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Abstract. The time delay of an almost monochromatic wave packet can be defined
unambiguously via the energy derivative of the phase of the amplitude defining the superposition
of stationary states making up the wave packet. We illustrate how this concept, originally
formulated by Eisenbud and Wigner in the context of scattering theory, can be applied to
quantum reflection by the nonclassical region of a long-ranged attractive potential tail. We pay
special attention to the case of a wave packet incident from the near side of the nonclassical
region and interpret the results with the help of regularized step potentials.

1. Introduction
An expression for time delay in particle scattering was formulated by Eisenbud and Wigner
more than fifty years ago [1]. The prescription of Eisenbud and Wigner involves the energy
derivative of the phase of the scattering matrix, and it is well defined and unambiguous for wave
packets which are almost monochromatic. The concept can be transferred from the scattering
problem to other processes involving time; the scattering matrix must then be replaced by the
appropriate energy-dependent amplitude describing the process.

In this contribution we apply the formula of Eisenbud and Wigner to wave packets subjected
to quantum reflection by the nonclassical region of an attractive potential tail, as typically
occurs beyond the close region of a few atomic units in the interaction of atoms and molecules
with each other and with surfaces. After a brief review of the Eisenbud-Wigner time delay in
Sect. 2, its application in connection with quantum reflection is described in Sect: 3. The
choice of reference waves affects the phase of the quantum reflection amplitude and hence the
interpretation of the time delays obtained, as discussed in Sect. 4. In Sect. 5 we focus on
quantum reflection of a wave packet incident from the near side of the nonclassical region of
the potential tail, and in Sect. 6 we interpret the results with the help of regularized potentials
in which the singular attractive potential at positive distances is smoothed to a deep constant
value at negative distances.
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Figure 1. Sharp potential step at r = L

2. Eisenbud-Wigner time delay
Consider a rightward-travelling free-particle wave packet,

ψ(r, t) =
∫ ∞

−∞
ψ̃(k′)ψk′(r, t)dk′, ψk′ = ei[k′r−ω(k′)t] , ω(k) =

h̄k2

2M
. (1)

If the amplitude function ψ̃(k′) is sufficiently narrowly peaked around a (positive) wave number
k, then the wave packet moves to the right with little spreading at the group velocity

vg =
dω
dk

, (2)

which here is given by vg = v∞ = h̄k/M . A wave packet centred around r0 at time t0 will be
centred around r = r0 + v∞(t − t0) at a later time t. If the wave packet is modulated by an
amplitude function A(k′) = |A(k′)| eiφ(k′),

ψ(r, t) =
∫ ∞

−∞
ψ̃(k′)A(k′)ψk′(r, t)dk′ , (3)

then at time t it will be centred around

r = r0 + v∞(t− t0)−
dφ
dk

(4)

if it was centred around r0 at time t0. Compared to the free wave packet defined without the
amplitude A(k′), the wave packet (3) lags behind by a space shift ∆r which translates into a
time delay ∆t = ∆r/v∞ for a particle travelling with velocity v∞,

∆r =
dφ
dk

, ∆t =
∆r
v∞

= h̄
dφ
dE

, E =
h̄2k2

2M
. (5)

The expressions (5) were originally derived by Eisenbud and Wigner [1] for partial wave
scattering, where the relevant amplitude is the partial wave S-matrix e2iδ, so φ(k) = 2δ(k).
They are readily transferred to other situations, e.g. the reflection of a particle incident from
the right by a sharp potential step at a distance L from the origin, as illustrated in Fig. 1.
Solving the Schrödinger equation with the boundary conditions
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ψ
r<L=

T√
h̄q

e−iqr , ψ
r>L=

1√
h̄k

(
e−ikr +R(k)e+ikr

)
(6)

gives the reflection amplitude R(k) and the space and time shifts as

R(k) =
k − q
k + q

e−2ikL , ∆r = −2L , ∆t = −2L
M

h̄k
. (7)

The k-independent space shift −2L describes the fact that the reflected wave is generated at the
point r = L and hence is advanced by the distance 2L with respect to the free wave travelling
to r = 0 and back; the time shift in (7) expresses the corresponding time gain (negative time
delay) for a particle travelling with the velocity h̄k/M .

