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The master equation for a dc-pumped degenerate Josephson parametric amplifier is derived. It is
shown that the Wigner distribution representation of this master equation can be approximated by a
Fokker-Planck equation. By using this equation, the dynamical behavior of this degenerate Joseph-
son amplifier with respect to squeezing of the radiation field is investigated. It is shown that below
threshold of parametric oscillation, a squeezed vacuum state can be generated, and above threshold
a second bifurcation point exists, where the device generates amplitude squeezed radiation. Basic
relations between the achievable amplitude squeezing, the output power, and the operation frequen-

cy are derived.

I. INTRODUCTION

Squeezed states of the radiation field can be used in
several ways to increase the sensitivity of precision mea-
surements. One way can, in principle, be described as a
substitution of the conventionally vacuum fluctuations by
squeezed vacuum fluctuations. Thus the fluctuations
inevitably coupled to the system by the dissipation fluc-
tuation theorem are modified in such a way that they do
not degrade the sensitivity of the measurement. See, for
example, the method of back-action evasion! and high-
resolution interferometry.? For these applications one
has to produce a squeezed vacuum state. That means a
squeezed state with vanishing averages for the in-phase
and quadrature components.

Another application of squeezed states for high-
precision measurement is in homodyne and heterodyne
detection, when the signal field to be detected is strong,
or the available local oscillator power cannot be chosen
high enough. In this case one can make use of a local os-
cillator emitting a squeezed state with nonvanishing am-
plitude but reduced amplitude fluctuations to improve
the signal-to-noise ratio in the detection signal.>*
Squeezed states with and without an average amplitude
may be used in realizing Shapiro’s lossless tap situation.’

In this paper we will investigate the possibility of gen-
erating such squeezed states by a dc-pumped degenerate
Josephson parametric amplifier (DCPJPA). In Ref. 6 we
have shown that below threshold of oscillation the
DCPJPA can be used to generate squeezed vacuum
states, and as is well known, the squeezing of a paramet-
ric amplifier reaches a maximum when it is operated at
the threshold for parametric oscillation.” Above this
threshold the signal emitted by the parametric oscillator
has a nonvanishing amplitude and the fluctuations in the
quadrature and in-phase component of the signal may
also be squeezed as is known from the optical parametric
oscillator.® For an analysis of the properties of these
states of the radiation field created by the DCPJPA we
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have to start with the nonlinear quantum Langevin equa-
tions for this device derived in Ref. 6. In Sec. II we
derive the master equation governing the behavior of the
DCPJPA. From the master equation for the density
operator we can derive the evolution equation of the cor-
responding Wigner distribution. Under certain condi-
tions this evolution equation approaches a classical
Fokker-Planck equation. In Sec. III we will discuss the
stationary points of this equation and the stability of
these points; this gives an overview of the dynamical be-
havior of this device. The properties of the system with
respect to squeezing of the cavity mode and the output
field will be calculated in Sec. IV. This will be done by a
semiclassical input-output formalism introduced by Rey-
naud and Heidmann.? Finally in Sec. V we will calculate
the output power of the oscillator and the frequency
range where squeezed radiation can be generated.

II. THE MASTER EQUATION OF THE DCPJPA

A schematic circuit diagram of the DCPJPA is shown
in Fig. 1% It shows a Josephson junction, which is
modeled by the resistively shunted junction model (RSJ),
coupled via a dc-voltage source to a resonator, modeled
by a parallel resonant circuit. The shunt resistance R of
the Josephson junction is modeled as the transmission
line to the left with characteristic impedance R.'* By the
transmission line to the right the signal generated by the
device may be coupled to a detector to investigate the

FIG. 1. Schematic circuit diagram of the DCPJPA.

5601 ©1990 The American Physical Society



5602

properties of the emitted radiation or to use it in an ex-
perimental setup. As was rigorously derived in Ref. 6, in
the rotating-wave approximation the quantum-dynamical
behavior of the DCPJPA is governed by the following
quantum Langevin equation:

1’__
dt 2

—(yR>‘/2a;§(t)—(ys

[a Hsys 1-)]

N2l , (1

where a' and a are the creation and annihilation opera-
tors of the cavity mode with frequency (). The Hamil-
tonian Hsys( a') is the Hamiltonian of the dc-pumped
Josephson junction averaged over one period of oscilla-
tion T =27 Q:

H(a,ah= f E;{1—cos[wgt —@q
+x(ae " +qTe ) ])dr |
(2)
The frequency
290

is the pump frequency of the Josephson junction due to
the applied dc voltage. The phase @y=(2e,L /AR)V is
27 times the number of magnetic flux quanta ®,=h /2e,
stored in the inductance L due to the dc current caused
by the dc-voltage source ¥, and flowing through L over
the shunt resistance R of the Josephson junction. The
constant

k=(2e} /HQC)'? @)

is a measure for the strength of the coupling of the cavity
field to the Josephson junction. The dimensionless ratio
k/m is the average number of flux quanta, stored in the
inductance L, per photon excited in the cavity mode, and

#l

E,=— 5
e (5)

is the coupling energy of the Josephson junction, where
I, is the critical current of the junction. Due to the cou-
pling of the Josephson junction to the signal transmission
line and the shunt resistance R the energy radiated into
these subsystems leads to a damped motion of the cavity
mode with the total loss rate y =y ¢+ ¥z where the loss
rates g and ¥ due to the signal transmission line and
the shunt resistance, respectively, are given by
1

and YRZE' (6)

