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Squeezed-states of the radiation field can be generated by degenerate parametric amplification.
In this paper, an analysis of a DC pumped degenerate Josephson parametric amplifier is presented.
The quantum Langevin equations for the fully quantized system are derived. The degree of squeezing
that could be obtained below the threshold for parametric oscillations is calculated by linearizing
the corresponding quantum Langevin equations.

Die Erzeugung von Squeezed-States durch gleichspanuungsgepumpte
degenerierte parametrische Verstiirker mit Josephsonelement

Mit Hilfe von degenerierten parametrischen Verstarkern ist es miiglich neuartige rauscharme
Zustande des Strahlungsfeldes, sogenannte Squeezed-States zu erzeugen. In dieser Arbeit wird
untersucht inwieweit dies mit einem gleichspannungsgepumpten degenerierten parametrischen Ver­
starker mit Josephsonelement miiglich ist. Dazu werden die Quanten-Langevin-Gleichungen welche
die Dynamik des Verstarkers beschreiben abgeleitet. Diese nichtlinearen Langevin-Gleiehungen
werden Iinearisiert. Fur den Unterhalb der Schwelle zur parametrisch angeregten Schwingung
betriebenen Verstarker wird der Grad der Rauschunterdruekung berechnet.

1. Introduction

Generation of squeezed states at optical frequencies
by means of degenerate parametric amplification has
been demonstrated by Wu et al. [1]. In the microwave
regime the Josephson junction provides a nonlinear
inductance appropriate for parametric amplification
and therefore for the generation of squeezed states
[2]. Recently squeezed thermal noise at 4.2 K and
19.4 GHz was produced via a Josephson parametric
amplifier (JPAl operating in the three photon mode
and therefore pumped at 38.8 GHz, the doubled signal
frequency [3]. It is well known that the JPA can also
be pumped by an applied dc voltage [4], [5]. Such a
device, called a dc pumped Josephson parametric am­
plifier (DCPJPAl, will be investigated in the following.
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In Section 2 we will derive the classical equations of
motion of a DCPJPA and the Lagrange function gen­
erating these equations. In Section 3 we obtain the
Heisenberg equations of the quantized system by ap­
plying the method of canonical quantisation. As
shown in Section 4, in the rotating wave approxima­
tion the Heisenberg equations have the same form as
the quantum Langevin equations discussed by Gar­
diner and Collet [6]. Finally in Section 5 we study the
squeezing behaviour of the DCPJPA below the
threshold for oscillation by a linearised analysis.

2. Equations of Motion and Lagrange Formalism
of the Classical System

In the following we investigate the circuit of a dc
pumped degenerate Josephson parametric amplifier
shown in Fig. 1. The Josephson junction is modeled
by the resistively shunted junction model. Following
the quantum network theory of Yurke and Denker [7],
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and therefore the magnetic flux has to satisfy the
boundary condition

(7 a)

(7b)

. 1 o<p1I(X=O-,t)= --- ,
L R ox x=o-

. 1 o<P II(X=O+,t)= -~- .
L s ox x=o.

From Kirchhoff's voltage law it follows

u(x=O-,t)=u(x=O+,t)+ Vo (8)

andVa

1[X'.11

R ~ u IX'. II Rs

X'<O
I

X'=O I nOI I
X'= o- X' = 0+

Fig. 1. Schematic circuit diagram of the dc pumped degener­
ate Josephson parametric amplifier.

<P(x=O,t)=<Pdt)=Lidt) (11)

<P(x = O,t) = <PL(t) = <P(x = O+,t) + <P;XI (12)

than it follows from Kirchhoff's voltage law for the
resonator loop formed by the LC circuit

where the integration constant <P~XI is the external flux
trapped in the loop which is formed by the Josephson
junction, the resonator and the dc voltage source. If
we choose that the flux variable at point x = 0 to be
equal to the flux through the inductance L

(9)o<p1 o<p1- -- +v,
at x=o- - at x=o. 0

<P(x = O-,t) = <P(x = O·,t) + Vot + <P~xt. (10)
or

the shunt resistance R of the junction is modeled by a
transmission line with characteristic impedance R. By
this way we overcome the difficulties in the quantum
mechanical modeling of the ohmic resistor. The
lumped inductance L and capacitance C model the
resonator which is coupled to the left transmission line
with characteristic impedance Rs.The observable ra­
diation produced by the Josephson junction propa­
gates outward of this transmission line. The pump
source supplies a dc voltage Vo in series to the Joseph­
son junction and the resonant circuit. In the homoge­
neous regions x '§i: 0 voltages and currents in the trans­
mission lines obey the transmission line equations

