
1.  Introduction
Current numerical weather prediction (NWP) is based on physical models of the atmosphere, and the ocean, 
in which the governing equations are discretized and sub-grid processes are parameterized (Kalnay, 2003). 
Continued refinement of these models along with increasing computing power and better observations to 
create initial conditions has led to steady increases in forecast skill over the last 4 decades (Bauer et al., 2015). 
The improvements in the model components and the tuning of free parameters is, in a large majority of cas-
es, guided by scientific expertize rather than using a statistical method (Hourdin et al., 2017). In the current 
operational weather forecasting chain, the only component that includes a learning algorithm is post-pro-
cessing, the correction of statistical errors from NWP output. Most commonly, post-processing is done using 
simple linear techniques (model output statistics) but in recent years more modern machine learning tech-
niques, such as random forests and neural networks, have been explored (Grönquist et al., 2020; McGovern 
et al., 2017; Rasp & Lerch, 2018; Taillardat et al., 2016).

With the apparent successes of deep learning in modeling high-dimensional data in other domains such as 
computer vision and natural language processing, a natural question to ask is whether numerical weather 
models can also be learned purely from data. This question sparked some debate after initial studies (Due-
ben & Bauer, 2018; Scher, 2018; Scher & Messori, 2019; Weyn et al., 2019) showed the general feasibility 
of such an approach for medium-range weather forecasting. In particular, some researchers were skeptical 
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Plain Language Summary  Weather forecasts are created by running hugely complex 
computer simulations that encapsulate our knowledge of how the atmosphere works. This approach 
has served us well but is there a different way? The paradigm of machine learning proposes learning 
an algorithm from data rather than building it from physical principles. For several areas like computer 
vision and natural language processing this has worked exceedingly well, so it just makes sense to try it as 
well for weather forecasting. This paper presents the latest attempt at training a machine learning weather 
forecasting model. It is shown that the learned model produces reasonable forecasts, approximately on 
par with traditional models run on much lower resolution. However, there is still a large gap to current 
state–of–the–art high–resolution weather models that is unlikely to be closed with a purely data–driven 
approach because not enough training data exists.

RASP AND THUEREY

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided 
the original work is properly cited and 
is not used for commercial purposes.

Data-Driven Medium-Range Weather Prediction With a 
Resnet Pretrained on Climate Simulations: A New Model 
for WeatherBench
Stephan Rasp1,2  and Nils Thuerey1 

1Department of Informatics, Technical University of Munich, Munich, Germany, 2Now at ClimateAi, San Francisco, 
USA

Key Points:
•	 �A large convolutional neural 

network is trained for the 
WeatherBench challenge

•	 �Pretraining on climate model 
data improves skill and prevents 
overfitting

•	 �The model sets a new state-of-the-
art for data-driven medium-range 
forecasting

Correspondence to:
S. Rasp,
raspstephan@gmail.com

Citation:
Rasp, S. & Thuerey, N. (2021). 
Data-driven medium-range weather 
prediction with a Resnet pretrained 
on climate simulations: A new 
model for WeatherBench. Journal of 
Advances in Modeling Earth Systems, 
13, e2020MS002405. https://doi.
org/10.1029/2020MS002405

Received 10 NOV 2020
Accepted 22 JAN 2021

10.1029/2020MS002405
RESEARCH ARTICLE

1 of 12

https://orcid.org/0000-0001-8676-2687
https://orcid.org/0000-0001-6647-8910
https://doi.org/10.1029/2020MS002405
https://doi.org/10.1029/2020MS002405
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020MS002405&domain=pdf&date_stamp=2021-02-16


Journal of Advances in Modeling Earth Systems

whether the complex physics described by systems of partial differential equations could be encoded in a 
neural network.

To answer this question Rasp et al. (2020b) defined a benchmark challenge for data-driven medium-range 
weather forecasting called WeatherBench. Specifically the challenge is to predict 500  hPa geopotential 
(Z500), 850 hPa temperature (T850), 2-m temperature (T2M) and 6-hourly accumulated precipitation (PR) 
up to 5 days ahead. Here, we train a large neural network for this task. Section 2 describes the data set and 
the neural network setup. In Section 3, the results for the WeatherBench benchmark are presented and 
discussed. Section 4 includes several sensitivity experiments followed by an attempt to interpret the neural 
network's predictions in Section 5. Finally, we discuss the results in Section 6.

