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Abstract. We have measured depolarized light scattering in liquid benzene
over the whole accessible temperature range and over four decades in frequency.
Between 40 and 180 GHz we find a susceptibility peak due to structural relaxation.
This peak shows stretching and time–temperature scaling as known from α
relaxation in glass-forming materials. A simple mode-coupling model provides
consistent fits of the entire data set. These qualitative and quantitative results show
that structural relaxation in ordinary liquids and α relaxation in glass-forming
materials are one and the same physical process. Thus, a deeper understanding of
equilibrium liquids is reached by applying concepts that were originally developed
in the context of glass-transition research.

1. Motivation

On short time scales, all liquids show solid-like elasticity. This has been impressively illustrated
by Brillouin scattering of x-rays [1]: on a THz scale, sound propagates in water with almost
the same speed as in ice, more than twice as fast as on the kHz or MHz scale of conventional
ultrasonic measurements. Such a cross-over goes along with a decay of structural correlations; it
is called relaxation, and more specifically α relaxation when it leads from solid-like to liquid-like
response (correlations decaying to zero).

When a liquid can be supercooled far enough, α relaxation becomes critically slow, so
that the material ultimately becomes a glass. The dynamics of glass-forming liquids has been
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studied in great detail. Stretching and time–temperature scaling have been identified as generic
properties of α relaxation. Additional scaling laws have been uncovered by a mode-coupling
theory (MCT). Originally proposed as a theory of the glass transition, MCT is now generally
recognized to offer a unified description of microscopic and relaxational motion at comparatively
high temperatures where α relaxation occurs on a GHz scale.

In experiments undertaken in both the supercooled and the normal liquid phase, α relaxation
and mode-coupling dynamics are found to evolve continuously across the melting point of
the concurrent crystalline phase: on a GHz–THz scale, the molecular dynamics seems to be
insensitive to whether the liquid’s state is thermodynamically stable or not. This leads us to
the hypothesis that the molecular dynamics in the normal liquid state will be insensitive to
whether the liquid can be supercooled or not. A pioneering paper on water [2], studies of
metallic melts [3, 4], and our own experiments on several molecular liquids suggest that indeed
α relaxation and mode-coupling effects also occur in liquids that cannot be supercooled into a
glass.

For a more detailed test of our hypothesis, we now study one such liquid in depth. We
choose benzene, which presents the following advantages:

(i) the molecule is structurally very simple and highly symmetric;
(ii) it is stiff on all relevant time or frequency scales†;

(iii) many often studied glass formers are structurally related to benzene;
(iv) benzene is an excellent light scatterer.

To investigate the dynamics of benzene over a wide dynamic range, we have used depolarized
light scattering. A neutron scattering study is currently under way and will be published later;
preliminary results support the conclusions we draw from light-scattering.

2. Context and theory

2.1. α relaxation

In zeroth approximation, relaxation may be modelled by an exponential decay of correlations.
This ansatz goes back to Maxwell’s theory of viscoelasticity; it has been elaborated for dielectric
response by Debye [6]. The underlying physics is mean-field like: one considers thermal motion
of an individual molecule upon which all the other molecules exert just a constant friction.

However, in glass-forming liquids α relaxation is found to be stretched: it is spread much
more than an exponential decay in time or a Lorentz line (in our context: a Debye resonance)
in frequency. Popular fit functions assume a fractional time or frequency dependence, as in
Kohlrausch’s stretched exponential

ΦK(t) ∝ exp [−(t/τ)β], (1)

or in the Cole–Davidson susceptibility

χCD(ν) ∝ (1 + i2πντ)−β − 1. (2)

While the relaxation time τ depends strongly on the temperature T , the exponents βK or βCD

vary only weakly. This can be seen as a consequence of time–temperature scaling: in a good
first approximation, α relaxation has the form

Φ(t; T ) � Φ̂(t/τ(T )). (3)

† The vibrational spectrum of benzene starts with an E+
u out-of-plane mode at 12.14 THz, see [5].
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Towards high temperatures, this scaling law has an obvious limitation: α relaxation can never
become faster than the temperature-independent microscopic modes. Indeed, on heating glass-
forming materials towards the boiling point the curves log τ versus T become flatter and flatter,
so that τ approaches, but never reaches the intrinsic time scale of microscopic motion [7].
Depolarized light scattering in molecular liquids could clearly resolve an α peak and confirm its
scaling up to temperatures far in the normal liquid phase [8, 9].

