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Abstract. We study scattering of ultracold atoms by absorbing surfaces. Loss of flux through
inelastic reactions and adsorption is described in an unambiguous and model-independent way
by incoming boundary conditions in the semiclassical region near the surface. The near-threshold
behaviour of the scattering amplitude is determined by a few parameters of the potential tail
beyond the semiclassical region. Investigation of quantum reflection and scattering by flat and
spherical surfaces shows that the curvature of the surface strongly influences the range to which
the scattering amplitudes are sensitive in the atom-surface interaction.

1. Introduction

The interaction of cold atoms with each other and with surfaces is a topic of intense current
interest [1,2]. Technological advances have made it possible to perform experiments with atoms
at temperatures in the nanokelvin range [3]. At such low temperatures, quantum effects become
important. Ultracold atoms approaching a flat surface are generally lost through inelastic
reactions or adsorption if they come to within a few atomic units of the surface. At low enough
energy they can be spared this fate through classically forbidden (quantum) reflection in the
distant tail of the potential [3–9], see Sec. 2. If the surface is curved, e.g. spherical, the scattering
cross section is sensitive to both modulus and phase of the partial wave S-matrix, and the radius
of the sphere can be tuned to probe different regions of the atom-surface potential [10]. The
theoretical description is given in Sec. 3 and applications are discussed in Sec. 4.

2. Scattering by flat surfaces

For small distances s, a few atomic units or so, the interaction between an atom and a flat
surface depends on details of the structure of both atom and surface and is quite complicated.
When ultracold atoms enter this “close” region, excitation modes of atom or surface are easily
excited, the atom loses energy and is trapped, adsorbed by the surface (“sticking”). Beyond this
close region, the atom-surface interaction is well described by a van der Waals potential −C3/s

3.
At very large distances, retardation effects become important and an atom in its ground state
or in a metastable excited state feels a potential −C4/s

4 [11]. The coefficients C3,4 depend on
the properties of both atom and surface [12,13]; they can be expressed in terms of the lengths

βα =

(

2M

h̄2 Cα

)1/(α−2)

, (1)

which define typical length scales for quantum mechanical effects associated with the
corresponding part of the potential, see Table 1 for examples. The quotient L = C4/C3 =
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(β4)
2/β3 has the dimension of a length and is characteristic for the transition zone separating

the “small” distance van der Waals regime (which is still beyond the close region of complicated
consuming interactions) from the highly retarded regime at very large distances. The true
atom-surface potential [14] varies smoothly between these limits,

Vflat(s) = −
C3

s3 v(s/L)
, (2)

where v(x) is a shape function with the asymptotic behaviour

v(x)
x→0
∼ 1 , v(x)

x→∞

∼ x . (3)

Explicit calculations in this contribution are based on two different shape functions,

v1(x) = 1 + x , v2(x) =
π/2

arctan [π/(2x)]
, (4)

which were proposed by Shimizu [9] (v1) and by Holstein [15] (v2).
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Figure 1. Probability for quantum reflection
of metastable 23S helium atoms from a flat
conducting wall. The solid and dashed lines
show the results for the potential (2) and
shape functions (4); the dot-dashed line shows
the result for the nonretarded van der Waals
potential −C3/s

3 and the dotted line shows the
result for the highly retarded potential −C4/s

4.

The motion of the atom under the influ-
ence of the potential (2) is classical at large
distances, where the potential vanishes, and
also at “small” distances, as is always the case
for potentials more singular than 1/s2. In be-
tween, there is a nonclassical region where in-
coming atoms can be reflected without reach-
ing a classical turning point. Ultracold atoms
which penetrate this nonclassical region of the
attractive potential tail proceed to the close
region where they are lost (absorbed); the oth-
ers are reflected elastically by the nonclassi-
cal part of the potential tail (“quantum re-
flection”). The region where quantum reflec-
tion occurs is very far from the surface for
near-threshold energies [6, 7]. The amplitude
for quantum reflection is obtained by solving
the Schrödinger equation for motion normal
to the surface with purely incoming boundary
conditions at small distances near the surface.
These boundary conditions describe the com-
plete loss of all atoms reaching the surface and
can be formulated in an unambiguous way us-
ing WKB waves, because motion becomes in-
creasingly classical towards smaller distances
in the singular attractive potential. Absorp-
tive effects are often formulated with the help of a complex potential, but an energy-independent
local complex potential cannot describe total loss of flux at small distances.