3. Application to quantum reflection by attractive potential tails
Reflection by the sharp step in Fig. 1 is a typical example of “quantum reflection”, i.e., classically
forbidden reflection by a nonclassical region in coordinate space in the absence of a classical
turning point. Nonclassical regions in coordinate space occur where the condition for validity of
the WKB approximation,

|Q(r)| � 1 , Q(r) =
1

16π2

[
2λkλ

′′
k −

(
λ′k
)2]

, (8)

is poorly fulfilled. Here λ(r) = 2πh̄/p(r) = 2πh̄/
√

2M [E − V (r)] is the local de Broglie wave
length. For attractive potential tails more singular than −1/r2, the “badlands” or “quantality
function” Q(r) usually has its maximum absolute value near the point rE , where the absolute
value of the potential is equal to the total energy, |V (rE)| = E [2; 3]. For homogeneous potential
tails,

Vα(r) =
Cα

rα
= − h̄2

2M
(βα)α−2

rα
, (9)

this characteristic position is given by

rE = βα(kβα)−2/α , (10)

and semiclassical approximations become increasingly valid not only for r →∞, but also on the
near side of rE for r → 0.

Quantum reflection amplitudes have been calculated [2–7] for various attractive potential tails
by solving the Schrödinger equation with the boundary conditions defined in terms of stationary
monochromatic waves for r →∞, see Fig. 2,

ψ(r) r→0∼ T√
p(r)

e−
i
h̄

∫ r
p(r′)dr′ , ψ(r) r→∞∼ 1√

h̄k

(
e−ikr +R e−ikr

)
. (11)

The boundary condition for small distances corresponds to incoming waves, which is conveniently
expressed in terms of inward-travelling WKB waves in the semiclassical region on the near
side of rE . The Schrödinger equation for quantum reflection corresponds to the that for s-
wave scattering, and the analogy is highlighted by expressing the amplitude R(k) for quantum
reflection in terms of a complex phase shift δ,

R(k) = |R(k)|eiφ(k) = −e2iδ(k) , |R| = e2=(δ) , φ = π + 2<(δ) . (12)

The near-threshold behaviour of R can be derived via an adaptation of the effective-range
formalism of ordinary scattering theory to incoming boundary conditions on the near side of the
nonclassical region [7],

δ(k) k→0∼ −k(ā− ib) +
1
3
(kΛ)3 . (13)
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Figure 2. Schematic illustration of quantum reflection by an attractive potential tail with
monochromatic incoming and reflected waves as reference waves beyond the nonclassical region.

The “threshold length” b determining the leading deviation of the quantum reflection probability
from unity is well defined for all potentials falling off faster than −1/r2 asymptotically. The
“mean threshold length” ā determining the leading near-threshold behaviour of the phase of R
is a well defined finite number only for potentials falling off faster than −1/r3. The last term
on the right-hand side of (13) exists in the given form only for potentials falling off faster than
−1/r5.

Away from threshold, semiclassical approximations rapidly become more accurate, and the
amplitude for quantum reflection assumes a form typical of classically forbidden processes in
smooth potentials [8; 9], R(k) k→∞∼ e−BS/h̄, where S is some typical classical action of the
system, e.g. h̄krE , with the characteristic distance rE defined after Eq. (8). For homogeneous
potential tails (9), (10), krE = (kβα)1−2/α and

R(k) k→∞∼ e−B(kβα)1−2/α
, B = B − iD . (14)

This behaviour was confirmed for the modulus of |R| in [2], where an explicit expression is given
for the dimensionless parameter B as a function of the power α.

