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Abstract

We unravel the nonequilibrium correlated quantum quench dynamics of an impurity traveling through
aharmonically confined Bose—Einstein condensate in one-dimension. For weak repulsive interspecies
interactions the impurity oscillates within the bosonic gas. At strong repulsions and depending on its
prequench position the impurity moves towards an edge of the bosonic medium and subsequently
equilibrates. This equilibration being present independently of the initial velocity, the position and the
mass of the impurity is inherently related to the generation of entanglement in the many-body system.
Focusing on attractive interactions the impurity performs a damped oscillatory motion within the
bosonic bath, abehavior that becomes more evident for stronger attractions. To elucidate our
understanding of the dynamics an effective potential picture is constructed. The effective mass of the
emergent quasiparticle is measured and found to be generically larger than the bare one, especially for
strong attractions. In all cases, a transfer of energy from the impurity to the bosonic medium takes place.
Finally, by averaging over a sample of simulated in situ single-shot images we expose how the single-
particle density distributions and the two-body interspecies correlations can be probed.

1. Introduction

Ultracold atoms offer an excellent platform to study highly imbalanced multicomponent systems, such as
impurities immersed in a Bose—Einstein condensate (BEC) or in a Fermi sea [ 1-3], due to their exquisite degree
of controlability. Indeed the interaction between the impurities and host atoms is tunable via Feshbach
resonances [4, 5] and the emergent many-body states can be characterized e.g. with the aid of radiofrequency
and Ramsey spectroscopy [1, 6-8] and in situ measurements with single-site resolution [9, 10]. Mobile
impurities interacting with a surrounding quantum many-body environment form quasiparticles, such as
polarons[11, 12], originally introduced by Landau [ 13], when the medium consists of neutral atoms that are not
exposed to any external field. The dressing of the impurity atoms from the collective excitations of their host
leads to alterations of their properties including their effective mass [14, 15], induced interactions [16, 17],
formation of bound states e.g. bipolarons [11, 12, 18, 19], as well as dramatic changes during their
nonequilibrium dynamics [20-26]. Another important feature is that the impurity subsystem constitutes a few-
body setting evincing the inescapable necessity of taking correlation effects into account.

The controllable immersion of single or multiple impurities into a many-body environment have recently
led to the experimental observation of Bose [9, 27-30] and Fermi [1, 2, 7] polarons. These experiments triggered
an intense theoretical activity in order to describe the polaron characteristics by operating within different
frameworks [31, 32]. These include, but are not restricted to, the mean-field approximation [33-36], the
Frohlich model [37-42], variational methods [14, 17, 24, 25, 27], effective Hamiltonian approaches
[16,21,43,44] and renormalization group techniques [20, 31, 45]. While the majority of these investigations
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have been mainly focused on the equilibrium properties of the emergent quasiparticles, the dynamics of
impurities is far less explored. In this context notable examples include the observation of self-trapping
phenomena [46, 47], orthogonality catastrophe events [24], generation of dark-bright solitons [15, 26],
transport properties of impurities in optical lattices [48, 49] as well as collisional aspects [50-52] of an impurity
injected into a gas of Tonks—Girardeau bosons [53—60].

In this latter context, Bloch-oscillations of impurities in the absence of a lattice [58], long-lived oscillations
[59, 60], as well as relaxation of moving impurities [53—56] have been observed in one-dimension. The majority
of these investigations have been focusing on a Tonk—Girardeau gas of host atoms in homogeneous space. Yet
the collisional dynamics of an impurity particle penetrating a weakly or intermediate repulsively interacting
quantum bosonic gas being harmonically trapped can be much more involved. Indeed, in this case the dynamics
of the impurity might exhibit a completely different behavior compared to the aforementioned settings for the
following reasons. First the finite interactions between the host atoms will give rise to fundamentally different
scattering properties between the impurity and the bosonic medium. In this sense it would be particularly
interesting to examine the dynamical response of the impurity for different interspecies repulsive and attractive
interactions and study how the response regimes depend on the velocity (subsonic, sonic and supersonic) of the
impurity. Note also that the initial velocity of the impurity is expected to give rise to a much more involved
dynamics compared to the zero velocity case since it will trigger multiple scattering events between the impurity
and the BEC. Concordantly, one can e.g. infer whether long-lived oscillations occur [58—60] for subsonic or
sonic impurities. Moreover, the presence of the external harmonic trap confines the bosonic bath to a finite
spatial region and it would be important to inspect under what conditions the impurity can escape the BEC.
Another intriguing prospect is to examine if the impurity forms a strongly correlated (entangled) state with the
bosonic bath generating a quasiparticle and unveil the correlation effects of its dynamics [24, 59]. Certainly the
properties of the generated quasiparticle such as its effective mass are of significant importance.

To address these inquiries in the present work we investigate the interspecies interaction quench dynamics of
amoving impurity initially modeled by a coherent state which penetrates a repulsively interacting and
harmonically trapped bosonic gas. To simulate the correlated quantum dynamics of the mixture we invoke the
multi-layer multi-configuration time-dependent Hartree method for atomic mixtures (ML-MCTDHX)

[61, 62], which is a non-perturbative variational method capturing all interparticle correlations. We find that the
dynamics of the impurity exhibits different response regimes depending on the value of the postquench
interspecies interaction strength [15, 24, 26]. In particular, for weak postquench interspecies repulsive
interactions the subsonic impurity undergoes a dipole motion with a larger frequency for increasing coupling.
This is in sharp contrast to the behavior of an initially stationary impurity which, following an interspecies
interaction quench, performs a breathing motion inside the BEC as analyzed in [24]. Strikingly enough, at strong
interspecies interactions which exceed the bosonic intraspecies ones the impurity moves towards the edge of the
BEC background and thereafter equilibrates around its Thomas—Fermi radius. This behavior of the moving
impurity observed for strong repulsions takes place independently of its characteristics e.g. initial velocity,
prequench position, trapping frequency and mass and occurs due to the presence of correlations. Importantly,
the density of the impurity approaches selectively the smaller distant edge of the Thomas—Fermi radius with
respect to its prequench position. This result is altered for a zero velocity impurity whose density at such strong
repulsions breaks into two fragments which exhibit a dissipative oscillatory motion at the edges of the Thomas—
Fermi profile of the bosonic gas, e.g. see [24]. In all cases, the bosonic bath shows weak distortions from its initial
Thomas—Fermi profile and shallow density dips built upon the bosonic density thus imprinting the motion of
the impurity. Indeed, the response of the bosonic medium for a zero velocity impurity undergoes weak
amplitude collective breathing oscillations as it has been demonstrated in [24].

Referring to quenches towards attractive interspecies interactions we showcase that the impurity performs a
damped oscillatory motion within the bosonic bath, a behavior that becomes more evident for stronger
attractions. As a result the BEC develops a density peak at the location of the impurity. An effective potential
picture is also developed for each case in order to provide an intuitive understanding of the resulting dynamics of
the impurity [15, 24]. Note that this effective potential is greatly affected by the motion of the impurity, causing
significant deformations in the Thomas—Fermi profile of the bosonic medium, a result that is in contrast to the
initially stationary impurity case. Inspecting the individual energy contributions of each species we reveal that
the impurity dissipates energy into the bosonic medium [24, 63, 64], a phenomenon that is more enhanced for
stronger interactions of either sign. Employing the Von-Neumann entropy we unveil the presence of
interspecies correlations in the course of the evolution. It is worth mentioning that energy exchange processes
and the development of correlations between the impurity and the BEC are generic phenomena appearing in
impurity physics and their emergence is almost independent of the considered quench scenario. Moreover, we
estimate the effective mass of the emergent quasiparticle showcasing that for attractive interactions it is larger
than the bare one tending to the latter when approaching the non-interacting limit and becoming slightly larger
to its bare value for repulsive interactions. Finally, we provide experimental links of our findings by simulating
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single-shot absorption measurements. We demonstrate that by averaging a sample of in situ images the quench-
induced correlated dynamics can be adequately reproduced on the single-particle density level [65-67]. Also by
utilizing the simulated images on the co-moving frame of the impurity we showcase its imprint on the bosonic
gas and discuss how the resulting imaging process probes the two-body interspecies correlations [68].

This work is organized as follows. Section 2 presents our setup, the employed many-body treatment and
different observables that are used for the characterization of the dynamics. Subsequently, the resulting
interspecies interaction quench dynamics towards repulsive (section 3) and attractive (section 4) interactions is
discussed. The effective mass of the emergent quasiparticle is analyzed in section 5, while in section 6 we present
the simulation of in situ single-shot images. We summarize and discuss future perspectives in section 7. In
appendix A we elaborate on the numerical implementation of the single-shot process and in appendix B we
demonstrate the convergence of our many-body calculations.

2. Theoretical framework

2.1. Setup and quench protocol

We consider a highly particle imbalanced bosonic mixture consisting of a single impurity atom N; = 1 and
Npg = 100 bosons constituting the majority species (bath). The many-body Hamiltonian of the system
consisting of mass balanced species, i.e. my = mp = m, which are trapped in the same external one-
dimensional harmonic oscillator potential of frequency wy = wp = w reads

N,

A 22 d 2 1 Np
H= Z Z %( ) + EmaJ(xi‘T)z + gBBZ(S(xiB — x]B) + gy Z (S(x]B — x]). (1)

o
o=B,I i=1 dx; i<j j=1

Within the s-wave scattering limit which is the dominant interaction process in the ultracold regime both
the intra- and interspecies interactions are modeled by a contact potential with effective coupling constants
2.5
gsp and gg;. More specifically, the effective one-dimensional coupling strength [69] is given by g, = %
i

A —1¢1/2)| al,/~2a),where o, ¢’ = B, Iand 1 = g refers to the corresponding reduced mass. Here,

a, = /7 /uw, isthe transversal length scale characterized by a transversal confinement frequency wj . Also, a;,/
is the three-dimensional s-wave scattering length within (¢ = ¢’) or between (o = o) the two species.
Experimentally g, can be adjusted through a,, via Feshbach resonances [4, 5] as well as by manipulating w, by
means of confinement-induced resonances [69]. Throughout this work we use a trapping frequency
w = 0.1 = 27 x 20 Hz, unless itis stated otherwise. To restrict the dynamics to one dimension one can e.g.
assume the experimentally relevant transversal confinementw, = 27w x 200 Hz which is typical for one-
dimensional experiments [70, 71]. Additionally, the intraspecies interactions are kept fixed to ggg = 1.0 while
the interspecies one, gg;, varies upon considering a quench taking values in the repulsive or the attractive regime.
Due to the above-mentioned assumptions our system can be well approximated by a binary BEC of *’Rb atoms
prepared in the hyperfine states |[F = 1, mp = —1)and |F = 2, mp = 1)[72].