AU oi AU oi
ox = - LRat if x < 0, ox = - L s at if x > 0 ,

(1 a, b)

where the constant of integration <P;xt is the external
flux trapped in the loop formed by the inductor Land
capacitor C. In the following we choose the constants
of integration equal to zero

oi au . oi au
~= -C ~ if x<O ~= -C ~ if x>O,
ox Rat ' ox s at

(la, b)

If we introduce as independent variable the total mag­
netic flux stored to the right of point x at time t tP~xt = tl>;xt = 0 . (13)

The characteristic impedances of the transmission
lines are given by

with propagation velocities

cR =l/JLR CR , cs =l/JLs Cs . (5a,b)

(14)

According to Kirchhoffs current law at point x - 0 we
obtain with eqs. (10) to (14)

C :t: <PL + ~ <PL + Ie sin ( (J)o t + 2;0 <PL) +

+L~:Ix=o- - L~:Ix=o. =0, (15)

2eo
(J)o = h Vo and <PL = <P(x = O,t).

Eqs. (4 a), (4 b) and (15) constitute the equations of
motion for the variable <P (x, t), which uniquely deter-

with

This may be done, since it causes only a shift in the
time coordinate. With this choice of the independent
variable <P (x, t) and the constants of integration we see
from eq. (10) and (12), respectively, that <P(x, t) at point
x = 0 is continuous from the right and not continuous
from the left. The current through the Josephsonjunc­
tion [8) is given by

(3)

(5c, d)

• o<P Iu(x=O ,t)=- ,
at x=O.

(6 a, b)

t

<P (x, t) = f u (x, t') dt'

U(x=O-,t)=~<P1 'ut x=o-

this variable satisfies in the homogeneous regions, ac­
cording to eqs. (1 a) to (3), the scalar wave equation

02<p 02<p 02<p 02<p
fu2 =ci ox2 if x<O, fu2 =c~ ox2 if x>O,

(4a, b)

Furthermore, it follows from eqs. (1 a) to (3) that the
voltages and currents in both transmission lines at
x = 0- and x = 0 +, respectively are given by
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if x ~O

if x < 0, (17a)

for the above system is given by

(23)

_ {<l>:r (x - VR t) + <l>~UI (x + VR t) if x< 0
<l>~O- . .

<l>~n(x + vst) + <l>~UI(X - vst) If x> O.

Therefore the partial derivatives with respect to x oc­
curing in eq. (15) can be transformed into derivatives
with respect to time

According to the first two terms in this equation
<l>(x, t) obeys eqs. (4a) and (4 b) in the homogenious
domains. Integrating the Euler Lagrange equation
over the interval - 6' < X < 0' we obtain eq. (15) in the
limit 6' -+ O. Thus it is shown that the Lagrangian
given by eq. (19) correctly describes the DCPJPA.

Because <l> (x, t) obeys in the domains x § 0 the
wave equations (4a) and (4 b), the flux <l> can be de­
composed in flux waves propagating inward and out­
ward on the transmission lines according to

1 o<l> _ 1 (a<l>~UI O<l>:r) _
L

R
ax - R ----at - at -

= ~ (a<l> _ 2 a<l>:r) if x < 0,R ot at (24 a)

1 a<l> 1 (O<l>r O<l>~UI) _
L s ax = Rs at - ----at -

= _ ~(a<l> _ 2 a<l>~n) if x> O. (24 b)
Rs at at

With these relations and eqs. (9) and (12) we can elim­
inate the partial derivatives in eq. (15) to obtain

d
Z

(1 1 ) d 1
Cdtz<l>L+ R+R

s
dt<l>L+L<l>L+

. Vo+ 1c sm(wo t + <l>L) + Ii = (25)

=~~<l>in(o- t)+~~<l>in(o+ t).
R dt R , Rs dt s ,

(16a)

(16b)

(17b)

{
1-e- x /, if x~O

H + (x) = lim 0 1'1' 0
£-+0+ x < ,

mines the state of the system. Defining the distribu­
tions

With these distributions the Lagrangian describing
the system may be written as

+00

f(x = O+,t) = f "+ (x)f(x)dx. (18b)

+00

f(x = O-,t) = J ,,_ (x)f(x)dx, (18a)

one can show that the distributions "+ (x) and b_ (x)
pick up the right and left side limit of a function f(x)

