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A B S T R A C T   

Tropical forests represent half of the Earth’s remaining forest area, but they are shrinking at high rates, which 
poses a threat to their multiple ecosystem services. As a response, international environmental agreements and 
related programs require information about tropical forested landscapes. Despite the increasing quantity and 
quality of remote sensing-based data, the effective monitoring of forests in the tropics still faces operational 
challenges: (a) applicability at local levels, with lack of reference or cloud-free information; (b) overcoming 
geographical, ecological, or biophysical variability; (c): stratification, distinguishing forest categories related to 
functionality and disturbance history. 

We conducted an extensive ground verification campaign through 36 landscapes in 9 regions of Zambia, 
Ecuador and Philippines, which constitute a gradient of pantropical deforestation contexts or forest transitions. 
We collected over 16,000 ground control points and digitized over 18,000 ha with details on land use and forest 
disturbance history. We trained a random forest algorithm and generated high-resolution (30 m) binary forest 
maps covering ~15 Mha, building on 39 optical (Landsat-8), radar (Sentinel-1) and elevation bands, indices and 
textures. We validated the quality of the outputs across the studied deforestation gradient and compared them to 
(a): 3 national land cover maps used for international reporting, (b): 4 global forest datasets (Global Forest 
Change, Copernicus Land Cover, JAXA and TanDEM-X Forest/Non-Forest). 

Our method generated highly accurate (92%) forest maps for the studied regions when compared to the global 
datasets, which generally overestimated forest cover. We achieved accuracies similar to the national maps, 
following a standardized method for all countries. The difficulties in delineating forest increased in more 
advanced stages of deforestation, with recurring struggles to distinguish non-forest tree-based systems (e.g. 
perennials, palms, or agroforestry), shrublands and grasslands. Regrowth forests were repeatedly misclassified 
across contexts, countries and datasets, in contrast to reference or degraded forests. Our results highlight the 
importance of in situ verification as accompanying method to establish efficient forest monitoring systems, 
especially in areas with higher rates of forest cover change and in tropical regions of advanced deforestation or 
early reforestation stages. These are precisely the areas where current REDD+ or Forest Landscape Restoration 
initiatives take place.   
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1. Introduction 

Tropical forests represent almost half of the Earth’s remaining forest 
area, but continue to shrink at relatively rapid rates (FAO and UNEP, 
2020), while suffering processes of degradation and landscape frag
mentation (Taubert et al., 2018; Vancutsem et al., 2021). The drivers of 
these dynamics, which are mostly anthropogenic and related to land use 
(LU) (Curtis et al., 2018; Seymour and Harris, 2019), pose a threat to the 
multiple ecosystem services and functions provided by tropical forests 
(Wilson et al., 2017). With the objective of tackling these pressures, 
several international environmental agreements (e.g. Agenda 2030 for 
Sustainable Development, Paris Agreement) currently promote 
numerous programs for the conservation, rehabilitation and sustainable 
use of forests in tropical landscapes. Some globally relevant examples of 
established initiatives are the Forest Landscape Restoration (FLR) pro
jects within the Bonn Challenge, or arrangements supported by the 
Reducing Emission from Deforestation and forest Degradation program 
(REDD+). 

In order to appraise the achievement of international environmental 
objectives fairly and effectively, forest cover (FC) and its change have to 
be coherently analyzed across territories, with certifiable methodologies 
and common metrics (GFOI, 2020; Harris et al., 2018). This is a 
precondition for drawing sound conclusions about the contributions of 
these programs to sustainable development. The field of remote sensing 
offers a low-cost, ready and reliable source of information for individual 
countries to meet their reporting needs. During the last decades, the 
availability, quantity and quality of satellite sensors and FC or Land 
Cover (LC) and LU (LCLU) maps with enhanced spatial and temporal 
resolution has improved drastically (Galiatsatos et al., 2020; Grekousis 
et al., 2015). Yet, establishing such operational systems of Measurement, 
Reporting and Verification (MRV) or National Forest Monitoring (NFM) 
is particularly challenging in tropical countries. Some known reasons are 
the lack of national forest inventories or frequently-updated national 
LCLU maps, limited technical expertise and resources, or the absence of 
good governance and administrative capacity (Ochieng et al., 2016). 

Global forest datasets grant methodological comparability between 
regions and contexts by considering a larger spatial scope. Thus, they are 
often presented as an inestimable basis to establish REDD+ reference 
levels, or to quantify FC and its change at national or regional scales. For 
instance, the Global Forest Change (GFC) dataset (Hansen et al., 2013), 
Globeland30 (Chen et al., 2015), or the Copernicus Global Land Service 
LC Layers (CGLS-LC100) (Buchhorn et al., 2020), are commonly 
mentioned in MRV or NFM guidelines (Finegold et al., 2016; GFOI, 
2020). However, global and regional FC maps must be used cautiously 
and only under certain circumstances (Tropek et al., 2014). Namely, as a 
cross-check to the national mapping capacities (if extant), or as a tem
porary step to developing such proficiencies (Harris et al., 2018; GFOI, 
2020). We summarize the technical limitations of global forest datasets 
in the following interrelated operational challenges. 

First, global FC datasets are not always accurate at local spatial 
levels. The low accuracies in specific landscapes are partly related to a 
lack of reference/auxiliary data, such as reliable and detailed in situ 
information (Fritz et al., 2011). Additionally, inconsistencies may occur 
between the temporal or the spatial coverage of regional or global maps 
and the scope of local analysis, together with incongruities between the 
pixel size of global maps (sometimes of medium to low resolution) and 
the size of the targeted LCLU patches on the ground. Moreover and 
especially in the tropics, areas with permanent cloud cover result in low 
quality or non-existing observations (Hilker et al., 2012). In this respect, 
Synthetic Aperture Radar (SAR) is a promising technology, as its ob
servations are not affected by sunlight or cloud presence. Its potential for 
regional forest monitoring (alone or in combination with optical sour
ces) is being explored by current research (Joshi et al., 2016), and the 
first SAR-based global forest maps have been published already (Mar
tone et al., 2018; Shimada et al., 2014). 

Second, the accuracy of global forest datasets varies regionally due to 

ecological, biophysical and biochemical dissimilarities (e.g. different 
seasonality, tree height/canopy, water content) of the vegetation be
tween biomes and geographical areas (Crowther et al., 2015; Yang et al., 
2017). Distinct forest definitions (based on the minimum size of forest 
extent, canopy cover and tree height thresholds, or the level of detail of 
LU) are adequate and accepted in each country or territory depending on 
the reporting purposes (Harris et al., 2018). Matching remote sensing 
derived classes, which are based on physical thresholds, with national 
surveys built on definitions of countries or organizations, can be 
burdensome. For instance, very different tree cover (TC) thresholds of 
the GFC match the specific forest characteristics of different territories 
(Galiatsatos et al., 2020; Hansen et al., 2013). Moreover, the change 
dynamics and the drivers of deforestation often differ strongly between 
regions (e.g. industrial crops/plantations vs. smallholding) (Curtis et al., 
2018; Ferrer Velasco et al., 2020). All these contextual differences make 
it challenging to establish consistent methods of forest classification and 
definition, which are equally accurate and reliable across the globe. 

Third, the accurate differentiation of forest types over large 
geographic extents still faces some technical burdens. Certain physical 
variables (e.g. biomass, tree height/cover) have been estimated and 
mapped globally, but still with issues regarding their validity in the 
tropics (Hansen et al., 2013; Potapov et al., 2021; Spawn et al., 2020). It 
is even more challenging to make classification methods match forest 
definitions, which are based on LU and distinguish between disturbance 
levels or forest functions (Putz and Redford, 2010; Vancutsem et al., 
2021). Similarly, improving the capacity to identify forest stands or 
certain tree species (e.g. invasive, commercially interesting or selec
tively logged) could be applied for the effective monitoring of forest 
degradation or disturbance levels (Fassnacht et al., 2016). These limi
tations worsen when mapping multifunctional tropical landscapes, 
which are characterized by mixed fast-growing types of forest and non- 
forest tree-based systems (Caughlin et al., 2020). A promising applica
tion is time series analysis, which can provide valuable insights on LCLU 
history (Winkler et al., 2021; Woodcock et al., 2020) or on the ecological 
characteristics of the forest (Jha et al., 2020). 