For convenience, in the following, the many-body Hamiltonian of equation (1) is rescaled in units of /v, .

AP

m

Then the corresponding length, time, and interaction strengths are provided in terms of lm/—z , w 'and
W

respectively. Also, the spatial extension of our system is limited by employing hard-wall boundary conditions at
x4 = +80. Thelocation of the latter does not affect the dynamics since we do not observe any significant density
population beyond x.. = +40.

In order to examine the correlation effects arising due to the injection of the impurity into the bosonic gas we
follow the protocol outlined below. The bosonic medium is initially prepared into its ground state for ggz = 1.
The impurity resides in a coherent state characterized by an initial velocity u, and it is instantaneously localized
around x,. In particular, its wavefunction assumes the form

1/4
Wl £ = 0) = (m;zj ) e Bk ), @
s

where k) is its initial wavenumber and 1y = ko/m its initial velocity. To trigger the collisional dynamics between
the impurity and the bosonic medium we suddenly switch on at t = 0 the interspecies interaction strength to
repulsive (section 3) or attractive (section 4) interactions and monitor the time-evolution of the system, see
figure 1 for a sketch. Experimentally our protocol can be realized as follows. A magnetic potential gradient that
shifts the minimum of the external trap of the impurity with respect to the bath by 6x = 1, /w is first employed
[73]. Then, in order to import an initial momentum onto the impurity this gradient is switched off letting the
impurity to evolve and a Feshbach resonance is utilized to perform the interaction quench when the impurity is
at position x,.
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Figure 1. Sketch of the dynamical quench protocol. An impurity modeled initially by a coherent state travels through a harmonically
trapped BEC medium with an initial velocity 1. At = 0 an interspecies interaction quench is performed from gz; = 0 to a finite
positive or negative value of g;.

2.2.Many-body treatment
To obtain the ground state and most importantly to explore the quench dynamics of the bosonic mixture we
numerically solve the underlying many-body Schrédinger equation by employing the ML-MCTDHX [61, 62]
method. Itis an ab-initio method which rests on expanding the systems’ many-body wavefunction in terms of a
time-dependent and variationally optimized basis enabling us to take into account both the inter- and the
intraspecies correlations of the binary system.

To include interspecies correlations into our many-body wavefunction ansatz we introduce k = 1,2, ...,D
different species functions for each component, namely UF(x5; t) and Wi(x'; t) respectively. Here,
xB = (xf,.,x§)and x" denote the spatial coordinates of each species with Nyand N; = 1 being the number of
bath and impurity atoms, respectively. Then the many-body wavefunction, ¥z, is expressed in the form of a
truncated Schmidt decomposition [74] of rank D as follows

D
Unp(E, 15 1) = D7 () UREE Wi 1), 3
k=1

The Schmidt coefficients A\i(¢) provide a measure of the entanglement between the two species (see also below)
and will be referred to, in the following, as the natural species populations of the kth species function. Indeed, the
system is termed entangled [75] or interspecies correlated if at least two different A\x(f) possess a nonzero value
since in this case U, is not a direct product of two states.

Moreover, in order to account for the intraspecies correlations of the system we further express each of the
above-mentioned species functions WE(x¥?; t) with respect to permanents consisting of d distinct time-
dependent single-particle functions (SPFs) 4,0? yeen ,@SB . Asaresult, US(X?; t) of the bosonic gas reads

lag

Np! I,
VEEE D = Y @t O PTT ol 0) - T @5 Gecaanis D | (4)

helag i=1 j=1 j=1
> Li=Ng
where P is the permutation operator which exchanges the particle positions x,2, v = 1,...,Nj within the SPFs.

v

Also, K (r) = Y.'_! 1, with ], being the occupation number of the vth SPFand r € {1, 2,...,ds}, while

v=1

B . . . . . .
Cih... 1,y () are the time-dependent expansion coefficients of a certain permanent. Correspondingly, the species

functions W} (x'; t) of the impurity are expressed as follows

dy
I [ I
Wi ) = o, 11, ldB:O)(t)%@p(xl5 £, )
p=1
with ckl, B=0recesly=1,.n lgg=0) (E) being the respective time-dependent expansion coefficients on the SPFs gall yeen ,5021
of the species L.

To solve the underlying Schrédinger equation we need to determine the corresponding ML-MCTDHX
equations of motion [61, 76]. The latter can be accomplished by following e.g. the Dirac—Frenkel variational
principle [77, 78] for the many-body ansatz given by equations (3), (4) and (5). This way we arrive at D?linear
differential equations of motion for the coefficients A\i(f) which are coupled to a set of D [( Np ; ds ; ! ) + dl]

p —
nonlinear integro-differential equations for the species functions and dz + d;integro-differential equations for
the SPFs. Finally, let us remark that within ML-MCTDHX it is also possible to operate at different orders of
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approximation. For instance, we can retrieve the corresponding mean-field wavefunction [79] of the bosonic
mixture in thelimitof D = dz = d; = 1. Namely
Ny

\/—H‘ﬁ

Recall that in this approximation both intra- and interspecies correlations are neglected since the system is
described by one SPF for each of the species [65, 79].

\IIMF(-;C’B) xI; t) (x > t)% (xI t) (6)

2.3. Observables of interest
To monitor the dynamics of each species after the quench we employ as a spatially resolved measure the o-
species one-body reduced density matrix

P, x5 1) = (Wagp(t) 17 o) B ) [Wag(8)).- )

In this expression, U7 (x) [‘i’af(x)] denotes the bosonic field operator that annihilates [creates] a o-species boson
at position x, satisfying also the standard bosonic commutation relations [79]. To be more specific, in the
following, for simplicity we will resort to the corresponding o-species one-body density defined as
pg)(x; t) = pg)(x, x" = x; t). Note also that the eigenfunctions and eigenvalues of pffl)(x, x'; t) are the so-
called natural orbitals ¢7 (x; t) and natural populations n” (t) [61, 65]. The natural orbitals are related with the
SPFs (see equations (4), (5)) via a time-dependent unitary transformation that diagonalizes the matrix

S’)l] = f dxdx’ (x, t) o (', t) pg) (x, x'; t), more details can be found in [61, 62]. Moreover, each bosonic
subsystem is sa1d to be intraspecies correlated if more than one natural population possesses a macroscopic
occupation, otherwise the corresponding subsystem is fully coherent Indeed it can be easily shown that when
n’(t) = 1, nZ (t) = 0holds, then Uy(X5, x'; t) — Upp(X8, x'; 1), see also equations (3) and (6). Asaresult
the degree of the o subsystem intraspecies correlatlons, and therefore the deviation of the many-body state from
the mean-field one, can be theoretically quantified via A, (t) = 1 — n/(¢).

To unveil the degree of interspecies correlations or entanglement during the nonequilibrium dynamics of the
bosonic mixture we measure the so-called Von-Neumann entropy [66, 80]. Recall that (see also the discussion in
section 2.2 and equation (3)) the presence of interspecies correlations or entanglement can be inferred by the values
of the higher than the first Schmidt coefficients, i.e. A\(f) with k > 1. The Schmidt coefﬁcients () are the

elgenvalues ofthespec1es reduced density matrix e.g. pNB(x x’B 1) = f dxTw B(x , x5 D) Uyp(x /B, x5 t), with

= (fx N,_,) (seealso equation (3)). They are chosen to be ordered in a monotonically decreasing manner i.e.
)\k > Mt k=1, 2,...,D — 1. Asaconsequence, the system is species entangled or interspecies correlated when
more than a single eigenvalue of p™ are macroscopically populated, otherwise it is non-entangled. The Von-
Neumann entropy [26, 66, 80] reads

)
Syn(®) = = MO In[ A (D] ®)
It can be easily deduced that in the mean-field limit Syn(#) = 0since A(¥) = 1, while for a many-body state
where more than one Schmidt coefficients A are populated it holds that Sy () = 0.
To track the position of the impurity in the course of the evolution we rely on its spatially averaged mean
position. This enables us to assess the trajectory of the impurity given by

(X1 () = (Tup(t) 1R Tpp(2)) 5 9

where the one-body operator X! = fD dx x\ilﬂ-(x)\ffl(x) with D being the spatial extension of the impurity.
Experimentally, (X;(¢)) can be measured via spin-resolved single-shot absorption images [71]. In particular,
each image provides an estimate of the impurity position and (X; (¢)) can be obtained by averaging over a sample
of such images.

Concluding, we remark that our predictions can be directly tested in state-of-the-art experimental settings
[9,27, 30, 58, 80-83]. Indeed, the initial state of the impurity is prepared by utilizing a magnetic gradient, while
the employed quench protocol can be realized with the aid of a Feshbach resonance. Moreover, the main
quantities used to monitor the dynamics such as the single-particle density and the trajectory of the impurity can
be experimentally tracked via in situ single-shot absorption measurements as we discuss in section 6.

3. Quench dynamics towards repulsive interactions

In the following we investigate the collisional dynamics of a moving single impurity, N; = 1, inside a
harmonically trapped many-body bosonic bath of Ny = 100 atoms following an interspecies interaction quench
to repulsive interactions. The many-body bath is initialized in its ground state with gz = 1 exhibitinga
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Figure 2. Time-evolution of the one-body density of the bath (upper panels) and the impurity (lower panels) for different interspecies
repulsive interaction strengths gz (see legends). The system consists of Ny = 100 bosons initialized in their ground state with ggg = 1
and N; = 1impurity atoms residing in a coherent state. The latter is located at x, = 0 and it possesses an initial velocity 1y = —u./2
with u,. denoting the speed of sound of the bosonic gas. Both species are trapped in an external harmonic oscillator of frequency

w = 0.1. To trigger the dynamics at t = 0 we switch on the interspecies repulsion from gz; = 0 to a finite value (see legends). The
dashed rectangles in (f) mark density emission events of the impurity.
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Figure 3. Snapshots of the o = B, I'species one-body density at distinct time-instants (see legends) for a varying interspecies
interaction strength gp; (see legends). The remaining system parameters are the same as in figure 2.