Ys— RsC

According to the dissipation fluctuation theorem these
loss mechanisms give rise to fluctuations described by the
input-field operators a% ¢ (@) of the inward traveling flux
waves of frequency w of the transmission lines® by

1
Vo

The output field onto the signal transmission line is relat-

adg(t)= f+w hr(QFole “do . 7N
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ed to the input field and the cavity mode according to

ad(t)=(ys)%a(t)—al(t) . (8)

The voltage u2"(t) of the outward traveling wave® across

the signal transmission line may be expressed in terms of
this output field according to

out(t)_ out( +)(t)+uout Nt) 9)
with
172
QR :
usgut(+)(t)= 5 3 ag“t(t)ev’m. (10)
and
ugut(~)(t)=u§)ut(+)(t)1' . (11)

Thus Egs. (8)-(11) allow us to calculate explicitly the
properties of the outward traveling electromagnetic wave
in terms of the statistics of the intracavity field a(¢) and
ag\(t).

If we assume that the inward traveling modes of the
transmission lines are in thermal equilibrium at tempera-
tures T; and Ty, respectively, we obtain for the expecta-
tion values of the input field correlations, for example,

(aiM(t)al (t)*>~f_+°°[ns<a+m)+1]e-"w“—">dm (12)

where ng(w) is the number of thermally excited photons
in the mode with frequency w and is given by

1

/KT (13)

nglw)= .
-1

If the number of excited photons does not vary much
with frequency in the vicinity of the cavity mode frequen-

cy ), we can approximate the integral above by

(ai(t)aiM(t)T) =[ng(Q)+118(s —1') (14)
and analogously

(al(0)lalt')) =ng(Q)8(r —1') . - (15)

Thus the input field can be approximated by quantum
white noise.!! Analogous expressions are valid for the
input-field operator a/’(z). With this approximation the
quantum Langevin equation (1) is explicitly of the type
discussed by Gardiner and Collett!! and they have shown
that this quantum Langevin equation is equivalent to the
following master equation for the density operator of the
cavity mode:

dp _ £
dt [Hsys,p]+ 2 (nR+1)+ 2 (ns+1)
X([a,paT]+[ap,aT])
+ %&nR—i—%ns ([aT,pa]+[an,a])

(16)

To obtain a degenerate dc-pumped parametric amplifier,
we have to adjust the dc voltage V|, according to Eq. (3),
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so that the pump frequency wy is just two times the signal
frequency Q. Then we obtain, for the averaged Hamil-
tonian in the rotating-wave approximation according to
Eq. (2) by the Baker-Hausdorff theorem, a series expan-
sion of the cosine, and doing the time average over one
period of oscillation

Ho =87

sy!
+ (l-K)Zn +2

2 nin+2)

n=0

e~SK2/2
{e"pO[(aT)nan +2]S

+e—i‘p0[an(a1')n +2]s}
(17)

where s =11 denotes normal or antinormal ordering, re-
spectively. For s =0 we obtain the symmetrically or-
dered Hamiltonian of the system with!?

3" +m
aBna( _Bt )m
From Eq. (17) we can see that 2the ordering of the opera-
tors results in the factor e ~** /2 in front of the Hamil-
tonian. Therefore if the coupling constant x becomes
small the operator ordering does not matter much; that
means for k << 1 the reversible part of the system dynam-
ic approaches the classical dynamic, as we will show later
on. If we had treated the DCPJPA classically we would
J

eBa'=B*a .as
B=p*=0

[(a"ya™],=
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have obtained, for the classical Hamiltonian of the sys-
tem which is the symmetrically ordered Hamiltonian
above, s =0, where the operators a and a’ are replaced
by the classical amplitudes a and a*. By doing this the
sum can be added up and we obtain for the Hamiltonian
of the classical system in the rotating-wave approxima-
tion

ate' P4 g*2e P
2|a)?

HCIZEJ 1_

J,(2¢lal), (19)

where J, denotes the Bessel function of first kind and nth
order. For a further investigation of the dynamics of the
cavity mode, it is advantageous to represent the density
operator by a quasiprobability distribution.!* Here we
will make use of the Wigner distribution, which allows
direct computation of symmetrically ordered expectation
values. The Wigner distribution W (a) of an operator p
is defined by'*

W(a)=Tr{pT(a)], (20)

where the operator T'(«) is just the Fourier transform of
the displacement operator

2 * *
T(a)=f%r—§e“§ mattpba g% @1)

As is shown in Appendix A, application of the definition
(20) onto Eq. (16) results in the following evolution equa-
tion for the Wigner distribution of the density operator:

IWla,t) vy |0 vy 9
—_— —a—+ * + W )t
ar 2 3% 30 |2 daar |7 @Y
—iEk g 2 |k 2 n+1 1 gm  gnti-m
% ¢ 22| 2 i T 1—m) aa” alar e
2m —2n+1
X IZ_I Tom —an+1(2kla])+e.c. | W(a,t) (22)
f
with originates from the classical Hamiltonian H given in
F=vr(2ng +D+yg(2ng+1) . 23) Eq. (19). As was already discussed in Ref. 6 the ratio

