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Föhringer Ring 6, 80805 München, Germany

E-mail: Markus Michael Mueller AT ph.tum.de

Abstract. (Classical) Boltzmann equations suffer from several shortcomings as compared
to their quantum mechanical generalizations, the so-called Kadanoff-Baym equations.
Nevertheless, in practical calculations approximations to Boltzmann equations are widely used.
A prominent example is the computation of the baryon asymmetry of the universe. In this
work, we present a detailed comparison between the Kadanoff-Baym and Boltzmann equations
in the framework of a scalar Φ4 quantum field theory. We solve the Kadanoff-Baym and the
Boltzmann equations numerically in 3+1 dimensions and compare their predictions on the
evolution of systems out of thermal equilibrium for various initial conditions. The obtained
numerical solutions reveal significant discrepancies between both types of equations. Most
notably, the universality respected by Kadanoff-Baym equations is severely restricted in the
case of Boltzmann equations.

1. Introduction
One of the most attractive frameworks to explain the matter-antimatter asymmetry of the
universe is furnished by the so-called leptogenesis mechanism [1, 2]. Here, lepton number
violating processes generate a lepton asymmetry which afterwards is converted to the observed
baryon asymmetry by certain standard model processes called sphalerons. For the dynamical
generation of the lepton asymmetry it is necessary, that the universe was in a state out of
thermal equilibrium [3]. Classical statistical systems out of thermal equilibrium can be described
by corresponding Boltzmann equations. They find their quantum mechanical generalization
in the so-called Kadanoff-Baym equations [4, 5]. Although the process of leptogenesis involves
elementary particles, which certainly obey the laws of quantum mechanics, the standard method
to describe leptogenesis makes use of Boltzmann equations.

In order to derive Boltzmann equations from Kadanoff-Baym equations, among other
approximations one has to employ the quasi-particle (or on-shell) approximation [5–7]. As a
consequence, the conservation of momentum and energy prevents Boltzmann equations from
describing thermalization in 1 + 1 space-time dimensions. In contrast to this, it has been shown
in the framework of a scalar Φ4 quantum field theory that this is feasible with the Kadanoff-Baym
equations [8]. The reason for this qualitative discrepancy is that the Kadanoff-Baym equations
take off-shell effects into account [9], while these are neglected in the Boltzmann equation. Of
course, in 3+1 dimensions both types of equations are capable of describing thermalization.
However, in the case of leptogenesis the on-shell character of the Boltzmann equation leads to a
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Figure 1. Two- and three-loop contribution to iΓ2 [G]. The lines represent the
full connected Schwinger-Keldysh propagator G (x, y).

further inconsistency: All leptogenesis scenarios share the fact that some heavy particles decay
out of thermal equilibrium into the particles which we observe in the universe today. The spectral
function of a particle that can decay into other particles is given by a Breit-Wigner curve with
a non-vanishing width. By employing the quasi-particle approximation we reduce this decay
width of the particles to zero, ie. a Boltzmann equation can only describe systems consisting of
stable, or at least very long-lived, particles. After all, how does the on-shell character of the
Boltzmann equation affect the description of quantum fields out of thermal equilibrium in 3 + 1
dimensions?

When applying the Boltzmann equation to the description of leptogenesis, the standard
technique to construct the collision integral — before employing further approximations — is to
take the usual bosonic and fermionic statistical gain and loss terms multiplied with the S-matrix
element for the respective reaction [10, 11]. These S-matrix elements are computed in vacuum,
and one may wonder of which significance they are for a statistical quantum mechanical system.

These shortcomings of the Boltzmann equation lead to the conclusion that one should perform
a detailed comparison between the Boltzmann and the Kadanoff-Baym equations in order to
explicitely see how large the quantum mechanical corrections are [6, 12–15]. Due to the large
complexity of the problem, we restrict ourselves for the moment to a scalar Φ4 quantum
field theory in 3 + 1 dimensions. Of course, this theory cannot describe the phenomenon of
leptogenesis, but nevertheless it allows to present a detailed comparison of the Boltzmann and
Kadanoff-Baym equations and may well be a starting point for further investigations.