Thomas—Fermi profile of radius Ry & 25. On the other hand, the impurity is non-interacting with the bath,
gpr = 0,and resides in a coherent state (see equation (2)). Its initial velocity is ug = —u, /2, with u.being the
speed of sound of the BEC background, and therefore it is subsonic. The dynamics is triggered by performing an
interspecies interaction quench to positive gz values at t = 0 where the impurity is located at position xy = 0.

3.1. Single-particle density evolution and effective potential

Let us first inspect the dynamical response of the system upon considering an interspecies quench from gg; = 0
towards a finite positively valued gg;. To achieve a spatially resolved description of the dynamics we resort to the
time-evolution of the o-species single-particle density pg) (x; t), see figure 2. For a weak interspecies interaction
quench, such that gg; < ggp, the impurity (see figure 2(b)) performs almost perfect dipole oscillations of
frequency wg ~ 0.07 inside the bosonic medium. The deviation from perfect dipole oscillations, caused by the
finite value of ggy, is manifested in the shape of p(ll) (x; t) since it becomes more wide when located close to the
edges of pg) (x; r) than the trap center, see figures 3(a)—(c). The bosonic bath remains unperturbed to a large
extent (figure 2(a)) throughout the time-evolution, exhibiting small distortions at the core of its Thomas—Fermi
cloud due to its interaction with the impurity. These distortions are directly evident in the instantaneous density
profiles of pg) (x; t) shown in figures 3(a)—(c). Itis also important to note here that the total external potential of
the impurity can be well approximated by the time-averaged effective potential created by the external harmonic
oscillator and the density of the bosonic bath. Such an effective potential picture affects the dynamics of the
impurity in an essential manner only in the presence of an external trapping since in the homogeneous case the
density of the bath is constant in space. More specifically, this effective potential [24, 84] reads

6



10P Publishing

NewJ. Phys. 21 (2019) 103026 S I Mistakidis et al

1.5

=
w

=
[

E (units of hw )

0.9 1 i
A — jn=1 af \ /l \;:/l ]
In=3 n=4
> N— <Zi2 i ‘\\ I/ )ﬁ[ Zzg
05 (a)‘ N gpr=05 "= 3 (b) VI L v n=1
-40 -20 40 -40 -20 0 40

V] 20 | 26
2 (units of \/h/(mw.,)) 2 (units of \/h/(mw.))

Figure 4. Time-averaged effective potential fof (x) (equation (10)) of the impurity for (a) weak and (b) strong interspecies repulsions.
In all cases the densities of the impurity eigenenergies of V™ (x) are depicted and the eigenstates are labeled with the principal
quantum number #. To obtain fof (x) wehaveused T = 150.

T
Vi (x) = %mwzxz + % f diply(x; 1), (1o
0

where T denotes the considered evolution time. Here, we have used T'= 150. Let us also mention that this
averaging process aims to eliminate the observed distortions on the instantaneous bosonic density pg)(x; 1),
which is achieved in our case for T > 100. These distortions are, of course, caused by the impurity motion and
are mainly imprinted as sound waves, see e.g. figures 2(c) and (e). This V£ (x) at gz, = 0.5 corresponds toa
modified harmonic oscillator potential and it is depicted in figure 4(a) together with its first few single-particle
eigenstates. In this case the impurity undergoes a dipole motion within V§ff (x) and predominantly resides in its
energetically lowest-lying state, n = 1.

Performing a quench to stronger interspecies interaction strengths, e.g. g5y = 1, the collisional dynamics
between the impurity and the bosonic bath (figures 2(c), (d)) is drastically altered compared to the above-
mentioned weakly interacting case (figures 2(a)—(b)). In particular, the prominent interspecies interactions
greatly affect the motion of the impurity after the quench, see figure 2(d). Inspecting p(ll) (x; t) we observe that it
undergoes an irregular oscillatory motion within the BEC. More specifically, it initially travels to the left edge of
the bosonic bath where at t ~ 33 itis reflected back towards the right edge possessing also a larger width
compared to its initial one (see also figures 3(d), (e)). This change of the width of p(Il)(x; t)isadirect effect of the
interaction between the bosonic medium and the impurity and it becomes more pronounced when the impurity
reaches the right edge of the bosonic bath and shows a multihump structure, see figure 2(d) around ¢ ~ 105 and
also figure 3(f). This multihump structure of p(ll) (x; ) suggests that the impurity populates a superposition of
higher-lying excited states of the corresponding effective potential given by equation (10) as we shall discuss in
more detail below. The bosonic medium becomes also perturbed due to its interaction with the impurity. Asa
result slight deviations from the initial Thomas—Fermi profile occur (figures 3(d)—(f)) while pg) (x; t) develops
shallow density dips at the instantaneous location of the density hump of pgl) (x; ), thus imprinting the motion
of the impurity.

Entering to stronger postquench interspecies interactions, e.g. gg; = 2, which satisfy gg; > ggprevealsa
completely different dynamical response of both species, see figures 2(e), (f). Remarkably enough the impurity
travels towards the left edge of the bosonic bath where it remains locked while exhibiting an oscillatory behavior
of negligible amplitude for t > 110. The fact that the impurity escapes from the bosonic gas and undergoes
damped oscillations around its Thomas—Fermi radius is reminiscent of an orthogonality catastrophe
phenomenon [24]. Indeed, it has been showcased that upon considering an interspecies interaction quench of a
zero velocity impurity atom immersed in a bosonic gas to strong repulsions, the structure factor [8] of the
quasiparticle becomes zero and simultaneously the density of the impurity resides at the edges of the BEC [24].
However, an important difference between a zero velocity and a moving impurity is that in the former case after
the quench p(Il) (x; t) breaks into two fragments, a behavior that does not occur herein. Note also that due to its
interaction with the BEC background the impurity emits some small portions of density when it is located well
inside pg) (x; 1), see for instance the dashed white rectangles in figure 2(f) and the small amplitude density hump
of pgl) (x; t) in figure 3(g). When the impurity reaches the left edge of the Thomas—Fermi cloud its p(ll) (x; 1)
develops a multihump structure which indicates that it resides in a superposition of several energetically higher-
lying excited states of the effective external potential. In this case of strong gp; the effective potential introduced
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Figure 5. (a) Time-evolution of the position of the impurity, (X; (t)), for different interspecies interaction strengths (see legend).

(b) (X; (1)) at gg; = 2 within the mean-field (MF) and the many-body (MB) approach. Dynamics of (X; (¢)) for distinct (c) trapping
frequencies w of the bosonic gas and (d) masses m1;, () initial positions x, and (f) initial velocities u of the impurity. The straight
dashed lines in (a)—(c) and (e) provide a guide to the eye for (X;(¢)) = 0.Ineach case all other system parameters are kept fixed and are
the same as in figure 2.

in equation (10) is an asymmetric double-well potential which exhibits an energy offset between the left and right
wells. We remark here that the effective potential approximation provides for these strong interactions only a
very approximate but rather intuitive picture of the impurity dynamics. However, p(Il) (x; t) shown in figures 2(f)
and 3(g)—(i) has been obtained within the full many-body approach described in section 2.2. The resulting

VT (x) and its first few single-particle eigenstates are illustrated in figure 4(b). In terms of this effective picture
fort > 100, the impurity is trapped in the left well of V£ (x) where it predominantly occupies a superposition of
then = 1,n = 3and n = 5 eigenstates. Furthermore, the motion of the impurity leaves its fingerprints also in
the BEC background which as a result becomes perturbed. Indeed, the Thomas—Fermi cloud is disturbed as it
can be seen from the corresponding instantaneous density profiles presented in figures 3(g)—(i) and in particular
when p(ll) (x; t)iswell inside pg) (x; t) (e.g. see figure 3(g)) the latter develops density dips at the instantaneous
location of p(Il)(x; t). Note also that the small distortions appearing in the spatial region of the barrier of the
effective double-well potential depicted in figure 4(b) are caused by the existence of beyond mean-field
corrections at the core of pg) (x; ).

3.2.Mean position of the impurity

To examine the dependence of the dynamical response of the impurity on the distinct system parameters we
next monitor its motion by calculating its mean position (X (¢)) (see also equation (9)) during the dynamics. We
first investigate the motion of a subsonic impurity with initial velocity uy = —u, /2 and the quench is performed
when itislocated at x, = 0. Figure 5(a) shows (X; (1)) for different postquench interspecies interaction
strengths. In line with our discussion in section 3.1, we observe that for gg; < gps the impurity oscillates within
the BEC background but with an increasing period for a larger gy, e.g. compare (X; (t)) between gg; = 0.1 and
gsr = 0.5. However, for quench amplitudes characterized by gg; > ggp the impurity moves towards the left edge
of the bosonic bath and subsequently equilibrates (figure 2(£)), e.g. see (X; (¢)) at gg = 1.5 for # > 50.

