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Abstract

For measurements of unsteady flow phenomena with multi-hole pressure probes, pressure
transducers are integrated in the probe near the probe tip. The application of additive manufacturing
enables a wide variation in probe geometries for complex use cases. The spatial characteristics of the
unsteady probe are determined by the steady state calibration in a known free-jet wind tunnel.
Furthermore, the acoustic/pneumatic line-cavity system, that emerges inside the channels of the
probe, is investigated in detail in the temporal calibration. In order to realize multi-hole probes with
higher temporal resolution, which can be operated in harsh environments, a fiber-optic pressure
sensor is developed. The measurement principle of the fiber-optic sensor is based on the Fabry-Pérot
interferometer effect. The sensor is operated differentially with a pressure capillary by either
pressurizing the sensor or using the surrounding static pressure as the reference pressure. Besides
calibration of the sensor, comparisons with a state-of-the-art piezo-resistive pressure transducer have
been performed. The focus of this work is on the reproducibility of both frequency response and
amplitude.

1. Introduction

Highly fluctuating flow fields are caused for example by interactions of rotating and non-rotating components in
turbo machines. Sources of unsteadiness, like rotor-stator interaction, secondary flows or blade wake shedding,
have to be understood either by means of numerical simulations or measurements. Even though the
development and optimization of computational fluid dynamics (CFD) simulations enables the unsteady flow
patterns to be handled numerically, experimentally gained data are still of interest for academic and industrial
research. The reason why experiments can be still justified alongside numerical simulations is twofold: firstly,
experimental results often serve as a database for the validation for CFD solutions. Secondly, live monitoring of
machines (e.g. turbines in operation) is only possible experimentally. Certain requirements have to be met by
probes for unsteady flow measurement in turbomachines. This ensures that all sources of unsteadiness can be
resolved precisely. For example, bandwidths corresponding to blade passing frequencies of up to f = 10 kHz are
the benchmark for the temporal resolution. For aerodynamic measurements of flow fields, measurement
techniques can basically be divided into non-intrusive/optical and intrusive techniques. Particle image
velocimetry (PIV) and laser Doppler anemometry (LDA) are the main representatives of optical measurements,
which are used to examine the velocity field. However, in some cases they are disadvantageous because of high
calibration efforts and significant set up costs. Furthermore, the need for optical access in the test section rules
out optical measurement techniques in various test situations. Of the intrusive measuring methods, hot-wire
probes and multi-hole pressure probes are most commonly used. On the one hand, hot-wire anemometry is
characterized by its high temporal resolution. On the other hand, hot-wires lack of mechanical robustness when
being set in harsh environments. In contrast, multi-hole pressure probes are cost-efficient and easy to use. Since
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the 1990s research institutes worldwide developed multi-hole pressure probes for unsteady measurements, so-
called fast-response aerodynamic probes (FRAP). Ainsworth et al [1] describe the application of piezo-resistive
silicon pressure sensors for unsteady measurements in turbomachines. Different designs of unsteady pressure
probes, for example with respect to their shape, are discussed in [2]. The use in environments with high
temperatures, varying pressure ranges or spatial restrictions of the installation space, require various design,
assembly and calibration strategies. Meaningful and accurate measurement results can only be achieved if the
probe s calibrated in representative conditions. Similarities in Reynolds number Re and Mach number Ma as
well as dynamic similarity have to be ensured during calibration and experiments. Several design trends can be
observed in the literature. Especially sensor specific limitations or limits due to thermal durability are the main
drivers for changes in probe design. Unsteady pressure probes can be divided into real or virtual multi-sensor
probes. Virtual probes use the periodicity of turbomachinery flows and are yawed to virtually simulate a multi-
sensor probe [3]. Gossweiler et al [4] developed single-sensor cylinder probes for turbomachinery
measurements and placed micro-electro-mechanical system (MEMS) sensors in the probe tip. Humm et al [5]
studied various probe shapes and geometric parameters regarding their intrusive influence in flow fields. Further
investigations based on the two aforementioned studies show the application of a fast-response cylinder probe in
a centrifugal compressor [6—8]. Moreover, Rediniotis et al [9] built a MEMS based fast-response five sensor
probe for subsonic measurements, in order to test the angular/spatial and temporal characteristics of the probe
with signal frequencies of up to 400 Hz. A flush-mounted sensor experiences high loads, which can be reduced
by placing the sensor farther inside the probe. However, by doing so, a characterization of the acoustic line-
cavity system in the pressure channels is needed. A reconstruction procedure of the unknown flow parameters at
the probe tip is introduced for a five-hole probe in [10]. Persico et al[11] developed cylindrical pressure probes
and calibrated the pneumatic line-cavity system inside the probe in a low-pressure shock-tube. Sieverding et al
[12] and Brouckaert [13] developed single- and multi-sensor unsteady pressure probes for turbine test-rig
experiments. Recent approaches towards fast-response probes include a waveguide approach by Fioravanti et al
[14] or studies on the probe head shapes by Liu and Paniagua[15]. Additionally, in consequence of a probe
miniaturization, influences on the settling time in turbomachines are discussed by Grimshaw and Taylor [16].
Borner et al investigated probes in the wake of transonic turbine cascades [17] and additive manufactured wedge
probes in turbine wakes [ 18]. State-of-the-art measurements of highly unsteady pressure flow fields are
commonly acquired with electrical transducers. However, electrical transducers show disadvantages regarding
cross-sensitivities against electro-magnetic distortion and the need for active power supply of the electrical
components. Electrical sensors can be divided into resistive, piezo-resistive, capacitive and piezo-electric
sensors, depending on the measuring principle. In order to exceed limitations of conventional electrical pressure
transducers, optical sensors can be used. Previous developments resulted in durable pure glass fiber-optic
sensors for surface pressure measurements (see Schmid et al [ 19, 20]). Those fiber-optical pressure sensors use
the optical principles of the Fabry-Pérot interferometer.