2.2. Relaxation in simple liquids

Historically, relaxation in simple liquids (on a THz scale), and α relaxation in highly viscous
liquids (originally measured mostly on Hz–MHz scales) have long been seen as two genuinely
different processes (see [10], page 260). In the most simple monatomic liquids like argon
or sodium, on which theory-oriented textbooks [10]–[12] concentrate, characteristic relaxation
times are of the order of 10−13–10−12 s, which is not much longer than the mean time between
collisions.† Under such circumstances relaxation is closely mingled with microscopic motion,
and it is impossible to obtain isolated experimental information on relaxation alone. On the
other hand, results of scattering experiments and molecular dynamics simulations cannot be
understood without taking into account relaxation. Therefore, experimental data are usually
fitted by theoretical expressions that contain memory kernels built upon an ad hoc model of
relaxation.

Such fits, however, are rather insensitive to the functional form of the memory kernel, and
therefore one seldom went beyond assuming simple exponential relaxation. In some cases, when
fits were judged unsatisfactory, a sum of two exponentials was used (see [10], page 291); this
approach, though admittedly arbitrary, has recently been revived in the analysis of x-ray Brillouin
scattering on liquid metals [13]–[15].

In the investigation of glass-forming liquids this double-exponential approach has long been
overcome by formulæ like (1) or (2). Today, after α relaxation has been observed across the
melting point and up to a GHz–THz scale, it is no longer justified to consider relaxation in glass-
forming materials and relaxation in ordinary liquids as two different physical processes. So we
are led to suspect that the stretching and scaling properties of α relaxation hold in principle even
in argon and sodium, although an experimental verification will be extremely difficult.‡

For the time being we prefer to investigate a molecular, non-glassforming liquid, benzene,
which in a sense is intermediate between simple monatomics on the one side and molecular
glass formers on the other side: the benzene molecule is small and highly symmetric, in contrast
to glass-forming liquids which necessarily have a more complicated structure as to prevent
crystallization. Yet we will find structural relaxation in benzene to be slow enough to allow for
a direct, unambiguous observation of its stretching.

2.3. Mode-coupling theory

As mentioned in the beginning, MCT [17, 18] provides a unified description of α relaxation and
low-frequency vibrations. It is a microscopic theory, formulated as function of wavenumber q

† 1.3 × 10−13 s for liquid argon, see [12].
‡ In the study of glass-forming liquids one has also learned that α relaxation alone is not sufficient to explain the
damping of hydrodynamic modes; a physically meaningful relaxation kernel can only be constructed if one already
possesses a rather complete knowledge of the microscopic dynamics, see [16].
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and time t, and built upon the static structure factor S(q) and the density correlation function
Φq(t) = S(q, t)/S(q). It starts with the formally exact equation of motion

0 = Ω−2
q Φ̈q(t) + Φq(t) +

∫ t

0
dt′ Mq(t − t′)Φ̇q(t′). (4)

The memory kernel Mq(t) contains fast and slow fluctuations, Mq(t) � M ′
q(t)+mq(t). The fast

component, approximated as M ′
q(t) � γqδ(t), can be shown to be irrelevant for the long-time

behaviour.
The basic idea of MCT is now to expand the slow fluctuations mq(t) in polynomials of

density fluctuations, and then to factorize all terms into pair correlations. In lowest order one
obtains the bilinear functional

mq{Φ(t)} =
∑

p+k=q

VqpkΦp(t) Φk(t). (5)

The coupling coefficients Vqpk can be derived from the static structure factor S(q); as S(q), they
vary slowly with state variables like temperature T or pressure P . In this way the dynamics
is completely determined by a closed set of integro-differential equations. Depending on the
numeric values of Vqpk, the Φq(t) either decay to zero or arrest at finite values. The border line
Tc(P ) which separates these two cases has been called the ideal glass transition.

For T < Tc, the density correlations arrest at a finite Debye–Waller factor Φq(t → ∞) =
fq(T ), as expected for a glass. On the liquid side, with T > Tc, the Φq(t) slow down on
approaching a plateau fq(T ), but ultimately they decay to Φq(t → ∞) = 0 in a process which
is easily identified as α relaxation. Since the derivatives Φ̈q(t) become negligible at long times,
equation (4) immediately reproduces the time–temperature scaling (3), with the corollary that
the line shape of Φ̂q may vary with q. To first order, solutions of MCT equations are consistent
with the Kohlrausch asymptote (1).

