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Abstract. We calculate the damping of the Bogoliubov–Anderson mode in a
one-dimensional (1D) two-component attractive Fermi gas for arbitrary coupling
strength within a quantum hydrodynamic approach. Using the Bethe-ansatz
solution of the 1D BCS-BEC crossover problem, we derive analytic results for the
viscosity covering the full range from a Luther–Emery liquid of weakly bound
pairs to a Lieb–Liniger gas of strongly bound bosonic dimers. At the unitarity
point, the system is a Tonks–Girardeau gas with a universal constant αζ = 0.38 in
the viscosity ζ = αζh̄n for T = 0. For the trapped case, we calculate the Q-factor
of the breathing mode and show that the damping provides a sensitive measure
of temperature in 1D Fermi gases.

New Journal of Physics 8 (2006) 168 PII: S1367-2630(06)24144-2
1367-2630/06/010168+15$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:matthias.punk@ph.tum.de
http://www.njp.org/


2 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Sound damping and viscosity of a 1D superfluid 3

2.1. BCS-BEC crossover in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Quantum hydrodynamic theory (QHD) . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Harmonically trapped gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Summary 12
Appendix. QHD versus bosonization 13
References 14

1. Introduction

In the past few years, ultracold gases have entered a new regime, where strong correlation effects
appear even in extremely dilute gases. Prominent examples for this new area in atomic physics
are the study of the crossover from a BCS-type superfluid of extended Cooper pairs to a BEC
of strongly bound molecules [1]–[3] or the realization of a Tonks–Girardeau gas of hard-core
bosons in one-dimensional (1D) atomic wires [4, 5]. In the first case, the strong interaction
regime is reached in a direct manner because the scattering length a near a Feshbach resonance
becomes of the same order or even larger than the average interparticle spacing k−1

F . In the second
case, it is the squeezing of the kinetic energy in an optical lattice which enhances the role of
interactions [6]. A unique role in the context of strongly interacting ultracold gases is played by
the so-called unitary Fermi gas, where the dimensionless interaction strength parameter kFa is
infinite. This problem was originally discussed in nuclear physics [7, 8]. In its simplest form,
it consists of a two component Fermi gas with a zero range attractive interaction which is just
about to bind a state at the two-particle level. Such a situation is realizable with cold gases at a
Feshbach resonance, where the scattering length diverges [9]. Precisely at this point and for broad
Feshbach resonances, where the range of the effective interaction is much smaller than the mean
interparticle spacing, the full many-body problem has the bare Fermi-energy εF as the only energy
scale. As a result, the complete thermodynamics is a universal function of the ratio kBT/εF [10].
While a quantitatively reliable description of the many-body problem near a Feshbach resonance
at finite temperature is still an open problem [11, 12], the situation near zero temperature may be
understood in a straightforward manner. Indeed, at low temperatures, a two-component Fermi
gas will be in a superfluid state, independent of the strength of the attractive interaction. On quite
general grounds therefore, the low lying excitations above the ground state are sound modes of
the Bogoliubov–Anderson type, which are the Goldstone modes of the broken gauge symmetry
in a neutral superfluid. In this regime, an effective low energy description is possible in terms of
a quantum hydrodynamic (QHD) approach [13]. For a Fermi gas with a short range attractive
interaction, the associated effective field theory was recently discussed by Son and Wingate [14].
Starting from a Lagrangian formulation of the many-body problem, they realized that in the
particular case of a unitary Fermi gas, there is an additional conformal symmetry with respect to
arbitrary reparameterizations of the time. Remarkably, the effective field theory can be extended
to non-equilibrium problems within the framework of linear, irreversible thermodynamics. In
particular, conformal invariance of the unitary Fermi gas applied to the dissipative part of the
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stress tensor requires that two of the bulk viscosity coefficients vanish [15].As a result, no entropy
is produced in a uniform expansion. The extension of the effective field theory to irreversible
processes makes evident that not only the thermodynamics but also dynamical properties like
the kinetic coefficients are universal at the unitarity point, a fact, first emphasized by Gelman
et al [16].An example of particular interest is the shear viscosity η which determines the damping
of sound and collective oscillations in trapped gases [17, 18]. At unitarity, its dependence on
density n and temperature T is fixed by dimensional arguments to be η = h̄nα(T/µ), where µ

is the chemical potential and α(x) a dimensionless universal function [15]. At zero temperature,
in particular, η(T = 0) = αηh̄n is linear in the density with a universal coefficient αη. Using a
simple fluctuation–dissipation type argument in the normal phase, a lower bound of the form
αη � 1/6π has been derived by Gelman et al [16], in analogy to rigorous bounds for the ratio
η/h̄s � 1/4π between the viscosity η and the entropy density s in supersymmetric pure gauge
Yang–Mills theories [19, 20]. Based on these results, it has been speculated that ultracold atoms
near a Feshbach resonance are a nearly perfect liquid [16].