The first term in this equation results from the irreversi-
ble part of the master equation (16) which leads to damp-
ing of the cavity mode and fluctuations. The second term
describes the reversible dynamic of the Josephson junc-
tion. Note that in the sum over n the nth term is a
derivative of (2n + 1)th order in a and a* and every sum-
mand is reduced by a factor of (k/2)*". It is well known'?
that the odd derivatives higher than one originate from
the quantum properties of the process, that means from
the noncommuting behavior of the annihilation and
creation operators a and a’in comparison to the classical
amplitudes « and a*, whereas the terms corresponding to
the first derivatives can be interpreted as the drift term of
a Fokker-Planck equation for a classical stochastic pro-
cess, where the reversible part of the equation of motion

k/2m is the average number of magnetic flux quanta
stored in the inductance L if the resonator field is in the
vacuum state |0). Therefore if the coupling constant « is
of the order of 27, already the vacuum fluctuations of the
cavity mode lead to magnetic flux fluctuations at the
Josephson junction of the order of one flux quantum @
This of course means that the quantum-mechanical fluc-
tuations associated with one photon drive the system into
the strong nonlinear regime provided by the oscillation of
the Josephson current if the magnetic flux in the induc-
tance L changes by one flux quantum. Equation (22)
clearly states that in this parameter regime one cannot
neglect the higher derivatives originating from the quan-
tum properties of the device. As will be seen in the forth-
coming sections one can only achieve a considerable
amount of squeezing in the outward traveling field if the
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dominant loss mechanism of the device is the coupling to
the signal transmission line. Therefore we can express
the loaded quality factor Q; by the capacitive part QC of
the susceptance of the resonator at resonance and the
load resistance Rg by

Q. =QCR; . (24)

Thus the coupling constant k can be expressed by these
basic device parameters according to Eq. (4) as

RS 172
RKQL

with R, =#/2e}=2.054 kQ a given constant. Since Ry
must be much smaller than the shunt resistance R of the
Josephson junction which is maximum of the order of 1
kQ, Rg has to be much smaller than R,. The loaded
J

K=

25)

IW(a,t) Y | @ 7 d?
—_— L = - + * l"
ot 2 |3a” aa*a 2 3ada* (e 1)
, 3
—iE;k o | 8 a d
+ o|_O_{_&_ _9_
7 e 3a | Tal J3(2la])+

This is a Fokker-Planck equation corresponding to the
Langevin equations

; OH,
g Yo 197

2% 3 +Hys) s+ (v ) 2 (1)
a

27

; OH
. Y 1 1 *
* 2 C * % 3 : (YS)I/Zgg(t) (YR )1/2§R(t)

(28)

where the variables £ and £ are independent complex
Gaussian noise sources with

(E(EXH))=[n,(Q)+118(z —1"), (29)
(&:(nE; (1)) =0 (30)

for i =R,S. To obtain the drift terms from H; according
to Eq. (19) one has to use the recurrence relations for the
Bessel functions

d

—d;_‘]n(x)z%(']n—l_‘]n‘iﬁ) > (31

T (x)=2(J, _ T, . (32)
2n

Thus in the small coupling limit k <<1 the dynamics of
this degenerate Josephson amplifier can be treated in a
classical manner, since the master equation for the densi-
ty operator in the Wigner distribution representation is
equivalent to a Fokker-Planck equation of a classical sto-
chastic process. The only quantum-mechanical feature of
the process surviving the approximations is the 1 in Eq.

% |—(;|~J1(2K|a])
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quality factor Q; of the resonator must be much smaller
than the unloaded, so that the resonator losses can be
neglected. With superconducting resonators one can
easily achieve quality factors as large as 10°-10° there-
fore the loaded quality factor can be made as large as 10°.
With these data the coupling constant « is about 1073 in
an experimental setup. Anyway, to achieve squeezing
and to be in the range where the rotating-wave approxi-
mation is valid, that is, Q; >>1, the coupling constant ac-
cording to Eq. (25) always fulfills x <<1. Therefore we
can approximate the evolution equation for the Wigner
distribution Eq. (22) by neglecting the derivatives of or-
der greater than or equal to 3 because these terms are at
least multiplied by an additional factor of (x/2)? in com-
parison to the first-order term. Doing this we obtain the
following approximated master equation for the Wigner
distribution:

+c.c. (W(a,t) . (26)

r

(29) which represents the vacuum fluctuations of the
transmission line fields coupled to the system. If the tem-
peratures of these transmission lines tend to zero the
thermally excited photons np ¢ approach zero. But the
vacuum fluctuations which are entirely of quantum-
mechanical origin couple to the system again and prevent
the Wigner distribution from becoming singular in the
course of time, which is forbidden since it is the symme-
trically ordered representation of the density operator of
a quantum-mechanical system.!>!> If we had no vacuum
fluctuations in the zero-temperature limit the fluctuations
would vanish. But without fluctuations the Wigner dis-
tribution would collapse to a Dirac § distribution at the
stable stationary points of the deterministic dynamic.
This forbidden behavior for the quantum-mechanical
Wigner distribution is prevented by the vacuum fluctua-
tions.

