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Abstract. We present the results of an extensive analysis of lepton flavour violating decays in
the Littlest Higgs model with T-parity (LHT). As lepton flavour violation is highly suppressed
in the Standard Model by small neutrino masses, the LHT effects turn out to be naturally huge
and could be seen in the near future experiments.

1. The LHT Model

The little hierarchy problem, i.e. the problem of hierarchy between a low (≈ 102 GeV) Higgs
mass and a quite high (> 10TeV) Standard Model (SM) cutoff scale indicated by electroweak
(ew) precision measurements, has been one of the main motivations to elaborate models of New
Physics (NP). While Supersymmetry is at present the leading candidate, different proposals have
been formulated more recently. Among them, Little Higgs models play an important role, being
perturbatively computable up to about 10TeV and with a rather small number of parameters.

In Little Higgs models[1] the Higgs is naturally light as it is identified with a Nambu-Goldstone
boson of a spontaneously broken global symmetry, whose gauge and Yukawa interactions are
incorporated without generating quadratic one-loop mass corrections, through the so-called
collective symmetry breaking (CSB). Indeed, the CSB has the peculiarity of generating the Higgs
mass only when two or more couplings in the Lagrangian are non-vanishing, thus avoiding one-
loop quadratic divergences. Diagrammatically, the CSB is realized through the contributions of
new particles with masses around 1TeV, that cancel the SM quadratic divergences.

The most economical, in matter content, Little Higgs model is the Littlest Higgs (LH)[2],
where the global group SU(5) is spontaneously broken into SO(5) at the scale f ≈ O(1TeV)
and the SM ew sector is embedded in an SU(5)/SO(5) non-linear sigma model. Gauge and
Yukawa Higgs interactions are introduced by gauging the subgroup of SU(5): [SU(2)×U(1)]1 ×
[SU(2)×U(1)]2. In the LH model, the new particles appearing at the TeV scales are the heavy
gauge bosons (W±

H , ZH , AH), the heavy top (T ) and the scalar triplet Φ.
In the LH model, however, ew precision tests are satisfied only for quite large values of

the NP scale, f ≥ 2 − 3TeV[3, 4], due to tree-level heavy gauge boson contributions and the
triplet vacuum expectation value (vev). The LH model can be reconciled with ew precision tests
by introducing a discrete symmetry called T-parity[5], which acts as an automorphism that
exchanges the [SU(2)×U(1)]1 and [SU(2)×U(1)]2 gauge factors. As T-parity explicitly forbids
the tree-level contributions of heavy gauge bosons and the interactions that induced the triplet
vev, the compatibility with ew precision data can be obtained already for smaller values of the
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NP scale, f ≥ 500GeV[6]. Another important consequence is that particle fields are T-even or
T-odd under T-parity. The SM particles and the heavy top T+ are T-even, while the heavy gauge
bosons W±

H , ZH , AH and the scalar triplet Φ are T-odd. Additional T-odd particles are required
by T-parity: the odd heavy top T− and the so-called mirror fermions, i.e., fermions corresponding
to the SM ones but with opposite T-parity and O(1TeV) mass. Mirror fermions are characterized
by new flavour interactions with SM fermions and heavy gauge bosons, which involve two new

unitary mixing matrices in the quark sector, VHd and VHu satisfying V †
HuVHd = VCKM , and two

in the lepton sector, VHℓ and VHν satisfying V †
HνVHℓ = V †

PMNS[7, 8].
Because of these new mixing matrices, the Littlest Higgs model with T-parity (LHT) does

not belong to the Minimal Flavour Violation (MFV) class of models[9, 10] and significant effects
in flavour observables are possible. Other LHT peculiarities are the rather small number of new
particles and parameters (the SB scale f , the parameter xL describing T+ mass and interactions,
the mirror fermion masses and VHd and VHℓ parameters) and the absence of new operators in
addition to the SM ones. On the other hand, one has to recall that Little Higgs models are
low energy non-linear sigma models, whose unknown UV-completion introduces a theoretical
uncertainty reflected by a left-over logarithmic cut-off dependence[11, 12] in ∆F = 1 processes.

