirement that core APIs are well-documented, and the description technology,

37

3 Web Service Interface Evolution

as well as the descriptions, must be kept up-to-date [31]. Supporting web API types
for changing web technologies, in particular web protocol and middleware types, is
essential to retain and gain developers writing software that creates an ecosystem
around the core components.

Modifiability is the ”quality of a system describing how easily existing models can
be modified” [62] to incorporate changes in a software system, including changes
to technologies, protocols, and standards [31]. Modifiability is enabled by divid-
ing a software system into services that offer interfaces and strive for low coupling
and high cohesion to replace and evolve individual subsystems easily [62]. There-
fore, it is desirable to have low coupling between the functionality and the web
service API implementation. Designing modifiable web services is therefore essen-
tial and a challenge as using a specific middleware or protocol on the application
layer heavily influences the structure of components. In addition, correctly imple-
menting middleware- and protocol-specific details of web API types requires expert
knowledge. A lack of knowledge poses the challenge that interfaces might not con-
form to web API type specifications. Interfaces that do not conform to specifications
require producers and consumers to carefully examine each interface individually
to integrate it into their system.

A typical approach to creating software is model-driven development. Model-
driven development allows developers to validate models in combination with other
artifacts and generate data models, as well as web service- and client-stubs based on
the models [260]. Model-driven development of web services can be performed us-
ing textural and graphical modeling notations or interface definition languages that
capture web API-specific contextual information [272]. This approach is also re-
ferred to as design by contract, contract-first, or design-first development when the
modeling of the web service API is performed using service description languages
as detailed in Section 2.2.2 [78, 89, 132]. Interface definition languages and models
mainly capture the syntax of web services while the semantics of the interfaces are
manifested in the implementation of the web service [272]. Changes to the web tech-
nologies require the regeneration of source code stubs and result in a distribution of
functional and non-functional concerns across the models, IDL definitions, and the
application domain logic.

Alternatives to the contract-first approach of developing web services is the code-
first approach. In the code-first approach, web service developers ”take the inter-
nal code implementing the given business logic and generate service descriptions from that
business logic” [260] that can then be distributed to web service clients. Some web
API types do not require service descriptions, that rely on a uniform interface im-
plemented in a code-first approach instead, allowing the discovery of functionality
using a concept like hypermedia as the engine of application state (HATEOAS) in
RESTful web services [96]. While contract-first approaches enable extensive control

38

3.1

over the structure and formatting of the exchanged messages, they require expert
knowledge of the specific definition languages [78]. Contract-first approaches also
introduce a high coupling between the service description artifacts and the source
code, as they require the regeneration of source code stubs on the web service and
client [78]. Code-first approaches benefit from fast prototyping times, not requiring
maintaining separate IDL artifacts and generating source code stubs while forfeiting
control over the concrete message structure [78].

Code-first or model-based approaches both introduce tradeoffs resulting in re-
duced maintainability in return for faster protocol, technology, or middleware-speci-
fic results. Using the metaphor of minimally invasive procedures11, our research
aims to introduce minimally invasive extension points addressing evolvability by
combining the benefits of both approaches resulting in evolution-focused web ser-
vice engineering artifacts. Designing this minimally invasive approach requires the
investigation of challenges and solutions to address web service interface evolution
in existing model and code-first methods. These approaches are manifested in dif-
ferent web service API-, middleware-, and protocol-types. Knowledge Question 1
formalizes this problem investigation based on Knowledge Goal 1.

Knowledge Goal 1:
Identify generalizations and specializations of different web service interface,
web service API, middleware, and protocol types.

Knowledge Question 1:
What are the similarities, patterns, and differences of web service interface-, web
service API-, middleware-, and protocol-types?

Section 3.1 highlights aspects of model-first and code-first approaches enabling
web service interface evolution. Based on these insights from the problem context,
conceptual frameworks ”can be used to frame a research problem, describe phenomena,
and analyze their structure” [309]. Section 3.2 describes such a conceptual framework
around web service development by presenting a web service metamodel, building
the foundation of the creation of new artifacts to develop and evolve web services
as described in Part III addressing Instrument Design Goal 1.

Instrument Design Goal 1:
Develop a metamodel to inspect generalizations and specializations of middle-
ware, protocol, and deployment structures and processes.

11Minimally invasive medical procedures describing surgeries that reduce the size of incisions and there-
fore reduce their risk.

39

3 Web Service Interface Evolution

3.1 Related Work

The related work section provides an overview of relevant web service interface
evolution research and approaches. Section 3.1.1 describes different service descrip-
tion languages that can be used to express multiple web API types, enabling reuse
across different web API types. Section 3.1.2 showcases adapter-based approaches
to enable web service interface evolution by exposing different web API types using
adapters to convert the interface of a legacy web API type. Section 3.1.3 collects sev-
eral modeling-based approaches for web service interface evolution, such as meta-
models for web service interfaces as well as model-based web service development
approaches.

3.1.1 Service Definition Languages

Chapter 2, and especially Section 2.2.2 about web service description languages,
provides an overview of different domain-specific languages that can be used to
model web service interfaces. While most interface definition languages are specific
to a single API type, some modeling and definition languages allow modeling web
services for different web API types.

A prominent example already shortly described in Section 2.2.2 is the Web Ser-
vice Description Language (WSDL). The latest version of the specification from 2007,
WSDL 2.0, defines that ”WSDL 2.0 describes a Web service in two fundamental stages:
one abstract and one concrete” [192] while focusing on message-based APIs: ”At an ab-
stract level, WSDL 2.0 describes a Web service in terms of the messages it sends and receives;
messages are described independently of a specific wire format using a type system, typically
XML Schema.” [192]. WSDL interfaces contain operations that are defined by a com-
bination of message exchange patterns and messages [192]. This abstraction layer
provides the WSDL the possibility to describe different message-based web service
interfaces while bindings describe the ”concrete message format and transmission pro-
tocol which may be used to define an endpoint” [192]. Part 2 of the specification Web
Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts [204] defines con-
crete bindings to SOAP 1.2 and HTTP.

In addition to bindings, WDSL offers predefined message exchange patterns and
operation styles. Operation styles define additional information and constraints
about operations, especially on the messages and faults that can be exchanged with
the web service [192, 204]. The Web Services Description Language (WSDL) Version
2.0 Part 2: Adjuncts defines several operation styles such as a remote procedure
call (RPC) style, Internationalized Resource Identifier (IRI) style, and a multipart
style [204]. Operation styles such as the RPC style provide constraints for the mes-
sages that are associated with an operation as well as message exchange patterns,
e.g., the in-only and in-out message exchange patterns for the RPC style [204].

40

3.1 Related Work

While WSDL 2.0 is primarily focused on message-based web API types, opera-
tion styles such as the RPC style and possible extension points using bindings also
allow the creation of RPC-based APIs. While a WSDL document can provide an
abstract overview of the interfaces offered, its proprietary XML-based syntax differs
from IDL definitions from modern RPC standards described in Section 2.2.1. Sup-
porting these interface types would require an automatic or manual translation of
WSDL documents to, e.g., Protocol Buffer definitions for gRPC based interfaces.

The HTTP binding builds the foundation to model resource-based web APIs us-
ing WSDL 2.0. While API types such as the RESTful API style and its uniform inter-
face requirement build on the expectation of dynamic discovery of resources using
HATEOAS, WSDL documents can be used to generate API interfaces similar but not
out of the box conformant to RESTful APIs. In addition to the HTTP binding, they
require additional logic in the service-side stubs or annotations in the XML descrip-
tion to more closely fulfill the uniform interface requirements of RESTful APIs such
as HATEOAS most often achieved using a code-first approach.

In their paper A Metamodel for the Web Services Standards, Simon et al. describe
a metamodel for service-oriented architectures (SOAs) (Section 3.1.3) as well as the
domain-specific SOA language (SOAL) for describing web services [259]. SOAL
offers a top-down development approach based on a compact domain-specific lan-
guage to describe platform-independent web services that can be used to ”generate
WSDL, program code and configuration files for the various SOA products” [259]. As
the SOAL language includes a limited subset of WSDL options constrained by their
metamodel, that enables a compact representation of web service interfaces that are
translated into more verbose service definition specifications [259].

Rademacher et al. present an external DSL similar to the WSDL for describing
web services in a technology-independent description supporting the SOAP pro-
tocol and RESTful web APIs [231]. The DSL introduces several generalizations that
are expressed in the service specification language, including request, response, and
basic types to formulate the content of a request and response [231]. A code genera-
tion component parses the DSL and generates boilerplate code that is subsequently
filled with application domain logic provided by the web service developer [231].

Based on the investigation of the service definition languages for web service
interface evolution, we conclude that the overall approach of abstracting web API
types into a common interface is a promising approach. At the same time, the com-
plexity of these languages and the disconnect between source code and specifica-
tions needs to be addressed. The most prominent example, the WSDL, enables a
contract-first development workflow enabling web service interface evolution by
defining different bindings and operation styles and therefore offers essential in-
sights and learnings for the research conducted in this dissertation. The complex-
ity of the WSDL’s XML-based syntax eventually led to a decrease in usage and

41

3 Web Service Interface Evolution

ultimately to no further development of the WSDL standard beyond version 2.0.
Advancements in web technologies resulted in the usage of more specialized and
less verbose service specifications such as OpenAPI for HTTP message-based APIs.
WSDL documents and code skeletons created from languages like SOAL can sub-
sequently be used to generate client and web service stubs filled with application
domain-specific logic not expressible in the external domain-specific language. The
DSL developed by Rademacher et al. provides a promising approach for further
abstraction using an external DSL separate from the WSDL.

3.1.2 Adapters

The adapter pattern for object-oriented software as defined by Gamma et al. is used
to ”Convert the interface of a class into another interface clients expect” [109]. While the
adapter pattern, according to Gamma et al. is defined for object-oriented program-
ming, according to Buschmann et al., it ”is too broad to be considered a single pattern
at this level: it captures the general essence of a family of patterns concerned with adap-
tation” [67]. This section demonstrates the decades-old research field that applies
adapter patterns to address web service interface evolution.

Aversano et al. demonstrate how evolving services with no web API, such as
moving legacy systems written in COBOL to web-enabled services, involves cre-
ating adapters wrapping the existing functionality into components to expose the
functionality as a web service, including web pages [26]. Bridging technologies, as
presented by Futoonhi et al., addressed the interoperability between different ser-
vices by bridging the communication between different middleware- and protocol-
types such as Distributed Computing Environment (DCE), CORBA, and DCOM de-
scribed in Section 2.2.1 [95].

As described in Section 3.1.1, WSDL and SOAP-based web services have been
evolving to support more or less RESTful APIs by taking advantage of the uniform
interfaces defined by RESTful APIs relying on HTTP as the transport protocol. Pro-
tocol adapters such as the SOAP to RESTful HTTP mapping (StoRHm) developed
by Kennedy et al. enable a client-side mapping between existing SOAP-based web
services and already defined RESTful web APIs while transmitting the same infor-
mation as the SOAP-based instance [154]. Using protocol adapters such as StoRHm
allows gradual client-side transitions from one web API type to the other by hid-
ing the mapping behind the adapter while taking advantage of the benefits of the
newly adopted or in-parallel used web API type [154]. StoRHm relies on a se-
mantic layer, similar to how domain-specific languages can use semantic models
that SOAP descriptions are transformed into, and RESTful schemas are generated
out of [153]. Due to the SOAP-specific information provided in WSDL schemas,
this approach offers several limitations, including that HTTP PUT and POST re-
quests rely on unaltered XML-based SOAP messages that have to be understood

42

3.1 Related Work

by a RESTful web service [153]. Even though service-side adapters enabling web
service interface evolution are mentioned in future work, all published versions of
StoRHm solely apply to the client-side, requiring the existence of a RESTful web
service [153]. In contrast to StoRHm, Upadhyaya et al. present a sophisticated web
service-based adapter and migration approach to transforming SOAP-based web
services to offer RESTful web APIs [285]. The paper Migration of SOAP-based Ser-
vices to RESTful Services presents a multi-step process of identifying resources and
HTTP methods based on WSDL definitions by clustering operations and generating
wrappers and configurations to SOAP messages to RESTful HTTP messages [285].
Research by Strauch and Schreier showcases RESTify, a procedure model to trans-
form RPC-inspired web APIs using WSDL documents to HTTP-based RESTful web
APIs [271]. RESTify is based on a three-step process: first, split the service into dis-
trict resources, apply a uniform interface, and therefore bridging the gap between
operations and resources and in a third step, refining hypermedia as the engine of
application state (HATEOAS) [271]. The focus on HATEOAS is crucial to fulfilling
the constraints defined by the RESTful architectural style and especially important
as it is most often missed in other adapter-based tools such as StoRHm [154] and the
adapter presented by Upadhyaya et al. [285]. When transforming abstract service
interfaces to RESTful interfaces, the artifacts designed as part of this dissertation
need to assure that information required to support HATEOAS is inferred from the
service interface and can be refined by the web service developer.

As described in Section 2.2.1 GraphQL is a modern message-based API type
starting to gain traction in replacing RESTful web APIs by reducing response sizes
compared to RESTful APIs [58]. Brito et al. demonstrate the reduction in response
size in a practical assessment that creates a GraphQL-based wrapper adapter around
a RESTful API [58]. Similarly, Wittern et al. present the reusable OASGraph tool
that generates GraphQL-based adapters for existing RESTful APIs described by
OpenAPI documents [312]. OASGraph contains a multi-step process that trans-
lates types in an OpenAPI specification to GraphQL types, removes duplicates, pro-
vides a translation between OpenAPI types and GraphQL types, creates resolver
functions, and gathers nested data using the HATEOAS links information stored
in OpenAPI specifications [312]. Similar to OASGraph, the Swagger-to-GraphQL12

and GraphQL Mesh13 open-source projects allow to create a GraphQL wrapper
based on other web service description artifacts of legacy web services. Hernandez-
Mendez et al. present a model-based approach to generate RESTful web services
that query and compose several web services, including GraphQL-based web ser-
vices, blurring the line between an adapter-based approach and model-based ap-
proaches as discussed in Section 3.1.3 [130].

12Swagger-to-GraphQL can be found at https://github.com/yarax/swagger-to-graphql.
13GraphQL Mesh can be found at https://github.com/Urigo/graphql-mesh.

43

https://github.com/yarax/swagger-to-graphql
https://github.com/Urigo/graphql-mesh

3 Web Service Interface Evolution

3.1.3 Model-Based Approaches

As described in more detail in Section 3.2, UML can be extended using profiles and
stereotypes that enable ”the use of specific terminology or notation” [13]. Toward UML
Profiles for Web Services and their Extra-Functional Properties by Ortiz and Hernan-
dez presents a metamodel to express non-functional concerns in middleware and
protocol-independent ways [208]. Integrated into the WS-* ecosystem (described in
more detail in Section 5.2.2), the introduced UML profile and UML stereotypes can
be used to generate WS-Policy standard-based documents [208]. Similar to Ortiz
and Hernandez, Wada et al. also present a model-driven approach to express non-
functional concerns when developing web services, focusing on a model-driven de-
velopment (MDD) framework [298]. The presented UML profile contains several
stereotypes ”to specify service-oriented applications: service, message exchange, message,
connector and filter” [298]. The UML profile can be used to specify and evolve ser-
vices that are transformed into source code using a presented MDD tool, improving
the reusability and maintainability of web services by abstracting implementation-
related details in the UML models [298].

Kchaou et al. define WS-UML: a UML profile for web service applications, addressing
web service specific aspects currently not specified in UML: security, composition,
quality of service, the community of service and functionality, as well as execution
traces [151]. In addition, Kchaou et al. present a UML metamodel, describing web
services based on the abstract level of the WSDL and therefore independent of the
web API type, enhanced with the five perspectives derived from the UML profiles
which are described in the publication [151]. The UML profiles, as well as the UML
metamodel, can be used to increase the expressiveness of UML models, allowing
developers to map concepts from the application domain and solution domain to
concepts to WSDL based web services. According to Kchaou et al. this increases the
comprehension of WS-* based concepts while explicitly providing modeling tools
for the mentioned five perspectives [151].

Elyacoubi et al. present a UML metamodel combining aspects of the WSDL and
an extension defined by the Semantic Annotations for WSDL and XML Schema
(SAWSDL) standard [88]. SAWSDL enables semantic annotations to several parts of
WSDL specifications, enabling the mapping of XML schema types to semantic mod-
els such as modeling established ontologies [94]. The metamodel allows web service
developers to add organization-adopted semantic model annotations to UML-based
web service models, enabling web service interface evolution across different encod-
ing representations [88].

Standardized by the Object Management Group (OMG), ”The Service oriented ar-
chitecture Modeling Language (SoaML) specification provides a metamodel and a UML
profile for the specification and design of services” [11]. SoaML enables developers to
specify web services, including their functional and non-functional concerns, using

44

3.2 Related Work

extensions of the UML [11]. This enables SoaML users to focus on service model-
ing aspects. The metamodel contains the core concept of services that are offered
using UML ports using the service stereotype [11]. Stakeholders can use services of-
fered using ports using the request stereotype [11]. SoaML embraces a model-driven
architecture approach that enables web service interface evolution using different
technology profiles. SoaML enables simpler interfaces that embrace a one-way inter-
action similar to PRC-based interfaces, as well as service interfaces for bidirectional
services that include callbacks or sophisticated choreographies [11].

Simon et al. present a metamodel incorporating aspects of the WS-* standards
including security, reliability, and transactions, allowing web service developers to
model platform-independent web services [259]. The SOA metamodel (SoaMM) by
Simon et al. provides UML extensions in the form of stereotypes enabling a top-
down development approach for web services using the WS-* protocols [259]. The
metamodel builds the foundation for the SOA Language (SOAL) described in Sec-
tion 3.1.1 and can be used to model web services in a platform-independent way by
describing interface and middleware related aspects [259]. The expressiveness of the
metamodel is limited to a subset of possibilities in the WSDL and WS-* extensions
and, therefore, similar to the other WSDL-based metamodels.

Fokaefs and Stroulia present WSMeta: A Meta-Model for Web Services to Compare
Service Interfaces, identifying a common ground between the WSDL which mainly
focuses on SOAP based web API types and the XML-based Web Application De-
scription Language (WADL) which focuses on describing HTTP based web APIs
such as RESTful APIs [103]. The metamodel offers a generalization of the WSDL-
and WADL-specification that allows the transformation of one specification to the
other, enabling web service interface evolution for a subset of web service specifica-
tion languages that can be abstracted using WSMeta [103].

Garriga and Flores present a metamodel for heterogeneous web services driven
by standards such as SoaML, WSDL 2.0, and WADL and verify its extensibility by
applying it to HTTP-based IDLs such as OpenAPI and RAML [110]. The goal of
the metamodel is to express meaningful information independent of the underlying
technology to enable the comparability of web services as well as building adapters
as described in Section 3.1.2 [110]. The publication provides a mapping between the
metamodel and SoaML, WSDL 2.0, and WADL by introducing abstractions appli-
cable to all standards as well as specialized converters to translate the metamodel
to OpenAPI and RAML specifications [110]. The metamodel presented by Garriga
and Flores provides valuable insights into abstractions needed to support multiple
different web service interface types which are applied to the metamodel presented
in Section 3.2.

45

3 Web Service Interface Evolution

3.2 Web Service Interface Metamodel

This section presents a conceptual framework for web service interface evolution
using a web service interface metamodel. Following the design science methodol-
ogy by Wieringa, the conceptual framework enables us to describe the phenomena
of web service interface evolution and provides generalizations that help express
the requirements for artifacts [309].

The presented metamodel (Figure 3.1) is a UML version 2.5-based metamodel
that uses a UML profile. The UML specification describes the UML syntax by defin-
ing the UML metamodel using metaclasses that are described using a subset of
UML [13, 16]. The UML extension syntax is defined in the Meta Object Facility
(MOF) Core Specification, showcasing the four-layered metamodel architecture con-
sisting of MOF, UML, the user model, and the user object [16].

UML and its metamodel can be extended using profiles [13]. The UML speci-
fication states that ”the intention of Profiles is to give a straightforward mechanism for
adapting an existing metamodel with constructs that are specific to a particular domain,
platform, or method” [13]. A common way to extend UML using profiles is stereo-
types. As described in the UML specification, ”A Stereotype defines an extension for
one or more metaclasses, and enables the use of specific terminology or notation in place of,
or in addition to, the ones used for the extended metaclasses.” [13]. A stereotype can have
properties and can participate in binary associations [13].

Metamodels are not exclusive to the UML but can also be expressed in several
other formalisms. Kleppe and Rensink present a graph-based semantic of UML
diagrams, presenting type graphs as an equivalent to UML class diagrams and in-
stance graphs as an equivalent to UML object diagrams [236]. Using these seman-
tics, Kleppe defines that ”A metamodel is a model used to specify a language” [157],
allowing us to define domain-specific languages based on metamodels, using ab-
stract syntax models (ASMs), concrete syntax models (CSMs), and semantic domain
models (SDMs) [157].

The metamodel shown in Section 3.2.1 enables web service interface evolution
by providing a generalization of several web service interface types and web API
types. The metamodel differs from the related work listed in Section 3.1.3 by en-
compassing all web service interface types described in section Section 2.2.1 and
being independent of any existing web service description language. The confor-
mance of different web service interface types and their instantiations in concrete
web API types to the metamodel for a resource-based (REST, Figure 3.2), a message-
based (GraphQL, Figure 3.3), and a RPC-based (gRPC, Figure 3.4) is described in
Section 3.2.2.

46

3.2 Web Service Interface Metamodel

3.2.1 Web Service Interface Metamodel

The domain presented in the metamodel is web service interface types. The meta-
model presented in Figure 3.1 is a UML based metamodel using a UML profile. The
stereotypes extend the class metatype with several web service interface concepts
that can be applied instances of web service interfaces: web API types. To enable
web service interface evolution, we define several generalizations to compare dif-
ferent web API types. These generalizations enable web service interface evolution
by designing artifacts to transform web service API types into each other or design
artifacts that allow web service development at an abstract level independent of the
web service API types. The metamodel addresses Instrument Design Goal 1.

Instrument Design Goal 1:
Develop a metamodel to inspect generalizations and specializations of middle-
ware, protocol, and deployment structures and processes.

A web service consists of several Handlers, handling requests arriving at a web
service. The concept of a Handler is derived from the web service API concepts
described by Daigneau, describing web services as programs that deserialize mes-
sages, inspect them and then select the appropriate Handler (e.g., a remote proce-
dure, message handler, or resource) to handle the request and possibly produce a
response [78]. Handlers are identified by an identifier that is used to multiplex in-
coming requests to the corresponding Handler. Requests as well as corresponding
responses contain serializations of application domain entities that are defined by
the concrete web API type.

Communication Pattern Association Request – Response

Request-response 1...1

Client-side stream *...1

Service-side stream 1...*

Bidirectional stream *

Table 3.1: Overview of possible communication patterns of a Handler in web service
interface metamodel presented in Figure 3.1. A Handler can have four different
communication patterns: request-response, client-side stream, service-side stream,
and bidirectional stream.

The communication pattern defines the multiplicity of the association between
Handlers and requests, as well as requests and a responses. The multiplicities of
these associations are not explicitly modeled in the web service interface metamodel

47

3 Web Service Interface Evolution

WebServiceInterfaceProfile

<<stereotype>>

WebService

<<stereotype>>

Handler

identifier: Identifier

1...*

1

<<metatype>>

Class

<<stereotype>>

Request

<<stereotype>>

Response

handle

respond to

contains contains
<<stereotype>>

Serialization

fields: Field[*] {unique}

Figure 3.1: The web service interface type metamodel defines several UML stereo-
types that can be used to extend UML class diagrams representing web API types.
These stereotypes include the web service stereotype that is associated with several
Handlers, handling requests and returning responses. A serialization contains sev-
eral unique fields carrying information in a serialized format. (UML Metamodel
Profile)

48

3.2 Web Service Interface Metamodel

as they are constrained on a web API level and defined on a Handler level in the con-
crete web API. The constraint of possible communication patterns is demonstrated
by the multiplicities introduced between a Handler, request and response in Fig-
ure 3.2, Figure 3.3, and Figure 3.4. We distinguish between four different communi-
cation patterns as described in Table 3.1.

A request-response pattern accepts a single request and executes the function-
ality of the Handler, producing a single response returned to the client application.
The client-side stream pattern assumes that Handlers receive several requests orig-
inating from the client application triggering functionality in the Handlers. After
the client indicates the end of the stream or the Handler terminates the stream, it
eventually returns a single response to the client application. A service-side stream
allows a client application to send a single request to a Handler that returns a stream
of responses to a client application. The bidirectional stream pattern enables an
open connection between a client application and a web service. It allows an arbi-
trary number of requests and responses to be exchanged between the distributed
instances before one instance terminates the bidirectional stream.

3.2.2 Metamodel Conformant Web API Types

The metamodel defined in Figure 3.1 provides several stereotypes describing web
service interfaces that can be applied to classes modeling concrete web API types.
This section demonstrates the applicability of the metamodel to different web ser-
vice interfaces and web API types to validate the metamodel before we design arti-
facts in Part III based on the insights gathered from the metamodel. The metamodel
and the web API types that conform to the metamodel provide answers to Knowl-
edge Question 1.

Knowledge Question 1:
What are the similarities, patterns, and differences of web service interface-, web
service API-, middleware-, and protocol-types?

RESTful Web API Model

The first web API type we investigate is a resource-based web service interface: the
RESTful API type. Several different REST-specific UML metamodels and profiles
exist to allow modeling RESTful APIs using the UML [206, 243, 252, 253]. In contrast
to the web service interface evolution-focused models presented in Section 3.1.3, the
research presented in this section focuses exclusively on the RESTful web API type.

Schreier presents a metamodel divided into a structural and behavioral model
enabling web service developers to model RESTful web services based on the Eclipse
Modeling Framework (EMF) and the Essential MOF (EMOF) specification [253].

49

3 Web Service Interface Evolution

The metamodel contains core REST concepts such as resource types and identifiers,
links connecting resources according to the HATEOAS requirement, method types
that can be mapped to HTTP methods, parameters, and media types to describe
serializations [253]. Similarly, Ormeño et al. present a small UML profile defining
several stereotypes to extend application domain models with elements from the
metamodel such as rest-controller and rest-service [206].

Schreibmann and Braun introduce a UML-based metamodel as well as a domain-
specific language, the REST Domain Specific Language (RDSL), as ways to model
RESTful web services [252]. The metamodel contains REST-specific concepts such
as resources, media types, concepts to query resources, as well as the possibility to
express caching and pagination mechanisms [252].

Rossi presents a UML profile-based approach to model-driven development of
RESTful APIs, addressing the wide variety of service description languages that can
be used to model RESTful web services such as JSON Schema, WADL, OpenAPI,
and RAML [243]. The metamodel provides a language-agnostic solution describing
the structure of a RESTful API and enables the generation of code skeletons and
API documentation without the need to introduce a new service description lan-
guage [243]. The transformation to source code and API documentation is realized
using a UML-to-RAML transformation achieved by a UML-based REST-specific
profile that allows web service developers to model RESTful APIs using resource,
resource path, and HTTP method stereotypes [243].

Figure 3.2 presents a model for RESTful web APIs conforming to the metamodel
presented in Figure 3.1 using the terminology defined by Fielding [96]. A RESTful
web service marked with the web service stereotype is composed with several re-
sources handling incoming requests. The resource type is therefore marked with the
Handler stereotype. Resources are identified by unique resource identifier as well
as metadata associated with it, enabling the creation of HATEOAS links and other
elements needed to from a uniform interface of a RESTful API. As noted by Fielding,
RESTful APIs are not restricted to a specific communication protocol and serializa-
tion even though most RESTful APIs use HTTP and JSON as the serialization mech-
anism [96]. The extensibility of the RESTful architectural style in regards to commu-
nication protocol as well as serialization format is modeled using the HTTP request,
HTTP response, and JSON resource representation types. The JSON resource repre-
sentation is a subclass of the resource representation type annotated with the serial-
ization stereotype. Each resource representation contains specific metadata such as
resource specific HATEOAS links that are encoded in the response returned to the
web service client. As noted in several metamodels described above, the request as
well as the response contain a media type that specifies the requested serialization
format, e.g. the JSON resource representation.

50

3.2 Web Service Interface Metamodel

<<Handler>>

Resource

identifier: ResourceIdentifier
content: Content
metadata: Metadata

<<WebService>>

RESTfulWebService

<<Serialization>>

ResourceRepresentation

representation: Byte[0...*]
metadata: Byte[0...*]

encode(Resource[1...*]): ResourceRepresentation[1...*]
decode(ResourceRepresentation[1...*]): Resource[1...*]

<<Request>>

Request

controlData: Byte[0...*]
mediaType: MediaType

decode(): ResourceRepresentation[1...*]

<<Response>>

Response

controlData: Byte[0...*]
mediaType: MediaType
resourceMetadata: Byte[0...*]

1...*

1...*

respond to

* 1...*

handled

* *

contains

HTTPResponse

status: HTTPStatus
headers: HTTPHeaders
body: Byte[0...*]

JSONResourceRepresentation

bytes: Byte[1...*]

from(bytes: Byte[1...*])

HTTPRequest

identifier: URI
method: HTTPMethod
headers: HTTPHeaders
body: Byte[0...*]

*

*
containsrespond to

Figure 3.2: A model of RESTful web APIs conforming to the metamodel presented
in Figure 3.1. The core concepts of RESTful APIs are enhanced by the stereotypes
defined in the web service interface metamodel, detailing how resource-based APIs
can conform to the metamodel. (UML Class Diagram)

GraphQL-Based Web API Model

Figure 3.3 presents a UML class diagram describing the main entities that are part
of a GraphQL web API according to the GraphQL specification [93]. The GraphQL
service annotated with the web service stereotype consists of several operations han-
dling requests of a GraphQL web service. An operation is either a query providing
idempotent and safe operations to query data of a GraphQL web service, or muta-
tion, mutating data. A subscription is a subclasses of a query, providing a way for
web service clients to subscribe to changes of data returned by a query. Similar to

51

3 Web Service Interface Evolution

<<Handler>>

Operation

name: String

<<WebService>>

GraphQLService

schema: Schema

<<Serialization>>

Type

name: String

resolve(Resolver)

<<Request>>

Request

document: Document
operation: Operation[0...1]

<<Response>>

Response

data: Data
error: Error

encode(Message)

1...*

1...*

1...*
respond to

*
handle

*

root type

JSONSerialization

bytes: Byte[1...*]

from(bytes: Byte[1...*])

*

0...*

variables

HTTPRequest

identifier: URI
body: Byte[0...*]

HTTPResponse

body: Byte[0...*]

fields

Query

Subscription

Mutation

Figure 3.3: A model for GraphQL-based web APIs conforming to the web service
interface metamodel presented in Figure 3.1. The GraphQL API type presents how
an instance of a message-based web service interface can conform to the web ser-
vice interface metamodel using stereotypes defined in the metamodel. (UML Class
Diagram)

RESTful APIs, GraphQL also does not explicitly define HTTP as the only possible
communication protocol. Still, HTTP is the common choice when serving GraphQL
APIs14. Therefore, the request as well as the response types have specific HTTP-

14The official GraphQL website states that ”HTTP is the most common choice for client-server protocol
when using GraphQL”: https://graphql.org/learn/serving-over-http/.

52

https://graphql.org/learn/serving-over-http/

3.2 Web Service Interface Metamodel

based subclasses. A GraphQL request can contain several variables expressed using
the GraphQL type schema. Similarly, a GraphQL response contains a GraphQL type
as the root type of the response. GraphQL type schema is used to resolve differ-
ent types based on application specific logic possibly containing a nested resolving
process based on different fields contained in a GraphQL type. GraphQL types rep-
resent the serialization of the web service interface metamodel, most often being
instantiated by a JSON serialization.

gRPC-Based Web API Model

<<Handler>>

Method

name: String

<<WebService>>

Service

name: String

<<Serialization>>

ProtocolBufferMessage

name: String
fields: Field[0...*]

0...*

nestedMessages

<<Request>>

Request

service: String
method: String
contentType: ContentType

decode(): Message[1...*]

<<Response>>

Response

status: Status
contentType: ContentType

encode(Message)

1...*

1...*

1...*

1...*
respond to

handle

*
return type

*
parameters

HTTP2Request

identifier: URI
body: Byte[0...*]

HTTP2Response

body: Byte[0...*]

Figure 3.4: A model for gRPC web APIs conforming to the web service interface
metamodel presented in Figure 3.1. gRPC is an instance of the RPC-based web ser-
vice interface types using RPC mechanisms and patterns to offer functionality to
web service clients. (UML Class Diagram)

53

3 Web Service Interface Evolution

Figure 3.4 presents a UML class diagram describing the main entities that are
part of a gRPC web API. A gRPC service contains several methods that can be in-
voked using RPC requests. A method is a Handler uniquely identified by its name
that expects a request that can contain several parameters expressed by nesting sev-
eral gRPC Protocol Buffer messages into a single message type. Each method has a
single request and response type associated with it. Requests as well as responses
can be reused across different methods. The serialization is provided using the
Protocol Buffer message types containing several fields storing primitive types or
nested messages. The messages are only serialized and expressed in the Protocol
Buffer format defining the encoding and decoding of the data exchanged with the
web service [114]. HTTP/2 is the most common transport protocol for gRPC15 re-
quests and responses as indicated by the HTTP/2 Request and HTTP/2 response
subclasses.

Figure 3.2, Figure 3.3, and Figure 3.4 showcase three web API types conform-
ing to the web service interface metamodel presented in Figure 3.1. They validate
the conformance of the generic web service interface model to different web service
interface types and web API type instantiations: REST, GraphQL, and gRPC. The
metamodel, as well as the models describing the web API types, build the founda-
tion of the design of artifacts addressing web service interface evolution in Part III.
The conformance of the web API types guarantees that web service descriptions
designed in conformance to the metamodel can be transformed into several web in-
terface types and concrete web API types, enabling web service interface evolution.

15gRPC over HTTP/2 is described as the native gRPC protocol: https://github.com/grpc/grpc/
blob/master/doc/PROTOCOL-HTTP2.md.

54

https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md

Chapter 4

Web Service API Evolution

Web service API evolution is a subset of web service evolution concerning the evo-
lution of concrete web APIs during the lifetime of a web service. As described in
Chapter 3, web service API evolution is distinct from web service interface evolu-
tion (Definition 6, page 7). In contrast to the addition, removal, or evolution of com-
plete web API types composing web service interfaces, web service API evolution
is solely concerned with fine-grained changes in web service API.

Web Service API Evolution (Definition 7)
Web service API evolution encompasses all additions, removals, or modifica-
tions to a web service API that can be categorized into breaking and non-breaking
changes specific for each web API type.

Bruegge and Dutoit note that ”Change pervades the development process” [62]. Re-
quirements, technologies, and design goals evolve, resulting in system, component,
and interface design changes that affect every artifact that uses or consumes the
evolving software system [62]. It is essential to keep track of requirements and
changes, in general, to assess their impact on other software systems. According
to Arnold and Bohner, ”Impact analysis (IA) is the activity of identifying what to mod-
ify to accomplish a change, or of identifying the potential consequences of a change” [23].
Arnold and Bohner define a framework classifying impact analysis approaches by
their application, parts, and effectiveness [23]. When performing an impact analy-
sis, a change is defined by a change specification that is used to describe the impact
based on the approach and how its parts are applied to perform the analysis [23].

As noted by Treiber et al., ”Changes of requirements are the main driver for all evo-
lutionary Web service changes” [280]. If the changed requirements affect the web ser-
vice functionality, web APIs offered by a web service have to evolve to reflect these
changes [280]. With the increase of edge-dominant systems, these requirements
constantly change, emerge from different consumers, producers, and developers,
conflict with each other, or might never be fully defined [31]. Different forces in-

55

4 Web Service API Evolution

fluence the publishing of new versions of a web service. Innovation and business
perspectives prefer releasing changes as soon as possible, while IT governance sug-
gests releasing with care, resulting in compromises gradually publishing releases
to a growing set of consumers [44]. These influences lead to a constant evolution
of web service APIs, making impact analysis on stakeholders such as web service
clients an essential aspect of web service evolution.

In the case of web service API evolution, we investigate the impact of web service
API changes on clients using a version-centered approach. Compared to history-
centered approaches, a version-centered analysis focuses on the comparison be-
tween two versions and how elements of the software system evolved in this time-
frame [113]. Versioning is a technique to define an order or releases that correspond
with features and API definitions that can be used and consumed by web service
client applications [78].

The semantic versioning strategy is a strategy that defines rules and require-
ments, dictating how versions are assigned and incremented to provide stability
guarantees for specific version increments to API consumers [228]. Semantic ver-
sioning defines versions as a combination of major.minor.patch increments where
the major version is incremented when an API introduces backward-incompatible
changes, the minor version is incremented when purely backward-compatible func-
tionality is added, and the patch version is incremented when the API only intro-
duces backward-compatible bug fixes [228]. Backward-compatible changes are also
referred to as non-breaking changes, while backward-incompatible changes are re-
ferred to as breaking changes, highlighting the crashing or non-compiling impact
of backward-incompatible changes on API consumers and web API clients. In ad-
dition to the regular major.minor.patch format, the semantic versioning specification
also allows for hyphen-appended labels for pre-release versions as well as plus-
sign-appended labels for build-related metadata that can be used to provide further
flexibility and information in the versioning scheme [228].

Thomas Erl presents more general versioning techniques for specification lan-
guages such as WSDL-based web services and web service contracts by defining
three versioning strategies: strict, flexible, and loose [89]. Erl defines backward-
compatibility as continuing to fully guarantee the non-breaking support of web ser-
vice clients designed with an over version of the API, while forward-compatibility
defines designing a web service, so it anticipates future versions of web service client
applications [90]. A strict versioning strategy requires the generation of a new con-
tract and new namespace in case of WSDL contracts with any kind of change to
the web API, while a flexible strategy only requires forcing a new contract version
when backward-incompatible changes are introduced [90]. A loose versioning strat-
egy also requires that incompatible web API changes result in new contract versions
while generally enabling forward- and backward-compatibility [90]. The forward-

56

4.0

and backward-compatibility is achieved by deliberately using vague service con-
tracts involving elements such as wildcards usable in WSDL or XML Schema spec-
ifications [90]. While the loose versioning strategy can lead to greater flexibility
for web service developers, the use of wildcards results in less expressive web API
descriptions and a potential misinterpretation of the API contract on the web API
client-side.

Even though properly-used versioning strategies can improve the experience us-
ing APIs, they alone can not guarantee change and evolution stability when using
web services as defined by the web service client stakeholder goal. Wittern et al.
detail four challenges that are commonly related to consuming web APIs [313]. The
four challenges manifest themselves as follows: in contrast to local libraries that can
be embedded into software, (1) web APIs clients might have no control over the
web service, which can potentially break the API contract at any time [313]. Web
service clients (2) cannot rely on compile-time checks for API calls as they can with
local APIs, and even if clients consume the web service using client stubs generated
from an interface definition language, (3) there is no guarantee that the generated
stubs do not get out of sync with the web service API [313]. The last challenge (4) is
related to the inherently distributed nature of web services, including asynchronous
calls, latency, and general quality of service issues that require deliberately designed
client code, software patterns, and architectures [313]. Wittern et al. describe a vi-
sion of web API research that includes the creation of a web API ”refactoring support,
for example, to help developers to migrate to new web API versions” [313] to truly enable
change and evolution stability when using web services APIs.

Amundsen defines three ”principles of safe and effective API changes: First, do no
harm. Fork your API. Know when to say no” [20]. These principles indicate that (1) an
API should not unexpectedly introduce breaking changes for API consumers, that
(2) multiple consumer-breaking API versions should be provided in parallel to al-
low migrations from one version to the next, and that (3) API developers should be
careful about changing APIs and sometimes have to decline client requests for API
changes [20]. Similar to the refactoring support described by Wittern et al. [313],
Amundsen mentions the usage of ”’migration kits’-utilities and guides” [20] to support
manual or semi-automatic migration from one major API version to the next. In ad-
dition to the principles listed above, Amundsen also provides rules and patterns to
safely evolve and test web APIs changes to reason about the introduction of web
service client-breaking changes [20]. Nevertheless, the manual creation and appli-
cation of utilities and textual migration guides requires an in-depth understanding
of the web API changes.

Artifacts designed as part of this research project should easily enable consumer
applications to co-evolve with web services when changes are made to the web ser-
vice API. Similar to the co-evolution of services as discussed by De Sanctis et al., the

57

4 Web Service API Evolution

co-evolution of web service client applications may require unforeseen maintenance
to the consumer code when web services introduce breaking changes and, ideally,
a way to express these changes to automatically reason about them [81]. Research
by Espinha et al. describes how unexpected breaking changes and a lack of clear
policies impact client developers when breaking changes occur [92, 91]. Therefore,
web service consumers need to anticipate change and, due to the loosely-coupled
nature of web services, have to rapidly adapt to changes of web APIs as ”in general,
all web API providers will sooner or later impose changes on their clients” [92, 91].

Design Problem 2:
Automatically detect and migrate backward-incompatible changes of web ser-
vice interfaces to enable web service client stability after modifications to the
web service interface.

The following chapter provides an overview of the challenges associated with
web service API evolution. We aim to investigate the problem context surround-
ing Design Problem 2. Section 4.1 details several artifacts and approaches that have
been developed to address web service API evolution. The presented solutions pro-
vide the groundwork for artifacts designed in Part III addressing web service API
evolution using a semi-automatic migration approach. In contrast to the presented
related work, our approach combines the challenges of web API evolution with the
other web service evolution-related challenges described in Chapter 1. The design
of these artifacts requires a web service interface and web service API-independent
classification of web API changes that is presented as a collection of web service
API evolution patterns in Section 4.2. These web service API evolution patterns are
subsequently compared to existing web service API change types.

4.1 Related Work

This section provides an overview of related work concerning solutions tackling
web service API evolution. While web API evolution comes with several unique
challenges, the decades-old research on local API evolution of libraries and frame-
works also provides valuable insights into the challenges of web API evolution. The
section aims to investigate several web API evolution mitigations to address Knowl-
edge Question 3.

Knowledge Question 3:
What migration strategies can be used for different web API evolution change
types?

58

4.1 Related Work

4.1.1 Local API Evolution

Dig and Johnson investigate framework API evolution with four years old and ma-
tured frameworks that are used by a substantial number of users that might be im-
pacted by breaking changes [84]. The study analyzes API changes and classifies
them into several groups while noting that more than 80% of the breaking changes
result from refactoring, such as moving of methods and fields, as well as renaming
or changing method signatures [84]. Dig and Johnson suggest ”that component pro-
ducers should document the changes in each product release in terms of refactorings” [84].
This can also apply to web service APIs as refactoring and migration descriptions
might also provide valuable insights for web service clients. In their publication
How do APIs evolve? A story of refactoring, they suggest the creation of a migration tool
that can automatically detect and record refactoring in a log when the framework
developer performs it and replays it at the client application’s side [84]. The creation
of refactoring logs can also be applied to the evolution of web APIs. Tools detailed
below create similar documents to detail changes between versions of frameworks
or web APIs and build the inspiration of the web service interface independent semi-
automatically generated migration guide detailed in Part III.