2. Kadanoff-Baym Equations
We consider a real scalar quantum field in the symmetric regime (i.e. 〈Φ (x)〉 = 0) whose
dynamics is determined by the Lagrangian density

L = −1
2

(
∂μΦ

)(
∂μΦ

)
− 1

2
m2

BΦ2 − λ

4!
Φ4 .

For Gaussian initial conditions the 2PI effective action can be parameterized in the form [8,16]

Γ [G] =
i

2
trC logC

[
G−1

] − 1
2

trC
[
G−1

0 G
]
+ Γ2 [G] + const ,

where G−1
0 is the inverse free propagator. The index C indicates that integrations have

to be taken along the closed real-time path [17, 18]. iΓ2 [G] is the sum of all two-particle
irreducible vacuum diagrams, where internal lines represent the full connected Schwinger-
Keldysh propagator G (x, y). In this work, we apply the loop expansion of the 2PI effective
action up to three-loop order. The diagrams contributing to iΓ2 [G] in this approximation are
shown in Fig. 1. The equation of motion for the full propagator reads [16]

δΓ [G]
δG (y, x)

= 0 ⇐⇒ G−1 (x, y) = iG−1
0 (x, y) − Π(x, y) , (1)
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Figure 2. Initial conditions. Here we
plotted the initial particle number densities, for
which we numerically solved the Boltzmann and
Kadanoff-Baym equations, against the absolute
momenta. These particle number densities can
immediately be fed into the numerics for the
Boltzmann equation. In order to obtain the
initial values of the propagators as needed by
the numerics for the Kadanoff-Baym program
we follow Refs. [8, 19].

where the proper self-energy is given by

Π (x, y) = 2i
δΓ2 [G]

δG (y, x)
= −iδC (x − y)Π(local) (x) + Π(nonlocal) (x, y) .

The local part of the self energy leads to an effective mass [8]

M2 (x) = m2
B + Π(local) (x) = m2

B +
λ

2
GF (x, x) . (2)

The propagator and the nonlocal part of the self energy can be decomposed into statistical and
spectral parts according to [8]

G (x, y) = GF (x, y) − i

2
signC

(
x0 − y0

)
G� (x, y)

and
Π(nonlocal) (x, y) = ΠF (x, y) − i

2
signC

(
x0 − y0

)
Π� (x, y) .

When we insert all these definitions into the Schwinger-Dyson equation (1), we observe that it
splits into two complementary real-valued evolution equations for the statistical propagator and
the spectral function, respectively [8]. These are the Kadanoff-Baym equations:

(−∂xμ∂xμ + M2 (x)
)
GF (x, y) =

y0∫
0

d4z ΠF (x, z)G� (z, y) −
x0∫
0

d4z Π� (x, z)GF (z, y) (3)

and

(−∂xμ∂xμ + M2 (x)
)
G� (x, y) = −

x0∫
y0

d4z Π� (x, z) G� (z, y) . (4)

For a spatially homogeneous system we can Fourier transform the full propagator with respect to
the spatial relative coordinates. One can then define an effective kinetic energy density ω (t,p)
and an effective particle number density n (t,p) according to [19]:

ω2 (t,p) =

(
∂x0∂y0GF

(
x0, y0,p

)
GF (x0, y0,p)

)
x0=y0=t

(5)
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Figure 3. Evolution of the particle number densities. These plots show the
time evolution of the particle number densities for two different momentum modes
(|p| = 0 and |p| = 1.16mR) and all initial conditions (cf. Fig. 2) as determined by
the Boltzmann and the Kadanoff-Baym equations, respectively. The left plot shows
that the Kadanoff-Baym equations respect full universality, whereas in the case of the
Boltzmann equation only a restricted universality is maintained, cf. Fig. 4.

and
n (t,p) = ω (t,p) GF (t, t,p) − 1

2
. (6)

However, we stress that the Kadanoff-Baym equations are self-consistent evolution equations
for the full propagator of our system, and that one has to follow the evolution of the two-point
function throughout the whole x0-y0-plane (of course, constrained to the part with x0 ≥ 0 and
y0 ≥ 0). One can then follow the evolution of the effective particle number density along the
bisecting line of this plane.