+00 {C(M)(X t))2 1L[<l>]= J "+(x) - -,,-'- --<l>(X,t)2-
- 00 2 ut 2 L

- 2:
0
1c (l- cos[wot + 2;0 <l>(X,t)])}dX + (19)

+ +r H_(X){cR (a<l>(x,t))2 _ _ 1_(a<l>(X,t))2}dX+
- 00 2 at 2 LR ax

+ +r H+(X){Cs(a<l>(x,t))2 __I_(a<l>(X,t))2}dX.
-00 2 at 2Ls ax

From this Lagrangian we obtain

H o<l>(x,t)
,,(a<l» = {C "+ (x) + CRH- (x) + CsH+ (x)}-a-t-

fu ~~

and

Therefore, the Euler Lagrange equation

a bL bL
-----=0

at ,,(:~) a<l>

The elimination of the outward propagating waves
introduces a damping term into the differential equa­

(21) tion describing the dynamics of the flux <l>v The re­
maining inward propagating waves will describe the
inhomogenious quantum fluctuation terms related to
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(27 a)

and

field operators, satisfying the commutation relation

we obtain from eq. (31 a) by multiplication with Cinh
and integration over the interval [- e, e]

(32)
,

n(t) = lim S ll(x,t)dx
£-0 -e

o 1 1
,,<P(x, t) = .,-- [<P(x, t), H] = -ll (x, t) (31 a)
ut Ih Cinh

o 1
ilill(x,t) = ih[ll(x,t),H] =

= - (j+ (x) U<P(X, t) + Ie sin [ W o t + 2:0 <P(x, t)]}-

< 1 0<P (x, t) 1 02<p (x, t)
- u_ (x)--- + H_ (X)---2- +

L R ox L R ox

< 1 0<P (x, t) 1 02<p (x, t)
+u+(x)Ls~+H+(x)LsaT' (31 b)

Differentiating eq. (31 a) with respect to time and in­
serting it into eq. (31 b) we show that the Heisenberg
equations of motion are equivalent to the classical
equations of motion (4 a), (4b) and (15). Defining the
discrete impulse n via

[<P(x, t),ll (x',t)] = ih(j(x - x') (30)

and H given by eq. (29) is the Hamiltonian of the
quantized system.

Thus we obtain for the Heisenberg equations of
motion

3. Canonical Quantization and the
Heisenberg Equations of Motion

Following the procedure of canonical quantization
of a classical system we obtain the canonically conju­
gate impulse density II (x, t) belonging to the flux vari­
able <P(x,t) according to eq. (20a)

bL o<P(x, t)
ll(x,t) = (j(~~) = Cinh-o-t-

where Cinh is the capacitance per unit length of our
inhomogeneous transmission line with

the dissipation terms. Since the incident flux waves are
completely defined by the initial conditions of the
transmission lines at time t = 0, eq. (25) allows the
computation of the flux through the lumped induc­
tance L for t > O. With that result the observable out­
ward moving flux wave <p~Ul (x, t) can be calculated
according to eq. (23)

<p~ut(O+, t) = <Pdt) - <p~n(o+, t). (26)

Thus the classical equations for the DCPJPA are for­
mulated in terms of the Euler Lagrange formalism and
can be solved for arbitrary input fields. We will now
proceed with the quantum mechanical description of
this system.

Cinh = C (j+ (x) + CRH_ (x) + Cs H+ (x). (27b)

From eqs. (19) and (27 a, b) we obtain the Hamiltonian
of the DCPJPA by

(28)

(29)

(35)

(33a)

{
llin (x - V t) + llout (x + V t) if x < 0

II (x, t) = R R R R

llsn(x + vst) + ll~ut(x - vst) if x> O.

d
n(t) = CJt<PL

and in the same way from eq. (31 b)

frn= -~<PL-IeSin[wot+2:
0

<PL]_

1 0<P (0 -, t) 1 0<P (0 +, t)-- + - . (33b)
L R ox L s ox

which restates that <P and II must obey the scalar wave
equation in the two regions with different propagation
velocities. Therefore, like in Section 2 for the flux <P,
we can also decompose the impulse density in input
and output components

For the regions x ~ 0 the eqs. (31 a, b) imply

0<P (x, t) = II (x, t) oll (x, t) = ~ 02<p (x, t) for x < 0,
ot CR ' ot L. ox2

(34a)

o<P(x,t) = ll(x,t), oll(x,t) = ~ 02<p(X,t) for x>O,
ot Cs ot Ls ox2

(34b)

+oc 0<P (x, t)
H= S ll(x,t)--dx-L[<P],

-x ot

+OO{ 1 (1H = S -2C ll(X,t)2 +(j+ (x) -<P(X,t)2 +
- 00 loh 2L

+ 2:/e ( 1 - cos[W ot + 2:0 <P(X,t)]))}dX +

+ x 1 (0<P (x, t))2+ S H_(x)-2- --,,- dx +
-x L R uX

+ x 1 (0<P (x t))2
+ S H+(x)-2 -,,-'- dx.