Dig and Johnson mention CatchUp! by Henkel and Diwan [127] as a research
prototype meeting the requirements of such a migration tool with the support for
a limited number of refactorings [84]. ”CatchUp! [...] captures and replays refactoring
actions within an integrated development environment semi-automatically” [127] without
the need for a centralized infrastructure and instantiated for in the Eclipse integrated
development environment (IDE) [127]. The created migration specification details
how classes in an old version of the library are mapped to newer versions, demon-
strating the usage of the plugin for Java applications with a success rate of 90% for
the observed and tested refactorings [27]. The tool demonstrates the power of au-
tomatic migrations between versions. Nevertheless, a more generalized migration
description approach as documented for CatchUp! will be needed because web ser-
vices and web clients often are not developed in the same programming language.

Instead of recording refactorings between different versions, Brito et al. intro-
duce APIDIFF as a tool to ”identify API breaking and non-breaking changes between
two versions of a Java library” [57]. APIDIFF compares two versions of Java libraries
stored in git repositories while categorizing them into breaking and non-breaking
changes, as well as several refactoring types excluding API parts marked as depre-
cated [57]. Section 4.2 further details the API change types described by Brito et al.
and compares them with generalized evolution patterns for web APIs. Tools like
APIDIFF and other web API-specific tools to detect changes in API surfaces provide
valuable insights into the generation of automatic detection of changes in web APIs
as presented in Part III.

59

4 Web Service API Evolution

4.1.2 Web API Evolution Strategies

Before we present possible ways to automatically identify web API evolution, that
can be classified in evolution patterns in Section 4.2, we present strategies to reason
about introducing web service API evolution in the first place. The strategies pre-
sented in this section primarily focus on reasoning about web service client breaking
changes. These types of changes highlight the conflicting stakeholder goals to pro-
vide evolution stability and at the same time allow evolvability when developing
and deploying web services.

Lübke et al. present eight development strategy patterns concerning versioning
strategies as well as the lifetime of individual versions that can be applied to the de-
sign of a web service API evolution strategy [182]. The first three patterns defined
by Lübke et al. suggest (1) the creation of an API Description to share knowledge
about the API with the web service client, (2) the usage of Version Identifiers in ex-
changed messages, and (3) the usage of the Semantic Versioning scheme detailed in
Chapter 3 [182]. The next three patterns detail different lifetime strategies for indi-
vidual versions: (4) the Two in Production pattern suggest the overlapping deploy-
ment of at least two API versions to simplify client migrations, while (5) the Limited
Lifetime Guarantee suggests explicitly providing fixed time frames until an API ver-
sion will be removed, and (6) the Eternal Lifetime Guarantee suggests providing an
unlimited lifetime guarantee of clients are unable to update to new versions [182].
Lastly, (7) the Aggressive Obsolescence pattern suggests aggressively communicating
short limited lifetime guarantees to push clients to update to newer API versions
while (8) the Experimental Preview pattern suggests providing previews of new API
versions to collect feedback from web service clients [182]. Lübke et al. also high-
light the relevance of correct and updated machine-readable API descriptions using
interface definition languages to simplify the evolution of web APIs for client devel-
opers [182]. The patterns defined by Lübke et al. provide useful guidance for web
API developers and highlight the challenge of web API users to migrate to later ver-
sions and the resulting complications for web API developers to support multiple
versions or create and maintain sophisticated API evolution strategies. Our research
aims to reduce the overhead for web API consumers created by web API evolution.
We provide tools and infrastructure to easily migrate from one version to the next
version of the web API, therefore, reducing the pressure put forward by web API
developers when deprecating old API versions as suggested by Lübke et al.

Newman provides several suggestions to avoid and mitigate breaking web API
changes in the book Building Microservices: Designing Fine-Grained Systems [198].
Newman suggests avoiding breaking changes by automatically detecting acciden-
tal breaking changes as described in Section 4.1.3 and using the tolerant reader pat-
tern and technologies that can more easily manage backward-incompatible changes
as described in Section 4.1.5 [198]. Once breaking changes occur in a microservice

60

4.1 Related Work

setup, Newman suggests using mechanisms such as a lockstep deployment, coexist-
ing incompatible microservice versions, as well as the emulation of old web APIs to
continue supporting non-migratable web service clients [198]. Details about the mi-
gration and emulation of old web API versions are further described in Section 4.1.4
detailing several tools to automatically migrate web API users to newer web API
versions while providing a consistent interface for the API consumer.

De Sanctis et al. describe the challenges of co-evolution of web services and detail
an approach using evolution management agents that coordinate evolution across
web services, which might resolve changes automatically or notify developers, if
manual adaptions are needed [81]. De Sanctis et al. describe several structural and
behavioral evolutionary changes (described in detail in Section 4.2.2) that can par-
tially enable an automatic migration while some patterns require manual migrations
sending an evolution request to the development team [81]. The combination of a
process model with added tooling support presented by De Sanctis et al. provides
web service developers as well as consumers with the ability to better manage web
service API evolution.

The change-centric web service model by Zuo proposes solutions for web API
evolution by addressing unambiguity in web API changes, incorporating web API
evolution in web service development, enabling graceful versioning detailing a delta
to previous versions, and allowing consumers to monitor changes and adapt client
applications accordingly [323]. The WSDL-focused delta between versions is pro-
vided by the web service developer and helps all stakeholders to understand web
API evolution, an important impact for the generalized artifacts designed in this
dissertation [322, 323].

4.1.3 Web API Change Identification

Fokaefs et al. present VTracker, a tree alignment algorithm based on an algorithm to
compute the editing distance between trees presented by Zhang and Shasha [319]
and Mikhaiel et al. [190], that can be used to compare WSDL specifications. VTracker
only focuses on web API evolution by using a simplified version of the WSDL spec-
ification concerning operations and the input and output of these operations rep-
resented with data types [100]. VTracker generates insights about changes between
two web API versions and identifies typical changes in WSDL-based web APIs used
in production [100]. Building on top of VTracker, Tsantalis et al. present WebDiff, a
web-based frontend application that allows developers to inspect and observe the
process of comparing two interface specifications [282].

To expand the usage of VTracker to more web API types and more easily com-
pare web services described in the WSDL and WADL service description languages,
Fokaefs and Stroulia introduce WSMeta: A Meta-Model for Web Services to Compare
Service Interfaces [103]. In comparison to the artifacts designed in Part III that are in-

61

4 Web Service API Evolution

tended to describe web services independent of the web service interface type and
web API type, WSMeta only aims to provide a metamodel to compare web service
interfaces [103].

A toolset addressing web API evolution is WSDarwin, developed over multiple
years as part of the dissertation of Marios-Eleftherios Fokaefs named WSDarwin:
A Comprehensive Framework for Supporting Service-Oriented Systems Evolution [106],
as well as several publications by Fokaefs and colleagues [99, 100, 101, 102, 103,
104, 105]. Building on top of the insights gathered from VTracker and WSMeta, the
web service interface comparator in WSDarwin supports web service API evolution
based on evaluating the information contained in web service description artifacts
such as WSDL and WADL documents [102]. Identifying changes between two ver-
sions of a web service specification allows web service clients to analyze the impact
of the changes and effectively use the gathered insights in an adaptation or migra-
tion process as described in Section 4.1.4 [102]. In contrast to VTracker which uses
a generic comparison algorithm for XML documents, WSDarwin is developed ex-
plicitly for comparing web service interfaces and can take advantage of additional
domain-specific context available to the algorithm and provide better results when
comparing web service specifications [104]. The domain-specific knowledge is also
beneficial for comparing RESTful web APIs using WADL specifications by taking
advantage of identifiers as well as data structures enabling WSDarwin to group
changes into five change types: Additions, deletions, moves, changes, as well as a
combined category of moves-and-changes [101]. Based on validated advantages of
WSDarwin, we conclude that the comparison algorithm building the basis for web
service API evolution detection and migration presented in Part III should also take
advantage of a domain-specific comparison to identify web service API changes.

In their publication Managing the Evolution of Service Specifications, Andrikopou-
los et al. introduce the concept of service evolution management by developing
a formal model for web service evolution to identify and track changes between
different web service versions [21]. Service evolution management, according to
Andrikopoulos et al., encompasses the identification and classification of changes,
propagation analysis mechanisms to analyze the impact of web API evolution, the
validation and conformance checks to validate service updates in accordance with
existing contracts, and migration mechanisms to update entities using the updated
services [21]. Andrikopoulos et al. provide theoretical foundations for service evo-
lution management by designing a technology-agnostic model to ”identify and study
the changes happening to a service during its lifetime” [21]. The publication reasons
about impacts and changes in web services using an Abstract Service Description
(ASD) model that encompasses different elements of web services that might be
impacted by web service evolution, including a structural layer relevant for web
service API evolution [21]. Building on top of the work done by Andrikopoulos et

62

4.1 Related Work

al., Vara et al. reason about web service evolution using several domain-specific lan-
guages and model transformations enabling the transformation of WSDL files into
the Abstract Service Description (ASD) [289].

Romano and Pinzger present WSDLDiff based on the UMLDiff algorithm [315]
as a tool to compare WSDL interface specifications of subsequent web service ver-
sions by comparing operations, messages, and types; grouping them as additions,
moves, modifications, and removals [241]. The tool parses the WSDL interfaces,
transforms it to an internal XML Schema Definition (XSD), and applies a matching
algorithm using the Eclipse Modeling Framework (EMF) to detect matching nodes
and subsequently identify differences reported in a tree of structural changes [241].
The output of WSDLDiff can be used to analyze typical changes in a WSDL-based
web service interface and can benefit web service consumers to classify web ser-
vices based on their historical web service API evolution stability [241]. WSDLDiff
and UMLDiff provide valuable insights into the identification of changes in a web
service interface and offer algorithmic foundations to identifying changes in the ar-
tifacts introduced in Part III.

4.1.4 Web API Evolution Migration

As discussed in Section 4.1.3, WSDarwin offers tools to support web API evolution,
including a service-interface specification generator, a service-interface comparator,
a client-proxy generator and client-application adapter, as well as a cross-vendor
service mapper [106]. The service interface specification generator enables clients to
automatically generate WADL specifications for RESTful web services without the
need to access the web service’s source code [101, 106]. The WADL generator expects
endpoint URLs and suiting HTTP requests and automatically sends requests to the
web service to inspect requests and responses, combining all gathered information
about the web API into a single WADL specification [101].

The service-interface comparator and client-proxy generator in WSDarwin ad-
dress a manual process: When a web API user detects a breaking change in an
API, the web API user needs to compare the web service specifications, identify the
nature of the breaking change, perform adaptations in the client code, and finally
verify the changes using tests [104]. WSDarwin offers the tools to automatically
compare XML-based specifications such as WADL and WSDL and provides a client
adaptation algorithm to support the migration of client applications based on the
detected changes [102]. WSDarwin allows the migration of client stubs from one
version to the next by creating a new internal client stub: While the client applica-
tion still interacts with the old stub it internally maps to calls to the new stub using
a description produced during the web service API comparison [102].

Developing migration adapters can also originate from the heterogeneity of web
service API types as well as a high number of heterogeneous clients consuming dif-

63

4 Web Service API Evolution

ferent web APIs concerning the same application domain [39]. Work by Benatallah
et al. focuses on business protocol adapters using mismatch patterns to identify dif-
ferences between services and guiding developers to create adapters in interface as
well as business-level protocols [39].

Zuo presents a multi-step API evolution migration process based on the change-
centric model discussed in Section 4.1.2. The process focuses on WSDL-based web
services monitoring changes in service specifications and analyzing the impact of
changes to web service consumers [321]. The toolchain generates adapting strate-
gies based on the web API changes and subsequently creates a web service proxy
adapting the web API changes transparent to the web service consumer [323].

Kaminski et al. present the chain of adapters as a design technique to address
web API evolution and migrate web API changes on the web service-side [149].
The approach builds on the adapter pattern defined by Gamma et al. that allows
deevelopers to ”Convert the interface of a class into another interface clients expect” [109].
Kaminski et al. propose to duplicate the current web API in a new namespace, adapt
the new interface according to the new requirements, and delegate all calls from the
old interface to corresponding functionality in the new interface [149]. The imple-
mentation of the old interface uses adapters to maintain the contract of the new in-
terface, e.g., additions require default parameters, changes require type translations,
and removals must be reimplemented in the old interface [149].

The migration approaches presented in WSDarwin, as well as the general con-
cept of a chain of adapters, offer an essential related work for the artifacts designed
in Part III. The chain of adapters provides important insights into the required
information needed to implement suiting adapters for different types of web API
changes. In contrast to WSDarwin and other tools, our research aims to connect the
identification and migration challenges of web API evolution with the challenges
of web service interface evolution. While WSDarwin, the underlying comparison
algorithms, and other tools presented in this subsection focus mainly on the XML-
based WSDL and WADL specifications, our research aims to generalize the insights
for multiple web service interface and web API types.

4.1.5 Protocol-Enabled API Evolution

Existing research to identify web API changes as demonstrated in Section 4.1.3 pri-
marily focuses on XML-based interface definition languages to identify changes.
These XML-based interface definition languages, such as WSDL and WADL, result
in classifications of changes influenced by protocol-specific constraints as demon-
strated in Section 4.2. In contrast to these IDLs, other middleware- and protocol-
types have different mechanisms to be more resilient to changes in the web API,
therefore, reducing the number of changes manifesting themselves as breaking chan-
ges for a web service client.

64

4.2 Related Work

The tolerant reader pattern is a mechanism to improve stability when sending
and parsing protocol-conformant messages exchanged between different compo-
nents [78]. The tolerant reader pattern originates from Postel’s law, defined as part
of RFC 760 presenting a first version of the internet protocol: ”In general, an imple-
mentation must be conservative in its sending behavior, and liberal in its receiving behav-
ior” [1, 223]. The tolerant reader pattern, therefore, suggests to ”extract only what is
needed from a message and ignore the rest” [78]. Messages received by a tolerant reader
should be continued to be parsed in a best-effort approach even if the reader detects
a resolvable schema violation or ignore missing values that are not required to ful-
fill the desired functionality on the reader side [78]. The tolerant reader pattern can
also be applied and used when reasoning about web service API evolution to mit-
igate breaking changes on the serialization parsing or protocol level. Even though
removals of a web API functionality result in a breaking change, using mechanisms
like the tolerant reader approach might mitigate the impact of the breaking change
for web service clients not relying on specific removed functionality.

Different communication middleware types and protocols provide built-in func-
tionality to mitigate potential breaking changes in web APIs. Apache Avro is a data
serialization framework that can be used to implement remote procedure call-based
systems using a binary encoding with built-in mechanisms to evolve schemes using
a Schema Resolution mechanism [22]. A reader of local data or RPC messages must
have the ”same” schema, as defined by the Parsing Canonical Form of a schema
used for the Schema Resolution mechanism [22]. The Schema Resolution mecha-
nism includes several rules that allow identifying compatible schemes, providing a
mechanism to classify changes as compatible or breaking changes [22].

Similar to Apache Avro, Apache Thrift also includes mechanisms to reduce the
impact of traditional breaking changes for web API consumers on an API and the
protocol abstractions [263]. Apache Thrift uses field identifiers in types, allowing
field names to change without resulting in a breaking change for web service con-
sumers [263]. In accordance with the tolerant reader pattern, Apache Thrift defines
that unexpected fields should be ignored and discarded, and missing fields should
be expressed using explicit null values in compatible programming languages [263].
Mark et al. describe several cases where the mechanisms introduced in Apache
Thrift result in breaking changes, e.g., when fields for a request are added, fields
needed by a client are removed [263]. The Protocol Buffer serialization format used
for the gRPC middleware also uses field identifiers providing similar advantages
and mechanisms as Apache Thrift [114].

In summary, the API evolution mechanisms in different middleware- and proto-
col-types have to be considered when developing the artifacts in Part III. Protocol-
enabled API evolution can automatically mitigate breaking changes into non-brea-
king changes, simplifying the adapter generation for some web API types.

65

4 Web Service API Evolution

4.2 Web Service API Change Classification

To address the impact of web API evolution requires identifying and classifying
changes that occur in a web API. This section introduces a generic web API type-
independent evolution patterns showcased in Table 4.1. The proposed classifica-
tion allows us to combine different aspects of web service evolution, including web
service interface evolution and web service API evolution, in artifacts designed in
Part III. Subsequently, we compare the introduced web API change patterns with
different existing web API-specific classifications.

4.2.1 Web Service API Evolution Patterns

In this section, we introduce web service API type-independent evolution patterns
to classify web API evolution-related changes. The evolution patterns address Knowl-
edge Goal 2 and build on Section 4.1 to answer Knowledge Question 3.

Knowledge Goal 2:
Identify web service interface type-independent change patterns to enable web
service evolvability and change while providing stability to web service clients.

Knowledge Question 3:
What migration strategies can be used for different web API evolution change
types?

We specify and categorize the patterns based on the compact pattern template
similar to the (anti-)pattern templates presented by Brown et al. [61]. We use a vari-
ation of the inductive mini-pattern template using a name, context, forces, and a
solution [61]. A web API evolution pattern is defined by a four-tuple consisting of a
context, change type, classification, and migration strategy. The name of the pattern
is constructed using a combination of the context and change type, e.g., Handler
Addition. The context of the mini-pattern template corresponds to the context of
the evolution pattern. The force is specified by the change type of the web API evo-
lution pattern. The solution is defined by the combination of the classification and
the migration strategy.

Table 4.1 details an overview of the web API change patterns based on the con-
cepts defined in the web service interface metamodel (Figure 3.1, page 48). The
entities from the metamodel are used as the contexts of the web API evolution pat-
terns. The evolution patterns are based on the related work collected in Section 4.1
and are subsequently compared to other change classifications in Section 4.2.2. Ta-
ble 4.1 details a compact overview of the web API evolution patterns. The following
section details additional context and information about the patterns.

66

4.2 Web Service API Change Classification

Context Change Type Classification Migration Strategy

Handler

Addition Non-breaking -

Removal Breaking Fallback response

Handler identifier Breaking Identifier mapping

Communication pattern Breaking Multiplicity conversion

Request
Serialization

Add field Breaking Default value

. Remove field Non-breaking -

Field identifier Breaking Identifier conversion

Root or field type Breaking Type conversion

Response
Serialization

Add field Non-breaking -

Remove field Breaking Fallback value

Field identifier Breaking Identifier conversion

Root or field type Breaking Type conversion

Table 4.1: Overview of the proposed web service API type-independent web service
API evolution patterns. The patterns refer to the entities presented in the web ser-
vice interface metamodel (Figure 3.1, page 48). Following the web API evolution
pattern template, the patterns identify possible change types to a context, a classifi-
cation into breaking and non-breaking changes, and migration strategies.

A Handler can be added or removed from a web service. Additions result in no
breaking changes for web service consumers, while a removal results in a breaking
change eliminating functionality from the web API. The removal can be migrated if
the web service developer can provide a placeholder response, or a placeholder re-
sponse can be constructed based on the combination of responses from one or more
Handlers. Besides additions and removals, Handler identifiers and communication
patterns can also change, resulting in breaking changes. The identifier change can be
migrated by providing an identifier mapping, allowing the web service consumers
to identify the changed Handler based on the old identifier in the new version of the
web API interface. Changing a Handler’s communication pattern (as introduced in
Section 3.2.1), is also a breaking change. The communication pattern change can be
migrated if a multiplicity mapping can be provided, e.g., describing how multiple
responses can be combined into a single response.

Serialization of requests can experience several types of changes. A field can be
added, leading to a breaking change as the web service client needs to provide a
value for the field to successfully construct a request to the web service. Providing a
default value for the added field allows the web service client to migrate to the new

67

4 Web Service API Evolution

version of the web service interface without any changes in the client application.
Removing a field from a request serialization is a non-breaking change assuming the
web service adheres to the tolerant reader pattern and accepts requests with addi-
tional fields. While removing a field is syntactically non-breaking, it has significant
implications on the application structure and meaning of requests which should be
considered when consuming subsequent versions of the web service API. To alter
the field identifier and to modify the root or field type of a request serialization re-
sult in breaking changes. Both evolution patterns require mapping the old identifier
or instances of the old type to the identifier or instances of the new type.

Response serialization features similar change types but differ in their classifi-
cations. The evolution pattern of adding a field to the serialization of responses is
no breaking change. Similar to removals from request serializations, this classifica-
tion assumes that best practices such as the tolerant reader pattern are applied. This
means that responses with additional fields are accepted, and the client application
ignores unknown fields. The removal of a field for serialization of responses is a
breaking change as web service clients might expect the functionality in the client
applications. The breaking change can be migrated if a placeholder value can be
provided or the web service client is provided with mechanisms to compute the re-
moved value from other web API responses. The change field identifier and change
root or field type changes for response serializations result in the same evolution
patterns as for request serializations. They are breaking changes and require map-
pings for identifiers and types to migrate a web service client application.

4.2.2 API Change Classifications Comparisons

Classifying interface evolution is not only relevant for web service APIs, but is a gen-
eral challenge for interfaces between subsystems and software components, includ-
ing local APIs offered by frameworks and libraries. Brito et al. provide an overview
of change types detected by the APIDiff tool, allowing developers to identify break-
ing and non-breaking changes in Java libraries as described in Section 4.1.1 [57].
The findings by Brito et al. show that breaking changes in types, methods, and
fields are mostly related to refactoring actions such as renames, moves, removals,
changes in default values, and visibility reductions [57]. Non-breaking changes are
mostly related to additions, visibility modifier changes to gain visibility [57]. These
change classifications can also be applied to similarly typed remote procedure call
and message-based middleware types.

Biehl introduces several classifications for API evolution, focusing on RESTful
and SOAP-based APIs and classifying the changes into backward-compatible, for-
ward-compatible, and breaking changes [44]. Biehl lists several backward-compati-
ble changes primarily related to additive changes to a web API, such as adding
parameters, adding fields in JSON or XML encodings, new REST endpoints, new

68

4.2 Web Service API Change Classification

SOAP operations, new optional fields, and making mandatory fields optional [44].
Added SOAP operations and REST endpoints can be grouped under the Handler
addition evolution pattern. The addition of an optional field or parameter can be
grouped as an addition of a field in a request serializations that already provides a
default null migration value. The forward-compatibility mentioned by Biehl, that
guarantees that a new client can also communicate with an old version of an API,
is not a concern for the backward-compatibility-focused nature of the artifacts pre-
sented in Part III [44]. The backward-incompatible changes introduced by Biehl
can also be mapped to the existing web API evolution patterns described in Ta-
ble 4.1. The presented classifications such as removing or changing data structures,
requiring previously optional fields, introducing new fields to a request are all en-
compassed by the request and response serialization web API change patterns [44].
Changing the URI of an endpoint or the complete web service identified as a break-
ing change by Biehl is also covered by the Handler identifier evolution pattern [44].

Robert Daigneau describes several actions performed on a web API interface
that may cause breaking changes for client applications, such as the removal of ele-
ments and attributes that can be matched to the more concrete removal of fields in
request and response serializations [78]. While we do not list all individual break-
ing changes identified by Daigneau, all change types mentioned in Service Design
Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful Web Services can
be mapped to the web API evolution patterns demonstrated in Table 4.1 [78]. Most
changes such as the specified ”Changing the hierarchical relationships between complex
data structures” [78] change type can be mapped to more generalized web API evo-
lution patterns, such as root and field type changes in request and response seri-
alizations. Changes to the authentication policies, as mentioned by Daigneau, are
not an explicit web API evolution pattern but can be interpreted as a change to a
request serialization root or field type, changing how authentication information is
serialized and expressed in requests from the client application [78].

The common incompatible changes listed in Service-Oriented Architecture: Analy-
sis and Design for Services and Microservices by Erl are focused on WSDL and XML-
specific changes happening to web APIs [90]. The changes to the WSDL interface
such as ”Adding a new required XML Schema element or attribute declaration to a mes-
sage definition” [90] can be mapped to the web API evolution patterns presented
in Table 4.1 such as adding fields to a request or response serialization. Similar to
other authentication changes, changes to WS-Policy assertions or expressions can be
mapped to web API evolution patterns concerning request and response serializa-
tions or are not taken into consideration if they are purely semantic changes [90].

Leitner et al. introduce a WEDL-driven classification of web API changes focus-
ing on operations and parameters with a particular focus on mandatory and op-
tional parameters [174]. Based on the work of Leitner et al., Sanctis et al. introduce

69

4 Web Service API Evolution

an evolutionary change taxonomy providing a classification of structural changes
that can also be mapped to the web API change patterns introduced in Table 4.1 [81].
The structural changes Leitner et al. and Sanctis et al. present, such as the deletion
and addition of operations, can be mapped to the corresponding additions and dele-
tions of Handlers [81, 174]. The change of operation type and operation name cor-
responds to the change Handler identifier web API evolution pattern [81]. Changes
to input and output parameters as described by Sanctis et al. can be mapped to the
evolution patterns for request and response serializations [81]. Leitner et al. focus
on optional and mandatory parameters that each have a different effect on the pos-
sibility to automatically migrate web API evolution for client applications but are
not present in every web API type and, therefore, omitted in the generalized ta-
ble of web API evolution patterns introduced in this section [174]. These web API
type-specific possibilities will be incorporated in the artifacts designed in Part III,
showcasing the instantiation of the evolution patterns and the extensibility of the
taxonomy presented in Table 4.1. The classification by Sanctis et al. in compatible,
not compatible but resolvable, and not resolvable can be mapped to the more gener-
alized classification of breaking and non-breaking changes, and migration strategies
presented in Table 4.1.

Li et al. analyzed the change types of five popular web APIs, categorizing them
into 16 change patterns and comparing the challenges of web API evolution to the
evolution of local APIs [177]. The change patterns are divided up into breaking
changes that cause compile-time errors when using a client stub generator and run-
time errors, including changes such as changing the default value of a parameter,
modifying the accepted values of a parameter, and authorization changes [177].
Compile-time errors can be considered breaking changes. The patterns introduced
by Li et al. include adding or removing parameters, deleting endpoints, changing
request and response types, and further change patterns that are all patterns that are
instantiations of the web API evolution patterns introduced in this section [177]. So-
han et al. extend the change patterns introduced by Li et al. with additional change
types, such as the move of API elements, the renaming of API elements, and changes
in the HTTP header and error handling [266]. Li et al. define several challenges for
web API migrations that we categorize as web service interface evolution, such as
switching from an XML-based encoding to a JSON encoding [177]. Challenges that
are related to web API evolution include deleting endpoints, changes to the autho-
rization protocol as well as the observation that Web APIs tend to change more often
than local APIs and affect a more far-reaching API surface than the typical local API
evolution described in the publication [177].

Koçi et al. present a Classification of Changes in API Evolution, focusing on the in-
teraction of API producers and API consumers and artifacts such as release notes,
issue trackers, and version control systems tracking the evolution of web APIs [158].

70

4.2 Web Service API Change Classification

Koçi et al. focus on HTTP-based APIs, classifying changes into changes on API end-
point identifiers, parameters as part of the HTTP body or query, parameter value
constraints, HTTP methods, and changes to the authority levels used to authorize
access to HTTP endpoints [158]. The publication inspects two subsequent versions
of web APIs and manually classifies the changes such as adding parameters, chang-
ing the authority level, and removing HTTP endpoints [158]. Wang et al. present a
collection of API-level, method-level, and parameter-level changes for RESTful APIs
by comparing subsequent versions of popular web APIs and categorizing them in
different change types [302]. The change types range from modifications to the com-
plete serialization of a web API, which we would group as web service interface
evolution, to the method and parameter-level modifications, such as the addition
and deletion of parameters and methods [302]. Yasmin et al. focus on detecting and
classifying deprecations of RESTful web APIs by analyzing OpenAPI definitions
and investigating the depreciation patterns used to communicate breaking changes
in RESTful APIs to web API users [316]. Similar to the other change classifications
introduced above, the change types presented by Koçi et al., Wang et al., and Yasmin
et al. formulate subtypes of the web API evolution patterns introduced in this sec-
tion, showcasing their applicability to HTTP-based and RESTful web APIs.

Most existing web API change classifications focus on specific middleware- and
protocol-types used to develop and offer web APIs. The change classifications in
this section have shown that these classifications, patterns, and groups can be com-
pared to and seen as specializations of the introduced web API evolution patterns in
Table 4.1. These patterns provide a web API independent classification of web API
evolution based on the web service interface metamodel introduced in Figure 3.1.

71

4 Web Service API Evolution

72

Chapter 5

Web Service Deployment Evolution

Web service deployment evolution is a subset of web service evolution concern-
ing the dynamic and static changes of the deployment structure of a web service:

Web Service Deployment Evolution (Definition 8)
Web service deployment evolution encompasses dynamic and static changes to
the deployment structure due to new requirements, constraints, and execution
environment changes.

The web API and web service interface are expressions of functional requirements
of web services embedded in non-functional requirements and constraints. The de-
ployment of a web service, in contrast, is dependent on non-functional requirements
and constraints to enable the web service functionality. Non-functional require-
ments that affect the deployment structure, the deployment process, and dynamic
deployment reconfigurations at runtime can be categorized under the FURPS non-
functional requirement categories: usability, reliability, performance, and support-
ability [117, 118]. It is crucial to identify, measure, and incorporate non-functional
requirements in the development process, including the deployment pipeline [135].
Incorporating and treating the added business value of non-functional requirements
is essential, but requires significant preparation and results in various tradeoffs [135].
During system design, design goals document the results from trade-off decisions
derived from non-functional requirements [62]. Web services introduce several de-
ployment-related trade-offs that need to be analyzed, documented, and incorpo-
rated in development and deployment processes.

The first non-functional FURPS category is usability [118]. According to Nielsen,
usability comprises five attributes: learnability, efficiency, memorability, errors, and
satisfaction [200]. The resource availability of web service execution environments
can heavily influence the efficiency and response time. Inefficient systems can re-
sult in systems that are not pleasant to use, resulting in poor user satisfaction and

73

5 Web Service Deployment Evolution

usability [200]. In regards to efficiency, memorability, and error rate, usability is
also involved in the perceived trade-off between usability and system security [24].
Development processes, continuous delivery, and system automation aim to ensure
that usability from a developer’s and consumer’s perspective and security are not
opposed concerns when developing and deploying web services [198].

Reliability focuses on the ”ability of a system or component to perform its required
functions under stated conditions” [62]. Reliability models and theories can be used
to estimate and predict future failure behavior based on failure sample data and
stochastic models [299]. The dependability of a system includes reliability as well
as robustness and safety, defining how and under what circumstances a component
can still deliver its service [62]. The dependability requirements of web services in-
fluence the choice of software execution environments, development, and deploy-
ment of the services. The deployment needs to be a repeatable and reliable process
that focuses on automation and incorporates the non-functional concerns defined in
the deployment, startup, and runtime of the system [135].

Performance non-functional requirements define the response time, through-
put, and availability of a software system [62]. Web services must deal with nu-
merous requests, requiring implementations and deployments that can scale with
the dynamic requirements at runtime. Web service implementations and deploy-
ment structure instantiations have a capacity defining the maximum throughput
and therefore the performance of a system [135, 201]. Demand can exceed the ca-
pacity, which can be addressed by scaling the system to provide more resources and
instances if the system is designed and implemented for scalability [201]. To meet
web service client demands, defining scaling mechanisms and a suitable deploy-
ment structure requires keeping track of performance non-functional requirements.

Supportability is concerned with enabling change, including software mainte-
nance and evolution [62]. According to Robert Grady, supportability is compro-
mised out of several subcategories including: ”Testability, Extensibility, Adaptability,
Maintainability, Compatibility, Configurability, Serviceability, Installability, [and] Local-
izability” [117]. The ISO/IEC 25010 standard differentiates between maintainabil-
ity and portability, refining and extending the supportability FURPS categoriza-
tion [14]. ISO/IEC 25010 defines portability as the ”degree of effectiveness and efficiency
with which a system, product, or component can be transferred from one hardware, software,
or other operational or usage environment to another” [14]. Web service deployment
enables this portability by containerization and orchestration software to provide
a platform abstracting hardware and execution environments, but also constrain-
ing the deployment to the used abstraction technologies [198]. Vendor lock-in to a
specific Deployment Provider or technology reduces the portability of web services
while enabling easier reuse of functionality compared to a Deployment Provider-
independent implementation [193].

74

5.1

Requirements traceability is a decades-old research field that builds on top of re-
quirements engineering concerning ”the ability to describe and follow the life of a require-
ment, in both a forwards and backwards direction” [116]. According to Gotel and Finkel-
stein, requirements traceability can be achieved using basic techniques, such as doc-
umenting and referencing requirements; or using automated tool supports such
as general-purpose and special-purpose tools, workbenches, or requirement trace-
ability environments combining several tools [116]. Gotel and Finkelstein differ-
entiate between pre-requirements-specification traceability concerning requirement
production before the requirement was specified and post-requirements-specification
traceability concerning the life of the requirement [116]. Requirements traceability
is seen as an important tool to document the system development, and improve the
software quality and development process documentation [233].

Aizenbud-Reshef et al. extend the definition of requirements traceability beyond
requirements ”as any relationship that exists between artifacts involved in the software-
engineering life cycle” [17]. This includes explicitly defined links or mappings, links
inferred from existing information, and statistically inferred links computed based
on the historical changes to the involved artifacts [17]. Mäder et al. have demon-
strated different approaches to traceability: a UML-based traceability information
model [186] and mechanisms that update tracing information based on changes in
UML system design models [185]. Further research by Mäder et al. defines mecha-
nisms to model and query traceability information [183] and demonstrates the use-
fulness of requirements traceability, showing that traceability improves the speed
and correctness of software maintenance tasks [184]. Research by De Lucia et al.
shows that integrating software engineering traceability information in the devel-
opment of artifacts improves the quality of code identifiers and comments [80]. The
research presents tools to show traceability information when writing source code
and suggests related artifacts to increase the consistency between them [80].

Traceability research by Aizenbud-Reshef et al. [17], Mäder and Egyed [184], and
De Lucia et al. [80] showcase the benefits of bringing requirements and other soft-
ware engineering artifacts closer to the source code and using tools to track these
artifacts in the ongoing evolution of software systems. We believe that integrating a
subset of non-functional web service-related concerns into the development of web
services can benefit the development, deployment, dynamic runtime behavior of
web services. Web service deployment evolution can benefit from these annotations
by incorporating the gained context to improve the deployment and fulfillment
of non-functional requirements at runtime. Section 5.1 demonstrates use cases for
these annotations, by identifying opportunities in FaaS-based deployments, observ-
ability, and Web of Things-based deployment. Section 5.2 introduces the notion of
web service metadata annotations incorporating non-functional requirements, con-
straints, and other information in web service development.

75

5 Web Service Deployment Evolution

5.1 Web Service Deployment Evolution Domains

Web service deployment evolution investigates changes in the deployment struc-
ture due to new requirements, constraints, and execution environment changes.
Automating the development of distributed systems using continuous integration
and continuous delivery enables web service developers to continuously release and
provide value to the stakeholders [308]. Deployment pipelines instantiate the con-
tinuous integration process by defining a set of steps triggered by changes to appli-
cation artifacts that test, integrate, and package the software, define configuration
options and execution environments, and release it [135]. Using these techniques en-
ables continuous software engineering [54, 203] as a development methodology that
sees software development ”as a way of experimenting and testing what the customer
needs” [54]. This approach to meet the customers’ needs requires great flexibility,
automation, and a suiting infrastructure supported by tools and workflows [98].

Developer Operations (DevOps) is a set of cultural transformations of adopt-
ing and promoting continuous integration and agile development based on open
sharing of information enabled by advancements from software development, op-
eration tools, and agile methodologies [201]. DevOps methodologies should enable
fast and continuous feedback, strengthening iteration speed and confidence across
all software engineering activities [155]. A central enabler of the DevOps transfor-
mations are approaches such as infrastructure as code, applying software develop-
ment mechanisms such as version control, tests, and continuous integration to in-
frastructure configurations in source code documents [193]. Infrastructure as code
uses versioned definition files that can be automatically tested and, e.g., describe the
desired usage and configuration of computing resources of dynamic infrastructure
platforms [193]. These mechanisms enable consistent and repeatable routines for
configuring, rebuilding, and scaling infrastructure resulting in changeable systems
that can easily be created, replaced, resized, and destroyed [193].

Containerization technologies, such as Docker, further enable standard packag-
ing and distribution of software components, using layered images with no virtual-
ization overhead compared to virtual machines and being configured and built us-
ing infrastructure as code-like configuration files [24]. Kubernetes, a successor to the
Google Borg and Omega container-management systems, leverages infrastructure
as code and container-based deployment mechanisms to observe and scale clusters
of containerized software components [66]. Kubernetes has become a standard for
managing scalable, container-based clusters across a wide variety of Infrastructure
as a Service (IaaS) providers [65].

Infrastructure as code in, containerization, and container orchestration provide
powerful tools to promote DevOps and enables continuous integration for cloud
deployments. Infrastructure configuration files can be generated based on exist-

76

5.1 Web Service Deployment Evolution Domains

ing architecture models as demonstrated by Simon et al. using a metamodel-based
technique of modeling web services [259]. Annotations and metadata as described
in Section 5.2 can provide additional context to the generation of infrastructure spec-
ifications and can move infrastructure as code even closer to the implementation of
the web service. Resource constraints such as memory, computation power, and
sustainability-related energy constraints and goals can be annotated on a web ser-
vice or Handler level to be incorporated in web service deployment structures. In
addition, emerging serverless and Function as a Service (FaaS) deployments require
even more fine-grained information to deploy web service functions.

Section 5.1.1 details challenges in modern cloud-based deployments that moti-
vate the usage of service metadata annotations in these cloud-based deployments.
Annotation mechanisms can also enable use cases beyond orchestration and infras-
tructure provisioning by improving the observability of web services and, therefore,
providing the required feedback for DevOps-based methodologies. Section 5.1.2
provides an overview of current observability techniques and motivates how ser-
vice annotations and additional metadata-based context can improve web service
deployment evolution. Section 5.1.3 subsequently motivates how web service meta-
data annotations can enrich the deployment beyond cloud-based applications with
a focus on the Web of Things and fog computing applications.

5.1.1 Cloud-Based Deployments

The Cloud Native Computing Foundation (CNCF) defines cloud native technolo-
gies as means that ”empower organizations to build and run scalable applications in mod-
ern, dynamic environments such as public, private, and hybrid clouds” [273]. The CNCF, a
Linux Foundation project, especially highlights ”Containers, service meshes, microser-
vices, immutable infrastructure, and declarative APIs” [273] as essential technologies
and methodologies to achieve cloud native systems. As noted by the definitions,
scalable systems, such as microservices, and smaller deployment units, such as func-
tions in Function as a Service (FaaS) deployments, play a critical role in cloud native
systems. Nadareishvili et al. define a microservice as ”an independently deployable
component of bounded scope” [194] that can be used to develop highly automated
and evolvable systems [194]. According to Nadareishvili et al., having empower-
ing methodologies such as DevOps and agile development as well as tools such
as containerization and orchestration tools available is essential to producing good
microservice system behavior [194]. There are different options available to host mi-
croservices, ranging from physical machines, virtual machines, containers, platform
as a service (PaaS) provides, and serverless offerings [198].

Serverless computing, a term meant to express the absence of manually manag-
ing servers or virtual machines, is a deployment and automatic scaling concept us-
ing SaaS, FaaS, and Backend as a Service (BaaS) offerings [145]. Cloud functions exe-

77

5 Web Service Deployment Evolution

cutable on FaaS platforms are complemented by BaaS offering such as object storage,
databases, publisher-subscriber mechanisms, big-data queries, and more, requiring
no manual provision of computing instances [145]. In contrast to serverful comput-
ing, serverless decouples the computation from storage while executing the code
without the need to allocate resources as web service developers and only paying
in proportionally to the resources used instead of resource allocations [145]. Cloud
functions are stateless event-driven resources offering time-constrained executions
of code triggered by ephemeral messages that are removed after execution and only
leave side effects on any BaaS or external platforms the cloud function interacted
with [112]. In the book Software Architecture Patterns for Serverless Systems, Gilbert
argues that serverless computing is a giant leap in the direction of event-driven ar-
chitectures (EDAs), mitigating the ever-growing trend of microservice death stars, rep-
resenting distributed systems relying on over-connected microservices [112]. While
FaaS offerings provide several advantages, they also introduce limitations such as
limited control of resources provisioned to the cloud functions16, how long cloud
functions are allowed to run17, and possible limitations that result from the stateless
nature of cloud functions [198]. Additional challenges include the startup time of
cloud functions, which is addressed by intelligently keeping functions warm, which
starts the cloud function runtime before a request arrives [198]. Cloud functions
also provide unique opportunities for FaaS providers, further isolating and mitigat-
ing the security-related impact of individual requests and additionally improving
the cost-performance advantages using specialized hardware and execution envi-
ronments for cloud functions [145].

Before serverless computing, the mapping of software components such as mono-
lithic applications and microservices has been a mapping of a single software com-
ponent to a hardware instance, virtual machine, or single container [198]. Newman
notes that, while a microservice can be deployed to a single cloud function, this
requires a dispatch from the single entry point to the different functionalities, and
contradicts the single purpose stateless event-based and scalable nature of serverless
computing [198]. Instead of deploying a microservice to a cloud function, the book

16AWS Lambda functions currently offer different memory configurations ranging
from 128 MB to 10,240 MB: https://docs.aws.amazon.com/lambda/latest/dg/
configuration-function-common.html#configuration-memory-console. The avail-
able computing power is measured virtual in CPUs (vCPUs) that correlate with
the memory configuration, currently offering six vCPUs at the maximum mem-
ory configuration: https://aws.amazon.com/about-aws/whats-new/2020/12/
aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/. Similarly, Google
Cloud functions currently offer different Cloud Function Configurations from 128MB
and approximately a 200MHz CPU to 8192MB and approximately a 4.8 GHz CPU: https:
//cloud.google.com/functions/pricing.

17Google cloud functions currently have configurable timeouts of one to eight minutes: https://
cloud.google.com/functions/docs/concepts/exec#timeout. AWS Lambda functions currently
have a maximum timeout of 15 minutes: https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html.

78

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/docs/concepts/exec#timeout
https://cloud.google.com/functions/docs/concepts/exec#timeout
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

5.1 Web Service Deployment Evolution Domains

proposes the concept of further decomposing microservices, breaking the boundary
of a single deployable unit and transforming it into logical concepts of similar func-
tionality that can be deployed individually [198]. This evolution of the microservice
architectural style to a logical collection of functionality, that can be individually de-
ployed, requires special tools and mechanisms to develop and identify individually
deployable functionality in web services.

5.1.2 Observability

While traditional methods of software engineering followed sequential and activity-
centered life cycle models such as the waterfall model and the V-model, software
projects shifted to use iterative and agile life cycle models to develop software sys-
tems [62, 310]. At the same time, modern open-source development projects such
as the Linux kernel development described by Raymond in The Cathedral & The
Bazaar [235] showcase that software does not inherently require careful planning
and can be developed using ”the naively simple strategy of releasing every week and
getting feedback from hundreds of users within days, creating a sort of rapid Darwinian se-
lection on the mutations introduced by developers” [235]. Frequent releases, many users,
and developers observing the system behavior in its target environment facilitate
that problems can be quickly characterized and fixed in subsequent releases [235].
Technical insights provided by source-aware users and actionable insights from bug
reports enable developers to quickly fix possible bugs and avoid failures in future
versions [235]. The more users, developers, and beta-testers run and observe the
system, the higher the number of bugs found in the software system [59].