In this study we use data collected in situ across thirty-six tropical 
landscapes in Africa, South America and Southeast Asia, to generate 
forest cover maps that combine information from active and passive 
remote sensing systems. We test the accuracies of such maps and those of 
other secondary sources which are commonly used for NFM or MRV in 
the studied regions. With this, we aim to explore the ability to accurately 
delineate forest in the tropics with up-to-date methods, while studying 
the influence of different deforestation contexts and LCLUs s on the 
quality of forest mapping outputs. 

2. Conceptual framework and objectives 

2.1. Hypothesis 

We hypothesize that the deforestation contexts and the associated 
forest disturbance regimes have an impact on the classification accu
racies of forest maps, because they are an exemplification of the prob
lems of geographical variability and the separation of vegetation types. 
We theorize that this influence might be mostly related to the degree of 
deforestation/degradation and to the number and proportion of land 
cover classes, independently of the classification method/dataset or the 
analyzed region. The framework of how we conceptualize deforestation 
contexts and forest disturbance regimes is presented in the following 
subsection, which is then followed by the research questions of this 
study. 

2.2. Forest transition: deforestation contexts and forest disturbance 
regimes 

The forest transition theory describes a process of net forest area 
decline and re-expansion as a result of socio-economic development 
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(Mather, 1992), which has been reported for several nations and regions 
worldwide (Köthke et al., 2013; Meyfroidt and Lambin, 2011). One of 
the most common uses of this theory has been the classification of ter
ritories into different transition stages based on their FC and defores
tation rates, to analyze the related drivers and design effective polices 
correspondingly, such as the specific regulations related to REDD+
(Angelsen and Rudel, 2013; Hosonuma et al., 2012). 

Based on the aforesaid literature, regions passing through these 
phases build a gradient of what we call deforestation contexts, charac
terized by specific forest disturbance regimes and pertinent policies:  

(a) In an initial deforestation context, also known as ‘pre-transition’ 
or ‘before the frontier’, FC is high (close to the potential natural 
vegetation) and deforestation is still low or inexistent. In this 
phase, mature forests are abundant, while conservation measures 
and sustainable concession policies are encouraged. Measures 
based on timber certification, control of imports/exports, such as 
the EU’s FLEGT Action Plan (Forest Law Enforcement, Gover
nance and Trade), aim to operate at this level.  

(b) At some point, deforestation and degradation increase and 
accelerate, in what is known as ‘early transition’ or ‘frontier area’ 
phases, eventually entering a middle deforestation context. These 
stages are characterized by an increased proportion of disturbed 
and degraded forests and by the suitability of direct regulation 
measures (e.g. protected areas, LU zoning) and efforts to reduce 
the extensive agriculture rent. Gradually, FC decreases at the 
expense of deforested vegetation (e.g. crops or grasslands), 
reaching what is typically known as ‘late transition’ or ‘forest- 
agricultural mosaics’.  

(c) Eventually in an advanced deforestation context, deforestation 
rates decrease and are ultimately reversed into net positive 
reforestation rates. This results on an increased proportion of 
natural (forest succession) or artificial (forest plantations) forest 
regrowth, occurring in areas which had previously been clearf
elled and converted to other LCLUs. This shift into the so-called 
‘post-transition’ phase can be catalyzed by different drivers, 
such as (a) the abandonment of forest lands due to forest scarcity 
or diminished agricultural rent, or (b) by structural and policy 
changes due to economic development. Regions in these 
advanced stages are also appropriate for direct regulation (e.g. LU 
zoning and active reforestation: FLR measures) and for environ
mental policies to increase forest rent and its capture, together 
with the intensification of the agricultural sector. 

2.3. Research questions 

Building on the forest transition theory as conceptual framework and 
considering the challenges of using earth observation approaches in 
tropical forest areas as described above, we focus on the following 
research questions, which will later serve as structure to organize the 
discussion section:  

(1) Can we develop a methodology for the accurate delineation of FC 
in different tropical regions?  

(2) How good are the classification accuracies of our forest maps and 
other global sources in the selected countries/regions, when 
compared to the existing NFM used for international reporting?  

(3) How do the different deforestation contexts and their associated 
forest disturbance regimes influence the results of regional forest 
mapping in tropical landscapes? 

The first two questions are methodological steps to address the main 
research problem: exploring the influence of de− /reforestation stages 
on the produced forest maps. Our results can help to establish pathways 
towards coherent LU planning and sustainable forest management, 
while improving the knowledge about monitoring of forest disturbance 

regimes. We want to further understand how to produce consistent 
forest maps and achieve satisfactory accuracies for the effective moni
toring with both conservation and restoration purposes. Such improve
ments can facilitate the establishment of forest strata to meet the activity 
data requirements of REDD+ and to efficiently monitor FC in FLR pro
jects. We test our hypothesis in multifunctional landscapes with LCLU 
dynamics representative of very diverse tropical regions, aiming to 
establish conclusions and generalizations at pantropical level. 

3. Materials and methods 

3.1. Study design: selection of landscapes, regions and countries 

Our research is based on data collected through thirty-six landscapes 
of approximately 10,000 ha each (Fig. 1), distributed in equal number 
among nine regions of three tropical countries in Africa (Zambia), South 
America (Ecuador) and Southeast Asia (Philippines). These landscapes 
are all study sites of the larger research project Landscape Forestry in the 
Tropics (LaForeT: www.la-foret.org), coordinated by Germany’s federal 
research organization Thünen Institute of International Forestry and 
Forest Economics. Each of the landscapes was positioned within the 
boundaries of an independent jurisdictional unit (chiefdom, parish or 
municipality in Zambia, Ecuador and Philippines, respectively) to 
ensure homogeneous formal administration. They were all selected as 
multifunctional landscapes, thus capturing a diversity of forest and 
LCLUs of the corresponding region representatively, together with 
characteristic LCLU change dynamics. The nine selected regions 
comprise a diversity of biophysical, geographical, socioeconomic and 
demographic settings, in order to facilitate generalizations from a 
broader pantropical perspective. 

Our study design aimed to obtain a selection of landscapes that de
pict different forest transition stages, thus a gradient of pantropical 
deforestation contexts and a variety of the associated forest disturbance 
regimes (Table 1). The three regions of each country comprise three 
different deforestation contexts (initial, middle, and advanced) within 
the respective national perspective. Previously, the three countries had 
been selected and classified into the same three categories, considering 
their situation within the forest transition curve at national level. In 
order to classify both countries and regions, we estimated FC and 
average annual change rates from the most up-to-date national LCLU 
maps used for NFMs and international reporting (FAO, 2020). Thus, we 
relied on information from the second phase of the Integrated LU 
Assessment (ILUA-II) between 2000 and 2014 for Zambia (ILUA-II, 
2016), from the Ministry of Environment (MAE) between 2000 and 2016 
for Ecuador (MAE, 2017) and from the National Mapping Agency 
(NAMRIA) between 2003 and 2015 for the Philippines (NAMRIA, 2017). 

3.2. Ground (in situ) verification 

3.2.1. Data collection 
We collected ground verification information across the thirty-six 

research landscapes between September 2016 and October 2019 
(Fig. S1). Field teams were composed by two to five researchers familiar 
with the locally prevailing forest and LCLU types, together with local 
guides familiar with a particular landscape. They spent approximately 
one month and a half in each landscape, in which georeferenced ground 
control points (GCPs) and photographs (GCPhotos) with LCLU infor
mation were obtained, following a standardized field protocol (Annex 
S1) based on existing good practice guidelines (GFOI, 2020; Olofsson 
et al., 2014). 