-x L s uX

The first expression in this equation which has a (j +
distribution in the denominator is not defined in the
limit e ---> 0 of eq. (17 a), therefore in eq. (28) we tacitly
assume that the limiting process e ---> 0 is not yet car­
ried out, so that the capacitance per unit length in
eq. (27 a) is not singular and we can divide by it. The
limit e ---> 0 will be taken after we have derived the
Heisenberg equations of motion for the flux and the
corresponding impulse density from eq. (29). It can be
easily shown that the Hamilton equations of motion
following from eq. (29) agree with those given by
eqs. (4 a), (4 b), and (15).

Now we quantize the system by interpreting the flux
<P(x, t) and its conjugate impulse density II (x, t) as
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· [a~ut (w) ei(kx-wt) + a~ut(w)t e-i(kx-wt)] dw,

· [a~ut (w) ei(kx+wt) + a~ut(w)t ei(kx + wt)] dw,

(43)

(42 a)

(42 a)

(40 b)

and obtain the Heisenberg equations of motion for the
flux cP and impulse It from (33a, b) and (39)

d 1
dtCP=Clt (40 a)

frlt = - ~CP - ~(~ + ~Jlt-

. [ 2eo l- Ie sm W ot - CPo + h cP +

with the resonant frequency

Q= l/jLC.

2.2.+ -II·n(O- t) + --II·n(O+ t)RC
R

R , Rs C
s

s ,

with the phase delay CPo = 2 eo Vo L/(h R). From eqs.
(11), (30), (32) and (39) we obtain

[cp, x] = i h. (41)

Thus cP and It are canonically conjugate variables. We
introduce the creation operator at and annihilation
operator a by the transformation

and the constants

with the time dependent incident wave operators

b~(t)=IJ2:Qa~(w)e-iwtdw, (45 a)

b~n(t) = IJ2:Qa~n(w)e-iwtdw, (45 b)

Expressing (40a) and (40b) by creation and annihila­
tion operators we obtain

Ii = - iQa - iusin[wot - CPo + x(a + at )]­

- y(a - at )/2 + Jh[b~(t) - b~(t)t] +
+ JYs[b~n(t) - b~n(t)t] (44)

1 1
YR = R C' Ys = R C' Y = YR + Ys,

s

x= Jh2~~, u= J2h~cIe, (46)

where YR denotes the damping constant due to the
shunt resistance of the Josephson junction and Ys is
the damping constant due to the coupling to the signal
transmission line which carries the observable radia­
tion away from the junction. The dimensionless ratio
x/2lt is the average number of magnetic flux quanta
h/2 eo stored in the inductance L if the resonator is in
the vacuum state 10> or roughly speaking x is 2lt
times the number of flux quanta created by the cre-(39)

(36c)

(37c)

(36a)

(36b)

(36d)

(37b)

OO~RtP~ut (x, t) = S -- .
o 4ltw

OOJf£R<p~UI (x, t) = S __s.

o 4ltw

OO~RtP:i'(x,t) = J --'
o 4ltw

mn(x,t) = - i SCsJhWRs
.

o 4lt

00 ~WRII~ut(x,t) = - i SCR --'
o 4lt

· [a~UI(w)e-i(kx+wt) _ a~ut(w)t ei(kx +wt)] dw,

. =ooSJhRs •tPS' (x, t)
o 4ltw

· [a~n (w) e-i(kx+wt) + a~n(w)t ei(kx+wt)] dw,

00 JhWR
II~(x,t) = - if CR --' (37 a)

o 4lt

· [a~(w) ei(kx~wt) - a~ (w)t e-i(kx-wt)] dw,

Applying the usual methods of field quantization as
described for example in [7], we express the field am­
plitudes in the frequency domain by the creation oper­
ators a~ (w)t, a~ut (w)t, a~n (w)t, a~ut (w)t and annihila­
tion operators a~n (w), a~ut (w), a~n (w), a~ut (w). The
subscripts R, S denote the left (R) and right (S) trans­
mission line in Fig. 1. Since the transmission lines
have infinite extension in' the onedimensional half
spaces x < °and x > 0, respectively, we obtain a con­
tinuous spectrum of states denoted by w.