Figure 1 shows the probabilities for helium atoms in the metastable 23S state being quantum
reflected by a flat conducting wall. At energies for which the probabilities are appreciable,
quantum reflection is essentially determined by the highly retarded part, −C4/s

4, of the
potential. This is a general pattern in the quantum reflection of atoms by flat surfaces [3, 6, 7].
The phase of the amplitude for quantum reflection provides information on time and space shifts
involved in the process [16]. These shifts are relatively small, so the effect of the phase is not
easily observed in scattering by flat surfaces.
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3. Scattering by a sphere

As the simplest non-flat surface, we now turn to scattering by a sphere. Beyond the close
region of complicated and consuming atom-surface interactions, the interaction of an atom with
a spherical surface is well described by a local potential which depends on the radius R of the
sphere and the distance s of the atoms from the surface. For very large R, and s small compared
to R but still beyond the close region, the potential behaves as in the case of a flat surface (2).
When s is large compared to R, the potential behaves as a nonretarded van der Waals potential
−C6/s

6 for “small” distances s (still larger than R) and as a highly retarded potential, −C7/s
7,

for large s,

V (s) = −
C6

s6 v(s/L′)
, L′ =

C7

C6
, (5)

where v(x) is again a shape function (3) describing the transition from the nonretarded to the
highly retarded regime, and L′ is a length scale for the transition zone. A potential which
satisfies all boundary conditions is, e.g.,

Vsphere(s) = −

[

s3

C3
v

(

s

L

)

+
s6

C6
v

(

s

L′

)

]

−1

. (6)

For a conducting sphere with radius R, the coefficients C6,7 are related to the corresponding
coefficients C3 [14] and C4 [17] of the flat-surface case by

C6 = 12R3C3 , C7 =
46

3
R3C4 ⇒ L′ =

23

18
L . (7)

The strengths C6,7 can be related to characteristic lengths β6,7 as in (1); numbers are given in
Table 1 for R = 200 au and R = 2000 au.

Table 1. Lengths (in au) derived from the potential strength parameters C3 = 1.9009 au,
C4 = 5163 au for He(2 3S) [18] and C3 = 1.889 au, C4 = 1417 au for Na [19] according to (7), (1)

length β3 β4 L β6(200) β7(200) β6(2000) β7(2000) L′

He(2 3S) 27 740 8 680 2 716 1 277 1 560 7 184 6 211 3 470
Na 158 300 10 900 750 1 974 1 708 11 100 6 803 959

The scattering of atoms from a sphere is described [20] by the radial Schrödinger equation
with the effective potential

Veff(r) = Vsphere(s) +
h̄2

2M

l(l + 1)

r2
, r = s + R > R , (8)

for a given angular momentum quantum number l. As in the flat-surface case, the singular
attractive potential tail (beyond the close region) allows the absorption of atoms near the surface
to be described unambiguously via incoming boundary conditions for r → R ⇔ s → 0. Because
of loss of flux, the S-Matrix Sl = e2iδl is not unitary and the related scattering phase shift δl

is complex. For l = 0, the radial Schrödinger equation is identical to the equation for normal
motion in the flat-surface case, and scattering is essentially quantum reflection by the nonclassical
region of the attractive potential tail. The near-threshold behaviour of the s-wave phase shift is

δ0
k→0
∼ −(āR − ib)k +

1

3
(kΛ)3 . (9)
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Figure 2. dσ/dΩ at θ = π
2 for the elastic scattering of He(2 3S) atoms (left-hand panel) and

ground-state sodium atoms (right-hand panel) by an absorbing sphere of radius R = 200 au.

Here āR − ib ≡ A0 is the complex s-wave scattering length; āR = R + ā, and the “mean
scattering length” ā, the threshold length b and also Λ are tail parameters determined only by
the nonclassical part of the tail of the potential Vsphere(s) [21].

For l ≥ 1, the effective potential (8) contains a centrifugal barrier instead of just a nonclassical
region in the tail. For potentials falling off faster than 1/s5, the near-threshold behaviour of the p-

wave phase shift δ1 is determined by a complex p-wave scattering length A1, δ1
k→0
∼ [kA1(R)]3 /3.