We conducted a stratified sampling approach to capture the main 
forest and LCLU types in each landscape. These strata were identified by 
the expert teams on the ground, through related activities within the 
larger LaForeT project (e.g. scoping visits, key informant interviews, 
community workshops, participatory mapping exercises, household in
terviews, forest inventories). The delineation of relevant strata and the 
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design of the field sampling campaign built on visual interpretation of 
existing satellite images (Google Earth imagery) or auxiliary maps, such 
as those produced in participatory mapping workshops. A 4-Tier cross- 
country harmonized classification scheme was used to categorize 
LCLUs (Table S1), based on FAOs FRA forest definitions and on IPCC 
categories (Di Gregorio, 2005; FAO, 2018). This scheme was modified to 
include typical LCLUs of the regions, such as particular agroforestry 
systems (Huxley, 1999). Additionally, the classification system included 
details on forest disturbance and regeneration history, namely about the 
type (human/natural) and the age (up to 20 years) of the last distur
bance and the type of regeneration (human/ natural). This information 
was determined by researchers and inhabitants familiar with the locally 
prevailing forest and LCLU types. 

The teams covered every pertinent class with a representative 
number of GCPs, spatially distributed across each landscape (Fig. 2). A 
minimum distance of 100 m between points was required, together with 
homogeneous LCLU within a radius of 10 m around the GCPs. Addi
tionally, photo sequences or GCPhotos, consisting of four pictures in a 
clockwise direction of compass, were collected for a number of GCPs 
belonging to the main LCLU classes. In total (Table S2), 16,676 GCPs 
were collected, with an average of 463 GCPs per landscape: 245, 597 
and 548 in Zambia, Ecuador and Philippines, respectively. In addition, 
more than 14,000 GCPhotos (over 2800 sequences) were collected, with 
an average of 79 sequences per landscape: 40, 120 and 80 in Zambia, 
Ecuador and Philippines, respectively. 

3.2.2. Digitization of the training & validation dataset 
After cleaning the collected GCPs and GCPhotos (removing dupli

cates and inconsistent data), we harmonized the dataset to fulfil a cross- 
country LCLU classification scheme based on forest disturbance regimes 
(Tables 2, S1 and S2). 

First, reference forest represents forests with none or slight distur
bances before the ground verification took place. This class includes 
mostly mature old-growth forests or intact primary forests, but also (in 
more deforested landscapes) secondary forests, which had the last 
disturbance at least 10 years ago, without being completely clearfelled. 
Second, degraded forest comprises areas of forest with a more recent 
disturbance shorter than 10 years (mostly human impact in the form of 
logging), leading to a current state of degradation: reduction of forest 
canopy cover but not completely clearfelled. Next, forest regrowth in
cludes forests which had been completely clearfelled and converted to 
other LCLUs, but which have subsequently undergone a recovery pro
cess either spontaneously (succession) or actively by humans (planta
tions). The rest of forests with no information on disturbance history 
(mostly areas of forest identified visually in the satellite images) were 
categorized as undefined forest. 

We consider four classes of deforested vegetation. First, tree-based 
system covers the most relevant non-forest tree vegetation types: agro
forestry systems (e.g. traditional ‘chackras’ in Ecuador, trees on crops in 
Philippines), palms (e.g. coconut, oil) or other perennial crops (e.g. 
cacao plantations, orchards). This category had no observations in 
Zambian landscapes. Second, annual cropland comprises deforested 

Fig. 1. Location of the thirty-six landscapes where ground verification data was collected, with the corresponding selected regions and countries.  
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areas with irrigated or rainfed cropping fields (mostly cereals such as 
rice or maize) and land prepared for agriculture. Third, shrubland 
(woody), which was only relevant in Zambia. Fourth, grassland includes 
mainly pastures, but also other grassland types such as abandoned 
croplands or grass-covered river banks in Zambia (locally referred to as 
‘dambos’). 

Last, representing non-vegetation classes, built-up covers mostly 
settlements and roads, while waterbody comprises rivers, marshlands 
and aquaculture, but also oceans in coastal regions. 

We digitized polygons containing homogeneous information of the 
abovementioned LCLU categories with Quantum GIS v3.10 (Fig. 2), 
based on the collected GCPs, GCPhotos and using up-to-date satellite 
images (Google Earth imagery) as a reference. Altogether (Table 2), we 
digitized 23,880 ha (2136 polygons) of forest, from which 6193 ha 
(1636 patches) included information about forest disturbance and 
regeneration history. 4987 polygons of 20,528 ha were digitized for the 
non-forest categories. To minimize overoptimistic assessment due to 
overfitting problems (Ploton et al., 2020), these polygons were split 
randomly into two independent training and validation datasets, which 
included 70% and 30% of the total number of polygons, respectively, 
preserving the share of the LCLU classes per region. 

3.3. Creation of LaForeT forest maps 

The processing steps to create the LaForeT maps and the subsequent 
analysis were performed with Quantum GIS v3.10, SNAP v8.0, ENVI 
v5.6 and PyCharm v2019.3. Further details on the selection and the 
processing of scenes, bands, indices and textures can be found in 
Tables S3 to S6. 

3.3.1. Remote sensing data 
The fusion of optical and radar remote sensing data is commonly 

used in LCLU applications (Joshi et al., 2016), including the mapping 
and monitoring of FC in tropical regions (Hirschmugl et al., 2020; 
Reiche et al., 2016). Some known advantage, when compared to the use 
of single sensors, is the yield of additional information, increasing the 
chances of targeting specific LCLU types. 

We created seven multi-sensor composites (stacked raster layers) co- 
registered to 30 m resolution, which included thirty-nine variables per 
pixel each:  

• Seven mosaicked Landsat-8 bands and seven related vegetation 
indices.  

• Twenty-four Sentinel-1-derived bands, consisting on one sigma 
nought and three texture values for two points in time and three 
different polarizations.  

• One elevation band (height above sea level), obtained from the 
Shuttle Radar Topography Mission (SRTM)-1Sec digital elevation 
model. 

These seven composites cover the nine studied regions, as two re
gions in Ecuador (Amazon) and two in Philippines (Cagayan Valley) are 
geographically close to each other. Regional spectrograms of the chosen 
variables for the analyzed LCLU classes can be found in Figs. S2 to S4.  

• Landsat-8 

Landsat-8 offered a higher number of available scenes and the best 
spatial and temporal coverage for our regions, when compared to other 
high-resolution optical sensors (e.g. Sentinel-2). However, as obtaining 
cloud-free information was still challenging in Ecuador and Philippines, 
we created multi-temporal seasonal mosaics, similarly to previous ap
proaches (Hansen et al., 2013; Potapov et al., 2012). 

A best period of three to four months with cloud-free coverage was 

Table 1 
Selected landscapes, regions and countries and their respective deforestation context, FC in 2016 and average annual forest area change (AFC) for the 2000–2016 
period.       