2.  Materials and Methods
2.1.  Data, Evaluation, and Baselines

The data are provided by the WeatherBench challenge. A full description can be found in Rasp et al. (2020b) 
and the latest version of the data is available at https://github.com/pangeo-data/WeatherBench. Weath-
erBench contains regridded ERA5 (Hersbach et al., 2020) data from 1979 to 2018 at hourly resolution, of 
which 2017 and 2018 are set aside for evaluation. In addition, we use climate model simulations to pre-
train our simulations as described below. For this, we downloaded a historical simulation from the CMIP6 
archive (Eyring et al., 2016). Specifically, we picked the MPI-ESM-HR model since it was one of the only 
models for which the data was saved at vertical resolution to match the ERA5 data. The temporal resolution 
of the CMIP data is 6 hours. The regridded climate model data are also available on the WeatherBench data 
repository. In addition to the data, WeatherBench defines the evaluation metrics. The area-weighted RMSE 
and ACC are used for evaluating 500 hPa geopotential (Z500), 850 hPa temperature (T850), 2-m temperature 
(T2M), and 6-hourly accumulated precipitation (PR) at 3 and 5 days lead time. The area-weighted RMSE is 
defined as
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The definition of the ACC can be found in the appendix.

Furthermore, WeatherBench contains several baselines from physical models: the operational Integrated 
Forecasting System (IFS) of the European Center for Medium-range Weather Forecasting (ECMWF), the 
current state-of-the-art in NWP, which currently runs at 9 km horizontal resolution with 137 vertical levels; 
and the same model run at two lower resolutions, T42 (∼2.8° or 310 km at the equator) with 62 vertical 
levels and T63 (∼1.9° or 210  km at the equator) with 137 vertical levels. For an exact definition of the 
evaluation metrics and the initialization of the baseline models, refer to Rasp et al. (2020b). Furthermore, 
a climatology and persistence baseline is computed as well as a climatology computed for each calendar 
week. As an additional baseline, here we include the work by Weyn et al. (2020) who trained an neural 
network to predict Z500 and T850. Their model is iterative, that is, it consists of a sequence of 6 h forecasts. 
During training they also trained their neural network over two-time steps (12 h) to ensure stability for 
longer integrations. Further they mapped the latitude-longitude data to a cube-sphere grid with roughly 
1.9° resolution to minimize the distortion during the convolution operations. Their model was trained on 
40 years of ERA data.
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2.2.  Data-Driven Forecasts Using a Pretrained Resnet

There are three fundamental techniques for creating data-driven forecasts: direct, continuous and iterative. 
For direct forecasts, a separate model is trained directly for each desired forecast time. In continuous mod-
els, time is an additional input and a single model is trained to predict all forecast lead times (as in MetNet; 
Sønderby et al. (2020)). Finally, iterative forecasts are created by training a direct model for a short forecast 
time (e.g., 6 h) and then running the model several times using its own output from the previous iteration. 
As mentioned above, this is the approach taken by Weyn et al. (2020).

Here, we train direct and continuous models. Advantages and disadvantages of each technique will be 
discussed later. All models in this study use the same architecture (except in the network size scaling ex-
periments). The basic structure is a fully convolutional Resnet (He et al., 2015) with 19 residual blocks. 
Each residual block consists of two convolutional blocks, defined as (two-dimensional [2D] convolution → 
LeakyReLU → Batch normalization → Dropout), after which the inputs to the residual layer are added to 
the current signal. The 2D convolutions inside the residual blocks have 128 channels with a kernel size of 
3. All convolutions are periodic in longitude with zero padding in the latitude direction. For the first layer 
a simple convolutional block with 128 channels is used with a kernel size of 7 to increase the field of view. 
LeakyReLU is used with α = 0.3. Weight decay of 1 × 10−5 is used for all layers. Dropout is set to 0.1.