A natural question that arises is whether this latter behavior of the impurity, namely equilibration at the edge
of the BEC background, is an effect of the inclusion of the correlations into the dynamics. To address this
question we next present (X;(¢)) at ggr = 2 in figure 5(b) within the fully many-body approach (equation (3))
and the mean-field approximation (equation (6)). Evidently, (X;(¢)) within the mean-field approximation
exhibits an oscillatory behavior for long evolution times meaning that the impurity remains independently of gz;
well inside the BEC background. This sharp contrast of the behavior of (X (¢)) between the many-body and the
mean-field treatments occurring at large ggrevinces that the observed equilibration of the impurity at the edge of
the bosonic bath is a direct effect of the presence of correlations. Moreover, this behavior of (X (¢)) taking place
at strong ggy occurs even for a decreasing trapping frequency e.g. w = 0.05 (at larger evolution times) as shown in
figure 5(c). The fact that the phenomenon occurs for larger evolution times can be attributed to the fact that for a
decreasing w, and thus tending to the untrapped case, the corresponding Thomas—Fermi radius of the BEC
becomes larger and therefore the impurity needs to travel alonger distance until it reaches the edge of the BEC

8



I0OP Publishing NewJ. Phys. 21 (2019) 103026 S I Mistakidis et al

r=r= gy =0.1 ——-gp; =03 gpr = 0.5 —[Epp(t) — Epp(0)] ===E[(t) ===Ep;(t)
P gpr =1 gpr =15 gBr =2 )
(b) gpr =0.5 (c) gBr =2
g AN -
z N,
V? a2 \, / \“'/‘-v
~ 2
. J// \\\ / \///‘\ \/ /
100 % 50 100 150 % 50 100 150
¢ (units of wi?) t (units of w) t (units of w}*)

Figure 6. (a) Evolution of the Von-Neumann entropy between the two species for varying interspecies interaction strength (see
legend). (b) Expectation value of the energy of the bosonic bath Ex(#), the impurity Ef(f) and their interspecies interaction energy Ep/(f)
following an interspecies interaction quench from gg; = 0to (b) gg; = 0.5and (c) gg; = 2. Note the different energy scales of (b)
versus (c). The remaining system parameters are the same as in figure 2.

cloud. This behavior is a direct manifestation of the effect of the strength of the external trapping on the
equilibration time of the moving impurity at strong interspecies repulsions. Let us also remark in passing that at
shortevolution times (0 < ¢ < 40 in figure 5(c)) the trajectory, and thus also the corresponding velocity, of the
impurity is independent of the harmonic oscillator frequency. This is an expected result since for these short
evolution times the impurity lies well inside the bosonic gas and thus experiences an almost homogeneous
environment.

Interestingly, the equilibration of the impurity occurring at strong repulsions persists also for a heavier
impurity atom as depicted in figure 5(d). Here we consider a *’Rb bosonic gas and a single '>>Cs impurity at the
hyperfine states |[F = 1, mp = 0)and |[F = 3, mp = 2) respectively both trapped in an external harmonic
oscillator of the same frequency [81, 82]. Also, the initial momentum of the subsonic impurity is kept fixed in
both cases. Asit can be seen, (X (#)) reaches the edge of the BEC at almost the same time scales in both mixtures
but the '*’Cs atom remains inside the Thomas—Fermi radius to a larger extent than the *’Rb one. This is an
expected result since the velocity u, of the '*>Cs impurity is smaller than the corresponding *Rb one
because mcg > mpp.

Focusing on the strongly interacting regime, e.g. gg; = 2, we next inspect (X; (¢)) by considering the
interaction quench at different locations x, of the impurities’ motion with respect to the trap center, see
figure 5(e). As it can be deduced, (X;(¢)) exhibits a saturated behavior independently of x,. Notice also here that
forx, > 0the impurity is repelled by the bosonic cloud to the opposite direction of its motion and finally
reaches the right edge of the BEC background, e.g. see (X; (¢)) for xo = 10. This is, of course, a manifestation of
the exerted force by the BEC on the impurity. Accordingly, we can infer that the density of the impurity
approaches selectively the smaller distant edge of the bosonic bath in terms of its prequench position. Note that
this result is in contrast to the behavior of a zero velocity impurity whose density at such strong repulsions breaks
into two fragments which exhibit a dissipative oscillatory motion around the edges of the bosonic gas [24].

Next, we examine the dependence of the motion of the impurity in the strongly interacting regime, gg; = 2,
on its initial velocity 1, when the quench is performed at position x¢ = 0. Figure 5(f) illustrates (X (¢)) for initial
velocities uy ~ —(1/5)u, (subsonic), —(1/2)u, (subsonic) and —u, (sonic) with u, &~ 1.74 being the speed of
sound of the BEC background. We deduce that for an increasing initial velocity, such that uy — —u, the
impurity reaches faster the left edge of the bosonic bath where it subsequently equilibrates. Note that this
behavior of (X (¢)) for 1y ~ —u, is in contrast to the long-lived oscillations reported in homogeneous settings
[59, 60] but for supersonic (1 > u.) impurities. However for uy < u, e.g. ug = (1/5)u,, the impurity
performs oscillations through the BEC of a much slower decaying amplitude when compared to the previous
cases. This behavior is caused due to its small velocity which generates a lesser amount of excitations to the BEC
as compared to large uy.

3.3.Degree of entanglement

To quantify the correlated nature of the collisional dynamics between the impurity and the BEC we next
measure the degree of entanglement or interspecies correlations by employing the Von-Neumann entropy
Svn(#) (equation (8)). Recall that Sy (f) = 0 signifies the presence of interspecies entanglement, otherwise the
system is non-entangled [65].

The dynamics of Syn(#) is shown in figure 6(a) following an interspecies interaction quench for different
values of gg. As it can be seen Syn(# = 0) = 0 since for the initial state of the system ggr = 0. However, after the
quench Syn(#) acquires finite values thus indicating the presence of interspecies correlations. For weak
postquench interactions, e.g. ggr = 0.3, there is only a small amount of interspecies correlations since Syn(¥) is
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suppressed taking very small values. Recall that in this case the impurity performs dipole oscillations within the
BEG, see also figure 2(b). On the contrary, for stronger postquench interactions such as gg; = 1.5 Syn(#)
increases rapidly at the initial stages of the dynamics where the impurity resides within the BEC while for later
times at which the impurity equilibrates at the edge of the bosonic gas Syn(#) tends to saturate to a certain finite
value. This behavior of Syx(#) indicates that the underlying many-body state (equation (3)) is strongly entangled.
It is worth mentioning that for strong repulsions where the impurity essentially escapes from the BEC, e.g. at

gpr = 2fort > 80 (figure 2(f)), suggesting a break down of the quasiparticle picture Syn(#) acquires an almost
constant value (figure 6(a)). Also stronger postquench interspecies interactions, ggy, result in larger values of

Syn(D).

3.4. Interspecies energy transfer
To further understand the nonequilibrium dynamics of the impurity immersed in the BEC background for a
different postquench gz, below we analyze the distinct energy contributions of the bosonic mixture [24, 26, 64]. The
normalized energy of the BEC corresponds to Eg(¢) = (¥(t)| Ty + Vs(x) + Hgp|W(1)) — (T(0)] Ty + Vs(x) +
I—AIBB|\II(O)>, and for the impurityis E; (r) = (¥(¢) 1T} + Vi(x) |T(t)). Moreover, the interspecies interaction

d

energyis Eg(t) = <\I!(t)|I-AIBII\II(t)>. In this notation, T, = —fdx\if”-k(x)%(a)z@”(x) and V, (x) =

f dx\ifﬂ(x) %mwzlef/”(x) denote the kinetic and the potential energy operators of the o = B, I species
respectively. Also, Hyp = L fdx \i'BT(x)\i/BT(x)\ifB(x)\ilB(x) and Hy = S fdx \iIBT(x)\i'”(x)‘i/I(x) \i/B(x)
refer to the operators of the intra- and interspecies interactions with ¥ (x) being the o-species field operator.
The dynamics of each of the above-described energy contributions is presented in figures 6(b), (¢) upon
considering a quench towards weak and strong interspecies repulsive interactions respectively. Focusing on
weak postquench interactions (figure 6(b)), e.g. gg; = 0.5, the energy of the impurity E{(¢) and the interspecies
interaction energy Ep/(f) exhibit an oscillatory behavior. The energy of the bath, E(?), slightly increases and
Ep(t) < Ej(t) < Ep;(t)holdsin the course of the evolution. In particular, E(t) is minimized at the time-
intervals where the impurity is close to the trap center and it is maximized when the impurity travels towards the
edges of the BEC. Accordingly, Eg(#) oscillates out-of-phase with E(f) since the interspecies interaction is
stronger when the impurity is close to the trap center (where E;is small) and vice versa. Moreover, the fact that
Ejp() increases to a minor extent during the dynamics suggests that the impurity devolves a small amount of
energy to the BEC. This process is captured by the very weakly decaying amplitude of oscillations of E(?).
Referring to strong interspecies interactions, e.g. gg; = 2 shown in figure 6(c) the dynamical behavior of all
energy contributions is drastically altered when compared to their weakly interacting counterparts (compare
figures 6(b) and (¢)). At0 < t < 40, Eg/(t) reduces while Eg(f) and E;increase. Indeed, within this time interval
the impurity density moves to the left edge of the BEC (figure 2(b)) with a large kinetic energy and as a result
dissipates energy to the latter. For 40 < t < 100, E{(t) and Ep(t) oscillate out-of-phase with respect to one
another and in particular E;(¢) overall increases while performing small amplitude oscillations. Note that in this
time interval p(Il) (x; t) oscillates around the left boundary of pg)(x; t) and still weakly interacts with the BEC.
Simultaneously, Ex(f) increases when the impurity resides to a large extent in the bosonic bath and decreases
when p(ll) (x; t)islocated at the left edge. As a result the impurity transfers a part of its energy to the bosonic gas.
Similar energy exchange processes between the impurity and the host atoms have already been observed e.g. in
[24, 64]. Deeper in the evolution, t > 100, all energy components acquire an almost constant value with
Ep(t) < Epft) < Ef(t). Recall that for t > 100 ,0(11) (x; t) resides at the left edge of pg) (x; t) and therefore the
interaction between the two species is drastically reduced.

4. Quench dynamics towards attractive interactions

Next, we explore the out-of-equilibrium dynamics of a subsonically moving impurity (N; = 1) immersed
within a harmonically trapped BEC (N = 100) upon considering an interspecies interaction quench towards
attractive interactions. As in the previous section 3, the BEC s initially prepared into its ground state with

gpp = 1 havinga Thomas—Fermi profile of radius Ryr & 25. The subsonic impurity is initially modeled as a
coherent state (equation (2)) with a velocity ug = —u, /2 and the impurity-BEC interaction is zero (gz; = 0) at
t = 0. To induce the dynamics we perform at t = 0 a quench to negative gi;interaction strengths when the
impurityisatxy, = 0.