Deforestation context (regional level, national perspective)      

Initial Middle Advanced   

Country FC1 

[%] 
AFC1 

[%] 
Regions & 
Landscapes2 

FC1 

[%] 
AFC1 

[%] 
Regions & 
Landscapes2 

FC1 

[%] 
AFC1 

[%] 
Regions & 
Landscapes2 

FC1 

[%] 
AFC1 

[%] 

Deforestation 
context (national 
level, pantropical 
perspective) 

Initial Zambia 61 − 0.20 North 
Western 

67 − 0.17 Copperbelt 70 − 0.41 Eastern 55 − 0.54 

Chizera 73 − 0.61 Shibuchinga 62 − 0.35 Nyampande 42 − 2.60 
Mushima 81 − 0.16 Lumpuma 77 − 0.80 Mumbi 37 − 2.69 
Chibwika 77 − 0.15 Nkambo 59 − 0.51 Nyalugwe 73 − 0.13 
Sailunga 76 − 0.14 Mushili 68 − 0.59 Ndake 56 − 0.63 

Middle Ecuador 51 − 0.44 Amazon 86 − 0.13 Amazon 
frontier 

74 − 0.60 Esmeraldas 53 − 0.97 

Rukullakta 72 0.46 Chontapunta 50 − 0.63 San Francisco 62 − 0.54 
Arajuno 82 − 0.50 Ahuano 65 − 0.49 Santo 

Domingo 
88 − 0.46 

Canelos 73 − 0.67 Avila Huirino 62 − 0.84 Cube 31 − 0.14 
Carlos Julio 
AT 

58 − 0.56 San Jose 
Dahuano 

49 − 1.39 Tabiazo 24 − 1.83 

Advanced Philippines 24 − 0.22 North 
Cagayan 
Valley 

59 − 1.19 Leyte 18 0.25 South 
Cagayan 
Valley 

46 0.54 

Santa Ana 80 − 0.35 Silago 57 1.89 Penablanca 11 − 6.23 
Gonzaga I 77 − 0.18 Hinunangan 42 5.83 Diffun 4 8.70 
Lal-lo 53 − 0.35 Sogod 28 1.63 Diadi 4 100.00 
Gonzaga II 63 − 1.32 Abuyog 49 − 0.11 Quezon 36 − 3.06  

1 FC: Percentage of total land area covered by forests. AFC: Average annual net forest area change. National results for 2016 and 2000–2016 period, respectively, as 
reported in FAOs FRA2020. Regional and landscape results obtained from LCLU maps used for international reporting: Zambia 2000–2014 (ILUA-II, 2016), Ecuador 
2000–2016 (MAE, 2017), and Philippines 2003–2015 (NAMRIA, 2017). 

2 Landscape boundaries cover areas within chiefdoms, parishes and municipalities where ground verification data was collected. Region boundaries: North Western 
(Mufumbwe and Mwinilunga district), Copperbelt (Lufwanyama and Masaiti district), Eastern (Petauke and Nyimba district), Amazon (Pastaza and Napo provinces, 
excluding Ahuano and Chontapunta parishes), Amazon frontier (Ahuano and Chontapunta parish plus Loreto in Orellana province), Esmeraldas (Esmeraldas province), 
North Cagayan Valley (Selected municipalities in Cagayan province), Leyte (Southern Leyte province plus Abuyog municipality), South Cagayan Valley (Quirino and 
Nueva Vizcaya province). 
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selected in each region, usually coinciding with the respective dry sea
son (Table S3). In total, we used 269 scenes from nineteen different 
Landsat tiles, downloaded using the on-demand service of the United 
States Geological Survey (USGS) and its ESPA Bulk Downloader. This 
included all the available Landsat-8 Level-2 Surface Reflectance images 
(Collection 1 OLI/TIRS Combined) for the selected months within the 
year of the ground verification and the two previous years. This three- 

year period permitted almost cloud-free mosaics and was acceptable 
considering the defined thresholds between forest classes (ten years 
from the last disturbance) and under the observed LCLU change dy
namics. We created and applied a cloud mask to each of the downloaded 
scenes, based on the Quality Assessment bands and, in the case of 
Ecuador (where the preliminary results were unsatisfactory) on the 
‘Fmask’ method (Zhu and Woodcock, 2012). Finally, we created 30 m 

Fig. 2. GCPs spatial distribution in three landscapes, delineation of strata and GCPhotos for selected areas. (a): Chizera, North Western, Zambia. (b): Ahuano, 
Amazon frontier, Ecuador. (c): Penablanca, South Cagayan Valley, Philippines. 
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resolution mosaics by co-registering the masked scenes and clipping 
them to the bounding coordinates of each region (Table S4), with every 
pixel containing the average cloud-free value for each of the seven 
Landsat-8 bands (Table S5 and Fig. S5). 

We then calculated a group of seven vegetation indices for each of 
the mosaics (Table S6). This selection was derived from Schultz et al. 
(2016) and it includes indices based on wetness (NDMI, TCw) and 
greenness (EVI, GEMI, NDVI, SAVI, TCg), which are commonly used in 
deforestation monitoring.  

• Sentinel-1 

We included information derived from Sentinel-1C-band SAR imag
ery, which can contribute to map FC or LCLU, independently from 
clouds or luminosity (Abdikan et al., 2016; Hirschmugl et al., 2020). 
With the aim of capturing short-term LCLU changes, we included scenes 
from two points in time within the selected season of each region: one 
close to date of in situ verification (last) and another point two years 
before (first). In total, we selected thirty-two scenes of Level-1 high- 
resolution Ground Range Detected (GRD) Interferometric Wide (IW) 
swath data with Dual VV/VH Polarization, and downloaded them from 
the Copernicus Open Access Hub. 

We used a standardized pre-processing workflow to treat our scenes, 
following good practice recommendations (Palazzo et al., 2018). First, 
we applied updated orbit files to the downloaded scenes. Second, ther
mal noise (background energy generated by the receiver) was removed, 
using the noise lookup tables. Next, we applied radiometric calibration, 
thus converting pixel values to normalized radar cross-section or back
scatter coefficient (sigma nought). As a fourth step, we removed the 
speckle from our images, by applying the improved Lee sigma filter (Lee 
et al., 2009). Following, we converted our data from slant to ground 
range geometry (terrain correction) using bilinear interpolation of the 
SRTM-1Sec digital elevation model and Universal Transverse Mercator 
(UTM) as a map projection. The pre-processed bands were then clipped 
to the bounding coordinates of each region (Table S4), creating two 
mosaics (first and last) per region. This process was repeated for three 
polarizations: VV, VH and for the absolute difference between VV and 
VH’s sigma noughts (VV-VH), which had reported improved accuracies 
in previous studies (Abdikan et al., 2016). 

Finally, we converted the original sigma nought values to integer 
numbers and then calculated three Grey Level Co-occurrence Matrix 
(GLCM)-derived texture features (Haralick et al., 1973): GLCM-mean, 
GLCM-variance and contrast (Table S7). Textures account for neighbor 

pixels and are commonly used in forest monitoring applications (Num
bisi et al., 2019; Herold et al., 2004). We used a 9 × 9-pixel window and 
repeated the process for each polarization and point in time. 

3.3.2. Supervised classification and post-processing 
We performed a supervised classification for each of our seven 

composites, using the corresponding regional training datasets (70% of 
the digitized polygons) and a random forest (RF) classifier (Breiman, 
2001). RF is a machine learning method, which has been widely used to 
classify LCLU (Gislason et al., 2006; Pal, 2005). As a non-parametric 
method, RF presents the advantage of omitting distribution assump
tions and thus, working with multisource information such as our 
composites. Moreover, RF permits to rate the relative importance or 
contribution of the different variables to the classification output. 
Considering the computational time and the accuracy of our regional 
models, we used a maximum of 1000 trees and 50,000 pixels as training 
samples; only pixels with valid data (e.g. cloud-free) for all the variables 
were included in the model and later classified. 

In total, we built eight independent RF models to generate eight 
LaForeT forest maps, which covered an extent of approximately 15 
million hectares. The Cagayan Valley composite (Philippines), was 
classified separately for the two regions of analysis: North and South. For 
each of the outputs, confidence maps were generated and further 
analyzed (Table S8 and Fig. S6). Moreover, the bands were ranked based 
on how much the accuracy decreased when the variable was excluded 
(Fig. S7). Isolated groups of less than five pixels, considering 8-connec
tivity, were reclassified as no forest, as they did not reach a minimum 
size of 0.5 ha. Lastly, an ocean mask was applied to the maps before 
clipping them to the bounding boundaries of the respective region of 
analysis (Table S4). 