On cooling towards Tc, α relaxation times are predicted to diverge with a fractional power
law in T −Tc. A comparison with measured relaxation times and viscosities [19] shows that such
a divergence does not correctly describe the glass transition.† Instead, Tc is found to describe a
cross-over that is typically located 15–20% above the conventional glass transition temperature
Tg: while the density–density coupling of equation (5) becomes ineffective at Tc, other transport
mechanisms, not covered by the theory, remain active at lower temperatures. This interpretation
of Tc is supported by various other experimental indications of a cross-over.‡

In liquids to which MCT has been applied in the past, the cross-over occurs at shear
viscosities of the order of 101–103 poise [19]. We note that this is much closer to the viscosity of,
say, water at room temperature (about 10−2 poise) than to the glass transition (which, according
to widespread convention, occurs at 1013 poise). We note also that the dynamic predictions of
MCT are expected to work best not in the immediate vicinity of Tc, but at somewhat higher
temperatures where the concurrence of low-temperature transport processes can be neglected.

† We restrict ourselves to Newtonian liquids. In Brownian liquids, as formed e.g. by colloidal suspensions, the
ergodic–nonergodic transition is well described by MCT, see [20].
‡ The Stokes–Einstein relation which is supposed to connect self diffusion and shear viscosity is found to break
down on cooling below about Tc, see [21]. The temperature at which fast β relaxation dies out seems to coincide
with Tc, see [22]. Empirical formulæ fail to describe the temperature dependence of viscosity simultaneously from
the glass transition up to the normal liquid phase. Several methods of data reduction indicate that there are two
different dynamic regimes, separated by Tc: see section 2.3 in [18], and [53].
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This suggests that MCT should be tested as a theory that describes the dynamics of glass-
forming liquids at rather low viscosities, far above the glass transition, in a slightly supercooled
or thermodynamically stable state. In this paper we want to show that the restriction to glass-
forming liquids can be omitted altogether.

2.4. Applying mode coupling to real-life liquids

Taken literally, equations (4) and (5) assume a liquid composed of identical, spherical, and
stiff particles: only in this case all interactions between the particles can be derived from S(q).
Extending the theory to mixtures is straightforward [23, 24], but including orientational and
intramolecular degrees of freedom poses extreme difficulties: the notational and calculational
efforts required by models so simple as a liquid made of linear molecules [25, 26], or a dilute
solution of linear molecules in spheres [27, 28] are intimidating. Thus, a MCT of molecular
liquids is presently not available.

On the other hand, the time and temperature dependence of MCT solutions is insensitive
to most of the structural information hidden in Vqpk. Taking into account orientational or
intramolecular degrees of freedom may lead to new classes of solutions, but at least in some
types of molecular liquids the fundamental mathematical structure of equations (4) and (5) will
remain dominant.

In such cases, MCT solutions can be characterized by quite few parameters. Close to Tc,
the analytical expansions of Φq(t) − fq depends in lowest order on just one nontrivial line shape
parameter λ. Complete time correlation functions can be generated by numeric solutions of very
simple MCT models: In the minimal F12 model [29], just one correlator Φ(t) and two coupling
coefficients in

m(t) = v1Φ(t) + v2[Φ(t)]2 (6)

are sufficient to obtain relaxational stretching and the ideal glass transition. With just one more
correlator, Φs(t), one can generate spectra with arbitrary α relaxation strengths f s

q : a bilinear
memory kernel [30, 31]†

ms(t) = vsΦ(t)Φs(t) (7)

couples Φs(t) to Φ(t), whereas Φ(t) does not depend on Φs(t).
The so-defined two-correlator F12 model is a physically meaningful tool for fitting

experimental data. As such it has already been successfully employed in several studies of
glass-forming liquids [32]–[35]; the theoretical background is explained especially in [35]. A
detailed numeric study has confirmed the stability of such fits [36].

3. Light scattering measurements

Benzene (Tm = 279 K, Tb = 353 K) was bought from Sigma Aldrich (99.9% puriss. p.a.),
unpacked under inert gas and sealed into a Duran cuvette. To our surprise, the sample could

† Under the very name ‘mode-coupling theory’ the kernel (7) has already been employed in classical studies of
tagged-particle motion in simple liquids [12, 54, 55]. However, in those studies the mode-coupling approach was
only used for Φs(q, t), whereas the Φ(q, t) to which they couple were typically discussed in terms of exponential
memory kernels. A self-consistent ansatz for Φ(t) was first proposed in the context of the glass transition [30, 56],
and only through the experience with glass-forming systems we were led to apply it to the simple liquid benzene.
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be supercooled to 258 K where it remained liquid for several hours. Data were taken at seven
temperatures between 258 and 352 K.