The inputs are geopotential, temperature, zonal and meridional wind and specific humidity at seven ver-
tical levels (50, 250, 500, 600, 700, 850, and 925 hPa), 2-m temperature, 6-h accumulated precipitation, the 
top-of-atmosphere incoming solar radiation, all at the current time step t, t − 6h and t − 12h, and, finally 
three constant fields: the land-sea mask, orography and the latitude at each grid point. All fields were nor-
malized by subtracting the mean and dividing by the standard deviation, with the exception of precipitation 
for which the mean was not subtracted to keep the lower bound at zero. Additionally, we log-transform of 

the precipitation to make the distribution less skewed (PR PR   ln( ) ln( )  ) with ϵ = 0.001. Subtracting 
the log of ϵ ensures that zero values remain zero. This transformation turns out to be crucial to prevent the 
network from simply predicting zeros. All variables, levels and time-steps were stacked to create an input 
signal with 114 channels. For the continuous forecast, in addition, we add 32 × 64 fields which contains the 
forecast time in hours divided by 100. During training, a random forecast time from 6 to 120 h is drawn for 
each sample. Two separate sets of networks were trained, one to predict Z500, T850, and T2M and another 
one to predict TP. The reason for treating TP separately is that its distribution is significantly more skewed 
even after the log-transform compared to the other three variables. Predicting all four variables with a single 
network led to bad predictions for all variables. A loss scaling factor for TP be one potential solution but 
here, we chose to simply treat it separately.

For our best models, we first train our model using the 150 years of CMIP data described above. We then 
take the pretrained model and fine-tune it using the ERA data. We will also show results for models trained 
only with CMIP or ERA data. The loss function is the latitude-weighted mean squared error. The latitudes 
are weighted proportionally to the area of the grid boxes ∝ cos ϕ. The Adam optimizer (Kingma & Ba, 2014) 
is used with a batch size of 32 and an initial learning rate of 5 × 10−5 for the ERA and CMIP only experi-
ments. The learning rate was decreased twice by a factor of five when the validation loss has not decreased 
for two epochs. Early stopping on the validation loss was used to terminate training with a patience of five 
epochs. The training period for ERA was from 1979 to 2015, validation was done with a single year (2016). 
For fine-tuning the CMIP networks on ERA data, a lower initial learning rate of 5 × 10−7 was chosen. Also 
note that for the pretrained model, no dropout was used as this led to better validation scores. For the direct 
approach we trained models for 6 h, 1, 3, and 5 days forecast time. We used Tensorflow 2. Training a single 
model takes around 1 day on a GTX 2080 GPU.

3.  WeatherBench Results
Figure 1 and Table 1 show the results of the two networks on the WeatherBench metrics (ACC results can 
be found in Appendix Table A1. Notably pretraining with CMIP data improves skill significantly for Z500, 
T850, and T2M over just using ERA data, with increasing impact for longer lead times. This is because over-
fitting, as measured by the difference between training and testing scores, tends to be worse for longer lead 
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times (Figure 2a). As there is a longer time for errors to grow nonlinearly 
for longer forecast horizons, similar initial conditions can lead to a wider 
range of outcomes. In the face of such uncertainty, a model that is trained 
to minimize the mean squared error, will tend to predict the mean of 
the distribution of possible outcomes. Our hypothesis is that for a wid-
er distribution (longer forecast time) more training data are required to 
estimate the mean. In other words, if, because of the intrinsic unpredict-
ability of the atmosphere, a broader range of outcome is physically plau-
sible, then overfitting to individual outcomes encountered in the training 
data will lead to more overfitting than it would for shorter forecast times, 
where the plausible forecasts are closer together. Pretraining with climate 
model data helps to prevent overfitting and leads to better testing scores. 
Strikingly, even without fine-tuning on ERA data (“CMIP only” in Ta-
ble  1) the testing scores computed on reanalysis data are not much or 
not at all worse than the “ERA only” networks. This shows that climate 
models, even though they do not exactly represent the real atmosphere, 
provide a good proxy for the general circulation of the atmosphere. For 
precipitation, pretraining does not improve skill. This is most likely be-
cause precipitation skill is low anyway and climate models might not rep-
resent precipitation as realistically as the large-scale circulation. Finally, 
it is important to note that RMSE and ACC are sub-optimal metrics for 
precipitation.

Comparing the direct and continuous models, direct models tend to be 
better up to around 3 days forecast time, while the continuous models 
have more skill for longer forecast horizons. This difference also seems 
to be caused by overfitting. The continuous models without pretraining 
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Figure 1.  Root mean squared error (RMSE) for (a) Z500, (b) T850, (c) T2M, and (d) PR evaluated against ERA5 data.