3.4. Secondary sources: national and global forest datasets 

Next, we selected up-to-date national maps and relevant global forest 
datasets of high to medium resolution, ranging from 25 to 100 m 
(Table 3). All the secondary sources were converted to binary Forest/ 
Non-Forest (FNF) maps, clipped to our areas of interest and co- 
registered to spatially match our own maps. The national sources were 
the LCLU maps used for NFMs and international reporting of reference 
levels in the respective countries, which were the closest to the date of 
our data collection (ILUA-II, 2016; MAE, 2017; NAMRIA, 2017). 
Regarding the global forest datasets, we first selected two sources based 
on optical data: the GFC dataset (Hansen et al., 2013) and the CGLS- 

Table 2 
LCLU classes, forest disturbance regimes (FDR, highlighted in grey) and number of polygons (with corresponding total 
hectares) per class in the training/validation dataset. 

LCLU FDR Detailed LCLU class

Digitized polygons (Training/Validation dataset)

Zambia Ecuador Philippines Total

N Area 
[ha] N Area 

[ha] N Area 
[ha] N Area 

[ha]

Forest

Reference forest 48 297 165 762 99 336 312 1,394

Degraded forest 342 2,423 250 597 176 823 768 3,843

Forest regrowth 130 271 284 531 142 154 556 956

- Forest undefined 51 9,296 306 2,919 143 5,473 500 17,687

Non-
forest

Deforested 

vegetation

Tree-based system 0 - 1,038 1,881 766 1,733 1,804 3,614

Annual cropland 222 1,001 387 553 527 3,093 1,136 4,648

Shrubland 122 214 0 - 12 3 134 218

Grassland 137 682 451 2,202 432 697 1,020 3,581

-
Built-up 88 1,123 316 2,595 214 1,837 618 5,556

Waterbody 32 335 91 834 152 1,742 275 2,911
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LC100 layers (Buchhorn et al., 2020). Additionally, we selected two 
recent SAR-derived global FNF maps: one produced by the Japan 
Aerospace Exploration Agency (JAXA) based on the ALOS-2 PALSAR-2 
information (Shimada et al., 2014) and one created by the German 
Aerospace Center (DLR) based on data from the TanDEM-X satellite 
(Martone et al., 2018). 

The GFC dataset is not a forest map itself (it depicts TC) and it pro
vides older estimations (2000,2010) than the period covered by our 
maps (2016–2019). However, we selected it for its relevance, as it is 
widely used as a reference for global forest monitoring. In order to 
generate FNF maps, we defined TC thresholds from GFC’s 2010-dataset 
that matched FC in our regions (Fig. S8), based on Galiatsatos et al. 
(2020). Regarding CGLS-LC100, a forest map between 2017 and 2019 
was selected, depending on the year when the most GCPs were collected 
in each region. In the case of JAXA, information from 2017 was used 
everywhere, as it was the most up-to-date dataset available. 

3.5. Quality analysis 

Finally, we analyzed the quality of our map outputs and the selected 
secondary sources, grouping the results by region, country and 

deforestation context. We generated error matrices (Olofsson et al., 
2014) for all datasets in each of the study regions, by measuring the 
number of correctly classified pixels within the validation dataset (30% 
of the digitized polygons). We used the zonal histogram tool of QGIS, 
which appends fields representing counts of each unique value from a 
raster layer (i.e. LCLU classes) contained within zones (i.e. validation 
polygons). We then obtained thematic accuracy measures (user, pro
ducer and overall accuracies) for all the compared FNF sources, together 
with producer accuracies of LCLU subclasses, as the probability of 
correctly being classified as forest or no-forest (Tables S9 to S14). The 
main steps related to data collection and processing, as input for the 
accuracy assessment, are summarized in Fig. 3. Moreover, we analyzed 
the differences in FC estimation for the different sources, at regional and 
landscape level (Table S15 and Figs. S9 to S44). In addition, we did a 
per-pixel spatial comparison based on Yang et al. (2017), in which the 
overall and the individual-class spatial agreements for every unique 
pair-combination of datasets were determined in each region, after 
resampling the datasets to the lowest resolution of each pair by nearest 
neighbor interpolation (Tables S16 and S17). 

Table 3 
Overview of the national and global forest datasets used for comparison of results.  

Dataset Coverage Type Year used Spatial resolution Source Main sensor Reference 

ILUA-II-LC Zambia LCLU 2014 30 m Optical Landsat-8 (ILUA-II, 2016) 
MAE-LC Ecuador LCLU 2016 ~50 m 3 Optical Landsat-8 (MAE, 2017) 
NAMRIA-LC Philippines LCLU 2015 ~25 m 3 Optical Landsat-8 (NAMRIA, 2017) 
GFC 1 Global TC 2010 30 m Optical Landsat (Hansen et al., 2013) 
CGLS-LC100 Global LCLU 2017–2019 2 100 m Optical PROVA-V (Buchhorn et al., 2020) 
JAXA-FNF Global FC 2017 25 m SAR PALSAR-2, PALSAR (Shimada et al., 2014) 
TanDEM-X-FNF Global FC 2011–2016 50 m SAR TanDEM-X, TerraSAR-X (Martone et al., 2018)  

1 Different TC thresholds used in every region, as shown in Fig. S8. 
2 2017 in Ecuador and Philippines. In Zambia: 2018 in North Western and Copperbelt, 2019 in Eastern. 
3 ~50 m resolution = 1:100,000 scale. ~25 m resolution = 1:50,000 scale. 

Fig. 3. Flowchart diagram of the main steps of data collection and processing, as input for the accuracy assessment.  
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4. Results 

4.1. Creation of LaForeT forest maps 

4.1.1. Cloud-cover and confidence maps 
In total, only 2% of the pixels in the analyzed regions (1.25% within 

the studied landscapes) presented no Landsat-8 data in any scene after 
mosaicking (Table S5 and Fig. S5). This was mostly due to clouds, cirrus 
or shadows presence, but also (in a smaller number) waterbodies, set
tlements or pixels with no data. Altogether, the treated pixels had an 
average of ten observations (9.97), with regional averages between 15 
and 18 scenes in Zambia, 2 and 7 scenes in Ecuador, and 7 and 12 scenes 
in Philippines. While the Zambian regions were almost completely 
cloud-free, the availability of optical data in the selected areas of 
Ecuador and Philippines was more problematic, which justified the use 
of the mosaics. The region of Esmeraldas in Ecuador presented a rela
tively high percentage of pixels without information (21.78% of the total 
area, 4.25% within the landscapes), after mosaicking. The rest of regions 
had lower number of pixels with no data after mosaicking, with values 
between 0% and 3.36% (0% and 1.55% within in the landscapes). 

The overall standardized average confidence values did not vary 
strongly across regions, with results between 32% (Esmeraldas) and 
46% (North Cagayan) (Table S8 and Fig. S6). FC-specific confidences 
ranged from 30% (Esmeraldas) to 47% (North Western and North 
Cagayan). Non-FC-specific confidences were especially low (35–36%) in 
all the Ecuadorian regions and the highest in both North and South 
Cagayan Valley regions in the Philippines (44% and 46%, respectively). 
The maps in Zambia and the Philippines provided the highest average 
total confidence values (42% and 44%), when compared to Ecuador 
(38%). Regions in earlier deforestation contexts resulted in better 
overall confidences (45%) than regions in middle (40%) and advanced 
(39%) ones, related to decreasing specific confidences of the forest class 
(46%, 39% and 37%). 

4.1.2. Relative importance of variables 
Elevation was the most decisive variable across the study regions 

(Fig. S7). The contribution of this band to the accuracy of the classifi
cation algorithm ranked within the five more important variables in 
every region. 

Among the Landsat-derived variables, moisture-related indices 
(NDMI and TCw) ranked generally better than greenness-related ones. 
However, some greenness variables, such as NDVI and TCg, were still 
very relevant in the classification of certain regions (e.g. Southern 
Cagayan Valley, Esmeraldas, Copperbelt and Leyte). The individual 
Landsat bands were also relatively important to the classification out
puts, with all of them contributing in specific regions. The ultra-blue 
band (coastal/aerosol) ranked the highest across regions, while the 
green, red and SWIR bands were also relevant in specific areas. 