Table 1 lists the values of the parameters b, ā and Λ for homogeneous potential tails (9)
in units of βα. The parameter Λ is a real multiple of the complex scattering length ā − ib
for homogeneous potentials. The last row shows the values of the dimensionless parameter B
determining the “high”-energy behaviour of the quantum reflection probabilities (14).

For potential tails falling off faster than −1/r3, the space shift ∆r defined by (5) tends
to a finite limit at threshold, namely −2ā according to (13). This implies that the quantum
reflected wave propagates as a free wave reflected at the point r = ā rather than at r = 0. The
near-threshold behaviour of the time correspondingly is ∆t k→0∼ −2āM/(h̄k), which diverges at
threshold, simply because the slow free particle takes so long to traverse the distance from r = ā
to r = 0 and back. At higher energies, the phase of R becomes proportional to −krE , so the
energy dependence of the phase shift is that of the characteristic distance rE , see (10). Note,
however, that the coefficient is not simply 2, so the time delay is only proportional, but not
equal, to that of a classical free particle reflected at r = rE rather than at r = 0 [4; 6]. The
phase φ of the quantum reflection amplitude and the resulting space shift ∆r are shown for
homogeneous potential tails (9) as functions of kβα in Fig. 3.
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Table 1. Threshold length b, mean scattering length ā and the parameter Λ of Eq. (13) for
homogeneous potential tails (9). The last row shows the values of the dimensionless parameter
B determining the “high”-energy behaviour of the quantum reflection probabilities (14).

α 3 4 5 6 7 ∞

b/βα π 1 0.6313 0.4780 0.3915 π/(α−2)
ā/βα − 0 0.3645 0.4780 0.5389 1

Λ/(ā−ib) − − − 1 0.6496 2.1265/(α−2)
B 2.2405 1.6944 1.3515 1.1202 0.9545 2π/α

0 1 2 3 4 5
kβα

-1

0

1

φ r(p
,r

0=
0)

/π

α = 3
α = 4
α = 5
α = 6
α = 7

0 1 2 3 4 5
kβα

-1

0

1

∆r
r(q

u-
fr

ee
,r

0=
0)

/β
α

α = 3
α = 4
α = 5
α = 6
α = 7

Figure 3. The left-hand panel shows the phase of the quantum reflection amplitude as function
of k for homogeneous potential tails (9); the right-hand panel shows the resulting space shifts
∆r as defined in (5)

4. Choice of reference waves
Instead of using plane waves (i.e. monochromatic waves) for reference as in (11), we can also
use WKB waves,

ψ
r→∞=

1√
p(r)

[
−e

i
h̄

∫ r

r0
p(r′)dr′

+R(WKB,r0)e
+ i

h̄

∫ r

r0
p(r′)dr′

]
. (15)

Reference to WKB waves does not imply any approximation of the quantum reflection
amplitudes; applicability of the WKB approximation away from the nonclassical region is a
necessary condition for an unambiguous decomposition of the quantum wave into incoming,
reflected and transmitted parts. The probability |R|2 for quantum reflection does not depend
on whether WKB waves or monochromatic waves are used for reference, but the phase of R
depends on this choice and also on the point of reference of the WKB integrals, which is called
r0 in (15) and sets a zero in the phase of the WKB wave functions [6]. For this reason, we keep
the labels “WKB” and r0 as superscripts on the quantum reflection amplitude.

When the reference waves are WKB wave functions as in (15), the derivatives of the phase
of the reflection amplitude define space and time shifts relative not to free-particle motion, but
to the motion of classical particles under the accelerating influence of the potential. E.g., the
momentum and energy derivatives of the phase φ(WKB,r0) of R(WKB,r0) in (15) describe the space
and time shifts of the quantum reflected wave relative to a classical particle reflected at the point
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Figure 4. Space shifts ∆r(qu−cl,r0=0) expressing the delay of the quantum reflected wave relative
to the classical accelerated particle for homogeneous potential tails (9).