· [a~n(w)e-i(kx+wt) _ a~n(w)t ei(kx+wt)]dw,

oo~
II~ut(x,t) = - i ~ Cs.y~· (37d)

· [a~ut (w) ei(kx-Wl) _ a~ut (w)t e-i(kx-wt)] dw.

These operators have to satisfy the commutation rela-

tions [a~ (w), ar (w')t] = c5k.1 c5 (w - w'), (38 a)

[a~(w),ar (w')] = 0, (38b)

[a~ (w)t, ar (w'f] = ° (38 c)

for k, IE {R, S} and U E {in, out}, to ensure the commu­
tation relation (30) for <p (x, t) and II (x, t). Like in the
classical case we can eliminate the partial derivatives
with respect to x in eq. (33 b) with help of eqs. (24 a, b),
which are also valid in the quantum mechanical treat­
ment and eq. (34a, b). We shift the system variable <PL

by the constant flux produced by the dc current
through the inductance L via the loss resistance R
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(55)

with

- t I
f
T

(J
H,y,(q,q) = -T 1i-[I-cos[wot - CPo +

o x
+ x(qe- W ' + qt eW1)]]dt

and

Inserting eq. (53) into eq. (48) yields the equation of
motion for q(t). Assuming only small changes of q(t)
during one period of oscillation, allows to average the
equation of motion over one period. Neglecting the
fast varying terms we obtain

. "n oof JW + Q . .Qsn(t) = bsn(t)e'''' = _ 21tQ asn(w+Q)e-'W'dw,

n (56)

and the analogous expression for Q~ (t). Since the sys­
tem operators are slowly varying only that part of the
integrand in a small surrounding at w = 0 influence
the dynamics of a, as we will see later on. Therefore we
may extend the range of integration to w = - r:tJ

g = - *[q,11,y,(q,qt)]_ ~q + ~Q~(t) + JYsQ~n(t)
(54)

Q~(t)"" ~ ra~(w+Q)e-iWldw, (57)
v 21t - 00

and we also may approximate the square root by its
value at w = o. So far we have applied the rotating
wave approximation to the system variables and the
input operators. We also apply the rotating wave ap­
proximation to the output relation (50) and obtain

. 1 oof .
Q~UI(t) = b~U'(t)e+,nl "" -~ a~UI(w + Q)e-,w1dw.

Jh -00 (58)
and

WI(t) = JYsq(t) - Q~n(t). (59)

Thus the equation of motion of the DCPJPA is now
reduced to the form given in eq. (54). This is a quan­
tum Langevin equation of exactly that type discussed
extensively by Gardiner and Collet [6], and the rela­
tion between input output and system variables (59) is
up to a minus sign the same as given there. These
equations are the starting point for a complete analy­
sis of the nonlinear behaviour of the DCPJPA, which
follows the lines in [6], and will be presented in a
forthcoming paper. Here we will perform a linearized
analysis of the quantum Langevin equation (54) to
show how squeezing occurs in the DCPJPA.

(51)

(49)

with the output field operator

>e~
b~U'(t) = [ ',!'2;Qa~UI(w)e-iw'dw.

n(t) mn(O+,t) + IJ~UI(O+,t)

C Cs

b~UI (t) - b~u, (tt = JYs (a - at) - [b~n (t) - b~n (t)t) (50)

ation of one photon in the resonator. (J is a measure
for the coupling of the Josephson junction to the res­
onator. For the time evolution of the annihilation
operator we obtain the hermitian conjugate equation
to eq. (44).

Those terms in the equation of motion, eq. (44),
which arise from the lumped circuit elements in Fig. 1
can be derived from the time dependent Hamiltonian

H,y,(a,at,t) = IiQ(at a +~) + (47)
(J

+ Ii k[1 - cos [wo t - CPo + x(a + at)]].

H,y, is the Hamiltonian of the resonator and the dc
biased Josephson junction. The phase CPo has been
introduced to take into account the flux stored in the
inductance L due to the de current flowing over the
shunt resistance R of the Josephsonjunction. Thus the
equation of motion for the annihilation operator a
may be written as

i ta= - h[a,H,y,] - y(a - a )/2 + (48)

+~[b~ (t) - b~ (t)t] + JYs [b~n (t) - b~n (t)t].