In a cooperation project between the Chair of Aerodynamics and Fluid Mechanics of the Technical
University of Munich, the probe manufacturer Vectoflow GmbH and the fiber-optic sensor specialist fos4X
GmbH, an unsteady multi-hole pressure probe equipped with fiber-optic pressure sensors is being investigated.
In this paper, the usage of additive manufacturing in the field of aerodynamic pressure probes is described.
Furthermore, the development of a fiber-optic pressure sensor based on the Fabry-Pérot interferometer effect is
outlined. The aim is to demonstrate the usage of new cylindrical fiber-optic pressure sensors, which are operated
differentially. The development steps and the theoretical fundamentals of fiber-optic pressure sensors are given.
Moreover, the calibration process for both the spatial and temporal characteristic of the pressure probe is
described in detail. In the last part of the paper, experimental investigations which show the characteristics and
potential improvements of the sensor over piezo-resistive ones are conducted. A first comparison between
piezo-resistive and fiber-optic based pressure sensors is given. In addition, a conventional probe with state-of-
the-art piezo-resistive sensors is characterized.

2. Multi-hole probe geometry and additive manufacturing

In the following, the main steps regarding the multi-hole probe geometry and the usage of an additive
manufacturing process are presented. The working principle of multi-hole pressure probes relies on the
stagnation of the flow around the probe, when being inserted in the flow of any fluid. The pressure distribution
around the bluff probe body varies from the maximum pressure at the location of stagnation to lower values,
that can even be lower that the static pressure in the undisturbed flow far upstream of the bluff probe body. At
the stagnation point maximum pressure, the stagnation or total pressure p,, is equal to the sum of the static
pressure psand the dynamic pressure far away from the probe g.
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Figure 1. Schematic sketch of a multi-hole pressure probe.

Figure 2. Additive manufactured straight five-hole pressure probe.
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Here, Uy, is the free-stream velocity and p the density of the fluid. Similar to the well-known Pitot probe, where
the stagnation pressure is measured at a single pressure port, multi-hole probes measure the total pressure of the
flow at various locations at the probe tip. In figure 1(a) the schematic cross-section of a multi-hole probe under
an angle-of-attack is depicted. In this flow situation the bottom and central hole would experience higher
pressures than the upper hole. By measuring all pressures and setting these pressures into relation, the general
flow properties at the location of the probe tip can be concluded. For a five-hole probe, which can measure both,
pitch and yaw, angles, the pressures p1, py, ..., ps are measured at the depicted pressure ports (see figure 1(b)). In
the present research project, a multi-hole pressure probe is developed for its use in unsteady flows (see figure 2).
Itis designed for measurements in turbomachinery and wind tunnels. In contrast to steady pressure acquisitions,
long pressure lines cannot be used to connect the probe holes to the acquisition manometers/pressure sensors
for unsteady flows as the time-dependent pressure fluctuations would be attenuated entirely. Therefore,
differential pressure sensors are installed in close proximity to the probe tip—often in the probe shaft.
Turbomachinery use cases with signal frequencies of up to 10 kHz define the temporal characteristics. Intrusive
effects, as they occur when placing probes in flows, can be avoided by miniaturizing the fast-response pressure
probe (FRAP) and its shaft. Using additive manufacturing enables the realization of arbitrary probe shapes,
which counteract the limitations of probes manufactured in conventional cutting processes [21].

Fabrication of complex geometries can be realized with additive manufacturing. For the manufacturing of
the probe shown in figure 2, the powder-bed fusion method, more precisely the selective laser melting (SLM)
method, was used. Thereby, metal or ceramic powders are melted and sintered. Further terminologies for SLM
in the literature are direct metal laser sintering or laser cusing[21]. In the SLM process, thin layers of powder are
stacked on top of each other and selectively melted by a laser. Considering the design of acrodynamic probes, the
narrow internal channels and the required tightness make certain manufacturing settings necessary. Layer
thicknesses under 50 ysm and focal laser diameters of around 100 pum provide good results with relatively small
probe diameters. The orientation of the probe during the additive manufacturing process is crucial to obtain a
smooth surface, as well. Low angles and overhangs must be avoided when possible. Depending on the potentially
harsh environments during probe applications, e.g. high temperatures, different materials can be used in the
printing process. The materials, which can be used in the powder-bed-fusion process, have to show adequate
melting and resolidifying properties [21]. Materials like titanium, Inconel 718, or stainless steel are most
commonly used for aerodynamic applications [22]. In this work’s case, it was decided to use the standard alloy
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Figure 3. L-shaped probe head comparison: probe after additive manufacturing (left) and after post manufacturing process (right).