III. STATIONARY POINTS AND STABILITY

To study the behavior of the solutions of the Fokker-
Planck equation derived above we seek the stationary
points of the deterministic part of the Langevin equations
(27). Therefore we introduce the rescaled amplitude
B=2«ka which obeys the Langevin equation

E k2 *
3 _ Y p Y B 2
B 2B ! % |Ble J1(|B|)
3
B i@y
— = J
+2k[(y s W2 () (y g ) 2ER (D] . (33)



Thus for k<< 1, as is the case, the classical trajectories
B(t) only make small fluctuations around the stable sta-
tionary points ;.

A. Stationary points

The stationary points of the deterministic part of the
above Langevin equation are obtained by setting S,=0.
And with

Bo=re'? (34)
we obtain from Eq. (33)
r=—2iple TR (= T (m) (35)
where we have introduced the pump parameter
E;«?
p= iy (36)

Setting the real and imaginary parts of Eq. (35) equal to
zero yields, with the recurrence relations of the Bessel
functions (31) and (32),

r2=—8pJ,(r)sin(2p+@,) (37
and
cos(2@+ @5 (r)=0 . (38)

This equation implies a differentiation between the fol-
lowing two cases.

1. Casel
We set
cos(2¢p+¢@y)=0, (39a)
qp‘,,”=—‘—’;3+(—2”;¢ for 0<n <3 (39b)
and from Eq. (37) we obtain
(= 1)(r')2=8pJ,(rV) . (40)

The existence and dependence of the different roots of
this equation on the pump parameter p can be seen from
Fig. 2. The graphical solution of Eq. (40) is shown there.
That is the cross point of the positive or negative parabo-
la with 8p times the Bessel function of second order; in
Fig. 2 p=1. A series expansion of this Bessel function
given by

Jr(x)=1x?—Lx*+0(x®) 41)

shows by comparison with Eq. (40) that for p <1 the only
solution is #§!' =0. For the critical value p=p!}’ =1 a bi-
furcation takes place and two branches of stationary
states in the directions ¢!’ according to Eq. (39b) with
n =0,2 go away from the origin since the Bessel function
crosses the positive branch of the parabola. If we further
increase the pump parameter p a second bifurcation point
p =pl}) is reached where the Bessel function touches the
negative branch of the parabola, see Fig. 3. At this bifur-
cation point four new branches of stationary points are
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FIG. 2. Graphical solution of Eq. (40) for p =1.

created, since for every new value of the amplitude there
are two allowed phase angles given by Eq. (40) for
n =1,3. If we further increase the pump parameter the
Bessel function alternatively cuts the positive and nega-
tive parabola. The critical values of the pump parameter
where these bifurcations occur and the corresponding
critical amplitudes rc(:.) can be determined from two con-
ditions: First they must obey Eq. (40) and second the
derivative of this equation with respect to the amplitude.

(=1 =4pJ5(rl!) 42)

may also be fulfilled since at the bifurcation point the
Bessel function just touches one of the parabola’s
branches as shown, for example, in Fig. 3. From these
two equations it follows that we obtain the critical ampli-
tudes by solving the equation

T T =05(r ) (43)
and the critical pump parameters can be determined sub-
sequently by

(12
(rcm)

() —
8J,(ri)

p:! (44)

These critical amplitudes and the corresponding critical
pump parameters are listed in Table I.

80
60 8pJa(r)

40 2
20

-20
—40
—60
-80

FIG. 3. Graphical solution of Eq. (40) for p =p; .
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TABLE 1. Critical values of the pump parameter and accom-
panying amplitudes for case-1 and -2 stationary solutions.

Case 1 Case 2
" Py ey ol
i 1.00 0.00 2.40 3.05
2 17.06 6.38 17.93 6.71
3 47.75 9.76 48.77 9.97
4 97.01 13.02 98.16 13.17
5 167.49 16.22 169.02 16.35
2. Case 2

In the second case the roots of the derivative of the
Bessel function of first kind and second order determine
the amplitudes of the stationary states according to Eq.
(38):

Jy(rih=0. 45)

The first few roots of this equation are also listed in Table
I and the corresponding phase angles can be obtained ac-
cording to Eq. (37) by

‘Pﬁlzzn —_% + "_2’7_ +(—1)"Larcsin

2 8pJ,(r!?)

__(r(Z))Z ‘

for 0Sn<3. (46)

Note that this equation has only a solution for those r,,
for which the absolute value of the argument of the
arcsin function is less than 1. Therefore there exists a
lower limit for the pump parameter

(2)y2
{r,.))

-2 47
8J,(ri2) “n

P=p. =

Below this value Eq. (46) has no solution. These critical
pump parameters for the corresponding amplitudes are
also shown in Table I.