Light scattering experiments were performed using a grating double monochromator U 1000
and a six-pass Sandercock–Fabry–Perot tandem interferometer. In order to achieve stable
operation at maximum resolution, both instruments are placed in insulating housings with
active temperature control. The optics around the interferometer has been modified as described
previously [37, 38]. Depending on the spectral range, the interferometer is used in series with an
interference filter of either 150 or 1000 GHz bandwidth that suppresses higher-order transmission
leaks of the tandem interferometer [39]–[41] below 3% or better. The filters are maintained
at constant temperature. To account for any drift, the instrument function is redetermined
periodically by automatic white-light scans.

In the present experiment, the slits of the monochromator are set to 30–60–60–30 µm,
resulting in a resolution (FWHM) of 7.5 GHz; data are only used above 200 GHz. The
interferometer is operated with mirror spacings of 0.4, 2.8, and 16.3 mm, corresponding to
free spectral ranges of 375, 54, and 9.2 GHz; some additional data were taken with 7.5 mm
(20 GHz).

On both spectrometers, a near-backscattering geometry (172◦) is used to minimize scattering
from transverse modes. In depolarized (HV) interferometer measurements, the usual leakage
from the acoustic modes is seen; these lines are about a hundred times weaker than in polarized
(VV) scattering, but still up to about three times stronger than the continuous HV spectrum.
Subtracting separately measured VV spectra†, we could completely remove the contamination
from the HV data.

Intensity calibration is always a problem in light scattering. Best results were obtained by
matching all data to the middle (54 GHz) spectral range of the interferometer. In this range
intensities are reproduced after a full temperature cycle within about 3%. The temperature-
dependent intensity mismatch of other spectral ranges is higher and attains up to 20%. Part
of the problem may be due to distortions of the optical paths within the cryostat, which are
particularly severe when the spectrometer is operated with small entrance opening. In the present
study, intensities can also be estimated from the mode-coupling fits which are normalized by
construction (see figure 3).

Finally, the spectra are multiplied with the detailed-balance factor,

Ĩ(ν) = I(ν) exp(−hν/2kBT ), (8)

averaged over energy-gain and energy-loss side, and converted from intensity to susceptibility

χ′′
ls(ν) = Ĩ(ν)/ñ(ν) (9)

with the symmetrized Bose factor

ñ(ν) =
1

exp(hν/2kBT ) − exp(−hν/2kBT )
. (10)

In other molecular liquids, comparison with neutron scattering [37], [42]–[46] has shown that
depolarized light scattering yields at least qualitatively a good representation of the dynamic
susceptibility, and therefore we will interpret χ′′

ls(ν) in very much the same way as a susceptibility
from incoherent neutron scattering.

† We have not further analysed the VV spectra. Note, however, that we find a nontrivial sound dispersion: whereas
up to some MHz the room-temperature sound velocity of benzene is about 1300 m s−1, our VV Brillouin scattering
data give about 1500 m s−1 at 5 GHz.
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Figure 1. Susceptibilities of benzene measured by depolarized light scattering at
temperatures T = 258, 268, 279, 293, 310, 330 and 352 K. In the low-frequency
wing, one finds the white-noise slope ν1, indicated by the dashed line. The
nontrivial relaxational and microscopic dynamics inside the rectangular frame is
shown on an enlarged scale in figure 2.

4. Data and analysis

4.1. Susceptibilities on logarithmic scales

Figure 1 shows susceptibilities from depolarized light scattering for seven temperatures between
258 and 352 K. In studies of glass-forming liquids, measuring susceptibilities over several
decades and representing them on double-logarithmic scales were decisive steps in detecting
nontrivial, stretched relaxation [47]. In the case of benzene, the same procedure, on the same
absolute frequency scale, is less rewarding: too much of figure 1 is filled by an uninformative
ν1 white-noise wing.

Therefore we show the nontrivial part of our data in figure 2 on an enlarged scale: the strongly
temperature-dependent dynamics between 15 GHz and 3 THz. With increasing frequency, the
χ′′(ν) begin to deviate from the white-noise limit χ′′ ∝ ν1, reaching a maximum between 40
and 180 GHz which we will ascribe to structural α relaxation. A comparatively flat region leads
over to a shoulder at about 2 THz, above which the susceptibilities strongly decrease. Above
5 THz we find an extended gap; intramolecular excitations are only expected above 12 THz [5].