316L, since no special temperature requirements were present. Nevertheless, there are still some limitations
regarding the probe’s geometry and its channel configuration when setting up the additive manufactoring
process. Hence, many iterations are required to achieve acceptable results. These limitations range from powder
accumulation within cavities to excessive porosity or rough surfaces in some structures. Research efforts
targeting those problems have enabled the manufacturing of arbitrary multi-hole probes with tip diameters of
1.2 mm and channel diameters of D < 1 mm [22]. As the final step of the manufacturing, different details in the
probe design can be realized in a post manufacturing cutting process (see figure 3). Such details can be, for
example, different probe tip shapes, which can vary from the application of the probe, or the connectiontoa
probe holder. Most commonly only the probe head is manufactured through SLM, since it is the critical part of
the probe and sensible to geometric variations. For most unsteady applications, a hemispheric probe tip is
beneficial. Probe geometries can be adopted to special measurement instrumentations. Borner et al realized a
3D-printed miniaturized wedge probe for transonic wake flows [18]. Furthermore, Bach et al designed a SLM-
manufactured guide vane with an integrated Kiel probe [23]. Improvements in the 3D-printing process can lead
to further miniaturized probes, which reduce intrusive effects of the probe in the flow field.

3. Sensor specifications

Asalready mentioned, due to the measurement task in highly unsteady flows, the placement of pressure sensors
inside the probe is necessary, since long pressure lines to manometers would attenuate signal contents of high
frequencies entirely. In the following, the state-of-the-art pressure sensor type, namely piezo-resistive sensors,
areintroduced. Furthermore, the development of a new fiber-optic pressure sensor, that should overcome the
downsides of the electric counterparts, is described.

3.1. Piezo-resistive sensor

In figure 4(a) the working principle of a piezo-resistive sensor is depicted [24]. Due to the application of pressure,
the sensor membrane will be deformed. Therefore, the piezoresistor will experience bending stresses and, hence,
changes in electrical resistivity of the sensor material due to the piezo-resistive effect. A Wheatstone bride is
embedded in the piezoresistor membrane (often silicon). The change in resistance of the bridge leads to a change
in the output voltage V,,, (see figure 4(b)). Even though piezo-resistive sensors are easy to use and the state-of-
the-art solution for pressure measurements, there are several downsides, which lead to the idea to develop a
sensor based on another measurement technique, as described in the following chapter. Piezo-resistive sensors
show not negligible cross-sensitivities to external influences, like temperature and humidity changes or electro-
magnetic disturbance. Furthermore, the Wheatstone bridge has to be operated actively. In addition, due the
spatial restrictions inside a pressure probe, the wiring of the multiple sensors is time-consuming and complex.
Commercially available differential sensors are seldom smaller than 2—3 mm in diameter, considering the
desired pressure range of up to 2 psig for low-speed wind tunnel use-cases.
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Figure 4. Schematic working principle of a piezo-resistive sensor.
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Figure 5. Schematic design of the new differential fiber-optic pressure sensor.

3.2. Fiber-optic pressure sensor

A major part of the probe improvement activities is the enhancement of the sensor performance. Therefore,
optical principles are applied to surpass the limits of conventional electrical pressure transducers with respect to
resolution and cross-sensitivities. The characteristics of the optical sensors are expected to outperform state-of-
the-art piezo-resistive sensors.

In previous developments, fos4X GmbH has developed a durable pure glass absolute fiber-optic pressure
sensor for surface pressure measurements [19, 20]. The cuboid pressure sensor, which is wall mounted, operates
without any conductive material. Due to its absence, the sensor is inherently immune to electro-magnetic
interference. Furthermore, it is robust against water, humidity, and corrosion. The miniature sensor with
dimensions of 1.6 mm X 3 mm x 10 mm is capable of measuring aerostatic, aerodynamic and aeroacoustic
events as a pressure sensor and as a microphone at the same time [19]. The flat design allows for integration in
surfaces with minimal aerodynamic disturbance of the air flow. The fully exposed membrane of 1.65 mm
diameter at the surface of the sensor enables pressure measurements without any spectral characterization,
because of constant frequency response to 80% of the natural frequency of 250 kHz [19, 20].

In contrast to the existing cuboid absolute pressure sensor, a new cylindrical, differential pressure sensor is
developed and tested, in this work. It is intended to be installed in five-hole probes as a replacement for state-of-
the-art piezo-resistive sensors.

3.2.1. Fabry-pérot effect for pressure sensing

A fiber-optic pressure transducer at the end of a common telecommunication fiber works in principle similar to
their electrical counterparts: The fiber-optic sensor is a passive MOEMS glass chip, which consists of a
diaphragm/membrane, a resonance cavity and two mirrors. One mirror is attached on the diaphragm, while the
second is half transparent and fixed. Applied pressure p bends the diaphragm and changes the cavity length L,
between the two mirrors (see figure 5). The end of the fiber and the inner part of the membrane represent the two
mirrors. The maximum deflection of the membrane is [20]:

31— 1)

2
16Eh} @

Here, E is the Young’s modulus, v the Poisson’s ratio and r,,, and h,,, radius and thickness of membrane. Thus,
the performance of the measurement system, e.g. its sensitivity, is predominantly defined by the mechanical
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Figure 6. Qualitative size comparison of a sensor prototype and a Euro cent coin.

displacement of the membrane. The miniaturization of the sensor design will therefore considerably affect the
sensitivity. A broadband infrared light source illuminates the transducer from the fiber-optic cable. Optical
interference modulates the reflecting light spectrum depending on the cavity length and therefore, the deflection
of the membrane due to the applied pressure. Each wavelength X of incoming light, which fulfills the Fabry-
Pérot resonance condition will interfere destructively [25]. The ratio of the reflecting light spectrum I, to the
incoming light spectrum I is dependent on the phase ¢ and can be calculated as follows:

Ir M + Fsin(6/2)?