4.1. Density evolution and effective picture
To unveil the dynamical response of the system after an interspecies interaction quench to attractive coupling
strengths we resort to the time-evolution of the o-species single-particle density pff) (x; t). The emergent

evolution of pg) (x; t) isillustrated in figure 7 for distinct postquench interspecies interactions ranging from
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Figure 7. One-body density evolution of the bath (upper panels) and the impurity (lower panels) for different attractive
interspecies interaction strengths gg; (see legends). The system consists of Ny = 100 bosons initialized in their ground state with
gps = land Ny = 1 impurity atoms being in a coherent state which is located at xo = 0 and possesses an initial velocity

uy = —u, /2. The dashed circle in (e) indicates the emission of sound waves in the bosonic gas, while the dashed rectangles in (f)
mark the emission and re-collision of a small density portion of the impurity. Both species are trapped in an external harmonic
oscillator of frequency w = 0.1. To induce the dynamics at t = 0 we quench the interspecies coupling constant from gg; = Otoa
finite negative value (see legends).
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Figure 8. Density profiles of the o = B, I'species at various time-instants (see legends) of the evolution for distinct interspecies
interaction strengths gp; (see legends). The remaining system parameters are the same as in figure 8.

weak to strong negative values. Focusing on weak postquench negative interactions, g, = —0.2 (figures 7(a),
(b)), we observe that due to the small g5, p(ll)(x; t) oscillates within pg)(x; t) with an almost fixed amplitude, see
also figures 8(a)—(c), and frequency wysc = 0.11. As a result of the motion of the impurity and the weak gg; the
Thomas—Fermi cloud is slightly distorted and in particular faint density humps built upon pg) (x; t)atthe
location of p(Il)(x; t) (hardly visible in figure 7(a)).

For stronger negative interspecies interactions, e.g. g, = —1, p(Il) (x; t) undergoes an oscillatory motion of
decaying amplitude within the BEC background and a larger frequency we. ~ 0.14 compared to the
gpr = —0.2, see figure 7(d). Due to the finite gg; the motion of p(Il)(x; t) in turn results in the development of a
density hump on pg) (x; t) at the instantaneous position of the impurity, see figures 7(c) and 8(d)—(f). This
decaying amplitude oscillatory behavior of the impurity persists and becomes more evident for stronger
attractive gy, compare figures 7(d) and (f). Note also the additional modulations of the density peak of the
impurity caused by its collisions with the excitations of the bosonic gas. The above-mentioned behavior of
pgl) (x; 1) can be directly captured by inspecting the dynamics of the mean position of the impurity (X; (¢)) for
varying ggrshown in figure 9. Indeed, we can deduce that (X; (¢)) oscillates with a decaying amplitude in time
which is more pronounced deeper in the attractive regime of interactions, compare (X; (t)) for ggr = —0.5and
gsr = —2. This attenuation of the oscillation amplitude of (X; (#)) is a direct effect of the presence of interspecies
interactions and the underlying energy transfer process from the impurity to the bath, see also the discussion
below and [25, 64]. Also, p(IU (x; t) having a sech-like shape tends to be more localized for larger negative values
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Figure 9. Position of the impurity in the course of the dynamics for different attractive interspecies interaction strengths (see legend).
The remaining system parameters are kept fixed and are the same as in figure 8.
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Figure 10. Effective potential experienced by (a) the BEC background (equation (11)) and (b) the impurity particle (equation (12)) for
gpr = —2atdifferent time-instants ¢, #, of the dynamics. (c) The single-particle density of the BEC background (left panel) at a certain
time-instant f, decomposed into its corresponding Thomas—Fermi profile (central panel) and a sech-shaped wavepacket (right panel).
Aisareal-valued parameter accounting for the deformation of pg) (x5 to) from the Thomas—Fermi profile.

of gpr (see figures 8(g)—(1)), a result that holds equally for the corresponding density hump building upon

pg) (x; t) (figure 7(e)). The latter density hump being directly discernible in pg) (x; t) is essentially an imprint of
the impurity motion inside the BEC. Another interesting observation here is that atlarge |g;, | the system is
strongly correlated and the BEC background is highly excited, as can be inferred from the emission of a large
amount of sound waves, see for instance the dashed black circle in figure 7(e) and the discussion below. Such a
sound wave emission has been extensively reported during the motion of a Gaussian barrier inside a BEC within
(e.g. see [85, 86]) and beyond [67] the mean-field approximation. In the present investigation the impurity plays,
of course, the role of the Gaussian barrier. According to these studies the motion of the impurity locally perturbs
the initial zero phase of the BEC leading to the formation of small amplitude phase disturbances thatlead to
sound waves. A similar mechanism takes place also herein where we can identify the existence of sound waves by
measuring their velocity at the center of the trap being larger than 0.95u,.

The above-described dynamical response of the impurity and the BEC taking place at these negative
interspecies interactions can be qualitatively understood by invoking an effective potential picture [24, 84].
Indeed, the effective potential acting on the BEC consists of the external harmonic oscillator and the
instantaneous density of the impurity namely

VET(x, ) = V(x) — lgg| o1V (x; 1) 1)

A schematic illustration of V§ff (%, t)at g5, = —2isshownin figure 10(a) at two distinct time-instants of the

evolution. We deduce that VT (x, t) corresponds to an harmonic oscillator like potential possessing also a dip,
at the momentary position of the impurity, which is characterized by negative energies. This latter attractive part
of V& (x, ) is responsible for the observed density hump appearing in the dynamics of pg)(x; t). Accordingly,
the effective potential of the impurity is created by the external harmonic oscillator V(x) and the single-particle
density of the BEC. We remark that since pg) (x; t) is greatly affected by the impurity motion, a time-average
effective potential cannot adequately capture the dynamics of the impurity. In particular, the effective potential
of the impurity reads
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Figure 11. (a) Time-evolution of the Von-Neumann entropy for different attractive interspecies interaction strengths (see legend). (b)
Expectation value of the energy of the bosonic bath Eg(#), the impurity Ej(t) and their interspecies interaction energy Eg(t) following
an interspecies interaction quench from gg; = 0to (b) ggr = —0.2 and (c) ggr = —2. Note the different energy scales of (b) versus (c).
The remaining system parameters are the same as in figure 8.

Vi, ) = V() — gl o (x5 1). (12)

Figure 10(b) presents fof (x, t) calculated at gz = —2 for two different times in the course of the dynamics. As
shown, V§T (x, t)isa deformed attractive harmonic oscillator potential having an additional dip around x ~ 0
due to the presence of the density hump building upon pg) (x; ). This attractiveness of VS (x, t) causes the
localized sech-like shape of p(ll)(x; t) located around the aforementioned additional potential dip. Most
importantly, the observed distinct features of the impurity occurring for stronger attractive interactions can be
explained via the behavior of the constructed V™ (x, t). Indeed, for increasing |gg, | the effective frequency of
Vet (x, t)islargerand VT (x, £) becomes more attractive. The former property of V™ (x, £) accounts for the
decreasing oscillation period of (X; (¢)) for larger |g;, |. Additionally, the increasing attractiveness of VEf (x, 1) is
responsible for the reduced width of p(ll) (x; t) for alarger |g,; | and thus its increasing localization tendency, e.g.
compare figures 7(d) and (f).

To showcase the interconnection between VT (x; ) and VT (x; t) we approximately decompose the one-
body density of the BEC at time #, according to

PG 1) = (1 — A)p (x5 0) + AN (x; to). (13)

The first term in equation (13) corresponds to the unperturbed BEC in the absence of the impurity. The second
term provides a correction to pg) (x5 to) stemming from the interspecies interaction according to Vﬁff (x, t) (see
equation (11) and also figure 10(c)). Also, A is a real valued parameter bounded in the interval [0, 1]. In the sense
of equation (13) positive values of A encode the back-action of pgl) (x; o) on the density of the BEC. The latter, in
turn, forms the effective potential V£ (x; t) as dictated by equation (12) which accordingly determines

p(Il) (x5 to)- Indeed, figures 7(c)—(d) and 8(g)—(h) indicate that this correction proportional to A is sizable

especially in the case of strong attractive interactions, e.g. g5, = —2. This is in sharp contrast to an impurity
repulsively interacting with a BEC where no sizable corrections of this nature are found, see also section 3.1
and [24].

4.2. Entanglement dynamics

To reveal the correlated character and in particular the degree of entanglement of the quench-induced dynamics
we calculate the corresponding Von-Neumann entropy Syn(?) (see equation (8)). The time-evolution of Syn(f) is
demonstrated in figure 11(a) for different postquench interaction strengths gz;. As in section 3.3, we again
observe that Syy (f = 0) = 0 holds for all cases due to the fact that initially gg; = 0. However for ¢t > 0

Svn (t) = 0 testifying that the many-body state (equation (3)) is entangled. At the initial stages of the dynamics,
e.g.0 <t < 5for g = —1.2, Syn(t) exhibits its larger growth rate and subsequently shows an overall
decreasing behavior tending to approach a constant value for large evolution times t > 120. The fact that Syn(?)
exhibits the aforementioned decreasing trend for t > 8 can be explained via inspecting the dynamics of the
underlying Schmidt coefficients A(#) of the many-body wavefunction (equation (3)) (not shown here for
brevity). At the early stages of the dynamics A,(f) drops from unity very quickly, while A, (#), As(¢) (with

Ao(t) > As3(9) acquire finite values which become maximal at the time-instant where the impurity emits a small
portion of its density, see the dashed rectangle in figure 7(f) at t & 4. Thereafter, the central density hump of the
impurity is predominantly described by | ¥!(x; t)|* while the emitted density portion by a superposition of
|Wh(x; )] and |Wl(x; t) 2. For later evolution times the emitted density portion re-collides with the central
hump (see the dashed rectangle in figure 7(f) around t ~ 20). Simultaneously A,(#) tends to larger values, while
the populations of \,(f) and \;(f) decrease. Then, | ¥/ (x; t) |* provides the dominant contribution to [Uyp(t)).
The above-described decrease of the higher-lying Schmidt coefficients leads to the decreasing tendency of
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Svn(®). This decreasing behavior of Sy is more pronounced for larger values of ggrand essentially indicates the
attenuation of the oscillation amplitude of the impurity dictated in p(ll) (x; t)and (X (1)), see for instance
figures 7(f) and 9. It is worth mentioning here that the attenuation of (X; (t)) is also related to an energy transfer
from the impurity to the BEC (see section 4.3). Therefore, the decreasing tendency of Sy () is reminiscent of a
cooling process for the impurity atom. Moreover, by inspecting figure 11(a) it becomes evident that entering
deeper to the attractive regime of interactions leads to a larger magnitude of entropy, e.g. compare Syn(f) for
gpr = —0.5and gg; = —2.