The whole scenario is compatible with the high-temperature limit of what has been observed
in many glass-forming systems. We note that the picture does not change up to the highest
accessible temperatures: little below the boiling point, the α peak is still separated by almost a
decade in frequency from the vibrational shoulder.
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Figure 2. Enlargement of the intermediate frequency region of figure 1.
Structural α relaxation leads to a peak between 40 and 180 GHz. The shoulder
at about 2 THz is associated with microscopic ballistic motion. The flat cross-
over between these two peaks is a signature of mode-coupling dynamics: the
data cannot be explained as a simple superposition of α relaxation and harmonic
short-time motion. Solid curves are fits with the mode-coupling two-correlator
F12 model (see figure 3, sections 2.3 and 4.5 and table 1).
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Figure 3. The curves in the main figure are identical to the mode-coupling fits of
figure 2, except for being shown in absolute units, fulfilling theχ′′/ν sum rule. The
inset shows the amplitudes AMC(T ) by which these curves had to be multiplied
in order to fit the experimental data; these amplitudes essentially represent the
Pockel coefficient by which light scattering couples to the microscopic dynamics.
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Table 1. Parameters of the two-correlator F12 model, as obtained from the
least-squares fits shown in figure 2. Note that v1, v2, and vs are dimensionless,
whereas Ω, γ, and γs are given in GHz. The amplitude AMC is in the arbitrary
units of our depolarized light scattering experiment. The eighth parameter,
Ωs/2π = 1000 GHz, was kept fixed.

T (K) v1 v2 vs Ω/2π γ/2π γs/2π AMC

258 0.7510 1.172 2.96 821.7 1283 2025 29.07
268 0.7742 1.063 2.845 892.3 1337 1939 28.31
279 0.7380 1.054 2.581 803.7 1086 2089 29.78
293 0.7490 0.988 2.569 905.5 1027 1939 30.09
310 0.7297 0.9781 2.403 971.4 1030 1795 28.99
330 0.7159 0.9682 2.179 983.5 918.1 1830 26.54
352 0.6957 0.9840 2.174 1115 785.4 1674 22.82
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0.1
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ν  / να
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/ν
α)

  /
 A

α

Figure 4. Master curve, constructed by rescaling the light scattering data of all
seven temperatures (symbols as in figure 2) to a common α peak. The peak is
more stretched than any of the usual fit formulæ is able to describe: a Lorentzian,
motivated by the viscoelastic theory of Maxwell and Debye, is completely
inadequate (dotted curve). Kohlrausch’s stretched exponential (equation (1) with
βK = 0.73, dashed curve) and the Cole–Davidson function (equation (2), straight
line) hold at least up to above the maximum of the peak. At higher frequencies,
the extremely flat wing approximately follows a power law ν−b with b � 0.13
(dash–dotted line).

4.2. Absolute intensities

The temperature dependence of the scattering intensity is surprising: the height of the α peak
increases by about 15% on heating from 258 to 293 K; then it falls back and reaches at 352 K about
the starting level. The apparent anharmonicity in the high-temperature, high-frequency limit is
unexpectedly pronounced, though a similar trend has been observed in several other liquids.
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To disentangle possible causes of these anomalies, we take advantage of mode-coupling
fits. The physical meaning of these fits will be discussed later (section 4.5); for the moment we
take them just as a smooth parametrization of the measured data—with one specific advantage:
Since the mode-coupling susceptibilities are obtained by Fourier transformation of the derivative
of a time correlation function, they obey the χ′′(ν)/ν sum rule by construction. Therefore we
can take them as representing our light scattering data in absolute normalization.

Resulting curves are shown in figure 3: they are strictly identical to the mode-coupling
fits included in figure 2—except that the latter are multiplied by an amplitude AMC to adjust
them to the arbitrary experimental intensity. Thanks to the intrinsic normalization, figure 3
shows a highly regular temperature dependence. In particular, we no longer see indications for
a softening of the microscopic excitation spectrum at high temperatures: in the high-frequency
wing, up to the boiling point all susceptibilities coincide, as expected for harmonic motion. The
α peak height increases steadily with T ; only between 1 and 2 THz are small experimental
imperfections visible.