In addition to users and developers manually observing the system behavior,
different mechanisms and techniques can be used to automatically and continu-
ously gather insights and evolve software systems. Monitoring systems to extract
the needed actionable insights based on information collected about the monitored
software system is an established and decades-old technique [264]. The three pillars
of observability in web services, namely logs, metrics, and distributed traces, are
powerful tools and indicators to continuously observe distributed systems [268].
Logs are collections of records generated in response to an event that includes infor-
mation such as date, time, and context to describe the event [9, 76]. Metrics represent
measurable data that can be aggregated and interpreted using mathematical mod-
els [268]. Traces are collections of event logs and metadata identified by a trace con-
text associated with a request as it propagates through the distributed system [212].
Distributed traces enable further insights by being request-centered, attaching meta-
data to requests in a distributed system, allowing instrumentation to record events,
and associating events with the request [258]. Services can be instrumented to re-
act to specific events and can aggregate these events to determine and debug the
correctness and performance of software systems [32, 63].

79

5 Web Service Deployment Evolution

Sridharan describes observability of software systems as a superset of monitor-
ing that ”provides not only high-level overviews of the system’s health but also highly gran-
ular insights into the implicit failure modes of the system” [268]. The term observability
originates from early control and information systems and describes the concept of
determining an unmeasurable state by observing measurable system behavior [148].
Observability goes beyond monitoring by designing systems to expect failure and
produce fast feedback loops by observing key performance indicators in produc-
tion environments [268]. Karumuri et al. structure system observability into two
activities: data management and analytics [150]. Data management includes the
instruments that emit information as well as the storage and processing of this in-
formation; the analytics activity consists of the monitoring and analysis of the data
that lead to decisions and responses to the observed behavior [150].

Niedermaier et al. provide a qualitative study based on semi-structured inter-
views of software professionals detailing challenges, requirements, and correspond-
ing solutions to observe and monitor distributed systems [199]. The study identi-
fies several challenges: The complexity and heterogeneity of modern distributed
systems; the flood of data produced; the lack of expertise, time, and resources; un-
clear non-functional requirements; and the resulting reactive approach of only im-
plementing monitoring after failures [199]. Niedermaier et al. highlight several re-
quirements and solutions to address these challenges, including the requirements
to provide a holistic approach for context propagation across components as offered
by distributed tracing and adding metadata to metrics and logs [199]. A key re-
quirement stated is the inclusion of observability functionality from the start and
the use of automated and smart approaches to analyze the observed information
and provide valuable insights about the system behavior [199]. Tools and all-in-
one solutions play a crucial role in enabling this level of observability, mainly fo-
cusing on scalability, extensibility, portability, and security [199]. Based on these
insights, artifacts enabling web service deployment evolution need to address the
observability-related expectations of software developers. Observability functional-
ity must be smart, context-aware, and easily usable to provide valuable insights into
the evolution-related challenges of web services. Service annotations as highlighted
in Section 5.2 can provide additional context to allow smart monitoring decisions
and anomaly detection based on annotated non-functional requirements and other
constraints. The artifacts designed in Part III embrace these observability-related
requirements to support web service evolution.

5.1.3 Web of Things

The Internet of Things domain concerns applications of ubiquitous connections be-
tween devices enabled by innovations in hardware, software, and communication
technology [18, 262]. Al-Fuqaha et al. and Sisinni et al. provide extensive surveys on

80

5.1 Web Service Deployment Evolution Domains

the enabling technologies and emerging challenges, highlighting the need for inno-
vations in hardware, software, and architectures to enable IoT applications [18, 262].
As detailed in Section 2.2, fog computing is an architecture creating a ”layered model
for enabling ubiquitous access to a shared continuum of scalable computing resources” [139].
Fog computing extends the static nature of edge computing with dynamic and in-
telligent reconfiguration benefiting from decoupling hardware and software func-
tions [139]. Fog nodes, managed by a service orchestration layer, communicating
with each other, devices at the edge of the network, and cloud services build the
essential building blocks of a fog-based architecture [52, 53]. This orchestration is
performed based on distributed policies building on different, often conflicting non-
functional concerns that need to be collected, stored, managed, and resolved [52].
Henze et al. provide additional formalizations focusing on the dynamic and scal-
able aspects of fog-based architectures, defining concepts such as fog visibility, fog
horizons, and fog reachability using the set-theory-based approach to reason about
possible interactions between fog nodes [128, 129]. Andreas Seitz formalizes fog
computing approaches by presenting the Fogxy architectural style, enabling the ap-
plication of fog computing to a wide variety of application domains [255]. Service
annotations such as introduced in Section 5.2.1 can enable these orchestration mech-
anisms to identify and collect non-functional concerns of participating web services.
Part IV introduces several case studies in the IoT and fog computing domain, show-
casing the application of fog computing in these domains, and validates the de-
signed artifacts in Part III.

The Web of Things leverages the idea of interconnecting IoT devices to offer web
service-based access to resource-constrained IoT devices using web-based API types
and protocols like HTTP [86]. More capable IoT devices enable the use usage of the
entire OSI protocol stack in resource-constrained environments and lower the inter-
operability challenges of IoT-based communication protocols and technologies by
using the same web API types used to communicate with web services [86, 277]. The
dissertations by Guinard and Trifa and publications with their colleagues address
the Web of Things architecture composing smart devices in composite web-based
software systems using architectural styles such as RESTful web services [121, 281].
Guinard and Trifa present different approaches to turning connected devices into
RESTful web services using embedded computing to offer the web API on the de-
vice or using smart gateways abstracting the actual communication protocol for
resource-constrained devices [122]. Guinard et al. go beyond modeling web service
protocols as transport mechanisms and elevate IoT devices by offering services ad-
hering to the REST constraints such as the uniform interface using an HTTP-based
RESTful implementation [124]. The smart gateway for resource-constrained devices
acts as a proxy mapping the incoming requests to proprietary APIs of the smart
device and establishes a connection to the device’s lower-level communication pro-

81

5 Web Service Deployment Evolution

tocol [124]. Guinard et al. propose semantic annotations as described in Section 5.2
to find and describe smart devices in the Web of Things [123]. These annotations can
semantically annotate HTML files describing the RESTful APIs and can be indexed
by search engines to localize smart devices [123].

Beyond the search and discovery optimizations for smart IoT devices, annota-
tions and additional metadata added to smart devices and web services can facil-
itate automated and constraint-solving deployment mechanisms for WoT applica-
tions. Hur et al. use semantic descriptions to generate service descriptions and
deployment based on these annotations across different IoT platforms [136, 137].
The research by Hur et al. applies IoT deployment mechanisms from IoT platforms
to WoT enabled by a heterogeneous semantic service description addressing in-
teroperability issues between different IoT platforms [137]. The semantic service
description consists of properties defining static attributes of physical objects, ca-
pabilities describing dynamic data provided by physical objects, and service pro-
files specifying the configuration of a physical object interacting with specific IoT
platforms [136, 137]. The process of generating a service deployment consists of
extracting the metadata from physical devices and platforms, transforming it to a
platform-specific service description, and deploying the software to the IoT plat-
forms [137]. The process and approach by Hur et al. demonstrate a sophisticated
approach of using annotations and metadata to create static deployment configura-
tions for WoT applications. While the deployment evolution enabling annotations
focus on the physical devices and IoT platforms, the insights and procedure provide
valuable insights into applying annotation-based approaches to enhance the static
and dynamic behavior of deployment structures of evolvable WoT web services.

Vögler et al. present DIANE and LEONORE as tools to enable dynamic IoT ap-
plication deployment, triggered by changes to the applications business logic, cus-
tomer request patterns, and changes in the physical infrastructure [295]. LEONORE
is ”a service oriented infrastructure and toolset for provisioning application components
on edge devices in large-scale IoT deployments” [294]. LEONORE prepares installable
packages catered to the target environment and allows a push and pull-based pro-
visioning of devices [294]. Optimizing the elastic deployment of these IoT appli-
cations is based on dynamic information received from application rules, infras-
tructure rules, and policies to optimize the deployment based on changing internal
and external factors [296]. Application rules, such as response time, and infrastruc-
ture rules, such as CPU usage, are monitored, and the application deployment is
constantly optimized to scale the application within its hardware constraints [296].
Instead of using optimized installation packages, research by Islam et al. use Docker-
based software components to IoT-based deployments, taking advantage of ad-
vancements in computation power and memory, allowing a containerized deploy-
ment of WoT services [140]. Islam et al. use containerized deployment approaches

82

5.2 Web Service Metadata Annotations

to dynamically detect IoT gateways and suitable software components and perform
resource matching and deployment to the IoT environments [141]. Research by
Vögler et al. and Islam et al. demonstrates the possibilities of dynamically adjust-
ing IoT-based applications to changing internal and external factors contributing
to dynamic changes in the deployment structure of web services. All approaches
rely on domain-specific and service-level information about the software compo-
nents to distribute software interacting with connected devices. The artifacts de-
signed in Part III contribute to the dynamic web service deployment evolution by
providing extensible and domain-specific annotation, collection, and interpretation
mechanisms that provide domain-specific information to static and dynamic IoT
deployment mechanisms.

5.2 Web Service Metadata Annotations

An important aspect of specifying and incorporating non-functional requirements
in a software system is to design a suiting software architecture and use tools, pat-
terns, and data structures that benefit the fulfillment of these requirements [135].
Continuous software engineering mechanisms and tools such as tests, profiling tools,
deployment mechanisms, and monitoring tools must incorporate and validate these
requirements [135]. Non-functional concerns, other constraints, and application do-
main context connected with web service functionality also play a crucial role in
better understanding, deploying, and consuming web services. Annotation mech-
anisms enable developers to express these non-functional requirements and other
semantic information as part of the software engineering artifacts and make them
available to tools. The annotation model defined in Section 5.2.1 describes annotated
information to enable web service deployment evolution-related domains detailed
in Section 5.1. Section 5.2.2 provides an overview of different web service metadata
annotation domains, enriching web service-related software systems with informa-
tion about non-functional concerns and semantic information.

5.2.1 Web Service Metadata Annotation Model

This section presents the web service metadata annotation model. The model de-
tails a high-level metadata annotation model concerning different levels of the web
service interface metamodel (Figure 3.1, page 48) stereotypes.

Knowledge Question 5:
How can artifacts collect requirements, constraints, and application domain and
deployment environment-specific information to address web service deploy-
ment evolution?

83

5 Web Service Deployment Evolution

*

* *

**

*
<<WebService>>

WebService

<<Handler>>

Handler

<<Serialization>>

Content

WebServiceMetadata HandlerMetadata ContentMetadata

Metadata

value: Value

Figure 5.1: The web service metadata annotation model presents a hierarchy of
metadata annotations that are associated with the web service interface type-
independent stereotypes presented in the web service interface metamodel (Fig-
ure 3.1, page 48). The metadata type can be extended for different non-functional
requirements, constraints, and application domains and can be specialized for dif-
ferent web service stereotypes. (UML Class Diagram)

The model address Knowledge Question 5. We choose the term metadata as
a collective term to describe the possible annotations for the web service design
mechanisms. Based on the metadata definition in the WS-Policy specification [55]
presented in Section 5.2.2, we interpret metadata as a collection of machine- and
human-readable aspects refining functional aspects of web service elements. The
annotation-based approach is derived from the declarative component configura-
tion pattern defined by Buschmann et al. as an approach that ”addresses how the
resource and infrastructure needs of a component can be passed to its hosting infrastruc-
ture” [67]. The pattern is instantiated and often referred to as Annotations, a feature
present in different programming languages to specify metadata [67].

The presented model does not contain complex relationships or properties of the
modeled stereotypes. It provides a simple foundation to model and express pos-
sible metadata-related annotations for the domains detailed in Section 5.1. While
web service metadata annotation domains presented in Section 5.2.2 showcase an-
notation models specific for non-functional concerns and semantic information, the
goal of the model and the artifacts designed in Part III is to provide an annota-
tion mechanism to benefit web service evolution-related challenges. The metadata
annotation model incorporated aims to provide extensible and web service inter-
face type-independent annotation mechanisms. The concrete mechanisms defined
in Part III are not constrained to semantic annotations or non-functional concerns,

84

5.2 Web Service Metadata Annotations

but can be used to express and interpret these aspects to tackle web service evo-
lution. The metadata annotation types are specialized for different application do-
mains. Part IV explores how the presented extensible metadata annotation model
can be used to address challenges in the areas of web service observability, service
partitioning, resource usage, and the Web of Things.

As shown in Figure 5.1, the metadata type contains a value defining the content
of the metadata annotation. We differentiate between three different metadata spe-
cializations: web service metadata, Handler metadata, and serialization metadata.
The metadata annotations are associated with instantiations of the web service in-
terface profile. Web service metadata is refining the functionality of a web service
instance annotated with the web service stereotype. Similarly, Handler metadata is
refining the functionality of a Handler instance annotated with the Handler stereo-
type. Content metadata annotates the content of requests and responses conform-
ing to a serialization stereotype. Each metadata annotation is in a many-to-many
relationship with the annotated entity. To reduce the amount of possible metadata
and reduce complexity, we deliberately do not define metadata on the request or
response instantiations of a web service as any aspects refining Handlers and serial-
izations can also be used to refine request and response mechanisms.

Artifacts designed in Part III need to incorporate mechanisms to annotate el-
ements of web service artifacts with metadata information that can be parsed and
provided to deployment evolution-related tools. The collection mechanism needs to
allow a structured export of the metadata information with a variable level of detail
based on the deployment mechanism and application domain. The metadata anno-
tation instantiations can include non-functional concerns such as response times or
memory metadata of a Handler, hardware constraints of a web service, and addi-
tional context for content exchanged with web services.

5.2.2 Web Service Metadata Annotation Domains

This section presents five different web service metadata annotation-related do-
mains that use metadata annotations to improve web service development and web
service evolution. These domains range from model-based approaches to annota-
tions in service specification languages and web pages in the semantic web.

Model-Based Web Service Annotations

Annotating non-functional requirements in model-driven architectures is achieved
using UML profiles such as the UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms Specification (QoS) [8] and the UML Profile
for Schedulability, Performance, and Time Specification (SPT) [6] adopted by the Object
Management Group (OMG) [40].

85

5 Web Service Deployment Evolution

The QoS UML profile offers an extensible mechanism to associate quality of ser-
vice and fault-tolerance properties with model elements [8]. The annotation process
consists of three steps: Defining the QoS characteristics, defining quality models by
instantiating the QoS characteristics template classes, and annotating the applica-
tion domain UML models with QoS constraints and QoS values [8, 40]. The SPT
profile provides stereotypes and attributes that can be used to stereotype elements
or annotate model elements, and assign values to these properties using a comment-
based notation [6, 40]. The QoS and SPT profiles provide different tradeoffs between
flexibility and convenience: The QoS profile provides more extension points, but is
more complex to apply, while the SPT profile is less flexible, but involves fewer steps
to apply non-functional concerns to UML models’ elements [40].

In contrast to the OMG-adopted UML profiles, Ortiz and Hernandez present a
metamodel using UML profiles and UML stereotypes, such as the Extra-Functional
Property stereotype, to express web service-related non-functional concerns in UML
models [208]. The stereotype annotations can also be exported to generate WS-
Policy documents [55] incorporated in the web service specifications ecosystem [208].
Building on top of this metamodel, Ortiz and Hernandez present an aspect-oriented
approach to specifying the enforcement that is subsequently used to generate aspect-
oriented Java code skeletons [207].

While the artifacts designed in Part III do not follow a purely model-based ap-
proach, the model-based approaches highlight different levels of flexibility and ex-
tensibility to express non-functional concerns during model-driven development
of software systems. As highlighted by Bernardi and Petriu, the balance between
flexibility and convenience of expression is a challenge that requires extensible yet
straightforward approaches to annotate web service implementations with non-
functional requirements and other constraints [40].

Composition of Non-Functional Concerns in Web Services

As part of the dissertation project on Composing Non-Functional Concerns in Web Ser-
vices, Schmeling et al. published several papers and articles proposing methodolo-
gies to specify, enforce, and compose non-functional concerns (NFCs) such as se-
curity and performance in web services [245, 246, 247, 248]. The metamodel based
on definitions by Rosa et al. [242], defines non-functional attributes as the quality or
characteristics of non-functional concerns that are affected by non-functional actions
(NFAs), representing aspects that affect non-functional attributes [242, 245].

Schmeling defines three composition types: composition of functional concerns
with NFAs, enriching functional code with non-functional concerns, the compo-
sition of superimposing NFAs, where multiple NFAs are enforced at once, and
the composition of composite NFAs where NFAs are composed similar to func-
tional composition in business processes [245]. Schmeling presents the NFComp ap-

86

5.2 Web Service Metadata Annotations

proach enabling non-functional requirements composition consisting of a develop-
ment process, a metamodel for non-functional concerns, a graphical notation com-
posing non-functional concerns, modeling editors, code generators, and tools to val-
idate models at design time [245]. It differentiates between the specification and
realization of non-functional concerns in web services as well as the perspectives
enabling different levels of insight into the internals of a service [33, 246, 247].

The article A survey on non-functional concerns in web services provides an ex-
tensive literature research clustering web service and non-functional concern com-
position, highlighting the high number of publications that investigate the speci-
fication of non-functional concerns while pointing out that there is less focus on
web services-related non-functional concerns [246]. Schmeling et al. define sev-
eral requirements to specify non-functional requirements, such as an action that
can contribute to the realization of the requirement, that defines a subject of the
non-functional requirement, and the ability to define the order of different non-
functional actions for a use case [247]. The enforcement of non-functional concerns
is performed using the interceptor pattern using message-oriented middleware or
aspect-oriented programming using language features, such as aspects to crosscut
behavior using pointcuts [246, 247].

Schmeling et al. also define several requirements for the enforcement of non-
functional requirements: including the enforcement separate from functional con-
cerns, the ability to associate one NFC with multiple functional concerns, and the
ability to enforce NFCs even if the enforcement and functionality are implemented
in different execution environments [247]. The research presented provides a model-
based development process for specification and realization of NFRs in accordance
with the defined requirements, starting from a specification phase with a require-
ments engineer to a code realization phase in which a service provider generates
code to enhance a web service to enforce the defined non-functional concerns [248].
The enforcement of these composed non-functional requirements is performed us-
ing a proxy-based approach that is deployed in front of web services, executing the
middleware services enforcing the NFAs, and finally delegating the handled request
to the original web service [248].

The research by Schmeling et al. provides in-depth insights on the composition
of non-functional requirements and the effect of enforcing and specifying them on
composing web services. The proxy-based approach allows service provides to
retroactively add non-functional actions to web services to enforce multiple com-
posed non-functional concerns. While our proposed approach is mainly concerned
with annotating and using non-functional concerns and semantic information to
improve web service deployment evolution-related changes, the differentiation be-
tween non-functional requirement, non-functional concern, and non-functional ac-
tion provides input on modeling metadata for web services defined in Section 5.2.1.

87

5 Web Service Deployment Evolution

WS-* Ecosystem Metadata Annotations

The the web service specification (WS-*) ecosystem of standards incorporates sev-
eral specifications and extensions around XML-based standards originating from
the WSDL [75, 192], the SOAP [311] and UDDI [37].

The Web Services Policy (WS-Policy) specification defines service metadata as
”an expression of the visible aspects of a Web service, and consists of a mixture of machine-
and human-readable languages” [55]. The specification differentates between meta-
data describing the payload formats of web services expressed by the XML Schema
Definition (XSD) language [301], metadata describing the web service interface ex-
pressed by the WSDL [75], and metadata describing the capabilities and require-
ments of web services such as the WS-Policy XML-based DSL [55].

The WS-* ecosystem includes many extensions that can be used to implement
and extend non-functional concerns, e.g., WS-Security [167], as an extension to SOAP
enables message content integrity and confidentiality. WS-Trust specifies methods
to ”issuing, renewing, and validating security tokens” [169] and establishing trust rela-
tionships between web services. WS-Trust also defines predefined WSDL endpoints,
ports in WSDL 1.1, that can be instantiated for different WSDL bindings [169]. WS-
SecureConversation builds on top of WS-Security and WS-Trust, further refining
how security contexts and trust between web services are established [168]. Machine-
readable metadata, such as the WS-Policy domain-specific language, can be used to
enable tooling describing security and reliability non-functional concerns [55].

Providing metadata related to non-functional concerns at runtime to be mon-
itored, collected, and interpreted can provide web service consumers and service
compositions a holistic overview of the service offered [261]. Therefore, the Web
Services Metadata Exchange (WS-MetadataExchange) standard defines expressing
metadata as HTTP resources and how metadata can be retrieved from web services
using request-response interactions [303].

The WS-Policy and related standards enable the expression and enforcement of
non-functional concerns in web services developed using the WS-* ecosystem pri-
marily focused on SOAP-based interfaces. The definition of service metadata pro-
vides essential insights for the web service interface type-independent metadata an-
notation model presented in Section 5.2.1.

Semantic Web-Based Metadata Annotations

The idea of the semantic web is, according to Berners-Lee et al., that it ”will enable
machines to COMPREHEND semantic documents and data, not human speech and writ-
ings” [43]. The semantic web concept primarily relates to web pages where informa-
tion is annotated and connected using the standards like the Resource Description
Framework (RDF) [166] and the Web Ontology Language (OWL) [10].

88

5.2 Web Service Metadata Annotations

Annotating semantic web service information, going beyond non-functional char-
acteristics in the WS-* ecosystem, is achieved using Semantic Annotations for WSDL
and XML Schema (SAWSDL) [94]. The SAWSDL ”defines how to add semantic annota-
tions to various parts of a WSDL document such as input and output message structures,
interfaces and operations” [94]. SAWSDL uses extension mechanisms provided in the
WSDL [75] and XML Schema [301] specifications to annotate schema types and pro-
vide mappings to ontologies defined by semantic models [94]. Semantic models
contain concepts that are identified or created using XML attributes as defined by
the SAWSDL standard [94].

Before SAWSDL existed, Patil et al. presented the METEOR-S Web Service An-
notation Framework (MWSAF) as a specification to enhance service discovery and
composition by mapping WSDL documents with ontologies [214]. MWSAF pro-
poses abstractions to create SchemaGraph representations from WSDL documents
and ontologies, provide a matching algorithm suggesting mappings to developers,
and write these mappings back in WSDL documents using XML based annota-
tions [214]. Peng and Bai list several semantic annotation mechanisms for RESTful
APIs and present the Semantic RESource Tagging (SemREST) method to annotate
OpenAPI specifications with semantic tags [215].

The mechanisms used in SAWSDL, MWSAF, and SemREST demonstrate annota-
tion-based additions of context to web service interfaces definition languages. While
the focus on the web service interface provides additional semantic context for web
service composition and discovery, mechanisms closer to the functionality of the
source code are more suited when providing functionality-specific context annota-
tions for the deployment-related domains listed in Section 5.1.

Energy-Efficient Computing

As discussed in this section, memory, computation power, and other performance
and usability constraints such as timeouts can be inferred from non-functional requi-
rement-based annotations. These insights can be applied beyond FaaS related de-
ployments to IaaS, PaaS, or container-based deployment and orchestration mecha-
nisms. While performance and responsiveness are often considered essential, com-
puter science research, hosting providers, and other participating stakeholders must
also consider sustainability-related aspects of the tools and methods. Consolidat-
ing computation power in energy-efficient ways, using energy-efficient equipment,
and dynamically allocating resources and, therefore, reducing idle times are some
of many techniques to reduce the power usage and carbon footprint in regards to
cloud deployments [234].

One key challenge is analyzing, predicting, and monitoring software to identify
high energy usage and designing tools to negotiate lower quality of service (QoS)
modes and subsequently implement alternatives to reduce energy usage [234]. In

89

5 Web Service Deployment Evolution

their research, Bartalos et al. highlight the challenges of predicting power consump-
tion of black-box web services due to the short execution times of web service func-
tionality, the dependence on the current state of the web service, as well as the cor-
relation of power consumption and the input provided to the web service [30].

One source of information can be web service developers as they have concrete
insights into the algorithmic complexity and correlations of input to output. Devel-
opers can make this information available to sustainability-aware resource alloca-
tion and configuration mechanisms. Based on this principle, Vitali proposes mech-
anisms to enable sustainable cloud-native applications and their composition by
leveraging different requirements, constraints, and possible sustainability-related
execution alternatives for web services [292]. Vitali presents a four-step sustainable
application design process correlating to four levels of sustainability awareness,
with level zero being the current state-of-the-art microservice-based cloud native
application [292]. Step one encompasses adding sustainability-aware information
as well as non-functional requirements to web services that providers can use to
optimize the deployment structure [292]. Levels two and three address the com-
position of microservices and the enrichment of business processes encompassing
the microservices with different execution modalities for normal execution, high-
performance, and low-power modes impacting the energy consumption of the exe-
cuted business process [292].

Research by Vitali highlights how metadata annotations can enrich solutions to
address the cloud native web service deployment evolution-related challenges. The
treatment design (Part III) and treatment validation (Part IV) demonstrates the ap-
plicability of the designed artifacts and annotation mechanisms to address web ser-
vice deployment evolution.

90

Part III

Treatment Design

TREATMENT design describes the design and instantiation of artifacts so they
can be applied to treat problems investigated in the Part II [309]. We present
the Apodini ecosystem, which encompasses a collection of domain-specific

languages, frameworks, and tools that address web service evolvability. We base the
treatment design on the methodology described in Section 1.2, combining the soft-
ware engineering approach defined in ISO/IEC/IEEE 12207 [15] and design science
methodologies defined by Wieringa [309] to describe the artifact design process. The
software engineering approach is refined using methodologies, best practices, and
documentation approaches presented by Bruegge and Dutoit [62].

This part documents the treatment design of artifacts using system design and
object design documentation techniques. Chapter 6 documents the system design
of the Apodini system using an adapted version of the System Design Document
(SDD) presented by Bruegge and Dutoit [62]. Chapter 7 realizes the system architec-
ture from the previous chapter and defines class models, type signatures, and other
implementation-related models describing the internal behavior of the system [62].

91

92

Chapter 6

System Design

Bruegge and Dutoit state that ”During system design, we identify design goals, decom-
pose the system into subsystems, and refine the subsystem decomposition” [62]. This ac-
tivity is documented in the System Design Document (SDD), serving as a reference
for design goals, architecture-level decisions, and defining interfaces between more
extensive subsystems refined in later software engineering activities [62]. Defined
by Bruegge and Dutoit as a model to help the initial understanding of the system
architecture, ”The top-level design represents the initial decomposition of the system into
subsystems” [62]. Figure 6.1 details the top-level design of the Apodini ecosystem.

«subsystem»

Apodini

«subsystem»

Interface Exporter

«subsystem»

Migrator

«subsystem»

Deployer

Semantic Model

Migration

Guide Web API

Description
Web Service

Structure

Figure 6.1: Top level design of the Apodini ecosystem. The simplified ecosystem
consists of four main subsystems: Apodini itself, the Interface Exporter subsystem,
the Deployer subsystem, and the Migrator subsystem. The model displays simpli-
fied high-level interfaces to provide an initial understanding of the system architec-
ture. (UML Component Diagram)

93

6 System Design

Section 1.1 introduces several technical research goals, expressing goals to de-
sign or improve existing artifacts. These artifacts aim to improve the process of
designing evolvable web services. Apodini addresses aspects of web service in-
terface evolution, web service API evolution, and web service deployment evolu-
tion. The design problems introduced in Section 1.1.1 refine these technical research
goals to highlight problems addressing stakeholder goals that contribute to their
fulfillment [309]. The design problems can be mapped to the different subsystems
introduced in the top level design of the Apodini ecosystem. Design Problem 1 is
addressed by the Apodini and Interface Exporter subsystems:

Design Problem 1:
Develop all aspects of web services in a web service interface type, web API,
middleware, and protocol-independent description so that web service develop-
ers can support different web service interface types and web API types without
rearchitecting web services.

The Apodini subsystem enables web service interface type-agnostic web service
development. As detailed in the Object Design Chapter, Apodini uses an internal
domain-specific language to express the interface, functionality, and metadata an-
notations in a single representation that can be parsed and interpreted by the other
subsystems. The concept of the Apodini internal DSL was first described in Apodini:
An Internal Domain Specific Language to Design Web Services [249]. A semantic model
is a domain model representing an in-memory model of the domain the DSL de-
scribes and is generated out of a syntax tree parsed from the DSL description [107].

The Interface Exporter subsystem uses the semantic model to address web ser-
vice interface evolution. Providing the interface agnostic semantic model to the In-
terface Exporter subsystem enables an extensible ecosystem of Interface Exporters
that interpret and instantiate the semantic model and its functionality for different
web service interfaces and web API types. Part IV validates the extensibility and ex-
pressiveness of the Apodini DSL and the Interface Exporter subsystem by demon-
strating different Interface Exporters such as HTTP, REST, WebSocket, GraphQL,
and gRPC Interface Exporters.

Design Problem 2:
Automatically detect and migrate backward-incompatible changes of web ser-
vice interfaces to enable web service client stability after modifications to the
web service interface.

The Migrator subsystem addresses Design Problem 2 and therefore web service
API evolution. The Migrator functionality extends Apodini to generate a migration
guide, expressing the changes and migrations between two versions of an Apodini-
based web service. The migration guide further described in Section 7.3 provides

94

6.1 Design Goals

a change classification based in the change patterns described in Section 4.2.1. The
Migrator subsystem uses the migration guide and web API type-specific web API
description generated by an Interface Exporter to create client libraries. These client
libraries guarantee web service client stability by applying the abstract migration
steps to the concrete web API description.

Design Problem 3:
Develop a constraint-based service description so that web service developers
can dynamically deploy web services incorporating different deployment struc-
tures, processes, and runtime constraints.

The Deployer subsystem addresses Design Problem 3 and therefore web ser-
vice deployment evolution. The Deployer extends Apodini to extract a web ser-
vice structure from the semantic model, expressing an abstract overview of possible
deployment-related metadata information and decomposition constraints. Apodini
Deployer provides an extensible architecture to support different application do-
mains such as WoT deployments and web service hosting providers such as FaaS
providers to optimize the deployment automatically. By gaining a holistic overview
of the web service structure, annotated non-functional requirements, and other con-
straints, the Deployer subsystem can address challenges in the dynamic and static
evolution of deployment structures based on different forces affecting deployment-
related evolution.

This chapter presents the system design using an adapted version of the System
Design Document (SDD) [62]. Section 6.1 defines the design goals of the Apodini
ecosystem and its subsystems based on the foundations and insights defined in the
previous chapters. The control flow section (Section 6.2) refines the system design
with dynamic models, depicting the interactions between the different subsystems.
Section 6.3 defines a subsystem decomposition including software components for
the different subsystems represented in Figure 6.1.

6.1 Design Goals

This section translates Wieringa’s technical research goals and design problems into
actionable software engineering criteria using design goals. Design goals or quality
attribute considerations identify the qualities that a system should focus on and en-
able consistent criteria for design decisions involving requirement tradeoffs [31, 62].
Bruegge and Dutoit group the design goal criteria in five groups: ”performance, de-
pendability, cost, maintenance, and end user criteria” [62]. This section describes differ-
ent design goals of the Apodini ecosystem of tools, libraries, and methods based on
the previous chapters’ knowledge context and problem investigation.

95

6 System Design

Performance Criteria

Performance criteria are related to the speed and space criteria of the system and
are grouped into response time, throughput, and memory criteria [62]. The Apodini
project is a research project following the design science methodology of Wieringa
and has the main goal to design and validate artifacts addressing aspects of web
service evolution. The abstract mechanisms needed to support different web service
interface types and web API types while dynamically decomposing and redeploy-
ing the web services result in tradeoffs between demonstrating these capabilities
and focusing on performance.

While performance, throughput, and memory usage should not be neglected,
the project’s main focus resides on demonstrating evolvability mechanisms and
not building a high-performance low-level web service development framework.
Therefore we do not explicitly define response time, throughput, and memory cri-
teria, but want to make sure that the Apodini ecosystem provides comparable per-
formance results to other web service development frameworks. We enable reason-
able performance, throughput, and memory usage baselines by building on shared
and well-proven programming language-specific networking and event manage-
ment frameworks.

Dependability Criteria

Users depend on software, and software systems depend on execution environment
factors which requires software developers to consider hardware failures, software
failures, and operational failures caused by human users [267]. Dependability cri-
teria relate to efforts in minimizing system failure grouped into robustness, reli-
ability, availability, fault tolerance, security, and safety criteria [62]. The Apodini
subsystem provides a mechanism to express the structure, functionality, and non-
functional concerns of a web service in a single description to support web service
evolution. As further explained in Chapter 7 and showcased by different related
work in Part II, a domain-specific language offers flexible and extensible ways to
define and use such a web service description.

Robustness is essential in parsing, interpreting, and further using DSL-based
descriptions. The compiler-based support of internal domain-specific languages
(Definition 10, page 32) enables robustness by benefiting from features found in
integrated development environments such as code completion and compiler-level
features such as type checking for strongly-typed languages [107]. Similarly, reli-
ability is also an important criterion when analyzing the web service description.
While subsystems like the Interface Exportrer subsystem need to make web API
type-based assumptions about the concrete web API, the observed behavior should
still reflect the boundaries and functionality expressed in the DSL.

96

6.1 Design Goals

Similar to the performance goals defined above, availability, fault tolerance, se-
curity, and safety should not be neglected when designing the system but are not the
main focus of the demonstrated treatment design and validation. Nevertheless, the
web service development tools must support relevant security mechanisms when
validating the artifacts, such as encrypted communication using HTTPS. Faults cre-
ated in developing a web service should be communicated to the developer at com-
pile or startup time. Faults at runtime should be communicated to the web service
client using meaningful error messages and possible hints on how to resolve the
issue if it originated from faulty requests.

Cost Criteria

Estimating cost is a complex estimation conducted using cost calculation models to
approximate the cost of software systems throughout their lifetime [288]. Cost crite-
ria include design and managerial decisions cost decisions including development
cost, deployment cost, upgrade cost, maintenance cost, and administration cost cri-
teria [62]. The development cost and the deployment cost of the Apodini system
are constrained by the resources available to the development team at the Techni-
cal University of Munich. As the artifacts designed are greenfield research projects,
there is no considerable upgrade cost for the designed system. The system’s main-
tenance and administration are performed as part of the research conducted sur-
rounding the Apodini ecosystem. Numerous students contribute to the project as
part of courses and theses during their studies and conduction the research project
would not have been possible without the time and effort invested by the participat-
ing students [34, 35, 69, 83, 126, 159, 160, 162, 202, 229, 230, 270, 304, 317, 318]. Future
work presented in Chapter 10 highlights the potential to continue the research be-
yond the scope of this dissertation, facilitating future research projects.

Maintenance Criteria

Maintenance criteria relate to the difficulty of evolving the software system and
include criteria such as extensibility, modifiability, adaptability, portability, read-
ability, and requirements traceability [62]. Extensibility refers to the ability to add
functionality to the system, modifiability refers to changes in the functionality, and
adaptability relates to adopting new application domains [62]. Portability defines
how easy a system can be ported to different platforms, readability to the ability to
comprehend the source code [62]. Requirements traceability as the last maintenance
criteria has already been explained in Chapter 5. Almost all maintainability criteria
are essential criteria for the Apodini ecosystem.

Apodini needs to be extensible to support different Interface Exporters in the In-
terface Exporter subsystem, different Migrators to migrate different web API types

97

6 System Design

in the Migrator subsystem, and different deployment strategies in the Deployer
subsystem. The Apodini Interface Exporter subsystem needs to support different
web service interface types, web API types, and different communication patterns.
The Interface Exporters need to build on top of an extensible networking infras-
tructure as detailed in the subsystem decomposition in Section 6.3. The Migrator
subsystem requires extensibility to support different web API types that can be mi-
grated and deliver an extensible infrastructure for the migration guide. Annotation
mechanisms in the Apodini DSL and deployment structures defined in Apodini De-
ployer need to be extensible for different application domains, web service hosting
providers, and deployment mechanisms.

Modifiability and adaptability are not as essential as the system’s extensibil-
ity but have to be considered as part of the research project. The application do-
main of web service development is the main focus of Apodini. The expressive-
ness of the Apodini DSL focuses on the support of web service interface evolution.
The Apodini DSL and its components need to be modifiable to support new sub-
domains such as web service API evolution and web service deployment evolution.

The principles of Apodini are programming language-independent and there-
fore support the portability across different platforms and programming languages.
Nevertheless, a reference instantiation of Apodini providing an internal domain-
specific language requires web service developers to commit the usage of the pro-
gramming language within the bounds of its portability across platforms and com-
patibility with other programming languages. The Apodini DSL should be embed-
ded in familiar features of the embedding general-purpose programming language
to benefit the comprehensibility and understandability of the Apodini DSL when
developing web services. The readability of Apodini web services and artifacts sup-
porting the web service development, such as migration guides, is an important
characteristic. The development of Interface Exporters, Migrators, or Deployment
Providers should be supported by documented and readable APIs.

End User Criteria

End user criteria incorporate user-driven criteria not covered in the other groups,
including utility and usability criteria [62]. Similar to the readability requirement
for the DSL, artifacts, and APIs, the system’s usability from the perspective of all
stakeholders is vital to support web service evolution. Usability includes clearly
defined API extension points and support when executing the tools and incorpo-
rating the libraries. The Apodini ecosystem should provide documentation for the
artifacts. Help and error messages should guide developers when the system en-
counters faults.

98

6.2 Control Flow

6.2 Control Flow

Dynamic models focus on the system behavior and can be depicted using UML
sequence, activity, or state diagrams [63]. While dynamic models are mostly used in
the analysis software engineering activity, this section uses UML sequence diagrams
to demonstrate the dynamic interaction within the Apodini ecosystem. We focus
on the interactions from a web service developer’s perspective involving the web
service and instantiations of Apodini Interface Exporters, Migrators, and Deployers.

6.2.1 Interface Exporter

loop

:Web Service

:Interface Exporter

Export network

interface

Handler description

<<create>>

start

[For each Handler]

Handler context

Export Web API

Web Service

Developer

<<create>>

Figure 6.2: Control flow describing the interaction of a web service developer with
an Apodini web service and the Apodini Interface Exporter subsystem. The web
service developer instantiates the web service that creates an Interface Exporter. The
Interface Exporter iterates over all exported Handlers and gathers information to
export a network interface. (UML Sequence Diagram)

99

6 System Design

Figure 6.2 demonstrates the sequence of interactions involved in exporting an
abstract Apodini web service description using an Interface Exporter. The dynamic
model involves the functionality of the primary Apodini subsystem and the Inter-
face Exporter subsystem.

The web service developer is interacting with an instantiation of an Apodini
web service as well as an Interface Exporter. The web service developer first creates
a web service, defining the functionality and other concerns in the Apodini DSL.
To export a concrete web API, the web service developer creates an Interface Ex-
porter using APIs offered by the Interface Exporter subsystem. When starting the
web service, the Interface Exporter uses DSL-based mechanisms further detailed in
Section 6.3.2 to pass the Handler descriptions to the Interface Exporter that creates
a web API context. This context is then exported on a network interface to offer
the concrete web API when the parsing of the web service DSL is complete. The
mechanism enables web service interface evolution by providing an extensible in-
teraction between the web service and Interface Exporters interpreting the abstract
web service description into concrete web APIs.

6.2.2 Migrator

The Migrator subsystem demonstrated in the top level design in Figure 6.1 is re-
sponsible for enabling web service API evolution. Figure 6.3 demonstrates a se-
quence diagram detailing the interaction between two web service versions and an
Apodini Migrator implementation.

When creating a new version of the web service, the web service developer cre-
ates a migration guide to enable client application developers to generate stable
client facades as detailed in Chapter 4. To generate a migration guide, an imple-
mentation using the Apodini Migrator subsystem extracts information from the se-
mantic model information about the web service as described in Section 6.3.1. The
semantic model from the new version of the web service is compared to the seman-
tic model of the old version to identify change patterns. These change patterns are
documented in the migration guide, and if possible, automatic migrations are al-
ready incorporated in the document. The automatically created migration guide is
returned to the web service developer in combination with a web API description
of the old web service. Even though the automatically generated migration guide
contains different best-effort migration steps, the web service developer might need
to adapt the migrations and add further migrations based on their domain knowl-
edge. The migration guide and a web API description are provided to the client
developer, who can then generate a client facade as discussed in Chapter 4.

100

6.2 Control Flow

:Web Service
Version N+1

:Apodini
Migrator

Compute

changes

Client Application

Developer

Web Service

Developer

<<create>>

:Web Service
Version N

Generate Migration Guide

Semantic Model + Web API Des.

Inspect Semantic Model

Semantic Model
Inspect Semantic Model + Request Web API Description

Automated Migration Guide + Web API Description

Migration Guide from N to N+1 + Web API Description

Manually adapt migrations

opt [Migrations require manual logic]

Client facade

Generate client facade

Figure 6.3: Control flow describing the inner workings of the migration mechanisms
instantiated in the Apodini Migrator subsystem. The Migrator subsystem inspects
the semantic model of two web service versions to create an automated migration
guide and a web API description document. The web service developer can fur-
ther refine the migrations before passing them to the client application developer to
generate a client facade. (UML Sequence Diagram)

6.2.3 Deployer

The sequence diagram in Figure 6.4 demonstrates the interactions of an Apodini
Deployment Provider based on the Apodini Deployer subsystem when generating
a partitioned web service.

101

6 System Design

Deployment Status

:Web Service

Compute deployment

constraints

Web Service

Hosting Provider

Web Service

Developer

:Apodini
Deployer

Generate web service

structure

Create

Deployment Structure

<<create>>

:Partitioned
Web Services

Deploy web service

Web Service Structure

Web Service

and Deployment Structure

<<create>>

Start web services

Web service status

Deployment Status

Figure 6.4: Control flow describing the web service partitioning approach of the
Apodini Deployer subsystem. The web service structure is exported from the web
service used to create a deployment structure as described in Section 7.4. The de-
ployment structure and a web service executable are used to create the partitioned
web service in the execution environment. (UML Sequence Diagram)

The web service developer wants to deploy a web service to a web service host-
ing provider that, e.g., provides a FaaS-based hosting infrastructure as described
in Section 5.1.1. Apodini Deployer accesses the web service to generate the web
service structure to start the deployment. This structure is computed based on the
deployment constraints provided by the web service developer, including metadata
annotations or other structural components in the web service. This web service

102

6.3 Software Architecture

structure is then returned to an instance using Apodini Deployer that transforms
the web service structure into a web service Deployment Provider-specific deploy-
ment structure. The deployment structure and the web service are then provided
to the web service hosting provider in formats such as deployment commands and
containers to deploy the web service. The web service hosting provider then in-
stantiates the partitioned versions of the web service by starting the web services
with information about the purpose and position of the web service in the over-
all deployment structure. This information is used by the web service to adapt its
functionality based on the provided deployment constraints and annotations.

6.3 Software Architecture

During system design, subsystems that provide services to other subsystems are
defined, interfaces are refined, and subsystems are decomposed into smaller soft-
ware components [62]. Figure 6.1 provides the top level design of the system with
simplified interfaces between the primary subsystems. Simplifications in the top
level design are concretized as the interfaces between the components are further
refined. This section further decomposes the subsystems into smaller components
that provide and consume interfaces to other components, subsystems, or external
stakeholders building system extensions. This decomposition is derived from the
goals and design problems defined in Chapter 1 and the knowledge gained from
the knowledge context and the following chapters. The section is divided up into
four subsections, each investigating one of the subsystems presented in Figure 6.1.