B. Stability of the stationary points

To show the stability properties of the various station-
ary points, we linearize the deterministic part of the
Langevin equation (33) and the corresponding complex
conjugate equation at the stationary points. Thus we ob-
tain for the deviation from the stationary value
AB=pB—p, and its complex conjugate the set of linear
differential equation

AB= ’—32’-+'m AB+gAB* (48)

Ag*= [—{——m AB*+g*AB , (49)
with

A=ypJ,(r)cos(2p+¢,) , (50)

g=—iIZEe"“’J°[Jo<r)+J4<r>e‘2‘2¢+¢°’] : (51)
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where g is the conversion coefficient of the parametric
process. The characteristic exponents of these linear
differential equations are given by

}"1/22—%i(|g|2—A2)1/2 . (52)

The stationary states are stable if the real parts of both
characteristic exponents are positive. Thus the stationary
states are stable if the condition

2

L > gl2—a2 (53)

2

is fulfilled. With relations (39) and (40) for the stationary
states of case 1 this stability condition can be transformed
to

J5(rt)

1> I-WSP s (54)

as is shown in Appendix B, Sec. 1. The stationary states
in case 2, obeying the relations (45) and (46), are always
stable, as is shown in Appendix B, Sec. 2.

C. Bifurcation diagram

With the results of the preceding sections the bifurca-
tion and stability diagram of the DCPJPA in the complex
B plane as it is shown in Fig. 4 can be constructed. In the
following discussion we will set the phase shift ¢,=0 be-
cause it results only in a trivial rotation of the 3 plane by
an angle ¢;/2. For 0<p <pf(1” =1 the origin is the only

stable stationary point. For p > pc(l” the origin becomes
unstable and two branches of stable case-1 solutions start

FIG. 4. Bifurcation diagram for the DCPJPA: — — —, un-
stable stationary states; , stable stationary states;
—e e —, Jo(r)=0.




from the origin along the rays with %}% according to Eq.

(39). When the pump parameter p reaches the first criti-
cal value pc(]z) of the case-2 solutions, see Table I, the am-
plitude reaches a zero of the derivative of the Bessel func-
tion and two new stable branches of case-2 stationary
states are created at that bifurcation point, see Fig. 4.
The old branches of case-1 stationary states change sta-
bility properties at that point according to condition (54)
and become unstable. If the pump parameter is further
increased the amplitude r{" approaches the zero of the
second-order Bessel function, as can be seen from Fig. 3.
The amplitudes of the newly created stable stationary
points are left constant whereas the phase angles ap-
proach the coordinate axes with increasing pump param-
eter. When the pump parameter reaches the critical
point p =pc(2”, see Fig. 3 and Table I, two new branches

of stationary case-1 solutions are created, but the phase
angles according to Eq. (39) are now determined by
n =1,3. Note that the inward moving branches are un-
stable and the outward moving branches are stable ac-
cording to condition (54). If the pump parameter p is fur-
ther increased one reaches the next critical value pc(zz) for
case-2 stationary states and the bifurcation behavior as

discussed at the critical value p;*’ will occur again only

the phase angles have changed according to Eq. (46). In-
creasing the pump parameter p further on one alterna-
tively reaches a case-1 and case-2 critical point, see Table
I, with the bifurcation behavior discussed above.

1V. SQUEEZING OF THE RADIATION FIELD

If the device operates far away from bifurcation points,
we can linearize the Langevin equation (33) in the vicinity
of a stable stationary point. Therefore we obtain linear-
ized Langevin equations for the deviation of the intracav-
ity field from the stationary value ay=p8,/2«:

A_GZAM+(‘}’S)I/2§S+(7’R)]/2§R (55)
where
AaT=(Aa,Aa*), §,T=(§,~(t),§,«*(t)) for i =R,S (56)

and
J
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A= 7/2* o & . . (57)
g —y/2—iA

Since these Langevin equations were derived from the
Wigner distribution representation, averages computed
by these Langevin equations have to be understood as the
averages over the corresponding symmetrically ordered
operator expressions. To be able to calculate statistical
properties of the output field one has to relate the statisti-
cal behavior of the output field to that of the intracavity
field as it was done by the operator expression given by
Eq. (8). Reynaud and Heidmann’® have shown that the
quantum-mechanically correct squeezing spectrum of the
output field of the degenerate parametric amplifier can be
computed from the Langevin equation above when the
input-output relation Eq. (8) is also transformed into a c-
number equation, where the input field is again expressed
as the white Gaussian noise source £4(¢), that is,

Ag_out=(},s)1/2u_§s(t) . (58)

One can show by a rigorous quantum-mechanical calcu-
lation (to be published elsewhere), that whenever the time
evolution of the Wigner distribution is equivalent to a
Fokker-Planck equation, one can compute the quantum-
mechanically correct squeezing spectrum from the corre-
sponding classical Langevin equations and the classical
input-output relation Eq. (58).

A. Squeezing of the intracavity field

The squeezing of the intracavity field is defined via the
variances of the quadrature components

AAdy=1L(Age®+AaTe 7). (59)

Since the square of the variance of this component is a
symmetrically ordered operator expression we obtain

((AA4,)?)=1((Aae'®+Aa*e %)) . (60)
The value of this expression can be easily calculated from
the set of linear Langevin equations (55) above and we ob-
tain

7 |y +aal+4lg|[(y 722+ A2] 2cos(x +xo+20)

((AdpP)y=—L
¢ 16y (v /2)2+A2—|g|?

where
X=arg[g]=—§—<p0+arg[10(r)+J4(r)e"2‘2"’+"’°’] (62)
Xo=arctan |— |, (63)

and ¥ is given by Eq. (23). Thus the quadrature com-

, (61)