In the present study, we calculate the viscosity ζ of a strongly interacting Fermi gas in the
whole regime of coupling strengths for the particular case of one dimension, where an exact
solution of the BCS-BEC crossover problem has recently been given using the Bethe ansatz
[21]–[23]. It is shown that, at T = 0, the viscosity has the form ζ = αζ h̄n with a coupling-
dependent constant αζ, which takes the universal value αζ = 0.38 at the unitarity point. At finite
temperature, the sound damping does not have a hydrodynamic form and increases like

√
T .

We determine the resulting damping of the breathing mode in a trapped gas and show that its
Q-factor provides a sensitive measure of temperature in strongly interacting 1D gases.

2. Sound damping and viscosity of a 1D superfluid

2.1. BCS-BEC crossover in 1D

Our calculations are based on an exactly solvable model of the BCS-BEC crossover in one
dimension proposed by Fuchs et al [22, 23] and by Tokatly [21]. The underlying microscopic
Hamiltonian is that of the Gaudin–Yang model, see [24]

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g1

∑
i < j

δ(xi − xj) (1)

of a spin-1/2 Fermi gas interacting via a short range potential g1δ(x). Here, N is the total
number of Fermions and m their mass. At zero temperature, the model is characterized by a
single dimensionless coupling constant γ ≡ mg1/ h̄2n, where n ≡ N/L is the 1D density. For
attractive interactions, the Hamiltonian (1) describes a so-called Luther–Emery liquid. Its ground
state at γ → 0− is a BCS-like state with Cooper pairs, whose size is much larger than the average
inter-particle spacing. With increasing magnitude of γ, one reaches the strong coupling regime
of tightly bound molecules which behave like a hard core Bose gas as γ → −∞. As shown by
Girardeau [25], the hard core Bose gas in one dimension is equivalent—for densities diagonal
in real space—to a gas of non-interacting fermions. Within a strictly 1D model, the BEC-limit
of strongly bound pairs is thus a Tonks–Girardeau gas. Now in practice, the atoms are trapped in
a harmonic waveguide with radial frequency ω⊥/2π. The associated transverse oscillator length
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a⊥ ≡ √
h̄/mω⊥ then defines an additional length, not present in the Gaudin–Yang model (1).

As shown by Bergeman et al [26], the exact solution of the scattering problem for two particles
in such a waveguide, interacting with a 3D pseudo-potential with scattering length a, always
exhibits a two-body bound state, whatever the sign and magnitude of the scattering length a. It
appears at an energy h̄ω⊥ − ε̃b, which is below the continuum threshold at h̄ω⊥ of the transverse
confining potential. Apart from this bound state, all the scattering properties can be described by
an effective 1D delta potential gaa

1 δ(x) for atom–atom interactions with strength [27]

gaa
1 = 2h̄ω⊥a (1 − Aa/a⊥)−1 . (2)

As naively expected, an attractive 3D interaction a < 0 implies a negative value of gaa
1 . The

associated binding energy εb = m(gaa
1 )2/4 h̄2 in the 1D delta potential coincides with the exact

value ε̃b in the weak confinement limit |a|�a⊥. Remarkably, the strength gaa
1 of the 1D pseudo-

potential remains finite at a Feshbach resonance where a = ±∞. The corresponding exact value
of the binding energy is ε̃b � 0.6 h̄ω⊥ [21, 26]. Entering the positive side a > 0 of the Feshbach
resonance, the vanishing of the denominator in (2) at a⊥/a = A � 1.03263 leads to a confinement
induced resonance (CIR), where gaa