of reference r0,

dφ(WKB,r0)

dk
= ∆r(qu−cl,r0) , h̄

dφ(WKB,r0)

dE
= ∆t(qu−cl,r0) . (16)

The point of reference r0 in the above expression is arbitrary, and we can remove this arbitrariness
by fixing r0 to an appropriate value, e.g. r0 = 0. The phase of the reflection amplitude defined
via the boundary conditions (15) diverges for r0 → 0, because the phases of the WKB waves
diverge in this limit, but the space and time shifts stay well defined, because

∆r(qu−cl,r0→0) = ∆r(qu−free,r0=0) + ∆r(free−cl,r0=0) , (17)

∆t(qu−cl,r0→0) = ∆t(qu−free,r0=0) + ∆t(free−cl,r0=0) .

In (17) the superscript “qu−free” denotes the space and time shifts of the quantum reflected
wave relative to the free wave, which were discussed in the previous section. The superscript
“free−cl” denotes the space and time shifts of the free wave or particle relative to the classical
particle moving under the accelerating influence of the potential and reflected at r0, and these
shifts are defined classically and remain finite in the limit r0 → 0. For homogeneous potential
tails (9),

∆r(free−cl,r0=0) = 2rEτ(α) , ∆t(free−cl,r0=0) = ∆r(free−cl,r0=0)/v∞ , (18)

with rE given by (10) and τ(α) = Γ
(

1
2 + 1

α

)
Γ
(
1− 1

α

)
/
√
π ≈ 1 [4]. Note that the time gain of

the quantum wave relative to the free particle is smaller than the time delay of the free particle
relative to the classical particle; in terms of space shifts:

−∆r(qu−free) < ∆r(free−cl) ⇒ ∆r(qu−cl) = ∆r(qu−free) + ∆r(free−cl) > 0 . (19)

Although the dominantly negative space shifts shown in Fig. 3 indicate that the quantum
reflected wave returns sooner than the free wave (except for α = 3 and very small energies),
the quantum reflected wave is always delayed relative to classical particle subjected to the
accelerating influence of the attractive potential tail. The corresponding positive space shifts
are illustrated in Fig. 4.
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Figure 5. Schematic illustration of near-side quantum reflection in an attractive potential tail

5. Near-side quantum reflection
Since there is a semiclassical region on the near side of the nonclassical region, one can also study
the quantum reflection of particles which initially move outward and are reflected back without
managing to traverse the nonclassical region, the “badlands”, see Fig. 5. Since the potential
depends strongly on r at small distances, incoming and reflected waves are appropriately
represented by WKB waves, and the Schrödinger equation has to be solved with the following
boundary conditions:

ψ
r→0=

1√
p(r)

[
e

i
h̄

∫ r

r0
p(r′)dr′

+RWKB,r0
ns e

− i
h̄

∫ r

r0
p(r′)dr′

]
, ψ

r→∞=
Tns√
p(r)

e
i
h̄

∫ r

r0
p(r′)dr′

. (20)

The quantum reflection amplitude (as also the transmission amplitude) is labelled with the
subscript “ns” in (20), in order to distinguish these amplitudes for incidence from the near side
from the conventional amplitudes defined via the boundary conditions (11). According to well
known reciprocity relations, the probabilities |R|2 for reflection and |T |2 for transmission do not
depend on the direction of incidence, nor on whether monochromatic waves or WKB waves are
used for reference. However, the phase of the quantum reflection amplitude does depend on the
direction of incidence, on the choice of reference waves and on the point of reference r0.