From the time derivative of eq. (26) which is also valid
for the corresponding operators in the quantum me­
chanical treatment and eqs. (33 a, b) and (34 a) we ob­
tain

(52)

a~UI(w)=JYsJ Q J [a(t) - a(t)t]eirotdt - a~n(w).
21tw ->e

Up to now the Heisenberg eq. (48) describes the be­
haviour of the system without any approximations
and for arbitrary input fields. And from eq. (52) we can
compute the output field in terms of the system vari­
ables and the input field.

If we apply the inverse Fourier transform we obtain
the input-output relation

4. Rotating Wave Approximation
and the Quantum Langevin Equations

Assuming the system to be weakly damped, that
means y ~ Q, we can perform some approximations
usually made in quantum optics, i.e. the rotating wave
approximation and the Markov approximation [9]. In
the rotating wave approximation the operator a(t) is
decomposed into a slowly varying operator q (t) and a
phase factor with frequency Q, that means

q(t) = a(t)ew ,. (53)

5. Linearized Analysis of the Device Below Threshold
of Parametric Oscillation

To obtain a degenerate parametric amplifier we
have to choose the bias voltage Vo according to
W o = 2 eo Vo/Ii, so that W o = 2 Q, the double resonator
frequency. For this choice of the pump voltage we
obtain from eqs. (47) and (55) the following averaged
system Hamiltonian

11 (a at) = Ii (J x [eiq>o a2 + e-iq>o at2] + 0 (x3). (60)
sys -, - 4 - -
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and

(72)

][11
_0;

_b.

-0.

01- __ b;

b
1-><
0,-

Fig. 2. Balanced homodyne detector.

LO '"

if the pump parameter p = (J xjy of the device reaches
the threshold for parametric oscillation p = 1. The
fluctuations of the quadrature component AlI=ax with
e max = e min + rej2 go to infinity at that point due the
infinite gain of the parametric amplifier at threshold.

The field that can be observed in an experimental
setup is the outward travelling field Q~UI (t). And we will
investigate the squeezing behaviour of this field by a
homodyne detection experiment shown in Fig. 2. The

the result if y ~ Q. This is the reason for allowing the
rotating wave approximation as discussed above.
From eq. (70) we can see that for qJo - 2 e min = rej
2 + 2re n the fluctuations in this quadrature component
achieves the minimum value

<LJ2AlI.)= 1 (1+2~nR(Q)+2~ns(Q)).
=m 1 + (J xjy Y Y

(71)

Thus if the temperatures of the transmission lines TR ,

IS approach zero, we obtain the maximum obtainable
intracavity squeezing of a linear degenerate paramet­
ric amplifier(62)E = !(Jxe-i<po.

with

4 = - ~{I + iE{lt + JhQ~(t)+ JYsQ~n(t), (61 a)

at = _ 2'at _ iE*a + Cy bin (t)t + Cy bin(t)t (61 b)- 2 - - Y YR _R Y Ys _s ,

where

Ifwe assume the constant x to be small, we can neglect
those terms in eq. (60) which are of higher order in x.
It is a well known fact that this Hamiltonian produces
squeezed states [9]. With eq. (54) and the Hamiltonian
(60) we obtain the linearized quantum Langevin equa­
tion

These linear equations can be easily solved by means
of the Fourier transform as it was done by Collet and
Gardiner [11], and we obtain for the Fourier spectra
of the creation and annihilation operators

1 00

4(w) = -- J {I(t)e+iwtdw. (63)Jh-oo
4(w) = LJ;W) [G-iw)6in (w) - iE6int (- W)} (64a)

4t (-w)= LJ;W)[(~-iw)6int(-W)+iE*6in(w)}
(64 b)

6in (w) = Jha~(Q + w) + JYsakn(Q + w). (66)

analysis of this experimental set up is analogously to
that given by Gea-Banacloche et al. [12] in the optical
regime. From eqs. (3) and (34 b) the voltage of the
outward traveling wave on the signal transmission
line is given by

We now assume that the transmission lines are in
thermal equilibrium at temperatures TR and IS respec­
tively. It is possible to compute the averages of the
system operators via (Ma, b) in terms of the following
averages of the input operators

<a~n(w)a~n(w')t) = (nk(w) + 1)<5(w - w'), (67 a)

<a~n (w)t a~n(w') = nk(w) <5 (w - w') (67b)