1 jumps from −∞ to +∞. The exact bound state at this
point has binding energy ε̃b = 2h̄ω⊥ and a spatial extension along the x-axis, which is of the
order of the transverse oscillator length a⊥. With decreasing values a � a⊥ of the 3D scattering
length, ε̃b increases monotonically beyond 2h̄ω⊥ and finally approaches the standard 3D result
ε̃b → h̄2/ma2 in the weak confinement limit a � a⊥ [21, 26]. Since h̄ω⊥ � εF in the limit
of a singly occupied transverse channel, the true bound state energy ε̃b is the largest energy
scale in the problem in the regime after the CIR where gaa

1 > 0. In this regime, the appropriate
degrees of freedom are no longer the single atoms but instead are strongly bound fermion pairs,
which are essentially unbreakable. An exact solution of the four-body problem in a quasi 1D
geometry with tight harmonic confinement shows, that these dimers have a repulsive interaction
in the regime beyond the CIR [28]. The related constant gdd

1 > 0 in the effective dimer–dimer
interaction gdd

1 δ(x) can be calculated as a function of the 3D scattering length [28]. It approaches
gdd

1 → 2 h̄ω⊥ × 0.6 a → 0 in the weak confinement limit, where the dimer–dimer scattering
length add ≈ 0.6 a is identical with the one in free space [29]. Sufficiently far from the CIR, one
thus recovers a weakly interacting gas of dimers.

At the many-body level, the situation after the CIR is described by a Lieb–Liniger model [30]
of repulsive bosons. Its dimensionless coupling constant γ ≡ mgdd

1 /h̄2n is now positive and van-
ishes in the weak confinement limit. It diverges at a value of the 3D scattering length a of order a⊥.
Now although the divergence of gdd

1 does not exactly coincide with that of gaa
1 at the CIR [28],

the range of inverse dimensionless coupling constants where this mismatch appears is of order
1/γ ≈ na⊥ [23]. It is thus negligible in the relevant low density limit (na⊥)2 � 1. Indeed, at
a fixed density n, the quasi-1D condition h̄ω⊥ � εF that only the lowest transverse mode is
occupied is equivalent to (na⊥)2 � 1. In the limit na⊥ → 0, there is thus a continuous evolu-
tion from the Gaudin–Yang model of attractive fermions to the Lieb–Liniger model of repulsive
bosons which completely describes the BCS-BEC crossover in one dimension [21, 22]. The
associated spectrum of elementary excitations is straightforward to understand: in the BCS limit
1/γ → −∞, the system consists of weakly bound Cooper pairs. Their breaking is associated
with a finite excitation gap and the corresponding spectrum exhibits a relativistic dispersion

3 Note the
√

2 difference in our definition of a⊥ compared with [26, 27], which accounts for the difference in the
value of A ≡ 1.0326.
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relation εs(k) = √
(�/2h̄)2 + (vsk)2 similar to the standard quasiparticle spectrum of the BCS

theory. The associated energy gap � and the spin velocity vs > vF increase monotonically with
1/γ, both diverging in the strong coupling limit 1/γ = 0 at the CIR [22]. In addition, there are
gapless density fluctuations describing the Bogoliubov–Anderson mode of a neutral superfluid.
These excitations exist for arbitrary coupling, both before and after the CIR. Their spectrum is
ε(k) = vck at low momenta, with a (zero) sound velocity vc,4 which monotonically decreases
from the ideal Fermi gas value vc = vF at γ → 0− to the weak coupling BEC result vc = √

γvF/π

as γ → 0+ [22]. At the CIR, 1/γ = 0, the system is a Tonks–Girardeau gas [25] of tightly bound
dimers. The value vc (1/γ = 0) = vF/2 simply reflects the fact that the unitary Fermi gas in
1D is a hard core Bose gas which—in turn—behaves like an ideal gas of Fermions at half the
original density. The universal parameter β, which follows from vc = vF

√
1 + β [10], thus has

the exact value β = −3/4 in one dimension.

2.2. Quantum hydrodynamic theory (QHD)

In order to calculate the damping of long-wavelength phonons, we use a 1D version of QHD.
Restricting the attention to the gapless Bogoliubov–Anderson mode in the superfluid regime, the
QHD Hamiltonian has the same form on both the fermionic (before the CIR) and the bosonic
(after the CIR) side of the 1D BCS-BEC crossover. In a harmonic approximation, which is valid
at low energies, the sound mode is described by the quadratic Hamiltonian

H0 = vc

2

∫ L

0
dx

{
ρ0

vc
(∂xϕ)2 +

vc

ρ0
�2

}
, (3)

where the conjugate fields ϕ(x) and �(x) describe phase and density fluctuations respectively.
The only input parameters are the equilibrium mass-density ρ0 = mn and the sound velocity vc.