6.3.1 Apodini

The first decomposed and further refined subsystem is the primary Apodini subsys-
tem. This subsystem consists of the functionality to express a web service indepen-
dently of a web service interface type or web API type and builds the foundation for
the functionality enabled by the other subsystems. Figure 6.5 details an overview of
the Apodini subsystem, including its external interfaces and internal components.

The Apodini subsystem offers the Apodini DSL to web service developers, con-
sisting of the Apodini DSL components and interfaces to extend DSL components
used to describe a web service. The functionality describing the Apodini DSL itself
is the first main component in the subsystem.

The DSL is extended with the metadata system, extending the core components
with extensible metadata annotations and definitions. The metadata subsystem of-
fers a metadata extension annotations interface to web service developers and web
service Deployment Providers. This API allows these stakeholders to extend the
metadata definitions with additional technology or application domain context.

103

6 System Design

«Subsystem»

Apodini

«Component»

Metadata System

«Component»

Semantic Model

Builder

Parse Components

Metadata

Annotations

Semantic

Model

«Component»

Apodini DSL

«Component»

Syntax Tree

Visitor

Parse

Annotations

Parse

Syntax

Tree

DSL

Components

Syntax Tree

Extend DSL Components

Extend

Metadata

Annotations

Inspect

Semantic

Model

Figure 6.5: The subsystem decomposition of the Apodini subsystem. The subsystem
consists of four components addressing different aspects of describing a web service
and parsing this description into a semantic model that can be consumed by other
subsystems. (UML Component Diagram)

Similar to compilers, parsing a DSL is often performed by building up a syntax
tree that is populated from the DSL description [107]. The visitor pattern is a typical
pattern used to parse such graph or tree-like structures [109]. Therefore the syntax
tree visitor component is responsible for parsing the DSL components and generates
a syntax tree.

This syntax tree is the primary input of the semantic model builder component.
Martin Fowler defines semantic models as an in-memory representation of the DSL-
subject designed to express the DSL’s domain in a structured way [107]. The seman-
tic model builder component is responsible for parsing the syntax tree and building
a coherent semantic model offered to other subsystems.

6.3.2 Interface Exporter

The Interface Exporter subsystem is responsible for providing extension points for
Interface Exporters to generate concrete web APIs based on the abstract definitions
from the Apodini DSL. The subsystem, its components, and its internal and external
interfaces are depicted in Figure 6.6.

104

6.3 Software Architecture

«Subsystem»

Interface Exporter

«Component»

Networking Layer

«Component»

Request-Response

Handling

Communication

Channels

«Component»

Shared Repository

Knowledge

Sources

Networking
API

Exporter

API

Inspect

Semantic

Model

Knowledge

Source

API

Figure 6.6: Subsystem decomposition of the Interface Exporter subsystem. The sub-
system consists of four components addressing the knowledge gathering and the
networking and communication pattern handlings for Interface Exporters extend-
ing Apodini. (UML Component Diagram)

The semantic model and other knowledge about the structure, functionality,
non-functional requirements, and other metadata is stored in a shared repository.
According to Buschmann et al., the ”SHARED REPOSITORY architecture allows in-
tegration of application functionality with a data-driven control flow to form coherent soft-
ware systems” [67]. A shared repository is ”the central control coordination entity and
data access point of a data-driven application” [67]. Knowledge sources feed the shared
repository with information determined from the semantic model or based on other
knowledge sources. Knowledge sources are components typically found in the
more indeterministic blackboard pattern [67]. In contrast to the blackboard pattern,
the knowledge sources and the shared repository try to achieve a deterministic be-
havior. Additional Knowledge Sources are created using a Knowledge Source API,
which web API-specific Interface Exporters can use to extend the Apodini Interface
Exporter subsystem.

The second set of components in the Interface Exporter subsystem is the net-
working input/output (Networking I/O) and the request response handling com-
ponents. The networking I/O component provides a shared networking layer to dif-
ferent Interface Exporters. The request-response handling component builds on top
of this functionality and provides a shared functionality to implement different com-
munication patterns based on the Handlers expressed in the Apodini DSL. Differ-
ent communication patterns such as service-side streams and bidirectional streams
require state preserving logic provided by the component. The request-response
handling component relies on communication channels structuring requests and
responses on the networking layer. The exporter API is provided to Interface Ex-
porters implementing communication patterns beyond a request-response pattern.

105

6 System Design

6.3.3 Migrator

The Migrator subsystem addresses web service API evolution. The Migrator subsys-
tem is based on previous artifact instantiations in the dissertation research project
addressing web API evolution. Andre Weinkötz developed the Pallidor project18

as an exploratory project to automatically migrate web APIs based on changes in
OpenAPI specifications [304]. Building on top of the insights from Weinkötz and the
Pallidor instantiation, Eldi Cano [69] and Andreas Bauer [35] developed the Apodini
Migrator subsystem19. The subsystem decomposition in Figure 6.7 describes the
three main components that are set out to achieve client stability while enabling
web service API evolvability.

«Subsystem»

Migrator

Code

Generation API

Parse

Migration Guide

«Component»

Code Generator

Client Library

«Component»

Migration Guide

Generator

Migration Guide

Inspect

Semantic Model

Figure 6.7: Subsystem decomposition of the Migrator subsystem. The subsystem
consists of three components addressing web API evolution by generating a migra-
tion guide that can be used to create a web API-specific stability guaranteeing client
stability. (UML Component Diagram)

The subsystem generates the migration guide based on the semantic model pro-
vided by the primary Apodini subsystem. The top level design (Figure 6.1) de-
scribes the interface between the Apodini subsystem and the Migrator subsystem
as the migration guide to explain the overall interactions of the system. The sub-
system decomposition in Figure 6.6 provides a more detailed look at the subsystem

18The Pallidor project can be found at https://github.com/Apodini/Pallidor.
19The Apodini Migrator project can be found at https://github.com/Apodini/ApodiniMigrator.

106

https://github.com/Apodini/Pallidor
https://github.com/Apodini/ApodiniMigrator

6.3 Software Architecture

and moves the generation of the migration guide in the Migrator subsystem. This
provides a lower coupling and higher cohesion between the subsystems. The mi-
gration guide generator transforms two versions of the semantic model into a web
API type agnostic migration guide. The dynamic process of this transformation is
detailed in Section 6.2.

The Apodini Migrator instantiation uses the web API agnostic migration guide
and a web API description and identifies the concrete API changes. These API de-
scriptions and changes are combined with the migrations and are passed to the code
generator component. This component provides the functionality to generate client
stubs based on an extensible API that can be adapted and refined based on the re-
quired web API type.

6.3.4 Deployer

The last subsystem that is closely inspected is the Deployer subsystem shown in
Figure 6.8. The Apodini Deployer subsystem was developed as part of the Apodini
research project and was instantiated by Lukas Kollmer in the bachelor’s thesis Au-
tomated and User-Configurable Deployment of Web Services [159] and extended in Au-
tomatic Deployment and Dynamic Reconfiguration of Web Services in Heterogeneous IoT
Environments by Felix Desiderato [83] as demonstrated in Chapter 9.

The Deployer subsystem uses the semantic model to generate a web service
structure in the web service structure generator component. The component uses
the web service structure, the context provided in the DSL, and metadata-based an-
notations to provide a deployment-focused representation of web services. The web
service structure is then transformed by the deployment structure generator into a
deployment structure that Deployment Providers instantiations can extend.

Different web service hosting providers require different runtime environments
to start and communicate with the web service. The deployment runtime compo-
nent provides a basis to build custom components and networking layers to sup-
port the web service deployment. This networking API is consumed by the cross
deployment node communication component. As noted in Section 5.1, partitioning
web services into smaller individually deployable nodes can be beneficial to support
modern FaaS or IoT-based deployments. When a web service developed as a single
deployable entity such as a microservice is partitioned into smaller elements, the
communication between different microservice functions still needs to be preserved
in the partitioned state. The cross deployment node communication component
enables this functionality and provides extensible APIs that different Deployment
Providers can support.

107

6 System Design

«Subsystem»

Deployer

«Component»

Deployment Runtime

«Component»

Cross Deployment

Node Communication

Investigate
Constraints

Networking
API

Parse

Deployment Structure

«Component»

Web Service

Structure Generator

«Component»

Deployment

Structure Generator

Parse Deployment

Groups

Web Service

Structure

Deployment

Structure

Cross

Instance

Execution

API

Networking
API

Investigate

Semantic

Model

Figure 6.8: Subsystem decomposition of the Deployer subsystem. The subsystem
consists of four components addressing web service deployment evolution by gen-
erating a deployment structure adapted to dynamic and static deployment-related
constraints. (UML Component Diagram)

108

Chapter 7

Object Design

The Object Design chapter focuses on describing interfaces and key artifacts con-
tributing to the Apodini ecosystem. The object design identifies the reuse of off-the-
shelf components, details service interface specifications, and improves and opti-
mizes the object models to address the design goals [62]. The open-source instantia-
tions of the Apodini ecosystem include automatically generated documentation for
the public interfaces of the individual subsystems, providing more insights into the
exact programming language-specific design of the APIs20. The detailed UML class
diagrams provide simplified and programming language-independent descriptions
of the modeled artifacts instantiated using suiting programming language features
in the instantiations.

Section 7.1 provides an overview of the object design of the Apodini internal
domain-specific language used to describe evolvable web services. The section
introduces an abstract class diagram modeling the main components of the DSL
and introduces an instantiation using the Swift and Kotlin programming languages.
Section 7.2 details the structure of the semantic model generated from the syntax
tree that represents a parsed version of the DSL introduced in Section 7.1. Sec-
tion 7.3 details a closer look at the migration guide documenting changes and mi-
grations between two web service versions. The deployment structure modeled
in Section 7.4 defines a high-level description of the decomposed system that De-
ployment Providers can use. Section 7.5 describes the API of the cross deployment
node communication mechanisms, supporting partitioned web services using the
Apodini Deployer subsystem.

20The Apodini reference instantiation, examples, templates, and documentation can be found in the
Apodini GitHub organization: https://github.com/Apodini. A large proportion of the instan-
tiations and validations are performed using the Swift programming language.

109

https://github.com/Apodini

7 Object Design

7.1 Domain-Specific Language Components

The Apodini ecosystem uses a domain-specific language to define web services.
Chapter 3 describes and specifies the challenges of web service interface evolution
in detail. The chapter provides an overview of related work and existing web ser-
vice interface types, API types, and tools to develop evolvable web services. This
section introduces the Apodini DSL and its instantiations based on the metamodel
presented in Figure 3.1 (page 48).

Similar to research by Treiber et al. [278, 279, 280], the Apodini programming
model focuses on enabling web service evolvability by describing the web service
in serializable and composable blocks. While the Apodini ecosystem is not mainly
focused on runtime adaptation, the insights provided by Treiber et al. motivates
the advantages of combining the web service interface description with the ser-
vice functionality. Research by Treiber et al. demonstrates an abstract, tree-based
programming methodology to develop evolvable web services based on the Gen-
esis framework [278]. The script-based programming methodology enables a dy-
namic binding of functionality in Java-based web services, enabling dynamic run-
time adaptations [278]. The modularity and runtime-adaptation fit the goal of run-
time adaptability while bringing the functionality implementation and service de-
scription closer to each other than in traditional service description languages [278].

Wittern et al. highlight two approaches of generating API specifications that of-
ten require significant manual effort and suffer from sparse user input: using source
code annotations which are retroactively added to the service interfaces, and auto-
matic web API detection approaches using dynamic runtime-based data gathering
from requests and responses [313]. In contrast, Apodini presents a web service de-
velopment approach using an internal domain-specific language that combines a
code-first and model-based approach discussed in Chapter 3, as well as web service
development concepts presented in related work.

Using an internal domain-specific language provides several key advantages
when approaching different web service evolution challenges discussed in this dis-
sertation. One key advantage is the change to express service interface, deployment
structure, and configuration information in a single parsable structure while em-
bedding and reusing functionality from a general-purpose programming language.
Reusing the IDE and compiler-based infrastructure as well as DSL-language fea-
tures in general-purpose programming languages reduces the complexity of parsing
and validating the web service implementation [107]. Compilers and type systems
of programming languages constrain the expressiveness of structural and annotation-
based aspects of the web service description while providing the full power and
reusability of dependencies and language features when implementing web service
functionality.

110

7.1 Domain-Specific Language Components

Similar developments in using internal domain-specific languages can also be
observed in cross-platform user interface frameworks. The Flutter ecosystem en-
ables the development of user interfaces across the web, mobile, and desktop plat-
forms and uses an internal DSL to describe user interfaces in the Dart program-
ming language21. Jetpack Compose is a modern declarative internal DSL to develop
Android applications embedded in the Kotlin programming language22. Compose
Multiplatform extends Jetpack Compose beyond mobile applications to support
web and desktop applications23. SwiftUI is a user interface development internal
DSL embedded in the Swift programming language to develop applications running
across Apple operating systems24. The focus on internal domain-specific languages
(Definition 10, page 32) in modern, typed programming languages enables new fea-
tures and language support enabling new use cases for internal DSLs. Similar to
other application domains of internal DSLs, specifying the structure, constraints,
and functionality in a single development artifact enables a holistic development ap-
proach for web service development. The single source of truth proposed with the
Apodini DSL extends beyond current infrastructure as code approaches described
in Section 5.1, providing a cohesive Everything in Code (EiC) approach.

Figure 7.1 presents the main components in the Apodini DSL, enabling web ser-
vice developers to implement evolvable web services. The components are based
on the problem investigation performed in Chapter 3. The central abstraction is
the web service. The web service configuration provides an extension point for the
web service developer to incorporate and configure the functionality of the web ser-
vice. This includes the creation of commands and nested subcommands, exposing
the functionality of the different Apodini subsystems and the configuration of these
subsystems, including Interface Exporters. A web service can have several launch
time arguments allowing startup time adaptation of the configurations. In addition,
metadata annotations are extension mechanisms for the DSL, enabling application
domain or software engineering workflow supporting annotations. The tree-based
composite structure of the web service is formed by a composition of components
providing the content of the web service. Components can be nested and anno-
tated with metadata. The leaves of the tree are Handlers, uniquely identifiable in
the web service structure. As introduced in the web service metamodel, Handlers
are responsible for transforming input based on parameters into a response. This
mechanism is achieved using a handle method. The parameter name uniquely iden-
tifies the parameter in a Handler. The possibility to provide a default value and

21Flutter documentation can be found at https://docs.flutter.dev/.
22Jetpack Compose documentation can be found at https://developer.android.com/jetpack/

compose.
23Compose Multiplatform documentation can be found at https://www.jetbrains.com/lp/

compose-mpp/.
24SwiftUI documentation can be found at https://developer.apple.com/xcode/swiftui/.

111

https://docs.flutter.dev/
https://developer.android.com/jetpack/compose
https://developer.android.com/jetpack/compose
https://www.jetbrains.com/lp/compose-mpp/
https://www.jetbrains.com/lp/compose-mpp/
https://developer.apple.com/xcode/swiftui/

7 Object Design

Parameter

+ name: String
+ defaultValue: Value[0...1]
+ options: Options[0...*]

Web Service

+ arguments: Argument[0...*]
+ metadata: Metadata[0...*]

Component

+ metadata: Metadata[0...*]
nested components

*

Handler

+ identifier: HandlerIdentifier
+ metadata: Metadata[0...*]

+ handle(): Response

content
*

content

request *

*

Configuration

+ command: Command

+ configure()

configuration *

Figure 7.1: Main components of an instantiation of the Apodini DSL. The DSL is
based on the web service metamodel described in Section 3.2. (UML Class Diagram)

parameter-specific options completes the core components of the DSL. The follow-
ing two subsections showcase an instantiation of the DSL concepts in the Swift and
Kotlin programming languages, further refining the interface of the Apodini DSL.

7.1.1 Swift-based Apodini DSL Interface

Listing 7.1 details the Swift-based instantiation of the Apodini DSL components
shown in Figure 7.1. The Swift-based Apodini DSL was originally developed by
Paul Schmiedmayer and further developed as part of the Server-Side Swift practical
course in the winter semester of 2020/21 and further extended by several super-
vised bachelor’s theses, master’s theses, and guided research projects [249, 230, 159,
318, 83, 69, 34, 202, 35, 270, 160]. The idea of a DSL-based approach to develop-
ing web services was first exported using the declarative Swift-based web service
development framework named Corvus developed as part of a bachelor’s thesis by
Berzan Yildiz supervised by Paul Schmiedmayer [317].

112

7.1 Domain-Specific Language Components

1 @main
2 struct HelloWorld: WebService {
3 var configuration: Configuration {
4 REST()
5 }
6

7 var content: some Component {
8 Text("Hello World!")
9 }

10 }

Listing 7.1: Swift-based executable describing a web service with a single Handler
returning ”Hello World!” using a RESTful Interface Exporter.

In the Swift-based Apodini DSL, a WebService has two computed properties:
configuration containing instances conforming to the Configuration proto-
col and content containing types conforming to the Component or Handler pro-
tocols. The Swift protocols such as the Handler protocol are instantiations of the
stereotypes found in the web service interface metamodel, applying the extensibility
and adaptability of the metamodel for the DSL-based instantiation. The computed
properties are evaluated using result builders, a Swift feature to enable declarative
definitions in internal DSLs. The web service exposes a RESTful API and defines
this configuration using the REST() configuration without any additional parame-
ters. The content property contains a single Handler. The struct Text conforms
to the Swift protocol Handler and contains an implementation returning the string
passed into its initializer. This Text Handler is initialized in the content property
and defines the only Handler in our hello world web service example.

1 struct Greeter: Handler {
2 @Parameter var country = "World"
3

4 func handle() -> String {
5 "Hello \(country)!"
6 }
7 }

Listing 7.2: Swift-based Handler in the Apodini DSL expecting a parameter with a
default value if no value is provided. The Greeter Handler returns a greeting in
the handle function.

Listing 7.2 provides an example for a Swift-based Handler using the Apodini
DSL. The Greeter type conforms to the Handler protocol and contains a single
stored property named country. The Swift property is wrapped using a Swift
property wrapper of thee type Parameter using the @Parameter Swift syntax for
property wrappers25. The Parameter property wrapper is part of the DSL API

25The Swift Language Guide provides an in-depth introduction to the property wrapper-feature:
https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID617.

113

https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID617

7 Object Design

surface and enables the delegation of filling the property to the Apodini frame-
work. The name of the Parameter is inferred from the name of the property in
the Greeter type. When the handle function is executed, the Apodini framework
guarantees that the property is filled with a valid value. Based on the default value
assigned to the property, this value either originates from a request serialization or
is initialized with the default value. The handle function uses string interpolation
to create the greeting and implicitly returns the string as the return value of the
function. The Apodini framework also uses Swift structured concurrency features,
in particular the async keyword to enable suspendable computation in the handle
function.

7.1.2 Kotlin-based Apodini DSL Interface

Listing 7.3 details a Kotlin-based version of the Apodini DSL. The Kotlin imple-
mentation uses builder functions instead of result-builder-based computed proper-
ties used in the Swift implementation to define the configuration. The Kotlin-based
Apodini DSL was instantiated as part of a guided research project, investigating the
principles of the Apodini DSL across different programming languages by Mathias
Quintero [230].

1 fun main() {
2 HelloWorld.run()
3 }
4

5 object HelloWorld : WebService {
6 override fun ConfigurationBuilder.configure() {
7 use(REST())
8 }
9

10 override fun ComponentBuilder.invoke() {
11 text("Hello World")
12 }
13 }

Listing 7.3: Kotlin-based executable describing a web service with a single Handler
returning ”Hello World” using a RESTful Interface Exporter. The web service is
started in the main method above the web service declaration.

The Kotlin implementation exposes the builder functionality in the DSL and
uses this feature to compose Handler and Components using functions and op-
erations defined on the ConfigurationBuilder and ComponentBuilder. The
text function to create a Text Handler is implemented as an extension function
on the ComponentBuilder type.

114

7.2 Semantic Model

1 class Greeter : Handler<String> {
2 private val country: String by parameter {
3 default("World")
4 }
5

6 override suspend fun CoroutineScope.handle(): String {
7 return "Hello $country!"
8 }
9 }

Listing 7.4: Kotlin-based Handler in the Apodini DSL expecting a parameter with a
default value if no value is provided and returning a greeting similar to Listing 7.2.
The Kotlin version of the Greeter uses string templating to create the greeting re-
turned as a response.

Listing 7.4 implements the Greeter Handler in the Kotlin-based Apodini DSL.
The Kotlin implementation uses property delegates to achieve similar functionality
as the property wrappers used in the Swift implementation. These features enable
the wrapping and delegation of functionality to the Apodini framework, filling the
property based on the incoming request or the default value. The Apodini frame-
work uses Kotlin concurrency features, in particular Kotlin coroutines, to enable
suspendable computation in the handle function.

7.2 Semantic Model

Semantic models depict a parsed representation of the subject detailed in the domain-
specific language [107]. In Apodini, the semantic models is used to provide context
and information to Interface Exporters and other Apodini subsystems.

Figure 7.2 features a simplified version of the semantic model present in the Swift
and Kotlin instantiations of the Apodini DSL. The instantiations further enrich the
semantic model with language constructs as well as the shared repository pattern
and knowledge sources in the Swift instantiation as detailed in Section 6.3.2. Meta-
data information is saved and interpreted using the knowledge source and shared
repository mechanism and is not represented in the semantic model in Figure 7.2.

The semantic model allows registering the web service and Handlers. The DSL
components are interpreted based on a syntax tree and are appended as general
information in the semantic model or transformed into endpoints. After all infor-
mation from the syntax tree is parsed and finish registration is called, the semantic
model can finalize the context and relationships between endpoints. The endpoint
relationships indicate functional or non-functional dependencies of the endpoints.
This information can be used to, e.g., generate HATEOAS links in the RESTful In-
terface Exporter as demonstrated in the Part IV. Each endpoint is associated with a
Handler, containing further context about the exported endpoint. Path components
indicate the Handler hierarchy in the DSL and are used by exporters to generate

115

7 Object Design

Semantic Model

+ register(Web Service)
+ register(Handler)
+ finishRegistration()

endpoints
*

parameters

*

Endpoint

+ handler: Handler
+ responseType: TypeInformation
+ path: PathComponents

Endpoint Parameter

+ name: String
+ type: TypeInformation
+ options: Option[0...*]

<<Enumeration>>

Parameter Type

lightweight

content

path

<<Enumeration>>

Operation

create

read

update
delete

relationships
*

*

type

operation

Figure 7.2: Simplified semantic model expressing an interpreted version of the core
concepts of the Apodini DSL. Endpoints are the core construct of the semantic
model, organizing Handlers and their context in an in-memory representation.
(UML Class Diagram)

URIs, method names, or other identifying information combined with additional
context provided in extensible knowledge sources. The response type type infor-
mation provides type information such as fields about the return type of the handle
function of the Handler. The type information is used to generate serialization de-
scriptions and create service interfaces in Interface Exporters. Each endpoint is also
associated with an operation mapping the functionality to one of the CRUD opera-
tions: create, read, update, and delete. Exporters can use this information to decide
on protocol-specific mechanisms such as HTTP methods or organizing functional-
ity into queries and mutations as done in GraphQL. Endpoint parameters contain

116

7.3 Migration Guide

interpreted information about parameters and their options and occurrence in the
Apodini DSL. Endpoint parameters contain a name and type information about the
programming language-specific type used to express the endpoint parameter in the
web APIs. The options specified on a parameter are parsed into options on an end-
point parameter. One specific option explicitly modeled in the semantic model is the
parameter type. Lightweight parameters are constrained to types that can be rep-
resented using textual representations such as strings and numbers and can, e.g.,
be mapped to URI query parameters in HTTP-based Interface Exporters. Content
parameters have no constraints and are the most typical parameter type. Path pa-
rameters are inferred from parameters defined outside of Handlers in the compo-
nent tree and contain similar restrictions as lightweight parameters. The semantic
model builder provides a best-effort approach to categorizing endpoint parameters
in these groups. Interface Exporters can then apply this information to the protocol,
middleware, and API type-specific constraints of defining parameters.

7.3 Migration Guide

This section provides a mapping of the change patterns presented in Section 4.2.1
to a concrete migration guide used in the Migrator subsystem. The class hierarchy
presented in Figure 7.3 provides an overview of the core concepts of the migration
guide, while the JSON-based representation of a migration guide contains more de-
tail and information relevant for the specific implementations. The open-source doc-
umentation26 of the Apodini Migrator subsystem provides more information about
the structure and implementation details of the migration guide.

Each migration guide is associated with one or more web API type, allowing web
API-specific annotations. While the structure of the migration guide is web API-
independent, these extensions can simplify the reasoning about web API changes
for Migrators. Each migration guide describes the migration from a version to a
newer version. A migration guide consists of a collection of changes that are associ-
ated with elements in the web API. Elements are uniquely identified by identifiers
in the respective web API description and can range from endpoints to model types
representing requests and responses. The changes are classified into breaking and
non-breaking changes following the web API evolution patterns introduced in Sec-
tion 4.2.1. The solvable property indicates if Apodini Migrator could automatically
solve the web API change by providing a migration for the change. The web service
developer can manually provide migrations in the migration guide if there is no
automatically solvable solution. The migration guide allows three different change
types: additions, removals, and updates. An addition contains information about
the added element and a default value to resolve breaking changes when making an

26The open-source Apodini Migrator is located at https://github.com/Apodini/ApodiniMigrator.

117

https://github.com/Apodini/ApodiniMigrator

7 Object Design

changes
*

Migration Guide

+ apiTypes: WebAPIType[0...*]
+ from: Version
+ to: Version

Addition

+ added: Element
+ defaultValue: Value

Removal

+ removed: Element
+ fallbackValue: Value

Update

+ conversion: Conversion

<<Interface>>

Change

+ element: Identifier
+ breaking: Bool

+ solvable: Bool

Figure 7.3: Simplified UML class diagram representing the migration guide struc-
ture in the Apodini Migrator subsystem. Changes are associated with identifiers,
identifying endpoints and types in the web API descriptions. Changes contain dif-
ferent migration contexts based on the change subtype. (UML Class Diagram)

addition to a request serialization. A similar structure applies to removal changes.
The removed attribute describes the structure of the removed element to provide in-
formation about the type represented in the fallback value used to migrate breaking
changes resulting from removing an endpoint or response serialization field. The
update change contains all changes updating information about different aspects of
the web API, further specified by the element Identifier. The conversion property
indicates any migration steps needed to provide client stability. Different subtypes
of conversions address various update-based changes such as changing the field
names, endpoint identifiers, and model types.

Listing 7.5 demonstrates the instantiation of the simplified UML model pre-
sented in Figure 7.3 of the Swift-based Apodini Migrator instantiation in a JSON
format. The JSON representation demonstrates the structure of the migration guide,
starting with context information such as a short descriptive summary, the docu-
ment identifier, the version of the migration guide document format, and the web
API versions that are migrated in the migration guide. The compare configura-

118

7.3 Migration Guide

1 {
2 "summary": "...",
3 "document-id": "...",
4 "version": "2.0.0",
5 "from": "v_1.0.0",
6 "to": "v_2.0.0",
7 "compare-config": { /* ... */ },
8 "serviceChanges": [/* ... */],
9 "modelChanges": [

10 {
11 "type": "addition",
12 "id": "...",
13 "added": { /* ... */ },
14 "breaking": false,
15 "solvable": true
16 },
17 /* ... */
18],
19 "endpointChanges": [/* ... */],
20 "scripts": {
21 "0": "function convert(input) {...}"},
22 "json-values": {
23 "0": "..."
24 },
25 "updated-json-representations": {
26 "ModelType": "..."
27 }
28 }

Listing 7.5: Structure of the JSON representation of an Apodini Migrator migration
guide documenting the changes to a web service API. The JSON representation pre-
sented omits the compare configuration, changes to the service, all but one model
change, and endpoint changes and replaces them with ”/* ... */”. The figure
only presents one model change, leaving out the details of the addition change.

tion persists settings of the Apodini Migrator system. The following sections of
the machine-readable migration guide document the changes categorized into three
groups to support easier parsing of the migration guide: change to the service con-
figuration, changes to model types of the service, and changes to the endpoints of
the web service. Service changes include changes in the decoding configuration or
exporter-specific changes that are persisted in an extensible key-value store.

The model changes include addition, deletions, or updates to model types used
as parameters or return types in the Handlers. They are instantiations of the re-
quest and response serialization change patterns in Table 4.1 (page 67). Document-
ing the changes separate from the endpoint changes allows an easier generation of
the client library as changes do not have to be documented at every endpoint that
uses the model types. Changes are categorized into breaking and solvable changes
as described in Figure 7.3. Endpoint changes are instantiations of change patterns
concerning Handlers as documented in the change patterns in Table 4.1 (page 67).

119

7 Object Design

1 @main
2 struct MigratorExampleWebService: WebService {
3 var metadata: Metadata {
4 Version(major: 2)
5 }
6

7 var configuration: Configuration {
8 REST()
9 Migrator(

10 documentConfig: .export(.endpoint("api-document")),
11 migrationGuideConfig: .compare(
12 .resource(.module, fileName: "api_v1.0.0", format:

.json),↪→

13 export: .endpoint("migration-guide", format: .json)
14)
15)
16 }
17

18 var content: some Component { /* ... */ }
19 }

Listing 7.6: Configuration of the Apodini Migrator subsystem in a Swift-based
Apodini web service. The Migrator configuration enables the configuration of the
API document export functionality as well as the generation of a migration guide
based on a file in the Swift Package resource bundle. The generated migration guide
is offered at an HTTP endpoint similar to the validation in Section 9.2.

The scripts, JSON values, and updated JSON representations provide manual
customization points for web service developers. Change scripts enable the conver-
sion of complex types, allowing developers to specify JavaScript-based conversion
functions between two model types. These JavaScript-based change functions are
called when a stable client library needs to perform complex and potentially non-
solvable API changes. The JSON values and updated JSON representations provide
default values and fallback values used as migration strategies as documented in
the API change pattern classification in Table 4.1 (page 67).

Section 9.2 demonstrates a detailed look (Listing 9.5, page 165 and Listing 9.4,
page 164) at the JSON representation of migrations based on web API changes in an
event management platform web API used to validate the Apodini Migrator-based
web API evolution approach.

The Apodini Migrator subsystem can be directly integrated into Apodini web
services to export API documents and migration guides easily using subcommands
or specified settings in the Apodini web service configuration property. Listing 7.6
demonstrates the Apodini Migrator configuration in an Swift-based Apodini web
service. The configuration allows documents and migration guides to be exported
at HTTP endpoints at runtime or exported to a file at startup time. Exporting the
documents at startup time is helpful when developing the web service or distribut-
ing the API document or migration guide through external channels.

120

7.4 Deployment Structure

The generation of the migration guide requires API documentation of a previous
web API version that can be loaded from the local file system or bundled with the
web service binary using Swift Package resources. Depending on the configuration,
the migration guide is exported on an endpoint or to a file on disk. Listing 9.1
describes a second example of an Apodini Migrator configuration in a web service.
Section 9.2 also demonstrates the usage of the command-line interface to generate
API documents and migration guides from web services, including the Apodini
Migrator configuration.

7.4 Deployment Structure

This section describes the deployment structure introduced as an artifact in Fig-
ure 6.8 (page 108). Structural descriptions of web service deployments are essential
to deploy and continuously update software components in distributed systems.
Deployment systems such as the Disnix toolset by van der Burg and Dolstra and
commonly used tools such as Kubernetes use mostly declarative configurations of
the deployable services, the deployment infrastructure, and a mapping of compo-
nents to infrastructure as an input [65, 286, 287].

The deployment structure describes an intermediate step in the Apodini De-
ployer subsystem. It is generated from the web service structure defined in the
Apodini DSL and the execution environment constraints defined by an Apodini De-
ployer instantiation. The deployment structure provides a mapping of potentially
partitioned functionality of a web service to deployment nodes. The deployment
structure detailed in Figure 7.4 describes this intermediate artifact and is extensible
to allow different application domains ranging from Function as a Service to IoT-
based deployments such as the Web of Things. Deployment nodes are then further
mapped to concrete execution environments and deployment infrastructure by the
concrete Apodini Deployer instantiations as demonstrated in Chapter 9.

Figure 7.4 presents the deployment structure in a simplified version focusing on
the most important aspects found in the instantiation of the Apodini Deployer sys-
tem. Deployment Provider instantiations use the infrastructure described in the sub-
system decomposition (Figure 6.8, page 108) to generate a deployed system. Each
deployed system consists of multiple deployment nodes uniquely identified by an
identifier and representing the target environment for each Deployment Providers.
In a FaaS based deployment, a deployment node represents a FaaS function that can
be scaled based on user demand. In a WoT based deployment, a deployment node
can represent an IoT Gateway.

Deployment constraints such as performance or hardware constraints are ex-
pressed using deployment constraints. Each deployment node consists of one or
more exported endpoints representing the endpoints of the semantic model mapped

121

7 Object Design

create

Deployed System

+ provider: DeploymentProvider

*

Deployment Node

+ identifier: Identifier
+ constraints: DeploymentConstraints

*

Exported Endpoint

+ handler: HandlerIdentifier
+ constraints: DeploymentConstraints

Deployment Provider

+ executionEnvironments: ExecutionEnvironments[1...*]

reference

Handlers

web service

executable

<<WebService>>

WebService

Figure 7.4: The deployment structure documents the output of Deployment
Providers extending Apodini Deployer in form of the deployed system type. The
structure describes the distribution of exported endpoints to deployment nodes an-
notated with deployment-specific constraints. (UML Class Diagram)

to the deployment nodes based on the provided deployment constraints, annota-
tions, or other information extracted from the web service structure. Each exported
endpoint is associated with a Hander encapsulating the partitioned functionality of
the web service identified by a Handler identifier. Additional context required when
deploying, starting, or running the functionality is provided using constraints on
the exported endpoint. The exported endpoint and deployment node specific con-
straints are used by Deployment Providers to prepare and choose the appropriate
execution environment and enable dynamic reconfigurations at runtime if the exe-
cution environment changes.

122

7.5 Cross Deployment Node Communication

7.5 Cross Deployment Node Communication

Partitioning of a web service for FaaS and WoT-based deployment requires Apodini
Deployer to use the deployment structure presented in Figure 7.4 to determine
possible cross-Handler invocations that can no longer happen within a single pro-
cess. Therefore, the Apodini Deployer system provides the cross deployment node
communication component (Figure 6.8, page 108) offering a cross instance com-
munication API. The cross-deployment node communication is instantiated in the
Swift-based Apodini Deployer implementation using the remote Handler invoca-
tion mechanism. The mechanism uses the deployment groups to automatically de-
termine if a Handler invocation can be dispatched locally or is sent to a remote
instance using a custom HTTP-based RPC mechanism.

1 struct CreateUser: InvocableHandler {
2 class HandlerIdentifier: ScopedHandlerIdentifier<CreateUser> {
3 static let main = HandlerIdentifier("main")
4 }
5

6 let handlerId = HandlerIdentifier.main
7

8 @Parameter var name = "Paul"
9 @Parameter var age = 42

10

11 func handle() async throws -> User {
12 let user = User(name: name, age: age)
13 // ... store the user in a datastore
14 return user
15 }
16 }

Listing 7.7: The CreateUser Handler showcases the conformance to the
InvocableHandler protocol including the HandlerIdentifier, uniquely
identifying the Handler in the Apodini DSL. The Handler returns a created User
based on a name and the age passed to the Handler.

Listing 7.7 and Listing 7.8 demonstrate the API of the remote Handler invoca-
tion mechanism provided by the Apodini Deployer subsystem. Listing 7.7 demon-
strates the usage of the InvocableHandler protocol, allowing the CreateUser
Handler to be called from the SignUp Handler in Listing 7.8. The remote Han-
dler invocation API automatically determines if the two Handlers are located on the
same deployment node in the same deployment group. Based on this check, the
RemoteHandlerInvocationManager then either dispatches a local method call
or a network call to the invoked Handler.

The usage of the Apodini Deployer configuration in Swift-based Apodini web
services and Deployment Provider instantiations are demonstrated in Chapter 9.

123

7 Object Design

1 struct SignUp: Handler {
2 @Environment(\.RHI) private var RHI
3 @Parameter var name = "Paul"
4 @Parameter var age = 42
5

6

7 func handle() async throws -> String {
8 let user = try await RHI.invoke(
9 CreateUser.self,

10 identifiedBy: .main,
11 arguments: [
12 .init(\.$name, name),
13 .init(\.$age, age)
14]
15)
16 return "Hi, \(user.name)! You are \(user.age) years old."
17 }
18 }

Listing 7.8: The SignUp Handler demonstrates the usage of the Re-
mote Handler Invocation API using the invoke function on the
RemoteHandlerInvocationManager (RHI) instance retrieved from the Apodini
environment. The invoke function requires the Handler type, identifier, and
the arguments and subsequently returns the response of the Handler in an async
function.

124

Part IV

Treatment Validation

TREATMENT validation is the final task of the design cycle before treatments are
transferred to a real-world context without interference from the researcher
and evaluated as part of an engineering cycle [309]. We describe an explo-

rative design science project investigating artifacts to address web service evolution
and conduct one complete design cycle.

Wieringa states that ”To validate a treatment is to justify that it would contribute to
stakeholder goals when implemented in the problem context” [309]. In the context of de-
sign science projects, implementation refers to transferring something to the prob-
lem context and not creating a software system [309]. This part addresses the chal-
lenge of validating the artifacts before any transfer to the problem context can occur
by describing several single-case mechanism experiments. Single-case mechanism
experiments are performed in an artificial context designed by the researchers ”to
test an artifact prototype or to simulate real-world phenomena” [309]. These experiments
demonstrate Apodini Interface Exporters (Chapter 8) and web service instantiations
in different application domains, demonstrating the extensibility and applicability
of the Apodini ecosystem in different application domains (Chapter 9).

125

126

Chapter 8

Apodini Interface Exporter

As defined in Definition 6 and further investigated in Chapter 3, web service inter-
face evolution is concerned with the evolution related aspects of web service API,
middleware, or protocol types of web services. This chapter validates the web ser-
vice interface evolution capabilities of the Apodini artifacts described in Part III and
instantiated as part of the open-source Apodini implementations. In contrast to case
studies which have to be performed in a ”real-life context, and with the investigator(s)
not taking an active role in the case investigated” [314], Part IV uses single-case mecha-
nism experiments to validate the designed artifacts. The treatment validation does
not implement the treatment in the real-life problem context without any influence
of the researcher as done in an engineering cycle [309]. Single-case mechanism ex-
periments enable controlled validations of the designed artifacts, facilitating us to
showcase the advantages and shortcomings of the instantiated artifacts in several
experiments conducted in a wide variety of projects and experiment setups [309].
We use several single-case mechanism experiments to validate how web service in-
terfaces designed in the Apodini DSL can be mapped to different web service in-
terfaces and API types. We follow the single-case mechanism experiment workflow
defined by Wieringa, validating the newly developed technology and investigating
possible improvements based on the validation and insights gathered in the previ-
ous parts [309].

Each single-case mechanism experiment in a treatment validation is embedded
in a conceptual framework involving the designed artifacts to answer knowledge
questions and position the findings in a larger population of validation models [309].
The following sections demonstrate artifacts envisioned in Technical Research Goal 1:
the Apodini DSL and Interface Exporter instantiations.

Technical Research Goal 1:
Design artifacts supporting web service API type agnostic development to en-
able web service interface evolution.

127

8 Apodini Interface Exporter

The single-case mechanism experiments in this chapter involve the creation of
Interface Exporters using the conceptual framework presented by the Apodini DSL
and Apodini Interface Exporter subsystem. The different Interface Exporters vali-
date the extensibility and evolvability of the artifacts to answer Knowledge Ques-
tion 2, concerning Technical Research Goal 1. The demonstrated Interface Exporters
highlight the generalization approach manifested in the web service metamodel
(Figure 3.1, page 48), and extension mechanisms that enable functionality beyond
the shared foundation.

Knowledge Question 2:
Does the Apodini DSL empower web service interface- and web API type-inde-
pendent web service development?

The design, instantiation, and testing of the Interface Exporters verify the appli-
cability of the artifacts to the Interface Exporter-specific web API type. As the appli-
cability of the DSL to a web API type can not be measured in a discrete value, we
investigate the output and transformation from the Apodini DSL to the web service
API on a web API type basis. The provided examples provide single-case mecha-
nism experiments involving the Apodini DSL that highlight Design Problem 1.

Design Problem 1:
Develop all aspects of web services in a web service interface type, web API,
middleware, and protocol-independent description so that web service develop-
ers can support different web service interface types and web API types without
rearchitecting web services.

Each section demonstrates distinct functionality of the Apodini DSL and notes
how the functionality can be extended beyond the presented Interface Exporter,
highlighting the extensibility and applicability beyond a single web API type. The
interface evolution related capabilities of the DSL are validated in three groups:

1. Section 8.1 demonstrates the applicability of RPC-based APIs using a gRPC-
based Interface Exporter showcasing a modern instantiation of an RPC-based
API.

2. Section 8.2, Section 8.3, and Section 8.4 demonstrate the applicability of mes-
sage-based APIs using WebSocket, GraphQL, and HTTP-based Interface Ex-
portrers.

3. Section 8.5 demonstrates the applicability of resource-based APIs by generat-
ing RESTful APIs, including HATEOAS information and OpenAPI interface
definition documents.

128

8.1 gRPC Interface Exporter

8.1 gRPC Interface Exporter

The gRPC Interface Exporter demonstrates the applicability of the Apodini DSL
and mechanisms to RPC-based APIs. As described in Section 2.2.1, gRPC is a typi-
cal representation of RPC-based APIs by structuring the web API into services and
functions. In addition, gRPC features the full range of possible communication pat-
terns between the web service and clients: request-response, service-side streaming,
client-side streaming, and bidirectional streaming [138]. While gRPC APIs are usu-
ally created by specifying the web API in a Protocol Buffer specification, Apodini
allows web service developers to specify the interface in the generalized Apodini
DSL. This enables web service interface evolution by allowing a gRPC exporter to
be replaced with a different Interface Exportrer over the lifetime of the web service.
The definition in the Apodini DSL comes with tradeoffs that are discussed while
showcasing the implementation of the gRPC Interface Exporter. The gRPC Interface
Exporter for the Swift-based instantiation of the Apodini DSL was developed by
Lukas Kollmer as part of the master’s thesis investigating Declarative Development of
Interface-Type-Agnostic Web Services [160].

gRPC is based on the HTTP/2 application layer protocol improving HTTP/1 and
HTTP/1.1 with binary encodings, streaming connections, and better support for
TLS-based encryptions [38]. gRPC uses these mechanisms to enable the RPC mech-
anisms such as streaming communication patterns building on top of the stream
connections in HTTP/2 27. The gRPC Interface Exporter uses the Apodini network-
ing component of the Apodini Swift-based instantiation to facilitate this communi-
cation. The Apodini networking component reuses the SwiftNIO networking I/O
Swift package28 to provide communication channels establishing the flow of data
from the network interface to the Interface Exporters. In contrast to most other
Interface Exporters presented in this chapter, the gRPC exporter extends Apodini
networking by adding networking channels based on extension points provided
by SwiftNIO. The Apodini networking implementation requires the usage of TLS-
based encryption when supporting HTTP/2-based Interface Exporters. Listing 8.1
details the public interface of the gRPC Interface Exporter embedded in the configu-
ration mechanism of an Apodini web service. The gRPC Interface Exporter requires
the package name defining the namespace for the generated gRPC Protocol Buffer
specifications and a service name for defining the gRPC service that the Handlers
registered in the web service belong to.