The temperature dependence of AMC is shown in the inset of figure 3. Up to 293 K the
AMC(T ) scatter somehow, then they decrease systematically towards about 75% of the low-
temperature average. A similar decrease of depolarized scattering intensity has been observed
in many other liquids. However, lacking a means of absolute normalization, it was never clear
whether this decrease reflected a property of the sample or of the scattering process. Instabilities
of the experimental setup added to the difficulty. It now appears that the decrease of scattering
intensities at high temperatures in figure 3 is not due to the sample dynamics; it rather appears
that AMC(T ) reveals a temperature variation of the Pockel coefficient that couples light scattering
to the microscopic dynamics.

4.3. α relaxation

For a quantitative analysis of α relaxation, we first test time–temperature superposition. Using
the frequency-space representation of equation (3), and allowing for a temperature dependent
amplitude, we rescale our data onto a master curve. Figure 4 shows that the line shape is
independent of temperature up to at least five times the peak frequency.

The α peak is obviously stretched, as can be seen by comparison to a Debye curve (dotted
curve). The data are far better described by one of the empirical expressions (1) or (2). The
Fourier transform of the Kohlrausch stretched exponential (1) fits the master curve up to about
twice the peak frequency (dashed curve) with a stretching exponent βK � 0.73.

The Cole–Davidson function (2) with βCD � 0.33 describes the master curve to even
higher frequencies (solid line). Consequently, we use Cole–Davidson fits to determine the mean
relaxation time

〈τ〉 =
∫

dt Φ(t)/Φ(0) = βCDτ, (11)

which in turn is used in the iterative construction of the master curve.
None of the empirical fit functions is able to fully describe the extremely flat high-frequency

wing of the α peak. For about one decade, this wing roughly follows a power law ν−b (dash–
dotted line in figure 4). The exponent is about b � 0.13, the precise value depending on the
choice of the frequency range. Such a power law is reminiscent of MCT, though it should not
be taken literally as an MCT asymptote (see section 4.5 below).
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Figure 5. Mean relaxation times 〈τ〉 as obtained from Cole–Davidson fits to
the light-scattering susceptibility in the α relaxation region (•, left scale). Solid
curves are fits by the Vogel–Fulcher function (equation (12), section 4.4). The
temperature dependence agrees in first order with that of the shear viscosity η (�,
literature data [48], right scale).

4.4. Relaxation times

In a next step, we investigate the temperature dependence of the mean relaxation time 〈τ〉, as
determined from the Cole–Davidson fits (11).

In figure 5, 〈τ〉 is plotted as a function of temperature and compared with the shear viscosity
η. In a good first approximation, 〈τ〉 and η show the same temperature dependence. This
completes the demonstration that the susceptibility peak under study is indeed due to α relaxation,
in the same sense as in any glass-forming liquid. The approximate proportionality 〈τ〉 ∝ η can
be used to extend available viscosity data [48] by more than 15 K into the supercooled phase,
and by 9 K towards the boiling point.

Furthermore, figure 5 shows a Vogel–Fulcher fit

〈τ〉 ∝ exp
(
− E0

T − T0

)
(12)

to the mean relaxation times, with T0 = 94.2 K and E0 = 650.6 K. We abstain from any physical
interpretation, since several decades in 〈τ〉 are needed for a meaningful verification of (12); we
just employ the fit as a tool for a more detailed comparison of 〈τ〉 and η.

This comparison is performed in figures 6(a) and (b) where we divide either η or η/T by
the Vogel–Fulcher estimate of 〈τ〉. A proportionality 〈τ〉 ∝ η/T is suggested by the Stokes–
Einstein relation D ∝ T/η: when the diffusion constant D is determined from a time correlation
function,

Φ(t) ∝ exp(−Dq2t), (13)

one has 〈τ〉 ∝ D−1 and thus 〈τ〉 ∝ η/T . Of course the stretched α relaxation in benzene is not
correctly described by equation (13). Therefore the theoretical grounds for assuming 〈τ〉 ∝ η/T
are rather weak.

And indeed, figure 6 shows that 〈τ〉 is not proportional to η/T , nor to η, but something in
between. Such a temperature dependence has been reported at least once before: in a neutron
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Figure 6. For a more detailed comparison of η and 〈τ〉, we eliminate
their common first-order temperature dependence by plotting quotients. Shear
viscosity data are the same as in figure 5; the relaxation times 〈τ〉 are interpolated
to the corresponding temperatures by means of the Vogel–Fulcher fit. The
comparison (a) of 〈τ〉 and η/T is motivated by the Stokes–Einstein relation.
However, (b) shows that 〈τ〉 agrees slightly better with η than with η/T . Both
plots are in arbitrary units†.

spin-echo experiment on the high-temperature dynamics of glycerol [49]. We therefore conclude:
the mean relaxation time observed by scattering shows the same temperature dependence as the
shear viscosity—up to a weakly temperature-dependent prefactor which at present no theory is
able to predict.