From the Bethe ansatz, the velocity vc is known as a function of the dimensionless inverse
coupling constant 1/γ, which ranges between 1/γ = −∞ in the BCS- to 1/γ = +∞ in the
BEC-limit [22]. To determine the damping due to the interaction of phonons, the energy functional
of a 1D quantum liquid needs to be expanded beyond quadratic order in the fields ϕ(x) and �(x).
It is a crucial advantage of the QHD approach, that the coefficients of the leading nonlinear
terms are completely determined by thermodynamic quantities [13]. Specifically, the lowest
(third) order terms give rise to a contribution Hint to the total Hamiltonian of the form

Hint = 1

6

∫ L

0
dx

{
(∂xϕ)�(∂xϕ) + (∂xϕ)2� + �(∂xϕ)2 +

d

dρ0

(
v2

c

ρ0

)
�3

}
. (4)

The quadratic Hamiltonian (3) is diagonalized by the standard mode expansions

ϕ(x) = i
h̄

m

√
π

2

√
vc

2L vF

∑
q 
=0

1√|q|(bq eiqx − b†
q e−iqx),

�(x) = m

√
2

π

√
vF

2L vc

∑
q 
=0

√
|q|(bq eiqx + b†

q e−iqx),

4 The notation vc for the velocity of the Bogoliubov–Anderson mode reflects the usual notation in the Luttinger
liquid context as a ‘charge’velocity, yet in the present case of neutral atoms, it is a zero sound type density oscillation
in a superfluid system.
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where b†
q and bq denote the usual bosonic creation and annihilation operators respectively and

vF = πh̄n/2m is the Fermi velocity of the non interacting gas.After inserting the mode expansions
in (4), we obtain

Hint =
∑

q1,q2,q3

1√
L

V(q1, q2, q3) {bq1bq2bq3δ(q1 + q2 + q3) + bq1bq2b
†
q3

δ(q1 + q2 − q3)

+bq1b
†
q2

bq3δ(q1 − q2 + q3) + bq1b
†
q2

b†
q3

δ(q1 − q2 − q3) + h.c.},
with the vertex

V(q1, q2, q3) = h̄2

6m

√
πvc|q1q2q3|

16vF

{
sign(q1q3) + sign(q1q2) + sign(q2q3) +

v2
F

v2
c

d

dvF

(
v2

c

vF

)}
.

The momentum dependence of the vertex makes perturbation theory applicable for long
wavelength phonons. More precisely, it applies as long as the imaginary part of their energy
is much smaller than the real part. As will be shown below, this requires the phonon wavelength
λ to be much larger than the interparticle spacing on the Fermi side of the crossover, while in the
BEC limit the more restrictive condition λn � (1/γ)1/4 � 1 is required. It should be remarked
that an approach to evaluate the nonlinear terms in the Hamiltonian via bosonization leads to
additional coupling terms between phonons and spin excitations on the BCS side of the crossover
which are not accounted for in the QHD approach. As will be shown in the appendix, however,
these terms do not contribute to the phonon damping at long wavelengths.

We evaluate the damping by calculating the imaginary part of the phonon self-energy�(k, ω)

which is defined as the analytic continuation of the corresponding self-energy �th in the exact
thermodynamic Green function

G(k, iωn) = 1

iωn − vc|k| − �th(k, iωn)
.

Here, ωn = 2πn/β with n ∈ Z are the standard Bosonic Matsubara frequencies. (We set
h̄ = kB = 1 from now on, except in final results.)

The main contribution to the damping rate comes from the three self-energy diagrams shown
below, corresponding to spontaneous decay, absorption of a phonon and three-wave annihilation:

Diagrams of this type have been considered before by Andreev [31] who studied the sound
absorption in 1D Bose liquids for T > 0 and by Samokhin [32] in the context of the damping of
zero sound in a 1D liquid of repulsive fermions.
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After taking the limit L → ∞ and analytic continuation, the retarded self energy �R(k, ω)

is given by the sum of the three diagrams

�R(k, ω) = �R
1 (k, ω) + 2�R

2 (k, ω) + �R
3 (k, ω), (5)

with

�R
1 (k, ω) = −18

∫
dq

2π

d�

2π
coth

(β�

2

)
V 2(k, q, k − q)