1
U~UI(t) = Cn~UI(O,t)

s
(73)

From eqs. (51), (58) and (75) we obtain in rotating
wave approximation

u~ut(t)(+)= _iJh~RsQ~ul(t)e-iUt. (76)

Thus up to an arbitrary phase factor due to the prop­
agation of the signal over the transmission line the
signal at entering the input port 1 of the 3 dB coupler

with
1

nk(w) = , (68)
exp(hwjk~) -1

where k = R, S. To show the effect of squeezing, we
express the field by the quadrature components

All = eill {1ft) + e- ill {I (t)t . (69)

With eqs. (63) to (68) we obtain for the variance of this
quadrature components

<,12All> = (70)

y - 21EI sin(qJo - 2 e)
= y2 _ (21E1)2 (y + 2 YR nR(Q) + 2 Ys ns(Q))

where we have exploited the fact that due to the reso­
nance denominator LJ(w) in eqs. (64 a, b), only the
thermal noise around the center frequency Q enters

and from eq. (37 d) we obtain

U~UI(t) = U~UI(t)(+) + u~ut(t)(-)

with

oo~WR .U~UI(t)(+)= -if __S~UI(w)e-IC"tdw.

o 4re

and
u~ut(t)(-) = U~UI(t)(+)t.

(74)

(75a)

(75b)
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and
b21P) = PIP) with theal. (82)

Due to the 3 dB coupler the signal at the output ports
are related to the input signals according to

b3 (t) = [a, (t) + i a2(t)]/ j2, (78 a)

b4 (t) = [iadt) + a2(t)lIj2. (78 b)

If we assume that the detectors shown in Fig. 2 have
100% quantum efficiency the operator corresponding
to the photocurrent Ii(t) of detector i is given by

Ii(t)=:xbi(ttbi(t) for i=3,4, (79)

where :x is the detector sensitifity. Thus we obtain for
the difference current I (t) at the output of the homo­
dyne detector

I (t) = 13 (t) - 14 (t) = i :x [a, (t)t a2(t) -a2(t)t a, (t)], (80)

where we have taken into account eqs. (78 a, b). If we
now assume that the input signal a2 (t) is a wave at
frequency Q excited by the local oscillator and if it is
in the coherent state IP) we can write

a2(t) = b2e-iIUI+fI) with [b2,b~]=I, (81)

1 1
sout (w) = - ,..-,-c::-----,-----,-;;----,--:~

flmin 41(1'/2 - iw)2 -ls1212

. {[[G -ISIY + w2J[(!(YS-YR) -lsl)2 + w2
] +

+ w2 i(y~ -y/)}oth(hQ/2 kTs) +

+YRys[G-ISIY + W
2}oth (hQ/2kTR )}. (89)

(87)
00

s~ut(w)= J <A~ut(w)A~ut(w')dw'.

eq. (85) we obtain

And with eqs. (63) to (68) the squeezing spectrum is
given by

S~UI (w) = (88)

1 1
= 41L1 (w)12 ([[:1:(y~-yi) + Isf + W

2
]2 + w

2
yi + Isl2y~

+ 21slYs [:1:(y~ -yi)+ Isl 2+ w2]sin (2 e - !Po)] (2 ns+ 1)

+ YR Ys [:1:1'2 + Isl 2+w2+1' lsi sin (2 e - Ipo)] (2nR+ I)}.

The spectrum for e = emin = lpo/2 + 31t/4 + n1t re­
ceives the minimum value

(77)

in Fig. 2 is given by

a, (t) = u~ut(t)(+).

Therefore we obtain for the normalized autocorrela­
tion function of the current

1
cIt) = f32 <I (t) 1(0) =

= _:x2 <[a, (t)t e-iIUI+fI) - a, (t)e HUt +fI )].

. [a, (O)t e- ifl - a, (O)eitlj) +

:x2

+ 4 f32 <a, (t)t e-ilU'+tlja, (0). (83)

Thus in the limit P--+ xc we obtain with eqs. (76) and
(77)

cIt) = 2:x2 h QRs <A8't(t)A8't(O) (84)

with the quadrature component of the output field

A~t (t) = ! [e ifl W' (t) + e -ifll!~ut (t)t], (85)

where the phase e now plays the role of the phase of
the local oscillator signal used for homodyning. The
autocorrelation spectrum C(w) is the Fourier trans­
form of c(t).