The Sentinel-1-derived variables also contributed importantly to 
improve the accuracy of the different classifications. Overall, the tex
tures ranked better than the backscatter signal (sigma0) across polari
zations and points in time. For instance, the mean GLCM of the last 
image ranked second among all the studied variables. In general, the VH 

polarization reported the best results, in both the first and the last 
scenes. The VV-bands of the old (first) scenes contributed more rele
vantly to the accuracy of the classifications than the ones of the new 
(last) images. The difference polarization (VV-VH) showed the worst 
results when compared to VV and VH. 

4.2. Quality analysis 

4.2.1. Thematic accuracy assessment 
The detailed error matrices of all the analyzed maps, with the results 

for LCLUs grouped by country and deforestation context, can be found in 
the supplementary material (Tables S9 to S14).  

• Overall accuracies 

Our produced forest maps (Table 4) had an overall accuracy of 92%. 
User accuracies (precisions) of 92% and 93% were observed for forest 
and no-forest, respectively. Our maps presented better producer accu
racies (sensitivities) for the forest class (96%) than for the no-forest 
category (85%). 

From all the analyzed sources (Fig. 4), our maps and the national 
datasets presented the highest overall accuracies for the total sample 
(92%). Within the secondary global sources, the GFC dataset exhibited 
the best overall accuracies (91%). The other three global maps reported 
overall accuracies of 88% (JAXA-FNF), 86% (TanDEM-X-FNF) and 85% 
(CGLS-LC100). 

Our forest maps showed better overall accuracies in Zambia and in 
the Philippines (96% for both) than in Ecuador (79%). The same pattern 
was observed in all the analyzed global sources. In Zambia, the national 
LCLU maps presented the lowest overall accuracies (89%), in relation to 
the global datasets (with values ranging from 92% to 96%). The clas
sification results in Zambia were characterized by lower overall accu
racies in the Eastern Province. In Ecuador, the national LCLU maps also 
provided the best overall accuracies (93%). In general, the five global 
datasets (including our maps) presented relatively unsatisfactory overall 
accuracies across the three Ecuadorian regions (ranging from 48% to 
87%). In the Philippines, the national datasets and our maps reported 
the best results (95% and 96% overall accuracy, respectively) in contrast 
to a range of accuracies between 79% and 91% in the secondary global 
datasets. The classification results in the Philippines were repeatedly 
affected by lower overall accuracies for Leyte. Philippines was also the 
only subsample where another secondary global dataset different than 
GFC provided the highest accuracy, namely the JAXA-FNF dataset. 

The overall accuracies of our forest maps were better in regions with 
initial deforestation contexts (96%) than in regions with middle or 
advanced ones (89% and 90%, respectively). We observed a similar 
trend in all the secondary sources, with exception of the national and the 
TanDEM-X-FNF maps.  

• Sensitivity of LCLU classes and forest disturbance regimes 

Reference forests showed the highest sensitivities (producer accu
racies) among the analyzed forest disturbance regimes in three datasets: 

Table 4 
Error matrix with the overall results of the produced LaForeT FC maps (total sample).    

Reference dataset1     

Forest No-Forest Row Total User Accuracy 

LaForeT Forest Map Forest 174,772 14,382 189,154 92% 
No-Forest 6701 82,605 89,398 93%  
Column Total 181,473 96,987 278,552   
Producer Accuracy 96% 85%      

Overall accuracy 92%  

1 Count refers to the pixels of 30 m resolution within the validation polygons. 
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LaForeT (93%), national (92%) and JAXA-FNF (93%) (Fig. 5). The other 
three maps reported higher sensitivity of degraded forests, which 
averaged 90% when considering all the studied datasets. Regrowth 
forests was the forest class with the lowest sensitivities (75% average of 
all maps). Even the national LCLU maps, which showed relatively high 
overall accuracies, reported the lowest sensitivity among the sources 
(49%) for regrowth forests. The best sensitivities for a forest subclass 
were observed in forests with no disturbance history (between 92% and 
98%), thus in forest areas that had been identified visually in satellite 
images. 

Considering deforested vegetation, the best results were obtained by 
the national, LaForeT and GFC datasets (94%, 85% and 85%, respec
tively), while the other sources presented lower sensitivities (between 
55% and 74%). The CGLS-LC100 dataset and the two SAR-derived 
global maps (JAXA-FNF and TanDEM-X-FNF) reported very low sensi
tivities, even in non-vegetation areas (i.e. built-up and waterbodies). All 
the sources showed higher sensitivities for annual croplands, with values 
between 84% and 94%. Worse were the results for other deforested 
vegetation subclasses, namely for non-forest tree-based systems (e.g. 

agroforestry, palms and perennials) and for grasslands. The worst results 
were observed in shrublands (mainly in Zambian landscapes with 
presence of degraded forests), which always reported very low accu
racies below 65%. 

In general, the sensitivities of all the forest subclasses decreased in 
regions and countries with more advanced deforestation contexts, while 
the opposite trend was observed for deforested vegetation (Fig. 6). 
Overall, the maps show higher sensitivities for all forest subclasses in 
Zambia and Ecuador. In contrast, we can observe better results for 
deforested vegetation in the Philippines. The secondary global forest 
maps were particularly inaccurate in mapping deforested vegetation, 
while the national maps delivered the best sensitivities in all the 
analyzed deforestation contexts and countries. On average, the sensi
tivities of regrowth forests were the lowest among the forest subclasses 
independently of the analyzed country or deforestation context. 

4.2.2. FC estimations 
Details on the estimations of FC for all the landscapes (individually 

and grouped by region, countries or deforestation context), can be found 

Fig. 4. Overall accuracies (range 50–100%, with the 100% value corresponding to the outer ring of the presented hexagons) of the different compared regional maps 
for the total sample and the different subsamples (countries, regions and deforestation contexts). 
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in Table S15 and Figs. S9 to S44. The national LCLU maps reported the 
lowest FC estimations (57%) for our landscapes (Fig. 7). The highest 
estimations were the ones of CGLS-LC100 (75%) and TanDEM-X-FNF 
(74%), followed by our maps (66%), JAXA-FNF (64%) and GFC 
(62%). According to our study design, estimations of FC decreased 
gradually in regions with middle and advanced deforestation contexts 
for all the compared datasets. At the same time, discrepancies between 
maps increased along this gradient (Fig. 8). 

In Zambia, all the sources provided similar estimations of FC for the 
landscapes in North Western (from 78% to 89%) and Copperbelt (from 
59% to 71%). In contrast, the estimations of FC for the landscapes in the 
Eastern region varied substantially, between 9% (CGLS-LC100) and 59% 
(GFC). In Ecuador, the estimations of FC by the global sources were 
much higher, from 76% (LaForeT) to 95% (CGLS-LC100), than the ones 
by MAE’s maps (61%). These discrepancies were stronger in Esmeraldas 
and in the Amazon frontier. Similarly, CGLS-LC100 (71%) and TanDEM- 
X-FNF (76%) provided higher estimations of FC in the Philippines, when 
compared to the other sources (36% to 48%). These discrepancies were 
particularly strong in Leyte and South Cagayan. 

4.2.3. Spatial agreements 
Fig. 9 shows the spatial agreements between our maps and the 

secondary sources in all the studied regions. The extended results for all 
dataset combinations and different subsamples are depicted in 
Table S17. The overall spatial agreements between the different sources 
had little variation, with values ranging from 76% to 83% and similar 
results in the three countries. In general, the specific spatial agreements 
for forests (ranging from 82% to 88%) were higher than the ones for the 
no-forest class (between 62% and 74%), which were particularly low in 
Ecuador (32% to 65%). Only in Philippines, the specific spatial agree
ments for the no-forest class were similar and even higher (68% to 92%) 
than the ones for the forest class (58% to 85%). 