The Interface Exporter registers several routes which provide access to service
definition files and offers gRPC reflection API that tools can use to construct re-

27The gRPC project specifies a gRPC over HTTP/2 specification that the gRPC Interface Exporter
adheres to https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md.

28SwiftNIO provides an event-driven networking I/O framework to implement web services and
clients: https://github.com/apple/swift-nio.

129

https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://github.com/apple/swift-nio

8 Apodini Interface Exporter

1 @main
2 struct GRPCExample: WebService {
3 var configuration: Configuration {
4 HTTPConfiguration(tlsConfiguration:
5 TLSConfigurationBuilder(
6 certificatePath: "˜/cert.pem",
7 keyPath: "˜/key.pem"
8)
9)

10 GRPC(
11 packageName: "grpcexample",
12 serviceName: "GRPCExample"
13)
14 }
15

16 var content: some Component {
17 Text("Hello World!")
18 }
19 }

Listing 8.1: Swift-based Apodini web service demonstrating the gRPC Interface Ex-
porter. Lines 4-9 detail the HTTPConfiguration specifying the certificate and pri-
vate key used for the TLS-based encryption required by Apodini Networking when
using HTTP/2-based Interface Exporters. Lines 10-13 demonstrate an example of
the configuration registering the GRPC Interface Exporter.

quests at runtime without the need to generate client stubs29. The reflection API
enables tools like grpcurl30 to test and explore gRPC APIs. The Protocol Buffer
specification document of the web service demonstrated in Listing 8.2 shows how
the single Handler is transformed to a function in the GRPCExample service.

The gRPC exporter iterates over all Handlers defined in the Apodini DSL and
transforms each Handler in a gRPC function of the specified service. The Protocol
Buffer specification defines that each RPC function must contain a request and re-
sponse message type [114]. Therefore Handlers such as the Text Handler that do
not contain any parameters are mapped to the .google.protobuf.Empty mes-
sage type imported at line 4 of the specification in Listing 8.2. The return type is
also specified by a message type generated for the Text Handler and contains a
single scalar value of type string. The gRPC exporter generates a response mes-
sage type for each Handler present in the gRPC service and defines the fields based
on the implementation language-specific type layout. Apodini Type Information 31

is the Swift-based type information retrieval library developed as part of the Swift-
based Apodini project abstracting the retrieval across different Interface Exporters.
The Text Handler does not specify a dedicated return type and returns a string

29The gRPC reflection API is documented at https://github.com/grpc/grpc/blob/master/doc/
server-reflection.md.

30The grpcurl tool can be found at https://github.com/fullstorydev/grpcurl.
31ApodiniTypeInformation can be found at https://github.com/Apodini/ApodiniTypeInformation.

130

https://github.com/grpc/grpc/blob/master/doc/server-reflection.md
https://github.com/grpc/grpc/blob/master/doc/server-reflection.md
https://github.com/fullstorydev/grpcurl
https://github.com/Apodini/ApodiniTypeInformation

8.1 gRPC Interface Exporter

1 syntax = "proto3";
2 package grpcexample;
3

4 import "google/protobuf/empty.proto";
5

6

7 service GRPCExample {
8 rpc GetText(.google.protobuf.Empty) returns

(.grpcexample.TextResponse);↪→

9 }
10

11 message TextResponse {
12 string value = 1;
13 }

Listing 8.2: grpcexample.proto file generated by the Apodini gRPC Interface
Exporter based on the web service demonstrated in Listing 8.1 after removing
comments and empty lines. The Protocol Buffer description demonstrates the
GRPCExample service with a single function named GetText that expects an
Empty argument and returns the TextResponse containing a single scalar string
value.

scalar value. The gRPC exporter, therefore, infers the name of the response message
type from the Handler name and appends Response. The gRPC message names
can also be specified manually using the HandlerInputProtoMessageName and
HandlerResponseProtoMessageName metadata shown in Listing 8.4.

The example in Listing 8.1 and Listing 8.2 demonstrates the capability of the
Apodini DSL to transform a primitive web service into a gRPC specification. One
limitation demonstrated in Listing 8.2 is the automatic generation of method and re-
quest/response names. The gRPC exporter and other exporters address this short-
coming of the generalized DSL and infer names based on the context in the DSL by
providing custom modifiers and metadata that can be incorporated in the genera-
tion of the web API. Listing 8.3 demonstrates how such a modifier can be used to
provide a clearer gRPC method name with additional information that is not affect-
ing the generation in other Interface Exporters:

The Apodini DSL and the gRPC exporter also support mapping streaming com-
munication pattern Handlers with parameters to gRPC functions. Interface Ex-
porters in Apodini rely on a common infrastructure enabling exporters to infer the
communication pattern based on the usage of aspects of the Apodini DSL in Han-
dlers. @ObservedObject annotations trigger the execution of the handle function
if the state of the annotated instance changes and can indicate service-side streams.
@State annotations preserve the state of an object across requests in a single con-
nection, enabling the Handler to preserve state across different client-side streaming
requests. While the inference can already provide a best-guess for the Interface Ex-
porters, metadata annotations such as the Pattern annotation can override it.

131

8 Apodini Interface Exporter

1 @main
2 struct GRPCStreamingExample: WebService {
3 var configuration: Configuration {
4 // ...
5 }
6

7 var content: some Component {
8 BidirectionalHandler()
9 .endpointName(fixed: "RepeatTwice")

10 }
11 }

Listing 8.3: Line 9 demonstrates the endpointName modifier used to improve
the output of the gRPC Interface Exporter. The endpointName is attached to
the BidirectionalHandler showcased in Listing 8.4. The output in a Protocol
Buffer specification can be observed in Listing 8.5.

1 struct BidirectionalHandler: Handler {
2 @Parameter
3 var element: String
4 @ObservedObject
5 var messageQueue = MessageQueue<String>(emitMessage: 2)
6

7 var metadata: Metadata {
8 Pattern(.bidirectionalStream)
9 HandlerInputProtoMessageName("Input")

10 HandlerResponseProtoMessageName("Response")
11 }
12

13 func handle() -> Response<String> {
14 if $messageQueue.changed, let next = messageQueue.next {
15 return .send(next)
16 } else {
17 messageQueue.enqueue(element)
18 return .nothing
19 }
20 }
21 }

Listing 8.4: BidirectionalHandler supports bidirectional streams by return-
ing every String passed to the Handler twice. The Handler contains a custom
@ObservedObject of the type MessageQueue that can enqueue messages which
triggers the Handler and returns the same element as often as defined in the
MessageQueue initializer in line 5. The handle function checks if the function
was triggered due to the observed object and returns the next element in the queue
or returns nothing and enqueues the element passed in as a request to the Handler.
The metadata annotation in line 8 overrides the default inference of a service-side
stream to a bidirectional stream. Lines 9 and 10 demonstrate the extension points to
refine the Protocol Buffer message names for the Handler.

132

8.1 gRPC Interface Exporter

1 syntax = "proto3";
2 package grpcexample;
3

4

5 service GRPCExample {
6 rpc RepeatTwice(stream .grpcexample.Input) returns (stream

.grpcexample.Response);↪→

7 }
8

9 message Input {
10 string element = 1;
11 }
12

13 message Response {
14 string value = 1;
15 }

Listing 8.5: grpcexample.proto file generated by the Apodini gRPC Interface
Exporter based on the web service demonstrated in Listing 8.3 and the bidirectional
streaming Handler defined in Listing 8.4 after removing comments and empty lines.
The Protocol Buffer description demonstrates the GRPCExample service with a sin-
gle function named RepeatTwice based on the modifier in Listing 8.3 that expects
an stream Input messages containing the element used in the Handler and re-
turns a stream of Response messages containing a single scalar string value de-
rived from the metadata in Listing 8.4.

The Swift-based Apodini instantiation also includes a web API, middleware, and
protocol-independent Response type that can be used to indicate connection state-
related information to Interface Exporters. The response type can be instantiated
using a Swift initializer or a convenience API indicating the connection effect. The
.send and .nothing instantiations indicate that the connection should stay open if
the Interface Exporter supports streaming connections. The .send response also al-
lows Handlers to include a response while .nothing does not return any response
to a client. The .end response closes the connection without sending a response to
a client while .final closes the connection after or with sending a response.

Listing 8.4 demonstrates the usage of the Pattern metadata. The Listing also
demonstrates the Apodini @ObservedObject and @State properties, and the
Response type in a Handler that can be exported as a gRPC method supporting
bidirectional streams. The BidirectionalHandler uses an @ObservedObject

property wrapper to return every request passed to the Handler twice as detailed in
the caption of Listing 8.4. The metadata annotation overrides the default inference
of a service-side stream to a bidirectional stream which allows the gRPC exporter to
export the Handler as a bidirectional streaming gRPC function.

The gRPC exporter uses the communication pattern information provided by the
metadata annotations overwriting the default inference provided by the knowledge
sources in the global repository. The exporter creates a networking infrastructure

133

8 Apodini Interface Exporter

managing the bidirectional stream and exports this information in the service defini-
tion specifications such as the Protocol Buffers file shown in Listing 8.5. The names
of the messages used as request and response types of the gRPC method named
BidirectionalHandler are inferred from the name of the Handler and contain
fields for the necessary request and response information.

The gRPC Interface Exporter demonstrates the applicability and extension points
of the Apodini DSL to support RPC-based web service interface types. It also high-
lights shortcomings of the generalized approach of the Apodini DSL, such as the
inference of method and message names. It also demonstrates that the usage of an
internal DSL uniquely enables the definition of the web service interface that inter-
weaves with the functionality defined in the handle function of a Handler.

8.2 WebSocket Interface Exporter

Specified in RFC 6455, ”The WebSocket Protocol enables two-way communication between
a client running untrusted code in a controlled environment to a remote host that has opted-
in to communications from that code” [189]. The protocol defines an opening hand-
shake opening up a TCP-based message-based communication, enabling browser-
based client applications to establish bidirectional communication with web ser-
vices [189]. The protocol handshake starts with an HTTP GET message with a
connection upgrade header to the WebSocket protocol, which is answered from the
web service using an HTTP 101 Switching Protocol response [189]. After a successful
handshake, the communication partners can transfer information using messages
that can be composed of one or more frames [189]. The WebSocket protocol differ-
entiates between several frame types that can be grouped into transmitting UTF-8
encoded textual data, binary data, and control frames to close connections or com-
municate errors, including WebSocket-specific error codes [189].

The WebSocket protocol provides an instantiation of a modern, message-based
communication protocol and mechanism widely used in web-browser-based appli-
cations. Web service developers can establish their own WebSocket-based messag-
ing protocol building on top of the foundation provided in RFC 6455 [189]. We
have developed a Swift-based WebSocket Interface Exporter that enables Apodini
web services to offer a WebSocket-based API supporting all Apodini communica-
tion patterns. The WebSocket Interface Exporter was primarily developed by Max
Obermeier as part of the Server-Side Swift practical course offered in the winter
semester 2020/21 and further improved in the bachelor’s thesis Improving Runtime
Performance and Maintainability of the Apodini Server-Side Swift Framework [202]. The
Interface Exporter demonstrates the mapping of the Apodini DSL to a message-
based protocol. This section demonstrates Apodini DSL-based mechanisms for re-
fining parameter and connection handling, which other exporters can also use, and

134

8.2 WebSocket Interface Exporter

demonstrates how the WebSocket Interface Exporter goes beyond the default exten-
sion points to refine the WebSocket-based APIs and interactions further.

The WebSocket exporter offers a single HTTP endpoint that is offered at a path
defined in the Apodini DSL web service configuration. Clients can establish a web
socket connection by conducting the handshake defined, sending an HTTP request
to the specified endpoint [189]. Following the handshake, the web socket uses UTF-
8 text-based communication mechanisms encoding messages using JSON serializa-
tions. The message-based mechanism is specified in the open-source instantiation
of the Apodini framework, including the WebSocket exporter32. The message-based
mechanisms use a JSON-based structure using contexts initialized with an open con-
text message and property, closed with a close context message, or unexpectedly
terminated using an error message. In addition to the three connection-managing
message types, client messages and service messages are used to communicate in-
formation between the involved communication partners. A context is identified
using Universally Unique Identifiers (UUIDs) described by RFC 4122 [170].

The UUID-based context identifier is used to refer to the context in all following
messages after a client has established a context by sending a UUID and an identifier
of the desired Handler using a JSON-encoded message. The Handler is identified by
the endpoint name in the opening context message and is inferred from the Handler
position in the tree structure of the Apodini DSL.

1 {
2 "context": "123E4567-E89B-12D3-A456-426614174000",
3 "endpoint": ""
4 }

Listing 8.6: The JSON serialization of the open context message used in the Web-
Socket Interface Exporter. The context is established using a client-provided UUID
using the string-based representation using hexadecimal values as described by RFC
4122 [170]. The endpoint is identified using the tree structure of the Apodini DSL.
An empty endpoint name ("") identifies the endpoint at the root of the component
tree.

Listing 8.6 demonstrates the JSON structure of an open context message. After
establishing the context, client and service messages can be exchanged. The context
is closed by sending a JSON formatted message as shown in Listing 8.9 containing
the context key and value without any additional information. An error is transmit-
ted using the error message that also contains the context as shown in Listing 8.9 and
replaces the "endpoint" key with an "error" key containing the error message.

Property wrappers such as @Parameter and @Throws can be extended with
additional options built into the Apodini DSL or extended by Interface Exporters.
32A more detailed description of the WebSocket Interface Exporter mechanisms can be found in the

documentation at https://github.com/Apodini/Apodini/blob/develop/Sources/Apodini/
Apodini.docc/Basics/Exporters/WebSocket.md.

135

https://github.com/Apodini/Apodini/blob/develop/Sources/Apodini/Apodini.docc/Basics/Exporters/WebSocket.md
https://github.com/Apodini/Apodini/blob/develop/Sources/Apodini/Apodini.docc/Basics/Exporters/WebSocket.md

8 Apodini Interface Exporter

1 struct AnimalHandler: Handler {
2 @Parameter(.mutability(.constant))
3 var species: String
4 @Parameter
5 var height: Double
6

7 @Throws(
8 .badInput,
9 reason: "Hight below 0 is not allowed.",

10 .webSocketConnectionConsequence(.closeChannel)
11)
12 var ageInvalidError: ApodiniError
13

14 func handle() throws -> Response<Animal> {
15 guard height >= 0 else {
16 throw ageInvalidError
17 }
18 return .send(Animal(species: species, height: height))
19 }
20 }

Listing 8.7: The AnimalHandler demonstrates a Handler using the Apodini DSL
property options and the usage of ApodiniErrors. The mutability property op-
tions for the @Parameter property wrapper of .constant defines that the pa-
rameter can only be set once and can not be changed in subsequent requests. The
@Throws property wrapper demonstrates the usage of an ApodiniError in a Han-
dler. The @Throws property wrapper is initialized with an error type, a reason, and
WebSocket exporter-specific property options for the @Throws property wrapper.

The property options API provides an extension point that exporters can use to fur-
ther refine the API exported by Interface Exporters. Listing 8.7 demonstrates the
usage of build in and exporter-specific property options. The @Parameter-specific
option defining the mutability of a parameter is built into the Apodini core DSL and
is used by several exporters such as the WebSocket Interface Exporter. Parameters
annotated with a .constant property options define that the parameter can only
be set once and can not be changed in subsequent requests when using a client-
streaming or bidirectional streaming pattern. The default value for all parameters
not annotated with the mutability option is the .variable option indicating that
the parameter can be updated with every subsequent request.

The @Throws property wrapper can be used to define ApodiniErrors that
are thrown in a Handler and should be exposed on the web API level. The property
wrapper requires an ErrorTypewhich can be mapped to different protocol-specific
error codes or error types. Addition information such as a public reason as well as an
internal description can be used to refine the ApodiniError further. The @Throws
property wrapper also enables the usage of property options which can be used to
extend the ApodiniError with additional context that can be used by the Interface
Exporters when encountering an error.

136

8.2 WebSocket Interface Exporter

Client:
1 {
2 "context": "123E4567-E89B-12D3-A456-426614174000",
3 "parameters": {
4 "species": "Apus apus",
5 "height": 42
6 }
7 }

Web Service:
1 {
2 "content": {
3 "height": 42,
4 "species": "Apus apus"
5 },
6 "context": "123E4567-E89B-12D3-A456-426614174000"
7 }

Client:
1 {
2 "context": "123E4567-E89B-12D3-A456-426614174000",
3 "parameters": {
4 "height": 43
5 }
6 }

Web Service:
1 {
2 "content": {
3 "height": 43,
4 "species": "Apus apus"
5 },
6 "context": "123E4567-E89B-12D3-A456-426614174000"
7 }

Listing 8.8: Message exchange with the Handler shown in after the context has
been established in Listing 8.7 with a message as shown in Listing 8.6 using a
UUID of 123E4567-E89B-12D3-A456-426614174000. The client only sets the
"species" in the first message and does not need to provide the parameter in
subsequent messages as it is a .constant parameter. The responses from the
web service demonstrate the message response structure of the WebSocket Interface
Exporter mapping the Apodini Handler to the WebSocket-based communication
mechanism.

The usage of WebSocket Interface Exporter Specific options is demonstrated in
Listing 8.7. The WebSocket Exporter maps the information from the Apodini DSL
found in the semantic model and knowledge sources to a WebSocket-based API
using JSON messages. Two exemplary message exchanges for the Handler in List-
ing 8.7 are demonstrated in Listing 8.8 and Listing 8.9.

Listing 8.8 shows the message exchange after the context has been established
with the Handler shown in Listing 8.7. The message exchange demonstrates the ef-
fects of the mutability parameter option. Trying to change constant parameters in
subsequent messages results in an error from the Apodini Interface Exporter sub-

137

8 Apodini Interface Exporter

Client:
1 {
2 "context": "123E4567-E89B-12D3-A456-426614174000",
3 "parameters": {
4 "height": -1
5 }
6 }

Web Service:
1 {
2 "context": "123E4567-E89B-12D3-A456-426614174000",
3 "error": "The operation couldn't be completed. Hight below 0 is not

allowed."↪→

4 }

Connection Closed, Error Code: 1011.

Listing 8.9: The message exchange follows the messages exchanged in Listing 8.8.
The client sends a message containing a negative height which throws an error as
shown in the handle function implementation in Listing 8.7 (Line 16). The Web-
Socket exporter transforms the Apodini DSL @Throws property wrapper-based in-
formation into an error message and closes the connection with an error.

system used by the Interface Exporters. The WebSocket Interface Exportrer directly
embeds this mechanism in the JSON-based communication mechanism by provid-
ing the optimization that parameters do not need to be provided with subsequent
messages. Interface Exporters can specify this behavior based on the protocol con-
straints of the respective middleware or protocol type.

Listing 8.9 demonstrates how an error message is returned from an WebSocket
Interface Exporter-based API and incorporates the WebSocket exporter-specific prop-
erty options. The usage of property options and Apodini Errors demonstrates how
web API information and errors are described in the Apodini DSL. The aspects of
the DSL can be interpreted and used by Interface Exporters supporting different
web API protocols to export a web API. Extension points such as property options
can be used to extend the DSL components with additional context that one or more
Interface Exporters can use. The Apodini DSL can be mapped to a message-based
API structure demonstrated by a WebSocket-based communication mechanism us-
ing JSON-based messages. The following sections describe other message-based In-
terface Exporters such as the GraphQL and HTTP exporter, further demonstrating
the message-based interface evolution capabilities of the Apodini ecosystem.

8.3 GraphQL Interface Exporter

As described in Section 2.2.1 and Figure 3.3 (page 52), GraphQL is a message-based
web API type. The GraphQL specification defines a language that can be used to
query web services for information, independent of a storage system or program-
ming language [93]. The GraphQL specification follows several design principles,

138

8.3 GraphQL Interface Exporter

1 @main
2 struct GraphQLExample: WebService {
3 var configuration: Configuration {
4 GraphQL(enableGraphiQL: true)
5 }
6

7 var content: some Component {
8 Greeter()
9 .endpointName("greet")

10 SaveCountry()
11 .operation(.update)
12 .endpointName(fixed: "saveCountry")
13 }
14 }

Listing 8.10: The GraphQLExample web service demonstrates the usage of the
Apodini DSL endpointName and operation modifiers and the GraphQL con-
figuration of the GraphQL Interface Exporter. The GraphQL exporter configuration
allows the configuration of the GraphQL endpoint, and if the GraphiQL IDE de-
scribed and displayed in Figure 8.1 should be presented.

including a product-centric approach that encourages the usage of hierarchies in
GraphQL queries to represent the data that is requested [93]. GraphQL APIs offer
strongly typed interfaces that are defined by web services that clients can intro-
spect to decide how to consume the published API [93]. The GraphQl specifica-
tion serves as a reference for tools and libraries conforming and benefitting to the
GraphQL ecosystem [93]. The GraphQL exporter demonstrates how the concepts of
the Apodini interface type and web API type agnostic DSL can be used to expose
GraphQL APIs. Similar to other Interface Exporters, the GraphQL exporter demon-
strates the web service interface evolution-related advantages of the Apodini DSL.
The Interface Exporter subsystem and the GraphQL exporter enable the adoption of
a new web API type with minimally invasive changes in the web service configura-
tion as demonstrated in Listing 8.10.

The GraphQL Interface Exporter for the Swift-based instantiation of the Apodini
DSL was developed by Lukas Kollmer as part of the master’s thesis investigating
Declarative Development of Interface-Type-Agnostic Web Services [160]. The GraphQL
Interface Exporter of the Swift-based Apodini DSL instantiation reuses the GraphQL
Swift Package33. The GraphQL Swift Package contains a core implementation of
the GraphQL language for Swift-based web services. The GraphQL Interface Ex-
porter uses the semantic model-based information and additional context provided
by knowledge sources to map the Apodini Handlers to GraphQL queries and mu-
tations. The Apodini-DSL operation modifier and metadata are used to identify if a
Handler is a mutation or query. Handlers using the default read operation are clas-

33The GraphQL Swift Package is part of the GraphQLSwift GitHub organization: https://github.
com/GraphQLSwift/GraphQL.

139

https://github.com/GraphQLSwift/GraphQL
https://github.com/GraphQLSwift/GraphQL

8 Apodini Interface Exporter

sified as queries, while create, update, and delete operations are interpreted as mu-
tations. The operation modifier demonstrated in Listing 8.10 is also used by other
Interface Exporters such as the HTTP and REST interface to specify HTTP methods
or when automatically generating endpoints names for Interface Exporters.

1 class MoviesHandler: Handler<List<SimplyfiedMovie>> {
2 private val movieModel by environment { movieModel }
3

4 override suspend fun CoroutineScope.handle(): List<SimplyfiedMovie>
{↪→

5 return movieModel.movies.values.map { SimplyfiedMovie(it) }
6 }
7 }

Listing 8.11: The MoviesHandler demonstrates the dependency injection mecha-
nism in the Kotlin-based Apodini DSL. The environment property delegate loads
the movieModel from the Apodini environment. The MoviesHandler is used in
Listing 8.18 (page 149) to demonstrate the RESTful Interface Exporter in Section 8.5.

1 extension Application {
2 var countryStore: CountryStore {
3 guard let store = self.storage[\Application.countryStore] else {
4 self.storage[\Application.countryStore] = CountryStore()
5 return self.countryStore
6 }
7 return store
8 }
9 }

10

11 struct SaveCountry: Handler {
12 @Environment(\.countryStore) var countryStore: CountryStore
13

14 @Parameter var country: String
15

16 func handle() -> String {
17 countryStore.insert(country)
18 return countryStore.countries
19 }
20 }

Listing 8.12: The SaveCountry Handler demonstrates a mutating Handler that
changes the state of the web service. The @Environment property wrapper ensures
access to shared information in Apodini web services and offers a dependency in-
jection mechanism to access shared information in Handlers. The extension to the
Apodini Application type in lines 1-9 demonstrate an implementation of using
the environment using the Application storage mechanism and a predefined
CountryStore type. The CountryStore instance is injected in the Handler using
the @Environment property wrapper in line 12 and used in the handle function
to insert a new country (line 17) and then return all countries (line 18).

140

8.4 GraphQL Interface Exporter

Listing 8.10 also demonstrates the usage of the GraphQL Interface Exporter in
the Swift-based Apodini DSL. The GraphQL Exporter maps the Greeter Handler
to a query in the GraphQL API and the SaveCountry Handler to a mutation in the
GraphQL API. The SaveCountry Handler is a demonstration of a Handler modi-
fying the internal state of the web service.

While Handlers can use techniques of the hosting programming languages to
share state in the web service, using the Apodini Environment enables dependency
injection mechanisms facilitated by the Apodini subsystem. Listing 8.11 demon-
strates the usage of the Apodini environment dependency injection mechanism for
the Kotlin-based instantiation. The Swift-based instantiation of the Apodini DSL
uses the @Environment property wrapper as demonstrated in Listing 8.12 to en-
able the dependency injection mechanism.

Listing 8.12 shows the SaveCountry and surrounding Swift-based code using
the Apodini framework to enable dependency injection. The GraphQL Interface Ex-
porter also offers the possibility to expose the GraphiQL browser-based GraphQL
IDE34 that can be used to explore and test out the offered GraphQL API. The IDE
enables the creation of queries and mutations that can be sent to the GraphQL
API offered by the web service. GraphiQL also offers a documentation explorer,
investigating the structure of the GraphQL Schema offered by the web service. Fig-
ure 8.1 displays the GraphiQL IDE for the Apodini DSL-based web service using
the GraphQL exporter shown in Listing 8.12.

The GraphQL Interface Exporter demonstrates the mapping of the Apodini DSL
to a GraphQL-based web API. The mechanism of getting started with a new web
API type by adding the Interface Exporter to the web service and refining the out-
put using Apodini DSL-based or custom Interface Exporter specific modifiers and
metadata demonstrates the web service interface evolution related capabilities. We
must also acknowledge that the generalized approach of specifying the web ser-
vice functionality and interface in the Apodini DSL comes with tradeoffs. One of
the main advantages of GraphQL is the reduction in under and over-fetching com-
pared to more static web API types by allowing the client to precisely specify what
information is requested. GraphQL-based APIs, therefore, offer complex and nested
return types of queries and mutations that can be several layers deep. While the
GraphQL implementation allows querying fields of the returned types of the Han-
dlers, a deeper nesting would require more Apodini-Infrastructure specific to the
GraphQL Interface Exporter.

34The GraphiQL IDE is part of the GraphQL open-source project managed by the GraphQL Founda-
tion: https://github.com/graphql/graphiql.

141

https://github.com/graphql/graphiql

8 Apodini Interface Exporter

Figure 8.1: The GraphiQL IDE offered by the GraphQL Interface Exporter. The
GraphiQL IDE is used to send a request to the saveCountry mutation as shown
on the left side of the IDE. The mutation is mapped to the SaveCountry Handler
shown in Listing 8.10 and Listing 8.12. The data returned by the GraphQL request is
displayed in the middle, showing that the new country is added to the existing list
of countries. The right side of the IDE displays the documentation explorer enabling
a web service client to interactively explore the queries and mutations offered by the
web service.

8.4 HTTP Interface Exporter

The HTTP Interface Exporter offers a JSON-based web API using HTTP messages
multiplexed using the HTTP request URI. While the structure of the offered API
is similar to the web API provided by the RESTful Interface Exporter, it does not
emit HATEOAS information typically offered by RESTful APIs or is constrained to a
stateless request-response communication pattern [96]. The HTTP exporter demon-
strates the usage of the Apodini Interface Exporter subsystem and APIs to offer
an HTTP-based API that supports all communication patterns using an HTTP/1
compatibility layer. The compatibility layer maps the request-response pattern sup-
ported by HTTP/1-based connections to all supported communication patterns in
Apodini. The HTTP exporter can be interpreted as a message-based and resource-
based exporter, depending on the modeling of the application domain to the HTTP
endpoints. An essential insight of this section is the mechanism that maps the tree
structure of the Apodini DSL to HTTP endpoints. This mapping highlights the
HTTP-enabling Apodini mechanism to address Knowledge Question 2 and Design
Problem 1.

142

8.4 HTTP Interface Exporter

In addition to injecting shared state into Handlers using the @Environment

Apodini property, the @Binding property wrapper enables dependency injection
for Apodini properties themselves. Bindings enable dependency injection from out-
side of the Handler as they can be bound to a constant value, a @Parameter or
@Environment property of the type associated with the binding. Bindings are in-
jected by the initializer of the Handler using the binding where the Handler is used
in the Apodini DSL. Listing 8.13 demonstrates the usage of the @Binding Apodini
property in a Handler in the Swift-based Apodini DSL. The Swift-based web ser-
vice in Listing 8.15 shows how the binding is injected from within the Apodini-DSL
component hierarchy.

Similar to other Interface Exporters, the HTTP exporter uses property options to
enable web service developers to refine the API with HTTP-specific context further.
The .http options allow developers to annotation a parameter with the .body,
.path, and .query option. Body parameters are sent using the HTTP body and
are expected to be encoded in an encoding supported by the respective exporter.
Path parameters are encoded as part of the URI path of an HTTP request. Query
parameters use the URI schema to append query parameters at the end of the URI
sent in HTTP requests. Listing 8.13 demonstrates the usage of the HTTP options in
a Swift-based Handler.

1 struct Greeter: Handler {
2 @Parameter(.http(.query)) var times = 1
3 @Binding var name: String
4

5 func handle() -> String {
6 let capacity = (9 + name.count) * times
7 var greeting = String(reservingCapacity: capacity)
8 for _ in 0..<times {
9 greeting.append("Hello, \(name)! ")

10 }
11 return greeting
12 }
13 }

Listing 8.13: The Greeter Handler demonstrates the usage of the HTTP-specific
options for the @Parameter Apodini property. The .http(.query) option in-
dicates that the times property with a default value of 1 should be exported as
a query parameter if the Interface Exporters use the HTTP protocol and the com-
munication protocol or middleware type supports this distinction. The @Binding
property wrapper enables passing in the Apodini property used to retrieve the name
from the DSL-Context as demonstrated in Listing 8.15. The handle function then
returns the greeting as often as defined by the times parameter.

Handlers can use the Connection type stored in the Apodini environment to
react to connection-related events and retrieve lower-level information about the re-
quest. The Connection type’s information property includes additional infor-

143

8 Apodini Interface Exporter

mation that can be mapped to HTTP headers or other context provided by the com-
munication protocol. Handlers can also use instances of the Connection type to
retrieve the remote address of the request and access to the Apodini Request type
to try to retrieve parameters manually. This mechanism is not generally encouraged
as it limits the Interface Exporter subsystem’s ability to parse interface specification-
related information from the Handlers. The Connection type’s state property
defines the current state of the connection with the .open case representing a nor-
mal open connection. When the connection is in the .end state, the connection will
be closed with the ability to send one last response to the client. The connection is in
the .close state if the connection was terminated without the chance to send one
last response. Listing 8.14 demonstrates the usage of the Connection type instance
stored in the @Environment.

1 struct CollectingGreeter: Handler {
2 @Parameter var name: String
3

4 @Environment(\.connection) var connection
5

6 @State var names: [String] = []
7

8 func handle() -> Response<String> {
9 switch connection.state {

10 case .open:
11 names.append(name)
12 return .nothing
13 case .close:
14 return .final("Hello, \(names.joined(separator: ", "))!")
15 case .end:
16 return .nothing
17 }
18 }
19 }

Listing 8.14: The CollectingGreeter demonstrates the usage of the
Connection type stored in the Apodini environment. The CollectingGreeter
uses the connection.state and a Swift switch-statement to append the name
to the collection of names that is preserved between executions using the @State
Apodini property when a request arrives. The Handler returns a greeting contain-
ing all names once the connection is ended from the client-side after all names have
been sent. The Apodini Interface Exporter subsystem can infer that the Handler is
suitable for a client-side stream based on the usage of the @StateApodini property.

The Apodini-DSL uses components to generate a tree structure with the web ser-
vice type at the root and Handlers forming the leaves of the tree. The DSL compo-
nent class diagram (Figure 7.1, page 112) in Section 7.1 demonstrates the composite
of components as tree nodes as manifested in the Apodini DSL instantiations. Web
service developers create components that structure the DSL and only contain the
content property in the Swift-based DSL or the ComponentBuilder of the Kotlin

144

8.4 HTTP Interface Exporter

DSL to describe the components and Handlers that are part of the custom compo-
nents. The DSL also provides a group component that can be used to structure the
DSL levels and provide additional information for each level, such as URI path com-
ponents or modifiers that are applied to all Handlers further down the DSL tree. The
Swift-based implementation uses the Group type to structure the DSL in the Swift
result builders. The Kotlin-based implementation uses group functions to achieve
the same structure in the ComponentBuilder.

Apodini also enables web service developers to embed path parameters in the
component hierarchy of Groups by generating the URI path identifying the HTTP
endpoints. Inference Exporters such as the HTTP exporter add parameters within a
Handler annotated with the .http(.path) option at the end of the URI path. Us-
ing bindings and the @PathParameter Apodini property within the Swift-based
Apodini DSL allow developers to refine the placement of path parameters further.
The Kotlin-based version of the DSL enables the usage of the pathParameter con-
venience function generating a parameter with an HTTP-path option. Listing 8.15
demonstrates the usage of Groups and a @PathParameter in the Swift-based DSL.
Listing 8.15 demonstrates the same concepts in the Kotlin-based Apodini DSL.

1 @main
2 struct HTTPExample: WebService {
3 @PathParameter var name: String
4

5 var configuration: Configuration {
6 HTTPConfiguration(/* ... */)
7 HTTP()
8 }
9

10 var content: some Component {
11 Text("Hello World!")
12 Group("greet") {
13 CollectingGreeter()
14 Group($name) {
15 Greeter(name: $name)
16 }
17 }
18 }
19 }

Listing 8.15: The HTTPExampleweb service using the HTTP exporters demonstrates
the usage of a string-based @PathParameter in the Swift-based component and
Handler hierarchy. The Group component can be used to group Handlers and com-
ponents that are defined in the result builder of the Group initializer (lines 13-18
and lines 15-17). Web service developers can also pass several path components to
a Group. Strings and instances of the PathParameter type conform to the proto-
col and can be passed to the Group initializer. The PathParameter instance can
be accessed from a wrapped property using the projected value mechanism in the
Swift language using the $ sign (lines 13 and 15).

145

8 Apodini Interface Exporter

1 object HTTPExample : WebService {
2 private val name = pathParameter()
3

4 override fun ConfigurationBuilder.configure() {
5 // ...
6 }
7

8 override fun ComponentBuilder.invoke() {
9 text("Hello World")

10 group("greet", name) {
11 +Greeter(name)
12 }
13 }
14 }

Listing 8.16: The HTTPExample web service demonstrates the usage of a string-
based path parameter in the Kotlin-based component and Handler hierarchy. The
Kotlin-based instantiation uses the convenience pathComponent to generate a pa-
rameter with an HTTP-path option. The parameter can then be passed to the group
function of the ComponentBuilder. The example demonstrates passing multi-
ple path components to a group (line 10) which is also possible in the Swift-based
instantiation. Handlers are preceded by the unary plus operator to register the Han-
dler in the semantic model.

When starting the web service, the HTTP exporter maps the semantic model
containing the paths and all parameters to URIs where the Handlers are reachable
using HTTP requests. Clients can access the Endpoint by sending an HTTP request
to the web service, e.g., using curl35 as demonstrated in Listing 8.17.

1 $ curl "https://localhost/greet/Paul?times=3"
2 "Hello, Paul! Hello, Paul! Hello, Paul! "

Listing 8.17: The curl command in line 1 sends out a request to the Swift-based
Apodini web service running locally and configured to use TLS with a trusted cer-
tificate. The web service described in Listing 8.15 responds with an HTTP response
of status code 200 containing the string detailed in line 2.

The Swift-based HTTP exporter demonstrates that Handlers and web services
developed in the Apodini DSL can be mapped to an HTTP-based message-based
API that can also be used to build resource-based APIs. The Apodini DSL compo-
nents and features such as groups, path parameters, and HTTP-specific parameter
options found in the Swift-based DSL are used by the HTTP exporter to support web
service APIs. While the HTTP Interface Exporter only offers an HTTP/1-based web
API, extending the HTTP exporter to support native streaming behavior without a
compatibility layer is promising future work, further demonstrating the extensibil-
ity of the Apodini DSL and Interface Exporter subsystem.

35curl is an open-source command-line tool: https://github.com/curl/curl.

146

https://github.com/curl/curl

8.5 RESTful Interface Exporter

8.5 RESTful Interface Exporter

The RESTful Interface Exporter uses the Interface Exporter subsystem, knowledge
sources, and the semantic model to export a resource-based web API based on the
web API and interface type independent Apodini DSL. The RESTful exporter is in-
stantiated for the Kotlin-based and Swift-based versions of the DSL. The exporter
emits HATEOAS information typically offered by RESTful APIs and is constrained
to a stateless request-response communication pattern [96]. Leonard Richardson de-
scribes four maturity levels36 for fulfilling the RESTful constraints in HTTP, starting
from level 0 with no RESTful characteristics such as XML-RPC and SOAP web ser-
vices. Level 1 maturity is reached when an API uses multiple URIs to offer func-
tionality but only uses one HTTP method for all requests37. Level 2 indicates a
proper mapping of resources and operations on these resources to URIs and suit-
ing HTTP methods38, and the usage of caching and media-type mechanisms [240].
Level 3 is reached when hypermedia is used to describe resources and their intercon-
nections39. Rodrı́guez et al. conducted a study of RESTful APIs and demonstrated
that the biggest part of the self-proclaimed RESTful APIs in their collected dataset
reached maturity level 2 while most APIs reached level 1 and only a few APIs re-
cached level 3 [240]. The study concludes that a large percentage of APIs are not
taking advantage of the capabilities of the HTTP protocol, and the support for level
3 hypermedia support is limited due to a missing standard for presenting and de-
scribing hypermedia information for RESTful APIs in responses [240]. Petrillo et
al. also demonstrate that of several RESTful APIs offered by cloud providers, more
than half of the collected best practices, while not fully reaching level 3 maturity and
not following a large percentage of bests practices [216]. Similar findings have also
been reported by Kotstein and Bogner when surveying participants about the rele-
vance of RESTful API design rules that indicated that not all current RESTful API
design rules are perceived as essential to implement [161]. The Delphi Study with
industry experts showed that a large proportion of rules to reach maturity level 2 are
perceived necessary while rules to reach maturity model level 3 are not perceived
as essential to invest resources to achieve level 3 for the industry applications [161].
The complexity of generating the hypermedia information and a lack of common
standards to represent the hypermedia information probably contribute to the lack
of interest in investing resources to develop RESTful APIs emitting hypermedia in-
formation.

36 Leonard Richardson presented the maturity heuristics as part of a talk titled Justice Will Take Us
Millions Of Intricate Moves in November 2008: https://www.crummy.com/writing/speaking/
2008-QCon/act3.html.

37See footnote 36.
38See footnote 36.
39See footnote 36.

147

https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://www.crummy.com/writing/speaking/2008-QCon/act3.html

8 Apodini Interface Exporter

The RESTful Interface Exporter demonstrates the advantage of the internal DSL-
based approach of combining the interface description with implementing the func-
tionality integrated into the parsed semantic model. The approach of generating
the RESTful interface based on the abstract DSL allows the exporter to ensure that
REST design rules such as the proper usage of URI paths, HTTP Methods, and other
design best practices are adhered to. New best practices or design rules can be cen-
trally implemented in the RESTful Interface Exporter. All web services using the
exporter can benefit from the added RESTful API conformance. The Interface Ex-
porters can use the information of the semantic model to automatically generate
relationships between Handlers that are mapped to HTTP endpoints. This informa-
tion can be used to automatically provide a best-effort approach to generating hy-
permedia information and other context needed to reach the Richardson maturity
model level 3. Different DSL annotations can further refine the relationship infor-
mation, as demonstrated by the Swift-based Apodini implementation. The RESTful
architectural style does not define an explicit mapping to HTTP or how the uni-
form interface is structured in detail, including the representation of hyperlinks in
responses [96]. The REST API Design Rulebook by Mark Massé introduces the Web
Resource Modeling Language (WRML) that can be used to define JSON-based repre-
sentations of hypermedia information in responses [187]. The JSON-based represen-
tation builds a uniform structure containing links, resource descriptions, and other
metadata information needed for a client to process and act upon the hypermedia
information [187]. The Hypertext Application Language (HAL) also demonstrates
an approach to defining a resource serialization format containing hypermedia in-
formation but never moved past the stage of an IETF Internet-Drafts that expired
2016 [152, 131]. The RESTful Interface Exporters for the Kotlin and Swift-based DSL
both build upon aspects of the WRML and HAL-based representations. While the
hypermedia information currently emitted by the Interface Exportrers is limited to
hypermedia links, the semantic model and the context provided by the Apodini DSL
provide the potential for future work extending responses to provide more detailed
hypermedia information.

Listing 8.18 demonstrates a Kotlin-based Apodini web service that offers a REST-
ful API to get information about movies, the participating cast and crew, and film-
ing locations of the movies. The web service demonstrates a typical resource-based
structure that can be mapped to a RESTful API but is also compatible with the other
Interface Exporters demonstrated in Chapter 8. The web service in Listing 8.18 of-
fers a web service interface to get information about movies. The RESTful Interface
Exporter parses the information found in the Kotlin-based semantic model to gen-
erate REST API endpoints. Similar to the Swift-based HTTP Interface Exporter in
Section 8.4, the exporter uses the DSL tree structure and path parameters to gener-
ate URIs for the endpoints.

148

8.5 RESTful Interface Exporter

1 object MoviesWebService : WebService {
2 private val movieId = pathParameter()
3

4 override fun ConfigurationBuilder.configure() {
5 use(REST())
6 }
7

8 override fun ComponentBuilder.invoke() {
9 text("Welcome to the movies API")

10 group("movies") {
11 +MoviesHandler()
12 group(movieId) {
13 +MovieHandler(movieId)
14 group("cast") {
15 +MovieCastHandler(movieId)
16 }
17 group("crew") {
18 +MovieCrewHandler(movieId)
19 }
20 group("locations") {
21 +MovieLocationsHandler(movieId)
22 }
23 }
24 }
25 }
26 }

Listing 8.18: The MoviesWebService demonstrates a Kotlin-based Apodini web
service that uses the REST Interface Exporter as configured in line 5. The compo-
nent and Handler structure of the web service consists of a Text Handler provid-
ing a greeting at the root of the API (line 9). The other Handlers provide infor-
mation about movies. As noted in Section 8.4 movieId is using a path param-
eter to inject the parameter in the DSL hierarchy indicated by the groups. All
movies are returned by the MoviesHandler while the MovieHandler expects a
movieId that identifies a movie and returns more information about each movie
then the movies list returned by the MoviesHandler. The MoviesCastHandler,
MoviesCrewHandler, and MoviesLocationsHandler return details about the
cast, crew, and filming locations of the movie identified by the movieId.

The exporter uses the structure in the semantic model to define relationships
between the different Handlers. These relationships are provided to the RESTful
Interface Exporter that transforms the relationships into links that are transmitted
to offer hypermedia information in responses. Listing 8.19 contains the body of an
HTTP response to the root of the web service shown in Listing 8.18. The links in the
response follow a simplified adaption of the WRML and HAL-based representations
to demonstrate the usage of hypermedia information. The Interface Exporter au-
tomatically generates the links based on the Apodini-Internal path representation.
Links containing path parameters are represented using the URI template syntax
defined in RFC 6570 [119]. Listing 8.20 demonstrates the usage of path parameters
in the links section of a HATEOAS-based JSON response.