×{−GR(q, � + ω) Im GR(k − q, −�) + GR(k − q, ω − �) Im GR(q, �)},

�R
2 (k, ω) = −18

∫
dq

2π

d�

2π
coth

(β�

2

)
V 2(k, q, q − k)

×{GR(q, � + ω) Im GR(q − k, �) + GA(k − q, � − ω) Im GR(q, �)},

�R
3 (k, ω) = −18

∫
dq

2π

d�

2π
coth

(β�

2

)
V 2(k, q, −k − q)

×{−GA(q, � − ω)ImGR(−k − q, −�) + GA(−k − q, −ω − �) ImGR(q, �)}.
Here GRand GAare the usual retarded and advanced Green functions respectively. The
combinatorial factor 18 arises from the three possible ways of choosing the creation–annihilation
operators for the initial and final phonon and two possibilities of pairing the phonons in between.
As was already pointed out by Andreev and Samokhin, the fact that for linearly dispersing
phonons in 1D, momentum and energy conservation are simultaneously satisfied, requires
to go beyond second order perturbation theory which would give an infinite damping rate.
Following the approach of Andreev [31], we calculate the self-energy by using the fact that
�R(k, ω) � εk = vc|k| at long wavelengths. The precise condition on k for which this holds,
has to be determined afterwards and will be discussed below. Since we are interested in the
quasiparticle pole of GR(k, ω) = 1/(ω − εk − �R(k, ω))we can use the approximation

ω = εk + �R(k, ω) ≈ εk + �R(k, εk) = εk + �R
k

leading to

GR(k, ω) ≈ 1

ω − εk − �R
k

(6)

The damping rate of phonons with wavevector k > 0 can now be determined from the imaginary
part �k = Im�R(k, εk) ≡ Im�R

k of the (on-shell) self-energy.
Starting with the case of zero temperature T = 0, the only contribution to �R

k comes from
spontaneus decay (first diagram). Applying the approximation (6) in the integrand and doing the
�- integration, one ends up with

�R
k = 9

∫
dq

2π
V 2(k, q, k − q)

{
GR

(
q, εk − εk−q − �R

k−q

)
+ GR

(
k − q, εk − εq − �R

q

)}
.
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The major contribution to the integral comes from 0 < q < k where εk − εk−q − εq = 0. Thus
we arrive at the equation

�R
k = − h̄4πvc

32 m2vF

{
3 +

v2
F

v2
c

d

dvF

(
v2

c

vF

)}2 ∫ k

0

dq

2π
kq(k − q)

1

�R
k−q + �R

q

,

for the retarded self energy. It is solved with a purely imaginary ansatz �R
q = −iµq2 where

µ = h̄2

4m

√
π vc

2 vF
f1(a = 2)

{
3 +

v2
F

v2
c

d

dvF

(
v2

c

vF

)}
f1(a) = 1

2π

∫ 1

0
dx

x(1 − x)

(1 − x)a + xa
.

At zero temperature, the resulting damping rate

�0
k = h̄

8m

√
vc

vF

(
π

4
− 1

2

) {
3 +

v2
F

v2
c

d

dvF

(
v2

c

vF

)}
k2, (7)

of the Bogoliubov–Anderson mode in one dimension is therefore quadratic in the wavevector.
Formally, this is precisely the behaviour of a hydrodynamic mode. It allows to define a zero
temperature viscosity ζ by the relation

ωk = vck − i
ζ

2mn
k2 (8)

which is completely analogous to sound damping in three dimensions. In that case, ζ is replaced
by the combination ζ2 + 4η/3 involving one of the superfluid bulk viscosities ζ2 and the shear
viscosity η [16, 33] and one has ζ2 = 0 at unitarity [15]. From the result (7), we see that the
viscosity at zero temperature has the form

ζ = αζh̄n, (9)

with a constant

αζ = 1

4

√(
π

4
− 1

2

)
vc

vF

{
3 +

v2
F

v2
c

d

dvF

(
v2

c

vF

)}
. (10)

A plot of αζ is given in figure 1, where the exact result for vc/vF from the Bethe–Ansatz solution
was used. Evidently, the dimensionless viscosity coefficient αζ depends on the inverse coupling
constant 1/γ of the BCS-BEC crossover. It is thus in general dependent on the particle density
n. At the unitarity point, however, where 1/γ = 0, this dependence vanishes and αζ takes the
universal value