Latitude-weighted RMSE (3 days/5 days)

Model
Z500 [m2 

s−2] T850 [K] T2M [K] PR [mm]

Persistence 936/1,033 4.23/4.56 3.00/3.27 3.23/3.24

Climatology 1,075 5.51 6.07 2.36

Weekly climatology 816 3.50 3.19 2.32

IFS T42 489/743 3.09/3.83 3.21/3.69 –

IFS T63 268/463 1.85/2.52 2.04/2.44 –

Operational IFS 154/334 1.36/2.03 1.35/1.77 2.36/2.59

Weyn et al. (2020) 373/611 1.98/2.87 – –

Direct (ERA only) 314/561 1.79/2.82 1.53/2.32 2.03/2.35

Direct (CMIP only) 323/561 2.09/2.82 1.90/2.32 2.30/2.39

Direct (pretrained) 268/523 1.65/2.52 1.42/2.03 2.16/2.30

Continuous (ERA only) 331/545 1.87/2.57 1.60/2.06 2.22/2.32

Continuous (CMIP only) 330/548 2.12/2.75 2.24/2.59 2.29/2.38

Continuous (pretrained) 284/499 1.72/2.41 1.48/1.92 2.23/2.33

Note. All forecasts evaluated at 5.625° resolution. Best physical and data-
driven methods are highlighted.
Abbreviations: IFS, integrated forecasting system; RMSE, root mean 
squared error.

Table 1 
RMSE for 3–5 days Forecast Time
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have a lower generalization error (Figure 2a). One hypothesis as to why this is, could be that the fact that, 
in the continuous approach, a single model has to learn to make predictions for all forecast times acts as da-
ta-augmentation. Another plausible hypothesis is that the continuous networks also learn a time-evolution 
of the flow which helps regularize the network. With pretraining, the difference in the generalization error 
does not appear as large but this is potentially an artifact of using early stopping for fine-tuning rather than 
a sign that the direct models do not over-fit more. The two approaches, direct and continuous, therefore, 
represent a trade-off between specificity and generalization. One advantage of the continuous method is 
that arbitrary forecast times within the training range can be chosen. However, using the continuous net-
work to predict beyond its training range quickly leads to large errors (not shown).

The models presented in this study outperform the simple machine learning baselines from the original 
WeatherBench study and also the approach of Weyn et al. (2020) (Table 1). However, as mentioned pre-
viously, their model is an iterative model. Technically this is a more difficult approach because training 
a neural network for short-term predictions (in their case 6 h) and then calling it iteratively can lead to 
self-amplifying errors. In fact, this is what we observed when trying this with our model architecture. Fur-
thermore, this requires the output vector to match the input vector, greatly increasing the number of var-
iables to predict which can lead to a loss in specificity. Weyn et al. (2020) trained the model over two time 
steps. This, however, quickly becomes very computationally expensive for large model such as the ones in 
this study. Therefore, if the goal is simply to predict a certain field at a predefined time ahead, the direct and 
continuous approaches will likely lead to better results. On the other hand, iterative models can be used to 
make arbitrarily long predictions which opens up a range of potential use cases.

Finally, it is interesting to discuss the performance of our models compared to the physical baselines. For 
Z500 and T850, the skill is comparable to the T63 model, for T2M a little better than that. However, there 
are big caveats to consider in this comparison. First, the physical models (operational IFS and T63) are ini-
tialized from slightly different initial conditions, leading to a nonzero error at t = 0. In addition, the coarse 
resolution models T42 and T63 suffer from errors due to the conversion to spherical coordinates at coarse 
resolutions. Since error growth is initially exponential, this initial condition difference primarily affects 
short forecast times up to 2 days (Zhang et al., 2007). A likely more important consideration is that the T42 
and T63 models were not tuned for this resolution. This is in contrast to the operational IFS model which 
is carefully tuned over many years. This means that tuning the lower resolution IFS models would almost 
certainly lead to increased skill, however it is hard to estimate how much. On the other hand, our models 
are trained at significantly coarser resolutions and further hyper-parameter/architecture tuning would like-
ly result in better scores. Another limitation is that statistical errors of the physical model were not removed 
by post-processing and that the evaluation was done at a very coarse grid. This is likely not so important for 
the upper-level variables Z500 and T850 but very important for surface variables (Hewson & Pillosu, 2020). 
In data-driven forecasts the post-processing is implicitly performed. Lastly, it is important to consider that 
our models do not necessarily predict realistic fields. Figure 3 one can see that with increasing lead time the 
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Figure 2.  (a) Generalization error (testing minus training RMSE for Z500). (b) RMSE of Z500 for networks trained with different resolution data. Bars show 
the RMSE computed at 5.625° resolution. For this the predictions from the lower resolution networks were upscaled. Dots show the RMSE evaluated at 22.5° 
for which all predictions were downscaled. (c) RMSE of Z500 for different network architectures. y-axis has the same units (Z500 RMSE in m2 s−2) for all three 
panels. RMSE, root mean squared error.