149

8 Apodini Interface Exporter

1 {
2 "data": "Welcome to the movies API",
3 "_links": {
4 "self": "http://localhost",
5 "movies": "http://localhost/movies"
6 }
7 }

Listing 8.19: JSON response returned when sending an HTTP GET request to /
(root) of the web service shown in Listing 8.18. The response details the text returned
by the Text Handler as well as hypermedia links including the self link and a link
to the endpoint for retrieving movies found at /movies.

1 {
2 "data": [
3 {
4 "description": "...",
5 "id": 1,
6 "title": "Schindler's List"
7 }
8],
9 "_links": {

10 "self": "http://localhost/movies",
11 "movie": "http://localhost/movies/{id}"
12 }
13 }

Listing 8.20: JSON response returned when sending an HTTP GET request to
/movies of the web service shown in Listing 8.18. The response contains a list
of movies with reduced information. The links section contains the self link
and a link to a movie using the URI template syntax.

1 {
2 "cast": [2],
3 "crew": [1],
4 "description": "...",
5 "id": 1,
6 "locations": [1],
7 "title": "Schindler's List",
8 "_links": {
9 "self": "http://localhost/movies/1",

10 "cast": "http://localhost/movies/1/cast",
11 "crew": "http://localhost/movies/1/crew",
12 "locations": "http://localhost/movies/1/locations"
13 }
14 }

Listing 8.21: JSON response returned when sending an HTTP GET request to
/movies/1 of the web service shown in Listing 8.18. The response contains the
details of the movie with the id 1, including the movie identifier, title, description,
and identifiers for the cast, crew members, and filming locations. The links sec-
tion contains links to more information about the cast, crew, and filming locations.

150

8.5 RESTful Interface Exporter

1 {
2 "data": [
3 {
4 "id": 2,
5 "name": "Liam Neeson",
6 "biography": "..."
7 }
8],
9 "_links": {

10 "self": "http://localhost/movies/1/cast",
11 "person": "http://localhost/persons/{entityId}"
12 }
13 }

Listing 8.22: JSON response returned when sending an HTTP GET request to
/movies/1/cast of the web service shown in Listing 8.23. The response contains
a list of all casts members including some information about each cast member such
as a name and the biography. The links section of the JSON-based response con-
tains the self link as well as a link to the EntityHandler in Listing 8.23 (line 30)
using the relationship modifiers described in the figure caption.

If the context provided by requests defines a path parameter, the link formatting
automatically fills in any template values in the URI description. The prefilled URI
templates enable client applications to rely on the web service API for further in-
formation about the requested resource. The HATEOAS mechanism enables more
flexible clients and potential web API evolution stability by not relying on prede-
termined URI paths for subsequent requests. Listing 8.21 presents a request to the
MovieHandler in Listing 8.18 that requires a path parameter to be specific.

The functionality of the Swift-based Apodini DSL and the RESTful Interface Ex-
porter exceeds the capabilities of the Kotlin-based implementation. The Swift-based
Apodini DSL offers additional relationship-related annotation and customization
mechanisms that can be used to further refine the relationship information used by
the RESTful Interface Exporter. The metadata information and modifiers changing
the metadata information enable the addition of new relationships, hiding automat-
ically generated relationships and further refining information about automatically
generated relationships between Handlers. The mechanisms and implementations
were developed as part of the Server-Side Swift practical course and the Bache-
lor’s Thesis of Andreas Bauer titled Requirements Traceability for Web Services [34].
The metadata annotations enable the definition of relationship information on the
Content type and Handler level of the Apodini DSL. Using the Relationship

type also enables the definition of relationships between components as part of the
component definition in the content property of a web service or component.

Listing 8.23 demonstrates the usage of the Relationship type to create a re-
lationship between the Handler returning the cast of a movie and the Handler pro-
viding additional information about a person, including crew and cast members.

151

8 Apodini Interface Exporter

1 @main
2 struct MoviesWebService: WebService {
3 // The @PathParameters and location relationship ...
4 private static let personRelationship = Relationship(name: "person")
5

6 var configuration: Configuration {
7 REST {
8 OpenAPI()
9 }

10 }
11

12 var content: some Component {
13 Text("Welcome to the movies API")
14 Group("movies") {
15 AllEntitiesHandler(\.movies)
16 .response(SimplyfiedMovieResponseTransformer())
17 Group($movieId) {
18 EntityHandler($movieId, movieModelKeyPath: \.movies)
19 Group("cast") {
20 AllMovieRelatedEntitiesHandler(/* ... */)
21 .relationship(to: Self.personRelationship)
22 }
23 // Crew and locations ...
24 }
25 }
26 // Locations ...
27 Group("persons") {
28 AllEntitiesHandler(\.persons)
29 Group($personId) {
30 EntityHandler($personId, movieModelKeyPath: \.persons)
31 .destination(of: Self.personRelationship)
32 }
33 }
34 }
35 }

Listing 8.23: The MoviesWebService demonstrates a Swift-based Apodini web
service that uses the REST Interface Exporter and exports an OpenAPI specification
as configured in lines 7-9. The web service offers the same functionality as the web
service in Listing 8.18 and additionally offers Handlers for more information about
persons and locations (lines 26-34). The declaration of the @PathParameters is
omitted in the figure (line 3). The location and crew Handlers and Groups are omit-
ted in the figure and replaced with comments to reduce the size of the figure (line
23 and line 26). The web service demonstrates the usage of manually specifying
relationships as done using the personRelationship. The destination of the re-
lationship is defined in line 31. The person-related Handlers are modified to use this
relationship (line 21) which the REST exporter uses to generate hypermedia links.

152

8.5 RESTful Interface Exporter

The relationship information is then combined with the automatically inferred
relationships and used by the REST exporter to populate the links section of HTTP
responses. Listing 8.22 demonstrates a response from the cast endpoint showing the
additional person link using the URI template syntax.

The REST exporter demonstrates the applicability of the Apodini DSL to resource-
based APIs while allowing web service interface evolution using the extensible In-
terface Exporter subsystem. The section shows how using the exporter-based infras-
tructure generates RESTful APIs by automating aspects, including the generation of
hypermedia information.

8.5.1 OpenAPI Document Generation

Section 2.2.1 describes how web service description language or interface descrip-
tion languages are used to describe web APIs to generate client stubs or compose
web APIs automatically. Even though REST’s original indentation to be discover-
able and traversable using HATEOAS information, interface definition languages
such as OpenAPI are commonly used to describe RESTful web APIs. The Swift-
based OpenAPI exporter builds on top of the infrastructure provided by the REST
exporter to export an OpenAPI specification describing the RESTful API of a web
service. The OpenAPI exporter iterates over the semantic model and information
shared with the REST exporter to define the HTTP endpoints, parameter types, and
response types manifested in an OpenAPI specification. The specification is used
by other subsystems such as the Apodini Deployer subsystem to enable the deploy-
ment in FaaS-based environments to generate API gateways.

The OpenAPI specification can be downloaded at a configurable endpoint to
provide it to web service consumers. The exporter additionally provides the op-
tion to present a Swagger UI40-based online documentation reading in the OpenAPI
specification. Figure 8.2 demonstrates the generated user interface that enables web
service clients to explore the interface and test out requests to the web service.

40The Swagger UI project is an open-source project allowing web service developers to inte-
grate a rendered OpenAPI documentation in web services: https://github.com/swagger-api/
swagger-ui.

153

https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui

8 Apodini Interface Exporter

Figure 8.2: The Swagger user interface shows a graphical representation of the
OpenAPI specification generated by the OpenAPI exporter. The OpenAPI speci-
fication is exported from the configuration and structure of the web service demon-
strated in Listing 8.23. The Swagger UI provides a graphical representation to ex-
plore the API and test out requests to the web service.

154

8.6 Summary

8.6 Summary

The Interface Exporters and experiments in this chapter demonstrate the applicabil-
ity of the Apodini DSL and Interface Exporter mechanisms to different web service
interface types and web API types. The Apodini DSL, the Interface Exporter sub-
system, and Interface Exporter instantiations fulfill the tasks set out in Technical
Research Goal 1 and Design Problem 1.

Technical Research Goal 1:
Design artifacts supporting web service API type agnostic development to en-
able web service interface evolution.

Each web service interface type is instantiated by at least one Interface Exporter.
The Interface Exporters validate the DSL and subsystem functionality by demon-
strating strongly specified web API types such as gRPC and GraphQL and more
loosely specified message structures, e.g., in the WebSocket instantiation. All ex-
porters are added, removed, and modified in minimally invasive Apodini web ser-
vice configuration changes.

Knowledge Question 2:
Does the Apodini DSL empower web service interface- and web API type-inde-
pendent web service development?

The gRPC, WebSocket, and HTTP Interface Exporter sections demonstrate the
applicability of the Apodini DSL for communication patterns beyond the request-
response pattern. Apodini DSL features such as the state, environment, and observ-
able objects highlight a declarative Handler-based approach extended for different
communication patterns. The endpointName and operation modifiers provide
knowledge source-based information that is shared across Interface Exporters and
used to refine different aspects of the gRPC and GraphQL web API specification
documents. Metadata and option annotations at different levels of the web ser-
vice, Handlers, and parameters enable extension mechanisms. Several Interface
Exporters use these mechanisms to refine web API-specific information. Apodini
features, such as the relationship information, enable advanced Interface Exporter
features, including HATEOAS information for RESTful web APIs.

All these aspects demonstrate that the core Apodini DSL and Interface Exporter
mechanisms empower web service interface- and web API type-independent web
service development, positively answering Knowledge Question 2. The single-case
mechanism experiments achieve the validity of the artifacts designed to address
Technical Research Goal 1 and Design Problem 1.

155

8 Apodini Interface Exporter

156

Chapter 9

Web Service Instantiations

Five single-case mechanism experiments were performed that encompass web ser-
vices built using the Apodini DSL and the Interface Exporters validated in Chapter 8
to demonstrate the extensibility and applicability of the Apodini ecosystem. The
extensibility is demonstrated by showing different application domains and exten-
sion points, enabling web service developers to reuse software components in the
Apodini ecosystem. The evolution and deployment of these web services is sup-
ported using Apodini Migrator and Deployer artifacts to validate their evolution-
related capabilities. Knowledge Questions 4 and 6 aim to investigate how web ser-
vice API evolution (Definition 7, page 7) and web service deployment evolution
(Definition 8, page 8) related challenges are addressed using the Apodini ecosystem
artifacts.

Knowledge Question 4:
How do web API type-independent migration guides translate to client-side web
API-specific migration mechanisms?

Knowledge Question 6:
How do Deployment Providers enable deployment evolution in different de-
ployment environments?

Figure 9.1 demonstrates the focus of the single-case mechanism experiments on
the Apodini subsystems. While all subsections use the shared Swift-based Apodini
DSL, different subsections put an emphasis and focus on specific subsystems of the
ecosystem. The validation also demonstrates the applicability to different applica-
tion domains by demonstrating the usage of Apodini in a wide variety of projects.

Section 9.1 demonstrates a basketball player health monitoring system. The sec-
tion demonstrates the extensibility of the Swift-based Apodini DSL when incorpo-
rating databases, mobile push notifications, and serving web pages using Apodini.

157

9 Web Service Instantiations

«subsystem»

Apodini

«subsystem»

Interface Exporter

«subsystem»

Migrator

«subsystem»

Deployer

Semantic Model

Migration

Guide

Web API

Description

Web Service

Structure

Section 9.1

Section 9.2Sections 9.3, 9.4, 9.5

Figure 9.1: The validation sections are mapped to the Apodini subsystems shown
in Figure 6.1 (page 93). All sections use the shared Apodini DSL functionality and
demonstrate the usage of the subsystems in different application domains. (UML
Component Diagram)

Section 9.2 details a greenfield event management platform, presenting a large pro-
portion of possible API changes supported by Apodini Migrator. The single-case
mechanism experiment demonstrates API changes to the project and how Apodini
Migrator enables client stability while allowing web API evolvability. The section
highlights the automatic capabilities of the Apodini ecosystem while also demon-
strating weaknesses and manual intervention mechanisms.

The following three sections demonstrate several functionalities of the Apodini
Deployer subsystem and showcase how the different extension mechanisms can
be applied to various deployment structures and deployment environments. Sec-
tion 9.3 demonstrates an expense and income tracking application that can be de-
composed into subprocesses and to a FaaS-based hosting environment using differ-
ent Apodini Deployment Providers. Sections 9.4 and 9.5 both demonstrate the usage
of a constraint-based WoT-based deployment in two IoT-based projects. Section 9.4
describes a smart city project using heterogeneous IoT devices. Section 9.4 describes
a heterogeneous WoT water quality measurement system.

158

9.1 Basketball Player Health Monitoring System

9.1 Basketball Player Health Monitoring System

The basketball player health monitoring system demonstrates a web service and
mobile application developed in the Swift programming language. The project pro-
vides a prototype for a health monitoring and injury prevention platform for a Ger-
man first-league basketball club. The mobile application named TrainLens allows
basketball players to voluntarily conduct a self-evaluation questionnaire and record
several exercises in the morning to assess their daily fitness level and mental well-
being. The collected data also includes heart rate measurements conducted using
devices provided by the sports club. The application guides players through an
onboarding process and reminds them to record their state every morning. The ap-
plication aggregates the information and sends it to Apodini-based web services.
The web service aggregates the data and analyzes it using proprietary algorithms
developed based on sports and health science research, including heart rate infor-
mation [143, 217, 218]. The application presents coaches and the club management
with insights and predictions about the players’ performance, past fitness, and well-
being level. Figure 9.2 details two screens of the TrainLens application showing the
data entry and analyzed data inspection functionality.

The usage of the system for the description of this single-case mechanism exper-
iment focuses on the functionality of the web service relevant for the dissertation
and does not incorporate health data or an analysis of the developed algorithms.
The system demonstrates the web service development capabilities of the Apodini
ecosystem, including the usage of extensions to enable additional functionality in
the Apodini DSL context. These extension points include sending push notifica-
tions to client devices, communicating with a database, and providing an HTML
template-based web page. The web page allows administrators to create user ac-
counts, manage teams, and set parameters for the algorithms performed on the col-
lected data.

The basketball player health monitoring system is one of twelve mobile applica-
tion-related projects conducted during the iPraktikum 2021. The iPraktikum is a
project-based capstone course teaching students software engineering using projects
involving a wide variety of project partners and project topics [64]. The project
course consists of several student teams, distributed at the beginning of the semester
and working on challenges proposed by the project partners [87]. Students learn
about Swift-based mobile application and web service development as part of a
two-week project course at the beginning of the semester [251].

During the iPraktikum in the summer semester of 2021, more than 70 students
learned how to develop web services using the Swift-based Apodini DSL. Six out
of twelve teams in the iPraktikum preceded to develop a web service using the
Swift-based Apodini DSL for their project. Five out of six Apodini iPraktikum

159

9 Web Service Instantiations

(a) TrainLens Questionnaire (b) Player Overview

Figure 9.2: Two screens of the TrainLens iOS Application communicating with the
Swift-based Apodini web service. The first screen displays the first question of the
questionnaire that players can answer every morning. The second screen displays
the user interface of the data entry overview of a single player that is retrieved from
the web service. The color of the days in the month overview indicates the assess-
ment of the algorithm based on the player data.

projects used the ApodiniDatabase41 extension target providing the FluentKit42 ob-
ject–relational mapping framework to Apodini Developers. The TrainLens web ser-
vice also uses the ApodiniNotifications43 to send push notifications to the TrainLens

41The ApodiniDatabase provides database-related functionality: https://github.com/Apodini/
Apodini/tree/develop/Sources/ApodiniDatabase.

42FluentKit is part of the Vapor project: https://github.com/vapor/fluent-kit.
43The ApodiniNotifications enables developers to send Apple Push Notification service (APNs)

push notifications to mobile devices: https://github.com/Apodini/Apodini/tree/develop/
Sources/ApodiniNotifications.

160

https://github.com/Apodini/Apodini/tree/develop/Sources/ApodiniDatabase
https://github.com/Apodini/Apodini/tree/develop/Sources/ApodiniDatabase
https://github.com/vapor/fluent-kit
https://github.com/Apodini/Apodini/tree/develop/Sources/ApodiniNotifications
https://github.com/Apodini/Apodini/tree/develop/Sources/ApodiniNotifications

9.1 Basketball Player Health Monitoring System

application. The ApodiniLeaf44 dependency in the TrainLens web service enables
using the LeafKit45 enables serving HTML pages using templating mechanisms.
The students were supported by experienced students and continuously provided
feedback to improve Apodini and fix bugs in different Interface Exporters and the
main Apodini DSL. The ApodiniLeaf project was developed based on the need
in the TrainLens project to serve static web pages, and the Apodini Interface Ex-
porter system was extended to return binary large objects (Blob-type) as Handler
responses. Additional connection context such as the Information functionality
in the Apodini DSL was developed to retrieve further context about the requests
and store context in the web service responses.

Figure 9.3: The Swagger UI of the TrainLens web service exported by the OpenAPI
Interface Exporter after updating the web service to latest Apodini version and ad-
dressing implementation inconsistencies. The screenshot details the routes to man-
age users and retrieve users by their role including players, trainers, and coaches.
The /teams endpoints are used to manage the teams of the basketball club.

44The ApodiniLeaf Swift Package can be found at https://github.com/Apodini/ApodiniLeaf.
45LeafKit is part of the Vapor project: https://github.com/vapor/leaf-kit.

161

https://github.com/Apodini/ApodiniLeaf
https://github.com/vapor/leaf-kit

9 Web Service Instantiations

The Apodini RESTful Interface Exporter described in Section 8.5 maps HTTP
headers to Information in request and serializes Information returned by the
web service into HTTP headers in the HTTP response. The web service includes
43 HTTP-based endpoints documented in an OpenAPI-based documentation and
presented in a SwaggerUI web page offered by the OpenAPI Interface Exporter de-
scribed in Section 8.5.1. Figure 9.3 displays the SwaggerUI interface, documenting
the endpoints of the TrainLens project offered by the RESTful Interface Exporter
combined with the OpenAPI Interface Exporter after updating the web service to
the latest Apodini version and addressing implementation inconsistencies.

9.2 Event Management Plattform

The Apodini web service offering an event management platform demonstrates the
web service API evolution-related capabilities of the Apodini ecosystem. The web
service describes the web service interface design capabilities of the Swift-based
Apodini DSL and how Apodini Migrator can create client libraries to communi-
cate with the web service. The web service is subsequently improved by adding,
removing, and updating functionality affecting the RESTful web API. The RESTful
Apodini Migrator automatically migrates the client library to a new version, en-
abling client stability when communicating with an evolving web service.

The project was developed as part of the master’s thesis titled Automated Gener-
ation of Machine-Readable Migration Guides for Web Services by Eldi Cano [69]. Cano
extended the existing basketball player health monitoring system described in Sec-
tion 9.1, the event management platform described in this section, and an existing
building savings contract information service initially developed in JavaScript and
ported to the Swift-based Apodini DSL to validate the Apodini Migrator subsys-
tem [69]. The event management platform web service46 offers a RESTful API using
the RESTful Interface Exporter and the OpenAPI Interface Exporter. Listing 9.1 dis-
plays the web service of version one of the web service.

The API contains endpoints to perform CRUD operations on events, read and
create categories, and retrieve category groups. Users can register, log in, retrieve
user information, and delete an account. The user’s home feed can display infor-
mation about events and other user-related information, while the experiences end-
point provides detailed information about events. As detailed in Section 7.3, the
Migrator configuration enables the configuration of the API document export and
the export options for a migration guide. The configurations of the Apodini Mi-
grator subsystems can be overwritten by command-line arguments passed to the
automatically added migrator subcommand.

46The implementation of the event management platform is available at https://github.com/
Apodini/ApodiniMigratorExample. The instantiation returns mock data for all endpoints.

162

https://github.com/Apodini/ApodiniMigratorExample
https://github.com/Apodini/ApodiniMigratorExample

9.2 Event Management Plattform

1 @main
2 struct EventManagementPlatform: WebService {
3 var metadata: Metadata {
4 Version(major: 1)
5 }
6

7 var content: some Component {
8 EventsComponent()
9 CategoriesComponent()

10 HomeFeedComponent()
11 ReviewsComponent()
12 UserComponent()
13 }
14

15 var configuration: Configuration {
16 // gRPC Configuration ...
17 REST {
18 OpenAPI()
19 }
20 Migrator(documentConfig: .export(.endpoint("api-document")))
21 }
22 }

Listing 9.1: Swift-based Apodini DSL Web service version one of the event man-
agement platform. The web service explicitly specifies the version of the web ser-
vice using the metadata property of the web service. The components listed in the
content property each describe a part of the web service. The configuration
details the REST and OpenAPI exporter as well as the Migrator configuration. The
gRPC and TLS configurations are omitted in the listing. The Migrator configura-
tion in the web service defines that the API document used by the REST Migrator is
exported at the /api-document endpoint.

Listing 9.2 displays the command needed to export the API Document in its
JSON-based representation. The exported API document builds the basis for the
migration guide and client-based API migration demonstrated in this section. The
API document details the current API structure of the web service in an Interface
Exporte-independent structure representing elements of the semantic model de-
scribed in Section 7.2.

1 $ swift run QONECTIQV1 migrator document \
2 --doc-directory=./Documents --doc-format=json
3 [...]
4 API Document exported at [...]/Documents/api_v1.0.0.json

Listing 9.2: The migrator document command is used to generate a Migrator
API document from version 1 of the web service. The command starts parsing the
Apodini DSL and generates a JSON-based API document in the specified Docu-
ments directory. The listing omits log messages and absolute file paths.

163

9 Web Service Instantiations

1 $ swift run QONECTIQV2 migrator compare \
2 --old-document-path ./Documents/api_v1.0.0.json \
3 --guide-directory ./Documents
4 [...]
5 Migration Guide exported at [...]/Documents/migration_guide.json

Listing 9.3: Generation of the migration guide based on the API document exported
from version one of the web service. The --old-document-path argument de-
tails the path to the API document, and the --guide-directory passes the di-
rectory where the migration guide should be saved to the Migrator subsystem. The
final log message describes the successful export of the migration guide. The listing
omits log messages and absolute file paths.

1 {
2 "type": "update",
3 "id": "User",
4 "updated": {
5 "type": "property",
6 "property": {
7 "type": "idChange",
8 "from": "ownEvents",
9 "to": "myEvents",

10 "similarity": 0.750000,
11 "breaking": true,
12 "solvable": true
13 }
14 }
15 }

Listing 9.4: Model-related API changes between version one and two of the event
management web service documented in the JSON-based migration guide. The
property ownEvents was renamed to myEvents which was detected with a simi-
larity score of 75%. The change is classified as a braking change with an automati-
cally solvable solution contained in the migration guide.

Version two of the web service introduces several breaking and non-breaking
changes as classified in Section 4.2.1. The API Document of the first web service
version is subsequently used to generate a migration guide using version two of the
event management web service. Listing 9.3 displays the command and partial log
output of the generation of the migration guide.

The migration guide documents all changes of the web API between two ver-
sions of an API document in an API type-independent description based on the
concepts found in the API document structure. As detailed in Section 7.3, the migra-
tion guide is divided into model and endpoint-related changes that are supported
by changes on a service level, scripts, values, and representations. The resulting mi-
gration guide is more than 1500 lines long, correctly detailing all changes between
the two versions, and can be found in the open-source repository of the valida-
tion. It includes three service level changes documenting the new version num-

164

9.2 Event Management Plattform

1 {
2 "type": "update",
3 "id": "getHomeFeedForUserWithID",
4 "updated": {
5 "type": "identifier",
6 "identifier": {
7 "type": "update",
8 "id": "EndpointPath",
9 "updated": {

10 "from": {
11 "id": "EndpointPath",
12 "value": "/home-feed/{userID}"
13 },
14 "to": {
15 "id": "EndpointPath",
16 "value": "/home/{userID}"
17 }
18 },
19 "breaking": true,
20 "solvable": true
21 }
22 },
23 "breaking": true,
24 "solvable": true
25 }

Listing 9.5: Endpoint-related change documented in same the migration guide as
detailed in Listing 9.4. The change documents a change in the endpoint path of
the Handler with the identifier getHomeFeedForUserWithID. The change was
automatically detected based on the identifier. The old and the new value are doc-
umented in the migration guide (line 12 & 16), resulting in a breaking but solvable
API change.

ber and configurations injected by the RESTful and gRPC-based Apodini Migra-
tor. There are 56 total model changes, four additions, one removal, and 51 update
changes. Forty-nine of the model changes are classified as breaking, and 55 are clas-
sified as solvable, while one change is classified as non-solvable: The removal of
the CategoryStatus type. There are 22 total endpoint changes, three additions,
one removal, and 18 update changes. Seventeen of the model changes are classified
as breaking, and 21 are classified as solvable, while one change is classified as non-
solvable: The removal of the usersOfExperience endpoint. The migration guide
also contains 30 change scripts, 8 JSON values, and 11 updated JSON representa-
tions as described in Section 7.3. Listing 9.4 and Listing 9.5 both display segments
of the migration guide documenting one model and one endpoint related change
documented in the migration guide.

The migration guide is the primary input for the different Apodini Migrator
implementations. The Apodini Migrator currently supports a RESTful API Mi-
grator and a gRPC-based Migrator. The gRPC-based Migrator uses the Protocol

165

9 Web Service Instantiations

Buffer specifications provided by the gRPC Interface Exporter as an input in addi-
tion to the migration guide. The REST Apodini Migrator uses the web service API
type-independent API document and the migration guide as input when generat-
ing client libraries. The REST Apodini Migrator used in this section can derive the
RESTful API of an Apodini web service based on the API document exported using
the Apodini integration.

Knowledge Question 4:
How do web API type-independent migration guides translate to client-side web
API-specific migration mechanisms?

The instantiations address Knowledge Question 4 by demonstrating the exten-
sibility of the Apodini Migrator mechanism for two web API types. The Apodini
Migrator instances rely on a shared foundation provided by the Apodini Migrator
subsystem. This subsystem enables the generation and parsing of migration guides
as well as a code generator component described in Figure 6.7 (106). The Apodini
Migrator instantiation features a code generation DSL that provides reusable com-
ponents to the Apodini Migrators. This mechanism enables Migrators to focus on
the web API type-specific migration pattern instantiations for different web API
types.

We demonstrate this functionality using the REST Apodini Migrator. The client
library migrations presented in Listing 9.7 and Listing 9.8 migrations are both gen-
erated as part of the REST Apodini Migrator’s client library generation shown in
Listing 9.6. The Swift-based Apodini REST Migrator creates a Swift Package that
contains a shared networking layer and a stable client facade offering a Swift inter-
face for the client to use.

1 $ swift run migrator migrate rest \
2 --package-name ApodiniMigratorExampleClient \
3 --target-directory ../ \
4 --document-path ../Documents/api_v1.0.0.json \
5 --migration-guide-path ../Documents/migration_guide.json
6 [...]
7 Starting migration of package ApodiniMigratorExampleClient
8 Package ApodiniMigratorExampleClient was migrated successfully. You can

open the package via ApodiniMigratorExampleClient/Package.swift↪→

Listing 9.6: Usage of the RESTful Migrator in the Apodini Migrator project to create
a stable client library with a version one interface communicating with version two
of the web service. The listing omits some log messages until the tool successfully
creates the client library as a Swift Package. The command requires a name (line 2)
and target directory (line 3) for the Swift Package and a path to the API document
(line 4) for the old version of the web service. The migration guide passed in as
the last argument (line 5) documents the changes between the old version and the
version the client library should be migrated to.

166

9.2 Event Management Plattform

1 public struct User: Codable {
2 private enum CodingKeys: String, CodingKey {
3 // ...
4 case eventsOfInterest = "interestedIn"
5 // ...
6 case ownEvents = "myEvents"
7 // ...
8 }
9 // ...

10 }

Listing 9.7: Migration of a property rename documented in Listing 9.4 by the REST-
ful Apodini Migrator for a Swift-based client library. The REST Apodini Migrator
uses the Swift Codable coding keys feature to rename the serialization key while
guaranteeing source stability for the Swift-based client interface.

1 public extension HomeFeed {
2 static func getHomeFeedForUserWithID(
3 showPreviousEvents: Bool = try! Bool.instance(from: 7),
4 userID: UUID,
5 authorization: String? = nil,
6 httpHeaders: HTTPHeaders = [:]
7) -> ApodiniPublisher<HomeFeed> {
8 // ...
9 let handler = Handler<HomeFeed>(

10 path: "home/\(userID)",
11 // ...
12)
13 // ...
14 }
15 }

Listing 9.8: Migration of an endpoint-related rename of the URI path for the HTTP-
based request to the web service documented in Listing 9.5. The REST Apodini Mi-
grator offers a stable Swift interface using the getHomeFeedForUserWithID func-
tion by only altering the function body with the new path parsed from the change
description in the migration guide.

Listings 9.7 and 9.8 demonstrate the stable client facade with a model type in
Listing 9.7 and a function sending a network request to an endpoint in Listing 9.8.
The REST Migrator uses Swift programming language features to provide a sta-
ble interface to the client. The rest migrate subcommand provides access to the
RESTful Apodini Migrator, the grpc subcommand would provide access to the
gRPC Apodini Migrator. The Migrator changes the serialization and deserializa-
tion functions for model types to communicate with a newer web service version.
The functions making networking calls to the web service also provide stable Swift
signatures. At the same time, the Apodini REST Migrator alters the function bod-
ies hidden behind the signature to create requests and parse responses of the new
web service version. This web API evolution supporting mechanism enables client
stability while allowing web service API evolvability for web service developers.

167

9 Web Service Instantiations

The Listings in this section and all further examples detailed in the open-source
version of the event management platform demonstrate the capabilities and extensi-
bility of the Apodini DSL and Apodini Migrator subsystem. The Apodini Migrator
components take advantage of the DSL-based web service description to parse a
detailed representation of all aspects of the web service interface translated into the
web API documents. A tree-based comparison algorithm provided by the Apodini
Migrator subsystem enables different Migrators to create a client library and pro-
vide client-stable migrations empowering web API evolution for web service de-
velopers. While the Migrator subsystem cannot automatically provide migrations
for all API changes, web service developers can use the JavaScript-based migra-
tion functions documented in the migration guide to refine further migration steps.
These functions are incorporated in the generation of interface-stable client libraries.
The Migrator instantiations demonstrate the client library generation and migration
techniques for various model and endpoint-related change types. The mappings
demonstrated show the mapping of an abstract migration description to a concrete
Swift-based instantiation for RESTful APIs, providing empirical evidence answer-
ing Knowledge Question 4. The techniques demonstrate the web API evolution-
related capabilities of the Apodini Migrator system enabled by the unique DSL-
based approach of developing evolvable web services.

9.3 Expense and Income Tracking Application

The Expense and Income Tracking Application (Xpense) is a Swift-based software
system used to highlight recent DSL-based software development techniques in the
client and web service subsystems. The system is used to teach Swift and iOS de-
velopment as part of the Swift Bootcamp preceding the iPraktikum capstone course
at the Technical University of Munich [251]. The system demonstrates the usage
of the Apodini DSL for web service development and SwiftUI for client-side devel-
opment. Students learn the Swift programming language by following alternating
Swift and app development sessions that demonstrate building the Xpense applica-
tion throughout eight lectures [251]. The application is documented and available
as an open-source project47.

The application allows users to keep track of their income across different ac-
counts that can be created, modified, and deleted in the iOS application. Transac-
tions within these accounts can be associated with a description, date, and location.
A user is identified by an account using a user-password combination to authenti-
cate users in the client application. Figure 9.4 displays the user interface of the client
application detailing the accounts overview as well as the detail screen of a transac-
tion. The client application and the web service demonstrate the usage of the Swift

47The Xpense application can be found at https://github.com/Apodini/ApodiniXpenseExample.

168

https://github.com/Apodini/ApodiniXpenseExample

9.3 Expense and Income Tracking Application

structured concurrency features introduced in Swift 5.5. The client and web service
share the same Swift-based model types and functionality extensions, demonstrat-
ing the advantage of developing the client application and web service in the same
programming language enabled by the Swift-based Apodini DSL.

(a) Accounts Overview (b) Transaction Detail

Figure 9.4: User interface of the Xpense iOS application. Figure 9.4a displays the
accounts overview showing three accounts as well as the total balance across all
accounts. Figure 9.4b shows the transaction view for a single transaction that is
associated with a balance, description, data, the related account, and a location.

The web service uses the REST and OpenAPI exporters to provide a web API
to the client application. Listing 9.9 provides an overview of the main web service
type described in the Apodini DSL. The web service consists of 13 Handlers anno-
tated with modifiers and metadata information. The web service demonstrates the
usage of the Apodini Authorization extensions, allowing developers to annotate el-
ements of the DSL components with security-related metadata. In the Xpense web

169

9 Web Service Instantiations

1 @main
2 struct XpenseWebService: WebService {
3 @Option
4 var port: Int = 80
5

6 var configuration: Configuration {
7 HTTPConfiguration(bindAddress: .interface(port: port))
8 REST {
9 OpenAPI()

10 }
11 ApodiniDeployer(runtimes: [
12 Localhost.self,
13 AWSLambda.self
14])
15 }
16

17 var content: some Component {
18 Text("Welcome to the Xpense Web Service!")
19 Group {
20 AccountComponent()
21 TransactionComponent()
22 }.metadata {
23 Authorize(
24 User.self,
25 using: BearerAuthenticationScheme(),
26 verifiedBy: UserTokenVerifier()
27)
28 }
29 UserComponent()
30 }
31 }

Listing 9.9: The Xpense web service shows the authorization metadata an-
notations for the AccountComponent and TransactionComponent subsys-
tems. The web service uses the REST & OpenAPI Interface Exporters and the
HTTPConfiguration to alter the binding port based on a launch option. The
ApodiniDeployer configuration is defined to use two runtimes: The Localhost
(Section 9.3.1) and AWSLambda (Section 9.3.2) Deployment Providers.

service, the client application uses the Basic HTTP authentication scheme [237] to
allow a user to log in using a username-password combination. The user retrieves a
token that can be used to further authenticate requests to the accounts and transac-
tions Handlers using the Bearer token HTTP authentication scheme [146]. The web
service does not include a build-in TLS configuration and needs to be deployed in
conjunction with a reverse proxy or an API gateway to ensure a secure connection
to the client, adhering to security best practices for basic and bearer authentica-
tion [237, 146]. The web service also incorporates configurations and subcommands
to automatically generate deployment structures for the process-based Localhost
Deployment Provider described in Section 9.3.1 and the FaaS-based AWS Lambda
Deployment Provider demonstrated in Section 9.3.2.

170

9.3 Expense and Income Tracking Application

9.3.1 Localhost Deployment Provider

The Localhost Deployment Provider demonstrates the automatic deployment struc-
ture creation enabled by the Apodini Deployer subsystem. The Deployment Provider
is build based on the deployment structure defined in Figure 7.4 (page 122). The De-
ployment Provider creates a subprocess for each deployment node of the deployed
system. The default configuration is to create a deployment node for each exported
endpoint, resulting in 13 different subprocesses, one for each Handler in the web
service. A proxy server forwards the requests to the deployment nodes using the
mapping defined in the deployed system based on the deployment structure.

1 $ swift run DeploymentTargetLocalhost ../WebService \
2 --product-name WebService
3 [...]
4 Compiling target 'WebService'
5 [...]
6 Server starting on 0.0.0.0:80
7 [...]
8 Server starting on 0.0.0.0:52011
9 Server starting on 0.0.0.0:52003

10 Server starting on 0.0.0.0:52007
11 Server starting on 0.0.0.0:52005
12 Server starting on 0.0.0.0:52009
13 Server starting on 0.0.0.0:52001
14 Server starting on 0.0.0.0:52002
15 Server starting on 0.0.0.0:52012
16 Server starting on 0.0.0.0:52006
17 Server starting on 0.0.0.0:52000
18 Server starting on 0.0.0.0:52010
19 Server starting on 0.0.0.0:52004
20 Server starting on 0.0.0.0:52008

Listing 9.10: The DeploymentTargetLocalhost in the Apodini Deployer sub-
system requires a path to the Swift Package directory (line 1) and a name of the
Swift package product (line 2) to create a localhost subprocess deployment. The
Deployment Provider subsequently compiles the product, extracts the deployment
structure, and starts the proxy service and a subprocess running a web service for
each Handler. The listing omits irrelevant log messages.

The LocalhostRuntime Apodini Deployer integration shown in Listing 9.9
provides subcommands to interact with the web service at deployment time. The
deploy export-ws-structure subcommand and further nested Deployment
Provider-specific subcommands enable the extraction of the deployment structure.
The deploy startup subcommand and further nested Deployment Provider-spe-
cific subcommands enable Deployment Providers to modify the startup behavior of
the web services in the execution environment. The Localhost Deployment Provider
uses the subcommands to export the deployment structure, including relevant meta-
data that is then subsequently used to startup multiple subprocesses using the Local-

171

9 Web Service Instantiations

host-specific deploy startup subcommand. Listing 9.10 demonstrates the usage
of the Localhost Deployment Provider for the Xpense web service. The Deployment
Provider demonstrates the usage of the deployed system to easily prototype the de-
composition of an Apodini web service on a single machine.

9.3.2 AWS Lambda Deployment Provider

The AWS Lambda Deployment Provider demonstrates the generation of a deploy-
ment structure and decomposition of FaaS-based deployments as discussed in Sec-
tion 5.1.1. The AWS Deployment Provider incorporates deployment-specific meta-
data and groupings into creating the final deployed system. It uses Docker to create
suitable binaries for deployment to a FaaS environment. The AWS Lambda De-
ployment Provider integrates additional functionality in the Apodini Networking
layer to translate AWS Lambda executions to requests processed by Apodini and
forwarded to Interface Exporters. Listing 9.11 demonstrates the AWS Lambda De-
ployment Provider CLI and log output.

1 $ swift run DeploymentTargetAWSLambda deploy ../WebService \
2 --product-name WebService \
3 --s3-bucket-name apodinixpenseexample
4 [...]
5 Preparing docker image
6 [...]
7 Successfully built docker image. image name: apodini-lambda-builder
8 Generating web service structure
9 [...]

10 Successfully generated web service structure
11 [...]
12 Creating lambda package
13 Zipping lambda package
14 Uploading lambda package to

s3://apodinixpenseexample/apodini-lambda/lambda.out.zip↪→

15 S3 upload done.
16 Creating lambda functions for nodes in the web service deployment

structure (#nodes: 13)↪→

17 [...]
18 Importing API definition into the API Gateway
19 Updating API Gateway name
20 Deployed 13 lambdas to api gateway w/ id '2rf6y3467d'
21 Invoke URL: https://2rf6y3467d.execute-api.eu-central-1.amazonaws.com/
22 Done! Successfully applied the deployment.

Listing 9.11: In addition to the same input as the Localhost Deployment Provider,
the CLI of the AWS Lambda Deployment Provider requires an AWS S3 storage
bucket name and an identifier for an AWS API Gateway. The AWS Lambda De-
ployment Provider creates a new API Gateway as no API Gateway identifier was
passed to the command. The log messages are explained in the description deploy-
ment process in this section. The listing omits non-essential log messages.

172

9.3 Expense and Income Tracking Application

Figure 9.5: Screenshot of the AWS Lambda Dashboard showing part of the list of the
13 deployed AWS Lambda functions. The Lambda functions are reachable using the
API gateway shown in Figure 9.6. Each Lambda function was created using the zip
file uploaded to the S3 storage bucket defined in Listing 9.11. The AWS Account-ID
has been redacted.

The AWS Lambda Deployment Provider first prepares an Amazon Linux 2-based
Docker image used to compile the web service binary executable in the AWS Lambda
environment. The Deployment Provider prepares the Docker image and compiles
the web service in the Docker image. The compiled web service is subsequently
used to extract the web service structure based on the Apodini DSL using the Apodini
Deployer subcommands. The deployment structure and its metadata-based con-
straints are parsed by the AWS Lambda Deployment Provider and are used to define
the deployed system structure.

After defining the deployed system structure, the web service binary is pack-
aged in a zip file to be uploaded to the user-defined S3 storage bucket. The storage
bucket is used to generate the AWS Lambda functions following the deployed sys-
tem structure. Like the Localhost Deployment Provider, the AWS Lambda Deploy-
ment Provider creates one deployment node corresponding to one AWS Lambda
function for each exported endpoint. Figure 9.5 provides a screenshot of the AWS
Lambda dashboard after the creation of the Lambda functions is complete.

After creating the FaaS functions, the AWS Lambda Deployment Provider con-
figures the AWS API Gateway to forward HTTP requests to the appropriate Lambda
functions. The API Gateway serves as a load balancer and automatically translates
RESTful HTTP requests to Lambda execution events. The API Gateway is config-
ured using an OpenAPI document extracted from the OpenAPI exporter that is de-

173

9 Web Service Instantiations

Figure 9.6: Screenshot of the AWS API Gateway Dashboard showing the API Gate-
way configured by the AWS Lambda Deployment Provider execution shown in List-
ing 9.11. The API Gateway is configured to forward HTTP requests defined by the
OpenAPI specification to the deployed AWS Lambda functions shown in Figure 9.5.
The AWS Account-ID has been redacted.

fined as part of the Xpense web service. Figure 9.6 shows a screenshot of the con-
figured API Gateway after the execution of the AWS Lambda Deployment Provider
shown in Listing 9.11. After configuring the API Gateway and the AWS Lambda
functions, the AWS Lambda Deployment Provider exits with information about the
deployed system and how the API Gateway can be reached.

Knowledge Question 6:
How do Deployment Providers enable deployment evolution in different de-
ployment environments?

The Apodini DSL-based approach enables a complete overview of a web ser-
vice’s structure and deployment constraints, enabling the partitioning and deploy-
ment functionality of the Apodini Deployer subsystem and concrete Deployment
Providers demonstrated in this section. The Xpense web service single-case mecha-
nism experiment demonstrates how the Apodini DSL’s extensibility enables security-
related metadata annotations translated into authentication requirements. Adding
a subprocess-based or FaaS-based deployment only requires adding an entry in the
web service configuration, automatically configuring additional subcommands and
runtime networking behavior without the need to adapt the web service compo-
nents. The AWS Lambda instantiation demonstrates the usage of a FaaS-based De-
ployment Provider automatically partitioning the web service.

174

9.4 Smart City IoT System

9.4 Smart City IoT System

External domain-specific language-based deployment specifications are often used
to persist and automate the deployment of distributed systems as discussed in Chap-
ter 5. External DSLs, such as the TOSCA specification [180], allow developers to
define the structure of the distributed components and the process of deploying a
distributed system. The TOSCA specification supports two approaches to describe a
distributed deployment: An imperative describing build plans and a declarative ap-
proach defining the topology model of the distributed system. [108, 180]. Research
by Franco da Silva et al. and Li et al. demonstrates the applicability of the declarative
approach of the TOSCA standard for IoT-based deployments by specifying artifacts
that are described in the XML-based TOSCA specifications [108, 176].

Apodini embraces the declarative definition of the deployment structure by em-
bedding it in the web service definition. This section focuses on using containeriza-
tion techniques and the metadata annotation-based insights provided by the Apodini
DSL to improve WoT based deployments. Instead of relying on different deploy-
ment artifacts, we use the Everything in Code approach described in Section 7.1.
Combining a model and code-first approach provides a comprehensive description
of the deployable web service that the Apodini Deployer subsystem utilizes.