Io 1+ Fsin(6/2) )
g — Z%n(LC + AL 4)

Here, F depicts the coefficient of finesse, which describes the quality of the Fabry-Pérot filter. M refers to the
‘mismatch’ of the reflectance values in the interferometer [26, 27]. An increasing cavity length shifts the phase
condition of the destructively interfered wavelength in the spectrum to larger wavelengths, while a smaller cavity
length shifts the spectrum to smaller wavelengths [19, 28]. The modulated light is guided back in the same single
fiber to the optical measurement device, where it is split in two parts. While the first part is focused directly on a
photodiode, the second part is optically filtered and focused on a second photodiode. The reflected spectrum of
the sensor is matched to the operating point of an edge-filter interrogator, also known as the Q-point of the
device. Therefore, the edge-filter interrogator is filtering a single destructive interference in the optical spectrum
in the C-band. The ratio of the light intensities reveals the phase shift of the reflected spectrum. The correlation
of this ratio to the applied pressure can be determined in a calibration. The optical filtering process ensures
sampling frequencies up to f; = 50 kHz. Each analog signal is converted to a digital value by an analog to digital
converter.

3.2.2. Sensor design and assembly

In the development process conducted within this work, a gauge/differential fiber-optic pressure sensor, which
is based on the optical principles of a Fabry-Pérot interferometer, is manufactured. As an aim the main
specifications of the presented five-hole FRAP shall be improved regarding its measurement abilities by
replacing the piezo-resistive sensors with the fiber-optic ones. The fiber-optic sensor casing and membrane are
fabricated out of two fused silica (5iO,) wafers, which are bonded together. Further information regarding the
selective laser etching (SLE) bonding process is given in [29]. Furthermore, the optical fiber is fixed to fit the
Q-Point of the measurement device in the micromachined wafer. A capillary is bonded to either pressurize the
cavity and therefore measure the differential pressure or work as a gauge sensor with the surrounding static
pressure as the reference pressure (see figure 5). In figure 6, a fiber-optic pressure sensor of the 1st generation is
shown, which has a diameter of 2 mm. The light is reflected by a mirror and terminated.

4. Probe calibration process

Using the probe in an experiment with unknown flow conditions requires a calibration of the probe beforehand.
In the calibration process, a separation of spatial and temporal behavior of the probe is assumed. Hence, besides
an aerodynamic/spatial calibration, a dynamic/temporal calibration has to be conducted as well. The temporal
calibration characterizes the acoustic system in the channels between the tip and the sensors. Both calibration
approaches are explained in more detail in the following sections.
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Figure 7. Free-jet calibration facility at Vectoflow [22].

Figure 8. Calibration grid for o, 8 = £60°.

Table 1. Specifications of the Vectoflow calibration wind

tunnel [22].

Velocity range Ma < 1.2
Maximum power 90 kW

Angle range +165° (yaw), £180° (roll)

+0.25% at Ma = 0.1
30-200 mm

Temporal speed non-uniformity
Nozzle diameter

4.1. Spatial calibration in a free-jet

Within the spatial calibration, the correlation between the mean free-stream flow conditions and the measured
pressures at the probe is determined. Therefore, various combinations of the free-stream velocity U,, and the
flow angles avand B are set in the free-jet calibration wind tunnel, which is illustrated in figure 7.

Table 1 depicts the specifications of the calibration free-jet facility. Depending on the expected angle and
velocity range in later experiments, angle combinations at certain velocities are calibrated. Figure 8 shows the
calibration grid for the straight five-hole probe in figure 2. Figure 9 shows the two interchangeable coordinate
systems: pitch(a)-yaw((3) or roll(¢)-cone().

o = tan~!(tan(0)sin(¢)) (5)
3 = sin~!(sin(f) cos(¢)) 6)
0 = cos™'(cos(a)cos(3)) ?)
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Figure 9. Schematic demonstration of the two interchangeable coordinate systems.

Figure 10. Definition of flow regime regions (blue) with overlap segments (red).

¢ = tan”'(sin(@) / tan(3)) ®)

In order to determine the actual flow conditions at the probe tip in an experiment, the acquired pressures
have to be post-processed. In the literature, there are multiple ways how the calibration data is used for
reconstructing the flow-field properties. The most commonly used one is an interpolation scheme, which is
applied on the gathered pressures in order to calculate the properties at the probe tip. System identification
approaches with the use of neural networks can also be found in the literature. Both approaches will be discussed
and compared subsequently:

Non-dimensional calibration coefficients can be calculated, which are the basis for the interpolation. The
interpolation routines can be divided in global or local interpolations, depending on whether to use all
calibration points or solely points in the surrounding with similar calibration coefficient values, respectively.
Based on Johansen [30], alocal interpolation method is used and the calibration data is divided in a low-angle
and high-angle regime. The pressure port with the highest measured pressure determines the set of calibration
coefficients, that are used for the reconstruction. In the case that multiple pressure ports see similar pressures
within a pre-specified margin, overlap segments are defined, in which the coefficients are calculated for every
dominant pressure port (see figure 10). For the low-angle regime, where the central port p; measures the highest
pressure, the coefficients are as follows:

by = b= D by = b b5 )

q q

At:u A= 5

q q

(10)
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Hidden layer Output layer

N=25

Figure 11. Sketch of the trained artificial neural network.