4.3. Interspecies energy exchange

To further comprehend the dissipative motion of the impurity through the BEC for attractive interspecies
interactions we also investigate the dynamics of the individual energy contributions of the bosonic mixture. The
resulting energy parts following a quench to weak attractions, e.g. ggr = —0.2, are presented in figure 11(b). We
observe that the interspecies interaction energy, Eg/(f), and the energy of the impurity, E(f), oscillate out-of-
phase with one another in time with a weak amplitude taking negative and positive values respectively. Also
when Ep((#) is maximized the corresponding E;(f) minimizes since then the impurity resides in regions of lower
BEC density. The reverse process occurs when the impurity is close to the trap center, i.e. Egy(f) minimizes and
accordingly E/(f) is maximized. On the other hand, the energy of the BEC Ep(¢) shows a minor increase at the very
early stages of the dynamics and subsequently it remains constant. This increasing tendency of Ex(?) indicates
that the impurity conveys a minor amount of energy to the BEC.

Turning to strong attractive interspecies interactions, e.g. ggy = —2 demonstrated in figure 11(c) the energy
contributions exhibit a completely different behavior. At the very early stages of the dynamics,i.e. 0 < t < 5,the
energy of the bath Ep(f) and the impurity Ef(t) increase whilst the interaction energy Eg(t) reduces. The
increasing behavior of Ex(f) indicates that the impurity gains kinetic energy due to the quench transferringalso a
part of its energy to the bosonic gas [24, 64] which creates sound waves, see also figure 7(f). For later evolution
times Ej(f) remains almost constant since the impurity is strongly localized while Ez(f) and Ep/(?) fluctuate due to
the existence of sound waves in the BEC background [67].

5. Effective mass

Having analyzed the nonequilibrium dynamics of the subsonic impurity which penetrates the BEC we next
measure its effective mass m°". We remark that the effective mass of quasiparticles has been measured
experimentally based on the collective excitations of the impurities, e.g. their breathing motion [2, 80]. Recall
here that for weak repulsive interactions, 0 < g, < 0.95, the impurity moves back and forth with respect to the
trap center and remains within the bosonic bath. Entering the strong repulsive regime, gg; > 1, it probes the left
edge of the BEC where it equilibrates for longer evolution times. However for attractive interspecies coupling
strengths it performs a damped oscillatory motion within the bosonic medium. In all cases, since the impurity
interacts with the BEC it is dressed by the excitations of the latter forming a quasiparticle. To model the motion
of the impurity within the BEC we assume that it follows the following effective damped equation of motion

eff

. Y
X+ meff

% = —(wfh)2x. (14)

Here, w* refers to the effective trapping of the formed quasiparticle due to the combined effect of its interaction
with the bath and the presence of the external harmonic confinement. Furthermore, m°" denotes the effective
mass of the impurity and v*" s the effective damping parameter of the impurity due to its motion inside the BEC.
We also remark that the above effective description inherently involves the assumption that the impurity is
effectively trapped by the bosonic bath. Therefore it is valid only for the interaction interval —2.5 < g, < 0.95

where the impurity does not escape from the Thomas—Fermi radius of the BEC.

To determine the effective mass of the formed quasiparticle as well as its effective trapping frequency and
damping parameter within —2.5 < gy, < 0.95, we perform the following analysis. We first calculate the mean
position, (X;(#)), and momentum, {P;(¢)), of the impurity for a fixed interspecies interaction quench solely
relying on our numerical calculations described in sections 3 and 4. Then, by solving equation (14) it can be
easily shown that the mean position of the impurity reads

Jeff

,
el PO —+ X0 |
(X;(t)) = e awef’| xg cos(wpt) — Tﬁ’”sm(wot) , (15)
m=Wo
eff \2
with wy = | (w2 — (;m—ff) . Moreover, since we consider that initially the impurity-BEC interaction is zero,

ie. gy = 0,weobtain p, = (V(0)|p|¥(0)) = /mmugand xo = (¥(0)|£[¥(0)) = 0. Also, the mean momentum
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Figure 12. (a) Effective mass of the quasiparticle for different postquench interspecies interaction strengths gp; calculated within the
Frohlich and the many-body (MB) approach (see legend). (b) Effective trapping frequency of the quasiparticle and (c) damping
parameter of its motion into the BEC background for varying gsr. The dashed lines in (a), (b) indicate the bare value of the depicted
quantity. In all cases Ny = 100, N; = 1, ggg = 1 and the frequency of the external harmonic confinementisw = 1. Initially the
impurity is non-interacting with the bosonic bath and moves with a velocity uy = —u, /2. The quench is performed when the
impurity is located at xo = 0.

of the impurity obeys the following equation

ff

ff v
o v (Po + m%)

(Pr(1)) = e omell Py cos(wot) + mfwgxy + sin(wgt) ¢. (16)

zmeffwo

Evidently, in the above equations the unknown parameters that need to be determined are w*f, m and ™. In
order to estimate these parameters we perform a fitting of the analytical form of both (X; (#)) and (P;(¢))
provided by equations (15) and (16) to the corresponding numerically obtained results of (X; (¢)) and (P;(¢)).
The values of the parameters w®, m°f and v*f obtained via this fitting procedure are shown in figure 12 for a
varying gg;such that —2.5 < g, < 0.95 where the quasiparticle picture is well defined.

Focusing on the attractive regime of interactions we observe that the effective mass of the emergent
quasiparticle is larger than its bare mass and tends to the latter, i.e. mt — m, asthe non-interacting limit is
approached. Additionally, the effective trapping frequency of the quasiparticle is larger than the actual frequency
of the external harmonic oscillator and overall w*ff exhibits a decreasing tendency as g5, — 0. This resultisin
line with the previously discussed effective potential picture VT (x), see section 4.1 and figure 10(b). Moreover,
the effective damping parameter ° acquires a finite value signaling the dissipative motion of the impurity
inside the BEC and it tends to vanish for ggr — 0. Turning to repulsive interactions the quasiparticle effective
mass is very close to the bare value, e.g. m*™ ~ 1.001m at g = 0.1, while for increasing repulsion it becomes
slightly larger, namely m®™ ~ 1.043m at gg; = 0.5. Note here that this behavior of m“" in the repulsive regime of
interactions is in contrast to the one discussed in [25] where 7™ has been found to become smaller than the bare
mass of the impurity. In this latter case the effective potential used to describe the quasiparticle formation did
not include a damping parameter, an assumption which has been proved sufficient for the zero velocity
impurity. However in the present case the damping term is important for the description of the observed
dynamics and it is responsible for the aforementioned discrepancy. Also, the effective trapping frequency is
smaller than the one of the external harmonic oscillator and shows a decreasing tendency for larger repulsions.
This behavior is in accordance with the effective potential picture introduced in section 3.1, see also figure 4 and
equation (10). Furthermore, v takes small values and increases slightly as g5y becomes stronger.

To expose the role of non-perturbative effects in the resulting effective mass of the quasiparticle we further
calculate m°™ relying on the well-known perturbative expansion of the Frohlich model [31]. Note that this model
operates in the absence of an external confinement, i.e. w = 0. Indeed, it can be shown that the leading order
correction of the effective mass [15, 31, 87] with respect to gz;is given by

meT = g+ 4g3 A+ O, (7)

k2 (Vi / g1

In this expression, the constant A = ‘/(‘) ~ dk K 2 with the scattering amplitude defined by V;, =
Wk 1

N
Jng @m) Vg, ( 2 flzgk)z) . Also the healing length and the speed of sound of the BEC are £ = (2mpgyzno)~'/?

80
mg

the prediction given by equation (17) with our results which include an external trap we choose

ny = pg)(x = 0; t = 0). Furthermore, the dispersion relation of the elementary excitations of the bosonic gas

and u, = respectively with ny being the density of the homogeneous bosonic gas. To adequately compare

corresponds to wy = u k,/1 + %(kf )2 . Figure 12(a) shows m within the Frohlich model for varying gz;.
Strikingly, the predictions of the Frohlich model and the full many-body approach are in very good agreement
with one another both at weak attractive and repulsive interspecies interactions. Therefore we can deduce that
for such weak interspecies interaction strengths the external trapping does not play any crucial role for the
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effective mass of the impurity. This result is not surprising since at these weak interactions the impurity resides
well inside the bosonic gas and thus approximately experiences a homogeneous background. Noticeable
deviations are observed for strong attractive interactions gg; > —1.25, e.g. being of the order of 3% and 9% at
gs = —2.0and gz = —2.5 respectively. Also, small differences on m" estimated between the two
aforementioned approaches occur on the repulsive regime of interactions, and especially for g;, > 0.8 become
larger than 3%. These deviations can be partly attributed to the effect of the trap since for an increasing repulsion
the density of the impurity probes the edges of the cloud of the BEC. Similarly the effect of the harmonic trap
cannot be neglected for large attractive interactions. Indeed the effective potential in this case amplifies any small
discrepancies of the BEC density from the homogeneous case that occur around the trap center.

As a final remark we note that the effective mass depends weakly on the initial, i.e. before the quench, velocity

ug of the impurity. For instance, referring to a fixed postquench interspecies interaction strength e.g. ggy = —1
the effective mass takes values m* ~ 1.19 for uy ~ —u,, m*f ~ 1.15when uy = —u, /2 and m*f ~ 1.13
if Uy = — U, / 5.

6. Single-shot simulations

To provide further possible experimental links of our results we simulate in situ single-shot absorption
measurements [65, 88] aiming at demonstrating how in sifu imaging can be used to adequately monitor the
quench-induced dynamical dressing of the impurity. These measurements probe the spatial configuration of the
atoms and therefore the many-body probability distribution which is indeed available within ML-MCTDHX.
The corresponding experimental images are obtained via a convolution of the spatial particle configuration with
a point spread function that essentially dictates the experimental spatial resolution. Below, we present such
simulations by employing a point spread function of Gaussian shape and width wpsp = 1 < I &= 3.16, with

I = \/1/w being the harmonic oscillator length. Note also that wpsp > & & 0.4, where £ = ﬁf;u

healing length of the BEC. For a more elaborated discussion on the details of the numerical implementation of
this process in one-dimensional binary systems we refer the reader to appendix A and also to [65, 66].