4.5. Mode-coupling fits

We now extend our analysis beyond the α peak, considering the full experimental frequency
scale up to some THz. The theoretical reference is given by MCT. MCT is perfectly compatible
with the scaling properties of α relaxation obtained in the two preceding sections. Additionally,
MCT predicts that α relaxation has a rather flat high-frequency wing which leads over to the
microscopic molecular dynamics. This is just what we see in figures 2–4.

In glass-forming liquids, mode-coupling analysis usually concentrates on a scaling regime,
designated as fast β relaxation, which is located between α peak and microscopic frequencies.
When the α relaxation becomes sufficiently slow, the dynamic susceptibility passes through
a minimum, and for frequencies around this minimum simple asymptotic power laws are
predicted. In benzene we find a susceptibility minimum at the two lowest temperatures. This
once again supports qualitative accord with an MCT scenario, though the β relaxation regime is
not sufficiently developed to allow a scaling analysis.

† Arbitrary units were chosen in order to keep the figure as light as possible. In order to obtain η/T/〈τ〉 or η/〈τ〉 in
absolute values, multiply in figure 6(a) with 15.2×106 poise K−1 s−1, and in figure 6(b) with 4.67×109 poise s−1.
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Figure 7. Coupling coefficients used in the schematic mode-coupling fits
(figures 2 and 3, and section 4.5). Numeric values are also given in table 1. The
coefficients v1 and v2 of equation (6) control the intrinsic dynamics of the liquid,
represented by the correlation function Φ(t); the slave correlator Φs(t), which
represents the experimental observable, couples to Φ(t) via vs (equation (7)). In
agreement with the spirit of MCT, we find decreasing coefficients with increasing
temperature.

The approximate power law ν−b (section 4.3, figure 4) in the high-frequency wing of the
α peak is of the low-frequency asymptote of fast β relaxation; however, the exponent b � 0.13
implies a line shape parameter λ � 0.98 which, though formally allowed, is highly unlikely
to represent the true asymptotic value, which whenever reliably determined has been found to
fall into the range of about 0.65–0.8. We therefore think that ν−b represents not more than a
transient: somehow related to the scaling properties of MCT, but not representing an analytical
asymptote of the β minimum.

Therefore, we use numerical instead of asymptotic solutions of MCT. Specifically, we
use the two-correlator F12 model, introduced in section 2.3, which is defined by the equation of
motion (4) (with the set {Φq} replaced by the pair {Φ,Φs}) and the memory kernels (6), (7). While
Φ(t) models the intrinsic dynamics of the system, Φs(t) shall be interpreted as the correlation
function observed by depolarized light scattering.

The model contains seven parameters: two frequencies Ω, Ωs characterizing ballistic
short-time motion, two damping coefficients γ, γs representing fast contributions to the
memory kernel in equation (4), and three coupling coefficients v1, v2 and vs. These
parameters are all expected to vary smoothly and monotonously with temperature. An eighth
parameter, the amplitude AMC, is not part of the model, but needed to adjust it to the
arbitrary experimental intensity scale; these amplitudes have already been discussed above
(section 4.2, figure 3).

The inner loop of the fit routine calculates Φ(t) and Φs(t) by iteratively solving equation (4)
in the time domain [50]–[52]. Then Φs(t) is converted into a susceptibility by blockwise Fourier
transform, using the Filon method. The so-obtained χ′′

s (ν) are fitted to the experimental data.
This procedure is performed independently for each of the seven measured temperatures.

In an attempt to reduce the number of free parameters we find that the microsopic frequency
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Figure 8. In continuation of figure 7, the remaining parameters of the mode-
coupling fits are shown: (a) the microscopic frequencies Ω (full squares) and Ωs (
open squares, kept fixed) of equation (4), and (b) the damping coefficients γ (full
diamonds) and γs (open diamonds) representing the rapidly decaying part M ′

q(t)
of the memory kernel. Since we are using THz units, the figure shows strictly
speaking Ω/2π etc.

of the slave correlator can be kept at a constant value Ωs/2π = 1000 GHz. All other
parameters are found to show a weak, regular temperature dependence with only minor deviations
from monotonicity, as can be seen in figures 7 and 8.† Values are also numerically given
in table 1.