[
ponent with 6 equal to

Brin= "5~ (X +Xo) (64)

has the minimum fluctuations

YR Ys

((Ad, P)=—[1+2—n,4+2-"1n
Gmm 7/ R y S

1
4
[(}//2)2+A2]1/2_
(727 +A2]2+g|

(65)
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From this expression one can see that whenever a bifur-
cation point is reached, that means one of the eigenvalues
A, according to Eq. (52) is zero, the fluctuations in this
quadrature component reach the absolute minimum
value

1 YR Ys
Adg P pn== [1+2—ng+2—ng | .
< ( B min ) >mm 8 1 Y ng 2 y hg (66)

Thus if the temperatures of the transmission lines ap-
proach zero we obtain just half of the fluctuations with
respect to the vacuum state for one of the intracavity field
quadrature components. The fluctuations in the quadra-
ture component with =6, =6, .. +7/2 go to infinity
at these bifurcation points. For case-1 stationary points
we obtain from Egs. (39), (62)—(64)

3 Po T
gy =27 L Y0 _ {1y _ (T
min = 4 5 w(J,(r')—=Jo(r'')) 5 67)
with the Heaviside function
0, x=<0
u(x)= l x> 0 . (68)

The additional phase 7/2 in Eq. (67) arises when the ar-
gument of the last term in Eq. (62) is in the second or
third quadrant of the complex plane. For case-2 station-
ary points we get, from Egs. (45), (46), (31), and (32),

Tor? ) =Jy () (rf;);l : (69)
14(,;2>)=12(,;3>)l;%_ , (70)

and therefore with Egs. (62)-(64)

(2032
3w, Po , (=1 (rm)
o) = 44— larctan |5
a2 2 4 tan(gi),)
—arctan % —u(—x)m
(71)
with
x=4—(r@2+[12—(r?P]cos(@in) , (72)
y=[12—(r,(,,2))2]cos(q9(0?,),,) . (73)

With this information we can sketch the stationary solu-
tions of the linearized Fokker-Planck equation, which is a
Gaussian distribution, for the different parameter re-
gimes. As before the phase shift ¢, will be set to zero.
As usual’® the Gaussian distribution will be represented
by its error ellipse. Note that the direction of minimum
fluctuations has the angle —6,,, in the complex a plane.
Thus for p < pél” a squeezed vacuum state, as shown in

Fig. 5(a), is obtained where the direction of minimum
fluctuations is determined according to Eq. (67) to be
—6'l) =7/4. When we approach the bifurcation point
p= Pc(,“ =1 the squeezing becomes maximum as discussed

(a) Y (b) Y

N\ -

(c) y d) y
° V' 4
X X
o ,
(e) & y (f) oV

x¥

°

FIG. 5. Sketch of the stationary solution of the linearized
Fokker-Planck equation for different values of the pump param-
eter:  (a) 0<p<pll, ® p<p<p, © p=pl
(d) pc“‘” <p <pc‘f’, (e) p =2.55,(H p =3.42.

above. If the pump parameter p is further increased,
above this bifurcation point, we obtain two new stable
case-1 stationary solutions, see Fig. 4, and therefore the
stationary Wigner distribution becomes double peaked
and looks like that shown in Fig. 5(b), which is a super-
position of two phase squeezed states. But above thresh-
old the squeezing will decrease because the absolute value
of the conversion coefficient g decreases according to Eq.
(51) until the pump parameter reaches the value p = p¥
with corresponding amplitude r =r{® which is deter-
mined by the vanishing of the conversion coefficient g.
Thus from Egs. (39) and (51) r\® is determined by the first
root of the equation

Jo(rO)—a,(r®)=0 (74)

which is r{”) ~2.3 and from Eq. (44) we get for the corre-
sponding pump parameter pi® ~1.6. At this parameter
value no squeezing occurs at all and we have a superposi-
tion of two coherent states, see Fig. 5(c). Above this pa-
rameter value the Gaussian distribution will become
squeezed again, but the angle where minimum fluctua-
tions occur has changed to 0,;,=m/4 due to the change
of sign of the expression (74) in Eq. (67), leading to a su-
perposition of two amplitude squeezed states, see Fig.
5(d). When we reach the second bifurcation point Pc(,Z)
the squeezing in this direction becomes maximum. If the
coupling coefficient x is small enough the two Gaussian
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distributions are far away from each other, so that there
will be almost no transitions between these two Gaussian
distributions and the field mode in the DCPJPA at this
second threshold is then in one definite amplitude
squeezed state.

If we further increase the pump parameter into the re-
gion pc‘f’ <p< pc‘z” the old case-1 stable stationary states
vanish and four new stable case-2 stationary states are
created according to Fig. 4. Figures 5(e) and 5(f) show
the Wigner distributions for two values of the pump pa-
rameter p in this regime. The squeezing of these states
continuously degrades for increasing pump parameters.
For p> pc(z” additional Gaussian distributions must be

added at the newly created stable stationary solutions, see
Fig. 4. But we will not discuss their behavior with
respect to squeezing further on, since the observed behav-
jor is an average over all the Gaussian distributions at the
stable stationary solutions, which smears out the squeez-
ing behavior of the single Gaussian distribution.