Journal of Advances in Modeling Earth Systems

predictions become more smoothed out and lose variability compared to the observations. This is another 
reflection of predicting the mean of the hypothetical forecast distribution as mentioned above. For geopo-
tential and temperature this is especially grave in the extra-tropics where the largest natural fluctuations 
occur.

Particular care has to be applied when comparing precipitation between the neural networks and the IFS 
models. The mean squared error is not an optimal choice for verifying intermittent fields like precipitation. 
More fitting metrics would have to be applied to get an accurate view of forecast skill but are outside the 
scope of the WeatherBench challenge. As the snapshots in Figure 3 show, and the scores suggest, for longer 
lead times the neural network essentially learns to predict a climatological mean rather than anything re-
motely realistic. The IFS model, on the other hand, forecast a seemingly realistic field, with precipitation 
in slightly wrong positions. The inherent stochasticity of precipitation is a key reason why probabilistic 
forecasts are necessary, which are not considered here.
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Figure 3.  Sample forecasts valid at July 1, 2018 00UTC for 500 hPa geopotential (top row) and 6 h accumulated 
precipitation (bottom row). 1 and 5 days pretrained, direct neural network forecasts are compared to the 5 days 
operational IFS forecast and the ERA5 ground truth. IFS, integrated forecasting system.
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3.1.  Sensitivity to Resolution and Network Size

It is interesting to ask how the results might change if the resolution was increased or larger networks were 
trained. Doing so, however, is technically very challenging and are outside the scope of this study. We can 
however, assess the scaling to resolution and network size by using lower resolution and smaller networks. 
For this purpose we trained 3-days direct networks using 11.25° and 22.5° data but an otherwise identical 
training procedure (Figure  2b). The skill drops with coarser resolution. This trend is present regardless 
whether the evaluation was done at 5.625° or 22.5° resolution with higher/lower resolution data interpo-
lated to the evaluation resolution. This tendency makes sense since a higher data resolution provides better 
information to the network. One caveat of this sensitivity test is that we left the model architecture the same 
for these experiments, which means that the number of parameters relative to the size of the input/output 
vectors increases with coarser resolutions.

To compare different network sizes we reduced the number of channels in each convolution from 128 to 64, 
32 and 16 (Figure 2c). The number of parameters decreases approximately by a factor 4 for each reduction. 
The testing skill increases with increasing network size but the trend flattens off and overfitting increases. 
This suggests that, while further improvements are certainly possible, there likely is a ceiling in skill for a 
given amount of training data. Note that the regularization parameters (weight decay and dropout) are the 
same across all network sizes. Another way to change the network size would be to change the number of 
layers. These experiments led to qualitatively similar results. Recent findings in deep learning (Nakkiran 
et al., 2019) suggest that, further increasing network size can lead to lower testing losses despite increased 
overfitting. It would be interesting to see whether similar trends hold for this data set.

4.  Interpretability
The data-driven weather models predict weather with reasonable skill. One interesting question to ask is 
whether they do this for the “right reasons.” To find out, we test which variables and which geographical 
region are important for the network to make a prediction. We do this by computing saliency maps (Simon-
yan et al., 2013). That is for each sample, we chose a point in space and a specific variable p, for example, 
T850 over London. We then compute the gradient G of this scalar p with respect to the entire input array 

   samples lat lon variablesX  : G = ∂p/∂X with the same shape as X. We do this analysis for two climatologically 
different locations: London, which is in the mid-latitudes and therefore influenced by eastwards-propagat-
ing Rossby waves and Barbados, located in the sub-tropical trade wind zones. This is done for different lead 
times using the pretrained direct networks.