Pyt +pt0ps

with §=p, — " (11)
Thus, g denotes the pseudo dynamic pressure, which is used to non-dimensionalize the coefficients.
The high-angle regime, where one of the circumferential ports p; measures the highest pressure, can be
described by the following coefficients:
. — + — po
b@zpl_Pl b¢:p _p (12)
q q
a=P"0 g TR (13)
q q
+ —
with §=p, — % (14)

Thereby, p™ and p~denote the pressures at the circumferential pressure ports in clockwise and counter-
clockwise direction.

In the reconstruction procedure, the pressure data at the test pointis acquired p, ., p, 1, .., ps - The
subscript T denominates the values at the test point T. The non-dimensional coefficients b, 7, b, or by 7, by,
for low- or high-angle regimes are calculated as defined above, respectively. In the following step, a local-least
square interpolation determines the quantities A, 1, A, rand ar, Bror 07, ¢ras functions of f (by, 1, bs 1) or
f (o, 7> by, ). The Mach number Ma can be calculated as follows (shown for the high-angle regime):

b =P — At,T : q_T (15)

p=p —AsT - Gr (16)

Ma = 2 . (&) | -1 (17)
k=1 )22

U=Ma-c=Ma-Jk-R-T (18)

Here, cis the speed of sound, « the specific heat ratio and R the specific gas constant. Lastly, the velocity
components #, vand w can be calculated:

u = U - cos(a) - cos(3) (19)
v = U - sin(B) (20)
w = U - sin(a) - cos((3) (21)

A possible way to implement the basic interpolation functionality in MATLAB is to use the built-in Delauney
triangulation function delauneyTriangulation from a set of points. Using its object function pointLocation, the
triangle enclosing a test point and the barycentric coordinates of the test point can be determined. Thus, a fast
interpolation can be ensured.

A further method how the measured pressures can be post-processed is the usage of system identification
methods. Neural network approaches have been used in the field of multi-hole probes for the reconstruction of
the flow conditions [31, 32]. An artificial neural network (ANN) application is based on training data to set the
weights of connected neurons/nodes. So-called weights and biases determine the strength of the connections
between different neurons and layers. MATLAB offers the neural network fitting application nftool [33].

Figure 11 shows the structure of the trained neural network for a single calibration Mach number. As input data,
the five measured pressures are given. The output of the ANN are the flow angles (o and (3) and the static

and total pressure (p; and p,). The neural network is trained with the function trainlm, which trains a shallow
two layer feed-forward network with sigmoid hidden neurons and linear neurons. For this purpose, the

9
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Peip (0) - 4 Dsensor(t)

Figure 12. Schematic sketch of a pneumatic line system including the main geometric properties.

Levenberg-Marquardt backpropagation algorithm is applied to update the weight w and bias b values [34]. The
division between training, validation and test data for the neural network fitting is random. The number of
hidden neuronsissetto N = 25.

4.2. Temporal calibration

In addition to the spatial calibration, the dynamic characteristics of the multi-hole probe has to be determined.
The acoustic system inside the pressure channels has a significant influence on the measurement of unsteady
flow phenomena. Figure 12 illustrates the properties, which mainly describe the acoustic system between the tip
and the location of the sensor inside the probe shaft: the length L, the diameter D = 2rand the volume in front
of the sensor V. The acoustic system is mainly dominated by two different forms of pressure distortion,
resonance and attenuation.

A way to describe the dynamic behavior of pneumatic line-cavity systems was introduced by Bergh and
Tijdeman [35]. They analytically formulated a recursive solution for small disturbances and for tubes with small
diameters compared to the tube length L/D > 1. Furthermore, alaminar flow and a fluid governed by the ideal
gas law was assumed. The complex ratio Py,,s,/ Py describes the attenuation and phase shift for the acoustic
wave propagation inside a system of a single tube and is denoted as transfer function (TF) of the system H(w):

—1
H(w) = Bensor (W) [cosh @) + 2™ inh (¢L)] (22)
Pip(w) KTr?
i _w [r (™ 23)
v v c\'n LM
K- 1 IZ(W%] B
=14 = 20T 24)
! [ P [m@) ] (
y = [ (25)

I

Thereby, J; denotes the Bessel function of ith order, « the specific heat ratio and Pr, p and s the Prandtl number,
the density and dynamic viscosity of the fluid, respectively.

In the case of longer pneumatic lines, the signal noise can get dominant in the deconvolution. Semaan and
Scholz compare the Bergh and Tijdeman correction with a method using a Wiener filter. This approach is called
Wiener deconvolution [36]. They come to the conclusion that only for a length bigger than L > 150 mm the
Wiener deconvolution is beneficial. Since the probe presented in this paper has shorter tubes, the Bergh and
Tijdeman solution is used as a reference in the following.