Having at hand the many-body wavefunction of our system within ML-MCTDHX we reproduce i situ
single-shot images for the BEC medium B, AB(%; ), and the impurity I, A/(x'| AB(%); t;,), at each time-instant
of the evolution. Here, t;,,, denotes the time-instant of the imaging. In particular, we consecutively image first the
BEC and then the impurity species. Note that the reverse imaging process does not affect the image obtained
after averaging over several single-shots, see also appendix A. Further details of the corresponding simulation
process of this experimental technique are discussed in appendix A. In the following we analyze the
nonequilibrium dynamics of the bosonic mixture for quenches towards strongly repulsive, gg; = 1.5, and
attractive interactions, i.e. ggr = —2. We remark that a similar analysis has been followed also for other values of
gpr (not shown here for brevity reasons). Before describing the outcome of the images it is noteworthy to
mention that a direct correspondence between the single-particle density and only one single-shot image is not
possible due to the small particle number of the considered setup, Ny = 100 and N; = 1. Such a resemblance is
feasible only when considering large particle numbers, e.g. of the of order 10° particles [67]. Another reason that
excludes the possibility of explicitly observing the one-body density within a single-shot image is the presence of
multiple orbitals in the system (equations (4) and (5)). More specifically, the many-body state is expressed as a
superposition over multiple orbitals (see equations (4) and (5)) and thus imaging an atom alters the many-body
state of the other atoms and as a consequence their one-body density. A more elaborated discussion on this topic
is provided in [65, 67, 89]. Most importantly, it can be demonstrated that the average image e.g. of the BEC (B
species) i.e. AB(®), overa sample of Ny, single-shot images, AB(%), is related to the B species one-body density,

namely pg)(xé), as follows

denotes the

G-xp)?

1P = DB le i oD (x
APz) = o f dxpe s pD(xh). (18)

In this expression, X are the spatial coordinates within the image and xj refers to the spatial coordinate of the B
species. The width of the employed point spread function is wpsr and the species particle number is N. A similar
relation holds for the other species but using the corresponding images.

According to our above discussion in order to retrieve the one-body density of each subsystem we rely
on an average of several single-shot images for each species. In particular, we measure A%(%; t) =
1/ I\lshotSZkNS:hTs AB(; t) for the BEC and Al®|ABR); 1) =1/ I\IshmsszS:hqls ALR'| AB(%); t) for the impurity
atom respectively. Figures 13(a)—(f) show AP®; t)and A'(®| AB%); 1) for different number of samplings,
i.e. Ngpots, upon considering a quench from gg; = 0to gg; = 1.5. Comparing this averaging process for an
increasing number of Ny o and the actual single-particle density calculated via ML-MCTDHX (see figures 2(e),
(f)) unveils that they become almost the same. More specifically, it can easily be deduced that for Nyj,os > 100
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Figure 13. Averaged images of each species over Nyp,ors = 10 (left panels), Nyhors = 100 (central panels) and Ny ors = 800 (right
panels) following an interspecies interaction quench from gy, = 0to (a)—(f) gg; = 1.5and (g)—(1) gs; = —2. Average images over
Nihots = 800 of the bosonic gas in the co-moving frame of the impurity when quenching the interspecies interaction strength from
gar = 0to(m) ggr = 0.5and (n) gg; = —2. The remaining system parameters are the same as in figure 8.

the A*(%; t)and the A®(%/|AA(%); t) tend gradually to pg)(x; t)and pgl)(x; t) respectively. The same overall
phenomenology occurs for the case of a quench towards the attractive interaction regime, here gg; = —2, as
illustrated in figures 13(g)—(k). Indeed, the dissipative motion of the impurity and its imprint on the BEC
background are fairly captured even for Nygp,ois = 10, e.g. compare figures 13(g)—(h) with figures 7(e)—(f).

Utilizing the aforementioned single-shots we can further probe the spatial configuration of the bosonic gas
in the co-moving frame of the impurity. This procedure sheds light on the imprint of the impurity motion onto
the correlations emanating within the bosonic mixture. Such a protocol has been successfully experimentally
implemented to probe the internal structure of magnetic polarons [68]. Within this protocol we shift each of the
previously obtained single-shots, AF(%, t) by the amount X{ = f dx’ %' AL(%'| AB(%); t) being the measured
position of the impurity at the kth single-shot, i.e. AF (x,, t) = A% — X[, t).It can be shown that the
corresponding average image AP (x,, t) = Z;ng’ts . AP(x,, t) over Ny is related to the two-body interspecies
correlation function as follows

by — (e —xp1?

N, _lxr—Gp—xpl?
3 f dxjdxfe dw p@(xp xf; 1. (19)

= BI
A7 (x5 1) e
Here, sz) (2, 25 1) = (Upp(2) |\fITB(x1) \i/”(xz)\ffB(xl) \ifl(xz) |Wyp(2)) are the diagonal elements of the two-body
interspecies reduced density matrix [65, 90]. The latter provides the probability of measuring a B- and a I-species
particle simultaneously at positions x; and x, respectively. A5 (x,, t) obtained from Ny, = 800 is presented in
figures 13(m) and (n) exemplarily for a quench to positive gg; = 0.5 and negative gz; = —2 interactions
respectively. Recall that the effective quasiparticle description holds only when the impurity is effectively trapped
into the bosonic bath and therefore in our case is valid for —2.5 < g, < 0.95. For repulsive postquench
interactions we observe that A% (x,, t) shows an overall oscillatory behavior which is a consequence of the mere
fact that the impurity undergoes for these interactions an oscillatory motion inside the bosonic gas, see also
figure 2(b). Focusingon AP (x,, t) in the vicinity of the impurity, i.e. x, ~ 0, we deduce that the latter repels the
particles of the bosonic gas leading to the development of shallow dips in A®! (x,, t), e.g. see the dashed
rectangles in figure 13(m). Turning to strong attractive interactions, see figure 13(n), we discern the formation of
apronounced peak in the vicinity of x, = 0 caused by the presence of the impurity (see also figure 7(f)). This
result is in accordance to the effective potential picture (equation (11) and figure 10) Also the height of this
central peak fluctuates which is hardly discernible in figure 13(n). Additionally, an overall oscillatory behavior of
ABI(x,, t) occurs since we operate in the co-moving frame of the impurity. Concluding based on A% (x,, t) we
deduce that the interspecies two-body correlations between the impurity and the BEC are much more prevalent
in the case of attractive interactions.

7.Summary and conclusions

We have studied the interspecies interaction quench quantum dynamics of a subsonically moving impurity that
penetrates a harmonically trapped BEC. Monitoring the time-evolution of the impurity on the single-particle
level we identify a variety of response regimes arising for different interaction strengths.

For weak postquench interspecies repulsive interactions the subsonic impurity performs a dipole motion
inside the bosonic bath. The latter remains essentially unperturbed exhibiting some small distortions from its
initial Thomas—Fermi profile. Increasing the interspecies coupling, the oscillation period of the impurity
becomes larger and shallow density dips built upon the bosonic density thus imprinting the impurities’ motion.
However, at strong quench amplitudes such that the interspecies interaction exceeds the bosonic intraspecies
one the dynamical behavior of the impurity is significantly altered. More specifically, the impurity travels in the
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direction of its initial velocity towards the corresponding edge of the BEC background and thereafter fluctuates
around the Thomas—Fermi radius. This latter behavior of the impurity at strong repulsive interactions occurs
independently of its initial velocity, its prequench position, the trapping frequency and the mass ratio of the
atomic species. Most importantly it takes place due to the involvement of correlations since e.g. within the
mean-field approximation the impurity undergoes an oscillatory motion inside the bosonic bath throughout the
dynamics. Employing the Von-Neumann entropy reveals the development of strong interparticle correlations in
the course of the evolution, a result that becomes more pronounced for larger repulsions. Inspecting the
individual energy contributions of each species we unveil that the impurity dissipates energy into the bosonic
medium, a phenomenon that is more enhanced for increasing interspecies interactions. To interpret the
dynamics of the impurity we construct an effective potential which corresponds to a modified harmonic
oscillator for weak interactions turning to a double-well when entering the strongly repulsive regime.

Entering attractive interspecies interactions we showcase that the impurity undergoes a damped oscillatory
motion inside the bosonic bath. This behavior becomes more pronounced for an increasing attraction where the
impurity exhibits alocalization tendency and the BEC develops a density peak at the location of the impurity. It
is shown that the above response of each species can be intuitively understood in terms of an effective potential
picture for the bath and the impurity independently. Moreover, by invoking the energy contributions of each
species we find that the impurity transfers a part of its energy to the bosonic medium which in turn generates
sound waves being also evident in its single-particle density. Also, an inspection of the Von-Neumann entropy
shows the presence of interspecies correlations especially for stronger attractive interactions.

We have estimated the effective mass of the emergent quasiparticle by modeling its damped motion through
the medium with an effective dissipative equation of motion. Performing a fitting of our numerical results and
the analytical prediction of this dissipative equation we are able to estimate the effective mass, trapping
frequency and damping parameter of the impurity. It is found that in the attractive regime of interactions the
effective mass and trapping frequency are larger than the bare ones and tend to the latter when approaching the
non-interacting limit. Also, the effective damping parameter acquires a finite value and tends to vanish for zero
interspecies couplings. For repulsive interactions the quasiparticles’ effective mass is slightly larger than its bare
value while the damping parameter acquires small values. The corresponding effective trapping frequency is
smaller than the one of the external harmonic oscillator showing a decreasing tendency for larger repulsions.
Finally, we have provided possible experimental evidences of the impurity dynamics by simulating in situ single-
shot measurements. In particular, we showcase how an increasing sampling of such images can be used to
adequately retrieve the observed dynamics.