αζ(γ
−1 = 0) =

√
π

8
− 1

4
≈ 0.38

which is just 1/
√

2 of the value αζ(γ = 0−) = 0.54 attained in the weak coupling limit of the 1D
noninteracting Fermi gas. Concerning the range of applicability of the perturbative calculation, it
is obvious that the approximation leading to (6) is satisfied for small wavenumbers k � mnvc/ζ.
Based on the explicit result for ζ this condition translates into phonon wavelengths much larger
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Figure 1. Viscosity-parameter αζ as a function of the inverse coupling
constant γ−1.

than the mean interparticle spacing on the BCS side of the crossover, including the unitarity point.
On the BEC side, the ratio vc/ζ vanishes like

√
vc ∼ γ1/4. The phonon wavelengths have thus

to obey the more restrictive condition λn � (1/γ)1/4 � 1 mentioned above. It is interesting to
note, that this condition is less restrictive than the naive estimate λ � ξ1, where ξ1 = n−1(1/γ)1/2

is the 1D healing length.
We now turn to the situation at finite temperature T > 0, where the long wavelength phonons,

for which T � εk, behave classically. The thermal factor coth (β�/2) may therefore be replaced
by its classical limit 2/(β�).At T 
= 0, the second diagram representing the absorption of another
phonon also contributes to the damping. An explicit calculation along the lines performed at
T = 0 gives a phonon damping rate at finite temperature of the form

�T
k = h̄

4m

√
π

2

kBT

h̄vF
f2(3/2)

{
3 +

v2
F

v2
c

d

dvF

(
v2

c

vF

)}
k3/2. (11)

Here, f2(a = 3/2) ≈ 0.6221 is a numerical coefficient defined by the integral

f2(a) =
∫ 1

0

dx

2π

1

(1 − x)a + xa
+ 2

∫ ∞

1

dx

2π

1

(x − 1)a + xa
.

As already noted by Andreev [31], the damping ∝ k3/2 for T > 0 is not of the standard
hydrodynamic form, in contrast to the behaviour at zero temperature. The quite different
results can be understood from the fact that at any finite temperature, the quasi-long-range
superfluid order present at T = 0 is destroyed by phase fluctuations on a characteristic length
scale ξT = h̄vc/kBT . Depending on the ratio y = kξT between this length scale and the phonon
wavelength, the behaviour is either essentially superfluid for y � 1 or normal for y � 1. Similar
to the formulation used in dynamical scaling laws near critical points [34, 35], the crossover
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between the two different types of behaviour may be described by an Ansatz of the form

�k = h̄k2

2m
�(ξT k). (12)

The associated crossover function has the limiting behaviour

�(y)
y→∞−→ αζ, �(y)

y�1−→ 3.70 αζ√
y

.

with the parameter αζ defined in equation (10). It should be pointed out, that the dependence of the
damping rate on temperature is a simple power law ∼T 1/2 only to the extent that the temperature
dependence of the velocityvc itself can be neglected. Moreover, note that for nonzero temperature,
the damping remains finite in the BEC limit 1/γ → ∞ in contrast to the T = 0 case.

2.3. Harmonically trapped gas

Finally we extend our results on damping in a homogeneous gas to the experimentally accessible
case of a harmonically trapped system, using essentially a local density approximation. Our
main interest is to calculate the damping of the so-called breathing modes, which have already
been measured in 1D Bose gases in a regime near the Tonks–Girardeau limit [36]. Assuming a
standard type of viscous damping in a classical fluid, the damping rate in a 1D inhomogeneous
case is given by [37]

� =
∣∣∣∣〈Ėmech〉t

2〈E〉t

∣∣∣∣ =
∣∣∣∣
∫

dz ζ(z)〈(∂zv)
2〉t

2m
∫

dz n(z)〈v2〉t

∣∣∣∣ (13)

where 〈.〉t denotes the time average, z is the spatial coordinate and the last equation holds for
harmonically oscillating perturbations, where 〈E〉t = 2〈Ekin〉t.