2. Lepton Flavour Violation in the LHT Model

Several studies of flavour physics have been performed in the LHT model in the last three years,
for both quark[7, 12, 13] and lepton sectors[14, 15]. They show that the LHT mirror fermion
interactions can yield large NP effects in the quark sector, mainly in K and B rare and CP-
violating decays[12], and that even larger NP effects are possible in the lepton sector[14, 15].
The smallness of ordinary neutrino masses, in fact, assures that the mirror fermion contributions
to lepton flavour violating (LFV) decays represent by far the dominant effects.

In[15] we have studied the most interesting LFV processes: ℓi → ℓjγ, τ → ℓP (with
P = π, η, η′), µ− → e−e+e−, the six three-body decays τ− → l−i l+j l−k and the rate for µ − e

conversion in nuclei. We have also calculated the rates for KL,S → µe, KL,S → π0µe, Bd,s → µe,
Bd,s → τe and Bd,s → τµ.

The number of significant experimental constraints on flavour violating decays is rather
limited in the lepton sector . Basically only the upper bounds on Br(µ → eγ)[16], Br(µ− →

e−e+e−)[17], Br(KL → µe)[18] and R(µT i → eT i)[19] can be used in our analysis. The situation
may change significantly in the coming years thanks to near future experiments[19, 20, 21, 22].
Meanwhile, we have estimated the LHT effects, imposing the experimental bounds mentioned
above and scanning over mirror lepton masses in the range [300GeV, 1500GeV] and over the
parameters of the VHℓ mixing matrix, with the symmetry breaking scale f fixed to f = 1TeV
or f = 500GeV in accordance with ew precision tests[6]. We note that for f = 500GeV also
the very recent experimental upper bounds on τ → µπ, eπ given in [23], where Belle[24, 25] and
BaBar[26, 27] results have been combined, become effective.

We have found that essentially all the rates considered can reach or approach present
experimental upper bounds[15]. In particular, in order to suppress the µ → eγ and µ− → e−e+e−

decay rates below the experimental upper bounds, the VHℓ mixing matrix has to be rather
hierarchical, unless mirror leptons are quasi-degenerate.

Moreover, following the strategy proposed in[28, 29, 30] in the supersymmetric framework, we
have identified certain correlations between branching ratios that are less parameter dependent
than the individual branching ratios and could provide a clear signature of the model. In
particular, we find that the ratios Br(ℓi → ℓjℓjℓj)/Br(ℓi → ℓjγ), Br(ℓi → ℓjℓjℓj)/Br(ℓi →

ℓjℓkℓk) and Br(ℓi → ℓjℓkℓk)/Br(ℓi → ℓjγ) could allow for a transparent distinction between the
LHT model and the MSSM (see Table 1).

Finally, we have studied the muon anomalous magnetic moment finding that, even for values
of the NP scale f as low as 500GeV, aLHT

µ < 1.2 · 10−10. This value is roughly a factor 5 below
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ratio LHT MSSM (dipole) MSSM (Higgs)

Br(µ−→e−e+e−)
Br(µ→eγ) 0.4. . . 2.5 ∼ 6 · 10−3 ∼ 6 · 10−3

Br(τ−→e−e+e−)
Br(τ→eγ) 0.4. . . 2.3 ∼ 1 · 10−2 ∼ 1 · 10−2

Br(τ−→µ−µ+µ−)
Br(τ→µγ) 0.4. . . 2.3 ∼ 2 · 10−3 0.06 . . . 0.1

Br(τ−→e−µ+µ−)
Br(τ→eγ) 0.3. . . 1.6 ∼ 2 · 10−3 0.02 . . . 0.04

Br(τ−→µ−e+e−)
Br(τ→µγ) 0.3. . . 1.6 ∼ 1 · 10−2 ∼ 1 · 10−2

Br(τ−→e−e+e−)
Br(τ−→e−µ+µ−) 1.3. . . 1.7 ∼ 5 0.3. . . 0.5

Br(τ−→µ−µ+µ−)
Br(τ−→µ−e+e−) 1.2. . . 1.6 ∼ 0.2 5. . . 10

R(µT i→eT i)
Br(µ→eγ) 10−2 . . . 102 ∼ 5 · 10−3 0.08 . . . 0.15

Table 1. Comparison of various ratios of branching ratios in the LHT model and in the MSSM

without and with significant Higgs contributions.

the current experimental uncertainty[31], implying that the possible discrepancy between the
SM prediction and the data cannot be solved in the LHT model.
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