The time dependence of α relaxation is essentially given by the coupling coefficients v1 and
v2. In figure 9 the values obtained from our fits are shown as points in a phase diagram. For
large values of v1 and v2, the F12 model becomes a glass. The phase boundary corresponding to
the idealized liquid–glass transition is indicated in the figure.

In benzene, the coupling coefficients fall clearly in the liquid phase; with decreasing
temperature the glass-transition singularity is only a little approached. This correlates with
the fact that the measured susceptibilities show only a very first onset of a fast β-relaxation
minimum. For the same reason it would not be meaningful to use asymptotic scaling laws that
are based on expansions in T −Tc. From the available v1, v2, it is not even possible to extrapolate
a hypothetical trajectory by which benzene would approach the glass transition if it could be
further supercooled. Therefore it is impossible to indicate a meaningful value of the asymptotic
line shape parameter λ.

† In [32]–[34] all frequencies and damping constants could be kept independent of temperature. In our case,
such a constraint leads to a significant deterioration of the mode-coupling fits. Probably, we are more sensitive to
weak variations of the microscopic dynamics just because we are restricted to a high-temperature regime in which
relaxational frequencies are much closer to the microscopic peak than in a deeply supercooled glass-forming liquid.
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Figure 9. Mode-coupling coefficients v1 and v2 as in figure 7 in the phase
diagram of the F12 model. The solid curve indicates the ideal glass-transition
singularity. On cooling liquid benzene through its entire range of existence, this
phase boundary is only a little approached.

5. Conclusion

We used depolarized light scattering to measure the dynamic susceptibility of liquid benzene.
Four spectral ranges of two spectrometers were combined to cover frequencies from 0.5 GHz
to several THz. White noise prevails up to 10 GHz (figure 1). Depending on temperature,
a relaxational maximum is attained between 40 and 180 GHz. The high-frequency wing of
this maximum is extremely flat, and extends up to about 2 THz. In the supercooled state, the
susceptibility passes through a slight minimum around 1 THz (figures 2 and 3).

Such a broad relaxation pattern cannot be described by exponential memory functions that
underlie conventional theories of simple liquids. Instead, our results look very similar to what
has been observed in many glass-forming liquids. This confirms our starting hypothesis, and
provides the basis for our quantitative data analysis.

As in glass-forming liquids, the relaxational α peak is stretched; it is even more stretched
than the common fit formulæ are able to describe. Time–temperature scaling is obeyed with
high precision and up to the boiling point, contradicting certain glass-transition theories which
assume that α relaxation becomes Debye-like in the high-temperature limit (figure 4).

Within the accessible temperature range, the mean relaxation time 〈τ〉 of benzene varies by
more than a factor of 4, and it is roughly proportional to the shear viscosity η (figure 5). This
accord is not improved by applying the Stokes–Einstein formula according to which 〈τ〉 should
go with η/T rather than η (figure 6). Implications are discussed in section 4.4.

Our observations are fully compatible with MCT. Originally, this theory attracted attention
because of its ability to model a density-driven transition into a nonergodic state. Very soon,
however, it became clear that this singularity does not describe glass formation. Instead, it is now
generally recognized that MCT describes liquid dynamics at relatively low viscosities. In several
studies of glass-forming liquids, fits were extended above the melting point of the concurrent
crystalline phase, which was found to be irrelevant for the molecular dynamics under study. In
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our present work, we push this evolution one step further by applying MCT to a liquid that can
hardly be supercooled (actually, benzene can be supercooled by nearly 20 K, which came out as
quite a surprise). In our experiment, we cover the full range of existence, up to 1 K below the
boiling point.

In this temperature range, we can no longer apply the asymptotic expansions that are used in
most MCT studies of glass-forming materials. Instead, we use numeric solutions of the full mode-
coupling equations of motion. An elementary model with two correlators and three coupling
coefficients is sufficient for a satisfactory fit to our full experimental data set. All parameters
show a smooth, physically reasonable temperature dependence (figures 7 and 8). Previous mode-
coupling studies on glass-forming samples mostly concentrated on the asymptotic predictions
for fast β relaxation. A phase diagram makes clear that this scaling regime is not accessible in
benzene (figure 9). In such a situation numeric solutions of a minimal mode-coupling model
provide the most adequate description of dynamic susceptibilities on the GHz–THz scale of
structural relaxation and microscopic motion.†
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[30] Bengtzelius U, Götze W and Sjölander A 1984 J. Phys. C: Solid State Phys. 17 5915
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