The smart city IoT system demonstrates the applicability of the Apodini ecosys-
tem to the IoT and WoT deployment domain as described in Section 5.1.3. The
project showcases the constraint and metadata-based deployment mechanisms de-
scribed in Chapter 5. The web service developer annotates the WoT web service el-
ements with device-specific and deployment-specific constraints. The Apodini IoT
Deployment Provider uses these constraints and annotations to create a deployment
structure that is transformed into a deployed system.

The single-case mechanism experiment was developed during and based on
the smart city IoT system developed during the Joined Advanced Summer School
(JASS) 2021. JASS is a multi-university project course involving the St. Petersburg
State Electrotechnical University (LETI) and the Technical University of Munich
(TUM) [164]. The 2021 edition of the two-week course was conducted as an on-
line distributed global software engineering course involving the Imperial College
London (Imperial), St. Petersburg State Electrotechnical University, and the Tech-
nical University of Munich [250]. The focus on the 2021 edition of the course was
continuous software engineering in IoT systems conducted in a global classroom
setting [250]. The miniaturized smart city setup of the JASS 2021 project consistes of
education-focused Tello drones, Raspberry Pi-based model cars named DuckieBots,
and UDP/IP enabled smart light bulbs representing traffic lights [250]. The students
were tasked to develop a continuous software engineering-based system, incorpo-
rating all device types to simulate a smart city infrastructure setup [250].

175

9 Web Service Instantiations

UDP/IP

<<device>>

Raspberry Pi: Fog Node

<<execution environment>>

Docker Container

<<device>>

Raspberry Pi: Duckie Car

<<execution environment>>

Docker Container

ssh ssh

<<device>>

Deployment Provider

<<execution environment>>

Swift-Supported OS

<<component>>

IoT Deployment Provider

<<component>>

Post Discovery Actions

<<component>>

Post Discovery Actions

<<device>>

Smart Light

<<component>>

WoT Web Service

<<component>>

WoT Web Service

Figure 9.7: Execution environment/software/protocol mapping for the smart city
IoT system, including the Apodini Deployer IoT Deployment Provider. The De-
ployment Provider runs on a Swift-supported operating system and uses ssh con-
nections to the fog nodes and Duckie cars in the miniaturized smart city setup. Each
fog node and Duckie car contains a Docker execution environment that can run post
discovery actions and the deployed WoT web service. The fog nodes use a UDP/IP-
based connections to communicate with the smart lights representing traffic lights.
(UML Deployment Diagram)

176

9.4 Smart City IoT System

loop

loop

:IoT
Deployment Provider

ｘ

Export WebService Deployment Structure

Discover Deployment Nodes

:Post-Discovery
Action

Discover IoT

Devices

ｘ

<<create>>

start

[For each Device Constraint]

Discovered Devices

Web Service

Developer

<<create>>

:WoT Web Service
<<create>>

[For each Deployment Node]

Deployment Status

Figure 9.8: Deployment process of the IoT Deployment Provider. The web service
developer starts the deployment by creating an instance of the IoT Deployment
Provider that parses the deployment structure from the web service (simplified in
the sequence diagram). The Deployment Provider uses several post-discovery ac-
tions for different device constraints to discover devices or execution environments
shaping the deployed system structure. The IoT Deployment Provider subsequently
starts up a WoT web service in each suitable execution environment and configures
it according to the device constraints retrieved by the post-discovery actions. (UML
Sequence Diagram)

177

9 Web Service Instantiations

The Swift-based Apodini DSL was used to build and deploy WoT web services
in the fog-based architecture of the smart city infrastructure setup. The primary use
case of the WoT web services was the control of the smart lamps simulating traffic
lights in the road system used by the DuckieBots. Students reused existing depen-
dencies to discover and control smart lights in a Swift-based Apodini WoT web
service. The IoT Deployment Provider developed by Felix Desiderato as part of the
master’s thesis titled Automatic Deployment and Dynamic Reconfiguration of Web Ser-
vices in Heterogeneous IoT Environments enables the constrained-based deployment
of the WoT web services [83]. The IoT Deployment Provider was retroactively val-
idated using the JASS 2021 smart city infrastructure setup. The setup is demon-
strated by a simplified validation48 setup using Raspberry Pi-based fog nodes offer-
ing WiFi networks for the UDP/IP-enabled smart light bulbs.

Figure 9.7 displays the execution environment/software/protocol mapping for
the smart city IoT system validation using the IoT Deployment Provider. The UML
deployment diagram demonstrates the Raspberry Pi-based setup using fog nodes
and the Duckie cars running software components in the Docker execution envi-
ronment. Listing 9.12 shows the web service used in the validation, including the
device-specific deployment metadata used to define deployment constraints for the
IoT Deployment Provider.

Figure 9.8 demonstrates the dynamic behavior of the IoT Deployment Provider,
deploying the WoT web service to the Raspberry Pi-based hardware nodes. The
IoT Deployment Provider uses an mDNS-based [74, 73] device discovery49 to iden-
tify deployment-relevant devices in the network of the Deployment Provider host-
ing machine. Each device constraint in the JASS 2021-based validation is associ-
ated with a post-discovery action that is performed to determine if a device is con-
nected or a deployment-relevant device fulfills deployment-related requirements.
The included DuckiePostDiscoveryAction uses SSH to log into potential de-
ployment nodes and identify if the device is associated with a DuckieBot. The
LIFXPostDiscoveryAction50 also uses ssh to execute a Swift command-line ap-
plication using a UDP-based multicast to detect smart lamps in the WiFi network
created by the Raspberry Pi-based fog nodes. The IoT Deployment Provider then
generates a deployed system that reflects the collected constraint-relevant informa-
tion about the deployment nodes and discovered associated devices. The Deploy-

48The JASS 2021 smart city IoT system validation setup is available as an open-source project, includ-
ing further instructions on how to replicate the setup and the functionality of the IoT Deploy-
ment Provider: https://github.com/JASS-2021/JassDeploymentProviderValidation.

49The Swift Device Discovery framework provides a Swift interface for the mDNS based dis-
covery functionality used in the IoT Deployment Provider: https://github.com/Apodini/
SwiftDeviceDiscovery.

50The LIFXPostDiscoveryAction is available as a standalone Swift Package to be reused
across different IoT Deployment Provider implementations: https://github.com/JASS-2021/
LIFXPostDiscoveryAction.

178

https://github.com/JASS-2021/JassDeploymentProviderValidation
https://github.com/Apodini/SwiftDeviceDiscovery
https://github.com/Apodini/SwiftDeviceDiscovery
https://github.com/JASS-2021/LIFXPostDiscoveryAction
https://github.com/JASS-2021/LIFXPostDiscoveryAction

9.4 Smart City IoT System

1 @main
2 struct JASS2021WebService: WebService {
3 var configuration: Configuration {
4 REST {
5 OpenAPI()
6 }
7 ApodiniDeployer(runtimes: [IoT.self])
8 }
9

10 var content: some Component {
11 Group("lifx") {
12 LIFXHandler()
13 }.metadata(DeploymentDevice(.lifx))
14 Group("duckie") {
15 DuckieBotHandler()
16 }.metadata(DeploymentDevice(.duckie))
17 Group("common") {
18 FogNodeStatusHandler()
19 }.metadata(DeploymentDevice(.default))
20 }
21 }

Listing 9.12: The Swift-based Apodini smart city IoT web service demonstrates the
usage of the IoTDeployment Provider. The groups corresponding to different func-
tionalities of the web service are annotated with DeploymentDevice metadata an-
notations providing deployment-related constraints. The .default device option
defined in the IoT Deployment Provider expresses that a Handler or group of Han-
dlers should always be deployed. The .lifx and .duckie device options are lim-
ited to the IoT Deployment Provider implementation for the JASS 2021 project.

ment Provider creates a WoT web service on each deployment node that meets the
specified requirements and configures the web service in accordance with the de-
fined metadata annotations. A deployment node that is associated with LIFX smart
lamps offers a web service interface enables the .lifx and .default-related Han-
dlers defined in Listing 9.12. A WoT web service deployed to a DuckieBot enables
the .duckie and .default-related Handlers defined in Listing 9.12.

In addition to a static deployment at startup time, the IoT Deployment Provider
also provides the option to run the device discovery and post-discovery actions reg-
ularly. The redeployment functionality allows the Development Provider to contin-
uously listen to changes in the deployment environment and adapt the deployment
based on changes at runtime. Passing in the --automatic-redeploy option and
changing the redeployment internal using the --redeployment-interval argu-
ment provides the web service developer the options to enable the automatic rede-
ployment functionality. The Deployment Provider triggers a redeployment when
changes in the device setup or with connected devices are detected.

179

9 Web Service Instantiations

The IoT Deployment Provider and the JASS 2021 system demonstrate the func-
tionality of a constraint-based deployment in a miniaturized smart city IoT appli-
cation domain. The constraint-based deployment and extensibility of the metadata
functionality as well as the Apodini Deployer subsystem highlight solutions to the
investigation defined by Knowledge Question 6. The unique DSL-based approach
of developing WoT-based web services enables a deployment based on the context
provided by the web service without the need to specify additional deployment arti-
facts simplifying web service deployment evolution. The extensible post-discovery
mechanisms enable deployment evolution in the initial deployment or using the re-
deployment mechanisms detecting runtime changes in the deployed system. These
configurations can be extended and altered based on different deployment envi-
ronments and are further highlighted in the water quality measurements system
demonstrated in Section 9.5. Future work could extend the functionality of the IoT
Deployment Provider to benefit from existing cloud-native orchestration mecha-
nisms such as Kubernetes to export Kubernetes configuration files instead of ob-
serving the execution environment itself.

9.5 Water Quality Measurement System

The water quality measurement system demonstrates the Apodini ecosystem’s ap-
plicability to the WoT and data processing application domains. The system was
developed during a two-week project course named Ferienakademie and offered
by the Friedrich–Alexander University Erlangen–Nürnberg, University of Stuttgart,
and the Technical University of Munich while collaborating with researchers from
the University of Abomey-Calavi in Godomey, Benin. The water quality measure-
ment system was developed as a successor of the SWARM system prototyped dur-
ing a previous iteration of the two-week project-based course [165]. The goal of the
SWARM and the 2021 project was to develop a water quality measurement system
to continuously measure water pollution in Lake Nokoué, Benin [165]. The projects
aim to contribute to goal 6 of the United Nations The 2030 Agenda for Sustainable
Development, addressing water availability and sustainability [284].

While the SWARM system used drones to collect water samples carried to a
mobile laboratory and take areal imagery, the water quality measurement system
developed in 2021 uses buoys to measure the water quality continuously [165]. Re-
searchers deploy several buoys across the area that should be monitored that contain
several water quality sensors connected to microcontrollers and small Linux-based
machines such as Raspberry Pis. Buoys use the LoRa (long-range) low-power wide-
area network technology to communicate and share measurements in a mash net-
work. As buoys or groups of buoys are deployed across a wide area, guaranteeing a
continuous mesh network is not possible. Drones are used to fly to remote locations,

180

9.5 Water Quality Measurement System

Serial Interface

ssh

<<device>>

Deployment Provider

<<execution environment>>

Swift-Supported OS

<<component>>

IoT Deployment Provider

<<device>>

PH Sensor

<<device>>

Redox Sensor

<<device>>

Temperatur Sensor

<<device>>

Buoy Raspberry Pi

<<execution environment>>

Docker Container

<<component>>

Post Discovery Actions

<<component>>

WoT Web Service

Figure 9.9: Execution environment/software/protocol mapping for the water qual-
ity measurement system. Similar to Figure 9.7, the IoT Deployment Provider is us-
ing ssh to connect to the buoy device running a Docker-based execution environ-
ment. The post discovery actions and the WoT web service are both deployed in the
execution environment as detailed in Figure 9.8. The buoy sensors are connected to
the buoy using serial interfaces controlled by a microcontroller that discovers the de-
vices and collects measurements and forwards them to the WoT web service. (UML
Deployment Diagram)

collect measurement data by connecting to buoys, and carry that data of one or mul-
tiple buoys back to a base station, where the data is transmitted to a data repository.
The data repository is connected to a web application allowing researchers to mon-
itor the system and export data for further analysis. Apodini is used in two parts
of the system. The first part is a WoT web service running on the buoys. The web
service enables computation devices carried by a drone to connect to a local WiFi
network and communicate with the buoy as the pre-build drones used in the pro-
totype project cannot directly communicate with the buoys. The second application
domain is the science lab subsystem. Apodini and its extension points are used to
store information in a database, provide authentication mechanisms, and continu-
ously observe the system using observability techniques discussed in Section 5.1.2.

181

9 Web Service Instantiations

Figure 9.9 demonstrates the execution environment/software/protocol mapping
of the buoy setup containing the WoT web service and the Apodini IoT Deploy-
ment Provider demonstrated in Section 9.4. A buoy Raspberry Pi is connected to
several sensors using a microcontroller-based serial interface. The prototype devel-
oped during the Ferienakademie 2021 uses PH, reduction/oxidation (redox) poten-
tial, and temperature sensors. The IoT Deployment Provider51 is used to automat-
ically deploy the WoT web service to the buoys when they are in a maintenance
mode and connected to a wired network. The IoT Deployment Provider uses the
service discovery mechanisms and post-discovery actions to identify which sen-
sors are connected to a buoy and automatically deploys the web services. It sub-
sequently configures the web services based on deployment-related constraints ex-
pressed as metadata annotations in the web service. This mechanism is integrated
into a continuous integration pipeline, allowing developers to push code to a source
code repository that is subsequently automatically deployed to all buoys currently
in maintenance mode. Changes in the sensor configuration are also automatically
detected and trigger a redeployment to the changed buoys. The setup demonstrates
static and dynamic deployment evolution-related capabilities of the Apodini De-
ployer system. It validates the approach in a WoT system consisting of several smart
devices and is used in a research prototype-based water quality measurement ap-
plication domain.

The science lab subsystem52 is implemented as a Swift-based Apodini web ser-
vice and connected components. Figure 9.11 displays the web application pre-
senting the measurements and buoys in a web browser. The Apodini instantia-
tion providing the data demonstrates the usage of the Authentication mechanisms
and the database connection and observability extensions developed alongside the
main Apodini DSL. Figure 9.10 describes the observability setup of the science lab
subsystem incorporating components to store and analyze logs and metrics emit-
ted from the web service. The setup is configured using a Docker Compose con-
figuration file that describes the orchestration of the different custom build and
off-the-shelf components. The ApodiniObserve target in the Apodini Swift Pack-
age enables developers to configure logging, metrics, and tracing functionalities
that different configurations can extend. The ApodiniObserve functionality builds

51The Ferienakademie 2021 GitHub Organization contains the source code for different water qual-
ity measurement system components. Similar to Section 9.4, we provide a dedicated val-
idation setup to test out the functionality described in this section: https://github.com/
fa21-collaborative-drone-interactions/BuoyDeploymentProviderValidation.

52The implementation of the science lab subsystem, including the web application,
web service, and Docker Compose setup, can be found at https://github.com/
fa21-collaborative-drone-interactions/ScienceLabWebservice.

182

https://github.com/fa21-collaborative-drone-interactions/BuoyDeploymentProviderValidation
https://github.com/fa21-collaborative-drone-interactions/BuoyDeploymentProviderValidation
https://github.com/fa21-collaborative-drone-interactions/ScienceLabWebservice
https://github.com/fa21-collaborative-drone-interactions/ScienceLabWebservice

9.5 Water Quality Measurement System

<<device>>

Virtual Machine

<<execution environment>>

Docker Compose Setup

RESTful API <<component>>

Web Application

Database Entries
Logs

Metrics

<<component>>

Web Service

<<component>>

PostgreSQL Database

<<component>>

Logstash

<<component>>

Kiabana

<<component>>

Elasticsearch

<<component>>

Grafana

<<component>>

Prometheus

Figure 9.10: Components of the data collection web service and the web application
displayed in Figure 9.11. The PostgreSQL database is used to store the data offered
by the web service. The ELK-stack (Elasticsearch, Logstash, and Kiabana) stores and
enables the inspection logs emitted by the Apodini web service. The Prometheus
and Grafana components enable storing and querying metrics periodically pulled
from the web service. (UML Deployment Diagram)

on top of the swift-logs53, swift-metrics54, and swift-distributed-tracing55 libraries.
The logging and metrics Apodini extensions have been developed by Philipp Za-
gar as part of the bachelor’s thesis named Decentralized Observability of Distributed
Web Services [318]. Apodini Observe has been extended to support distributed trac-
ing by Moritz Sternemann in the thesis titled Reliability and Observability of Declar-
ative Web Services [270]. The science lab web service uses the logs mechanisms
supported by the swift-log-elk56 library, extending swift-log to support the ELK-
stack (Elasticsearch, Logstash, and Kiabana)57 stack of tools. The ApodiniObserve-

53Open-sourced at https://github.com/apple/swift-log.
54Open-sourced at https://github.com/apple/swift-metrics.
55Open-sourced at https://github.com/apple/swift-distributed-tracing.
56The Swift Package was developed as part of the thesis Decentralized Observability of Distributed Web

Services by Philipp Zagar and can be found at https://github.com/Apodini/swift-log-elk.
57The ELK-stack is a commonly used collection of tools that are used to retrieve, store, and dis-

play logs collected in a distributed system. The Elasticsearch implementation can be found
at https://github.com/elastic/elasticsearch, Logstash at https://github.com/elastic/logstash,
and Kiabana at https://github.com/elastic/kibana.

183

https://github.com/apple/swift-log
https://github.com/apple/swift-metrics
https://github.com/apple/swift-distributed-tracing
https://github.com/Apodini/swift-log-elk
https://github.com/elastic/elasticsearch
https://github.com/elastic/logstash
https://github.com/elastic/kibana

9 Web Service Instantiations

Figure 9.11: Dashboard of the water quality measurement system displaying mea-
surements received from three buoys as created by the validation script. The dash-
board provides an overview of the measurements using different graphical repre-
sentations based on data retrieved from the Apodini web service.

Prometheus58 ApodiniObserve extension is used to to provide an HTTP endpoint
that the Prometheus59 tool periodically queries to retrieve metrics recoded by the
web service implementation. This information is then displayed in the Grafana60

web application. Apodini offers web service developers automatic techniques to
record commonly used metrics. In addition, Apodini provides a logger using the
dependency injection mechanism provided by the Apodini environment that can
be used to log messages and a metrics API that both provide information to the
ApodiniObserve component.

The water quality measurement system demonstrates the deployment evolution-
related functionality of the Apodini Deployer subsystem using the IoT Deploy-
ment Provider. The deployment mechanism is validated using a Raspberry Pi-based
setup. The ApodiniObserve extensions demonstrate the automatic integration of
observability-related functionality in the Swift-based Apodini DSL and how observ-
ability information is provided to multiple off-the-shelf components.

58Open-sourced at https://github.com/Apodini/ApodiniObservePrometheus.
59Prometheus (https://github.com/prometheus/prometheus) is a time-series database-based collec-

tion, storage, and querying component.
60Grafana (https://github.com/grafana/grafana) is an observability and data analysis platform that

can query data from Prometheus instances or other storage components.

184

https://github.com/Apodini/ApodiniObservePrometheus
https://github.com/prometheus/prometheus
https://github.com/grafana/grafana

9.6 Summary

9.6 Summary

This chapter presents five web service instantiations that demonstrate several sub-
systems of the Apodini ecosystem. The single-case mechanism experiments empir-
ically validate aspects associated with all technical research goals.

Technical Research Goal 1:
Design artifacts supporting web service API type agnostic development to en-
able web service interface evolution.

The projects in all sections use the Apodini DSL and the Interface Exporter sub-
system to provide an API to web service clients. Section 9.1 highlights the extensi-
bility of the Apodini DSL and the Interface Exporter Mechanisms by demonstrating
several functionalities developed based on feedback provided by the project’s web
service developers. The section demonstrates the extensibility and applicability of
the Apodini ecosystem to the application domain and the usage of the OpenAPI
Interface Exporter in a project involving a mobile application.

Technical Research Goal 2:
Design artifacts enabling web service client compatibility while supporting web
service API evolution.

The event management platform in Section 9.2 demonstrates the usage of the
Apodini Migrator subsystem. The instantiations of the concepts described in Chap-
ter 6 and Section 9.2 migrate 78 model and endpoint changes. The changes are
automatically classified into breaking and non-breaking changes that are partially
solvable by migrations provided by the Apodini Migrator subsystem.

Knowledge Question 4:
How do web API type-independent migration guides translate to client-side web
API-specific migration mechanisms?

The Apodini gRPC Migrator and Apodini REST Migrator use the migration
guide and web API documents to automatically generate a stable client library. The
examples demonstrated in Section 9.2 demonstrate the mapping of abstract web
API evolution patterns manifested in the migration guide to concrete web API mi-
grations on the client-side. The results of the empirical validation are available as
an open-source project on GitHub.

185

9 Web Service Instantiations

Technical Research Goal 3:
Design artifacts supporting web service deployment evolution by supplying rel-
evant context for generating static and dynamic deployment structures.

Sections 9.3, 9.4 and 9.5 demonstrate the extensibility and functionality of the
Apodini Deployer subsystem. The web services demonstrate the applicability of
the annotation-based deployment and partitioning for local subprocess partitioning,
FaaS-based partitioning, and WoT-based deployments. The WoT experiment setups
showcase the creation of static and dynamic web service deployment structures.

Knowledge Question 6:
How do Deployment Providers enable deployment evolution in different de-
ployment environments?

The demonstrated Deployment Providers highlight the applicability of the De-
ployer subsystem for different deployment-related domains. The mechanisms de-
monstrated in the sections show the mechanism incorporated in the subsystems,
which are empirically validated by deploying the web services to different domains
and observing and interpreting the result.

186

Part V

Epilog

THE epilog concludes the dissertation. Chapter 10 summarizes the contribu-
tions and findings and puts them in relation to the research questions, de-
sign problems, and knowledge questions defined in Part I. We provide an

overview of all designed artifacts, the Apodini instantiations, and how we validated
our work in Part IV. The conclusion also details future work and possible improve-
ments further to address web service evolution during web service development.
The part also contains lists of figures, tables, listings, and the bibliography.

187

188

Chapter 10

Conclusion and Future Work

The main contribution is the Apodini ecosystem, which introduces the Apodini in-
ternal domain-specific language. The Apodini DSL enables web service develop-
ment independent of a web service interface or web API type. The Apodini DSL was
instantiated for the Swift and Kotlin programming languages and provides several
extension mechanisms to address web service evolution-related challenges.

A second contribution is a metamodel for web service interfaces, instantiated in
the Apodini Interface Exporter subsystem. The metamodel describes associations
between the web service, Handler, request, response, and serialization stereotypes
found in all conforming web API types. The metamodel presents a UML profile
containing several stereotypes augmenting UML class diagrams representing web
service API types. We have identified four communication patterns, specifying the
multiplicities between the request and response stereotypes. The conformance of
RPC-based, message-based, and resource-based web service interface types was
demonstrated by applying the metamodel and the communication patterns to UML
class diagrams modeling the gRPC, GraphQL, and RESTful API types. The Inter-
face Exporter subsystem provides a foundation and extension points to support sev-
eral web service interface types and web API types. Interface Exporters retrieve a
parsed structure of the web service to export Handlers to the web API type-specific
concepts as demonstrated in their conformance to the metamodel. The Interface
Exporter uses a shared repository pattern with several knowledge sources to collab-
oratively create web API representations and enable knowledge sharing between
Interface Exporters. The subsystem also provides a common infrastructure for han-
dling network requests and instantiating different communication patterns.

A third contribution is a collection of web service API evolution patterns that
classify web API changes based on stereotypes defined in the web service inter-
face metamodel. These patterns were instantiated in the Apodini Migrator subsys-
tem. The patterns were grouped into three contexts: affecting a Handler, the request
serialization, and the response serialization. We distinguished four change types

189

10 Conclusion and Future Work

across these contexts: additions, removals, identifier changes, and context-specific
changes. All changes are classified into breaking and non-breaking changes asso-
ciated with migration strategies. The Apodini Migrator subsystem addresses web
service API evolution with a web API type-independent migration guide that stores
web API changes and migration steps. The migration guide uses an algorithm that
classifies the changes according to the change patterns and provides a best-effort
approach of automatically migrating changes. The best-effort migrations can be
customized and extended using a JavaScript-based migration script functionality.
A shared client library generation enables different Migrators to generate web API
type-specific stable client libraries mitigating web API evolution.

The fourth contribution deals with web service metadata annotation. Annota-
tions can be made on a web service, Handler, and content serialization level of the
web service metamodel. The annotations allow expressing deployment-related is-
sues such as WoT deployments, observability challenges, FaaS-based cloud deploy-
ments, and application domain-specific constraints. Based on the annotations, the
Apodini Deployer subsystem enables Deployment Providers to extract metadata an-
notations based on the Apodini DSL. The annotations are incorporated in a web ser-
vice structure that is combined with deployment environment-related constraints to
generate an application domain and deployment environment-specific deployment
structure. The Apodini Deployer subsystem enables the partitioning of web services
into smaller components that can be deployed to IoT and FaaS environments. The
cross-deployment node communication component enables deployment-agnostic
Handler communication.

The dissertation demonstrated a complete design cycle. Several single-case mech-
anism experiments were performed to validate the Apodini ecosystem and demon-
strate the web service interface evolvability-related functionality. We developed five
Interface Exporter to demonstrate the applicability of the Apodini DSL and Interface
Exporter mechanisms. Furthermore, we developed five systems to demonstrate the
applicability of Apodini across a wide range of application domains. A future chal-
lenge is to expand the design science research project beyond the design cycle to-
wards completing an entire engineering cycle incorporating a treatment implemen-
tation and implementation evaluation as defined by Wieringa [309].

The artifacts described in the dissertation focus on the evolution of web services.
The next step would be to investigate Apodini concepts beyond web services, for
example, in heterogeneous IoT systems using decentralized decision-making and
communication protocols. Another challenge is to explore how the Apodini Mi-
grator can be extended to improve the best-effort automatic migration of web API
changes. Another research opportunity is to further explore the runtime reconfig-
uration of systems deployed using Apodini Deployer based on changes in the de-
ployment environment with differing real-time requirements.

190

List of Figures

1.1 Design Cycles According to Wieringa 9
1.2 Research Goal Structure According to Wieringa 10
1.3 Organization of the Dissertation . 19

3.1 Web Service Interface Type Metamodel 48
3.2 RESTful Web API Model . 51
3.3 GraphQL-Based Web API Model . 52
3.4 gRPC-Based Web API Model . 53

5.1 Web Service Metadata Annotation Model 84

6.1 Top Level Design . 93
6.2 Apodini Interface Exporter Control Flow 99
6.3 Apodini Migrator Control Flow . 101
6.4 Apodini Deployer Control Flow . 102
6.5 Apodini Subsystem Decomposition 104
6.6 Interface Exporter Subsystem Decomposition 105
6.7 Migrator Subsystem Decomposition 106
6.8 Deployer Subsystem Decomposition 108

7.1 Apodini DSL Components . 112
7.2 Semantic Model . 116
7.3 Apodini Migration Guide . 118
7.4 Deployment Structure . 122

8.1 GraphiQL Web IDE Offered by the GraphQL Interface Exporter . . . 142
8.2 Swagger UI Interface Offered by the OpenAPI Exporter 154

9.1 Apodini Subsystems to Web Service Instantiation Mapping 158
9.2 TrainLens iOS Application User Interface 160
9.3 Basketball Player Health Monitoring System Swagger UI Interface . 161
9.4 Screens of the Xpense iOS Application 169
9.5 AWS Lambda Dashboard . 173
9.6 AWS API Gateway Dashboard . 174

191

List of Figures

9.7 Smart City IoT System EE/S/P Mapping 176
9.8 IoT Deployment Provider Deployment Process 177
9.9 Water Quality Measurement System EE/S/P Mapping 181
9.10 Obervability EE/S/P Mapping . 183
9.11 Water Quality Measurement System Dashboard 184

192

List of Tables

1.1 Overview of Web API Types . 7

2.1 Overview of RPC API Types . 27

3.1 Handler Communication Patterns . 47

4.1 Web Service API Evolution Patterns 67

193

List of Tables

194

Listings

7.1 Swift-Based Apodini DSL: Web Service 113
7.2 Swift-Based Apodini DSL: Handler . 113
7.3 Kotlin-Based Apodini DSL: Web Service 114
7.4 Kotlin-Based Apodini DSL: Handler 115
7.5 JSON Representation of a Migration Guide 119
7.6 Apodini Migrator Configuration . 120
7.7 Apodini Deployer Invokable Handler Conformance 123
7.8 Apodini Deployer Remote Handler Invocation 124

8.1 gRPC Interface Exporter Configuration 130
8.2 Protocol Buffer Specification for Single Handler 131
8.3 Exporter-Specific Modifier: gRPC Method Name 132
8.4 Apodini Handler Supporting Bidirectional Streams 132
8.5 Protocol Buffer Specification for Bidirectional Streaming Handler . . 133
8.6 Open Context Message of the Web Socket Interface Exporter 135
8.7 Parameter Mutability and Apodini Errors 136
8.8 WebSocket Message Exchange Demonstrating Parameter Mutability 137
8.9 WebSocket Message Exchange Demonstrating Apodini Errors 138
8.10 GraphQL Interface Exporter Example Web Service 139
8.11 Dependency Injection in the Kotlin-Based Apodini DSL 140
8.12 Mutating Handler Using the Apodini Environment 140
8.13 HTTP Parameter Options and Bindings in Handler 143
8.14 Client-Side Streaming Handler Using the Connection State 144
8.15 Groups and Path Parameters in the Swift-Based Apodini DSL 145
8.16 Groups and Path Parameters in the Kotlin-Based Apodini DSL 146
8.17 Curl Request to Swift-Based Apodini Web Service 146
8.18 Kotlin-based Apodini Web Service Using a REST Exporter 149
8.19 JSON Response of the Root of the Web Service 150
8.20 JSON Response to /movies of the Web Service 150
8.21 JSON Response to /movies/1 of the Web Service 150
8.22 JSON Response to /movies/1/cast of the Web Service 151
8.23 Swift-based Apodini Web Service Using a REST Exporter 152

195

Listings

9.1 Event Management Platform Web Service 163
9.2 Migrator Validation API Document Export Command 163
9.3 Migrator Validation Migration Guide Generation Command 164
9.4 Model-Related Web API Change Migration 164
9.5 Endpoint-Related Web API Change Migration 165
9.6 Stable Client Library Generation Command 166
9.7 Client Library Rename Model Field Migration 167
9.8 Client Library Rename Endpoint Migration 167
9.9 Swift-Based Apodini Xpense Web Service 170
9.10 Localhost Deployment Provider Execution 171
9.11 AWS Lambda Deployment Provider Execution 172
9.12 Swift-Based Apodini Smart City IoT Web Service 179

196

Bibliography

[1] DoD standard internet protocol. RFC 760, Information Sciences Institute, Uni-
versity of Southern California, January 1980.

[2] XDR: External data representation standard. RFC 1014, Sun Microsystems
Inc., June 1987.

[3] RPC: Remote procedure call protocol specification. RFC 1050, Sun Microsys-
tems Inc., April 1988.

[4] RPC: Remote procedure call protocol specification: Version 2. RFC 1057, Sun
Microsystems Inc., June 1988.

[5] NFS: Network file system protocol specification. RFC 1094, Sun Microsystems
Inc., March 1989.

[6] UML profile for schedulability, performance, and time specification. Standard
Version 1.1, Object Management Group, January 2005.

[7] IEEE standard for developing a software project life cycle process. IEEE Std
1074-2006 (Revision of IEEE Std 1074-1997), pages 1–110, July 2006.

[8] UML profile for modeling quality of service and fault tolerance characteris-
tics and mechanisms specification. Standard Version 1.1, Object Management
Group, April 2008.

[9] Common event expression: Architecture overview. Technical report, The CEE
Editorial Board, May 2010.

[10] OWL 2 web ontology language document overview. W3C recommendation,
W3C, December 2012.

[11] Service oriented architecture Modeling Language (SoaML) Specification.
Standard Version 1.0.1, Object Management Group, May 2012.

[12] ISO/IEC/IEEE international standard - Software and systems engineering –
Software testing – Part 1: Concepts and definitions. ISO/IEC/IEEE 29119-
1:2013(E), pages 1–64, Sep. 2013.

197

Bibliography

[13] OMG Unified Modeling Language (OMG UML). Standard Version 2.5, Object
Management Group, March 2015.

[14] ISO/IEC international standard - Systems and software engineering systems
and software quality requirements and evaluation (SQuaRE) — System and
software quality models. ISO/IEC 25010:2011(E) First edition 2011-03, 2017.

[15] ISO/IEC/IEEE international standard - Systems and software engineering –
Software life cycle processes. ISO/IEC/IEEE 12207:2017(E) First edition 2017-11,
pages 1–157, 2017.

[16] OMG Meta Object Facility (MOF) core specification. Standard Version 2.5.1,
Object Management Group, October 2019.

[17] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model trace-
ability. IBM Systems Journal, 45(3):515–526, 2006.

[18] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.
Internet of things: A survey on enabling technologies, protocols, and applica-
tions. IEEE Communications Surveys Tutorials, 17(4):2347–2376, 2015.

[19] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer
Berlin Heidelberg, 2013.

[20] M. Amundsen. Design and Build Great Web APIs. Pragmatic Bookshelf, 2020.

[21] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou. Managing the evo-
lution of service specifications. In Z. Bellahsène and M. Léonard, editors,
Advanced Information Systems Engineering, pages 359–374, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[22] The Apache Software Foundation. Apache Avro™ 1.11.0 Specification, October
2021.

[23] R. Arnold and S. Bohner. Impact analysis - Towards a framework for compar-
ison. In 1993 Conference on Software Maintenance, pages 292–301, Sep. 1993.

[24] J. Arundel and J. Domingus. Cloud Native DevOps with Kubernetes: Building,
Deploying, and Scaling Modern Applications in the Cloud. O’Reilly Media, 2019.

[25] W. C. Athas and C. L. Seitz. Multicomputers: Message-passing concurrent
computers. Computer, 21(8):9–24, Aug 1988.

[26] L. Aversano, G. Canfora, A. Cimitile, and A. De Lucia. Migrating legacy sys-
tems to the web: An experience report. In Proceedings Fifth European Conference
on Software Maintenance and Reengineering, pages 148–157, March 2001.

198

Bibliography

[27] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class library migra-
tion. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05,
pages 265–279, New York, NY, USA, 2005. Association for Computing Ma-
chinery.

[28] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp, H.
Kuno, M. Lemon, G. Pogossiants, S. Sharma, and S. Williams. Web services
conversation language (WSCL) 1.0. W3C note, W3C, March 2002.

[29] P. Baran. On distributed communications networks. IEEE Transactions on Com-
munications Systems, 12(1):1–9, 1964.

[30] P. Bartalos and M. B. Blake. Engineering energy-aware web services toward
dynamically-green computing. In G. Pallis, M. Jmaiel, A. Charfi, S. Graup-
ner, Y. Karabulut, S. Guinea, F. Rosenberg, Q. Z. Sheng, C. Pautasso, and
S. Ben Mokhtar, editors, Service-Oriented Computing - ICSOC 2011 Workshops,
pages 87–96, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[31] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI Se-
ries in Software Engineering. Addison-Wesley Professional, 3rd edition, 2012.

[32] P. Bates. Distributed debugging tools for heterogeneous distributed systems.
In The 8th International Conference on Distributed, pages 308–315, Los Alamitos,
CA, USA, jun 1988. IEEE Computer Society.

[33] S. Battle. Boxes: black, white, grey and glass box views of web-services. Tech-
nical report, HP Laboratories Bristol, 2003.

[34] A. Bauer. Requirements traceability for web services. Bachelor’s thesis, Tech-
nical University of Munich, 2021.

[35] A. Bauer. Change impact analysis of web API evolution. Guided research,
Technical University of Munich, 2022.

[36] J. Bean. SOA and Web Services Interface Design: Principles, Techniques, and Stan-
dards. Morgan Kaufmann, 2009.

[37] T. Bellwood, S. Capell, L. Clement, J. Colgrave, M. J. Dovey, D. Feygin, A.
Hately, R. Kochman, P. Macias, M. Novotny, M. Paolucci, C. von Riegen, T.
Rogers, K. Sycara, P. Wenzel, and Z. Wu. UDDI version 3.0.2. OASIS standard,
OASIS, October 2004.

[38] M. Belshe, R. Peon, and M. Thomson. Hypertext transfer protocol version 2
(HTTP/2). RFC 7540, May 2015.

199

Bibliography

[39] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. De-
veloping adapters for web services integration. In O. Pastor and J. Falcão e
Cunha, editors, Advanced Information Systems Engineering, pages 415–429,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[40] S. Bernardi and D. C. Petriu. Comparing two UML profiles for non-functional
requirement annotations: the SPT and QoS profiles. SVERTS – Specification
and Validation of Real-Time and Embedded Systems, 2004.

[41] T. J. Berners-Lee. Information management: A proposal. 1989.

[42] T. J. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann. World-wide web:
The information universe. Electronic Networking, 2(1):52–58, 1992.

[43] T. J. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 284(5):34–43, 2001.

[44] M. Biehl. API Architecture: The Big Picture for Building APIs. API-University
Series. CreateSpace Independent Publishing Platform, 2015.

[45] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Trans. Comput. Syst., 2(1):39–59, February 1984.

[46] J. Bogner. On the evolvability assurance of microservices: Metrics, scenarios, and
patterns. PhD thesis, University of Stuttgard, 2020.

[47] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. Assuring the evolvabil-
ity of microservices: Insights into industry practices and challenges. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 546–556, Sep. 2019.

[48] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. Microservices in in-
dustry: Insights into technologies, characteristics, and software quality. In
2019 IEEE International Conference on Software Architecture Companion (ICSA-
C), pages 187–195, March 2019.

[49] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. Industry practices and
challenges for the evolvability assurance of microservices. Empirical Software
Engineering, 26(5):104, 2021.

[50] J. Bogner, S. Wagner, and A. Zimmermann. Using architectural modifiabil-
ity tactics to examine evolution qualities of service- and microservice-based
systems. SICS Software-Intensive Cyber-Physical Systems, 34(2):141–149, 2019.

200

Bibliography

[51] G. Bondel, A. Landgraf, and F. Matthes. API management patterns for public,
partner, and group web API initiatives with a focus on collaboration. In 26th
European Conference on Pattern Languages of Programs, EuroPLoP’21, New York,
NY, USA, 2021. Association for Computing Machinery.

[52] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu. Fog Computing: A Platform for
Internet of Things and Analytics, pages 169–186. Springer International Publish-
ing, Cham, 2014.

[53] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in
the internet of things. In Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012.
Association for Computing Machinery.

[54] J. Bosch. Continuous Software Engineering. Springer, 2014.

[55] T. Boubez, Ü. Yalçinalp, M. Hondo, A. Vedamuthu, D. Orchard, F. Hirsch, and
P. Yendluri. Web services policy 1.5 - Primer. W3C note, W3C, November
2007.

[56] A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu, A. G.
Neiat, S. Mistry, B. Benatallah, B. Medjahed, M. Ouzzani, F. Casati, X. Liu, H.
Wang, D. Georgakopoulos, L. Chen, S. Nepal, Z. Malik, A. Erradi, Y. Wang,
B. Blake, S. Dustdar, F. Leymann, and M. Papazoglou. A service computing
manifesto: The next 10 years. Commun. ACM, 60(4):64–72, March 2017.

[57] A. Brito, L. Xavier, A. Hora, and M. T. Valente. APIDiff: Detecting API break-
ing changes. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 507–511, March 2018.

[58] G. Brito, T. Mombach, and M. T. Valente. Migrating to GraphQL: A practical
assessment. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 140–150, 2019.

[59] F. P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing Company, 1975.

[60] R. Brooks. Using a behavioral theory of program comprehension in software
engineering. In Proceedings of the 3rd International Conference on Software Engi-
neering, ICSE ’78, pages 196–201. IEEE Press, 1978.

[61] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray. AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. ITPro collection.
Wiley, 1998.

201

Bibliography

[62] B. Bruegge and A. H. Dutoit. Object Oriented Software Engineering Using UML,
Patterns, and Java. Prentice Hall, 3rd edition, 2010.

[63] B. Bruegge, T. Gottschalk, and B. Luo. A framework for dynamic program
analyzers. In Proceedings of the Eighth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA ’93, pages 65–82,
New York, NY, USA, 1993. Association for Computing Machinery.

[64] B. Bruegge, S. Krusche, and L. Alperowitz. Software engineering project
courses with industrial clients. ACM Trans. Comput. Educ., 15(4), dec 2015.

[65] B. Burns, J. Beda, and K. Hightower. Kubernetes: Up and Running: Dive into the
Future of Infrastructure. O’Reilly Media, 2nd edition, 2019.

[66] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg, Omega,
and Kubernetes: Lessons learned from three container-management systems
over a decade. Queue, 14(1):70–93, jan 2016.

[67] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Archi-
tecture: A Pattern Language for Distributed Computing. Number Volume 4. John
Wiley & Sons, 2007.

[68] L. M. Cameron. What to know about the scientist who invented the term
”software engineering”. Software Magazine, June 2018.

[69] E. Cano. Automated generation of machine-readable migration guides for
web services. Master’s thesis, Technical University of Munich, 2021.

[70] C. S. Carr, S. D. Crocker, and V. G. Cerf. New host-host protocol. RFC 33,
February 1970.

[71] V. Cerf, Y. Dalal, and C. Sunshine. Specification of internet transmission con-
trol program. RFC 675, December 1974.

[72] H.-M. Chen and R. Kazman. Architecting ultra-large-scale green information
systems. In 2012 First International Workshop on Green and Sustainable Software
(GREENS), pages 69–75, 2012.

[73] S. Cheshire and M. Krochmal. DNS-based service discovery. RFC 6763, Febru-
ary 2013.

[74] S. Cheshire and M. Krochmal. Multicast DNS. RFC 6762, February 2013.

[75] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (WSDL) 1.1. W3C note, W3C, March 2001.

202

Bibliography

[76] A. A. Chuvakin, K. J. Schmidt, and C. Phillips. Logging and Log Management:
The Authoritative Guide to Understanding the Concepts Surrounding Logging and
Log Management. Elsevier Science, 2012.

[77] G. Cormode and B. Krishnamurthy. Key differences between web 1.0 and web
2.0. First Monday, 13(6), Apr. 2008.

[78] R. Daigneau. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley signature series Ser-
vice design patterns. Addison-Wesley, 2012.

[79] D. W. Davies, K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A dig-
ital communication network for computers giving rapid response at remote
terminals. In Proceedings of the First ACM Symposium on Operating System Prin-
ciples, SOSP ’67, pages 2.1–2.17, New York, NY, USA, 1967. Association for
Computing Machinery.

[80] A. De Lucia, R. Oliveto, F. Zurolo, and M. Di Penta. Improving comprehensi-
bility of source code via traceability information: A controlled experiment. In
14th IEEE International Conference on Program Comprehension (ICPC’06), pages
317–326, 2006.

[81] M. De Sanctis, K. Geihs, A. Bucchiarone, G. Valetto, A. Marconi, and M. Pis-
tore. Distributed service co-evolution based on domain objects. In A. Norta,
W. Gaaloul, G. R. Gangadharan, and H. K. Dam, editors, Service-Oriented
Computing – ICSOC 2015 Workshops, pages 48–63, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[82] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification.
RFC 8200, July 2017.