B. Spectral squeezing of the output field

The field experimentally observable is the outward
traveling field on the signal transmission line. The

5609

squeezing behavior of this field is usually characterized
by the squeezing spectra S§*(w) (Refs. 6 and 16) and is
defined as the Fourier transform of the autocorrelation
function

e (r)=(A A4 (T)AA45"(0)) (75)
of the quadrature component of the output field

AAP =1(Aage O+ Aag" +e 1) (76)
by

S§ (@)= [ cgt(netrdr. (77)

The semiclassical input-output formalism of Reynaud
and Heidmann as discussed above states that the correla-
tion function (75) is equivalent to

e (r)=(Aa"(T)Aa§"(0)) (78)

where Aa obeys the Langevin equations (55) and the
input-output relations (58). Since we have a set of linear
Langevin equations the squeezing spectrum can be easily
computed in the frequency domain’® and we obtain for
Ty =T and therefore ng =ng=n

|
n+1i 2v.lg! 2 2 172
S§ (@)= 1435 Aylgl+ | |£ | —aM+IglP+a? | +A%? | cos(20+x+x0) || 5 79)
2 ldet(w)] 2
f
where where r denotes the noise reduction
2
R
det(o)= |T-—io | +A7=lg*, (80) =5 4
et(w 5 Tie Ig| r R.+R (84)
. Ay below the thermal and vacuum noise level. Thus if r ap-
Xo=arctan (y /27— At o+ g2 81 proaches zero, that means that the losses due to the junc-

As for the intracavity field the squeezing spectrum is
minimum for a given frequency when we choose

6=06%4= 7 — X+ X0) (82)
Note that for A¥0 this angle depends via Eq. (81) on the
frequency where one will observe minimum fluctuations.
But as we have seen above the parameter values where
the device is of experimental interest for the generation of

squeezed states will be p = p!?. In this range there will

1
only exist case-1 stationary solutions, where A=0 and

therefore also x,=0. Thus one can see from Egs. (67)
and (82) that in this regime the angle where minimum
fluctuations can be obtained is the same for the intracavi-
ty and the output field. The squeezing spectrum of the
output field takes on its absolute minimum value at the
two bifurcation points pc(l” =1and Pc(IZ) =2.4 at frequency

o=0:

S§ (0)=

n+%ﬂ_ n+1 Rg n+%r ®3)
Y

2 TT2 Ry+R 2

tion resistance R are much smaller than those due to the
coupling of the signal transmission line represented by
Ry, this linear analysis predicts perfect squeezing of the
output field around the center frequency of the cavity
mode. Note that additional losses due to an imperfect
cavity would have the same degrading effect on squeezing
as the junction losses. Our result for the achievable
squeezing for the DCPJPA agrees with the result for the
external pumped JPA analyzed by Yurke!” below the
threshold for oscillation. Above threshold for oscillation
and especially at p =pc(12) the DCPJPA is an oscillator
emitting a signal with mean amplitude |a0|=(1/2x)r3]
and vanishing amplitude fluctuations for r —0.

V. OUTPUT POWER OF THE OSCILLATOR

The power radiated into the signal transmission line is
given by

Pout____}z_.( ugut(—)ugut(+)) . (85)
s

Assuming Ty = Ts =0 so that the thermal noise vanishes,
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we obtain with Eqgs. (8)-(11)

p°“t=—m—c<af(t>a(t)) . (86)

N

Thus the output power of the oscillator is given by the
mean number of photons stored in the resonator multi-
plied by the energy of one photon and the damping rate
due to the coupling of the resonator to the transmission
line. Expressing the number operator by the symmetri-
cally ordered expansion

a'a=La'a+aa"H—1 (87

leads to the following result for the output in terms of
averages built with the Wigner distribution:

Pout

R C -1 (88)

and therefore in the linear approach

Pout —

(lapl?+{Aa*Aa)—1) . (89)
RS

The first term is the output power due to the mean ampli-
tude and the other terms represent the additional power
due to the fiuctuations of the field mode. If we neglect
this fluctuation term the output power of the oscillator at
the bifurcation point pm where the mean amplitude and

the amplitude squeezing are maximum, is given by

#Q0(r (2)) 2
=~ 9.9 pw
Rsc|2K| RS

—_— 90)
¥ A

where we have used Eq. (4). Note that the Q in the last
expression denotes the unit of resistance. According to
Eqgs. (4)-(6) and (36) the pump parameter p can be ex-
pressed by

. LR
p= 2<I>af

o1

The product I, R is a constant for a given Josephson junc-
tion. For a junction fabricated by usual low-temperature
superconductors this product is about 1 mV. Since this
voltage is proportional to the energy gap of the supercon-
ductor and therefore to the transition temperature it may
be increased by the use of high-T, superconductors.
Therefore the requirement that the device works at the
bifurcation point pm establishes via Eq. (91) a fixed rela-

tionship between the operation frequency and the noise
reduction r:

£=100.7rI.R GHz/mV . (92)
1
an+m
(aHamTla)=———
[ a"T(a OB —B*
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Thus for a given superconductor the junction resistance
R and the characteristic impedance Rg of the signal
transmission line uniquely determine the frequency and
the output power of the amplitude squeezed oscillator via
Eqgs. (92) and (90). To achieve a noise reduction of at
least 0.1, the frequency is 10 GHz and the output power
will be in the range of 2n W -2 uW for 12> R¢>1 m{.