Experiments with additive manufactured probes have shown that due to imperfections inside the tubing,
analytic solutions can solely serve as a first guess. The need for more accurate transfer functions leads to the
experimental verification of the acoustic system. In a frequency test-rig the investigated object (e.g. the multi-
hole probe) and a reference sensor are mounted in close proximity to each other (see figure 13). Furthermore, it
contains a speaker connected to an amplifier. Sinusoidal waves are emitted and recorded at specified frequency
steps, and hence, the amplitude ratio as well as the phase shift are obtained.

When measuring in unknown unsteady flows, the reconstruction process of the actual time signal at the tip is
shown in figure 14 [10]. The quasi-periodic signal at the sensor p.,,,,(¥) represents the input. Before the time-
domain signal is processed into the frequency domain by applying a fast Fourier transformation (FFT), a
windowing function is applied. The TF is then used to calculate the Fourier-transformed pressure at the tip
P,ip(w) from the Fourier-transformed pressure at the sensor Pye,,so(w):

Pensor (W) = H(w) Ptip (w) (26)
Furthermore, digital signal conditioning, like low-pass filtering, can be applied in this step. Lastly, the signal is

transferred into time space by applying the inverse FFT. The pressure at the tip p,;,(f) is obtained as the output
and can be further processed by utilizing the spatial calibration data. In order to show the functionality of the
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Figure 13. Frequency test-rig for the experimental determination of the acoustic transfer function H(w).
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Figure 14. Pressure reconstruction routine.
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Figure 15. Pressure reconstruction in a narrow tubing: Superposition of sinusoidal signals with f; = 4000 Hzand f, = 5000 Hz.

reconstruction procedure, the transfer function of a narrow silicone tubing is determined. Two sinusoidal
signals with f; = 4000 Hz and f, = 5000 Hz with differing weights are superposed and emitted by the speaker in
the frequency test-rig. Figure 15 shows the reconstructed pressure at the tubing tip p,;, ..., after applying the TF
on the pressure detected at the sensor py,,s.,- It is compared to a reference signal measured in close proximity to
the tip with another sensor p,;, .. The reconstructed signal matches the reference signal very well.
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Figure 16. Fiber-optic pressure sensor static calibration.

5.Sensor and probe characterization

5.1. Sensor tests

In the following, all experiments are conducted with ten sensors of the first sensor generation (depicted in
figure 6). Tests include the determination of the calibration coefficient and comparisons to piezo-resistive
Sensors.

5.1.1. Static and dynamic calibration
In the sensor calibration process, the correlation between the optic output value p,,, and the applied pressure p is
determined for the linear pressure range by

Popt = k- p+ Popt,0° (27)

If the operating point is set correctly, the characteristic should be linear, since it is mainly dependent on the
mechanic deformation of the sensor membrane. In addition, the operating point has been set to match the
quasi-linear range of the edge-filter. By applying predefined pressures, either statically or dynamically, the
calibration coefficient k is calculated. First calibration tests have shown that the sensor’s behavior strongly
depends on the ambient conditions and the installation situation. Therefore, it is important to know the
influence of these conditions during calibration and to separate them in the best possible way. Temperature
resistance is limited due to the use of adhesive when attaching the optical fiber and the pressure capillary to the
ferrule. In addition, the temperature sensitivities vary from sensor to sensor, but behave linearly. For the static
calibration procedure, a sealed box, in which the sensor was integrated, was pressurized. The sensors’ output
values are linear with pressure in a pressure range specific for each sensor. The width of this range depends
mostly on the sensitivity of the sensor and the Q-point. Outside of the range, non-linear behavior sets in.

Figure 16 shows the static calibration curves for two sensors. One of the sensors shows a linear correlation
between pressure and the optical output value Popt = Papt,0 OVEr the whole shown pressure range. The linear
range of the other sensor is less extensive, so that an overall non-linear behavior in the shown measurement
range was observed. For future sensor generations, the sensor assembly and setting of the operating point is one
of the most challenging tasks in order to have reproducible linear behavior ranges for sensors in the same batch.
Nevertheless, even for sensors with non-linear static calibration behavior, small, dynamic disturbances around
the operating point can be regarded linear. The sensors are tested on their dynamic behavior with a sound
generator that produces a specific sinusoidal signal at a prescribed sound pressure level L,,.

5.1.2. Comparison to piezo-resistive sensors
As a first comparison of the fiber-optic pressure sensors to state-of-the-art piezo-resistive sensors, both sensors
are placed next to each other in the frequency test-rig. Sinusoidal excitations in the frequency range of f; = [100,
1000] Hz are measured and compared. The signal frequencies can be exactly reproduced by both sensor types
with relative errors smaller than 1% in the whole frequency range. Figure 17 shows the dynamic pressure
amplitudes measured by both sensors. Furthermore, the relative deviation of the fiber-optic pressure sensor to
the piezo-resistive sensor is depicted. It can be observed that the amplitudes also match very well. Larger
deviations at f; = 100, 400 Hz could be due to acoustic modes in the frequency test-rig, that have been observed
in previous measurements, as well. Furthermore, those errors could be traced back to the small excitation
magnitudes, which are in the range of the minimum transducer resolution.