We observed that the overall and forest-class specific agreements 
gradually decreased in regions with more advanced deforestation con
texts. Thus, overall agreements ranged from 83% to 90% in initial, from 
74% to 83% in middle and from 59% to 78% in advanced deforestation 
contexts, respectively. In contrast, no-forest class-specific agreements 
remained similar across deforestation contexts or even increased in later 
forest transition stages, ranging from 60% to 72%, 60% to 74% and 61% 
to 81% for initial, middle and advanced deforestation contexts, 
respectively. 

Fig. 5. Sensitivity or producer accuracies (range 50–100%, with the 100% value corresponding to the outer ring of the presented hexagons) of the specific LCLU 
types and forest disturbance regimes (based on the forest transition theory) in the analyzed datasets for the total sample. Note: The first row depicts forest disturbance 
regimes, represented by the different stages related to the forest transition. The second row shows the results for the specific LCLU types within the deforested 
vegetation category. The third row includes LCLU classes not included in the analysis of the forest disturbance regimes. 
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5. Discussion 

5.1. Mapping of tropical forest 

We were successful in developing a standardized and consistent 
methodology to generate accurate high-resolution (30 m) forest maps 
for various tropical regions across three continents. Overall, our findings 
reaffirm the potential of using innovative machine learning techniques 
together with the fusion of freely-accessible multi-sensor and multi- 
temporal satellite information, in order to improve the outputs of 
tropical forest mapping (Li et al., 2017; Reiche et al., 2018; Wang et al., 
2019). Our reference dataset, along with the produced maps and 
methods, can be used in future studies to analyze additional forest 
disturbance or LCLU aspects in the tropics. 

The application of a non-parametric classifier such as the RF algo
rithm presented the advantage of dealing with several bands, indices 
and textures per pixel, capturing the physical and spectral differences of 
forest between the analyzed regions (Figs. S2 to S4 and S8). 

Elevation was the only variable that strongly enhanced the map 
outputs in all the studied regions. This highlights the potential of DEMs 
as valuable auxiliary information to improve LCLU classification accu
racies by, for example, reducing the relief effect of satellite images or by 
predicting disturbance susceptibility (Fahsi et al., 2000). We also 
interpret that elevation acted as an indicator of accessibility, which is s 
key determinant of deforestation in the tropics, observed across the 
studied landscapes. Moreover, our findings reaffirm the relevance of 
wetness-related indices for the effective monitoring of FC in the tropics, 
when compared to greenness-related ones (Schultz et al., 2016). Simi
larly, the importance of the ultra-blue band could be related to mist/ 
haze and other fine aerosol particles, which are characteristic of areas 
with continuous rain and cloud coverage (Pöschl et al., 2010). In further 
studies, it might be opportune to incorporate more complex indices 

related to canopy density (e.g. Normalized Difference Fraction Index) or 
leaf surface properties (e.g. Leaf Area Index), which have reported 
satisfactory results in the past (Souza et al., 2013). Finally, our findings 
expand the recent developments in the field of SAR, by ratifying the 
advantages of using textural information, derived from Sentinel-1 
backscatter (i.e. recurring importance of GCLM-mean of the VH polari
zation across regions), to map FC (Numbisi et al., 2019). Additionally, 
better contributions of certain variables in older scenes (i.e. VV polari
zation) ratify the importance of including multi-temporal information to 
capture historical LCLU and FC changes (Pulella et al., 2020). 

However, we have to be cautious when interpreting the relative 
importance of variables in RF models, especially if a large number of 
predictors are used. This behavior may lead to serious overfitting 
problems and biased estimations, due to unaccounted spatial correlation 
between variables (Ploton et al., 2020). This can also be the reason for 
the region-specific results and for the unexpected contribution of certain 
variables (e.g. ultra-blue band), which may be correlated to other pre
dictors like elevation (Fig. S7). Further studies should consider a pre- 
selection of variables in every region, based on expert knowledge or 
spectral separability. 

Furthermore, comparisons of the results for the studied sensors 
(Landsat-8, Sentinel-1) need to be addressed critically, due to the sub
stantial differences on the type and availability of temporal data used. 
For instance, the creation of Landsat-8 seasonal mosaics using a rela
tively long 3-year period, lead to very different timestamps per map, 
depending on regional cloud cover. Additionally, the quality and density 
of these mosaics decreased drastically in areas with poor availability of 
data (i.e. Ecuador). In contrast, Sentinel-1 uses single observations for 
only two points in time. Further studies could try to increase data den
sity and ideally perform a time-series approach by extending the anal
ysis period or the number of sensors. This could improve the poor results 
obtained for certain LCLUs, which suffered recent changes. In addition, 

Fig. 6. Sensitivity or producer accuracies (range 50–100%, with the 100% value corresponding to the outer ring of the presented hexagons) of the forest disturbance 
regimes in the analyzed datasets, grouped by deforestation contexts (left) and countries (right) Note: Deforestation contexts, countries and forest disturbance regimes 
are represented by the different stages related to the forest transition. 
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some processing steps may be optimized, such as the use of median 
(instead of average) to reduce the blur of the optical mosaics, or the use 
of multi-temporal speckle filters for the SAR scenes (Wang et al., 2019; 
Woodcock et al., 2020). 

5.2. Comparing tropical forest maps 

Our extensive field campaign to collect training and validation data 
in situ allowed us to achieve satisfactory classification outputs, which 
generally outperformed the results of the global secondary maps (Fig. 4). 
This emphasizes the importance of using updated reference data from 
the ground, which ideally should include detailed and standardized in
formation about the different forest strata. Similarly, the relatively high 
accuracies of JAXA-FNF in the Philippines are probably related to the 
fact that the country was used for the training of the map’s classifier 
(Shimada et al., 2014). Undefined forests (identified visually in the 
satellite images), reported the highest producer accuracies in all the 
compared datasets and contexts (Fig. 5). We argue that only relying on 
this type of information for training and validation might omit relevant 
forest types and lead to wrong estimations of FC (Figs. 7 and 8). 
Certainly, there is a trade-off between reducing economic and logistic 
costs of implementing such an extensive field campaign and improving 
the quality of the generated maps. Regarding this, the synergetic 
development of collaborative and harmonized global reference data
bases and the integration of both NFM and Inventory systems in tropical 

countries are still highly desired (Fritz et al., 2011). 
The generally high accuracies of the maps produced by the national 

mapping agencies (Fig. 4) are promising, as we analyzed three countries 
with very different capacities regarding their MRV/NFM systems and 
their commitments to international reporting (e.g. participation in 
REDD+ program) (Nesha et al., 2021). In Zambia (Phiri et al., 2019), 
where NFM agencies are still undergoing phases of development and 
capacity building, the recently produced ILUA-II maps performed well 
but still slightly worse than the global datasets. In Ecuador, MAE’s 
relatively long-established inventory and mapping capabilities delivered 
satisfactory overall accuracies, in contrast to the disconcerting results of 
all other datasets, which noticeably overestimated FC (Fig. 7). In order 
to produce their regularly updated national LCLU and deforestation 
maps, MAE uses a combination of Landsat time-series and very high 
resolution imagery for training and validation (i.e. RapidEye and aerial 
photographs) (MAE-MAGAP, 2015). In Philippines, where again global 
secondary sources generally overestimated FC (Fig. 7), NAMRIA’s 2015 
maps reported the best accuracies in the three studied regions. This 
suggests an improvement of the quality of previous LCLU datasets by the 
Philippine national mapping agency (Estoque et al., 2018; Santos, 
2018). 