3. Boltzmann Equation
Employing a first-order gradient expansion and a Wigner transformation, one can derive
quantum kinetic equations from the Kadanoff-Baym equations [5–7]. The kinetic equation for
the statistical propagator reads [20]:(

2kμ∂Xμ +
(
∂XμM2 (X)

)
∂kμ

)
G̃F (X, k)

= G̃F (X, k) Π̃� (X, k) − G̃� (X, k) Π̃F (X, k)

+
{

Π̃F (X, k) , Re
(
G̃R (X, k)

)}
PB

+
{

Re
(
Π̃R (X, k)

)
, G̃F (X, k)

}
PB

.

After we have discarded the Poisson brackets, we employ the Kadanoff-Baym ansatz [5–7]

G̃F (X, k) = G̃� (X, k)
(

ñ (X, k) +
1
2

)
(7)

and the quasi-particle approximation [5–7]:

G̃� (X, k) =
π

E (X,k)
(
δ
(
k0 − E (X,k)

) − δ
(
k0 + E (X,k)

))
. (8)
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Figure 4. Equilibrium particle number densities. Here, we plotted the particle
number densities, obtained for times when thermal equilibrium has effectively been
reached, against the corresponding thermal energy densities. For a given initial
condition, the inverse temperature β is given by the slope of the line and the chemical
potential is obtained from the y-axis intercept divided by −β. Supplementing Fig. 3
we observe full (restricted) universality in the case of the Kadanoff-Baym (Boltzmann)
equations.

The quasi-particle energy and number density are given by

E (X,k) =
√

M2 (X) + k2 and n (X,k) = ñ (X,k, E (X,k)) .

Eventually, we arrive at a Boltzmann equation for the quasi-particles. For a spatially
homogeneous and isotropic system it reads [15]:

∂tn (t, k) =
λ2

96π4

∞∫
0

dp

∞∫
0

dq

[
Θ

(
r2
0

) pqD (k, p, q, r0)
EkEpEq

(9)

×
(

(1 + nk) (1 + np) nqnr0 − nknp (1 + nq) (1 + nr0)
)]

.

where, we used the abbreviations k = |k|, Ek =
√

M2 (t) + k2 and nk = n (t, |k|). For a spatially
homogeneous system the effective mass depends only on time, and, according to Eqs. (2), (7)
and (8), is given by the following gap equation:

M2 (t) = m2
B +

λ

2

∫
d3p

(2π)3

[
2n (t, p) + 1√
M2 (t) + p2

]
. (10)

r0 and D are the following auxiliary functions [15]:

D (k, p, q, r) =

∞∫
0

dξ
1

kξ2
sin (kξ) sin (pξ) sin (qξ) sin (rξ) ,

r0 = r0 (t, k, p, q) =
√

(Ek + Ep − Eq)
2 − M2 (t) .
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Figure 5. Evolution of the total particle numbers. As expected from Ref. [9],
the Kadanoff-Baym equations include off-shell particle creation and annihilation. As a
result the total particle number may change with time. In contrast to this, the total
particle number is strictly conserved in the case of the Boltzmann equation. Concerning
our simulations, of course, this only holds up to numerical errors (< 0.4%).

4. Comparing Boltzmann and Kadanoff-Baym
In order to solve the Kadanoff-Baym equations numerically, we employ a standard lattice
discretization on a lattice with 5002 × 323 points [8, 15, 19]. We renormalize the mass
perturbatively on the one-loop level and use the renormalized vacuum mass mR to set the
scale. The lattice spacings are atmR = 0.06 and asmR = 0.5. For the Boltzmann equation we
use a manifestly isotropic discretization with 500 momentum modes and the same cutoff as for
the Kadanoff-Baym equations. In order to advance in time we use a fourth order Runge-Kutta-
Cash-Karp method with adaptive step-size control [15].

We consider initial conditions which correspond to the same average energy density, but
different initial particle number densities. We choose the initial particle number densities
according to Fig. 2. These particle number densities can immediately be fed into the numerics
for the Boltzmann equation. In order to obtain the initial conditions for the Kadanoff-Baym
equations, we follow Refs. [8, 19] and invert Eqs. (5) and (6).