[83] F. Desiderato. Automatic deployment and dynamic reconfiguration of web
services in heterogeneous IoT environments. Master’s thesis, Technical Uni-
versity of Munich, 2021.

[84] D. Dig and R. Johnson. How do APIs evolve? A story of refactoring. Journal
of Software Maintenance and Evolution: Research and Practice, 18(2):83–107, 2006.

[85] E. W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–866, Oc-
tober 1972.

[86] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. The web of things: Inter-
connecting devices with high usability and performance. In 2009 International
Conference on Embedded Software and Systems, pages 323–330, 2009.

203

Bibliography

[87] D. Dzvonyar, L. Alperowitz, D. Henze, and B. Bruegge. Team composition in
software engineering project courses. In 2018 IEEE/ACM International Work-
shop on Software Engineering Education for Millennials (SEEM), pages 16–23,
2018.

[88] N. E. Elyacoubi, F.-Z. Belouadha, and O. Roudies. A metamodel of WSDL web
services using SAWSDL semantic annotations. In 2009 IEEE/ACS International
Conference on Computer Systems and Applications, pages 653–659, May 2009.

[89] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. The Pear-
son Service Technology Series from Thomas Erl. Pearson Education, 2005.

[90] T. Erl. Service-Oriented Architecture: Analysis and Design for Services and Mi-
croservices. The Prentice Hall Service Technology Series from Thomas Erl.
Prentice Hall, 2nd edition, 2017.

[91] T. Espinha, A. Zaidman, and H.-G. Gross. Web API growing pains: Loosely
coupled yet strongly tied. Technical report, Delft University of Technology -
Software Engineering Research Group, 2014.

[92] T. Espinha, A. Zaidman, and H.-G. Gross. Web API growing pains: Sto-
ries from client developers and their code. In 2014 Software Evolution Week
- IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineer-
ing (CSMR-WCRE), pages 84–93, Feb 2014.

[93] Facebook. GraphQL, June 2018.

[94] J. Farrell and H. Lausen. Semantic annotations for WSDL and XML schema.
W3C recommendation, W3C, August 2007.

[95] R. Fatoohi, V. Gunwani, Q. Wang, and C. Zheng. Performance evaluation of
middleware bridging technologies. In 2000 IEEE International Symposium on
Performance Analysis of Systems and Software. ISPASS (Cat. No.00EX422), pages
34–39, 2000.

[96] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine, 2000.

[97] B. Fitzgerald and K.-J. Stol. Continuous software engineering and beyond:
Trends and challenges. In Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, RCoSE 2014, pages 1–9, New York, NY, USA,
2014. Association for Computing Machinery.

[98] B. Fitzgerald and K.-J. Stol. Continuous software engineering: A roadmap
and agenda. Journal of Systems and Software, 123:176–189, 2017.

204

Bibliography

[99] M. Fokaefs. WSDarwin: A framework for the support of web service evolu-
tion. In 2014 IEEE International Conference on Software Maintenance and Evolu-
tion, pages 668–668, Sep. 2014.

[100] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau. An empirical
study on web service evolution. In 2011 IEEE International Conference on Web
Services, pages 49–56, 2011.

[101] M. Fokaefs, M. Oprescu, and E. Stroulia. WSDarwin: A web application for
the support of REST service evolution. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 336–338, Sep. 2015.

[102] M. Fokaefs and E. Stroulia. WSDarwin: Automatic web service client adapta-
tion. In Proceedings of the 2012 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’12, pages 176–191, USA, 2012. IBM Corp.

[103] M. Fokaefs and E. Stroulia. WSMeta: A meta-model for web services to com-
pare service interfaces. In Proceedings of the 17th Panhellenic Conference on In-
formatics, PCI ’13, pages 1–8, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[104] M. Fokaefs and E. Stroulia. WSDarwin: Studying the Evolution of Web Service
Systems, pages 199–223. Springer New York, New York, NY, 2014.

[105] M. Fokaefs and E. Stroulia. Using WADL specifications to develop and main-
tain REST client applications. In 2015 IEEE International Conference on Web
Services, pages 81–88, June 2015.

[106] M.-E. Fokaefs. WSDarwin: A Comprehensive Framework for Supporting Service-
Oriented Systems Evolution. PhD thesis, University of Alberta, 2015.

[107] M. Fowler. Domain-Specific Languages. Addison-Wesley Signature Series. Pear-
son Education, 2010.

[108] A. C. Franco da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp, F. Ley-
mann, B. Mitschang, and R. Steinke. Internet of things out of the box: Us-
ing TOSCA for automating the deployment of IoT environments. In Proceed-
ings of the 7th International Conference on Cloud Computing and Services Science,
CLOSER 2017, pages 358–367, Setubal, PRT, 2017. SCITEPRESS - Science and
Technology Publications, Lda.

[109] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Pearson Education, 1994.

205

Bibliography

[110] M. Garriga and A. Flores. Standards-driven metamodel to increase retriev-
ability of heterogeneous services. In Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing, SAC ’19, pages 2507–2514, New York, NY, USA,
2019. Association for Computing Machinery.

[111] D. Ghosh. DSLs in Action. Manning, 2011.

[112] J. Gilbert. Software Architecture Patterns for Serverless Systems: Architecting for
innovation with events, autonomous services, and micro frontends. Packt Publish-
ing, 2021.

[113] T. Gı̂rba and S. Ducasse. Modeling history to analyze software evolution.
Journal of Software Maintenance and Evolution: Research and Practice, 18(3):207–
236, 2006.

[114] Google. Protocol Buffers Version 3 Language Specification, December 2020.

[115] W. Goralski. The Illustrated Network: How TCP/IP Works in a Modern Network.
Elsevier Science, 2nd edition, 2017.

[116] O. Gotel and C. Finkelstein. An analysis of the requirements traceability prob-
lem. In Proceedings of IEEE International Conference on Requirements Engineering,
pages 94–101, 1994.

[117] R. B. Grady. Practical software metrics for project management and process improve-
ment. Prentice Hall, 1992.

[118] R. B. Grady and D. L. Caswell. Software Metrics: Establishing a Company-wide
Program. Prentice-Hall, 1987.

[119] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and D. Orchard. URI
template. RFC 6570, March 2012.

[120] W. Grosso. Java RMI. O’Reilly Media, Sebastopol, CA, October 2001.

[121] D. Guinard. A Web of Things Application Architecture. Integrating the Real-World
into the Web. PhD thesis, ETH Zurich, Zürich, 2011.

[122] D. Guinard and V. Trifa. Towards the web of things: Web mashups for em-
bedded devices. In Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain, April 2009.

[123] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From the Internet of Things to the
Web of Things: Resource-oriented Architecture and Best Practices, pages 97–129.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

206

Bibliography

[124] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture for the
web of things. In 2010 Internet of Things (IOT), pages 1–8, 2010.

[125] M. Hadley. Web application description language. W3C member submission,
W3C, August 2009.

[126] V. Hartig. Semi-automated system decomposition using static and dynamic
code analysis. Bachelor’s thesis, Technical University of Munich, 2020.

[127] J. Henkel and A. Diwan. CatchUp! capturing and replaying refactorings to
support API evolution. In Proceedings of the 27th International Conference on
Software Engineering, ICSE ’05, pages 274–283, New York, NY, USA, 2005. As-
sociation for Computing Machinery.

[128] D. Henze. Dynamically Scalable Fog Architectures. PhD thesis, Technical Uni-
versity of Munich, Munich, 2020.

[129] D. Henze, P. Schmiedmayer, and B. Bruegge. Fog horizons – A theoretical con-
cept to enable dynamic fog architectures. In Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing, UCC’19, pages 41–50,
New York, NY, USA, 2019. Association for Computing Machinery.

[130] A. Hernandez-Mendez, N. Scholz, and F. Matthes. A model-driven approach
for generating RESTful web services in single-page applications. In Proceed-
ings of the 6th International Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2018, pages 480–487, Setubal, PRT, 2018.
SCITEPRESS - Science and Technology Publications, Lda.

[131] J. Higginbotham. Designing Great Web APIs: Creating Business Value Through
Developer Experience. O’Reilly Media, Inc., 2015.

[132] J. Higginbotham. Principles of Web API Design: Delivering Value with APIs and
Microservices. Addison-Wesley Professional, 2021.

[133] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison-
Wesley Object Technology Series. Addison-Wesley, 2000.

[134] E. Hull, K. Jackson, and J. Dick. Requirements Engineering. Springer, third
edition edition, 2011.

[135] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Signature Series
(Fowler). Pearson Education, 2010.

207

Bibliography

[136] K. Hur, S. Chun, X. Jin, and K.-H. Lee. Towards a semantic model for au-
tomated deployment of IoT services across platforms. In 2015 IEEE World
Congress on Services, pages 17–20, 2015.

[137] K. Hur, X. Jin, and K.-H. Lee. Automated deployment of iot services based
on semantic description. In 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), pages 40–45, 2015.

[138] K. Indrasiri and D. Kuruppu. gRPC: Up and Running: Building Cloud Native
Applications with Go and Java for Docker and Kubernetes. O’Reilly Media, 2020.

[139] M. Iorga, N. G. Goren, L. Feldman, R. Barton, M. Martin, and C. Mahmoudi.
Fog computing conceptual model. Special Publication 500-325, National In-
stitute of Standards and Technology, Gaithersburg, MD, March 2018.

[140] J. Islam, E. Harjula, T. Kumar, P. Karhula, and M. Ylianttila. Docker enabled
virtualized nanoservices for local IoT edge networks. In 2019 IEEE Conference
on Standards for Communications and Networking (CSCN), pages 1–7, 2019.

[141] J. Islam, T. Kumar, I. Kovacevic, and E. Harjula. Resource-aware dynamic
service deployment for local IoT edge computing: Healthcare use case. IEEE
Access, 9:115868–115884, 2021.

[142] Information technology - Open systems interconnection - Basic reference
model: The basic model. Standard, International Organization for Standard-
ization, Geneva, CH, 1994.

[143] A. Javaloyes, J. M. Sarabia, R. P. Lamberts, and M. Moya-Ramon. Training
prescription guided by heart-rate variability in cycling. International Journal of
Sports Physiology and Performance, 14(1):23 – 32, 2019.

[144] J. O. Johanßen. Continuous User Understanding in Software Evolution. PhD the-
sis, Technical University of Munich, 2019.

[145] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu, V.
Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez, R. A. Popa, I.
Stoica, and D. A. Patterson. Cloud programming simplified: A berkeley view
on serverless computing. CoRR, 2019.

[146] M. Jones and D. Hardt. The OAuth 2.0 authorization framework: Bearer token
usage. RFC 6750, October 2012.

[147] D. Jordan and J. Evdemon. Web services business process execution language
version 2.0. OASIS standard, OASIS, April 2007.

208

Bibliography

[148] R. E. Kalman. On the general theory of control systems. IFAC Proceedings
Volumes, 1(1):491–502, 1960.

[149] P. Kaminski, M. Litoiu, and H. Müller. A design technique for evolving web
services. In Proceedings of the 2006 Conference of the Center for Advanced Studies
on Collaborative Research, CASCON ’06, pages 23–es, USA, October 2006. IBM
Corp.

[150] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul. Towards observability data
management at scale. SIGMOD Rec., 49(4):18–23, March 2021.

[151] D. Kchaou, N. Bouassida, and H. Ben-Abdallah. WS-UML: A UML profile
for web service applications. In Proceedings of the Third International Conference
on Innovation and Information and Communication Technology, ISIICT’09, page 7,
Swindon, GBR, 2009. BCS Learning & Development Ltd.

[152] M. Kelly. JSON hypertext application language. Internet-Draft draft-kelly-
json-hal-08, IETF Secretariat, May 2016.

[153] S. Kennedy, O. Molloy, R. Stewart, P. Jacob, M. Maleshkova, and F. Doheny. A
semantically automated protocol adapter for mapping SOAP web services to
RESTful HTTP format to enable the web infrastructure, enhance web service
interoperability and ease web service migration. Future Internet, 4(2):372–395,
2012.

[154] S. Kennedy, R. Stewart, P. Jacob, and O. Molloy. StoRHm: a protocol adapter
for mapping SOAP based web services to RESTful HTTP format. Electronic
Commerce Research, 11(3):245–269, 2011.

[155] G. Kim, J. Humble, P. Debois, and J. Willis. The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security in Technology Organizations.
ITpro collection. IT Revolution Press, 2016.

[156] M. Kleehaus, Ö. Uludag, and F. Matthes. Towards a continuous feedback
loop for service-oriented environments. In 2018 11th International Conference
on the Quality of Information and Communications Technology (QUATIC), pages
126–134, 2018.

[157] A. Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

[158] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló. Classification of changes in
API evolution. In 2019 IEEE 23rd International Enterprise Distributed Object
Computing Conference (EDOC), pages 243–249, Oct 2019.

209

Bibliography

[159] L. Kollmer. Automated and user-configurable deployment of web services.
Bachelor’s thesis, Technical University of Munich, 2021.

[160] L. Kollmer. Declarative development of interface-type-agnostic web services.
Master’s thesis, Technical University of Munich, Unpublished.

[161] S. Kotstein and J. Bogner. Which RESTful API design rules are important and
how do they improve software quality? A delphi study with industry experts.
In J. Barzen, editor, Service-Oriented Computing, pages 154–173, Cham, 2021.
Springer International Publishing.

[162] P. J. Kraft. Decentralized observability using distributed user interface gener-
ation. Guided research, Technical University of Munich, 2020.

[163] N. Kratzke. A lightweight virtualization cluster reference architecture derived
from open source PaaS platforms. Open Journal of Mobile Computing and Cloud
Computing (MCCC), 1(2):17–30, 2014.

[164] S. Krusche, B. Bruegge, I. Camilleri, K. Krinkin, A. Seitz, and C. Wöbker.
Chaordic learning: A case study. In 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering: Software Engineering Education and Training Track
(ICSE-SEET), pages 87–96, May 2017.

[165] J. Kunze, V. Mayer, L. Thiergart, S. Javed, P. Scheppe, T. Tran, M. Haug, M.
Avezum, B. Bruegge, and E. C. Ezin. Towards SWARM: A smart water mon-
itoring system. In 2020 IEEE Conference on Industrial Cyberphysical Systems
(ICPS), volume 1, pages 332–337, 2020.

[166] M. Lanthaler, D. Wood, and R. Cyganiak. RDF 1.1 concepts and abstract syn-
tax. W3C recommendation, W3C, February 2014.

[167] K. Lawrence and C. Kaler. Web services security: SOAP message security 1.1.
OASIS standard, OASIS, February 2004.

[168] K. Lawrence and C. Kaler. WS-SecureConversation 1.4. OASIS standard, OA-
SIS, February 2009.

[169] K. Lawrence and C. Kaler. WS-Trust 1.4. OASIS standard, OASIS, April 2012.

[170] P. J. Leach, M. Mealling, and R. Salz. A universally unique identifier (UUID)
URN namespace. RFC 4122, July 2005.

[171] M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceed-
ings of the IEEE, 68(9):1060–1076, 1980.

210

Bibliography

[172] M. M. Lehman and J. F. Ramil. Software evolution and software evolution
processes. Annals of Software Engineering, 14(1):275–309, 2002.

[173] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. Met-
rics and laws of software evolution-the nineties view. In Proceedings Fourth
International Software Metrics Symposium, pages 20–32, 1997.

[174] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. End-to-end version-
ing support for web services. In 2008 IEEE International Conference on Services
Computing, volume 1, pages 59–66, July 2008.

[175] F. Leymann. Web services flow language (WSFL 1.0). Technical report, IBM
Software Group, May 2001.

[176] F. Li, M. Vögler, M. Claeßens, and S. Dustdar. Towards automated IoT appli-
cation deployment by a cloud-based approach. In 2013 IEEE 6th International
Conference on Service-Oriented Computing and Applications, pages 61–68, 2013.

[177] J. Li, Y. Xiong, X. Liu, and L. Zhang. How does web service API evolution
affect clients? In 2013 IEEE 20th International Conference on Web Services, pages
300–307, June 2013.

[178] J. C. R. Licklider. Man-computer symbiosis. IRE Transactions on Human Factors
in Electronics, HFE-1:4–11, March 1960.

[179] J. C. R. Licklider and R. W. Taylor. The computer as a communication device.
Science and Technology, 1968.

[180] P. Lipton and S. Moser. Topology and orchestration specification for cloud
applications version 1.0. OASIS standard, OASIS, November 2013.

[181] K. Lougheed and J. Rekhter. Border gateway protocol (BGP). RFC 1105, June
1989.

[182] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun, and M. Stocker. Interface
evolution patterns: Balancing compatibility and extensibility across service
life cycles. In Proceedings of the 24th European Conference on Pattern Languages of
Programs, EuroPLop ’19, New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[183] P. Mäder and J. Cleland-Huang. A visual language for modeling and execut-
ing traceability queries. Software & Systems Modeling, 12(3):537–553, 2013.

[184] P. Mäder and A. Egyed. Do developers benefit from requirements traceability
when evolving and maintaining a software system? Empirical Software Engi-
neering, 20(2):413–441, 2015.

211

Bibliography

[185] P. Mäder and O. Gotel. Towards automated traceability maintenance. Journal
of Systems and Software, 85(10):2205–2227, 2012.

[186] P. Mäder, O. Gotel, and I. Philippow. Getting back to basics: Promoting the
use of a traceability information model in practice. In 2009 ICSE Workshop on
Traceability in Emerging Forms of Software Engineering, pages 21–25, 2009.

[187] M. Massé. REST API Design Rulebook. Oreilly and Associate Series. O’Reilly
Media, 2011.

[188] P. Mell and T. Grance. The NIST definition of cloud computing. Special Publi-
cation 800-145, National Institute of Standards and Technology, Gaithersburg,
MD, September 2011.

[189] A. Melnikov and I. Fette. The WebSocket protocol. RFC 6455, December 2011.

[190] R. Mikhaiel, G. Lin, and E. Stroulia. Simplicity in RNA secondary structure
alignment: Towards biologically plausible alignments. In Sixth IEEE Sympo-
sium on BioInformatics and BioEngineering (BIBE’06), pages 149–158, Oct 2006.

[191] J.-J. Moreau, H. F. Nielsen, M. Gudgin, M. Hadley, N. Mendelsohn, A. Kar-
markar, and Y. Lafon. SOAP version 1.2 part 1: Messaging framework (second
edition). W3C recommendation, W3C, April 2007.

[192] J.-J. Moreau, S. Weerawarana, R. Chinnici, and A. Ryman. Web services de-
scription language (WSDL) version 2.0 part 1: Core language. W3C recom-
mendation, W3C, June 2007.

[193] K. Morris. Infrastructure as Code: Managing Servers in the Cloud. Safari Books
Online. O’Reilly Media, 2016.

[194] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen. Microservice Archi-
tecture. O’Reilly Media, Inc., 1st edition edition, 2016.

[195] NASA Inventions and Contributions Board. The NASA heritage of creativity.
Annual Report of the NASA Inventions & Contributions Board, 2003.

[196] P. Naur and B. Randell, editors. Software engineering: Report of a conference
sponsored by the NATO Science Committee. Scientific Affairs Division, NATO,
Brussels, Jan 1969.

[197] B. J. Nelson. Remote Procedure Call. PhD thesis, Xerox Palo Alto Research
Center, 3333 Coyote Hill Road, Palo Alto, California 94304, May 1981.

[198] S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Inc., 2nd edition edition, August 2021.

212

Bibliography

[199] S. Niedermaier, F. Koetter, A. Freymann, and S. Wagner. On observability
and monitoring of distributed systems – An industry interview study. In S.
Yangui, I. Bouassida Rodriguez, K. Drira, and Z. Tari, editors, Service-Oriented
Computing, pages 36–52, Cham, 2019. Springer International Publishing.

[200] J. Nielsen. Usability Engineering. Interactive Technologies. Elsevier Science,
1994.

[201] M. Nygard. Release It!: Design and Deploy Production-Ready Software. Pragmatic
Bookshelf, 2nd edition, 2018.

[202] M. Obermeier. Improving runtime performance and maintainability of the
apodini server-side swift framework. Bachelor’s thesis, Technical University
of Munich, 2021.

[203] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the ”stairway to heaven”:
A mulitiple-case study exploring barriers in the transition from agile devel-
opment towards continuous deployment of software. In 2012 38th Euromicro
Conference on Software Engineering and Advanced Applications, pages 392–399,
2012.

[204] D. Orchard, H. Haas, J.-J. Moreau, S. Weerawarana, A. Lewis, and R. Chinnici.
Web services description language (WSDL) version 2.0 part 2: Adjuncts. W3C
recommendation, W3C, June 2007.

[205] R. Orfali and D. Harkey. Client/Server Programming with Java and CORBA. Wi-
ley, 1997.

[206] E. G. Ormeño, M. I. Lund, L. N. Aballay, and S. Aciar. An UML profile for
modeling RESTful services. In 13th Argentine Symposium on Software Engineer-
ing, ASSE 2012, 2012.

[207] G. Ortiz and J. Hernandez. A case study on integrating extra-functional prop-
erties in web service model-driven development. In Second International Con-
ference on Internet and Web Applications and Services (ICIW’07), pages 35–35,
May 2007.

[208] G. Ortiz and J. Hernandez. Toward UML profiles for web services and their
extra-functional properties. In 2006 IEEE International Conference on Web Ser-
vices (ICWS’06), pages 889–892, 2006.

[209] C. Pahl. Containerization and the PaaS cloud. IEEE Cloud Computing, 2(3):24–
31, May 2015.

213

Bibliography

[210] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi. Cloud container technologies:
A state-of-the-art review. IEEE Transactions on Cloud Computing, 7(3):677–692,
2019.

[211] M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and
directions. In Proceedings of the Fourth International Conference on Web Informa-
tion Systems Engineering, 2003. WISE 2003., pages 3–12, Dec 2003.

[212] A. Parker, D. Spoonhower, J. Mace, R. Isaacs, and B. Sigelman. Distributed
Tracing in Practice. O’Reilly Media, Inc., April 2020.

[213] D. L. Parnas. Information distribution aspects of design methodology. Febru-
ary 1971.

[214] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma. METEOR-S web
service annotation framework. In Proceedings of the 13th International Conference
on World Wide Web, WWW ’04, pages 553–562, New York, NY, USA, 2004.
Association for Computing Machinery.

[215] C. Peng and G. Bai. Using tag based semantic annotation to empower client
and REST service interaction. In Proceedings of the 3rd International Conference
on Complexity, Future Information Systems and Risk - COMPLEXIS,, pages 64–71.
INSTICC, SciTePress, 2018.

[216] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc. Are REST APIs for cloud
computing well-designed? An exploratory study. In Q. Z. Sheng, E. Stroulia,
S. Tata, and S. Bhiri, editors, Service-Oriented Computing, pages 157–170, Cham,
2016. Springer International Publishing.

[217] D. J. Plews, P. B. Laursen, A. E. Kilding, and M. Buchheit. Evaluating training
adaptation with heart-rate measures: A methodological comparison. Interna-
tional Journal of Sports Physiology and Performance, 8(6):688 – 691, 2013.

[218] D. J. Plews, P. B. Laursen, J. Stanley, A. E. Kilding, and M. Buchheit. Training
adaptation and heart rate variability in elite endurance athletes: Opening the
door to effective monitoring. Sports Medicine, 43(9):773–781, 2013.

[219] E. Porcello and A. Banks. Learning GraphQL: Declarative Data Fetching for Mod-
ern Web Apps. O’Reilly Media, August 2018.

[220] J. Postel. File transfer protocol specification. RFC 765, June 1980.

[221] J. Postel. Telnet protocol specification. RFC 764, June 1980.

[222] J. Postel. User datagram protocol. RFC 768, August 1980.

214

Bibliography

[223] J. Postel. Internet protocol. RFC 791, September 1981.

[224] J. Postel. NCP/TCP transition plan. RFC 801, November 1981.

[225] J. Postel. Simple mail transfer protocol. RFC 788, November 1981.

[226] J. Postel. Transmission control protocol. RFC 793, September 1981.

[227] J. Postel and J. White. Procedure call documents: Version 2. RFC 674, Decem-
ber 1974.

[228] T. Preston-Werner. Semantic Versioning 2.0.0, June 2013.

[229] M. Quintero Szillat. A framework to build and maintain GraphQL client-
server architectures in Swift. Master’s thesis, Technical University of Munich,
2020.

[230] M. Quintero Szillat. Building protocol-agnostic server-side applications using
domain-specific languages. Guided research, Technical University of Munich,
2021.

[231] F. Rademacher, M. Peters, and S. Sachweh. Design of a domain-specific lan-
guage based on a technology-independent web service framework. In D.
Weyns, R. Mirandola, and I. Crnkovic, editors, Software Architecture, pages
357–371, Cham, 2015. Springer International Publishing.

[232] V. T. Rajlich and K. H. Bennett. A staged model for the software life cycle.
Computer, 33(7):66–71, 2000.

[233] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards. Implementing require-
ments traceability: A case study. In Proceedings of 1995 IEEE International Sym-
posium on Requirements Engineering (RE’95), pages 89–95, 1995.

[234] P. Ravi, P. Chinnaiah, and S. A. Abbas. Cloud Computing Technologies for Green
Enterprises: Fundamentals of Cloud Computing for Green Enterprises, pages 1–27.
IGI Global, Hershey, PA, USA, 2018.

[235] E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Open Source Series. O’Reilly, 2001.

[236] A. Rensink and A. Kleppe. On a graph-based semantics for UML class and
object diagrams. Electronic Communications of the EASST, 10, 2008.

[237] J. Reschke. The ’Basic’ HTTP authentication scheme. RFC 7617, September
2015.

215

Bibliography

[238] L. Roberts. The arpanet and computer networks. In Proceedings of the ACM
Conference on The History of Personal Workstations, HPW ’86, pages 51–58, New
York, NY, USA, 1986. Association for Computing Machinery.

[239] J. Robie, R. Cavicchio, R. Sinnema, and E. Wilde. RESTful service descrip-
tion language (RSDL): Describing RESTful services without tight coupling. In
Proceedings of Balisage: The Markup Conference 2013, Balisage Series on Markup
Technologies. Balisage, 2013.

[240] C. Rodrı́guez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali, and G.
Percannella. REST APIs: A large-scale analysis of compliance with principles
and best practices. In A. Bozzon, P. Cudre-Maroux, and C. Pautasso, editors,
Web Engineering, pages 21–39, Cham, 2016. Springer International Publishing.

[241] D. Romano and M. Pinzger. Analyzing the evolution of web services using
fine-grained changes. In 2012 IEEE 19th International Conference on Web Ser-
vices, pages 392–399, June 2012.

[242] N. Rosa, P. Cunha, and G. Justo. ProcessNFL: A language for describing non-
functional properties. In Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, pages 3676–3685, 2002.

[243] D. Rossi. UML-based model-driven REST API development. In Proceedings
of the 12th International Conference on Web Information Systems and Technologies -
Volume 1: WEBIST,, pages 194–201. INSTICC, SciTePress, 2016.

[244] R. Schantz. Commentary on procedure calling as a network protocol. RFC
684, April 1975.

[245] B. Schmeling. Composing Non-Functional Concerns in Web Services. PhD thesis,
Technische Universität Darmstadt, July 2013.

[246] B. Schmeling, A. Charfi, S. Heinzl, and M. Mezini. A survey on non-functional
concerns in web services. International Journal of Web Information Systems,
8(1):5–31, Jan 2012.

[247] B. Schmeling, A. Charfi, and M. Mezini. Non-functional concerns in web ser-
vices: Requirements and state of the art analysis. In Proceedings of the 12th In-
ternational Conference on Information Integration and Web-Based Applications and
Services, iiWAS ’10, pages 67–74, New York, NY, USA, 2010. Association for
Computing Machinery.

[248] B. Schmeling, A. Charfi, R. Thome, and M. Mezini. Composing non-functional
concerns in web services. In Proceedings of the 2011 IEEE Ninth European Con-

216

Bibliography

ference on Web Services, ECOWS ’11, pages 73–80, USA, 2011. IEEE Computer
Society.

[249] P. Schmiedmayer. Apodini: An internal domain specific language to de-
sign web services. 21st International Middleware Conference Doctoral Symposium
(Middleware ’20 Doctoral Symposium), December 2020.

[250] P. Schmiedmayer, R. Chatley, J. P. Bernius, S. Krusche, K. Chaika, K. Krinkin,
and B. Bruegge. Global software engineering in a global classroom. In 2022
IEEE/ACM 44rd International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET), 2022.

[251] P. Schmiedmayer, L. M. Reimer, M. Jovanović, D. Henze, and S. Jonas. Tran-
sitioning to a large-scale distributed programming course. In 2020 IEEE 32nd
Conference on Software Engineering Education and Training (CSEE&T), pages 1–6,
2020.

[252] V. Schreibmann and P. Braun. Model-driven development of RESTful APIs.
In Proceedings of the 11th International Conference on Web Information Systems
and Technologies - Volume 1: WEBIST,, pages 5–14. INSTICC, SciTePress, 2015.

[253] S. Schreier. Modeling RESTful applications. In Proceedings of the Second Inter-
national Workshop on RESTful Design, WS-REST ’11, pages 15–21, New York,
NY, USA, 2011. Association for Computing Machinery.

[254] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Prentice
Hall PTR, USA, 1st edition, 2001.

[255] A. H. N. Seitz. An Architectural Style for Fog Computing: Formalization and Ap-
plication. PhD thesis, Technical University of Munich, 2019.

[256] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice Hall, 1996.

[257] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and chal-
lenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[258] Y. Shkuro. Mastering Distributed Tracing. Packt Publishing, February 2019.

[259] B. Simon, B. Goldschmidt, and K. Kondorosi. A metamodel for the web ser-
vices standards. Journal of Grid Computing, 11(4):735–752, 2013.

[260] M. P. Singh and M. N. Huhns. Service-Oriented Computing: Semantics, Processes,
Agents. Wiley, 2005.

217

Bibliography

[261] Z. U. Singhera and A. A. Shah. Extended web services framework to meet
non-functional requirements. In Workshop Proceedings of the Sixth International
Conference on Web Engineering, ICWE ’06, pages 21–es, New York, NY, USA,
2006. Association for Computing Machinery.

[262] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. Industrial inter-
net of things: Challenges, opportunities, and directions. IEEE Transactions on
Industrial Informatics, 14(11):4724–4734, Nov 2018.

[263] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-language
services implementation. Technical report, Facebook, 156 University Ave, Palo
Alto, CA, April 2007.

[264] R. Snodgrass. Monitoring Distributed Systems: A Relational Approach. PhD the-
sis, Carnegie-Mellon University, December 1982.

[265] L. Snyder and R. L. Henry. Fluency With Information Technology. Pearson, 7th
edition edition, 2017.

[266] S. M. Sohan, C. Anslow, and F. Maurer. A case study of web API evolution. In
2015 IEEE World Congress on Services, pages 245–252, June 2015.

[267] I. Sommerville. Software Engineering. Pearson, 2016.

[268] C. Sridharan. Distributed Systems Observability. O’Reilly Media, Inc., 2018.

[269] R. Srinivasan. RPC: Remote procedure call protocol specification version 2.
RFC 1831, August 1995.

[270] M. Sternemann. Reliability and observability of declarative web services.
Bachelor’s thesis, Technical University of Munich, 2022.

[271] J. Strauch and S. Schreier. RESTify: From RPCs to RESTful HTTP design. In
Proceedings of the Third International Workshop on RESTful Design, WS-REST ’12,
pages 11–18, New York, NY, USA, 2012. Association for Computing Machin-
ery.

[272] A. S. Tanenbaum and M. van Steen. Distributed systems. Pearson, Upper Sad-
dle River, NJ, 2 edition, October 2006.

[273] Technical Oversight Committee (TOC). Cloud Native Definition v1.0. Cloud
Native Computing Foundation (CNCF), June 2018.

[274] Technical University of Munich. Code of Conduct for Safeguarding Good Academic
Practice and Procedures in Cases of Academic Misconduct at Technische Universität
München, July 2015.

218

Bibliography

[275] Technical University of Munich. TUM Citation Guide, June 2020.

[276] R. Thurlow. RPC: Remote procedure call protocol specification version 2. RFC
5531, May 2009.

[277] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J.-C. Hugly, and E. Pouyoul.
Project JXTA-C: Enabling a web of things. In 36th Annual Hawaii International
Conference on System Sciences, 2003. Proceedings of the, pages 9 pp.–, 2003.

[278] M. Treiber, L. Juszczyk, D. Schall, and S. Dustdar. Programming evolvable
web services. In Proceedings of the 2nd International Workshop on Principles of
Engineering Service-Oriented Systems, PESOS ’10, pages 43–49, New York, NY,
USA, 2010. Association for Computing Machinery.

[279] M. Treiber, H.-L. Truong, and S. Dustdar. SEMF - service evolution manage-
ment framework. In 2008 34th Euromicro Conference Software Engineering and
Advanced Applications, pages 329–336, Sep. 2008.

[280] M. Treiber, H.-L. Truong, and S. Dustdar. On analyzing evolutionary changes
of web services. In G. Feuerlicht and W. Lamersdorf, editors, Service-Oriented
Computing – ICSOC 2008 Workshops, pages 284–297, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[281] M. V. Trifa. Building Blocks for a Participatory Web of Things. Devices, Infrastruc-
tures, and Programming Frameworks. PhD thesis, ETH Zurich, Zürich, 2011.

[282] N. Tsantalis, N. Negara, and E. Stroulia. Webdiff: A generic differencing ser-
vice for software artifacts. In 2011 27th IEEE International Conference on Software
Maintenance (ICSM), pages 586–589, Sep. 2011.

[283] UDDI Consortium. UDDI Executive White Paper, November 2001.

[284] United Nations. Transforming our world: The 2030 agenda for sustainable
development, September 2015.

[285] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau. Migration of SOAP-based
services to RESTful services. In 2011 13th IEEE International Symposium on Web
Systems Evolution (WSE), pages 105–114, Sep. 2011.

[286] S. van der Burg and E. Dolstra. Automated deployment of a heterogeneous
service-oriented system. In 2010 36th EUROMICRO Conference on Software En-
gineering and Advanced Applications, pages 183–190, 2010.

[287] S. van der Burg and E. Dolstra. Disnix: A toolset for distributed deployment.
Science of Computer Programming, 79:52–69, 2014.

219

Bibliography

[288] H. van Vliet. Software Engineering: Principles and Practice. Wiley, 2000.

[289] J. M. Vara, J. Verde, V. Andrikopoulos, V. Bollati, and E. Marcos. An EMF-
based toolkit for reasoning on web services evolution. In Proceedings of the
Workshop on ACadeMics Tooling with Eclipse, ACME ’13, New York, NY, USA,
2013. Association for Computing Machinery.

[290] D. Verna. Extensible Languages: Blurring the Distinction between DSL and GPL,
pages 1–31. IGI Global, Hershey, PA, USA, 2013.

[291] W. G. Vincenti. What Engineers Know and How They Know It. Analytical Studies
from Aeronautical History. The Johns Hopkins University Press, 1990.

[292] M. Vitali. Towards greener applications: Enabling sustainable cloud native
applications design. Submitted for CAiSE 2022, LNCS, Springer, 2022.

[293] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. Kats, E.
Visser, and G. Wachsmuth. DSL Engineering: Designing, Implementing and Us-
ing Domain-specific Languages. CreateSpace Independent Publishing Platform,
2013.

[294] M. Vögler, J. Schleicher, C. Inzinger, S. Nastic, S. Sehic, and S. Dustdar.
LEONORE – Large-scale provisioning of resource-constrained iot deploy-
ments. In 2015 IEEE Symposium on Service-Oriented System Engineering, pages
78–87, 2015.

[295] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar. DIANE - dynamic
iot application deployment. In 2015 IEEE International Conference on Mobile
Services, pages 298–305, 2015.

[296] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar. Optimizing elastic IoT
application deployments. IEEE Transactions on Services Computing, 11(5):879–
892, 2018.

[297] A. von Mayrhauser and A. M. Vans. Program comprehension during software
maintenance and evolution. Computer, 28(8):44–55, 1995.

[298] H. Wada, J. Suzuki, and K. Oba. A model-driven development framework for
non-functional aspects in service oriented architecture. International Journal of
Web Services Research (IJWSR), 5(4):1–31, 2008.

[299] S. Wagner. Software Product Quality Control. Springer Berlin Heidelberg, 2013.

[300] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch,
A. Seidl, A. Goeb, and J. Streit. The Quamoco product quality modelling and

220

Bibliography

assessment approach. In Proceedings of the 34th International Conference on Soft-
ware Engineering, ICSE ’12, pages 1133–1142. IEEE Press, 2012.

[301] P. Walmsley and D. Fallside. XML schema part 0: Primer second edition. W3C
recommendation, W3C, October 2004.

[302] S. Wang, I. Keivanloo, and Y. Zou. How do developers react to RESTful API
evolution? In X. Franch, A. K. Ghose, G. A. Lewis, and S. Bhiri, editors,
Service-Oriented Computing, pages 245–259, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[303] K. Warr, D. Davis, A. Malhotra, and W. Chou. Web services metadata ex-
change (WS-MetadataExchange). W3C recommendation, W3C, December
2011.

[304] A. Weinkötz. A process model for client migration after service changes in
distributed systems. Master’s thesis, Technical University of Munich, 2020.

[305] J. E. White. High-level framework for network-based resource sharing. RFC
707, December 1975.

[306] J. E. White. Elements of a distributed programming system. RFC 708, January
1976.

[307] J. E. White. A high-level framework for network-based resource sharing. In
Proceedings of the June 7-10, 1976, National Computer Conference and Exposition,
AFIPS ’76, pages 561–570, New York, NY, USA, 1976. Association for Com-
puting Machinery.

[308] A. Wiedemann, N. Forsgren, M. Wiesche, H. Gewald, and H. Krcmar. Re-
search for practice: The DevOps phenomenon. Commun. ACM, 62(8):44–49,
jul 2019.

[309] R. J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer, 2014.

[310] L. Williams and A. Cockburn. Agile software development: It’s about feed-
back and change. Computer, 36(6):39–43, 2003.

[311] D. Winer, S. Thatte, D. Box, G. Kakivaya, and A. Layman. SOAP: Simple object
access protocol. Internet-Draft draft-box-http-soap-01, Internet Engineering
Task Force, December 1999. Work in Progress.

[312] E. Wittern, A. Cha, and J. A. Laredo. Generating GraphQL-wrappers for
REST(-like) APIs. In T. Mikkonen, R. Klamma, and J. Hernández, editors,
Web Engineering, pages 65–83, Cham, 2018. Springer International Publishing.

221

Bibliography

[313] E. Wittern, A. Ying, Y. Zheng, J. A. Laredo, J. Dolby, C. C. Young, and A. A.
Slominski. Opportunities in software engineering research for web API con-
sumption. In Proceedings of the 1st International Workshop on API Usage and
Evolution, WAPI ’17, pages 7–10. IEEE Press, 2017.

[314] C. Wohlin. Case study research in software engineering—It is a case, and it is
a study, but is it a case study? Information and Software Technology, 133:106514,
2021.

[315] Z. Xing and E. Stroulia. UMLDiff: An algorithm for object-oriented design
differencing. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’05, pages 54–65, New York, NY, USA,
2005. Association for Computing Machinery.

[316] J. Yasmin, Y. Tian, and J. Yang. A first look at the deprecation of RESTful
APIs: An empirical study. In 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 151–161, Sep. 2020.

[317] B. Yildiz. Corvus - A declarative server-side swift framework. Bachelor’s
thesis, Technical University of Munich, 2020.

[318] P. Zagar. Observability of distributed web services. Bachelor’s thesis, Techni-
cal University of Munich, 2021.

[319] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance be-
tween trees and related problems. SIAM Journal on Computing, 18(6):1245–
1262, 1989.

[320] H. Zimmermann. OSI reference model - the ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28(4):425–432,
1980.

[321] W. Zuo. Managing and modeling web service evolution in SOA architecture. PhD
thesis, Université de Lyon, July 2016.

[322] W. Zuo, Y. Amghar, and A.-N. Benharkat. The impact analysis model for
web service evolution. In 2015 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT), volume 1, pages 457–460,
Dec 2015.

[323] W. Zuo, A. N. Benharkat, and Y. Amghar. Holistic and change-centric model
for web service evolution. In 2014 IEEE World Congress on Services, pages 250–
253, June 2014.

222

	Abstract
	Zusammenfassung
	Conventions
	I Prelude
	1 Introduction
	1.1 Research Process and Research Goals
	1.1.1 Design Problems
	1.1.2 Knowledge Questions

	1.2 Dissertation Organization

	2 Knowledge Context
	2.1 Software Engineering
	2.2 Distributed Systems
	2.2.1 Web Service Interface Types
	2.2.2 Domain-Specific Languages for Web Services

	II Problem Investigation
	3 Web Service Interface Evolution
	3.1 Related Work
	3.1.1 Service Definition Languages
	3.1.2 Adapters
	3.1.3 Model-Based Approaches

	3.2 Web Service Interface Metamodel
	3.2.1 Web Service Interface Metamodel
	3.2.2 Metamodel Conformant Web API Types

	4 Web Service API Evolution
	4.1 Related Work
	4.1.1 Local API Evolution
	4.1.2 Web API Evolution Strategies
	4.1.3 Web API Change Identification
	4.1.4 Web API Evolution Migration
	4.1.5 Protocol-Enabled API Evolution

	4.2 Web Service API Change Classification
	4.2.1 Web Service API Evolution Patterns
	4.2.2 API Change Classifications Comparisons

	5 Web Service Deployment Evolution
	5.1 Web Service Deployment Evolution Domains
	5.1.1 Cloud-Based Deployments
	5.1.2 Observability
	5.1.3 Web of Things

	5.2 Web Service Metadata Annotations
	5.2.1 Web Service Metadata Annotation Model
	5.2.2 Web Service Metadata Annotation Domains

	III Treatment Design
	6 System Design
	6.1 Design Goals
	6.2 Control Flow
	6.2.1 Interface Exporter
	6.2.2 Migrator
	6.2.3 Deployer

	6.3 Software Architecture
	6.3.1 Apodini
	6.3.2 Interface Exporter
	6.3.3 Migrator
	6.3.4 Deployer

	7 Object Design
	7.1 Domain-Specific Language Components
	7.1.1 Swift-based Apodini DSL Interface
	7.1.2 Kotlin-based Apodini DSL Interface

	7.2 Semantic Model
	7.3 Migration Guide
	7.4 Deployment Structure
	7.5 Cross Deployment Node Communication

	IV Treatment Validation
	8 Apodini Interface Exporter
	8.1 gRPC Interface Exporter
	8.2 WebSocket Interface Exporter
	8.3 GraphQL Interface Exporter
	8.4 HTTP Interface Exporter
	8.5 RESTful Interface Exporter
	8.5.1 OpenAPI Document Generation

	8.6 Summary

	9 Web Service Instantiations
	9.1 Basketball Player Health Monitoring System
	9.2 Event Management Plattform
	9.3 Expense and Income Tracking Application
	9.3.1 Localhost Deployment Provider
	9.3.2 AWS Lambda Deployment Provider

	9.4 Smart City IoT System
	9.5 Water Quality Measurement System
	9.6 Summary

	V Epilog
	10 Conclusion and Future Work
	List of Figures
	List of Tables
	List of Listings
	Bibliography