Since the reference waves are WKB wave functions, the energy derivative of the phase of the
reflection amplitude in (20) defines the time shift relative to a classical particle incident from
small r values and reflected at the point of reference r0,

h̄
dφ(WKB,r0)

ns

dE
= ∆t(qu−cl,r0)

ns . (21)

It turns out to be useful to define a related space shift for a free particle moving with constant
velocity v∞,

∆r(qu−cl,r0)
ns = v∞∆t(qu−cl,r0)

ns =
dφ(WKB,r0)

ns

dk
, (22)

even though particle motion is not asymptotically free on the near side.
Again we can remove the arbitrariness in the choice of reference point r0 by taking the limit

r0 → 0. The phase of the reflection amplitude in (20) diverges in this limit, but the derivatives
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Figure 6. Time shifts (21) and k-derivative (22) for near-side quantum reflection in the limit
r0 → 0.

of the phase with respect to E or k remain finite, so the time and space shifts (21), (22) remain
well defined for r0 → 0. The results for homogeneous potential tails (9) are shown in Fig. 6

A striking feature of Fig. 6 is, that the time and space shifts are all negative. These shifts
refer to the delay of the quantum reflected wave relative to a classical particle starting from
the near-side classical region and reflected at the point of reference r0. In the limit r0 → 0 this
means, that the quantum reflected wave is reflected faster than instantaneously. To understand
the origin of this apparent paradox, it is important to remember that the Eisenbud-Wigner
formula (5) applies for almost monochromatic wave packets, with a momentum distribution
sharply peaked around a given finite value. The (small) momentum spread ∆k of a (free) wave
packet at large distances is related to an energy spread ∆E = h̄k∆k/M , which is independent
of the position of the wave packet. At smaller distances the local wave number is r-dependent
and k(r) becomes very large as the potential assumes large negative values. The corresponding
momentum spread must thus become very small for constant ∆E, so the uncertainty of the wave
packet in coordinate space becomes larger and larger as it enters the near-side classical region
at small distances. It is actually impossible to construct a wave packet well localized on the
near side of the nonclassical region which also fulfills the condition “almost monochromatic” as
assumed in the application of the Eisenbud-Wigner formula. In order to nevertheless reach a
meaningful interpretation of the results in this section, we study regularized potential steps in
which the attractive potential tail is smoothly continued to a large negative constant value for
negative distances r.

6. Interpretation via regularized potentials
We replace the homogeneous potential (9) by the regularized potential

Vα(r; a) = − h̄
2(βα)α−2

2M

{
(rα + aα)−1 for r ≥ 0 ,

a−α for r < 0 .
(23)

The potential now has the constant value −h̄2q20/(2M), q20 = (βα)α−2/aα, for negative r
values, and we can define the near-side reflection amplitude conventionally using plane, i.e.
monochromatic waves,

ψ
r<0=

1√
h̄q

[
eiqr +R(p,r0)

ns e−iqr
]
, ψ

r→∞=
T

(p,r0)
ns√
h̄k

eikr , q =
√
k2 + q20 . (24)
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Figure 8. Quantum reflection probabilities (left-hand panel) and phase of the quantum
reflection amplitude (right-hand panel) for incidence from negative r values to the smoothed
potential step (23) as functions of the smoothing length a for various total energies E =
h̄2k2/(2M). The straight horizontal lines show the corresponding result for near-side quantum
reflection by the singular homogeneous potential (9) with α = 4.

The phase φ(p,r0)
ns of the reflection amplitude is now well defined for r0 = 0, but it depends, as

does the reflection probability |R|2, on the choice of smoothing length a. Figure 8 shows, for
α = 4, how |R|2 and φ

(p,r0=0)
ns depend on a in (23) for various total energies E = −h̄2k2/(2M).

At energies for which the quantum reflection probabilities are still appreciable, the results for
the smoothed potential are very close to the results obtained for near-side quantum reflection
by the singular homogeneous potential (9) (straight horizontal lines) when a/β4 is smaller than
about 0.25.