Introducing the normalized squeezing spectrum
S~ut (w) defined by

00

s~ut(w) = 2 J<A~t(t)A~U'(O)cos(wt)dt (86a)
o

the autocorrelation spectrum of the detector current
C(w) may be written as

C(w) = 2:x2hQRsS~ut (w). (86b)

The normalized squeezing spectrum has the dimen­
sion 1. With the Fourier transform of the output field

In the case w = 0 we obtain

S~:in (0) =

1 1 { , 2
4(y/2+lsl)2 b-(Ys-YR)-Isl] coth(hQ/2kTs)+

+ YR Ys coth (h Q/2 k TR)} • (90)

Setting the temperatures TR and Ts ofthe transmission
lines equal to T, we obtain for the minimum value at the
threshold for parametric oscillations l' = 21s1 = p = 1

s~ut. (0) = ~ ~coth(hQ/2 kT) =
mm 4 l'

1 Rs= ---coth(hQ/2kT). (91)
4R+Rs

The noise reduction r with respect to the vacuum
noise floor which would produce a normalized spec­
tral density equal to 1/4, is given by four times the
spectral density in eq. (91) and at T = 0 we obtain

Rs Rsr = -- ~ - for Rs ~ R. (92)
R+Rs R

Thus our result for the DCPJPA agrees with the result
for the external pumped JPA analysed by Yurke [2]. If
the losses due to the shunt resistance of the Josephson
junction are small in comparison with the losses due
to the coupling of the signal transmission line, that
means R ~ Rs, eq. (91) suggests that we can achieve
arbitrarily large noise reduction. But at the threshold
for oscillation the linear analysis leading to eq. (91) is
no longer valid, and thus the maximum value for
squeezing that can be achieved with this device re-
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quires a nonlinear analysis starting from the quantum
Langevin equations derived in Section 4.

As we have seen from the linearized analysis above,
we obtain high squeezing at the threshold for oscilla­
tion, if Rs = r R with r ~ 1. This threshold is reached
if the pump parameter defined by

6. Discussion and Conclusions

We have shown that squeezed states may be gener­
ated with the dc pumped degenerate Josephson junc­
tion parametric amplifier (DCPJPA). The DCPJPA
seems to be an interesting tool for the experimental
observation of squeezed states. Compared with opti­
cal experiments the values of the device parameters for
investigating the performance at threshold for oscilla­
tion where maximum squeezing can be obtained are
easily achievable. As will be shown in a forthcoming
paper above threshold the DCPJPA allows the gener­
ation of squeezed states with a nonvanishing ampli­
tude. Such a device can be used as a local oscillator
with reduced shot noise.

(Received January 25, 1990.)

cussed above. Since the shunt resistance R can be as
high as 1 kO, the parameter x can be made much
smaller then one.
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(93)p = (J x/r
approaches p = 1. From eq. (46) we obtain

(94)
with the magnetic flux quantum <Po = 2.07' 10- 15 Vs.
The product of the critical current and the shunt resis­
tance is a constant for a given Josephson junction. For
a Josephsonjunction built with usual low temperature
superconductors the product Ie R is approximately
1 mY. Since this critical voltage is proportional to the
energy gap of the superconductor it must be higher for
high-I;, superconductors. For p < 1 the parametric
amplifier is stable. The threshold condition for para­
metric oscillation is p = 1 and with this value for p we
obtain from eq. (94) a relationship between the fre­
quency where squeezing can be observed and the
noise reduction rate r

we obtain for the parameter x according to eq. (46).

Thus for low temperature superconductors the fre­
quency domain where squeezing is possible is there­
fore restricted to f < 241.8 GHz. Since we have ne­
glected higher order terms in x in the Hamiltonian
(60), the results obtained for the linearized system with
respect to squeezing below threshold will approach
the results of the nonlinear system sufficiently well if
we make the parameter x small. If we introduce the
loaded quality factor QL of the resonator, given by

Up to now we have not considered any internal losses
of the resonator. The internal resonator losses may be
taken into account by considering R to represent the
paralleled Josephson shunt resistor and the equivalent
loss resistor of the LC circuit. Thus the internal losses
have the same degrading effects onto the squeezing as
the shunt resistance R of the Josephson junction.
Therefore we have to guarantee that the internal loss­
es of the resonator are much smaller than those due to
the coupling of the signal transmission line, that
means that the loaded quality factor of the resonator
is much smaller than the unloaded. Rs must be chosen
much smaller than the shunt resistance R of the
Ju~eph~un jum:tiun tu ubtain nui~e redul:tiun a~ di~-
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