Tests examining the noise level of the measurement chain are conducted. The piezo-resistive sensor is
connected to a NI 9237 module and shows better signal-to-noise ratios (SNR) than the fiber-optic pressure
sensors. This is due to the lack of enhanced signal conditioning in the optic measurement acquisition. The optic
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Figure 17. Pressure amplitudes p measured with a fiber-optic pressure sensor placed next to a piezo-resistive sensor in the frequency
test-rig dependent on the excitation frequency f.

~Ref: Piezo, Tube: Optic

—o-Ref: Optic, Tube: Optic

6r —~Ref: Piezo, Tube: Piezo
r —--Analytical Solution: Bergh, Tijdeman

Drube/Dref

200 400 600 800 1000 1200 1400 1600 1800 2000
[ He]

Figure 18. Attenuation p, ,, /f, forasilicone tubing with L = 200 mmand D = 1.5 mm.

Table 2. Comparison of the fiber-optic pressure sensor specifications to the piezo-resisitve transducer.

Fiber-optic pressure sensor Meggitt Endevco 8507C-2

Dimensions (diameter x depth) [mm X mm)] 2.0 x 2.0 2.3 x 12.7
Pressure range [kPa] 100 14
Maximum operating temperature [°C] 120 107
Resonance frequency [kHz] 290 70

measurement chain is still under development and efforts concerning bandwidth and noise specifications have
to be addressed either by changes in hard- or software.

In table 2, a short comparison of the 1st generation fiber-optic pressure sensor specifications, which are
observed in the sensor batch, to the Meggitt Endevco 8507C-2 piezo-resistive sensor is shown.

5.1.3. Transfer function of a silicone tubing

A more realistic test application for the fiber-optic pressure sensors is the determination of the transfer function
ofasilicone tubing with L = 200 mm and D = 1.5 mm. Experiments are conducted in the aforementioned
frequency test-rig. Variations of the combination of the reference sensor and the sensor at the end of the tubing
are compared. Different frequency step sizes were used for the different combinations: 20 Hz for piezo-piezo
and 100 Hz for the piezo-optic and optic-optic cases, respectively. Moreover, the analytical solution for the
attenuation p, / ﬁref by Bergh and Tijdeman is displayed in figure 18. For the two cases, in which the fiber-optic
sensor is mounted at the end of the tubing, the resonance frequencies match the ones of the analytical and the
piezo-piezo solution, which can be seen as the state-of-the-art and validated solution. The qualitative trend is
reproduced well, however, the amplitudes of the attenuation are underpredicted by the optic sensors. A possible
reason for this can be a systematic error, which is attributed to a modification of the operating point of the sensor
while installing it in the test-rig. The fiber-optic sensor is deformed by the surrounding silicone tubing
marginally but sufficient enough to cause a change in the calibration coefficient. This leads to the conclusion that
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Figure 19. Analytical estimate for the attenuation f,,_, / ﬁtip for L = 100 mm, V = 2 mm® and varying tubing diameters.

Table 3. Five-hole probe and calibration properties.

Probe/tip shape straight/hemispheric
Tip diameter Dy;, 3 mm

Shaft diameter Dy,qz 15 mm

No. channels/holes 5

Channel diameter <1 mm

Sensor Meggitt Endevco 8507C-2
Sensor diameter 2.3 mm
Aerodynamic calibration +55°

Dynamic calibration 10 kHz

the assembly of the sensor into a test object is crucial regarding its behavior and therefore has to be addressed in
the future carefully.

5.2. Fast response probe tests

Lastly, the characteristics of a conventional unsteady probe, which is equipped with state-of-the-art piezo-
resistive sensors, are shown. For applications with limited space for the probe installation, a miniaturization of
the probe dimensions would be beneficial. In addition, a smaller probe head leads to less intrusive and disturbing
effects in the flow field. Thus, the reduction of the tip size would enhance the aerodynamic/spatial resolution of
the probe [16]. Non-uniform flow conditions, like shear and gradient dominated flows, can be represented in
more detail with an increased resolution. Moreover, corrections for flow phenomena due to the intrusion of the
probe, like inertial effects of the probe, have a smaller contribution to the pressure measurement. Yet, the
reduction of the probe size has also antagonistic effects: Two major problems concerning the temporal
characteristic emerge, which affect the acoustic system inside the probe and therefore, predominantly change
the unsteady behavior of the pressure probe. First, a reduction of the acoustic channel diameter leads to a high
attenuation of the acoustic wave for higher frequencies (see figure 19). Second, sensor dimensions have to be
reduced as well when reducing the overall dimensions of the probe and keeping the channel length constant.
Flush mounted sensors could counteract the described attenuation. Nevertheless, by placing the sensors in close
proximity to the probe tip, the packaging effort and the probe dimensions would increase. Therefore, the
performance of future sensors has to be optimized, which is one major driver in the already mentioned
development of a new fiber-optic pressure sensor.