It is important to highlight that the saliency method does not evaluate which inputs were most important 
for the prediction but rather which changes in the input would most affect the output. For a discussion on 
the differences, see (Ebert-Uphoff & Hilburn, 2020). For the purposes of this study, the saliency method is 
appropriate since it allows us to evaluate effect of small input perturbations which is closely related to the 
body of work on adjoint sensitivity (Ancell & Hakim, 2007).

First, we investigate the region of influence by computing the mean absolute gradient of T850 over all sam-
ples  samples| | 1 / | |i iG N G  and then taking the mean over all input variables (Figure 4a). Because we 
compute the gradients for the normalized inputs, the different variables and levels should be comparable in 
scale and the gradients are dimensionless. It is important to highlight that the saliency analysis is primarily 
of qualitative nature. The resulting maps show that the networks tends to look at physically reasonable 
geographical regions. For London the region of influence extends toward the West with increasing forecast 
time. This is in line with our physical understanding of eastwards traveling Rossby waves being a key factor 
for weather in the mid-latitudes. Furthermore, we can look at the mean gradient  samples1 / i iG N G  of a 
specific input variable, in this case Z500, for 3 days forecast time (Figure 4b). Here, we see a positive-nega-
tive pattern across the Atlantic. Physically, one could interpret this as the signature of Rossby phase shifts 
influencing the temperature over London several days ahead. Over Barbados the region of influence looks 
smaller and more circular. This is in accordance with calmer meteorological conditions in the subtropics. 
We also performed this analysis for specific seasons to check for seasonality but could detect little differ-
ence. Meteorologically one would maybe expect such differences. This highlights the difficulties of using 
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saliency analyses to discover physical insight. Rather, here we mainly check whether the network learns 
completely unreasonably correlations.

We can also take the horizontal mean of | |G  to obtain the mean influence of each normalized input vari-
able (Figure 5). Geopotential and temperature show the largest gradients on average. Specifically changes 
in the geopotential at 250 hPa appear to have a large effect. This is reasonable since 250 hPa is close to the 
tropopause and changes in the tropopause height are known to be influential for medium-range weather 
evolution (Hoskins et al., 1985). Furthermore, the gradient analysis shows that T2M is important for Bar-
bados which reflects the importance of the ocean temperatures. Comparing, the influence of the inputs at 
the current time step t, t−6h and t−12h, the current time step is much more important than earlier time 
steps. This confirms our empirical findings that adding these previous time steps only improved the scores 
marginally (not shown).

So far, all results are in agreement with physical reasoning and similar results could be expected to come 
out of adjoint sensitivity studies with physical models. However, looking at G for individual samples, it is 
evident that this is not always the case. Figure 4c shows the gradient of T850 over London with respect to 
the 250 hPa geopotential for a 3 days forecast. Significant gradients stretch across the Atlantic and North 
America all the way to Hawaii. Such long-range correlations might not be completely physical. Studies 
using physical models typically estimate that it takes perturbations 5–6 days to cross the Atlantic (Rodwell 
et al., 2013). These results suggest that while the network, on average, learns physically plausible connec-
tions from data it appears to make unphysical connections for some samples. This makes sense since, in 
our setup, the network purely learns correlations between input and output images and there is nothing 
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Figure 4.  Saliency plots: (a) The region of influence | |G  (see text for explanation) of T850 over London and Barbados with respect to all input variables 
(averaged). (b) Mean gradient over time G of T850 with respect to Z500 over London. (c) Sample gradient G of Z500 with respect to 250 hPa geopotential for 8 
January 2017 12:00UTC.
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stopping it from learning “unphysical” correlations. If, for example, a certain pattern over eastern North 
America—which likely has an influence on European weather 3 days later—also concurs in the training 
data with some pattern over the eastern Pacific, the network will pick up that connection between Pacific 
and European weather even if it might not be a causal relationship. In a way, such “unphysical” relations 
are also a sign of overfitting.
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Figure 5.  Horizontally averaged saliency | |G  of T850 over (a) London (b) Barbados for 3 days direct forecasts. tisr is the top-of-atmosphere incoming solar 
radiation, tp is precipitation, lsm is the land sea mask.
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5.  Discussion and Conclusion
In this study, we presented a data-driven method for medium-range weather forecasting using a Resnet 
neural network architecture. Specifically, we trained models to predict 500 hPa geopotential, 850 hPa 
temperature, 2 m temperature and precipitation up to 5 days ahead following the WeatherBench chal-
lenge. To avoid overfitting, we pretrained the networks using climate model data from the CMIP ar-
chive. Our models set a new data-driven state-of-the-art for WeatherBench. Most previous approaches 
on similar problems used a U-Net (Ronneberger et al., 2015) architecture, which in our experiments 
did not work as well as a simple Resnet without any changes in dimensionality. Compared to physical 
models, the Resnet achieves comparable scores to a physical model at comparable resolution. Howev-
er, it is important not to over-interpret these results for several reasons discussed in the study. More 
detailed evaluation would also be needed to accurately compare the two. The focus in this study is 
primarily on the challenge set by WeatherBench and the methodological development of the neural 
network models.