Nevertheless, any comparison of results between regions or between 
map sources should be made critically. For instance, the quality of the 
different maps depends on their scale and purpose, but also on the 
sensors used (active vs. passive) and the related resolutions and 

Fig. 7. Forest Cover (FC) within the studied landscapes (n = 36; n = 12 per country) according to different sources, grouped by regions, countries and defores
tation contexts. 
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processing steps. Related to this, the size of the uniform LCLU patches 
observed on the ground, which should match the minimum mapping 
unit required by the resolution of the used satellite sensors, is region- 
dependent (Table 2). This could explain the generally better results in 

Zambia, where larger patches were observed, and the difficulties to 
detect smaller deforested vegetation patches in Ecuador (Smith et al., 
2003), usually surrounded by forests of greater heights and denser 
canopy cover (Fig. S8). Furthermore, cloud cover clearly affected the 

Fig. 8. Examples of three landscapes with strong discrepancies in Forest Cover (FC) estimations between the selected datasets: (a): Mumbi, Eastern, Zambia; (b): 
Avila, Amazon, Ecuador; (c): Abuyog, Leyte, Philippines. Note: Comparisons for all 36 landscapes can be found in the supplementary material (Figs. S9 to S44). 
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confidences of our maps and the overall accuracies of the global maps in 
Philippines and especially in Ecuador, but barely in Zambia. Addition
ally, the temporal gap between data collection and scene acquisition 
(Fig. S1 and Table S3) or map production (Table 3), might explain better 
accuracies of datasets in specific regions (e.g. JAXA-FNF in Philippines). 

Further studies can try to optimize this caveat by using auxiliary infor
mation to improve outdated maps, such as the GLAD alerts in the case of 
GFC (Hansen et al., 2016). Regarding this dataset, our findings 
confirmed how a preliminary definition of a TC threshold, can match the 
diverse forest definitions and deliver improved classification accuracies 

Fig. 9. Spatial agreements between LaForeT maps and the selected secondary forest datasets. See Fig. 1 for reference.  

R. Ferrer Velasco et al.                                                                                                                                                                                                                        



Remote Sensing of Environment 274 (2022) 112997

16

(Galiatsatos et al., 2020), even if there is a temporal gap with the vali
dation data. The GFC analysis (Fig. S8) also underpins the strong 
regional dependency of ecological features (i.e. TC) and the high 
sensitivity of map outputs to these biological aspects. For instance, the 
presence of other tree-based systems commonly misclassified as forest 
(Fig. 5) has probably influenced the classifications of certain regions 
negatively. The clearest examples are Esmeraldas in Ecuador, with large 
oil palm plantations, and Leyte in the Philippines, characterized very 
steep mountains and historical expansion of coconut palms to take part 
of degraded forest in the last decades (Estomata, 2014). Furthermore, 
the worse results in the Eastern province of Zambia can be related to the 
known challenges in mapping sparse forests of dry ecosystems associ
ated with woodlands or savannas (Feng et al., 2016; Hill, 2021). These 
ecosystems are characterized by lower canopy densities, slower growth 
rates, less greenness or water content and problematic LCLUs, such as 
shrublands (Fig. 5). The better accuracies of our method and SAR-based 
global sources in this region suggest potential advantages of using SAR- 
derived observations (alone or combined with optical data) to accu
rately map forests and deforestation in dry tropical areas, as previously 
demonstrated by other studies (Li et al., 2017; Reiche et al., 2018). 

5.3. Monitoring tropical forest across forest transitions 

Our initial hypothesis, that the different deforestation contexts and 
their associated forest disturbance regimes strongly influence the clas
sification outputs of regional forest maps in the tropics, finds empirical 
evidence in our analysis. We observed a tendency of increased diffi
culties in distinguishing FC by global maps in more developed stages of 
our deforestation contexts gradient. This was manifested as progres
sively worse classification outputs in regions with middle and advanced 
deforestation contexts, regarding not only the confidences of our maps 
(Table S8) and their overall accuracies (Fig. 5), but also the accuracies of 
the secondary global datasets and the overall and forest-specific spatial 
agreements among map sources (Table S17). Generally, all the studied 
forest types, reported worse producer accuracies in middle and 
advanced deforestation contexts, independently of the analyzed dataset 
(Fig. 6). Consequently, the estimation of FC in these regions presented 
wider ranges or variances, associated with larger uncertainties and er
rors (Figs. 7, 8 and 9). 

Apart from the specific methodological limitations of each region or 
dataset, as discussed in the previous subsections, these findings can also 
be explained by our general hypothesis. Namely, accelerated LU dy
namics in advanced deforestation contexts result in more diverse and 
complex LC patches of smaller size, with increased difficulties to map 
forest correctly (Smith et al., 2003): i.e. tree-based systems (i.e. peren
nial crops, palms and other agroforestry arrangements), shrublands and 
grasslands (Fig. 5). Accelerated LU dynamics also result in more 
degraded and sparse forests, which again increase the uncertainties of 
FC measurements and disturbance detections (Feng et al., 2016; Van
cutsem et al., 2021). This would also explain why regrowth forests 
presented worse producer accuracies than reference and degraded for
ests across datasets, countries and deforestation contexts (Fig. 6); thus, 
confirming the challenges to identify relatively young (less than 20 
years) tropical tree plantations and succession forests, grown in areas 
which have been completely clearfelled (Caughlin et al., 2020; Li et al., 
2017). 

The number of rehabilitation and reforestation initiatives in tropical 
landscapes is growing, as forests are a specific target within Goal 15 of 
the Sustainable Development Goals for 2030 (SDGs) (Holl, 2017). For 
instance, FLR projects within the Bonn Challenge have 350 million 
hectares pledged worldwide, together with country-led partnerships, 
such as Initiative 20 × 20 or AFR100. Other examples are afforestation 
and reforestation projects within the Clean Development Mechanism 
(CDM) or the Great Green Wall project in Africa, which aims to restore 
100 million hectares of currently degraded land by 2030. The goals of 
these initiatives (increasing vegetation cover, biodiversity recovery and 

recovery of ecological processes) often synergize with those of other 
relevant programs in place, like REDD+ (Verchot et al., 2018). Yet, as 
forest protection and rehabilitation measures continue to bloom in the 
tropics, so does the need for rigorous monitoring and improved imple
mentation and reporting mechanisms (Murcia et al., 2016; Stanturf 
et al., 2019). 

Our findings suggest that the recommendation of using forest data
sets carefully and rather as a reference, is especially relevant in regions 
with more advanced stages of degradation/deforestation or for the case 
of reforested areas. We argue that these regions with higher rates of FC 
change also have a greater need to use stratified in situ information for 
training/validation and to develop improved classification approaches 
which can be linked to forest condition and landscape multi
functionality. These are precisely the regions where most of the 
abovementioned environmental programs (e.g. REDD+ or FLR) are 
likely to take place. Omitting this may lead to wrong estimations of FC 
and therefore to biased conclusions about the success or failure of such 
international policies. 

6. Conclusion 

Our study represents an innovative attempt to analyze forest classi
fication accuracies at pantropical level on basis of the forest transition 
theory. In the context of the international Agenda 2030 for Sustainable 
Development and the Paris Agreement, numerous measures and pro
grams for the conservation, rehabilitation and sustainable use of forests 
are being implemented worldwide (e.g. FLR, REDD+). Although the 
goals of these initiatives might be well-intended and desirable, there is a 
need to improve the technical capacity to measure their success or 
effectivity, in order to draw sound conclusions on their contributions to 
sustainable development. This includes the ability to monitor tropical 
FC accurately and derive precise estimations of the quality and quantity 
of the associated ecosystem services. Our pantropical study clearly 
demonstrated how all the compared national and global forest maps 
struggled to differentiate forests with a disturbance history from other 
vegetation types, often resulting in wrong FC estimations. We empiri
cally proved that these complications are accentuated in regions with 
higher rates of FC change (in advanced stages of deforestation or 
reforestation) and particularly for forests grown in previously deforested 
areas. We therefore interpret our findings as evidence that the de
liberations regarding the applicability of secondary forest maps and the 
establishment of forest monitoring systems should be especially critical 
in these contexts. Our results also indicate the importance of in situ 
verification as accompanying method for MRV in regions of advanced 
stages of deforestation and early stages of reforestation. This should be 
relevant for upcoming policy making and research, as these are also the 
areas where forest protection and rehabilitation measures are required 
the most. 
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