Breathing modes in a harmonic trap are characterized by a velocity profile of the
form v(z, t) = const.ze−iωBt. Since the damping of the Bogoliubov–Anderson mode at
zero temperature has precisely the form of a standard viscous fluid one obtains using
equation (9)

�0
B = h̄

2m

〈αζ〉
〈z2〉 , (14)

where the brackets denote the spatial average defined by

〈f(z)〉 = 1

N

∫
dz n(z)f(z)

and N is the total number of particles. Since the constant αζ depends on density except at the
unitarity point, the damping also involves a spatial average 〈αζ〉.A plot of the coupling-dependent
Q-factor Q = ωB/�0

B of the breathing mode at zero temperature is given in figure 2 together with
the ratio of its frequency in units of the axial trap frequency ωz. The required density profiles
were calculated numerically using a local density approximation and the exact results for the
chemical potential from the Bethe–ansatz solution. As shown by Menotti and Stringari [38], the
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Figure 2. Frequency (ωB) and quality factor Q = ωB/�0 of breathing modes at
T = 0 as a function of the 3d scattering length a. The dashed line indicates the
CIR (unitarity point). Plot for ω⊥/Nωz = 5 where ω⊥ and ωz are the radial and
axial trapping frequency, N denotes the number of particles in the trap.

density profiles also determine the frequency from

ω2
B = −2

(
d ln 〈z2〉

dω2
z

)−1

.

The appearance of a maximum in the breathing frequency just before the confinement induced
resonance may qualitatively be understood from the fact that around this point the nature of the
pairing changes from overlapping, correlated pairs to individual molecules. Indeed, the size of a
molecule is of the order of the average interparticle distance n−1 for inverse coupling constants
1/γ ≈ −0.5 [22]. Remarkably, this is also close to the point where the effective dimer–dimer
interaction gdd

1 diverges [28] and where the dimensionless viscosity coefficient (10) exhibits a
small maximum as shown in figure 1.

For T > 0, the situation is more complicated, because the k-dependence of the damping
rate in (11) implies a non-hydrodynamic behaviour. In order to account for the specific
k-dependence in a classical calculation, we modify the stress-tensor by introducing an effectively
velocity-dependent viscosity. The form of ζ to be used in (13) which leads to the result (12) for
the damping in the homogeneous system is

ζ = h̄n�

(
ξT

〈|∂zv|〉
〈|v|〉

)
, (15)

with the function � as defined in (12).
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Figure 3. Damping of breathing modes at the point of unitarity as a function of T.

The damping at T = 0 is pictured for comparison.

Using (15) for the inhomogeneous system, the result for the damping of breathing modes
can be expressed as

�B = h̄

2m

〈
�

(
ξT

〈|z|〉
)〉

1

〈z2〉 . (16)

In the particular case of the Tonks–Girardeau limit describing the unitary 1D Fermi gas at the
CIR the damping of breathing modes at T = 0 and at finite temperatures T � h̄ωz is given by

�0
B ≈ 1.5

ωz

N
(17)

�T
B ≈ 4.1

ωz

N

√
kBT

h̄ωz

. (18)

A plot is given in figure 3. Note that in the Tonks–Girardeau limit, the constraint ξT /〈|z|〉 � 1
simply translates into kBT � h̄ωz. The zero temperature result for the damping is thus only
valid in the experimentally hardly accessible regime T � h̄ωz, while for realistic temperatures
the damping is expected to increase like

√
T .

3. Summary

In summary, we have calculated the damping of the Bogoliubov–Anderson mode for an
attractively interacting 1D Fermi gas in the whole regime between the BCS and the BEC limit.
At zero temperature, the damping is of a hydrodynamic form with a viscosity ζ = αζ h̄n. The
associated constant αζ is a smooth function along the crossover from a BCS-type superfluid to a
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BEC of strongly bound pairs of fermions, with a universal value αζ = 0.38 at the unitarity point.
It is remarkable that a rough analysis [16] of the experiments by Bartenstein et al [43] gives
a value of 0.3 for the universal viscosity coefficient of the 3D unitary Fermi gas at the lowest
attainable temperatures. However, it is obvious that a comparison between this and our result in
1D is not meaningful. Nevertheless, the fact that the Bogoliubov–Anderson mode spectrum and
velocity are hardly different between the one and the three dimensional case, suggests that the
viscosity in 3D exhibits a similar dependence on the inverse coupling constant 1/γ = 1/(kFa).
The unitarity point would then define a minimal value of the viscosity on the Fermi side of the
crossover, yet lower viscosities will be reached by going further into the BEC regime. It is a
peculiar property of the 1D BCS-BEC crossover problem, that the boundary between fermionic
and bosonic behaviour is sharp and defined by the CIR. A similar sharp separation, however, does
not exist in three dimensions. At finite temperature, the sound damping in 1D does not have a
hydrodynamic form and behaves like �k ∼ k3/2. The resulting damping of the breathing mode in
a trapped gas has been calculated within a simple model, which accounts for the inhomogeneity
in the case of a nonstandard damping. In particular, it has been shown that in the experimentally
relevant regime T � h̄ωz, the damping increases like