VI. CONCLUSION

We have shown that the DCPJPA can be used to gen-
erate a squeezed vacuum state at the threshold for oscilla-
tion. Above this threshold a second bifurcation point ex-
ists, where the device generates amplitude squeezed radi-
ation. Due to the relationship between squeezing and
operation frequency, the frequency range where ampli-
tude squeezed radiation can be achieved is below 100
GHz for usual low-temperature superconductors. This
range can only be increased by the use of high-T, super-
conductors for junction fabrication. Since the linearized
analysis predicts maximum squeezing at the bifurcation
points, where the linearization is not valid, one has to
solve the complete Fokker-Planck equation (26) to obtain
the maximum achievable squeezing and the stationary
solution exactly, as will be done in a forthcoming paper.

APPENDIX A: DERIVATION
OF THE MASTER EQUATION
IN THE WIGNER DISTRIBUTION
REPRESENTATION

To derive Eq. (22) we have to show some operator
identities. For the operator T(a) according to Eqg. (21)
the following relations hold:

k
n m 1 a
[ T)n m] T(a ] 2=
20120 2 a
1 1
—_—— *\n—k
X x (a*)
"I () (A1)
nom m 12 |
T(a)[(a")'a™]y= -
0 k§01§0 ! 2 da
_1_ a I( x\n—k
2 da*
Xa" 'T(a) . (A2)

The proof of Eq. (A1) can be easily done by the represen-
tation (18) of the symmetrically ordered product because

2
ym fé;r‘éCXP[((I+B/2)§*—(G+B/2)*§] exp[(§+3)aT_(§+B)*a]|B=ﬁ*:0 )

where we have used the Baker-Haussdorf theorem. Pulling the derivatives behind the first factor of the integrand re-

sults in
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tynm — d_zé *__ * __Q__ _i* ! o _§_ "
(@'Yam,T(a)= [ — expl(a+B/2)§* ~(a+B/2)*E] AR e +2

X exp[(£+B)a’—(£*+B*)a]| (Ad)

p=p*=0"
Making use of the binomial formula, replacing the derivatives with respect to 8 by those with respect to £, and partial
integration results in Eq. (A1). Equation (A2) can be derived analogously. Setting {n,m } € {0,1} into these equations
yields for the irreversible part of the time evolution of the master equation (16)

;14 y |0 G 7 &
| = —a+ *l+ Wia,t) . A
9 |irr 2 [3a” aa*a 2 dada* e.t) (A3)
For the reversible part
%_’:’ —Tr —é[ﬁsys,p]T(a) (A6)
we obtain with Egs. (A1), (A2), and (17)
—iE;xk ;, *© n n+2 2n+1¢ _qynt2-1
W : %E 22 k+1K e [1—(=D)**0]
0 frev 2% w0k =020 2" TIkin —kMNn +2—1)
2 |"[ a
2 | 300 (@*)" "Ha)" "2 e [Wia,t) . (A7)
a

Substituting n —k =m and replacing the last factorial by Euler’s gamma function so that it is also defined for negative
arguments yields

. I
—iE,x i © © k+1—1; __1yk—1
W _ ", K> EK—IH_(YL[I_(_”MH)] 9 9
ot rev 2% k=01=0 2 kil da da*
k—i+2
X I—Caz_l Jysr—1(2kla)) +e.c. |Wia,t) . (A8)
Setting k +/ =s the terms in s cancel and we obtain for s =2n +1
. 2n k n+1—k
aw | | ZIEK gy g [k 1 8 ||
3 |re 24 o 12| ken+1=k)t {3 | | 3a®
2%k —2n +1
X !Z—| Jok —am +1(2¢lal)+c.c. | Wia,1), (A9)
f
the reversible part of Eq. (22). transformed to
_8 gy (n
APPENDIX B: STABILITY OF STATIONARY STATES 1> g IR = (B3)

1. Case 1 and with Eq. (40) we obtain the desired result (54).

For case-1 stationary states Egs. (39) and (40) imply in 2. Case2

Egs. (50) and (51) .

For case-2 stationary states Egs. (45), (46), (50), and
(51) yield for the stability condition (53)
1> p2({[Jo(r @)+, (r )P =4[ T, (r @) P

X cos’(2p+ o)+ [To(rP)—J (r]?

A=0 and |g|=-¥lJ0(r(”)—J4(r(”)|. (B1)

Using the recurrence relations for the Bessel functions
Eqgs. (31) and (32) one can show

xJo(x)=J(x)]1=8[xJ5(x)—J,(x)] . (B2)

From that and Eq. (Bl) the stability condition (53) is

Xsin*(2p+@,)) . (B4)

Using Eq. (B2) to simplify the second term of this equa-
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tion we obtain with Egs. (45) and (37)
0>p2[JO(rm)+J4(r‘2’)]2—4(12(r‘2)))2 ) (B5)

One can show analogously to Eq. (B2)

x 2Ty (x) T, (x)]=2[(14—x W, (x)—5xJ5(x)] . (B6)

Using this formula in Eq. (BS) at point x =r{?) where the

m
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derivative of the second-order Bessel function vanishes
we obtain the inequality

(r>17, : (B7)

which is clearly fulfilled for every case-2 stationary point,
see Table L.
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