There is a variety of possible extensions of the present work in future endeavors. An imperative prospect is to
unravel the resultant interspecies interaction quench dynamics upon considering two or more interacting
bosonic impurities immersed in a bosonic bath. This study will shed light into the presence of the most probably
emergent induced interactions between the impurities and would enable us to systematically explore their role in
the time-evolution. Additionally, the inclusion of temperature effects in such an investigation would be very
interesting [91, 92]. Another intriguing direction would be to simulate the corresponding radiofrequency
spectrum [17] or the structure factor of the current setup [22, 24] by employing spinor impurities in order to
identify the possibly emerging polaronic states and subsequently measure e.g. their lifetime and residue.
Certainly the generalization of the present results to higher-dimensional settings is highly desirable.
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Appendix A. Technical details of the single-shot algorithm

To perform the simulation of the single-shot procedure we employ a sampling of the many-body probability
distribution [65, 67, 88]. The latter is available in terms of the ML-MCTDHX approach for each time-instant of
the evolution. It is important to note at this point that the numerical implementation of this experimental
procedure has already been reported and applied to a variety of setups including neutral and spinor atoms
[67,89, 93] as well as binary mixtures [65, 66]. In this sense, below we briefly outline the corresponding
numerical procedure but for more details and extensive discussions we refer the reader to [65, 67, 88, 89].
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Asithas already been argued in previous works [65, 67, 88, 89, 93], the single-shot procedure for binary
mixtures is crucially affected by the systems’ intra- and interspecies correlations. Indeed, for a many-body state
the presence of entanglement (see equation (3)) among the distinct species is important regarding the image
ordering. This dependence can be understood by resorting to the underlying Schmidt decomposition (see
equation (3)) since it directly affects the Schmidt coefficients \;. Below, we briefly sketch the numerical process
when imaging first the BEC B and subsequently the impurity I species. In this way, we obtain the corresponding
absorption images AP(%) and A/(%'|.AP(%)). To avoid any confusion, let us remark that in order to image first the
T'and then the B species we can follow the same procedure, retrieving the images A!(%) and AB(%/| A/(%)). Itis
also worth mentioning that the image ordering plays a role when one is interested in the individual single-shot
images. However, in our case that we discuss the average of a sample of single-shots (see the discussion in
section 6) the image ordering is irrelevant since all the effects stemming from entanglement are averaged out.

To perform the imaging of the B and then of the I species we first annihilate one-by-one all B-species bosons.
Referring to a specific time-instant of the imaging, e.g. t;,,,, a random position is drawn obeying p(l) ) >z

where z; is a random number taking values in the interval [0, max{ p(l) (%5 tim)}]. Then by utilizing the
projection operator N(\I] () ® HI) we project the (N + Np)-body wavefunction onto the

(N3 — 1 + Np)-body one. The bosonic field operator annihilating a B species boson at position x; is \ifB(x{) and
N denotes the normalization constant. Evidently, this process affects the Schmidt coefficients, A, and
consequently the densities p(l\l,gi \(tim) and p(Al/,) () are altered. As a result, the Schmidt decomposition of the

many-body wavefunction following this first measurement reads

(tim)) = 32 Riie 1 tand 105, 1)) 18- (AD

Ng—1,N;

[ i

. Y - B . . . .
In this expression, [W; . 1) = %\I/ ()| WP is the Ny — 1 species wavefunction with

N, = \/ (vP |@BT(x1’)\ifB(x{) |¥B) . Moreover, the Schmidt coefficients of the (N3 — 1 + Nj)-body wavefunction
aregivenby \; n, 1 = A\ N; /30 MNP

The imaging process of the B-species is finalized after repeating the above-mentioned steps Ny — 1 times
realizing the following distribution of positions (xl', xz/,. co X 1'\,5 _)- This distribution is then convoluted with a

@2

2ise , where

point spread function resulting in the single-shot image of the B-species A%(X) = \/T:W >N e
7 PSF -

X are the spatial coordinates within the image and wpsy is the width of the point spread function. After
annihilating all Nj atoms, the many-body wavefunction acquires the form

[N (¢ ! 1B
= [0%) ®Z Rinlin) ol i) gy (A2)
Z \//\],l(tzm)l xNgl(I) >|

ONB

Here, the single-particle orbital of the jth mode is (x, |<D]43 ) = (08 1’ (x N) |'1>B ) and the second term in the
cross product of the right-hand side (|\I/ 5(tim))) denotes the impurity species wavefunction. The latter is a non-
entangled single-particle wavefunction (N; = 1) and as a consequence the corresponding single-shot procedure
of the I'species reduces to that of a single-species [67, 88, 89]. Indeed for an imaging time ¢ = t;,,, we measure
m(x, tim) from |\I/11\\],}B> | ¥ (#;,,)) and draw a random position x satisfying p(l)(xl’ "s tim) > z. Here, zyisa
random number bounded in the interval [0, p' N V(x; tim)]. As a result, the I-species particle is annihilated at

position x; and this position is subsequently convoluted with a point spread function resulting to the single-
shotimage A!(x'| AB(%)).

Appendix B. Convergence of the many-body simulations

To simulate the correlated nonequilibrium quantum dynamics of the considered binary mixture we resort to the
ML-MCTDHX [61, 62], see also section 2.2. It is a variational approach for solving the time-dependent many-
body Schrodinger equation of atomic mixtures consisting either of bosonic [24, 25, 65] or fermionic [66, 93]
components that might additionally include spin degrees of freedom [17, 24]. More specifically, this method
relies on the expansion of the many-body wavefunction in terms of a time-dependent and variationally
optimized basis. Such a treatment enables us to include all the important inter- and intraspecies correlations into
our many-body ansatz utilizing a computationally feasible basis size. In this way, it allows us to span the relevant
subspace of the Hilbert space at each time-instant in an efficient manner. The latter is in contrast to methods
relying on a time-independent basis where the number of basis states can be significantly larger rendering the
simulation of intermediate size systems impossible.
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Figure B1. Dynamics of the deviation (a), (b) A (X;(¢))c,c of the position of the impurity and (), (d) ASyn (¢)c,c’ of the Von-
Neumann entropy measured between the C = (8; 3; 8) and other orbital configurations C’ = (D; dg; dj) (see legend). The system
consists of Ng = 100 bosons prepared in their ground state of ggg = 1 and N; = 1 impurity. Initially gg; = O and att = 0 we perform
an interspecies interaction quench to (a), (¢) ggr = 2 and (b), (d) ggr = —2.

The underlying Hilbert space truncation is inferred from the used orbital configuration space, namely
C = (D; dp; dp). In this notation, the number of species and SPFs of each species are denoted by D = Dg = Dy
and dp, d; respectively, see also equations (3)—(5). We remark here that since we use a single impurity then by
definition D = d; holds. Additionally, for our numerical calculations a primitive basis based on a sine discrete
variable representation consisting of 1000 grid points is employed. This sine discrete variable representation
intrinsically introduces hard-wall boundary conditions which in our case are imposed at x,. = £80. Of course,
the location of these boundaries do not affect our results since we do not observe appreciable densities to occur
beyond x,. = £40.

To conclude upon the convergence of our many-body simulations we ensure that all observables of interest
become almost insensitive, to a certain degree, when varying the used orbital configuration spacei.e. C = (D; dp;
dp). In our case, a convergent behavior of all the many-body calculations discussed in the main text has been
achieved by exploiting the orbital configuration space C = (8; 3; 8). To testify the convergence of our results for
adifferent number of species and SPFs e.g. we examine the mean position of the impurity during the interspecies
interaction quench dynamics. In particular, we investigate its absolute deviation between the C = (8; 3;8) and
other orbitals configurations C’ = (D; dg; d;)

(X1 () — (Xi(D))cr| ‘
(X1()c

The time-evolution of A (X;(#))c,¢ is presented in figure B1 following an interspecies interaction quench from
gpr = 0togpr = 2 (figure Bl(a)) and gg; = —2 (figure B1(b)). Evidently, a systematic convergence of
A(X;(t))c,c inboth the repulsive and the attractive regime of interactions can be inferred. Focusing on repulsive
interactions, we observe that A (X; (¢))c,c between the C = (8;3;8) and C' = (9; 3; 9) orbital configurations
lies below 4.3% for all evolution times. Moreover, A (X (¢))c,c calculated for C = (8;3;8)and C = (7;3;7) isat
most 5% during the dynamics. Similar observations can be made by inspecting A (X; (t))c, ¢’ in the case of a
quench towards attractive interactions, see figure B1(b). Indeed, the mean position when C = (8; 3;8) and
C' = (9; 3; 9) becomes at most of the order of 4.1% while e.g. for C = (8; 3;8) and C' = (6;4;6) itacquiresa
maximum value of 7.2%.

Furthermore we showcase the convergence of the Von-Neumann entropy in the course of the time-
evolution. More precisely, we inspect the relative difference of Syn(#) calculated within the C = (8; 3; 8) and
different orbital configurations C’ = (D; dg; d;) namely

ASyn(He.cr — [Svn(t)c — SVN(t)C’l' (B2)

Svn(f)c
The dynamics of the relative deviation ASyy (¢)c ¢ isillustrated in figure B1 after an interaction quench from
gpr = 0to gy = 2 (figure B1(c)) and gg; = —2 (figure B1(d)) for different of orbital configurations C’ and fixed
C = (8; 3;8). Asit can be seen, convergence is achieved also for ASyy (¢)c, ¢ at both repulsive and attractive
postquench interspecies interaction strengths. For repulsive interspecies couplings, e.g. gg; = 2 presented in
figure B1(c), the deviation ASyy ()¢, with C = (8;3;8)and C' = (9; 3; 9) [C = (7;3;7)] is smaller than 4%
[2.7%] throughout the evolution. Turning to attractive postquench interactions such as gg; = —2 (figure B1(d)),
we deduce that ASyy (#)c,c- among the orbital configurations C = (8; 3; 8) and either C' = (9; 3; 9) or
C’' = (6; 4; 6) takes a maximum value of the order of 6% or 7.2% respectively during the dynamics. We should

AXi(®))c,cr = (B1)
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also mention that a similar investigation has been performed for all other interspecies interaction quench
amplitudes discussed in the main text and found to be adequately converged (not shown here for brevity).
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