It is more interesting to discuss the relevance of the findings presented here for data-driven weather 
forecasting in the future. It appears that with sufficient training data for pretraining purely data-driven 
forecasting can achieve reasonable skill. Our scaling analysis indicates that going to higher resolutions 
and larger networks leads to better scores. It is an interesting question whether the resolution scaling 
continues for higher resolutions than those considered here. However, the increased overfitting for 
larger networks already suggests that large amounts of data are required to train competitive data-driv-
en models. One can also assume that larger models are needed for higher-resolutions to maintain a 
reasonable receptive field. Here, we used climate model simulations to combat overfitting. Current 
CMIP models, however, are run at around 100 km resolution, and therefore cannot be used for forecasts 
at higher-resolutions. There are several atmosphere-only climate simulations (Haarsma et al., 2016) 
run at resolutions comparable to the ERA5 resolution of 25 km. It can be assumed that using all this 
available data at the highest possible resolution for training would greatly increase the forecast skill 
of data-driven methods. However, for the resolutions of current operational NWP models (10 km) is it 
unlikely that there is sufficient data to challenge these models (see Palmer, 2020, for a theoretical argu-
ment). As an aside, even if data-driven models matched physical models at forecasting, creating an ini-
tial condition currently requires data-assimilation systems that are currently based on physical models.

However, the findings regarding relative skill of data-driven versus physical forecasting are specific to 
the particular problem at hand. Data-driven methods could still play a large role in the broad field of 
weather forecasting. Two crucial questions to ask are how much training data is available for a particu-
lar problem and how much potential there is to improve upon physical approaches. For medium-range 
forecasting, physical modeling has achieved impressive skill in recent decades which makes it hard to 
do better with the observations at hand. Other task in numerical weather prediction could offer a much 
bigger potential for data-driven methods.

Appendix A:  ACC Results
Table A1 shows the ACC skill for all experiments. ACC is defined as
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Latitude-weighted ACC (3 days/5 days)

Model Z500 [m2 s−2] T850 [K] T2M [K] PR [mm]

Persistence 0.62/0.53 0.69/0.65 0.88/0.85 0.06/0.06

Climatology 0 0 0 0

Weekly climatology 0.65 0.77 0.85 0.16

IFS T42 0.90/0.78 0.86/0.78 0.87/0.83 –

Table A1 
ACC for 3–5 Days Forecast Time



Journal of Advances in Modeling Earth Systems

ACC 


 

 



i j k i j k i j k

i j k i j k i j k i

L j f t

L j f L j t

, , , , , ,

, , , , , ,

( )

( ) ( )2
,, ,j k
2

� (A1)

where the prime ′ denotes the difference to the climatology. Here, the climatology is defined as 

 , ,
1climatology j k j k
time

t
N

Data Availability Statement
The data set is available at https://mediatum.ub.tum.de/1524895 (Rasp et  al.,  2020a). The code for the 
WeatherBench challenge is at https://github.com/pangeo-data/WeatherBench. The code for this study spe-
cifically is at https://github.com/raspstephan/WeatherBench.
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Table A1 
Continued

Latitude-weighted ACC (3 days/5 days)
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Note. All forecasts evaluated at 5.625° resolution.
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