Figs. 3 and 4 show the evolution of the particle number densities for two different momentum
modes and the corresponding equilibrium particle number densities, respectively, for all initial
conditions. In the left plots we can see, that the Kadanoff-Baym equations lead to a universal
equilibrium particle number density. In particular the predicted temperature, given by the
inverse slope of the line in Fig. 4, is the same for all initial conditions. However, the right plots
reveal that, in general, this will not be the case for the Boltzmann equation. In contrast to
the Kadanoff-Baym equations, the Boltzmann equation respects only a restricted universality.
The reason for this can be extracted from Fig. 5: The Boltzmann equation conserves the total
particle number, whereas the Kadanoff-Baym equations let it approach a universal equilibrium
value. Of course, in the case of the Boltzmann equation this additional constant of motion
severely restricts the evolution of the particle number density. Only initial conditions for which
the average energy density and the total particle number agree from the very beginning, lead to
the same equilibrium results.

In this context it is important to recall that we consider real (neutral) scalar quantum fields
with a quartic self interaction. Thus the dynamics of our theory comprises processes which
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Figure 6. Evolution of the thermal masses. Again, for the Kadanoff-Baym
(Boltzmann) equations we find full (restricted) universality. The late time values of
the thermal (effective) masses are used to set the scale in Fig. 4.

can change the total particle number, such as eg. the decay of one particle into three, or
the corresponding recombination process. However, due to the conservation of energy and
momentum these processes can only occur off the mass shell. In Ref. [9], it has been shown
that the Kadanoff-Baym equations indeed include these processes into their description of
thermalization. In contrast to this, due to the quasi-particle approximation, these processes
are neglected by the Boltzmann equation. As a consequence, the Boltzmann equation predicts
significantly larger thermalization times as compared to the Kadanoff-Baym equations, cf. Fig. 3.
Furthermore, for a system allowing for creation and annihilation of particles, the chemical
potential of particles, whose total number is not restricted by any conserved quantity, must
vanish in thermodynamical equilibrium. The chemical potential is given by the y-axis intercept
extracted from Fig. 4 divided by −β. Using a ruler the reader might convince himself that the
Kadanoff-Baym equations indeed lead to a universally vanishing chemical potential. In contrast
to this, the Boltzmann equation, in general, will lead to a non-vanishing chemical potential [14].

Eventually, Fig. 6 exhibits the evolution of the thermal masses. In the case of the Kadanoff-
Baym equations, the thermal mass is given by the zero mode of the effective kinetic energy
density (5). On the other hand, the thermal mass appearing in the Boltzmann equation is
given by the tadpole-corrected effective mass (10). Again, for the Kadanoff-Baym equations full
universality is respected and a common equilibrium value approached, while for the Boltzmann
equation only the restricted universality is preserved.

5. Conclusions
Starting from the 2PI effective action for a scalar Φ4 quantum field theory, we briefly reviewed
the derivation of the Kadanoff-Baym equations and the approximations which are necessary
to eventually arrive at a Boltzmann equation. We solved the Boltzmann and Kadanoff-Baym
equations numerically in 3+1 dimensions for spatially homogeneous and isotropic systems and
compared their predictions on the evolution of systems out of thermal equilibrium.

We have shown that the Kadanoff-Baym equations respect universality [19]: For systems with
equal average energy density the late-time behavior coincides independently of the details of the
initial conditions. In particular, the particle number densities, temperatures and thermal masses
predicted for times, when equilibrium has effectively been reached, coincide. Furthermore, the
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chemical potentials also coincide and vanish.
In contrast to the Kadanoff-Baym equations, the Boltzmann equation only respects a

restricted universality. The reason for this is the fact that the Boltzmann equation conserves not
only the average energy density, but also the total particle number. Thus the late-time results
can only agree for systems for which both of these quantities agree from the very beginning.

Furthermore, in Ref. [15] we could show that the Kadanoff-Baym equations separate the time
scales for kinetic and chemical thermalization. Due to the lack of chemical equilibration, this
separation of time scales is absent in the case of the Boltzmann equation.

Some of the approximations that lead from the Kadanoff-Baym equations to the Boltzmann
equation are clearly motivated by equilibrium considerations. Taking the observed restriction
of universality into account, it seems that one can safely apply the Boltzmann equation only to
systems which are sufficiently close to equilibrium. Accordingly, for a system far from equilibrium
the results given by the Boltzmann equation should be treated with care.
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