The results obtained in the previous section are thus essentially unaffected by the smoothing
of the potential for appropriately small smoothing lengths. This is confirmed in Fig. 9, where
the time delay for near-side quantum reflection is plotted as a function of energy. The solid
line shows the result obtained for a singular homogeneous potential (9), α = 4, as already
shown as one of the curves in the left-hand panel of Fig. 6. The dashed line, which is hardly
distinguishable from the solid line, shows the result obtained with the smoothed potential (23)
for a smoothing length a = 0.2β4. The negative time delay seems to indicate, that the quantum
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Figure 9. Time shift for near-side quantum reflection. The solid line shows the result obtained
for a singular homogeneous potential (9), α = 4. The dashed line shows the result obtained with
the smoothed potential (23) for a smoothing length a = 0.2β4.

reflected part of an almost monochromatic wave packet incident from negative r values returns
earlier than the same wave packet after total reflection at r = 0, even though the potential step
lies wholly beyond r = 0 at positive r values.

The apparent paradox is resolved when considering that the quantum reflected wave packet
has a smaller amplitude than the totally reflected free wave packet (incident from the left),
and that the “boost” it receives is very small compared to the large spread of the almost
monochromatic wave packet. This is illustrated in Fig. 10, showing a typical example of a
quantum reflected wave packet compared to a wave packet totally reflected at r = 0. The initial
Gaussian wave packet

ψ(r; t = 0) =
(
β
√
π
)−1/2 eiqr exp

(
−(r − rin)2

2β2

)
(25)

starts at rin = −15 000β4 in the potential (23) with α = 4 and a = 0.2β4 corresponding to a step
depth q20 = (25)2/(β4)2. The width parameter is β = 6000β4, corresponding to a momentum
spread given by ∆q = 1/(6 000β4). The mean inital energy E = h̄2k2/(2M) is chosen to lie just
above threshold, k = 0.1/β4, which implies a mean wave number q = q0 + 0.0002/β4 on the
down-side of the step. The momentum spread on the up-side of the step, which is relevant for
the transmitted part of the wave packet, is given by ∆k = (q/k)∆q ≈ 1/(24β4).

The space shift of the quantum reflected wave on the down-side of the step is

∆rns =
h̄q

M
∆t(qu−free,r0=0)

ns (26)

and is equal to −78β4 in this example according to the Eisenbud-Wigner formula. The shift
in the maximum of the quantum reflected wave packet is near −76β4 and is barely visible in
Fig. 10, because it is so small compared to the large spatial spread of the quantum reflected wave
packet. Its probability density at the front edge (moving towards larger negative r values) is
never larger than for the totally reflected free wave. Reducing the spatial spread of the incident
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packet with width parameter 6 000β4 started at rin = −15 000β4 with mean momentum h̄q,
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The solid line shows the quantum reflected wave packet after twice the time the incident wave
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the returning wave packet after total reflection at r = 0 without any influence of the potential
at positive r values. The “boost” meaning negative space shift of the maximum of the quantum
reflected wave packet is −76β4 while the value given according to the Eisenbud-Wigner formalism
by (26) is −78β4.

wave packet increases the distortion of the quantum reflected part, and we never see an “acausal
advance” of a part of the quantum reflected wave packet due to the potential beyond r = 0.

7. Summary
The Eisenbud-Wigner definition of time delay is unambiguous for almost monochromatic wave
packets. For quantum reflection in an attractive potential tail, the time delay and the related
space shift are negative (except for −1/r3 potentials at very low energies). The maximum of
the quantum reflected wave returns sooner than that of a free wave reflected at r = 0. This
time gain is, however, too small to compensate the time delay of the free particle relative to the
classical particle accelerated by the attractive potential. The quantum reflected wave is delayed
relative to the classical accelerated particle.

For near-side quantum reflection, the Eisenbud-Wigner formula predicts a boost in the
reflected wave: a wave packet incident from the left seems to be reflected faster than
instantaneously. This boost is still present when the singular attractive potential tail is smoothed
to a large negative constant value for r < 0; the maximum of the reflected wave packet actually
returns sooner than that of the free wave packet. However, due to the reduced amplitude of the
reflected wave packet and the smallness of the boost, we see no apparent violation of causality.
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