The contributions of s- and p-waves to the differential cross section give

dσ

dΩ
k→0
∼ |A0|

2(1 − 2bk) + k2
[

F (l = 0) + F̃ (l = 0, 1) cos θ
]

, (10)

which is exact up to order O(E). Here F is a well-defined function of A0 and Λ, while F̃ also
depends on A1. For homogenous attractive potentials and R → 0, all parameters in (10) can be
derived analytically from the corresponding results for repulsive homogenous potentials [21–23].

4. Applications

The isotropic s-wave contribution to (10) can be obtained for θ = π
2 , cos θ = 0. Figure 2 shows

dσ/dΩ(θ = π/2) for the elastic scattering of He(2 3S) atoms (left-hand panel) and ground-state
sodium atoms (right-hand panel) by an absorbing sphere of radius R = 200 au for wave numbers
k up to 5/µm. This corresponds to temperatures up to 1 µK for helium and 200 nK for sodium.
The dot-dashed lines show the results for a nonretarded van der Waals potential −C6/s

6 and
the dotted lines show the results for the highly retarded case −C7/s

7. The solid and dashed
lines show the cross sections obtained with the realistic potential (6) for the two versions (4)
for the shape factor. Note that the cross section in Fig. 2 is sensitive to both the modulus and
the phase of the s-wave S-matrix e2iδ0 ; in contrast, the quantum reflection probability in the
flat-surface case contains no phase information.

For He(2 3S) the results for dσ/dΩ obtained with (6) are much closer to the van der Waals case
than to the retarded case. For sodium, the retarded −C7/s

7 part of the potential is dominant.
The results can be understood via the magnitudes of the characteristic lengths βα associated with
the potential strengths Cα according to (1). For helium, β6,7(200) are noticeably smaller than
L′ = C7/C6 and lie short of the transition zone in the nonretarded van der Waals regime. For
sodium, β6,7(200) are noticeably larger than L′, so the retarded part of the potential dominates
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Figure 3. Same as Fig 2, but for R = 2000 au.
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Figure 4. Asymmetry (11) for the elastic scattering of He(2 3S) atoms (left-hand panel) and
ground-state sodium atoms (right-hand panel) by an absorbing sphere of radius R = 200 au.

the result. For sufficiently large radius R of the sphere, β6,7(R) are larger than the characteristic
length L′, even for helium so that the differential cross section is dominated by the retarded part
of the potential. This can be seen in Fig. 3 showing the same cross section as Fig. 2, but for
R = 2000. For R → ∞ we recover the flat-surface case, where the lengths β3,4 are much larger
than the length L ≈ L′ typical of the transition zone, see Table 1. This explains why quantum
reflection by flat surfaces is mainly sensitive to the highly retarded part of the potential.

Further information can be obtained from the dimensionless asymmetry

Σ(k)
def
=

dσ
dΩ(θ = 0) − dσ

dΩ(θ = π)
dσ
dΩ(θ = 0) + dσ

dΩ(θ = π)
= 2k2F̃ (l = 0, l = 1) + higher terms , (11)

which describes the leading deviation from isotropy in (10). Figures 4 and 5 show Σ(k) for
He(2 3S) (left-hand panels) and Na atoms (right-hand panels) for R = 200 au and R = 2000
au respectively. The asymmetry is clearly more strongly influenced by the nonretarded −C6/s

6

part of the potential for the smaller R value.
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Figure 5. Same as Fig. 4, but for R = 2000 au.

5. Summary

The absorptive effect of the loss of ultracold atoms at surfaces can be described in an
unambiguous and model-independent way via incoming boundary conditions in the semiclassical
region of the attractive potential tail. For flat surfaces, quantum reflection in the distant
nonclassical part of the potential is mainly sensitive to the highly retarded part of the atom-
surface potential. When the surface is spherical, the elastic scattering cross section is sensitive
to different regimes of the atom-surface potential, and the nonretarded van der Waals regime
becomes increasingly important for smaller radii. Generalizing this result one might conclude
that a small radius of curvature makes the amplitudes for quantum reflection and scattering
more sensitive to comparatively small distances in the atom-surface potential.
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