5.2.1. Design of a conventional unsteady multi-hole probe

An unsteady five-hole pressure probe, which is displayed in figure 2, has been designed for testing its unsteady
aerodynamic measurement behavior. Table 3 summarizes the major design aspects, which are described in more
detail in the following. The straight probe has a tip diameter of D;, = 3 mm. The additive manufactured probe
head is attached to a shaft with an outer diameter of Dy;,; = 15 mm. Five cavities are drilled into the rear part of
the probe head, which contain the unsteady differential pressure sensors. For this pressure probe, state-of-the-
art piezo-resistive Meggitt Endevco 8507C-2 transducers are installed inside the cavities [37]. A challenging task
in the design is the integration of the sensors inside the probe. Considering the miniaturization of the probe, the
sensor, which has a diameter of 2.3 mm, limits the geometric design. A further reduction of the size of the probe
shaft, which contains five sensors in a compact pattern, is restricted by mechanical stability. In order to avoid
leakage, the sensor is surrounded with a thin silicone tubing and pressed into the cavity (see figure 20). The
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Figure 20. Schematic visualization of the transducer packaging in the probe head cavity.
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Figure 21. Comparison of the test point angle reconstruction for interpolation and neural network approaches; Ma = 0.10.

Table 4. Spatial reconstruction results for both approaches.

Aal’] ABI°]
maxabs rms std maxabs rms std
Interpolation 0.74 0.16 0.16 0.76 0.12 0.11
ANN 1.80 0.53 0.50 1.13 0.35 0.35

reference pressure lines of the differential transducer are merged in a manifold, so only one pressure tubing is
connected to the reference pressure.

In general, maximum calibrated angles for five-hole probes range up to 60°. Precise reconstructions with
absolute angular errors smaller than 1° and velocity errors smaller than 1 m s~ can be ensured up to o,
B = £55°, asitis noted in the subsequent chapter .

5.2.2. Spatial and temporal characteristic
In the following, the post-processing accuracy and time consumption of the two different spatial reconstruction
approaches, the local interpolation and neural network, are compared. As a test, data for 258 test points are
acquired after the probe calibration for a defined Mach number of Ma = 0.10. Figure 21 depicts the post-
processed angles compared to the actual angles set in the free-jet wind tunnel. Both methods show mean
absolute errors below 1° for both angles. Table 4 shows maximum absolute (maxabs) errors, root-mean-squared
(rms) values and standard deviations (std) for both angles. The Delauney triangulated interpolation calculation
result in smaller deviations compared to the ANN approach. This is due to a limited amount of neurons in the
ANN training of 25 neurons. Nevertheless, both methods show acceptable errors for tested angles up to 60°. The
reconstructed velocities match the fixed velocity in the free-jet with relative errors smaller than 1% for both
methods. Applying the MATLAB built-in functions for both methods results in a speed-up factor of up to 5 for
the neural network processing in comparison to the Delauney triangulated interpolation method. The demand
of fast data processing increases, when measuring in highly unsteady flows with sampling frequencies bigger
than f; > 50 kHz. Though interpolation methods are optimized and represent the state-of-the-art solution for
multi-hole probe post-processing, the neural network approach may lead to reduced calculation times.

As described in the chapter for the probe calibration, besides a spatial calibration, the temporal characteristic
has to be determined in the frequency calibration test-rig. For the determination of the transfer function, a
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Figure 22. Transfer function H(w) for the straight multi-hole probe: amplitude ratio and phase shift for the first three sensors.

frequency step size of the input sinusoidal signal is set to 20 Hz. Figure 22 exemplarily shows the amplitude ratio
Doonsor / ﬁn‘p and the phase shift ¢ for three of the five sensors of the five-hole FRAP. For frequencies up to 10 kHz,
the attenuation does not fall below 0.15. This value is assumed to be appropriate to reconstruct signals within the
frequency range. Having calibrated both, the spatial and temporal, characteristics, the fast-response multi-hole
pressure probe is ready to be used in unsteady, unknown flow-fields.

6. Discussion and outlook

A reference five-hole pressure probe with piezo-resistive sensors that can measure unsteady phenomena up to

10 kHz was developed, as a preliminary stage towards a fiber-optic based multi-hole probe. Additive
manufacturing (selective laser melting) enables the realization of arbitrary probe shapes. Hence, even in probe
installation situations with massive spatial restrictions, appropriate probe designs can be achieved and
produced. The spatial and temporal calibrations of the five-hole probe ensure a precise reconstruction of the
flow-field parameters at the probe tip. The spatial calibration data represents the correlation between the port
pressures to the flow conditions that were set during the calibration in the free-jet wind tunnel. When measuring
an unknown flow field, the calibration data set can be used to reproduce the unknown conditions, either by
interpolation or neural network approaches. During the temporal calibration, the acoustic system inside the
probe pressure channels is characterized. A transfer function that determines the amplitude ratio and the phase
shift of the pressures in the channels is obtained experimentally in a frequency test-rig. The development of an
unsteady fiber-optic pressure sensor is presented. The gauge/differential fiber-optic sensor is based on the
optical principles of a Fabry-Pérot interferometer. Details on the optic theory are given. Tests with the fiber-
optic pressure sensors of the 1st sensor generation already show good dynamic behavior and appropriate
specifications in comparison to state-of-the-art electrical sensors. The static calibration shows the importance of
a precise sensor assembly in order to fit the operating point of the sensor to the linear part of the edge-filter
interrogator spectrum. In case of discrepancies in the assembly, the sensor output could behave non-linear when
larger pressure amplitudes are applied. In future developments, further sensor investigations have to be carried
out with respect to fixed mounting and assembly conditions. In addition, improvements concerning signal
conditioning within the optical measurement chain will be examined. In future development steps, a smaller
unsteady multi-hole probe equipped with the differential fiber-optic pressure sensors will be assembled,
calibrated and tested.
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