√
T , thus providing a sensitive measure

of temperature in strongly interacting 1D gases. Experimentally, an attractive Fermi gas near a
Feshbach and CIR has been realized by Moritz et al [39]. Since the typical temperatures in this
gas were of order T ≈ 0.2 TF with TF ≈ N· h̄ωz and typical particle numbers are N ≈ 100, the
condition T � h̄ωz is realized. It would be quite interesting therefore, to study the temperature
dependence of the breathing mode Q-factor similar to the measurements performed in 1D Bose
gases [36]. In this context, it is interesting to note that for the Tonks–Girardeau gas, exact results
for the dynamics have been derived at zero temperature by Minguzzi and Gangardt [40]. In
particular they imply zero damping of the breathing mode at the unitarity point, i.e. an infinite
Q-factor. From our present results, the Q-factor is infinite only in the limit n → ∞ but not for
the finite and typically small values N ≈ 50–100 realized experimentally. This point needs to be
studied further.

Appendix. QHD versus bosonization

As mentioned earlier, the QHD approach does not give rise to interaction terms between spin
and charge excitations. We now use bosonization techniques to construct Hint on the BCS side
of the crossover and show that these terms do not contribute to the damping rate.

In order to obtain damping in the Tomonaga–Luttinger model, one needs to incorporate the
quadratic dispersion relation in the Hamiltonian, leading to third order terms in the fields as was
already shown by Haldane for a spinless gas of fermions [41]. Since we are dealing with spin
1/2 particles, third order terms arise which couple charge and spin excitations. Bosonizing the
kinetic energy term via point splitting we find

Hkin = h̄2

2m

∑
�=↑,↓

∫ L

0
dx

{
∂xψ

†
�∂xψ� + ∂xψ

†
�∂xψ�

}

= − h̄2

6m

√
π

2

∫ L

0
dx{(∂xϕc)�

2
c + �2

c(∂xϕc) + �c(∂xϕc)�c + (∂xϕc)
3

+ 3�c[(∂xϕs)�s + �s(∂xϕs)] + 3(∂xϕc)
[
�2

s + (∂xϕs)
2]},
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where we used the same notation as [42]. To avoid confusion, it should be mentioned that here
∂xϕ plays the role of density fluctuations and � describes phase fluctuations in contrast to (4).
The charge–charge-interaction Hamiltonian given above is essentially the same as the one in (4)
with one subtle difference: in the QHD approach the �3 term has a prefactor (d/dρ0)(v

2
c/ρ0)

which is absent in the bosonized counterpart. This factor is important because it prevents αζ and
thus the damping from going to infinity in the BEC limit. Since the crossover from the BCS to
the BEC regime is continuous, the damping must also change continuously when one crosses
the point of unitarity. This argument leads us to include this prefactor also in Hint on the BCS
side and thus use (4) in the whole crossover regime.

The contribution to the phonon damping rate arising from interaction with spin
excitations in second order perturbation theory can be calculated from the following diagrams:

For T = 0, the contribution from the first diagram corresponding to spontaneus decay is
given by

�k ∝
∫

dq

2π
V 2

sc(k, q, k − q)δ( vck − ωs(q) − ωs(k − q)︸ ︷︷ ︸

=0 ∀q

) = 0,

where Vsc denotes the spin–charge interaction vertex and ωs(q) is the spinon dispersion relation.
We immediately see that this process is strongly suppressed by energy conservation. The other
two diagrams give a small contribution only for T > 0. In the strong coupling limit (1/γ → 0−)
we obtain

�sc
k ≈ 1

64π3

εF

h̄
γ4ξT k e−β�/2 + O((ξT k)2).

This term involves the energy gap � ∼ 2εFγ
2/π2 and thus is negligible compared to (12).
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